kernel/kthread.c: partial revert of 81c98869faa5 ("kthread: ensure locality of task_s...
[linux-2.6-block.git] / mm / slab.h
CommitLineData
97d06609
CL
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
07f361b2
JK
7#ifdef CONFIG_SLOB
8/*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28};
29
30#endif /* CONFIG_SLOB */
31
32#ifdef CONFIG_SLAB
33#include <linux/slab_def.h>
34#endif
35
36#ifdef CONFIG_SLUB
37#include <linux/slub_def.h>
38#endif
39
40#include <linux/memcontrol.h>
41
97d06609
CL
42/*
43 * State of the slab allocator.
44 *
45 * This is used to describe the states of the allocator during bootup.
46 * Allocators use this to gradually bootstrap themselves. Most allocators
47 * have the problem that the structures used for managing slab caches are
48 * allocated from slab caches themselves.
49 */
50enum slab_state {
51 DOWN, /* No slab functionality yet */
52 PARTIAL, /* SLUB: kmem_cache_node available */
53 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
ce8eb6c4 54 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
55 UP, /* Slab caches usable but not all extras yet */
56 FULL /* Everything is working */
57};
58
59extern enum slab_state slab_state;
60
18004c5d
CL
61/* The slab cache mutex protects the management structures during changes */
62extern struct mutex slab_mutex;
9b030cb8
CL
63
64/* The list of all slab caches on the system */
18004c5d
CL
65extern struct list_head slab_caches;
66
9b030cb8
CL
67/* The slab cache that manages slab cache information */
68extern struct kmem_cache *kmem_cache;
69
45906855
CL
70unsigned long calculate_alignment(unsigned long flags,
71 unsigned long align, unsigned long size);
72
f97d5f63
CL
73#ifndef CONFIG_SLOB
74/* Kmalloc array related functions */
75void create_kmalloc_caches(unsigned long);
2c59dd65
CL
76
77/* Find the kmalloc slab corresponding for a certain size */
78struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
79#endif
80
81
9b030cb8 82/* Functions provided by the slab allocators */
8a13a4cc 83extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
97d06609 84
45530c44
CL
85extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
86 unsigned long flags);
87extern void create_boot_cache(struct kmem_cache *, const char *name,
88 size_t size, unsigned long flags);
89
2633d7a0 90struct mem_cgroup;
cbb79694 91#ifdef CONFIG_SLUB
2633d7a0 92struct kmem_cache *
a44cb944
VD
93__kmem_cache_alias(const char *name, size_t size, size_t align,
94 unsigned long flags, void (*ctor)(void *));
cbb79694 95#else
2633d7a0 96static inline struct kmem_cache *
a44cb944
VD
97__kmem_cache_alias(const char *name, size_t size, size_t align,
98 unsigned long flags, void (*ctor)(void *))
cbb79694
CL
99{ return NULL; }
100#endif
101
102
d8843922
GC
103/* Legal flag mask for kmem_cache_create(), for various configurations */
104#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
105 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
106
107#if defined(CONFIG_DEBUG_SLAB)
108#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
109#elif defined(CONFIG_SLUB_DEBUG)
110#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
111 SLAB_TRACE | SLAB_DEBUG_FREE)
112#else
113#define SLAB_DEBUG_FLAGS (0)
114#endif
115
116#if defined(CONFIG_SLAB)
117#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
118 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
119#elif defined(CONFIG_SLUB)
120#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
121 SLAB_TEMPORARY | SLAB_NOTRACK)
122#else
123#define SLAB_CACHE_FLAGS (0)
124#endif
125
126#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
127
945cf2b6 128int __kmem_cache_shutdown(struct kmem_cache *);
03afc0e2 129int __kmem_cache_shrink(struct kmem_cache *);
41a21285 130void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 131
b7454ad3
GC
132struct seq_file;
133struct file;
b7454ad3 134
0d7561c6
GC
135struct slabinfo {
136 unsigned long active_objs;
137 unsigned long num_objs;
138 unsigned long active_slabs;
139 unsigned long num_slabs;
140 unsigned long shared_avail;
141 unsigned int limit;
142 unsigned int batchcount;
143 unsigned int shared;
144 unsigned int objects_per_slab;
145 unsigned int cache_order;
146};
147
148void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
149void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
150ssize_t slabinfo_write(struct file *file, const char __user *buffer,
151 size_t count, loff_t *ppos);
ba6c496e
GC
152
153#ifdef CONFIG_MEMCG_KMEM
154static inline bool is_root_cache(struct kmem_cache *s)
155{
156 return !s->memcg_params || s->memcg_params->is_root_cache;
157}
2633d7a0 158
b9ce5ef4
GC
159static inline bool slab_equal_or_root(struct kmem_cache *s,
160 struct kmem_cache *p)
161{
162 return (p == s) ||
163 (s->memcg_params && (p == s->memcg_params->root_cache));
164}
749c5415
GC
165
166/*
167 * We use suffixes to the name in memcg because we can't have caches
168 * created in the system with the same name. But when we print them
169 * locally, better refer to them with the base name
170 */
171static inline const char *cache_name(struct kmem_cache *s)
172{
173 if (!is_root_cache(s))
174 return s->memcg_params->root_cache->name;
175 return s->name;
176}
177
f8570263
VD
178/*
179 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
180 * That said the caller must assure the memcg's cache won't go away. Since once
181 * created a memcg's cache is destroyed only along with the root cache, it is
182 * true if we are going to allocate from the cache or hold a reference to the
183 * root cache by other means. Otherwise, we should hold either the slab_mutex
184 * or the memcg's slab_caches_mutex while calling this function and accessing
185 * the returned value.
186 */
2ade4de8
QH
187static inline struct kmem_cache *
188cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415 189{
959c8963 190 struct kmem_cache *cachep;
f8570263 191 struct memcg_cache_params *params;
959c8963 192
6f6b8951
AV
193 if (!s->memcg_params)
194 return NULL;
f8570263
VD
195
196 rcu_read_lock();
197 params = rcu_dereference(s->memcg_params);
198 cachep = params->memcg_caches[idx];
199 rcu_read_unlock();
959c8963
VD
200
201 /*
202 * Make sure we will access the up-to-date value. The code updating
203 * memcg_caches issues a write barrier to match this (see
204 * memcg_register_cache()).
205 */
206 smp_read_barrier_depends();
207 return cachep;
749c5415 208}
943a451a
GC
209
210static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
211{
212 if (is_root_cache(s))
213 return s;
214 return s->memcg_params->root_cache;
215}
5dfb4175
VD
216
217static __always_inline int memcg_charge_slab(struct kmem_cache *s,
218 gfp_t gfp, int order)
219{
220 if (!memcg_kmem_enabled())
221 return 0;
222 if (is_root_cache(s))
223 return 0;
c67a8a68 224 return __memcg_charge_slab(s, gfp, order);
5dfb4175
VD
225}
226
227static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
228{
229 if (!memcg_kmem_enabled())
230 return;
231 if (is_root_cache(s))
232 return;
c67a8a68 233 __memcg_uncharge_slab(s, order);
5dfb4175 234}
ba6c496e
GC
235#else
236static inline bool is_root_cache(struct kmem_cache *s)
237{
238 return true;
239}
240
b9ce5ef4
GC
241static inline bool slab_equal_or_root(struct kmem_cache *s,
242 struct kmem_cache *p)
243{
244 return true;
245}
749c5415
GC
246
247static inline const char *cache_name(struct kmem_cache *s)
248{
249 return s->name;
250}
251
2ade4de8
QH
252static inline struct kmem_cache *
253cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415
GC
254{
255 return NULL;
256}
943a451a
GC
257
258static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
259{
260 return s;
261}
5dfb4175
VD
262
263static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
264{
265 return 0;
266}
267
268static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
269{
270}
ba6c496e 271#endif
b9ce5ef4
GC
272
273static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
274{
275 struct kmem_cache *cachep;
276 struct page *page;
277
278 /*
279 * When kmemcg is not being used, both assignments should return the
280 * same value. but we don't want to pay the assignment price in that
281 * case. If it is not compiled in, the compiler should be smart enough
282 * to not do even the assignment. In that case, slab_equal_or_root
283 * will also be a constant.
284 */
285 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
286 return s;
287
288 page = virt_to_head_page(x);
289 cachep = page->slab_cache;
290 if (slab_equal_or_root(cachep, s))
291 return cachep;
292
293 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
c42e5715 294 __func__, cachep->name, s->name);
b9ce5ef4
GC
295 WARN_ON_ONCE(1);
296 return s;
297}
ca34956b 298
44c5356f 299#ifndef CONFIG_SLOB
ca34956b
CL
300/*
301 * The slab lists for all objects.
302 */
303struct kmem_cache_node {
304 spinlock_t list_lock;
305
306#ifdef CONFIG_SLAB
307 struct list_head slabs_partial; /* partial list first, better asm code */
308 struct list_head slabs_full;
309 struct list_head slabs_free;
310 unsigned long free_objects;
311 unsigned int free_limit;
312 unsigned int colour_next; /* Per-node cache coloring */
313 struct array_cache *shared; /* shared per node */
c8522a3a 314 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
315 unsigned long next_reap; /* updated without locking */
316 int free_touched; /* updated without locking */
317#endif
318
319#ifdef CONFIG_SLUB
320 unsigned long nr_partial;
321 struct list_head partial;
322#ifdef CONFIG_SLUB_DEBUG
323 atomic_long_t nr_slabs;
324 atomic_long_t total_objects;
325 struct list_head full;
326#endif
327#endif
328
329};
e25839f6 330
44c5356f
CL
331static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
332{
333 return s->node[node];
334}
335
336/*
337 * Iterator over all nodes. The body will be executed for each node that has
338 * a kmem_cache_node structure allocated (which is true for all online nodes)
339 */
340#define for_each_kmem_cache_node(__s, __node, __n) \
341 for (__node = 0; __n = get_node(__s, __node), __node < nr_node_ids; __node++) \
342 if (__n)
343
344#endif
345
276a2439
WL
346void *slab_next(struct seq_file *m, void *p, loff_t *pos);
347void slab_stop(struct seq_file *m, void *p);
5240ab40
AR
348
349#endif /* MM_SLAB_H */