[PATCH] mm: slab: eliminate lock_cpu_hotplug from slab
[linux-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
e498be7d 106#include <linux/nodemask.h>
dc85da15 107#include <linux/mempolicy.h>
fc0abb14 108#include <linux/mutex.h>
e7eebaf6 109#include <linux/rtmutex.h>
1da177e4
LT
110
111#include <asm/uaccess.h>
112#include <asm/cacheflush.h>
113#include <asm/tlbflush.h>
114#include <asm/page.h>
115
116/*
117 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
118 * SLAB_RED_ZONE & SLAB_POISON.
119 * 0 for faster, smaller code (especially in the critical paths).
120 *
121 * STATS - 1 to collect stats for /proc/slabinfo.
122 * 0 for faster, smaller code (especially in the critical paths).
123 *
124 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 */
126
127#ifdef CONFIG_DEBUG_SLAB
128#define DEBUG 1
129#define STATS 1
130#define FORCED_DEBUG 1
131#else
132#define DEBUG 0
133#define STATS 0
134#define FORCED_DEBUG 0
135#endif
136
1da177e4
LT
137/* Shouldn't this be in a header file somewhere? */
138#define BYTES_PER_WORD sizeof(void *)
139
140#ifndef cache_line_size
141#define cache_line_size() L1_CACHE_BYTES
142#endif
143
144#ifndef ARCH_KMALLOC_MINALIGN
145/*
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
151 * Note that this flag disables some debug features.
152 */
153#define ARCH_KMALLOC_MINALIGN 0
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
157/*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164#define ARCH_SLAB_MINALIGN 0
165#endif
166
167#ifndef ARCH_KMALLOC_FLAGS
168#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169#endif
170
171/* Legal flag mask for kmem_cache_create(). */
172#if DEBUG
173# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 175 SLAB_CACHE_DMA | \
1da177e4
LT
176 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 179#else
ac2b898c 180# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
181 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
182 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 183 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
184#endif
185
186/*
187 * kmem_bufctl_t:
188 *
189 * Bufctl's are used for linking objs within a slab
190 * linked offsets.
191 *
192 * This implementation relies on "struct page" for locating the cache &
193 * slab an object belongs to.
194 * This allows the bufctl structure to be small (one int), but limits
195 * the number of objects a slab (not a cache) can contain when off-slab
196 * bufctls are used. The limit is the size of the largest general cache
197 * that does not use off-slab slabs.
198 * For 32bit archs with 4 kB pages, is this 56.
199 * This is not serious, as it is only for large objects, when it is unwise
200 * to have too many per slab.
201 * Note: This limit can be raised by introducing a general cache whose size
202 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 */
204
fa5b08d5 205typedef unsigned int kmem_bufctl_t;
1da177e4
LT
206#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
207#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
208#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
209#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 210
1da177e4
LT
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
b28a02de
PE
219 struct list_head list;
220 unsigned long colouroff;
221 void *s_mem; /* including colour offset */
222 unsigned int inuse; /* num of objs active in slab */
223 kmem_bufctl_t free;
224 unsigned short nodeid;
1da177e4
LT
225};
226
227/*
228 * struct slab_rcu
229 *
230 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
231 * arrange for kmem_freepages to be called via RCU. This is useful if
232 * we need to approach a kernel structure obliquely, from its address
233 * obtained without the usual locking. We can lock the structure to
234 * stabilize it and check it's still at the given address, only if we
235 * can be sure that the memory has not been meanwhile reused for some
236 * other kind of object (which our subsystem's lock might corrupt).
237 *
238 * rcu_read_lock before reading the address, then rcu_read_unlock after
239 * taking the spinlock within the structure expected at that address.
240 *
241 * We assume struct slab_rcu can overlay struct slab when destroying.
242 */
243struct slab_rcu {
b28a02de 244 struct rcu_head head;
343e0d7a 245 struct kmem_cache *cachep;
b28a02de 246 void *addr;
1da177e4
LT
247};
248
249/*
250 * struct array_cache
251 *
1da177e4
LT
252 * Purpose:
253 * - LIFO ordering, to hand out cache-warm objects from _alloc
254 * - reduce the number of linked list operations
255 * - reduce spinlock operations
256 *
257 * The limit is stored in the per-cpu structure to reduce the data cache
258 * footprint.
259 *
260 */
261struct array_cache {
262 unsigned int avail;
263 unsigned int limit;
264 unsigned int batchcount;
265 unsigned int touched;
e498be7d 266 spinlock_t lock;
a737b3e2
AM
267 void *entry[0]; /*
268 * Must have this definition in here for the proper
269 * alignment of array_cache. Also simplifies accessing
270 * the entries.
271 * [0] is for gcc 2.95. It should really be [].
272 */
1da177e4
LT
273};
274
a737b3e2
AM
275/*
276 * bootstrap: The caches do not work without cpuarrays anymore, but the
277 * cpuarrays are allocated from the generic caches...
1da177e4
LT
278 */
279#define BOOT_CPUCACHE_ENTRIES 1
280struct arraycache_init {
281 struct array_cache cache;
b28a02de 282 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
283};
284
285/*
e498be7d 286 * The slab lists for all objects.
1da177e4
LT
287 */
288struct kmem_list3 {
b28a02de
PE
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
b28a02de 293 unsigned int free_limit;
2e1217cf 294 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
295 spinlock_t list_lock;
296 struct array_cache *shared; /* shared per node */
297 struct array_cache **alien; /* on other nodes */
35386e3b
CL
298 unsigned long next_reap; /* updated without locking */
299 int free_touched; /* updated without locking */
1da177e4
LT
300};
301
e498be7d
CL
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
310
ed11d9eb
CL
311static int drain_freelist(struct kmem_cache *cache,
312 struct kmem_list3 *l3, int tofree);
313static void free_block(struct kmem_cache *cachep, void **objpp, int len,
314 int node);
2ed3a4ef 315static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 316static void cache_reap(struct work_struct *unused);
ed11d9eb 317
e498be7d 318/*
a737b3e2
AM
319 * This function must be completely optimized away if a constant is passed to
320 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 321 */
7243cc05 322static __always_inline int index_of(const size_t size)
e498be7d 323{
5ec8a847
SR
324 extern void __bad_size(void);
325
e498be7d
CL
326 if (__builtin_constant_p(size)) {
327 int i = 0;
328
329#define CACHE(x) \
330 if (size <=x) \
331 return i; \
332 else \
333 i++;
334#include "linux/kmalloc_sizes.h"
335#undef CACHE
5ec8a847 336 __bad_size();
7243cc05 337 } else
5ec8a847 338 __bad_size();
e498be7d
CL
339 return 0;
340}
341
e0a42726
IM
342static int slab_early_init = 1;
343
e498be7d
CL
344#define INDEX_AC index_of(sizeof(struct arraycache_init))
345#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 346
5295a74c 347static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
348{
349 INIT_LIST_HEAD(&parent->slabs_full);
350 INIT_LIST_HEAD(&parent->slabs_partial);
351 INIT_LIST_HEAD(&parent->slabs_free);
352 parent->shared = NULL;
353 parent->alien = NULL;
2e1217cf 354 parent->colour_next = 0;
e498be7d
CL
355 spin_lock_init(&parent->list_lock);
356 parent->free_objects = 0;
357 parent->free_touched = 0;
358}
359
a737b3e2
AM
360#define MAKE_LIST(cachep, listp, slab, nodeid) \
361 do { \
362 INIT_LIST_HEAD(listp); \
363 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
364 } while (0)
365
a737b3e2
AM
366#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
367 do { \
e498be7d
CL
368 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
369 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
371 } while (0)
1da177e4
LT
372
373/*
343e0d7a 374 * struct kmem_cache
1da177e4
LT
375 *
376 * manages a cache.
377 */
b28a02de 378
2109a2d1 379struct kmem_cache {
1da177e4 380/* 1) per-cpu data, touched during every alloc/free */
b28a02de 381 struct array_cache *array[NR_CPUS];
b5d8ca7c 382/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
383 unsigned int batchcount;
384 unsigned int limit;
385 unsigned int shared;
b5d8ca7c 386
3dafccf2 387 unsigned int buffer_size;
b5d8ca7c 388/* 3) touched by every alloc & free from the backend */
b28a02de 389 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 390
a737b3e2
AM
391 unsigned int flags; /* constant flags */
392 unsigned int num; /* # of objs per slab */
1da177e4 393
b5d8ca7c 394/* 4) cache_grow/shrink */
1da177e4 395 /* order of pgs per slab (2^n) */
b28a02de 396 unsigned int gfporder;
1da177e4
LT
397
398 /* force GFP flags, e.g. GFP_DMA */
b28a02de 399 gfp_t gfpflags;
1da177e4 400
a737b3e2 401 size_t colour; /* cache colouring range */
b28a02de 402 unsigned int colour_off; /* colour offset */
343e0d7a 403 struct kmem_cache *slabp_cache;
b28a02de 404 unsigned int slab_size;
a737b3e2 405 unsigned int dflags; /* dynamic flags */
1da177e4
LT
406
407 /* constructor func */
343e0d7a 408 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
409
410 /* de-constructor func */
343e0d7a 411 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 412
b5d8ca7c 413/* 5) cache creation/removal */
b28a02de
PE
414 const char *name;
415 struct list_head next;
1da177e4 416
b5d8ca7c 417/* 6) statistics */
1da177e4 418#if STATS
b28a02de
PE
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
fb7faf33 428 unsigned long node_overflow;
b28a02de
PE
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
1da177e4
LT
433#endif
434#if DEBUG
3dafccf2
MS
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
1da177e4
LT
443#endif
444};
445
446#define CFLGS_OFF_SLAB (0x80000000UL)
447#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
448
449#define BATCHREFILL_LIMIT 16
a737b3e2
AM
450/*
451 * Optimization question: fewer reaps means less probability for unnessary
452 * cpucache drain/refill cycles.
1da177e4 453 *
dc6f3f27 454 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
455 * which could lock up otherwise freeable slabs.
456 */
457#define REAPTIMEOUT_CPUC (2*HZ)
458#define REAPTIMEOUT_LIST3 (4*HZ)
459
460#if STATS
461#define STATS_INC_ACTIVE(x) ((x)->num_active++)
462#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
463#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
464#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 465#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
466#define STATS_SET_HIGH(x) \
467 do { \
468 if ((x)->num_active > (x)->high_mark) \
469 (x)->high_mark = (x)->num_active; \
470 } while (0)
1da177e4
LT
471#define STATS_INC_ERR(x) ((x)->errors++)
472#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 473#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 474#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
475#define STATS_SET_FREEABLE(x, i) \
476 do { \
477 if ((x)->max_freeable < i) \
478 (x)->max_freeable = i; \
479 } while (0)
1da177e4
LT
480#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
481#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
482#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
483#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
484#else
485#define STATS_INC_ACTIVE(x) do { } while (0)
486#define STATS_DEC_ACTIVE(x) do { } while (0)
487#define STATS_INC_ALLOCED(x) do { } while (0)
488#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 489#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
490#define STATS_SET_HIGH(x) do { } while (0)
491#define STATS_INC_ERR(x) do { } while (0)
492#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 493#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 494#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 495#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
496#define STATS_INC_ALLOCHIT(x) do { } while (0)
497#define STATS_INC_ALLOCMISS(x) do { } while (0)
498#define STATS_INC_FREEHIT(x) do { } while (0)
499#define STATS_INC_FREEMISS(x) do { } while (0)
500#endif
501
502#if DEBUG
1da177e4 503
a737b3e2
AM
504/*
505 * memory layout of objects:
1da177e4 506 * 0 : objp
3dafccf2 507 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
508 * the end of an object is aligned with the end of the real
509 * allocation. Catches writes behind the end of the allocation.
3dafccf2 510 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 511 * redzone word.
3dafccf2
MS
512 * cachep->obj_offset: The real object.
513 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
514 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
515 * [BYTES_PER_WORD long]
1da177e4 516 */
343e0d7a 517static int obj_offset(struct kmem_cache *cachep)
1da177e4 518{
3dafccf2 519 return cachep->obj_offset;
1da177e4
LT
520}
521
343e0d7a 522static int obj_size(struct kmem_cache *cachep)
1da177e4 523{
3dafccf2 524 return cachep->obj_size;
1da177e4
LT
525}
526
343e0d7a 527static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
528{
529 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 530 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
531}
532
343e0d7a 533static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
534{
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 537 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 538 2 * BYTES_PER_WORD);
3dafccf2 539 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
540}
541
343e0d7a 542static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
543{
544 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 545 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
546}
547
548#else
549
3dafccf2
MS
550#define obj_offset(x) 0
551#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
552#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
553#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
555
556#endif
557
558/*
a737b3e2
AM
559 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
560 * order.
1da177e4
LT
561 */
562#if defined(CONFIG_LARGE_ALLOCS)
563#define MAX_OBJ_ORDER 13 /* up to 32Mb */
564#define MAX_GFP_ORDER 13 /* up to 32Mb */
565#elif defined(CONFIG_MMU)
566#define MAX_OBJ_ORDER 5 /* 32 pages */
567#define MAX_GFP_ORDER 5 /* 32 pages */
568#else
569#define MAX_OBJ_ORDER 8 /* up to 1Mb */
570#define MAX_GFP_ORDER 8 /* up to 1Mb */
571#endif
572
573/*
574 * Do not go above this order unless 0 objects fit into the slab.
575 */
576#define BREAK_GFP_ORDER_HI 1
577#define BREAK_GFP_ORDER_LO 0
578static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
579
a737b3e2
AM
580/*
581 * Functions for storing/retrieving the cachep and or slab from the page
582 * allocator. These are used to find the slab an obj belongs to. With kfree(),
583 * these are used to find the cache which an obj belongs to.
1da177e4 584 */
065d41cb
PE
585static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
586{
587 page->lru.next = (struct list_head *)cache;
588}
589
590static inline struct kmem_cache *page_get_cache(struct page *page)
591{
84097518
NP
592 if (unlikely(PageCompound(page)))
593 page = (struct page *)page_private(page);
ddc2e812 594 BUG_ON(!PageSlab(page));
065d41cb
PE
595 return (struct kmem_cache *)page->lru.next;
596}
597
598static inline void page_set_slab(struct page *page, struct slab *slab)
599{
600 page->lru.prev = (struct list_head *)slab;
601}
602
603static inline struct slab *page_get_slab(struct page *page)
604{
84097518
NP
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
ddc2e812 607 BUG_ON(!PageSlab(page));
065d41cb
PE
608 return (struct slab *)page->lru.prev;
609}
1da177e4 610
6ed5eb22
PE
611static inline struct kmem_cache *virt_to_cache(const void *obj)
612{
613 struct page *page = virt_to_page(obj);
614 return page_get_cache(page);
615}
616
617static inline struct slab *virt_to_slab(const void *obj)
618{
619 struct page *page = virt_to_page(obj);
620 return page_get_slab(page);
621}
622
8fea4e96
PE
623static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
624 unsigned int idx)
625{
626 return slab->s_mem + cache->buffer_size * idx;
627}
628
629static inline unsigned int obj_to_index(struct kmem_cache *cache,
630 struct slab *slab, void *obj)
631{
632 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
633}
634
a737b3e2
AM
635/*
636 * These are the default caches for kmalloc. Custom caches can have other sizes.
637 */
1da177e4
LT
638struct cache_sizes malloc_sizes[] = {
639#define CACHE(x) { .cs_size = (x) },
640#include <linux/kmalloc_sizes.h>
641 CACHE(ULONG_MAX)
642#undef CACHE
643};
644EXPORT_SYMBOL(malloc_sizes);
645
646/* Must match cache_sizes above. Out of line to keep cache footprint low. */
647struct cache_names {
648 char *name;
649 char *name_dma;
650};
651
652static struct cache_names __initdata cache_names[] = {
653#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
654#include <linux/kmalloc_sizes.h>
b28a02de 655 {NULL,}
1da177e4
LT
656#undef CACHE
657};
658
659static struct arraycache_init initarray_cache __initdata =
b28a02de 660 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 661static struct arraycache_init initarray_generic =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
663
664/* internal cache of cache description objs */
343e0d7a 665static struct kmem_cache cache_cache = {
b28a02de
PE
666 .batchcount = 1,
667 .limit = BOOT_CPUCACHE_ENTRIES,
668 .shared = 1,
343e0d7a 669 .buffer_size = sizeof(struct kmem_cache),
b28a02de 670 .name = "kmem_cache",
1da177e4 671#if DEBUG
343e0d7a 672 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
673#endif
674};
675
056c6241
RT
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
f1aaee53
AV
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
f1aaee53 690 */
056c6241
RT
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
f1aaee53 695
f1aaee53
AV
696{
697 int q;
056c6241
RT
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
f1aaee53
AV
725 }
726}
f1aaee53 727#else
056c6241 728static inline void init_lock_keys(void)
f1aaee53
AV
729{
730}
731#endif
732
8f5be20b
RT
733/*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
fc0abb14 737static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
738static struct list_head cache_chain;
739
1da177e4
LT
740/*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744static enum {
745 NONE,
e498be7d
CL
746 PARTIAL_AC,
747 PARTIAL_L3,
1da177e4
LT
748 FULL
749} g_cpucache_up;
750
39d24e64
MK
751/*
752 * used by boot code to determine if it can use slab based allocator
753 */
754int slab_is_available(void)
755{
756 return g_cpucache_up == FULL;
757}
758
52bad64d 759static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 760
343e0d7a 761static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
762{
763 return cachep->array[smp_processor_id()];
764}
765
a737b3e2
AM
766static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
1da177e4
LT
768{
769 struct cache_sizes *csizep = malloc_sizes;
770
771#if DEBUG
772 /* This happens if someone tries to call
b28a02de
PE
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
775 */
c7e43c78 776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
777#endif
778 while (size > csizep->cs_size)
779 csizep++;
780
781 /*
0abf40c1 782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
785 */
786 if (unlikely(gfpflags & GFP_DMA))
787 return csizep->cs_dmacachep;
788 return csizep->cs_cachep;
789}
790
b221385b 791static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
792{
793 return __find_general_cachep(size, gfpflags);
794}
97e2bde4 795
fbaccacf 796static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 797{
fbaccacf
SR
798 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
799}
1da177e4 800
a737b3e2
AM
801/*
802 * Calculate the number of objects and left-over bytes for a given buffer size.
803 */
fbaccacf
SR
804static void cache_estimate(unsigned long gfporder, size_t buffer_size,
805 size_t align, int flags, size_t *left_over,
806 unsigned int *num)
807{
808 int nr_objs;
809 size_t mgmt_size;
810 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 811
fbaccacf
SR
812 /*
813 * The slab management structure can be either off the slab or
814 * on it. For the latter case, the memory allocated for a
815 * slab is used for:
816 *
817 * - The struct slab
818 * - One kmem_bufctl_t for each object
819 * - Padding to respect alignment of @align
820 * - @buffer_size bytes for each object
821 *
822 * If the slab management structure is off the slab, then the
823 * alignment will already be calculated into the size. Because
824 * the slabs are all pages aligned, the objects will be at the
825 * correct alignment when allocated.
826 */
827 if (flags & CFLGS_OFF_SLAB) {
828 mgmt_size = 0;
829 nr_objs = slab_size / buffer_size;
830
831 if (nr_objs > SLAB_LIMIT)
832 nr_objs = SLAB_LIMIT;
833 } else {
834 /*
835 * Ignore padding for the initial guess. The padding
836 * is at most @align-1 bytes, and @buffer_size is at
837 * least @align. In the worst case, this result will
838 * be one greater than the number of objects that fit
839 * into the memory allocation when taking the padding
840 * into account.
841 */
842 nr_objs = (slab_size - sizeof(struct slab)) /
843 (buffer_size + sizeof(kmem_bufctl_t));
844
845 /*
846 * This calculated number will be either the right
847 * amount, or one greater than what we want.
848 */
849 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
850 > slab_size)
851 nr_objs--;
852
853 if (nr_objs > SLAB_LIMIT)
854 nr_objs = SLAB_LIMIT;
855
856 mgmt_size = slab_mgmt_size(nr_objs, align);
857 }
858 *num = nr_objs;
859 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
860}
861
862#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
863
a737b3e2
AM
864static void __slab_error(const char *function, struct kmem_cache *cachep,
865 char *msg)
1da177e4
LT
866{
867 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 868 function, cachep->name, msg);
1da177e4
LT
869 dump_stack();
870}
871
8fce4d8e
CL
872#ifdef CONFIG_NUMA
873/*
874 * Special reaping functions for NUMA systems called from cache_reap().
875 * These take care of doing round robin flushing of alien caches (containing
876 * objects freed on different nodes from which they were allocated) and the
877 * flushing of remote pcps by calling drain_node_pages.
878 */
879static DEFINE_PER_CPU(unsigned long, reap_node);
880
881static void init_reap_node(int cpu)
882{
883 int node;
884
885 node = next_node(cpu_to_node(cpu), node_online_map);
886 if (node == MAX_NUMNODES)
442295c9 887 node = first_node(node_online_map);
8fce4d8e 888
7f6b8876 889 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
890}
891
892static void next_reap_node(void)
893{
894 int node = __get_cpu_var(reap_node);
895
896 /*
897 * Also drain per cpu pages on remote zones
898 */
899 if (node != numa_node_id())
900 drain_node_pages(node);
901
902 node = next_node(node, node_online_map);
903 if (unlikely(node >= MAX_NUMNODES))
904 node = first_node(node_online_map);
905 __get_cpu_var(reap_node) = node;
906}
907
908#else
909#define init_reap_node(cpu) do { } while (0)
910#define next_reap_node(void) do { } while (0)
911#endif
912
1da177e4
LT
913/*
914 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
915 * via the workqueue/eventd.
916 * Add the CPU number into the expiration time to minimize the possibility of
917 * the CPUs getting into lockstep and contending for the global cache chain
918 * lock.
919 */
920static void __devinit start_cpu_timer(int cpu)
921{
52bad64d 922 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
923
924 /*
925 * When this gets called from do_initcalls via cpucache_init(),
926 * init_workqueues() has already run, so keventd will be setup
927 * at that time.
928 */
52bad64d 929 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 930 init_reap_node(cpu);
65f27f38 931 INIT_DELAYED_WORK(reap_work, cache_reap);
1da177e4
LT
932 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
933 }
934}
935
e498be7d 936static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 937 int batchcount)
1da177e4 938{
b28a02de 939 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
940 struct array_cache *nc = NULL;
941
e498be7d 942 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
943 if (nc) {
944 nc->avail = 0;
945 nc->limit = entries;
946 nc->batchcount = batchcount;
947 nc->touched = 0;
e498be7d 948 spin_lock_init(&nc->lock);
1da177e4
LT
949 }
950 return nc;
951}
952
3ded175a
CL
953/*
954 * Transfer objects in one arraycache to another.
955 * Locking must be handled by the caller.
956 *
957 * Return the number of entries transferred.
958 */
959static int transfer_objects(struct array_cache *to,
960 struct array_cache *from, unsigned int max)
961{
962 /* Figure out how many entries to transfer */
963 int nr = min(min(from->avail, max), to->limit - to->avail);
964
965 if (!nr)
966 return 0;
967
968 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
969 sizeof(void *) *nr);
970
971 from->avail -= nr;
972 to->avail += nr;
973 to->touched = 1;
974 return nr;
975}
976
765c4507
CL
977#ifndef CONFIG_NUMA
978
979#define drain_alien_cache(cachep, alien) do { } while (0)
980#define reap_alien(cachep, l3) do { } while (0)
981
982static inline struct array_cache **alloc_alien_cache(int node, int limit)
983{
984 return (struct array_cache **)BAD_ALIEN_MAGIC;
985}
986
987static inline void free_alien_cache(struct array_cache **ac_ptr)
988{
989}
990
991static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
992{
993 return 0;
994}
995
996static inline void *alternate_node_alloc(struct kmem_cache *cachep,
997 gfp_t flags)
998{
999 return NULL;
1000}
1001
1002static inline void *__cache_alloc_node(struct kmem_cache *cachep,
1003 gfp_t flags, int nodeid)
1004{
1005 return NULL;
1006}
1007
1008#else /* CONFIG_NUMA */
1009
343e0d7a 1010static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1011static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1012
5295a74c 1013static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1014{
1015 struct array_cache **ac_ptr;
b28a02de 1016 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
1017 int i;
1018
1019 if (limit > 1)
1020 limit = 12;
1021 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1022 if (ac_ptr) {
1023 for_each_node(i) {
1024 if (i == node || !node_online(i)) {
1025 ac_ptr[i] = NULL;
1026 continue;
1027 }
1028 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1029 if (!ac_ptr[i]) {
b28a02de 1030 for (i--; i <= 0; i--)
e498be7d
CL
1031 kfree(ac_ptr[i]);
1032 kfree(ac_ptr);
1033 return NULL;
1034 }
1035 }
1036 }
1037 return ac_ptr;
1038}
1039
5295a74c 1040static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1041{
1042 int i;
1043
1044 if (!ac_ptr)
1045 return;
e498be7d 1046 for_each_node(i)
b28a02de 1047 kfree(ac_ptr[i]);
e498be7d
CL
1048 kfree(ac_ptr);
1049}
1050
343e0d7a 1051static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1052 struct array_cache *ac, int node)
e498be7d
CL
1053{
1054 struct kmem_list3 *rl3 = cachep->nodelists[node];
1055
1056 if (ac->avail) {
1057 spin_lock(&rl3->list_lock);
e00946fe
CL
1058 /*
1059 * Stuff objects into the remote nodes shared array first.
1060 * That way we could avoid the overhead of putting the objects
1061 * into the free lists and getting them back later.
1062 */
693f7d36 1063 if (rl3->shared)
1064 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1065
ff69416e 1066 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1067 ac->avail = 0;
1068 spin_unlock(&rl3->list_lock);
1069 }
1070}
1071
8fce4d8e
CL
1072/*
1073 * Called from cache_reap() to regularly drain alien caches round robin.
1074 */
1075static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1076{
1077 int node = __get_cpu_var(reap_node);
1078
1079 if (l3->alien) {
1080 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1081
1082 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1083 __drain_alien_cache(cachep, ac, node);
1084 spin_unlock_irq(&ac->lock);
1085 }
1086 }
1087}
1088
a737b3e2
AM
1089static void drain_alien_cache(struct kmem_cache *cachep,
1090 struct array_cache **alien)
e498be7d 1091{
b28a02de 1092 int i = 0;
e498be7d
CL
1093 struct array_cache *ac;
1094 unsigned long flags;
1095
1096 for_each_online_node(i) {
4484ebf1 1097 ac = alien[i];
e498be7d
CL
1098 if (ac) {
1099 spin_lock_irqsave(&ac->lock, flags);
1100 __drain_alien_cache(cachep, ac, i);
1101 spin_unlock_irqrestore(&ac->lock, flags);
1102 }
1103 }
1104}
729bd0b7 1105
873623df 1106static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1107{
1108 struct slab *slabp = virt_to_slab(objp);
1109 int nodeid = slabp->nodeid;
1110 struct kmem_list3 *l3;
1111 struct array_cache *alien = NULL;
1ca4cb24
PE
1112 int node;
1113
1114 node = numa_node_id();
729bd0b7
PE
1115
1116 /*
1117 * Make sure we are not freeing a object from another node to the array
1118 * cache on this cpu.
1119 */
1ca4cb24 1120 if (likely(slabp->nodeid == node))
729bd0b7
PE
1121 return 0;
1122
1ca4cb24 1123 l3 = cachep->nodelists[node];
729bd0b7
PE
1124 STATS_INC_NODEFREES(cachep);
1125 if (l3->alien && l3->alien[nodeid]) {
1126 alien = l3->alien[nodeid];
873623df 1127 spin_lock(&alien->lock);
729bd0b7
PE
1128 if (unlikely(alien->avail == alien->limit)) {
1129 STATS_INC_ACOVERFLOW(cachep);
1130 __drain_alien_cache(cachep, alien, nodeid);
1131 }
1132 alien->entry[alien->avail++] = objp;
1133 spin_unlock(&alien->lock);
1134 } else {
1135 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1136 free_block(cachep, &objp, 1, nodeid);
1137 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1138 }
1139 return 1;
1140}
e498be7d
CL
1141#endif
1142
8c78f307 1143static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1144 unsigned long action, void *hcpu)
1da177e4
LT
1145{
1146 long cpu = (long)hcpu;
343e0d7a 1147 struct kmem_cache *cachep;
e498be7d
CL
1148 struct kmem_list3 *l3 = NULL;
1149 int node = cpu_to_node(cpu);
1150 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1151
1152 switch (action) {
1153 case CPU_UP_PREPARE:
fc0abb14 1154 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1155 /*
1156 * We need to do this right in the beginning since
e498be7d
CL
1157 * alloc_arraycache's are going to use this list.
1158 * kmalloc_node allows us to add the slab to the right
1159 * kmem_list3 and not this cpu's kmem_list3
1160 */
1161
1da177e4 1162 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1163 /*
1164 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1165 * begin anything. Make sure some other cpu on this
1166 * node has not already allocated this
1167 */
1168 if (!cachep->nodelists[node]) {
a737b3e2
AM
1169 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1170 if (!l3)
e498be7d
CL
1171 goto bad;
1172 kmem_list3_init(l3);
1173 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1174 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1175
4484ebf1
RT
1176 /*
1177 * The l3s don't come and go as CPUs come and
1178 * go. cache_chain_mutex is sufficient
1179 * protection here.
1180 */
e498be7d
CL
1181 cachep->nodelists[node] = l3;
1182 }
1da177e4 1183
e498be7d
CL
1184 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1185 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1186 (1 + nr_cpus_node(node)) *
1187 cachep->batchcount + cachep->num;
e498be7d
CL
1188 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1189 }
1190
a737b3e2
AM
1191 /*
1192 * Now we can go ahead with allocating the shared arrays and
1193 * array caches
1194 */
e498be7d 1195 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1196 struct array_cache *nc;
4484ebf1
RT
1197 struct array_cache *shared;
1198 struct array_cache **alien;
cd105df4 1199
e498be7d 1200 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1201 cachep->batchcount);
1da177e4
LT
1202 if (!nc)
1203 goto bad;
4484ebf1
RT
1204 shared = alloc_arraycache(node,
1205 cachep->shared * cachep->batchcount,
1206 0xbaadf00d);
1207 if (!shared)
1208 goto bad;
7a21ef6f 1209
4484ebf1
RT
1210 alien = alloc_alien_cache(node, cachep->limit);
1211 if (!alien)
1212 goto bad;
1da177e4 1213 cachep->array[cpu] = nc;
e498be7d
CL
1214 l3 = cachep->nodelists[node];
1215 BUG_ON(!l3);
e498be7d 1216
4484ebf1
RT
1217 spin_lock_irq(&l3->list_lock);
1218 if (!l3->shared) {
1219 /*
1220 * We are serialised from CPU_DEAD or
1221 * CPU_UP_CANCELLED by the cpucontrol lock
1222 */
1223 l3->shared = shared;
1224 shared = NULL;
e498be7d 1225 }
4484ebf1
RT
1226#ifdef CONFIG_NUMA
1227 if (!l3->alien) {
1228 l3->alien = alien;
1229 alien = NULL;
1230 }
1231#endif
1232 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1233 kfree(shared);
1234 free_alien_cache(alien);
1da177e4 1235 }
1da177e4
LT
1236 break;
1237 case CPU_ONLINE:
8f5be20b 1238 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1239 start_cpu_timer(cpu);
1240 break;
1241#ifdef CONFIG_HOTPLUG_CPU
8f5be20b
RT
1242 case CPU_DOWN_PREPARE:
1243 mutex_lock(&cache_chain_mutex);
1244 break;
1245 case CPU_DOWN_FAILED:
1246 mutex_unlock(&cache_chain_mutex);
1247 break;
1da177e4 1248 case CPU_DEAD:
4484ebf1
RT
1249 /*
1250 * Even if all the cpus of a node are down, we don't free the
1251 * kmem_list3 of any cache. This to avoid a race between
1252 * cpu_down, and a kmalloc allocation from another cpu for
1253 * memory from the node of the cpu going down. The list3
1254 * structure is usually allocated from kmem_cache_create() and
1255 * gets destroyed at kmem_cache_destroy().
1256 */
1da177e4 1257 /* fall thru */
8f5be20b 1258#endif
1da177e4 1259 case CPU_UP_CANCELED:
1da177e4
LT
1260 list_for_each_entry(cachep, &cache_chain, next) {
1261 struct array_cache *nc;
4484ebf1
RT
1262 struct array_cache *shared;
1263 struct array_cache **alien;
e498be7d 1264 cpumask_t mask;
1da177e4 1265
e498be7d 1266 mask = node_to_cpumask(node);
1da177e4
LT
1267 /* cpu is dead; no one can alloc from it. */
1268 nc = cachep->array[cpu];
1269 cachep->array[cpu] = NULL;
e498be7d
CL
1270 l3 = cachep->nodelists[node];
1271
1272 if (!l3)
4484ebf1 1273 goto free_array_cache;
e498be7d 1274
ca3b9b91 1275 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1276
1277 /* Free limit for this kmem_list3 */
1278 l3->free_limit -= cachep->batchcount;
1279 if (nc)
ff69416e 1280 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1281
1282 if (!cpus_empty(mask)) {
ca3b9b91 1283 spin_unlock_irq(&l3->list_lock);
4484ebf1 1284 goto free_array_cache;
b28a02de 1285 }
e498be7d 1286
4484ebf1
RT
1287 shared = l3->shared;
1288 if (shared) {
e498be7d 1289 free_block(cachep, l3->shared->entry,
b28a02de 1290 l3->shared->avail, node);
e498be7d
CL
1291 l3->shared = NULL;
1292 }
e498be7d 1293
4484ebf1
RT
1294 alien = l3->alien;
1295 l3->alien = NULL;
1296
1297 spin_unlock_irq(&l3->list_lock);
1298
1299 kfree(shared);
1300 if (alien) {
1301 drain_alien_cache(cachep, alien);
1302 free_alien_cache(alien);
e498be7d 1303 }
4484ebf1 1304free_array_cache:
1da177e4
LT
1305 kfree(nc);
1306 }
4484ebf1
RT
1307 /*
1308 * In the previous loop, all the objects were freed to
1309 * the respective cache's slabs, now we can go ahead and
1310 * shrink each nodelist to its limit.
1311 */
1312 list_for_each_entry(cachep, &cache_chain, next) {
1313 l3 = cachep->nodelists[node];
1314 if (!l3)
1315 continue;
ed11d9eb 1316 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1317 }
fc0abb14 1318 mutex_unlock(&cache_chain_mutex);
1da177e4 1319 break;
1da177e4
LT
1320 }
1321 return NOTIFY_OK;
a737b3e2 1322bad:
1da177e4
LT
1323 return NOTIFY_BAD;
1324}
1325
74b85f37
CS
1326static struct notifier_block __cpuinitdata cpucache_notifier = {
1327 &cpuup_callback, NULL, 0
1328};
1da177e4 1329
e498be7d
CL
1330/*
1331 * swap the static kmem_list3 with kmalloced memory
1332 */
a737b3e2
AM
1333static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1334 int nodeid)
e498be7d
CL
1335{
1336 struct kmem_list3 *ptr;
1337
e498be7d
CL
1338 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1339 BUG_ON(!ptr);
1340
1341 local_irq_disable();
1342 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1343 /*
1344 * Do not assume that spinlocks can be initialized via memcpy:
1345 */
1346 spin_lock_init(&ptr->list_lock);
1347
e498be7d
CL
1348 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1349 cachep->nodelists[nodeid] = ptr;
1350 local_irq_enable();
1351}
1352
a737b3e2
AM
1353/*
1354 * Initialisation. Called after the page allocator have been initialised and
1355 * before smp_init().
1da177e4
LT
1356 */
1357void __init kmem_cache_init(void)
1358{
1359 size_t left_over;
1360 struct cache_sizes *sizes;
1361 struct cache_names *names;
e498be7d 1362 int i;
07ed76b2 1363 int order;
1ca4cb24 1364 int node;
e498be7d
CL
1365
1366 for (i = 0; i < NUM_INIT_LISTS; i++) {
1367 kmem_list3_init(&initkmem_list3[i]);
1368 if (i < MAX_NUMNODES)
1369 cache_cache.nodelists[i] = NULL;
1370 }
1da177e4
LT
1371
1372 /*
1373 * Fragmentation resistance on low memory - only use bigger
1374 * page orders on machines with more than 32MB of memory.
1375 */
1376 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1377 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1378
1da177e4
LT
1379 /* Bootstrap is tricky, because several objects are allocated
1380 * from caches that do not exist yet:
a737b3e2
AM
1381 * 1) initialize the cache_cache cache: it contains the struct
1382 * kmem_cache structures of all caches, except cache_cache itself:
1383 * cache_cache is statically allocated.
e498be7d
CL
1384 * Initially an __init data area is used for the head array and the
1385 * kmem_list3 structures, it's replaced with a kmalloc allocated
1386 * array at the end of the bootstrap.
1da177e4 1387 * 2) Create the first kmalloc cache.
343e0d7a 1388 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1389 * An __init data area is used for the head array.
1390 * 3) Create the remaining kmalloc caches, with minimally sized
1391 * head arrays.
1da177e4
LT
1392 * 4) Replace the __init data head arrays for cache_cache and the first
1393 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1394 * 5) Replace the __init data for kmem_list3 for cache_cache and
1395 * the other cache's with kmalloc allocated memory.
1396 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1397 */
1398
1ca4cb24
PE
1399 node = numa_node_id();
1400
1da177e4 1401 /* 1) create the cache_cache */
1da177e4
LT
1402 INIT_LIST_HEAD(&cache_chain);
1403 list_add(&cache_cache.next, &cache_chain);
1404 cache_cache.colour_off = cache_line_size();
1405 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1406 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1407
a737b3e2
AM
1408 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1409 cache_line_size());
1da177e4 1410
07ed76b2
JS
1411 for (order = 0; order < MAX_ORDER; order++) {
1412 cache_estimate(order, cache_cache.buffer_size,
1413 cache_line_size(), 0, &left_over, &cache_cache.num);
1414 if (cache_cache.num)
1415 break;
1416 }
40094fa6 1417 BUG_ON(!cache_cache.num);
07ed76b2 1418 cache_cache.gfporder = order;
b28a02de 1419 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1420 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1421 sizeof(struct slab), cache_line_size());
1da177e4
LT
1422
1423 /* 2+3) create the kmalloc caches */
1424 sizes = malloc_sizes;
1425 names = cache_names;
1426
a737b3e2
AM
1427 /*
1428 * Initialize the caches that provide memory for the array cache and the
1429 * kmem_list3 structures first. Without this, further allocations will
1430 * bug.
e498be7d
CL
1431 */
1432
1433 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1434 sizes[INDEX_AC].cs_size,
1435 ARCH_KMALLOC_MINALIGN,
1436 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1437 NULL, NULL);
e498be7d 1438
a737b3e2 1439 if (INDEX_AC != INDEX_L3) {
e498be7d 1440 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1441 kmem_cache_create(names[INDEX_L3].name,
1442 sizes[INDEX_L3].cs_size,
1443 ARCH_KMALLOC_MINALIGN,
1444 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1445 NULL, NULL);
1446 }
e498be7d 1447
e0a42726
IM
1448 slab_early_init = 0;
1449
1da177e4 1450 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1451 /*
1452 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1453 * This should be particularly beneficial on SMP boxes, as it
1454 * eliminates "false sharing".
1455 * Note for systems short on memory removing the alignment will
e498be7d
CL
1456 * allow tighter packing of the smaller caches.
1457 */
a737b3e2 1458 if (!sizes->cs_cachep) {
e498be7d 1459 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1460 sizes->cs_size,
1461 ARCH_KMALLOC_MINALIGN,
1462 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1463 NULL, NULL);
1464 }
1da177e4 1465
1da177e4 1466 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1467 sizes->cs_size,
1468 ARCH_KMALLOC_MINALIGN,
1469 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1470 SLAB_PANIC,
1471 NULL, NULL);
1da177e4
LT
1472 sizes++;
1473 names++;
1474 }
1475 /* 4) Replace the bootstrap head arrays */
1476 {
2b2d5493 1477 struct array_cache *ptr;
e498be7d 1478
1da177e4 1479 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1480
1da177e4 1481 local_irq_disable();
9a2dba4b
PE
1482 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1483 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1484 sizeof(struct arraycache_init));
2b2d5493
IM
1485 /*
1486 * Do not assume that spinlocks can be initialized via memcpy:
1487 */
1488 spin_lock_init(&ptr->lock);
1489
1da177e4
LT
1490 cache_cache.array[smp_processor_id()] = ptr;
1491 local_irq_enable();
e498be7d 1492
1da177e4 1493 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1494
1da177e4 1495 local_irq_disable();
9a2dba4b 1496 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1497 != &initarray_generic.cache);
9a2dba4b 1498 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1499 sizeof(struct arraycache_init));
2b2d5493
IM
1500 /*
1501 * Do not assume that spinlocks can be initialized via memcpy:
1502 */
1503 spin_lock_init(&ptr->lock);
1504
e498be7d 1505 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1506 ptr;
1da177e4
LT
1507 local_irq_enable();
1508 }
e498be7d
CL
1509 /* 5) Replace the bootstrap kmem_list3's */
1510 {
1ca4cb24
PE
1511 int nid;
1512
e498be7d 1513 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1514 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1515
1ca4cb24 1516 for_each_online_node(nid) {
e498be7d 1517 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1518 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1519
1520 if (INDEX_AC != INDEX_L3) {
1521 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1522 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1523 }
1524 }
1525 }
1da177e4 1526
e498be7d 1527 /* 6) resize the head arrays to their final sizes */
1da177e4 1528 {
343e0d7a 1529 struct kmem_cache *cachep;
fc0abb14 1530 mutex_lock(&cache_chain_mutex);
1da177e4 1531 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1532 if (enable_cpucache(cachep))
1533 BUG();
fc0abb14 1534 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1535 }
1536
056c6241
RT
1537 /* Annotate slab for lockdep -- annotate the malloc caches */
1538 init_lock_keys();
1539
1540
1da177e4
LT
1541 /* Done! */
1542 g_cpucache_up = FULL;
1543
a737b3e2
AM
1544 /*
1545 * Register a cpu startup notifier callback that initializes
1546 * cpu_cache_get for all new cpus
1da177e4
LT
1547 */
1548 register_cpu_notifier(&cpucache_notifier);
1da177e4 1549
a737b3e2
AM
1550 /*
1551 * The reap timers are started later, with a module init call: That part
1552 * of the kernel is not yet operational.
1da177e4
LT
1553 */
1554}
1555
1556static int __init cpucache_init(void)
1557{
1558 int cpu;
1559
a737b3e2
AM
1560 /*
1561 * Register the timers that return unneeded pages to the page allocator
1da177e4 1562 */
e498be7d 1563 for_each_online_cpu(cpu)
a737b3e2 1564 start_cpu_timer(cpu);
1da177e4
LT
1565 return 0;
1566}
1da177e4
LT
1567__initcall(cpucache_init);
1568
1569/*
1570 * Interface to system's page allocator. No need to hold the cache-lock.
1571 *
1572 * If we requested dmaable memory, we will get it. Even if we
1573 * did not request dmaable memory, we might get it, but that
1574 * would be relatively rare and ignorable.
1575 */
343e0d7a 1576static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1577{
1578 struct page *page;
e1b6aa6f 1579 int nr_pages;
1da177e4
LT
1580 int i;
1581
d6fef9da 1582#ifndef CONFIG_MMU
e1b6aa6f
CH
1583 /*
1584 * Nommu uses slab's for process anonymous memory allocations, and thus
1585 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1586 */
e1b6aa6f 1587 flags |= __GFP_COMP;
d6fef9da 1588#endif
765c4507
CL
1589
1590 /*
1591 * Under NUMA we want memory on the indicated node. We will handle
1592 * the needed fallback ourselves since we want to serve from our
1593 * per node object lists first for other nodes.
1594 */
1595 flags |= cachep->gfpflags | GFP_THISNODE;
e1b6aa6f
CH
1596
1597 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1598 if (!page)
1599 return NULL;
1da177e4 1600
e1b6aa6f 1601 nr_pages = (1 << cachep->gfporder);
1da177e4 1602 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1603 add_zone_page_state(page_zone(page),
1604 NR_SLAB_RECLAIMABLE, nr_pages);
1605 else
1606 add_zone_page_state(page_zone(page),
1607 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1608 for (i = 0; i < nr_pages; i++)
1609 __SetPageSlab(page + i);
1610 return page_address(page);
1da177e4
LT
1611}
1612
1613/*
1614 * Interface to system's page release.
1615 */
343e0d7a 1616static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1617{
b28a02de 1618 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1619 struct page *page = virt_to_page(addr);
1620 const unsigned long nr_freed = i;
1621
972d1a7b
CL
1622 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1623 sub_zone_page_state(page_zone(page),
1624 NR_SLAB_RECLAIMABLE, nr_freed);
1625 else
1626 sub_zone_page_state(page_zone(page),
1627 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1628 while (i--) {
f205b2fe
NP
1629 BUG_ON(!PageSlab(page));
1630 __ClearPageSlab(page);
1da177e4
LT
1631 page++;
1632 }
1da177e4
LT
1633 if (current->reclaim_state)
1634 current->reclaim_state->reclaimed_slab += nr_freed;
1635 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1636}
1637
1638static void kmem_rcu_free(struct rcu_head *head)
1639{
b28a02de 1640 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1641 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1642
1643 kmem_freepages(cachep, slab_rcu->addr);
1644 if (OFF_SLAB(cachep))
1645 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1646}
1647
1648#if DEBUG
1649
1650#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1651static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1652 unsigned long caller)
1da177e4 1653{
3dafccf2 1654 int size = obj_size(cachep);
1da177e4 1655
3dafccf2 1656 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1657
b28a02de 1658 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1659 return;
1660
b28a02de
PE
1661 *addr++ = 0x12345678;
1662 *addr++ = caller;
1663 *addr++ = smp_processor_id();
1664 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1665 {
1666 unsigned long *sptr = &caller;
1667 unsigned long svalue;
1668
1669 while (!kstack_end(sptr)) {
1670 svalue = *sptr++;
1671 if (kernel_text_address(svalue)) {
b28a02de 1672 *addr++ = svalue;
1da177e4
LT
1673 size -= sizeof(unsigned long);
1674 if (size <= sizeof(unsigned long))
1675 break;
1676 }
1677 }
1678
1679 }
b28a02de 1680 *addr++ = 0x87654321;
1da177e4
LT
1681}
1682#endif
1683
343e0d7a 1684static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1685{
3dafccf2
MS
1686 int size = obj_size(cachep);
1687 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1688
1689 memset(addr, val, size);
b28a02de 1690 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1691}
1692
1693static void dump_line(char *data, int offset, int limit)
1694{
1695 int i;
aa83aa40
DJ
1696 unsigned char error = 0;
1697 int bad_count = 0;
1698
1da177e4 1699 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1700 for (i = 0; i < limit; i++) {
1701 if (data[offset + i] != POISON_FREE) {
1702 error = data[offset + i];
1703 bad_count++;
1704 }
b28a02de 1705 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1706 }
1da177e4 1707 printk("\n");
aa83aa40
DJ
1708
1709 if (bad_count == 1) {
1710 error ^= POISON_FREE;
1711 if (!(error & (error - 1))) {
1712 printk(KERN_ERR "Single bit error detected. Probably "
1713 "bad RAM.\n");
1714#ifdef CONFIG_X86
1715 printk(KERN_ERR "Run memtest86+ or a similar memory "
1716 "test tool.\n");
1717#else
1718 printk(KERN_ERR "Run a memory test tool.\n");
1719#endif
1720 }
1721 }
1da177e4
LT
1722}
1723#endif
1724
1725#if DEBUG
1726
343e0d7a 1727static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1728{
1729 int i, size;
1730 char *realobj;
1731
1732 if (cachep->flags & SLAB_RED_ZONE) {
1733 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1734 *dbg_redzone1(cachep, objp),
1735 *dbg_redzone2(cachep, objp));
1da177e4
LT
1736 }
1737
1738 if (cachep->flags & SLAB_STORE_USER) {
1739 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1740 *dbg_userword(cachep, objp));
1da177e4 1741 print_symbol("(%s)",
a737b3e2 1742 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1743 printk("\n");
1744 }
3dafccf2
MS
1745 realobj = (char *)objp + obj_offset(cachep);
1746 size = obj_size(cachep);
b28a02de 1747 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1748 int limit;
1749 limit = 16;
b28a02de
PE
1750 if (i + limit > size)
1751 limit = size - i;
1da177e4
LT
1752 dump_line(realobj, i, limit);
1753 }
1754}
1755
343e0d7a 1756static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1757{
1758 char *realobj;
1759 int size, i;
1760 int lines = 0;
1761
3dafccf2
MS
1762 realobj = (char *)objp + obj_offset(cachep);
1763 size = obj_size(cachep);
1da177e4 1764
b28a02de 1765 for (i = 0; i < size; i++) {
1da177e4 1766 char exp = POISON_FREE;
b28a02de 1767 if (i == size - 1)
1da177e4
LT
1768 exp = POISON_END;
1769 if (realobj[i] != exp) {
1770 int limit;
1771 /* Mismatch ! */
1772 /* Print header */
1773 if (lines == 0) {
b28a02de 1774 printk(KERN_ERR
a737b3e2
AM
1775 "Slab corruption: start=%p, len=%d\n",
1776 realobj, size);
1da177e4
LT
1777 print_objinfo(cachep, objp, 0);
1778 }
1779 /* Hexdump the affected line */
b28a02de 1780 i = (i / 16) * 16;
1da177e4 1781 limit = 16;
b28a02de
PE
1782 if (i + limit > size)
1783 limit = size - i;
1da177e4
LT
1784 dump_line(realobj, i, limit);
1785 i += 16;
1786 lines++;
1787 /* Limit to 5 lines */
1788 if (lines > 5)
1789 break;
1790 }
1791 }
1792 if (lines != 0) {
1793 /* Print some data about the neighboring objects, if they
1794 * exist:
1795 */
6ed5eb22 1796 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1797 unsigned int objnr;
1da177e4 1798
8fea4e96 1799 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1800 if (objnr) {
8fea4e96 1801 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1802 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1803 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1804 realobj, size);
1da177e4
LT
1805 print_objinfo(cachep, objp, 2);
1806 }
b28a02de 1807 if (objnr + 1 < cachep->num) {
8fea4e96 1808 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1809 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1810 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1811 realobj, size);
1da177e4
LT
1812 print_objinfo(cachep, objp, 2);
1813 }
1814 }
1815}
1816#endif
1817
12dd36fa
MD
1818#if DEBUG
1819/**
911851e6
RD
1820 * slab_destroy_objs - destroy a slab and its objects
1821 * @cachep: cache pointer being destroyed
1822 * @slabp: slab pointer being destroyed
1823 *
1824 * Call the registered destructor for each object in a slab that is being
1825 * destroyed.
1da177e4 1826 */
343e0d7a 1827static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1828{
1da177e4
LT
1829 int i;
1830 for (i = 0; i < cachep->num; i++) {
8fea4e96 1831 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1832
1833 if (cachep->flags & SLAB_POISON) {
1834#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1835 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1836 OFF_SLAB(cachep))
b28a02de 1837 kernel_map_pages(virt_to_page(objp),
a737b3e2 1838 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1839 else
1840 check_poison_obj(cachep, objp);
1841#else
1842 check_poison_obj(cachep, objp);
1843#endif
1844 }
1845 if (cachep->flags & SLAB_RED_ZONE) {
1846 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1847 slab_error(cachep, "start of a freed object "
b28a02de 1848 "was overwritten");
1da177e4
LT
1849 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1850 slab_error(cachep, "end of a freed object "
b28a02de 1851 "was overwritten");
1da177e4
LT
1852 }
1853 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1854 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1855 }
12dd36fa 1856}
1da177e4 1857#else
343e0d7a 1858static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1859{
1da177e4
LT
1860 if (cachep->dtor) {
1861 int i;
1862 for (i = 0; i < cachep->num; i++) {
8fea4e96 1863 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1864 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1865 }
1866 }
12dd36fa 1867}
1da177e4
LT
1868#endif
1869
911851e6
RD
1870/**
1871 * slab_destroy - destroy and release all objects in a slab
1872 * @cachep: cache pointer being destroyed
1873 * @slabp: slab pointer being destroyed
1874 *
12dd36fa 1875 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1876 * Before calling the slab must have been unlinked from the cache. The
1877 * cache-lock is not held/needed.
12dd36fa 1878 */
343e0d7a 1879static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1880{
1881 void *addr = slabp->s_mem - slabp->colouroff;
1882
1883 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1884 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1885 struct slab_rcu *slab_rcu;
1886
b28a02de 1887 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1888 slab_rcu->cachep = cachep;
1889 slab_rcu->addr = addr;
1890 call_rcu(&slab_rcu->head, kmem_rcu_free);
1891 } else {
1892 kmem_freepages(cachep, addr);
873623df
IM
1893 if (OFF_SLAB(cachep))
1894 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1895 }
1896}
1897
a737b3e2
AM
1898/*
1899 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1900 * size of kmem_list3.
1901 */
343e0d7a 1902static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1903{
1904 int node;
1905
1906 for_each_online_node(node) {
b28a02de 1907 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1908 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1909 REAPTIMEOUT_LIST3 +
1910 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1911 }
1912}
1913
117f6eb1
CL
1914static void __kmem_cache_destroy(struct kmem_cache *cachep)
1915{
1916 int i;
1917 struct kmem_list3 *l3;
1918
1919 for_each_online_cpu(i)
1920 kfree(cachep->array[i]);
1921
1922 /* NUMA: free the list3 structures */
1923 for_each_online_node(i) {
1924 l3 = cachep->nodelists[i];
1925 if (l3) {
1926 kfree(l3->shared);
1927 free_alien_cache(l3->alien);
1928 kfree(l3);
1929 }
1930 }
1931 kmem_cache_free(&cache_cache, cachep);
1932}
1933
1934
4d268eba 1935/**
a70773dd
RD
1936 * calculate_slab_order - calculate size (page order) of slabs
1937 * @cachep: pointer to the cache that is being created
1938 * @size: size of objects to be created in this cache.
1939 * @align: required alignment for the objects.
1940 * @flags: slab allocation flags
1941 *
1942 * Also calculates the number of objects per slab.
4d268eba
PE
1943 *
1944 * This could be made much more intelligent. For now, try to avoid using
1945 * high order pages for slabs. When the gfp() functions are more friendly
1946 * towards high-order requests, this should be changed.
1947 */
a737b3e2 1948static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1949 size_t size, size_t align, unsigned long flags)
4d268eba 1950{
b1ab41c4 1951 unsigned long offslab_limit;
4d268eba 1952 size_t left_over = 0;
9888e6fa 1953 int gfporder;
4d268eba 1954
a737b3e2 1955 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1956 unsigned int num;
1957 size_t remainder;
1958
9888e6fa 1959 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1960 if (!num)
1961 continue;
9888e6fa 1962
b1ab41c4
IM
1963 if (flags & CFLGS_OFF_SLAB) {
1964 /*
1965 * Max number of objs-per-slab for caches which
1966 * use off-slab slabs. Needed to avoid a possible
1967 * looping condition in cache_grow().
1968 */
1969 offslab_limit = size - sizeof(struct slab);
1970 offslab_limit /= sizeof(kmem_bufctl_t);
1971
1972 if (num > offslab_limit)
1973 break;
1974 }
4d268eba 1975
9888e6fa 1976 /* Found something acceptable - save it away */
4d268eba 1977 cachep->num = num;
9888e6fa 1978 cachep->gfporder = gfporder;
4d268eba
PE
1979 left_over = remainder;
1980
f78bb8ad
LT
1981 /*
1982 * A VFS-reclaimable slab tends to have most allocations
1983 * as GFP_NOFS and we really don't want to have to be allocating
1984 * higher-order pages when we are unable to shrink dcache.
1985 */
1986 if (flags & SLAB_RECLAIM_ACCOUNT)
1987 break;
1988
4d268eba
PE
1989 /*
1990 * Large number of objects is good, but very large slabs are
1991 * currently bad for the gfp()s.
1992 */
9888e6fa 1993 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1994 break;
1995
9888e6fa
LT
1996 /*
1997 * Acceptable internal fragmentation?
1998 */
a737b3e2 1999 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2000 break;
2001 }
2002 return left_over;
2003}
2004
2ed3a4ef 2005static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2006{
2ed3a4ef
CL
2007 if (g_cpucache_up == FULL)
2008 return enable_cpucache(cachep);
2009
f30cf7d1
PE
2010 if (g_cpucache_up == NONE) {
2011 /*
2012 * Note: the first kmem_cache_create must create the cache
2013 * that's used by kmalloc(24), otherwise the creation of
2014 * further caches will BUG().
2015 */
2016 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2017
2018 /*
2019 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2020 * the first cache, then we need to set up all its list3s,
2021 * otherwise the creation of further caches will BUG().
2022 */
2023 set_up_list3s(cachep, SIZE_AC);
2024 if (INDEX_AC == INDEX_L3)
2025 g_cpucache_up = PARTIAL_L3;
2026 else
2027 g_cpucache_up = PARTIAL_AC;
2028 } else {
2029 cachep->array[smp_processor_id()] =
2030 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2031
2032 if (g_cpucache_up == PARTIAL_AC) {
2033 set_up_list3s(cachep, SIZE_L3);
2034 g_cpucache_up = PARTIAL_L3;
2035 } else {
2036 int node;
2037 for_each_online_node(node) {
2038 cachep->nodelists[node] =
2039 kmalloc_node(sizeof(struct kmem_list3),
2040 GFP_KERNEL, node);
2041 BUG_ON(!cachep->nodelists[node]);
2042 kmem_list3_init(cachep->nodelists[node]);
2043 }
2044 }
2045 }
2046 cachep->nodelists[numa_node_id()]->next_reap =
2047 jiffies + REAPTIMEOUT_LIST3 +
2048 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2049
2050 cpu_cache_get(cachep)->avail = 0;
2051 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2052 cpu_cache_get(cachep)->batchcount = 1;
2053 cpu_cache_get(cachep)->touched = 0;
2054 cachep->batchcount = 1;
2055 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2056 return 0;
f30cf7d1
PE
2057}
2058
1da177e4
LT
2059/**
2060 * kmem_cache_create - Create a cache.
2061 * @name: A string which is used in /proc/slabinfo to identify this cache.
2062 * @size: The size of objects to be created in this cache.
2063 * @align: The required alignment for the objects.
2064 * @flags: SLAB flags
2065 * @ctor: A constructor for the objects.
2066 * @dtor: A destructor for the objects.
2067 *
2068 * Returns a ptr to the cache on success, NULL on failure.
2069 * Cannot be called within a int, but can be interrupted.
2070 * The @ctor is run when new pages are allocated by the cache
2071 * and the @dtor is run before the pages are handed back.
2072 *
2073 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2074 * the module calling this has to destroy the cache before getting unloaded.
2075 *
1da177e4
LT
2076 * The flags are
2077 *
2078 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2079 * to catch references to uninitialised memory.
2080 *
2081 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2082 * for buffer overruns.
2083 *
1da177e4
LT
2084 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2085 * cacheline. This can be beneficial if you're counting cycles as closely
2086 * as davem.
2087 */
343e0d7a 2088struct kmem_cache *
1da177e4 2089kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2090 unsigned long flags,
2091 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2092 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2093{
2094 size_t left_over, slab_size, ralign;
7a7c381d 2095 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2096
2097 /*
2098 * Sanity checks... these are all serious usage bugs.
2099 */
a737b3e2 2100 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2101 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2102 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2103 name);
b28a02de
PE
2104 BUG();
2105 }
1da177e4 2106
f0188f47 2107 /*
8f5be20b
RT
2108 * We use cache_chain_mutex to ensure a consistent view of
2109 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2110 */
fc0abb14 2111 mutex_lock(&cache_chain_mutex);
4f12bb4f 2112
7a7c381d 2113 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2114 mm_segment_t old_fs = get_fs();
2115 char tmp;
2116 int res;
2117
2118 /*
2119 * This happens when the module gets unloaded and doesn't
2120 * destroy its slab cache and no-one else reuses the vmalloc
2121 * area of the module. Print a warning.
2122 */
2123 set_fs(KERNEL_DS);
2124 res = __get_user(tmp, pc->name);
2125 set_fs(old_fs);
2126 if (res) {
2127 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2128 pc->buffer_size);
4f12bb4f
AM
2129 continue;
2130 }
2131
b28a02de 2132 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2133 printk("kmem_cache_create: duplicate cache %s\n", name);
2134 dump_stack();
2135 goto oops;
2136 }
2137 }
2138
1da177e4
LT
2139#if DEBUG
2140 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2141 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2142 /* No constructor, but inital state check requested */
2143 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2144 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2145 flags &= ~SLAB_DEBUG_INITIAL;
2146 }
1da177e4
LT
2147#if FORCED_DEBUG
2148 /*
2149 * Enable redzoning and last user accounting, except for caches with
2150 * large objects, if the increased size would increase the object size
2151 * above the next power of two: caches with object sizes just above a
2152 * power of two have a significant amount of internal fragmentation.
2153 */
a737b3e2 2154 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2155 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2156 if (!(flags & SLAB_DESTROY_BY_RCU))
2157 flags |= SLAB_POISON;
2158#endif
2159 if (flags & SLAB_DESTROY_BY_RCU)
2160 BUG_ON(flags & SLAB_POISON);
2161#endif
2162 if (flags & SLAB_DESTROY_BY_RCU)
2163 BUG_ON(dtor);
2164
2165 /*
a737b3e2
AM
2166 * Always checks flags, a caller might be expecting debug support which
2167 * isn't available.
1da177e4 2168 */
40094fa6 2169 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2170
a737b3e2
AM
2171 /*
2172 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2173 * unaligned accesses for some archs when redzoning is used, and makes
2174 * sure any on-slab bufctl's are also correctly aligned.
2175 */
b28a02de
PE
2176 if (size & (BYTES_PER_WORD - 1)) {
2177 size += (BYTES_PER_WORD - 1);
2178 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2179 }
2180
a737b3e2
AM
2181 /* calculate the final buffer alignment: */
2182
1da177e4
LT
2183 /* 1) arch recommendation: can be overridden for debug */
2184 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2185 /*
2186 * Default alignment: as specified by the arch code. Except if
2187 * an object is really small, then squeeze multiple objects into
2188 * one cacheline.
1da177e4
LT
2189 */
2190 ralign = cache_line_size();
b28a02de 2191 while (size <= ralign / 2)
1da177e4
LT
2192 ralign /= 2;
2193 } else {
2194 ralign = BYTES_PER_WORD;
2195 }
ca5f9703
PE
2196
2197 /*
2198 * Redzoning and user store require word alignment. Note this will be
2199 * overridden by architecture or caller mandated alignment if either
2200 * is greater than BYTES_PER_WORD.
2201 */
2202 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2203 ralign = BYTES_PER_WORD;
2204
a44b56d3 2205 /* 2) arch mandated alignment */
1da177e4
LT
2206 if (ralign < ARCH_SLAB_MINALIGN) {
2207 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2208 }
a44b56d3 2209 /* 3) caller mandated alignment */
1da177e4
LT
2210 if (ralign < align) {
2211 ralign = align;
1da177e4 2212 }
a44b56d3
KH
2213 /* disable debug if necessary */
2214 if (ralign > BYTES_PER_WORD)
2215 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2216 /*
ca5f9703 2217 * 4) Store it.
1da177e4
LT
2218 */
2219 align = ralign;
2220
2221 /* Get cache's description obj. */
c5e3b83e 2222 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2223 if (!cachep)
4f12bb4f 2224 goto oops;
1da177e4
LT
2225
2226#if DEBUG
3dafccf2 2227 cachep->obj_size = size;
1da177e4 2228
ca5f9703
PE
2229 /*
2230 * Both debugging options require word-alignment which is calculated
2231 * into align above.
2232 */
1da177e4 2233 if (flags & SLAB_RED_ZONE) {
1da177e4 2234 /* add space for red zone words */
3dafccf2 2235 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2236 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2237 }
2238 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2239 /* user store requires one word storage behind the end of
2240 * the real object.
1da177e4 2241 */
1da177e4
LT
2242 size += BYTES_PER_WORD;
2243 }
2244#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2245 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2246 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2247 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2248 size = PAGE_SIZE;
2249 }
2250#endif
2251#endif
2252
e0a42726
IM
2253 /*
2254 * Determine if the slab management is 'on' or 'off' slab.
2255 * (bootstrapping cannot cope with offslab caches so don't do
2256 * it too early on.)
2257 */
2258 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2259 /*
2260 * Size is large, assume best to place the slab management obj
2261 * off-slab (should allow better packing of objs).
2262 */
2263 flags |= CFLGS_OFF_SLAB;
2264
2265 size = ALIGN(size, align);
2266
f78bb8ad 2267 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2268
2269 if (!cachep->num) {
2270 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2271 kmem_cache_free(&cache_cache, cachep);
2272 cachep = NULL;
4f12bb4f 2273 goto oops;
1da177e4 2274 }
b28a02de
PE
2275 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2276 + sizeof(struct slab), align);
1da177e4
LT
2277
2278 /*
2279 * If the slab has been placed off-slab, and we have enough space then
2280 * move it on-slab. This is at the expense of any extra colouring.
2281 */
2282 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2283 flags &= ~CFLGS_OFF_SLAB;
2284 left_over -= slab_size;
2285 }
2286
2287 if (flags & CFLGS_OFF_SLAB) {
2288 /* really off slab. No need for manual alignment */
b28a02de
PE
2289 slab_size =
2290 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2291 }
2292
2293 cachep->colour_off = cache_line_size();
2294 /* Offset must be a multiple of the alignment. */
2295 if (cachep->colour_off < align)
2296 cachep->colour_off = align;
b28a02de 2297 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2298 cachep->slab_size = slab_size;
2299 cachep->flags = flags;
2300 cachep->gfpflags = 0;
2301 if (flags & SLAB_CACHE_DMA)
2302 cachep->gfpflags |= GFP_DMA;
3dafccf2 2303 cachep->buffer_size = size;
1da177e4 2304
e5ac9c5a 2305 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2306 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2307 /*
2308 * This is a possibility for one of the malloc_sizes caches.
2309 * But since we go off slab only for object size greater than
2310 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2311 * this should not happen at all.
2312 * But leave a BUG_ON for some lucky dude.
2313 */
2314 BUG_ON(!cachep->slabp_cache);
2315 }
1da177e4
LT
2316 cachep->ctor = ctor;
2317 cachep->dtor = dtor;
2318 cachep->name = name;
2319
2ed3a4ef
CL
2320 if (setup_cpu_cache(cachep)) {
2321 __kmem_cache_destroy(cachep);
2322 cachep = NULL;
2323 goto oops;
2324 }
1da177e4 2325
1da177e4
LT
2326 /* cache setup completed, link it into the list */
2327 list_add(&cachep->next, &cache_chain);
a737b3e2 2328oops:
1da177e4
LT
2329 if (!cachep && (flags & SLAB_PANIC))
2330 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2331 name);
fc0abb14 2332 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2333 return cachep;
2334}
2335EXPORT_SYMBOL(kmem_cache_create);
2336
2337#if DEBUG
2338static void check_irq_off(void)
2339{
2340 BUG_ON(!irqs_disabled());
2341}
2342
2343static void check_irq_on(void)
2344{
2345 BUG_ON(irqs_disabled());
2346}
2347
343e0d7a 2348static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2349{
2350#ifdef CONFIG_SMP
2351 check_irq_off();
e498be7d 2352 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2353#endif
2354}
e498be7d 2355
343e0d7a 2356static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2357{
2358#ifdef CONFIG_SMP
2359 check_irq_off();
2360 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2361#endif
2362}
2363
1da177e4
LT
2364#else
2365#define check_irq_off() do { } while(0)
2366#define check_irq_on() do { } while(0)
2367#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2368#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2369#endif
2370
aab2207c
CL
2371static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2372 struct array_cache *ac,
2373 int force, int node);
2374
1da177e4
LT
2375static void do_drain(void *arg)
2376{
a737b3e2 2377 struct kmem_cache *cachep = arg;
1da177e4 2378 struct array_cache *ac;
ff69416e 2379 int node = numa_node_id();
1da177e4
LT
2380
2381 check_irq_off();
9a2dba4b 2382 ac = cpu_cache_get(cachep);
ff69416e
CL
2383 spin_lock(&cachep->nodelists[node]->list_lock);
2384 free_block(cachep, ac->entry, ac->avail, node);
2385 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2386 ac->avail = 0;
2387}
2388
343e0d7a 2389static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2390{
e498be7d
CL
2391 struct kmem_list3 *l3;
2392 int node;
2393
a07fa394 2394 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2395 check_irq_on();
b28a02de 2396 for_each_online_node(node) {
e498be7d 2397 l3 = cachep->nodelists[node];
a4523a8b
RD
2398 if (l3 && l3->alien)
2399 drain_alien_cache(cachep, l3->alien);
2400 }
2401
2402 for_each_online_node(node) {
2403 l3 = cachep->nodelists[node];
2404 if (l3)
aab2207c 2405 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2406 }
1da177e4
LT
2407}
2408
ed11d9eb
CL
2409/*
2410 * Remove slabs from the list of free slabs.
2411 * Specify the number of slabs to drain in tofree.
2412 *
2413 * Returns the actual number of slabs released.
2414 */
2415static int drain_freelist(struct kmem_cache *cache,
2416 struct kmem_list3 *l3, int tofree)
1da177e4 2417{
ed11d9eb
CL
2418 struct list_head *p;
2419 int nr_freed;
1da177e4 2420 struct slab *slabp;
1da177e4 2421
ed11d9eb
CL
2422 nr_freed = 0;
2423 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2424
ed11d9eb 2425 spin_lock_irq(&l3->list_lock);
e498be7d 2426 p = l3->slabs_free.prev;
ed11d9eb
CL
2427 if (p == &l3->slabs_free) {
2428 spin_unlock_irq(&l3->list_lock);
2429 goto out;
2430 }
1da177e4 2431
ed11d9eb 2432 slabp = list_entry(p, struct slab, list);
1da177e4 2433#if DEBUG
40094fa6 2434 BUG_ON(slabp->inuse);
1da177e4
LT
2435#endif
2436 list_del(&slabp->list);
ed11d9eb
CL
2437 /*
2438 * Safe to drop the lock. The slab is no longer linked
2439 * to the cache.
2440 */
2441 l3->free_objects -= cache->num;
e498be7d 2442 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2443 slab_destroy(cache, slabp);
2444 nr_freed++;
1da177e4 2445 }
ed11d9eb
CL
2446out:
2447 return nr_freed;
1da177e4
LT
2448}
2449
8f5be20b 2450/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2451static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2452{
2453 int ret = 0, i = 0;
2454 struct kmem_list3 *l3;
2455
2456 drain_cpu_caches(cachep);
2457
2458 check_irq_on();
2459 for_each_online_node(i) {
2460 l3 = cachep->nodelists[i];
ed11d9eb
CL
2461 if (!l3)
2462 continue;
2463
2464 drain_freelist(cachep, l3, l3->free_objects);
2465
2466 ret += !list_empty(&l3->slabs_full) ||
2467 !list_empty(&l3->slabs_partial);
e498be7d
CL
2468 }
2469 return (ret ? 1 : 0);
2470}
2471
1da177e4
LT
2472/**
2473 * kmem_cache_shrink - Shrink a cache.
2474 * @cachep: The cache to shrink.
2475 *
2476 * Releases as many slabs as possible for a cache.
2477 * To help debugging, a zero exit status indicates all slabs were released.
2478 */
343e0d7a 2479int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2480{
8f5be20b 2481 int ret;
40094fa6 2482 BUG_ON(!cachep || in_interrupt());
1da177e4 2483
8f5be20b
RT
2484 mutex_lock(&cache_chain_mutex);
2485 ret = __cache_shrink(cachep);
2486 mutex_unlock(&cache_chain_mutex);
2487 return ret;
1da177e4
LT
2488}
2489EXPORT_SYMBOL(kmem_cache_shrink);
2490
2491/**
2492 * kmem_cache_destroy - delete a cache
2493 * @cachep: the cache to destroy
2494 *
343e0d7a 2495 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2496 *
2497 * It is expected this function will be called by a module when it is
2498 * unloaded. This will remove the cache completely, and avoid a duplicate
2499 * cache being allocated each time a module is loaded and unloaded, if the
2500 * module doesn't have persistent in-kernel storage across loads and unloads.
2501 *
2502 * The cache must be empty before calling this function.
2503 *
2504 * The caller must guarantee that noone will allocate memory from the cache
2505 * during the kmem_cache_destroy().
2506 */
133d205a 2507void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2508{
40094fa6 2509 BUG_ON(!cachep || in_interrupt());
1da177e4 2510
1da177e4 2511 /* Find the cache in the chain of caches. */
fc0abb14 2512 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2513 /*
2514 * the chain is never empty, cache_cache is never destroyed
2515 */
2516 list_del(&cachep->next);
1da177e4
LT
2517 if (__cache_shrink(cachep)) {
2518 slab_error(cachep, "Can't free all objects");
b28a02de 2519 list_add(&cachep->next, &cache_chain);
fc0abb14 2520 mutex_unlock(&cache_chain_mutex);
133d205a 2521 return;
1da177e4
LT
2522 }
2523
2524 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2525 synchronize_rcu();
1da177e4 2526
117f6eb1 2527 __kmem_cache_destroy(cachep);
8f5be20b 2528 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2529}
2530EXPORT_SYMBOL(kmem_cache_destroy);
2531
e5ac9c5a
RT
2532/*
2533 * Get the memory for a slab management obj.
2534 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2535 * always come from malloc_sizes caches. The slab descriptor cannot
2536 * come from the same cache which is getting created because,
2537 * when we are searching for an appropriate cache for these
2538 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2539 * If we are creating a malloc_sizes cache here it would not be visible to
2540 * kmem_find_general_cachep till the initialization is complete.
2541 * Hence we cannot have slabp_cache same as the original cache.
2542 */
343e0d7a 2543static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2544 int colour_off, gfp_t local_flags,
2545 int nodeid)
1da177e4
LT
2546{
2547 struct slab *slabp;
b28a02de 2548
1da177e4
LT
2549 if (OFF_SLAB(cachep)) {
2550 /* Slab management obj is off-slab. */
5b74ada7
RT
2551 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2552 local_flags, nodeid);
1da177e4
LT
2553 if (!slabp)
2554 return NULL;
2555 } else {
b28a02de 2556 slabp = objp + colour_off;
1da177e4
LT
2557 colour_off += cachep->slab_size;
2558 }
2559 slabp->inuse = 0;
2560 slabp->colouroff = colour_off;
b28a02de 2561 slabp->s_mem = objp + colour_off;
5b74ada7 2562 slabp->nodeid = nodeid;
1da177e4
LT
2563 return slabp;
2564}
2565
2566static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2567{
b28a02de 2568 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2569}
2570
343e0d7a 2571static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2572 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2573{
2574 int i;
2575
2576 for (i = 0; i < cachep->num; i++) {
8fea4e96 2577 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2578#if DEBUG
2579 /* need to poison the objs? */
2580 if (cachep->flags & SLAB_POISON)
2581 poison_obj(cachep, objp, POISON_FREE);
2582 if (cachep->flags & SLAB_STORE_USER)
2583 *dbg_userword(cachep, objp) = NULL;
2584
2585 if (cachep->flags & SLAB_RED_ZONE) {
2586 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2587 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2588 }
2589 /*
a737b3e2
AM
2590 * Constructors are not allowed to allocate memory from the same
2591 * cache which they are a constructor for. Otherwise, deadlock.
2592 * They must also be threaded.
1da177e4
LT
2593 */
2594 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2595 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2596 ctor_flags);
1da177e4
LT
2597
2598 if (cachep->flags & SLAB_RED_ZONE) {
2599 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2600 slab_error(cachep, "constructor overwrote the"
b28a02de 2601 " end of an object");
1da177e4
LT
2602 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2603 slab_error(cachep, "constructor overwrote the"
b28a02de 2604 " start of an object");
1da177e4 2605 }
a737b3e2
AM
2606 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2607 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2608 kernel_map_pages(virt_to_page(objp),
3dafccf2 2609 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2610#else
2611 if (cachep->ctor)
2612 cachep->ctor(objp, cachep, ctor_flags);
2613#endif
b28a02de 2614 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2615 }
b28a02de 2616 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2617 slabp->free = 0;
2618}
2619
343e0d7a 2620static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2621{
a737b3e2
AM
2622 if (flags & SLAB_DMA)
2623 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2624 else
2625 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2626}
2627
a737b3e2
AM
2628static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2629 int nodeid)
78d382d7 2630{
8fea4e96 2631 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2632 kmem_bufctl_t next;
2633
2634 slabp->inuse++;
2635 next = slab_bufctl(slabp)[slabp->free];
2636#if DEBUG
2637 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2638 WARN_ON(slabp->nodeid != nodeid);
2639#endif
2640 slabp->free = next;
2641
2642 return objp;
2643}
2644
a737b3e2
AM
2645static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2646 void *objp, int nodeid)
78d382d7 2647{
8fea4e96 2648 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2649
2650#if DEBUG
2651 /* Verify that the slab belongs to the intended node */
2652 WARN_ON(slabp->nodeid != nodeid);
2653
871751e2 2654 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2655 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2656 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2657 BUG();
2658 }
2659#endif
2660 slab_bufctl(slabp)[objnr] = slabp->free;
2661 slabp->free = objnr;
2662 slabp->inuse--;
2663}
2664
4776874f
PE
2665/*
2666 * Map pages beginning at addr to the given cache and slab. This is required
2667 * for the slab allocator to be able to lookup the cache and slab of a
2668 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2669 */
2670static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2671 void *addr)
1da177e4 2672{
4776874f 2673 int nr_pages;
1da177e4
LT
2674 struct page *page;
2675
4776874f 2676 page = virt_to_page(addr);
84097518 2677
4776874f 2678 nr_pages = 1;
84097518 2679 if (likely(!PageCompound(page)))
4776874f
PE
2680 nr_pages <<= cache->gfporder;
2681
1da177e4 2682 do {
4776874f
PE
2683 page_set_cache(page, cache);
2684 page_set_slab(page, slab);
1da177e4 2685 page++;
4776874f 2686 } while (--nr_pages);
1da177e4
LT
2687}
2688
2689/*
2690 * Grow (by 1) the number of slabs within a cache. This is called by
2691 * kmem_cache_alloc() when there are no active objs left in a cache.
2692 */
343e0d7a 2693static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2694{
b28a02de
PE
2695 struct slab *slabp;
2696 void *objp;
2697 size_t offset;
2698 gfp_t local_flags;
2699 unsigned long ctor_flags;
e498be7d 2700 struct kmem_list3 *l3;
1da177e4 2701
a737b3e2
AM
2702 /*
2703 * Be lazy and only check for valid flags here, keeping it out of the
2704 * critical path in kmem_cache_alloc().
1da177e4 2705 */
40094fa6 2706 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2707 if (flags & SLAB_NO_GROW)
2708 return 0;
2709
2710 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2711 local_flags = (flags & SLAB_LEVEL_MASK);
2712 if (!(local_flags & __GFP_WAIT))
2713 /*
2714 * Not allowed to sleep. Need to tell a constructor about
2715 * this - it might need to know...
2716 */
2717 ctor_flags |= SLAB_CTOR_ATOMIC;
2718
2e1217cf 2719 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2720 check_irq_off();
2e1217cf
RT
2721 l3 = cachep->nodelists[nodeid];
2722 spin_lock(&l3->list_lock);
1da177e4
LT
2723
2724 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2725 offset = l3->colour_next;
2726 l3->colour_next++;
2727 if (l3->colour_next >= cachep->colour)
2728 l3->colour_next = 0;
2729 spin_unlock(&l3->list_lock);
1da177e4 2730
2e1217cf 2731 offset *= cachep->colour_off;
1da177e4
LT
2732
2733 if (local_flags & __GFP_WAIT)
2734 local_irq_enable();
2735
2736 /*
2737 * The test for missing atomic flag is performed here, rather than
2738 * the more obvious place, simply to reduce the critical path length
2739 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2740 * will eventually be caught here (where it matters).
2741 */
2742 kmem_flagcheck(cachep, flags);
2743
a737b3e2
AM
2744 /*
2745 * Get mem for the objs. Attempt to allocate a physical page from
2746 * 'nodeid'.
e498be7d 2747 */
a737b3e2
AM
2748 objp = kmem_getpages(cachep, flags, nodeid);
2749 if (!objp)
1da177e4
LT
2750 goto failed;
2751
2752 /* Get slab management. */
5b74ada7 2753 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2754 if (!slabp)
1da177e4
LT
2755 goto opps1;
2756
e498be7d 2757 slabp->nodeid = nodeid;
4776874f 2758 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2759
2760 cache_init_objs(cachep, slabp, ctor_flags);
2761
2762 if (local_flags & __GFP_WAIT)
2763 local_irq_disable();
2764 check_irq_off();
e498be7d 2765 spin_lock(&l3->list_lock);
1da177e4
LT
2766
2767 /* Make slab active. */
e498be7d 2768 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2769 STATS_INC_GROWN(cachep);
e498be7d
CL
2770 l3->free_objects += cachep->num;
2771 spin_unlock(&l3->list_lock);
1da177e4 2772 return 1;
a737b3e2 2773opps1:
1da177e4 2774 kmem_freepages(cachep, objp);
a737b3e2 2775failed:
1da177e4
LT
2776 if (local_flags & __GFP_WAIT)
2777 local_irq_disable();
2778 return 0;
2779}
2780
2781#if DEBUG
2782
2783/*
2784 * Perform extra freeing checks:
2785 * - detect bad pointers.
2786 * - POISON/RED_ZONE checking
2787 * - destructor calls, for caches with POISON+dtor
2788 */
2789static void kfree_debugcheck(const void *objp)
2790{
2791 struct page *page;
2792
2793 if (!virt_addr_valid(objp)) {
2794 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2795 (unsigned long)objp);
2796 BUG();
1da177e4
LT
2797 }
2798 page = virt_to_page(objp);
2799 if (!PageSlab(page)) {
b28a02de
PE
2800 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2801 (unsigned long)objp);
1da177e4
LT
2802 BUG();
2803 }
2804}
2805
58ce1fd5
PE
2806static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2807{
2808 unsigned long redzone1, redzone2;
2809
2810 redzone1 = *dbg_redzone1(cache, obj);
2811 redzone2 = *dbg_redzone2(cache, obj);
2812
2813 /*
2814 * Redzone is ok.
2815 */
2816 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2817 return;
2818
2819 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2820 slab_error(cache, "double free detected");
2821 else
2822 slab_error(cache, "memory outside object was overwritten");
2823
2824 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2825 obj, redzone1, redzone2);
2826}
2827
343e0d7a 2828static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2829 void *caller)
1da177e4
LT
2830{
2831 struct page *page;
2832 unsigned int objnr;
2833 struct slab *slabp;
2834
3dafccf2 2835 objp -= obj_offset(cachep);
1da177e4
LT
2836 kfree_debugcheck(objp);
2837 page = virt_to_page(objp);
2838
065d41cb 2839 slabp = page_get_slab(page);
1da177e4
LT
2840
2841 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2842 verify_redzone_free(cachep, objp);
1da177e4
LT
2843 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2844 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2845 }
2846 if (cachep->flags & SLAB_STORE_USER)
2847 *dbg_userword(cachep, objp) = caller;
2848
8fea4e96 2849 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2850
2851 BUG_ON(objnr >= cachep->num);
8fea4e96 2852 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2853
2854 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2855 /*
2856 * Need to call the slab's constructor so the caller can
2857 * perform a verify of its state (debugging). Called without
2858 * the cache-lock held.
1da177e4 2859 */
3dafccf2 2860 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2861 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2862 }
2863 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2864 /* we want to cache poison the object,
2865 * call the destruction callback
2866 */
3dafccf2 2867 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2868 }
871751e2
AV
2869#ifdef CONFIG_DEBUG_SLAB_LEAK
2870 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2871#endif
1da177e4
LT
2872 if (cachep->flags & SLAB_POISON) {
2873#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2874 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2875 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2876 kernel_map_pages(virt_to_page(objp),
3dafccf2 2877 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2878 } else {
2879 poison_obj(cachep, objp, POISON_FREE);
2880 }
2881#else
2882 poison_obj(cachep, objp, POISON_FREE);
2883#endif
2884 }
2885 return objp;
2886}
2887
343e0d7a 2888static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2889{
2890 kmem_bufctl_t i;
2891 int entries = 0;
b28a02de 2892
1da177e4
LT
2893 /* Check slab's freelist to see if this obj is there. */
2894 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2895 entries++;
2896 if (entries > cachep->num || i >= cachep->num)
2897 goto bad;
2898 }
2899 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2900bad:
2901 printk(KERN_ERR "slab: Internal list corruption detected in "
2902 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2903 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2904 for (i = 0;
264132bc 2905 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2906 i++) {
a737b3e2 2907 if (i % 16 == 0)
1da177e4 2908 printk("\n%03x:", i);
b28a02de 2909 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2910 }
2911 printk("\n");
2912 BUG();
2913 }
2914}
2915#else
2916#define kfree_debugcheck(x) do { } while(0)
2917#define cache_free_debugcheck(x,objp,z) (objp)
2918#define check_slabp(x,y) do { } while(0)
2919#endif
2920
343e0d7a 2921static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2922{
2923 int batchcount;
2924 struct kmem_list3 *l3;
2925 struct array_cache *ac;
1ca4cb24
PE
2926 int node;
2927
2928 node = numa_node_id();
1da177e4
LT
2929
2930 check_irq_off();
9a2dba4b 2931 ac = cpu_cache_get(cachep);
a737b3e2 2932retry:
1da177e4
LT
2933 batchcount = ac->batchcount;
2934 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2935 /*
2936 * If there was little recent activity on this cache, then
2937 * perform only a partial refill. Otherwise we could generate
2938 * refill bouncing.
1da177e4
LT
2939 */
2940 batchcount = BATCHREFILL_LIMIT;
2941 }
1ca4cb24 2942 l3 = cachep->nodelists[node];
e498be7d
CL
2943
2944 BUG_ON(ac->avail > 0 || !l3);
2945 spin_lock(&l3->list_lock);
1da177e4 2946
3ded175a
CL
2947 /* See if we can refill from the shared array */
2948 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2949 goto alloc_done;
2950
1da177e4
LT
2951 while (batchcount > 0) {
2952 struct list_head *entry;
2953 struct slab *slabp;
2954 /* Get slab alloc is to come from. */
2955 entry = l3->slabs_partial.next;
2956 if (entry == &l3->slabs_partial) {
2957 l3->free_touched = 1;
2958 entry = l3->slabs_free.next;
2959 if (entry == &l3->slabs_free)
2960 goto must_grow;
2961 }
2962
2963 slabp = list_entry(entry, struct slab, list);
2964 check_slabp(cachep, slabp);
2965 check_spinlock_acquired(cachep);
2966 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2967 STATS_INC_ALLOCED(cachep);
2968 STATS_INC_ACTIVE(cachep);
2969 STATS_SET_HIGH(cachep);
2970
78d382d7 2971 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2972 node);
1da177e4
LT
2973 }
2974 check_slabp(cachep, slabp);
2975
2976 /* move slabp to correct slabp list: */
2977 list_del(&slabp->list);
2978 if (slabp->free == BUFCTL_END)
2979 list_add(&slabp->list, &l3->slabs_full);
2980 else
2981 list_add(&slabp->list, &l3->slabs_partial);
2982 }
2983
a737b3e2 2984must_grow:
1da177e4 2985 l3->free_objects -= ac->avail;
a737b3e2 2986alloc_done:
e498be7d 2987 spin_unlock(&l3->list_lock);
1da177e4
LT
2988
2989 if (unlikely(!ac->avail)) {
2990 int x;
1ca4cb24 2991 x = cache_grow(cachep, flags, node);
e498be7d 2992
a737b3e2 2993 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2994 ac = cpu_cache_get(cachep);
a737b3e2 2995 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2996 return NULL;
2997
a737b3e2 2998 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2999 goto retry;
3000 }
3001 ac->touched = 1;
e498be7d 3002 return ac->entry[--ac->avail];
1da177e4
LT
3003}
3004
a737b3e2
AM
3005static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3006 gfp_t flags)
1da177e4
LT
3007{
3008 might_sleep_if(flags & __GFP_WAIT);
3009#if DEBUG
3010 kmem_flagcheck(cachep, flags);
3011#endif
3012}
3013
3014#if DEBUG
a737b3e2
AM
3015static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3016 gfp_t flags, void *objp, void *caller)
1da177e4 3017{
b28a02de 3018 if (!objp)
1da177e4 3019 return objp;
b28a02de 3020 if (cachep->flags & SLAB_POISON) {
1da177e4 3021#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3022 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3023 kernel_map_pages(virt_to_page(objp),
3dafccf2 3024 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3025 else
3026 check_poison_obj(cachep, objp);
3027#else
3028 check_poison_obj(cachep, objp);
3029#endif
3030 poison_obj(cachep, objp, POISON_INUSE);
3031 }
3032 if (cachep->flags & SLAB_STORE_USER)
3033 *dbg_userword(cachep, objp) = caller;
3034
3035 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3036 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3037 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3038 slab_error(cachep, "double free, or memory outside"
3039 " object was overwritten");
b28a02de 3040 printk(KERN_ERR
a737b3e2
AM
3041 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3042 objp, *dbg_redzone1(cachep, objp),
3043 *dbg_redzone2(cachep, objp));
1da177e4
LT
3044 }
3045 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3046 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3047 }
871751e2
AV
3048#ifdef CONFIG_DEBUG_SLAB_LEAK
3049 {
3050 struct slab *slabp;
3051 unsigned objnr;
3052
3053 slabp = page_get_slab(virt_to_page(objp));
3054 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3055 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3056 }
3057#endif
3dafccf2 3058 objp += obj_offset(cachep);
1da177e4 3059 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3060 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3061
3062 if (!(flags & __GFP_WAIT))
3063 ctor_flags |= SLAB_CTOR_ATOMIC;
3064
3065 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3066 }
a44b56d3
KH
3067#if ARCH_SLAB_MINALIGN
3068 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3069 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3070 objp, ARCH_SLAB_MINALIGN);
3071 }
3072#endif
1da177e4
LT
3073 return objp;
3074}
3075#else
3076#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3077#endif
3078
343e0d7a 3079static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3080{
b28a02de 3081 void *objp;
1da177e4
LT
3082 struct array_cache *ac;
3083
5c382300 3084 check_irq_off();
9a2dba4b 3085 ac = cpu_cache_get(cachep);
1da177e4
LT
3086 if (likely(ac->avail)) {
3087 STATS_INC_ALLOCHIT(cachep);
3088 ac->touched = 1;
e498be7d 3089 objp = ac->entry[--ac->avail];
1da177e4
LT
3090 } else {
3091 STATS_INC_ALLOCMISS(cachep);
3092 objp = cache_alloc_refill(cachep, flags);
3093 }
5c382300
AK
3094 return objp;
3095}
3096
a737b3e2
AM
3097static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3098 gfp_t flags, void *caller)
5c382300
AK
3099{
3100 unsigned long save_flags;
de3083ec 3101 void *objp = NULL;
5c382300
AK
3102
3103 cache_alloc_debugcheck_before(cachep, flags);
3104
3105 local_irq_save(save_flags);
de3083ec 3106
765c4507
CL
3107 if (unlikely(NUMA_BUILD &&
3108 current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
de3083ec 3109 objp = alternate_node_alloc(cachep, flags);
de3083ec
CL
3110
3111 if (!objp)
3112 objp = ____cache_alloc(cachep, flags);
765c4507
CL
3113 /*
3114 * We may just have run out of memory on the local node.
3115 * __cache_alloc_node() knows how to locate memory on other nodes
3116 */
3117 if (NUMA_BUILD && !objp)
3118 objp = __cache_alloc_node(cachep, flags, numa_node_id());
1da177e4 3119 local_irq_restore(save_flags);
34342e86 3120 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3121 caller);
34342e86 3122 prefetchw(objp);
1da177e4
LT
3123 return objp;
3124}
3125
e498be7d 3126#ifdef CONFIG_NUMA
c61afb18 3127/*
b2455396 3128 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3129 *
3130 * If we are in_interrupt, then process context, including cpusets and
3131 * mempolicy, may not apply and should not be used for allocation policy.
3132 */
3133static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3134{
3135 int nid_alloc, nid_here;
3136
765c4507 3137 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3138 return NULL;
3139 nid_alloc = nid_here = numa_node_id();
3140 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3141 nid_alloc = cpuset_mem_spread_node();
3142 else if (current->mempolicy)
3143 nid_alloc = slab_node(current->mempolicy);
3144 if (nid_alloc != nid_here)
3145 return __cache_alloc_node(cachep, flags, nid_alloc);
3146 return NULL;
3147}
3148
765c4507
CL
3149/*
3150 * Fallback function if there was no memory available and no objects on a
3151 * certain node and we are allowed to fall back. We mimick the behavior of
3152 * the page allocator. We fall back according to a zonelist determined by
3153 * the policy layer while obeying cpuset constraints.
3154 */
3155void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3156{
3157 struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
3158 ->node_zonelists[gfp_zone(flags)];
3159 struct zone **z;
3160 void *obj = NULL;
3161
aedb0eb1
CL
3162 for (z = zonelist->zones; *z && !obj; z++) {
3163 int nid = zone_to_nid(*z);
3164
765c4507 3165 if (zone_idx(*z) <= ZONE_NORMAL &&
aedb0eb1
CL
3166 cpuset_zone_allowed(*z, flags) &&
3167 cache->nodelists[nid])
765c4507 3168 obj = __cache_alloc_node(cache,
aedb0eb1
CL
3169 flags | __GFP_THISNODE, nid);
3170 }
765c4507
CL
3171 return obj;
3172}
3173
e498be7d
CL
3174/*
3175 * A interface to enable slab creation on nodeid
1da177e4 3176 */
a737b3e2
AM
3177static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3178 int nodeid)
e498be7d
CL
3179{
3180 struct list_head *entry;
b28a02de
PE
3181 struct slab *slabp;
3182 struct kmem_list3 *l3;
3183 void *obj;
b28a02de
PE
3184 int x;
3185
3186 l3 = cachep->nodelists[nodeid];
3187 BUG_ON(!l3);
3188
a737b3e2 3189retry:
ca3b9b91 3190 check_irq_off();
b28a02de
PE
3191 spin_lock(&l3->list_lock);
3192 entry = l3->slabs_partial.next;
3193 if (entry == &l3->slabs_partial) {
3194 l3->free_touched = 1;
3195 entry = l3->slabs_free.next;
3196 if (entry == &l3->slabs_free)
3197 goto must_grow;
3198 }
3199
3200 slabp = list_entry(entry, struct slab, list);
3201 check_spinlock_acquired_node(cachep, nodeid);
3202 check_slabp(cachep, slabp);
3203
3204 STATS_INC_NODEALLOCS(cachep);
3205 STATS_INC_ACTIVE(cachep);
3206 STATS_SET_HIGH(cachep);
3207
3208 BUG_ON(slabp->inuse == cachep->num);
3209
78d382d7 3210 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3211 check_slabp(cachep, slabp);
3212 l3->free_objects--;
3213 /* move slabp to correct slabp list: */
3214 list_del(&slabp->list);
3215
a737b3e2 3216 if (slabp->free == BUFCTL_END)
b28a02de 3217 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3218 else
b28a02de 3219 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3220
b28a02de
PE
3221 spin_unlock(&l3->list_lock);
3222 goto done;
e498be7d 3223
a737b3e2 3224must_grow:
b28a02de
PE
3225 spin_unlock(&l3->list_lock);
3226 x = cache_grow(cachep, flags, nodeid);
765c4507
CL
3227 if (x)
3228 goto retry;
1da177e4 3229
765c4507
CL
3230 if (!(flags & __GFP_THISNODE))
3231 /* Unable to grow the cache. Fall back to other nodes. */
3232 return fallback_alloc(cachep, flags);
3233
3234 return NULL;
e498be7d 3235
a737b3e2 3236done:
b28a02de 3237 return obj;
e498be7d
CL
3238}
3239#endif
3240
3241/*
3242 * Caller needs to acquire correct kmem_list's list_lock
3243 */
343e0d7a 3244static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3245 int node)
1da177e4
LT
3246{
3247 int i;
e498be7d 3248 struct kmem_list3 *l3;
1da177e4
LT
3249
3250 for (i = 0; i < nr_objects; i++) {
3251 void *objp = objpp[i];
3252 struct slab *slabp;
1da177e4 3253
6ed5eb22 3254 slabp = virt_to_slab(objp);
ff69416e 3255 l3 = cachep->nodelists[node];
1da177e4 3256 list_del(&slabp->list);
ff69416e 3257 check_spinlock_acquired_node(cachep, node);
1da177e4 3258 check_slabp(cachep, slabp);
78d382d7 3259 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3260 STATS_DEC_ACTIVE(cachep);
e498be7d 3261 l3->free_objects++;
1da177e4
LT
3262 check_slabp(cachep, slabp);
3263
3264 /* fixup slab chains */
3265 if (slabp->inuse == 0) {
e498be7d
CL
3266 if (l3->free_objects > l3->free_limit) {
3267 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3268 /* No need to drop any previously held
3269 * lock here, even if we have a off-slab slab
3270 * descriptor it is guaranteed to come from
3271 * a different cache, refer to comments before
3272 * alloc_slabmgmt.
3273 */
1da177e4
LT
3274 slab_destroy(cachep, slabp);
3275 } else {
e498be7d 3276 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3277 }
3278 } else {
3279 /* Unconditionally move a slab to the end of the
3280 * partial list on free - maximum time for the
3281 * other objects to be freed, too.
3282 */
e498be7d 3283 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3284 }
3285 }
3286}
3287
343e0d7a 3288static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3289{
3290 int batchcount;
e498be7d 3291 struct kmem_list3 *l3;
ff69416e 3292 int node = numa_node_id();
1da177e4
LT
3293
3294 batchcount = ac->batchcount;
3295#if DEBUG
3296 BUG_ON(!batchcount || batchcount > ac->avail);
3297#endif
3298 check_irq_off();
ff69416e 3299 l3 = cachep->nodelists[node];
873623df 3300 spin_lock(&l3->list_lock);
e498be7d
CL
3301 if (l3->shared) {
3302 struct array_cache *shared_array = l3->shared;
b28a02de 3303 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3304 if (max) {
3305 if (batchcount > max)
3306 batchcount = max;
e498be7d 3307 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3308 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3309 shared_array->avail += batchcount;
3310 goto free_done;
3311 }
3312 }
3313
ff69416e 3314 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3315free_done:
1da177e4
LT
3316#if STATS
3317 {
3318 int i = 0;
3319 struct list_head *p;
3320
e498be7d
CL
3321 p = l3->slabs_free.next;
3322 while (p != &(l3->slabs_free)) {
1da177e4
LT
3323 struct slab *slabp;
3324
3325 slabp = list_entry(p, struct slab, list);
3326 BUG_ON(slabp->inuse);
3327
3328 i++;
3329 p = p->next;
3330 }
3331 STATS_SET_FREEABLE(cachep, i);
3332 }
3333#endif
e498be7d 3334 spin_unlock(&l3->list_lock);
1da177e4 3335 ac->avail -= batchcount;
a737b3e2 3336 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3337}
3338
3339/*
a737b3e2
AM
3340 * Release an obj back to its cache. If the obj has a constructed state, it must
3341 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3342 */
873623df 3343static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3344{
9a2dba4b 3345 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3346
3347 check_irq_off();
3348 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3349
873623df 3350 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3351 return;
3352
1da177e4
LT
3353 if (likely(ac->avail < ac->limit)) {
3354 STATS_INC_FREEHIT(cachep);
e498be7d 3355 ac->entry[ac->avail++] = objp;
1da177e4
LT
3356 return;
3357 } else {
3358 STATS_INC_FREEMISS(cachep);
3359 cache_flusharray(cachep, ac);
e498be7d 3360 ac->entry[ac->avail++] = objp;
1da177e4
LT
3361 }
3362}
3363
3364/**
3365 * kmem_cache_alloc - Allocate an object
3366 * @cachep: The cache to allocate from.
3367 * @flags: See kmalloc().
3368 *
3369 * Allocate an object from this cache. The flags are only relevant
3370 * if the cache has no available objects.
3371 */
343e0d7a 3372void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3373{
7fd6b141 3374 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3375}
3376EXPORT_SYMBOL(kmem_cache_alloc);
3377
a8c0f9a4 3378/**
b8008b2b 3379 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3380 * @cache: The cache to allocate from.
3381 * @flags: See kmalloc().
3382 *
3383 * Allocate an object from this cache and set the allocated memory to zero.
3384 * The flags are only relevant if the cache has no available objects.
3385 */
3386void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3387{
3388 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3389 if (ret)
3390 memset(ret, 0, obj_size(cache));
3391 return ret;
3392}
3393EXPORT_SYMBOL(kmem_cache_zalloc);
3394
1da177e4
LT
3395/**
3396 * kmem_ptr_validate - check if an untrusted pointer might
3397 * be a slab entry.
3398 * @cachep: the cache we're checking against
3399 * @ptr: pointer to validate
3400 *
3401 * This verifies that the untrusted pointer looks sane:
3402 * it is _not_ a guarantee that the pointer is actually
3403 * part of the slab cache in question, but it at least
3404 * validates that the pointer can be dereferenced and
3405 * looks half-way sane.
3406 *
3407 * Currently only used for dentry validation.
3408 */
343e0d7a 3409int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3410{
b28a02de 3411 unsigned long addr = (unsigned long)ptr;
1da177e4 3412 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3413 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3414 unsigned long size = cachep->buffer_size;
1da177e4
LT
3415 struct page *page;
3416
3417 if (unlikely(addr < min_addr))
3418 goto out;
3419 if (unlikely(addr > (unsigned long)high_memory - size))
3420 goto out;
3421 if (unlikely(addr & align_mask))
3422 goto out;
3423 if (unlikely(!kern_addr_valid(addr)))
3424 goto out;
3425 if (unlikely(!kern_addr_valid(addr + size - 1)))
3426 goto out;
3427 page = virt_to_page(ptr);
3428 if (unlikely(!PageSlab(page)))
3429 goto out;
065d41cb 3430 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3431 goto out;
3432 return 1;
a737b3e2 3433out:
1da177e4
LT
3434 return 0;
3435}
3436
3437#ifdef CONFIG_NUMA
3438/**
3439 * kmem_cache_alloc_node - Allocate an object on the specified node
3440 * @cachep: The cache to allocate from.
3441 * @flags: See kmalloc().
3442 * @nodeid: node number of the target node.
3443 *
3444 * Identical to kmem_cache_alloc, except that this function is slow
3445 * and can sleep. And it will allocate memory on the given node, which
3446 * can improve the performance for cpu bound structures.
e498be7d
CL
3447 * New and improved: it will now make sure that the object gets
3448 * put on the correct node list so that there is no false sharing.
1da177e4 3449 */
343e0d7a 3450void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3451{
e498be7d
CL
3452 unsigned long save_flags;
3453 void *ptr;
1da177e4 3454
e498be7d
CL
3455 cache_alloc_debugcheck_before(cachep, flags);
3456 local_irq_save(save_flags);
18f820f6
CL
3457
3458 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3459 !cachep->nodelists[nodeid])
5c382300
AK
3460 ptr = ____cache_alloc(cachep, flags);
3461 else
3462 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3463 local_irq_restore(save_flags);
18f820f6
CL
3464
3465 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3466 __builtin_return_address(0));
1da177e4 3467
e498be7d 3468 return ptr;
1da177e4
LT
3469}
3470EXPORT_SYMBOL(kmem_cache_alloc_node);
3471
dbe5e69d 3472void *__kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3473{
343e0d7a 3474 struct kmem_cache *cachep;
97e2bde4
MS
3475
3476 cachep = kmem_find_general_cachep(size, flags);
3477 if (unlikely(cachep == NULL))
3478 return NULL;
3479 return kmem_cache_alloc_node(cachep, flags, node);
3480}
dbe5e69d 3481EXPORT_SYMBOL(__kmalloc_node);
1da177e4
LT
3482#endif
3483
3484/**
800590f5 3485 * __do_kmalloc - allocate memory
1da177e4 3486 * @size: how many bytes of memory are required.
800590f5 3487 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3488 * @caller: function caller for debug tracking of the caller
1da177e4 3489 */
7fd6b141
PE
3490static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3491 void *caller)
1da177e4 3492{
343e0d7a 3493 struct kmem_cache *cachep;
1da177e4 3494
97e2bde4
MS
3495 /* If you want to save a few bytes .text space: replace
3496 * __ with kmem_.
3497 * Then kmalloc uses the uninlined functions instead of the inline
3498 * functions.
3499 */
3500 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3501 if (unlikely(cachep == NULL))
3502 return NULL;
7fd6b141
PE
3503 return __cache_alloc(cachep, flags, caller);
3504}
3505
7fd6b141 3506
1d2c8eea 3507#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3508void *__kmalloc(size_t size, gfp_t flags)
3509{
871751e2 3510 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3511}
3512EXPORT_SYMBOL(__kmalloc);
3513
7fd6b141
PE
3514void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3515{
3516 return __do_kmalloc(size, flags, caller);
3517}
3518EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3519
3520#else
3521void *__kmalloc(size_t size, gfp_t flags)
3522{
3523 return __do_kmalloc(size, flags, NULL);
3524}
3525EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3526#endif
3527
1da177e4
LT
3528/**
3529 * kmem_cache_free - Deallocate an object
3530 * @cachep: The cache the allocation was from.
3531 * @objp: The previously allocated object.
3532 *
3533 * Free an object which was previously allocated from this
3534 * cache.
3535 */
343e0d7a 3536void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3537{
3538 unsigned long flags;
3539
ddc2e812
PE
3540 BUG_ON(virt_to_cache(objp) != cachep);
3541
1da177e4 3542 local_irq_save(flags);
873623df 3543 __cache_free(cachep, objp);
1da177e4
LT
3544 local_irq_restore(flags);
3545}
3546EXPORT_SYMBOL(kmem_cache_free);
3547
1da177e4
LT
3548/**
3549 * kfree - free previously allocated memory
3550 * @objp: pointer returned by kmalloc.
3551 *
80e93eff
PE
3552 * If @objp is NULL, no operation is performed.
3553 *
1da177e4
LT
3554 * Don't free memory not originally allocated by kmalloc()
3555 * or you will run into trouble.
3556 */
3557void kfree(const void *objp)
3558{
343e0d7a 3559 struct kmem_cache *c;
1da177e4
LT
3560 unsigned long flags;
3561
3562 if (unlikely(!objp))
3563 return;
3564 local_irq_save(flags);
3565 kfree_debugcheck(objp);
6ed5eb22 3566 c = virt_to_cache(objp);
f9b8404c 3567 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3568 __cache_free(c, (void *)objp);
1da177e4
LT
3569 local_irq_restore(flags);
3570}
3571EXPORT_SYMBOL(kfree);
3572
343e0d7a 3573unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3574{
3dafccf2 3575 return obj_size(cachep);
1da177e4
LT
3576}
3577EXPORT_SYMBOL(kmem_cache_size);
3578
343e0d7a 3579const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3580{
3581 return cachep->name;
3582}
3583EXPORT_SYMBOL_GPL(kmem_cache_name);
3584
e498be7d 3585/*
0718dc2a 3586 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3587 */
343e0d7a 3588static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3589{
3590 int node;
3591 struct kmem_list3 *l3;
cafeb02e
CL
3592 struct array_cache *new_shared;
3593 struct array_cache **new_alien;
e498be7d
CL
3594
3595 for_each_online_node(node) {
cafeb02e 3596
a737b3e2
AM
3597 new_alien = alloc_alien_cache(node, cachep->limit);
3598 if (!new_alien)
e498be7d 3599 goto fail;
cafeb02e 3600
0718dc2a
CL
3601 new_shared = alloc_arraycache(node,
3602 cachep->shared*cachep->batchcount,
a737b3e2 3603 0xbaadf00d);
0718dc2a
CL
3604 if (!new_shared) {
3605 free_alien_cache(new_alien);
e498be7d 3606 goto fail;
0718dc2a 3607 }
cafeb02e 3608
a737b3e2
AM
3609 l3 = cachep->nodelists[node];
3610 if (l3) {
cafeb02e
CL
3611 struct array_cache *shared = l3->shared;
3612
e498be7d
CL
3613 spin_lock_irq(&l3->list_lock);
3614
cafeb02e 3615 if (shared)
0718dc2a
CL
3616 free_block(cachep, shared->entry,
3617 shared->avail, node);
e498be7d 3618
cafeb02e
CL
3619 l3->shared = new_shared;
3620 if (!l3->alien) {
e498be7d
CL
3621 l3->alien = new_alien;
3622 new_alien = NULL;
3623 }
b28a02de 3624 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3625 cachep->batchcount + cachep->num;
e498be7d 3626 spin_unlock_irq(&l3->list_lock);
cafeb02e 3627 kfree(shared);
e498be7d
CL
3628 free_alien_cache(new_alien);
3629 continue;
3630 }
a737b3e2 3631 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3632 if (!l3) {
3633 free_alien_cache(new_alien);
3634 kfree(new_shared);
e498be7d 3635 goto fail;
0718dc2a 3636 }
e498be7d
CL
3637
3638 kmem_list3_init(l3);
3639 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3640 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3641 l3->shared = new_shared;
e498be7d 3642 l3->alien = new_alien;
b28a02de 3643 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3644 cachep->batchcount + cachep->num;
e498be7d
CL
3645 cachep->nodelists[node] = l3;
3646 }
cafeb02e 3647 return 0;
0718dc2a 3648
a737b3e2 3649fail:
0718dc2a
CL
3650 if (!cachep->next.next) {
3651 /* Cache is not active yet. Roll back what we did */
3652 node--;
3653 while (node >= 0) {
3654 if (cachep->nodelists[node]) {
3655 l3 = cachep->nodelists[node];
3656
3657 kfree(l3->shared);
3658 free_alien_cache(l3->alien);
3659 kfree(l3);
3660 cachep->nodelists[node] = NULL;
3661 }
3662 node--;
3663 }
3664 }
cafeb02e 3665 return -ENOMEM;
e498be7d
CL
3666}
3667
1da177e4 3668struct ccupdate_struct {
343e0d7a 3669 struct kmem_cache *cachep;
1da177e4
LT
3670 struct array_cache *new[NR_CPUS];
3671};
3672
3673static void do_ccupdate_local(void *info)
3674{
a737b3e2 3675 struct ccupdate_struct *new = info;
1da177e4
LT
3676 struct array_cache *old;
3677
3678 check_irq_off();
9a2dba4b 3679 old = cpu_cache_get(new->cachep);
e498be7d 3680
1da177e4
LT
3681 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3682 new->new[smp_processor_id()] = old;
3683}
3684
b5d8ca7c 3685/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3686static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3687 int batchcount, int shared)
1da177e4 3688{
d2e7b7d0 3689 struct ccupdate_struct *new;
2ed3a4ef 3690 int i;
1da177e4 3691
d2e7b7d0
SS
3692 new = kzalloc(sizeof(*new), GFP_KERNEL);
3693 if (!new)
3694 return -ENOMEM;
3695
e498be7d 3696 for_each_online_cpu(i) {
d2e7b7d0 3697 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3698 batchcount);
d2e7b7d0 3699 if (!new->new[i]) {
b28a02de 3700 for (i--; i >= 0; i--)
d2e7b7d0
SS
3701 kfree(new->new[i]);
3702 kfree(new);
e498be7d 3703 return -ENOMEM;
1da177e4
LT
3704 }
3705 }
d2e7b7d0 3706 new->cachep = cachep;
1da177e4 3707
d2e7b7d0 3708 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3709
1da177e4 3710 check_irq_on();
1da177e4
LT
3711 cachep->batchcount = batchcount;
3712 cachep->limit = limit;
e498be7d 3713 cachep->shared = shared;
1da177e4 3714
e498be7d 3715 for_each_online_cpu(i) {
d2e7b7d0 3716 struct array_cache *ccold = new->new[i];
1da177e4
LT
3717 if (!ccold)
3718 continue;
e498be7d 3719 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3720 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3721 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3722 kfree(ccold);
3723 }
d2e7b7d0 3724 kfree(new);
2ed3a4ef 3725 return alloc_kmemlist(cachep);
1da177e4
LT
3726}
3727
b5d8ca7c 3728/* Called with cache_chain_mutex held always */
2ed3a4ef 3729static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3730{
3731 int err;
3732 int limit, shared;
3733
a737b3e2
AM
3734 /*
3735 * The head array serves three purposes:
1da177e4
LT
3736 * - create a LIFO ordering, i.e. return objects that are cache-warm
3737 * - reduce the number of spinlock operations.
a737b3e2 3738 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3739 * bufctl chains: array operations are cheaper.
3740 * The numbers are guessed, we should auto-tune as described by
3741 * Bonwick.
3742 */
3dafccf2 3743 if (cachep->buffer_size > 131072)
1da177e4 3744 limit = 1;
3dafccf2 3745 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3746 limit = 8;
3dafccf2 3747 else if (cachep->buffer_size > 1024)
1da177e4 3748 limit = 24;
3dafccf2 3749 else if (cachep->buffer_size > 256)
1da177e4
LT
3750 limit = 54;
3751 else
3752 limit = 120;
3753
a737b3e2
AM
3754 /*
3755 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3756 * allocation behaviour: Most allocs on one cpu, most free operations
3757 * on another cpu. For these cases, an efficient object passing between
3758 * cpus is necessary. This is provided by a shared array. The array
3759 * replaces Bonwick's magazine layer.
3760 * On uniprocessor, it's functionally equivalent (but less efficient)
3761 * to a larger limit. Thus disabled by default.
3762 */
3763 shared = 0;
3764#ifdef CONFIG_SMP
3dafccf2 3765 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3766 shared = 8;
3767#endif
3768
3769#if DEBUG
a737b3e2
AM
3770 /*
3771 * With debugging enabled, large batchcount lead to excessively long
3772 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3773 */
3774 if (limit > 32)
3775 limit = 32;
3776#endif
b28a02de 3777 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3778 if (err)
3779 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3780 cachep->name, -err);
2ed3a4ef 3781 return err;
1da177e4
LT
3782}
3783
1b55253a
CL
3784/*
3785 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3786 * necessary. Note that the l3 listlock also protects the array_cache
3787 * if drain_array() is used on the shared array.
1b55253a
CL
3788 */
3789void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3790 struct array_cache *ac, int force, int node)
1da177e4
LT
3791{
3792 int tofree;
3793
1b55253a
CL
3794 if (!ac || !ac->avail)
3795 return;
1da177e4
LT
3796 if (ac->touched && !force) {
3797 ac->touched = 0;
b18e7e65 3798 } else {
1b55253a 3799 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3800 if (ac->avail) {
3801 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3802 if (tofree > ac->avail)
3803 tofree = (ac->avail + 1) / 2;
3804 free_block(cachep, ac->entry, tofree, node);
3805 ac->avail -= tofree;
3806 memmove(ac->entry, &(ac->entry[tofree]),
3807 sizeof(void *) * ac->avail);
3808 }
1b55253a 3809 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3810 }
3811}
3812
3813/**
3814 * cache_reap - Reclaim memory from caches.
1e5d5331 3815 * @unused: unused parameter
1da177e4
LT
3816 *
3817 * Called from workqueue/eventd every few seconds.
3818 * Purpose:
3819 * - clear the per-cpu caches for this CPU.
3820 * - return freeable pages to the main free memory pool.
3821 *
a737b3e2
AM
3822 * If we cannot acquire the cache chain mutex then just give up - we'll try
3823 * again on the next iteration.
1da177e4 3824 */
65f27f38 3825static void cache_reap(struct work_struct *unused)
1da177e4 3826{
7a7c381d 3827 struct kmem_cache *searchp;
e498be7d 3828 struct kmem_list3 *l3;
aab2207c 3829 int node = numa_node_id();
1da177e4 3830
fc0abb14 3831 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3832 /* Give up. Setup the next iteration. */
b28a02de
PE
3833 schedule_delayed_work(&__get_cpu_var(reap_work),
3834 REAPTIMEOUT_CPUC);
1da177e4
LT
3835 return;
3836 }
3837
7a7c381d 3838 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3839 check_irq_on();
3840
35386e3b
CL
3841 /*
3842 * We only take the l3 lock if absolutely necessary and we
3843 * have established with reasonable certainty that
3844 * we can do some work if the lock was obtained.
3845 */
aab2207c 3846 l3 = searchp->nodelists[node];
35386e3b 3847
8fce4d8e 3848 reap_alien(searchp, l3);
1da177e4 3849
aab2207c 3850 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3851
35386e3b
CL
3852 /*
3853 * These are racy checks but it does not matter
3854 * if we skip one check or scan twice.
3855 */
e498be7d 3856 if (time_after(l3->next_reap, jiffies))
35386e3b 3857 goto next;
1da177e4 3858
e498be7d 3859 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3860
aab2207c 3861 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3862
ed11d9eb 3863 if (l3->free_touched)
e498be7d 3864 l3->free_touched = 0;
ed11d9eb
CL
3865 else {
3866 int freed;
1da177e4 3867
ed11d9eb
CL
3868 freed = drain_freelist(searchp, l3, (l3->free_limit +
3869 5 * searchp->num - 1) / (5 * searchp->num));
3870 STATS_ADD_REAPED(searchp, freed);
3871 }
35386e3b 3872next:
1da177e4
LT
3873 cond_resched();
3874 }
3875 check_irq_on();
fc0abb14 3876 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3877 next_reap_node();
2244b95a 3878 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3879 /* Set up the next iteration */
cd61ef62 3880 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3881}
3882
3883#ifdef CONFIG_PROC_FS
3884
85289f98 3885static void print_slabinfo_header(struct seq_file *m)
1da177e4 3886{
85289f98
PE
3887 /*
3888 * Output format version, so at least we can change it
3889 * without _too_ many complaints.
3890 */
1da177e4 3891#if STATS
85289f98 3892 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3893#else
85289f98 3894 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3895#endif
85289f98
PE
3896 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3897 "<objperslab> <pagesperslab>");
3898 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3899 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3900#if STATS
85289f98 3901 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3902 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3903 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3904#endif
85289f98
PE
3905 seq_putc(m, '\n');
3906}
3907
3908static void *s_start(struct seq_file *m, loff_t *pos)
3909{
3910 loff_t n = *pos;
3911 struct list_head *p;
3912
fc0abb14 3913 mutex_lock(&cache_chain_mutex);
85289f98
PE
3914 if (!n)
3915 print_slabinfo_header(m);
1da177e4
LT
3916 p = cache_chain.next;
3917 while (n--) {
3918 p = p->next;
3919 if (p == &cache_chain)
3920 return NULL;
3921 }
343e0d7a 3922 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3923}
3924
3925static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3926{
343e0d7a 3927 struct kmem_cache *cachep = p;
1da177e4 3928 ++*pos;
a737b3e2
AM
3929 return cachep->next.next == &cache_chain ?
3930 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3931}
3932
3933static void s_stop(struct seq_file *m, void *p)
3934{
fc0abb14 3935 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3936}
3937
3938static int s_show(struct seq_file *m, void *p)
3939{
343e0d7a 3940 struct kmem_cache *cachep = p;
b28a02de
PE
3941 struct slab *slabp;
3942 unsigned long active_objs;
3943 unsigned long num_objs;
3944 unsigned long active_slabs = 0;
3945 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3946 const char *name;
1da177e4 3947 char *error = NULL;
e498be7d
CL
3948 int node;
3949 struct kmem_list3 *l3;
1da177e4 3950
1da177e4
LT
3951 active_objs = 0;
3952 num_slabs = 0;
e498be7d
CL
3953 for_each_online_node(node) {
3954 l3 = cachep->nodelists[node];
3955 if (!l3)
3956 continue;
3957
ca3b9b91
RT
3958 check_irq_on();
3959 spin_lock_irq(&l3->list_lock);
e498be7d 3960
7a7c381d 3961 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3962 if (slabp->inuse != cachep->num && !error)
3963 error = "slabs_full accounting error";
3964 active_objs += cachep->num;
3965 active_slabs++;
3966 }
7a7c381d 3967 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3968 if (slabp->inuse == cachep->num && !error)
3969 error = "slabs_partial inuse accounting error";
3970 if (!slabp->inuse && !error)
3971 error = "slabs_partial/inuse accounting error";
3972 active_objs += slabp->inuse;
3973 active_slabs++;
3974 }
7a7c381d 3975 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3976 if (slabp->inuse && !error)
3977 error = "slabs_free/inuse accounting error";
3978 num_slabs++;
3979 }
3980 free_objects += l3->free_objects;
4484ebf1
RT
3981 if (l3->shared)
3982 shared_avail += l3->shared->avail;
e498be7d 3983
ca3b9b91 3984 spin_unlock_irq(&l3->list_lock);
1da177e4 3985 }
b28a02de
PE
3986 num_slabs += active_slabs;
3987 num_objs = num_slabs * cachep->num;
e498be7d 3988 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3989 error = "free_objects accounting error";
3990
b28a02de 3991 name = cachep->name;
1da177e4
LT
3992 if (error)
3993 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3994
3995 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3996 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3997 cachep->num, (1 << cachep->gfporder));
1da177e4 3998 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3999 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4000 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4001 active_slabs, num_slabs, shared_avail);
1da177e4 4002#if STATS
b28a02de 4003 { /* list3 stats */
1da177e4
LT
4004 unsigned long high = cachep->high_mark;
4005 unsigned long allocs = cachep->num_allocations;
4006 unsigned long grown = cachep->grown;
4007 unsigned long reaped = cachep->reaped;
4008 unsigned long errors = cachep->errors;
4009 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4010 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4011 unsigned long node_frees = cachep->node_frees;
fb7faf33 4012 unsigned long overflows = cachep->node_overflow;
1da177e4 4013
e498be7d 4014 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4015 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4016 reaped, errors, max_freeable, node_allocs,
fb7faf33 4017 node_frees, overflows);
1da177e4
LT
4018 }
4019 /* cpu stats */
4020 {
4021 unsigned long allochit = atomic_read(&cachep->allochit);
4022 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4023 unsigned long freehit = atomic_read(&cachep->freehit);
4024 unsigned long freemiss = atomic_read(&cachep->freemiss);
4025
4026 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4027 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4028 }
4029#endif
4030 seq_putc(m, '\n');
1da177e4
LT
4031 return 0;
4032}
4033
4034/*
4035 * slabinfo_op - iterator that generates /proc/slabinfo
4036 *
4037 * Output layout:
4038 * cache-name
4039 * num-active-objs
4040 * total-objs
4041 * object size
4042 * num-active-slabs
4043 * total-slabs
4044 * num-pages-per-slab
4045 * + further values on SMP and with statistics enabled
4046 */
4047
4048struct seq_operations slabinfo_op = {
b28a02de
PE
4049 .start = s_start,
4050 .next = s_next,
4051 .stop = s_stop,
4052 .show = s_show,
1da177e4
LT
4053};
4054
4055#define MAX_SLABINFO_WRITE 128
4056/**
4057 * slabinfo_write - Tuning for the slab allocator
4058 * @file: unused
4059 * @buffer: user buffer
4060 * @count: data length
4061 * @ppos: unused
4062 */
b28a02de
PE
4063ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4064 size_t count, loff_t *ppos)
1da177e4 4065{
b28a02de 4066 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4067 int limit, batchcount, shared, res;
7a7c381d 4068 struct kmem_cache *cachep;
b28a02de 4069
1da177e4
LT
4070 if (count > MAX_SLABINFO_WRITE)
4071 return -EINVAL;
4072 if (copy_from_user(&kbuf, buffer, count))
4073 return -EFAULT;
b28a02de 4074 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4075
4076 tmp = strchr(kbuf, ' ');
4077 if (!tmp)
4078 return -EINVAL;
4079 *tmp = '\0';
4080 tmp++;
4081 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4082 return -EINVAL;
4083
4084 /* Find the cache in the chain of caches. */
fc0abb14 4085 mutex_lock(&cache_chain_mutex);
1da177e4 4086 res = -EINVAL;
7a7c381d 4087 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4088 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4089 if (limit < 1 || batchcount < 1 ||
4090 batchcount > limit || shared < 0) {
e498be7d 4091 res = 0;
1da177e4 4092 } else {
e498be7d 4093 res = do_tune_cpucache(cachep, limit,
b28a02de 4094 batchcount, shared);
1da177e4
LT
4095 }
4096 break;
4097 }
4098 }
fc0abb14 4099 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4100 if (res >= 0)
4101 res = count;
4102 return res;
4103}
871751e2
AV
4104
4105#ifdef CONFIG_DEBUG_SLAB_LEAK
4106
4107static void *leaks_start(struct seq_file *m, loff_t *pos)
4108{
4109 loff_t n = *pos;
4110 struct list_head *p;
4111
4112 mutex_lock(&cache_chain_mutex);
4113 p = cache_chain.next;
4114 while (n--) {
4115 p = p->next;
4116 if (p == &cache_chain)
4117 return NULL;
4118 }
4119 return list_entry(p, struct kmem_cache, next);
4120}
4121
4122static inline int add_caller(unsigned long *n, unsigned long v)
4123{
4124 unsigned long *p;
4125 int l;
4126 if (!v)
4127 return 1;
4128 l = n[1];
4129 p = n + 2;
4130 while (l) {
4131 int i = l/2;
4132 unsigned long *q = p + 2 * i;
4133 if (*q == v) {
4134 q[1]++;
4135 return 1;
4136 }
4137 if (*q > v) {
4138 l = i;
4139 } else {
4140 p = q + 2;
4141 l -= i + 1;
4142 }
4143 }
4144 if (++n[1] == n[0])
4145 return 0;
4146 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4147 p[0] = v;
4148 p[1] = 1;
4149 return 1;
4150}
4151
4152static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4153{
4154 void *p;
4155 int i;
4156 if (n[0] == n[1])
4157 return;
4158 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4159 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4160 continue;
4161 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4162 return;
4163 }
4164}
4165
4166static void show_symbol(struct seq_file *m, unsigned long address)
4167{
4168#ifdef CONFIG_KALLSYMS
4169 char *modname;
4170 const char *name;
4171 unsigned long offset, size;
4172 char namebuf[KSYM_NAME_LEN+1];
4173
4174 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4175
4176 if (name) {
4177 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4178 if (modname)
4179 seq_printf(m, " [%s]", modname);
4180 return;
4181 }
4182#endif
4183 seq_printf(m, "%p", (void *)address);
4184}
4185
4186static int leaks_show(struct seq_file *m, void *p)
4187{
4188 struct kmem_cache *cachep = p;
871751e2
AV
4189 struct slab *slabp;
4190 struct kmem_list3 *l3;
4191 const char *name;
4192 unsigned long *n = m->private;
4193 int node;
4194 int i;
4195
4196 if (!(cachep->flags & SLAB_STORE_USER))
4197 return 0;
4198 if (!(cachep->flags & SLAB_RED_ZONE))
4199 return 0;
4200
4201 /* OK, we can do it */
4202
4203 n[1] = 0;
4204
4205 for_each_online_node(node) {
4206 l3 = cachep->nodelists[node];
4207 if (!l3)
4208 continue;
4209
4210 check_irq_on();
4211 spin_lock_irq(&l3->list_lock);
4212
7a7c381d 4213 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4214 handle_slab(n, cachep, slabp);
7a7c381d 4215 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4216 handle_slab(n, cachep, slabp);
871751e2
AV
4217 spin_unlock_irq(&l3->list_lock);
4218 }
4219 name = cachep->name;
4220 if (n[0] == n[1]) {
4221 /* Increase the buffer size */
4222 mutex_unlock(&cache_chain_mutex);
4223 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4224 if (!m->private) {
4225 /* Too bad, we are really out */
4226 m->private = n;
4227 mutex_lock(&cache_chain_mutex);
4228 return -ENOMEM;
4229 }
4230 *(unsigned long *)m->private = n[0] * 2;
4231 kfree(n);
4232 mutex_lock(&cache_chain_mutex);
4233 /* Now make sure this entry will be retried */
4234 m->count = m->size;
4235 return 0;
4236 }
4237 for (i = 0; i < n[1]; i++) {
4238 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4239 show_symbol(m, n[2*i+2]);
4240 seq_putc(m, '\n');
4241 }
d2e7b7d0 4242
871751e2
AV
4243 return 0;
4244}
4245
4246struct seq_operations slabstats_op = {
4247 .start = leaks_start,
4248 .next = s_next,
4249 .stop = s_stop,
4250 .show = leaks_show,
4251};
4252#endif
1da177e4
LT
4253#endif
4254
00e145b6
MS
4255/**
4256 * ksize - get the actual amount of memory allocated for a given object
4257 * @objp: Pointer to the object
4258 *
4259 * kmalloc may internally round up allocations and return more memory
4260 * than requested. ksize() can be used to determine the actual amount of
4261 * memory allocated. The caller may use this additional memory, even though
4262 * a smaller amount of memory was initially specified with the kmalloc call.
4263 * The caller must guarantee that objp points to a valid object previously
4264 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4265 * must not be freed during the duration of the call.
4266 */
1da177e4
LT
4267unsigned int ksize(const void *objp)
4268{
00e145b6
MS
4269 if (unlikely(objp == NULL))
4270 return 0;
1da177e4 4271
6ed5eb22 4272 return obj_size(virt_to_cache(objp));
1da177e4 4273}