slab: use get_node() and kmem_cache_node() functions
[linux-2.6-block.git] / mm / slab.h
CommitLineData
97d06609
CL
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
7/*
8 * State of the slab allocator.
9 *
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
14 */
15enum slab_state {
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
ce8eb6c4 19 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
22};
23
24extern enum slab_state slab_state;
25
18004c5d
CL
26/* The slab cache mutex protects the management structures during changes */
27extern struct mutex slab_mutex;
9b030cb8
CL
28
29/* The list of all slab caches on the system */
18004c5d
CL
30extern struct list_head slab_caches;
31
9b030cb8
CL
32/* The slab cache that manages slab cache information */
33extern struct kmem_cache *kmem_cache;
34
45906855
CL
35unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
37
f97d5f63
CL
38#ifndef CONFIG_SLOB
39/* Kmalloc array related functions */
40void create_kmalloc_caches(unsigned long);
2c59dd65
CL
41
42/* Find the kmalloc slab corresponding for a certain size */
43struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
44#endif
45
46
9b030cb8 47/* Functions provided by the slab allocators */
8a13a4cc 48extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
97d06609 49
45530c44
CL
50extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
51 unsigned long flags);
52extern void create_boot_cache(struct kmem_cache *, const char *name,
53 size_t size, unsigned long flags);
54
2633d7a0 55struct mem_cgroup;
cbb79694 56#ifdef CONFIG_SLUB
2633d7a0 57struct kmem_cache *
a44cb944
VD
58__kmem_cache_alias(const char *name, size_t size, size_t align,
59 unsigned long flags, void (*ctor)(void *));
cbb79694 60#else
2633d7a0 61static inline struct kmem_cache *
a44cb944
VD
62__kmem_cache_alias(const char *name, size_t size, size_t align,
63 unsigned long flags, void (*ctor)(void *))
cbb79694
CL
64{ return NULL; }
65#endif
66
67
d8843922
GC
68/* Legal flag mask for kmem_cache_create(), for various configurations */
69#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
71
72#if defined(CONFIG_DEBUG_SLAB)
73#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74#elif defined(CONFIG_SLUB_DEBUG)
75#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76 SLAB_TRACE | SLAB_DEBUG_FREE)
77#else
78#define SLAB_DEBUG_FLAGS (0)
79#endif
80
81#if defined(CONFIG_SLAB)
82#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84#elif defined(CONFIG_SLUB)
85#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86 SLAB_TEMPORARY | SLAB_NOTRACK)
87#else
88#define SLAB_CACHE_FLAGS (0)
89#endif
90
91#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
92
945cf2b6 93int __kmem_cache_shutdown(struct kmem_cache *);
03afc0e2 94int __kmem_cache_shrink(struct kmem_cache *);
41a21285 95void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 96
b7454ad3
GC
97struct seq_file;
98struct file;
b7454ad3 99
0d7561c6
GC
100struct slabinfo {
101 unsigned long active_objs;
102 unsigned long num_objs;
103 unsigned long active_slabs;
104 unsigned long num_slabs;
105 unsigned long shared_avail;
106 unsigned int limit;
107 unsigned int batchcount;
108 unsigned int shared;
109 unsigned int objects_per_slab;
110 unsigned int cache_order;
111};
112
113void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
114void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
115ssize_t slabinfo_write(struct file *file, const char __user *buffer,
116 size_t count, loff_t *ppos);
ba6c496e
GC
117
118#ifdef CONFIG_MEMCG_KMEM
119static inline bool is_root_cache(struct kmem_cache *s)
120{
121 return !s->memcg_params || s->memcg_params->is_root_cache;
122}
2633d7a0 123
b9ce5ef4
GC
124static inline bool slab_equal_or_root(struct kmem_cache *s,
125 struct kmem_cache *p)
126{
127 return (p == s) ||
128 (s->memcg_params && (p == s->memcg_params->root_cache));
129}
749c5415
GC
130
131/*
132 * We use suffixes to the name in memcg because we can't have caches
133 * created in the system with the same name. But when we print them
134 * locally, better refer to them with the base name
135 */
136static inline const char *cache_name(struct kmem_cache *s)
137{
138 if (!is_root_cache(s))
139 return s->memcg_params->root_cache->name;
140 return s->name;
141}
142
f8570263
VD
143/*
144 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
145 * That said the caller must assure the memcg's cache won't go away. Since once
146 * created a memcg's cache is destroyed only along with the root cache, it is
147 * true if we are going to allocate from the cache or hold a reference to the
148 * root cache by other means. Otherwise, we should hold either the slab_mutex
149 * or the memcg's slab_caches_mutex while calling this function and accessing
150 * the returned value.
151 */
2ade4de8
QH
152static inline struct kmem_cache *
153cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415 154{
959c8963 155 struct kmem_cache *cachep;
f8570263 156 struct memcg_cache_params *params;
959c8963 157
6f6b8951
AV
158 if (!s->memcg_params)
159 return NULL;
f8570263
VD
160
161 rcu_read_lock();
162 params = rcu_dereference(s->memcg_params);
163 cachep = params->memcg_caches[idx];
164 rcu_read_unlock();
959c8963
VD
165
166 /*
167 * Make sure we will access the up-to-date value. The code updating
168 * memcg_caches issues a write barrier to match this (see
169 * memcg_register_cache()).
170 */
171 smp_read_barrier_depends();
172 return cachep;
749c5415 173}
943a451a
GC
174
175static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
176{
177 if (is_root_cache(s))
178 return s;
179 return s->memcg_params->root_cache;
180}
5dfb4175
VD
181
182static __always_inline int memcg_charge_slab(struct kmem_cache *s,
183 gfp_t gfp, int order)
184{
185 if (!memcg_kmem_enabled())
186 return 0;
187 if (is_root_cache(s))
188 return 0;
c67a8a68 189 return __memcg_charge_slab(s, gfp, order);
5dfb4175
VD
190}
191
192static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
193{
194 if (!memcg_kmem_enabled())
195 return;
196 if (is_root_cache(s))
197 return;
c67a8a68 198 __memcg_uncharge_slab(s, order);
5dfb4175 199}
ba6c496e
GC
200#else
201static inline bool is_root_cache(struct kmem_cache *s)
202{
203 return true;
204}
205
b9ce5ef4
GC
206static inline bool slab_equal_or_root(struct kmem_cache *s,
207 struct kmem_cache *p)
208{
209 return true;
210}
749c5415
GC
211
212static inline const char *cache_name(struct kmem_cache *s)
213{
214 return s->name;
215}
216
2ade4de8
QH
217static inline struct kmem_cache *
218cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415
GC
219{
220 return NULL;
221}
943a451a
GC
222
223static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
224{
225 return s;
226}
5dfb4175
VD
227
228static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
229{
230 return 0;
231}
232
233static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
234{
235}
ba6c496e 236#endif
b9ce5ef4
GC
237
238static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
239{
240 struct kmem_cache *cachep;
241 struct page *page;
242
243 /*
244 * When kmemcg is not being used, both assignments should return the
245 * same value. but we don't want to pay the assignment price in that
246 * case. If it is not compiled in, the compiler should be smart enough
247 * to not do even the assignment. In that case, slab_equal_or_root
248 * will also be a constant.
249 */
250 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
251 return s;
252
253 page = virt_to_head_page(x);
254 cachep = page->slab_cache;
255 if (slab_equal_or_root(cachep, s))
256 return cachep;
257
258 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
259 __FUNCTION__, cachep->name, s->name);
260 WARN_ON_ONCE(1);
261 return s;
262}
97d06609 263#endif
ca34956b 264
44c5356f 265#ifndef CONFIG_SLOB
ca34956b
CL
266/*
267 * The slab lists for all objects.
268 */
269struct kmem_cache_node {
270 spinlock_t list_lock;
271
272#ifdef CONFIG_SLAB
273 struct list_head slabs_partial; /* partial list first, better asm code */
274 struct list_head slabs_full;
275 struct list_head slabs_free;
276 unsigned long free_objects;
277 unsigned int free_limit;
278 unsigned int colour_next; /* Per-node cache coloring */
279 struct array_cache *shared; /* shared per node */
280 struct array_cache **alien; /* on other nodes */
281 unsigned long next_reap; /* updated without locking */
282 int free_touched; /* updated without locking */
283#endif
284
285#ifdef CONFIG_SLUB
286 unsigned long nr_partial;
287 struct list_head partial;
288#ifdef CONFIG_SLUB_DEBUG
289 atomic_long_t nr_slabs;
290 atomic_long_t total_objects;
291 struct list_head full;
292#endif
293#endif
294
295};
e25839f6 296
44c5356f
CL
297static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
298{
299 return s->node[node];
300}
301
302/*
303 * Iterator over all nodes. The body will be executed for each node that has
304 * a kmem_cache_node structure allocated (which is true for all online nodes)
305 */
306#define for_each_kmem_cache_node(__s, __node, __n) \
307 for (__node = 0; __n = get_node(__s, __node), __node < nr_node_ids; __node++) \
308 if (__n)
309
310#endif
311
276a2439
WL
312void *slab_next(struct seq_file *m, void *p, loff_t *pos);
313void slab_stop(struct seq_file *m, void *p);