mm: clean up non-standard page->_mapcount users
[linux-2.6-block.git] / mm / slab.h
CommitLineData
97d06609
CL
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
07f361b2
JK
7#ifdef CONFIG_SLOB
8/*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28};
29
30#endif /* CONFIG_SLOB */
31
32#ifdef CONFIG_SLAB
33#include <linux/slab_def.h>
34#endif
35
36#ifdef CONFIG_SLUB
37#include <linux/slub_def.h>
38#endif
39
40#include <linux/memcontrol.h>
11c7aec2
JDB
41#include <linux/fault-inject.h>
42#include <linux/kmemcheck.h>
43#include <linux/kasan.h>
44#include <linux/kmemleak.h>
7c00fce9 45#include <linux/random.h>
07f361b2 46
97d06609
CL
47/*
48 * State of the slab allocator.
49 *
50 * This is used to describe the states of the allocator during bootup.
51 * Allocators use this to gradually bootstrap themselves. Most allocators
52 * have the problem that the structures used for managing slab caches are
53 * allocated from slab caches themselves.
54 */
55enum slab_state {
56 DOWN, /* No slab functionality yet */
57 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 58 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
59 UP, /* Slab caches usable but not all extras yet */
60 FULL /* Everything is working */
61};
62
63extern enum slab_state slab_state;
64
18004c5d
CL
65/* The slab cache mutex protects the management structures during changes */
66extern struct mutex slab_mutex;
9b030cb8
CL
67
68/* The list of all slab caches on the system */
18004c5d
CL
69extern struct list_head slab_caches;
70
9b030cb8
CL
71/* The slab cache that manages slab cache information */
72extern struct kmem_cache *kmem_cache;
73
45906855
CL
74unsigned long calculate_alignment(unsigned long flags,
75 unsigned long align, unsigned long size);
76
f97d5f63
CL
77#ifndef CONFIG_SLOB
78/* Kmalloc array related functions */
34cc6990 79void setup_kmalloc_cache_index_table(void);
f97d5f63 80void create_kmalloc_caches(unsigned long);
2c59dd65
CL
81
82/* Find the kmalloc slab corresponding for a certain size */
83struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
84#endif
85
86
9b030cb8 87/* Functions provided by the slab allocators */
8a13a4cc 88extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
97d06609 89
45530c44
CL
90extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
91 unsigned long flags);
92extern void create_boot_cache(struct kmem_cache *, const char *name,
93 size_t size, unsigned long flags);
94
423c929c
JK
95int slab_unmergeable(struct kmem_cache *s);
96struct kmem_cache *find_mergeable(size_t size, size_t align,
97 unsigned long flags, const char *name, void (*ctor)(void *));
12220dea 98#ifndef CONFIG_SLOB
2633d7a0 99struct kmem_cache *
a44cb944
VD
100__kmem_cache_alias(const char *name, size_t size, size_t align,
101 unsigned long flags, void (*ctor)(void *));
423c929c
JK
102
103unsigned long kmem_cache_flags(unsigned long object_size,
104 unsigned long flags, const char *name,
105 void (*ctor)(void *));
cbb79694 106#else
2633d7a0 107static inline struct kmem_cache *
a44cb944
VD
108__kmem_cache_alias(const char *name, size_t size, size_t align,
109 unsigned long flags, void (*ctor)(void *))
cbb79694 110{ return NULL; }
423c929c
JK
111
112static inline unsigned long kmem_cache_flags(unsigned long object_size,
113 unsigned long flags, const char *name,
114 void (*ctor)(void *))
115{
116 return flags;
117}
cbb79694
CL
118#endif
119
120
d8843922
GC
121/* Legal flag mask for kmem_cache_create(), for various configurations */
122#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
123 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
124
125#if defined(CONFIG_DEBUG_SLAB)
126#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
127#elif defined(CONFIG_SLUB_DEBUG)
128#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 129 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
130#else
131#define SLAB_DEBUG_FLAGS (0)
132#endif
133
134#if defined(CONFIG_SLAB)
135#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2
VD
136 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
137 SLAB_NOTRACK | SLAB_ACCOUNT)
d8843922
GC
138#elif defined(CONFIG_SLUB)
139#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
230e9fc2 140 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
d8843922
GC
141#else
142#define SLAB_CACHE_FLAGS (0)
143#endif
144
145#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
146
945cf2b6 147int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 148void __kmem_cache_release(struct kmem_cache *);
d6e0b7fa 149int __kmem_cache_shrink(struct kmem_cache *, bool);
41a21285 150void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 151
b7454ad3
GC
152struct seq_file;
153struct file;
b7454ad3 154
0d7561c6
GC
155struct slabinfo {
156 unsigned long active_objs;
157 unsigned long num_objs;
158 unsigned long active_slabs;
159 unsigned long num_slabs;
160 unsigned long shared_avail;
161 unsigned int limit;
162 unsigned int batchcount;
163 unsigned int shared;
164 unsigned int objects_per_slab;
165 unsigned int cache_order;
166};
167
168void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
169void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
170ssize_t slabinfo_write(struct file *file, const char __user *buffer,
171 size_t count, loff_t *ppos);
ba6c496e 172
484748f0
CL
173/*
174 * Generic implementation of bulk operations
175 * These are useful for situations in which the allocator cannot
9f706d68 176 * perform optimizations. In that case segments of the object listed
484748f0
CL
177 * may be allocated or freed using these operations.
178 */
179void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 180int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 181
127424c8 182#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
426589f5
VD
183/*
184 * Iterate over all memcg caches of the given root cache. The caller must hold
185 * slab_mutex.
186 */
187#define for_each_memcg_cache(iter, root) \
188 list_for_each_entry(iter, &(root)->memcg_params.list, \
189 memcg_params.list)
190
ba6c496e
GC
191static inline bool is_root_cache(struct kmem_cache *s)
192{
f7ce3190 193 return s->memcg_params.is_root_cache;
ba6c496e 194}
2633d7a0 195
b9ce5ef4 196static inline bool slab_equal_or_root(struct kmem_cache *s,
f7ce3190 197 struct kmem_cache *p)
b9ce5ef4 198{
f7ce3190 199 return p == s || p == s->memcg_params.root_cache;
b9ce5ef4 200}
749c5415
GC
201
202/*
203 * We use suffixes to the name in memcg because we can't have caches
204 * created in the system with the same name. But when we print them
205 * locally, better refer to them with the base name
206 */
207static inline const char *cache_name(struct kmem_cache *s)
208{
209 if (!is_root_cache(s))
f7ce3190 210 s = s->memcg_params.root_cache;
749c5415
GC
211 return s->name;
212}
213
f8570263
VD
214/*
215 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
f7ce3190
VD
216 * That said the caller must assure the memcg's cache won't go away by either
217 * taking a css reference to the owner cgroup, or holding the slab_mutex.
f8570263 218 */
2ade4de8
QH
219static inline struct kmem_cache *
220cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415 221{
959c8963 222 struct kmem_cache *cachep;
f7ce3190 223 struct memcg_cache_array *arr;
f8570263
VD
224
225 rcu_read_lock();
f7ce3190 226 arr = rcu_dereference(s->memcg_params.memcg_caches);
959c8963
VD
227
228 /*
229 * Make sure we will access the up-to-date value. The code updating
230 * memcg_caches issues a write barrier to match this (see
f7ce3190 231 * memcg_create_kmem_cache()).
959c8963 232 */
f7ce3190 233 cachep = lockless_dereference(arr->entries[idx]);
8df0c2dc
PK
234 rcu_read_unlock();
235
959c8963 236 return cachep;
749c5415 237}
943a451a
GC
238
239static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
240{
241 if (is_root_cache(s))
242 return s;
f7ce3190 243 return s->memcg_params.root_cache;
943a451a 244}
5dfb4175 245
f3ccb2c4
VD
246static __always_inline int memcg_charge_slab(struct page *page,
247 gfp_t gfp, int order,
248 struct kmem_cache *s)
5dfb4175 249{
27ee57c9
VD
250 int ret;
251
5dfb4175
VD
252 if (!memcg_kmem_enabled())
253 return 0;
254 if (is_root_cache(s))
255 return 0;
27ee57c9
VD
256
257 ret = __memcg_kmem_charge_memcg(page, gfp, order,
258 s->memcg_params.memcg);
259 if (ret)
260 return ret;
261
262 memcg_kmem_update_page_stat(page,
263 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
264 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
265 1 << order);
266 return 0;
267}
268
269static __always_inline void memcg_uncharge_slab(struct page *page, int order,
270 struct kmem_cache *s)
271{
272 memcg_kmem_update_page_stat(page,
273 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
274 MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
275 -(1 << order));
276 memcg_kmem_uncharge(page, order);
5dfb4175 277}
f7ce3190
VD
278
279extern void slab_init_memcg_params(struct kmem_cache *);
280
127424c8 281#else /* CONFIG_MEMCG && !CONFIG_SLOB */
f7ce3190 282
426589f5
VD
283#define for_each_memcg_cache(iter, root) \
284 for ((void)(iter), (void)(root); 0; )
426589f5 285
ba6c496e
GC
286static inline bool is_root_cache(struct kmem_cache *s)
287{
288 return true;
289}
290
b9ce5ef4
GC
291static inline bool slab_equal_or_root(struct kmem_cache *s,
292 struct kmem_cache *p)
293{
294 return true;
295}
749c5415
GC
296
297static inline const char *cache_name(struct kmem_cache *s)
298{
299 return s->name;
300}
301
2ade4de8
QH
302static inline struct kmem_cache *
303cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415
GC
304{
305 return NULL;
306}
943a451a
GC
307
308static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
309{
310 return s;
311}
5dfb4175 312
f3ccb2c4
VD
313static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
314 struct kmem_cache *s)
5dfb4175
VD
315{
316 return 0;
317}
318
27ee57c9
VD
319static inline void memcg_uncharge_slab(struct page *page, int order,
320 struct kmem_cache *s)
321{
322}
323
f7ce3190
VD
324static inline void slab_init_memcg_params(struct kmem_cache *s)
325{
326}
127424c8 327#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
b9ce5ef4
GC
328
329static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
330{
331 struct kmem_cache *cachep;
332 struct page *page;
333
334 /*
335 * When kmemcg is not being used, both assignments should return the
336 * same value. but we don't want to pay the assignment price in that
337 * case. If it is not compiled in, the compiler should be smart enough
338 * to not do even the assignment. In that case, slab_equal_or_root
339 * will also be a constant.
340 */
becfda68
LA
341 if (!memcg_kmem_enabled() &&
342 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
b9ce5ef4
GC
343 return s;
344
345 page = virt_to_head_page(x);
346 cachep = page->slab_cache;
347 if (slab_equal_or_root(cachep, s))
348 return cachep;
349
350 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
2d16e0fd 351 __func__, s->name, cachep->name);
b9ce5ef4
GC
352 WARN_ON_ONCE(1);
353 return s;
354}
ca34956b 355
11c7aec2
JDB
356static inline size_t slab_ksize(const struct kmem_cache *s)
357{
358#ifndef CONFIG_SLUB
359 return s->object_size;
360
361#else /* CONFIG_SLUB */
362# ifdef CONFIG_SLUB_DEBUG
363 /*
364 * Debugging requires use of the padding between object
365 * and whatever may come after it.
366 */
367 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
368 return s->object_size;
369# endif
370 /*
371 * If we have the need to store the freelist pointer
372 * back there or track user information then we can
373 * only use the space before that information.
374 */
375 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
376 return s->inuse;
377 /*
378 * Else we can use all the padding etc for the allocation
379 */
380 return s->size;
381#endif
382}
383
384static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
385 gfp_t flags)
386{
387 flags &= gfp_allowed_mask;
388 lockdep_trace_alloc(flags);
389 might_sleep_if(gfpflags_allow_blocking(flags));
390
fab9963a 391 if (should_failslab(s, flags))
11c7aec2
JDB
392 return NULL;
393
394 return memcg_kmem_get_cache(s, flags);
395}
396
397static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
398 size_t size, void **p)
399{
400 size_t i;
401
402 flags &= gfp_allowed_mask;
403 for (i = 0; i < size; i++) {
404 void *object = p[i];
405
406 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
407 kmemleak_alloc_recursive(object, s->object_size, 1,
408 s->flags, flags);
505f5dcb 409 kasan_slab_alloc(s, object, flags);
11c7aec2
JDB
410 }
411 memcg_kmem_put_cache(s);
412}
413
44c5356f 414#ifndef CONFIG_SLOB
ca34956b
CL
415/*
416 * The slab lists for all objects.
417 */
418struct kmem_cache_node {
419 spinlock_t list_lock;
420
421#ifdef CONFIG_SLAB
422 struct list_head slabs_partial; /* partial list first, better asm code */
423 struct list_head slabs_full;
424 struct list_head slabs_free;
425 unsigned long free_objects;
426 unsigned int free_limit;
427 unsigned int colour_next; /* Per-node cache coloring */
428 struct array_cache *shared; /* shared per node */
c8522a3a 429 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
430 unsigned long next_reap; /* updated without locking */
431 int free_touched; /* updated without locking */
432#endif
433
434#ifdef CONFIG_SLUB
435 unsigned long nr_partial;
436 struct list_head partial;
437#ifdef CONFIG_SLUB_DEBUG
438 atomic_long_t nr_slabs;
439 atomic_long_t total_objects;
440 struct list_head full;
441#endif
442#endif
443
444};
e25839f6 445
44c5356f
CL
446static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
447{
448 return s->node[node];
449}
450
451/*
452 * Iterator over all nodes. The body will be executed for each node that has
453 * a kmem_cache_node structure allocated (which is true for all online nodes)
454 */
455#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
456 for (__node = 0; __node < nr_node_ids; __node++) \
457 if ((__n = get_node(__s, __node)))
44c5356f
CL
458
459#endif
460
1df3b26f 461void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
462void *slab_next(struct seq_file *m, void *p, loff_t *pos);
463void slab_stop(struct seq_file *m, void *p);
b047501c 464int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 465
55834c59
AP
466void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
467
7c00fce9
TG
468#ifdef CONFIG_SLAB_FREELIST_RANDOM
469int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
470 gfp_t gfp);
471void cache_random_seq_destroy(struct kmem_cache *cachep);
472#else
473static inline int cache_random_seq_create(struct kmem_cache *cachep,
474 unsigned int count, gfp_t gfp)
475{
476 return 0;
477}
478static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
479#endif /* CONFIG_SLAB_FREELIST_RANDOM */
480
5240ab40 481#endif /* MM_SLAB_H */