mm: remember what the preferred zone is for zone_statistics
[linux-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
87a927c7 140#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4
LT
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
fa5b08d5 208typedef unsigned int kmem_bufctl_t;
1da177e4
LT
209#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
211#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 213
1da177e4
LT
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
bda5b655 270 void *entry[]; /*
a737b3e2
AM
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
a737b3e2 274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
556a169d 307#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
556a169d
PE
310#define SIZE_AC MAX_NUMNODES
311#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
1c61fc40 336#include <linux/kmalloc_sizes.h>
e498be7d 337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
4ba9b9d0 410 void (*ctor)(struct kmem_cache *, void *);
1da177e4 411
b5d8ca7c 412/* 5) cache creation/removal */
b28a02de
PE
413 const char *name;
414 struct list_head next;
1da177e4 415
b5d8ca7c 416/* 6) statistics */
1da177e4 417#if STATS
b28a02de
PE
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
fb7faf33 427 unsigned long node_overflow;
b28a02de
PE
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
1da177e4
LT
432#endif
433#if DEBUG
3dafccf2
MS
434 /*
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
439 */
440 int obj_offset;
441 int obj_size;
1da177e4 442#endif
8da3430d
ED
443 /*
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
449 */
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
451 /*
452 * Do not add fields after nodelists[]
453 */
1da177e4
LT
454};
455
456#define CFLGS_OFF_SLAB (0x80000000UL)
457#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
458
459#define BATCHREFILL_LIMIT 16
a737b3e2
AM
460/*
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
1da177e4 463 *
dc6f3f27 464 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
465 * which could lock up otherwise freeable slabs.
466 */
467#define REAPTIMEOUT_CPUC (2*HZ)
468#define REAPTIMEOUT_LIST3 (4*HZ)
469
470#if STATS
471#define STATS_INC_ACTIVE(x) ((x)->num_active++)
472#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 475#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
476#define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ERR(x) ((x)->errors++)
482#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 483#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 484#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
485#define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
1da177e4
LT
490#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494#else
495#define STATS_INC_ACTIVE(x) do { } while (0)
496#define STATS_DEC_ACTIVE(x) do { } while (0)
497#define STATS_INC_ALLOCED(x) do { } while (0)
498#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 499#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
500#define STATS_SET_HIGH(x) do { } while (0)
501#define STATS_INC_ERR(x) do { } while (0)
502#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 503#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 504#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 505#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
506#define STATS_INC_ALLOCHIT(x) do { } while (0)
507#define STATS_INC_ALLOCMISS(x) do { } while (0)
508#define STATS_INC_FREEHIT(x) do { } while (0)
509#define STATS_INC_FREEMISS(x) do { } while (0)
510#endif
511
512#if DEBUG
1da177e4 513
a737b3e2
AM
514/*
515 * memory layout of objects:
1da177e4 516 * 0 : objp
3dafccf2 517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
3dafccf2 520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 521 * redzone word.
3dafccf2
MS
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
1da177e4 526 */
343e0d7a 527static int obj_offset(struct kmem_cache *cachep)
1da177e4 528{
3dafccf2 529 return cachep->obj_offset;
1da177e4
LT
530}
531
343e0d7a 532static int obj_size(struct kmem_cache *cachep)
1da177e4 533{
3dafccf2 534 return cachep->obj_size;
1da177e4
LT
535}
536
b46b8f19 537static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
538{
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
1da177e4
LT
542}
543
b46b8f19 544static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
545{
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
87a927c7 550 REDZONE_ALIGN);
b46b8f19
DW
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
1da177e4
LT
571/*
572 * Do not go above this order unless 0 objects fit into the slab.
573 */
574#define BREAK_GFP_ORDER_HI 1
575#define BREAK_GFP_ORDER_LO 0
576static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
577
a737b3e2
AM
578/*
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
1da177e4 582 */
065d41cb
PE
583static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
584{
585 page->lru.next = (struct list_head *)cache;
586}
587
588static inline struct kmem_cache *page_get_cache(struct page *page)
589{
d85f3385 590 page = compound_head(page);
ddc2e812 591 BUG_ON(!PageSlab(page));
065d41cb
PE
592 return (struct kmem_cache *)page->lru.next;
593}
594
595static inline void page_set_slab(struct page *page, struct slab *slab)
596{
597 page->lru.prev = (struct list_head *)slab;
598}
599
600static inline struct slab *page_get_slab(struct page *page)
601{
ddc2e812 602 BUG_ON(!PageSlab(page));
065d41cb
PE
603 return (struct slab *)page->lru.prev;
604}
1da177e4 605
6ed5eb22
PE
606static inline struct kmem_cache *virt_to_cache(const void *obj)
607{
b49af68f 608 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
609 return page_get_cache(page);
610}
611
612static inline struct slab *virt_to_slab(const void *obj)
613{
b49af68f 614 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
615 return page_get_slab(page);
616}
617
8fea4e96
PE
618static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
620{
621 return slab->s_mem + cache->buffer_size * idx;
622}
623
6a2d7a95
ED
624/*
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
629 */
630static inline unsigned int obj_to_index(const struct kmem_cache *cache,
631 const struct slab *slab, void *obj)
8fea4e96 632{
6a2d7a95
ED
633 u32 offset = (obj - slab->s_mem);
634 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
635}
636
a737b3e2
AM
637/*
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
639 */
1da177e4
LT
640struct cache_sizes malloc_sizes[] = {
641#define CACHE(x) { .cs_size = (x) },
642#include <linux/kmalloc_sizes.h>
643 CACHE(ULONG_MAX)
644#undef CACHE
645};
646EXPORT_SYMBOL(malloc_sizes);
647
648/* Must match cache_sizes above. Out of line to keep cache footprint low. */
649struct cache_names {
650 char *name;
651 char *name_dma;
652};
653
654static struct cache_names __initdata cache_names[] = {
655#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656#include <linux/kmalloc_sizes.h>
b28a02de 657 {NULL,}
1da177e4
LT
658#undef CACHE
659};
660
661static struct arraycache_init initarray_cache __initdata =
b28a02de 662 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 663static struct arraycache_init initarray_generic =
b28a02de 664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
665
666/* internal cache of cache description objs */
343e0d7a 667static struct kmem_cache cache_cache = {
b28a02de
PE
668 .batchcount = 1,
669 .limit = BOOT_CPUCACHE_ENTRIES,
670 .shared = 1,
343e0d7a 671 .buffer_size = sizeof(struct kmem_cache),
b28a02de 672 .name = "kmem_cache",
1da177e4
LT
673};
674
056c6241
RT
675#define BAD_ALIEN_MAGIC 0x01020304ul
676
f1aaee53
AV
677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
685 *
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
f1aaee53 689 */
056c6241
RT
690static struct lock_class_key on_slab_l3_key;
691static struct lock_class_key on_slab_alc_key;
692
693static inline void init_lock_keys(void)
f1aaee53 694
f1aaee53
AV
695{
696 int q;
056c6241
RT
697 struct cache_sizes *s = malloc_sizes;
698
699 while (s->cs_size != ULONG_MAX) {
700 for_each_node(q) {
701 struct array_cache **alc;
702 int r;
703 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
704 if (!l3 || OFF_SLAB(s->cs_cachep))
705 continue;
706 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
707 alc = l3->alien;
708 /*
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
714 */
715 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
716 continue;
717 for_each_node(r) {
718 if (alc[r])
719 lockdep_set_class(&alc[r]->lock,
720 &on_slab_alc_key);
721 }
722 }
723 s++;
f1aaee53
AV
724 }
725}
f1aaee53 726#else
056c6241 727static inline void init_lock_keys(void)
f1aaee53
AV
728{
729}
730#endif
731
8f5be20b 732/*
95402b38 733 * Guard access to the cache-chain.
8f5be20b 734 */
fc0abb14 735static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
736static struct list_head cache_chain;
737
1da177e4
LT
738/*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742static enum {
743 NONE,
e498be7d
CL
744 PARTIAL_AC,
745 PARTIAL_L3,
1da177e4
LT
746 FULL
747} g_cpucache_up;
748
39d24e64
MK
749/*
750 * used by boot code to determine if it can use slab based allocator
751 */
752int slab_is_available(void)
753{
754 return g_cpucache_up == FULL;
755}
756
52bad64d 757static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 758
343e0d7a 759static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
760{
761 return cachep->array[smp_processor_id()];
762}
763
a737b3e2
AM
764static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
1da177e4
LT
766{
767 struct cache_sizes *csizep = malloc_sizes;
768
769#if DEBUG
770 /* This happens if someone tries to call
b28a02de
PE
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
c7e43c78 774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 775#endif
6cb8f913
CL
776 if (!size)
777 return ZERO_SIZE_PTR;
778
1da177e4
LT
779 while (size > csizep->cs_size)
780 csizep++;
781
782 /*
0abf40c1 783 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
784 * has cs_{dma,}cachep==NULL. Thus no special case
785 * for large kmalloc calls required.
786 */
4b51d669 787#ifdef CONFIG_ZONE_DMA
1da177e4
LT
788 if (unlikely(gfpflags & GFP_DMA))
789 return csizep->cs_dmacachep;
4b51d669 790#endif
1da177e4
LT
791 return csizep->cs_cachep;
792}
793
b221385b 794static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
795{
796 return __find_general_cachep(size, gfpflags);
797}
97e2bde4 798
fbaccacf 799static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 800{
fbaccacf
SR
801 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
802}
1da177e4 803
a737b3e2
AM
804/*
805 * Calculate the number of objects and left-over bytes for a given buffer size.
806 */
fbaccacf
SR
807static void cache_estimate(unsigned long gfporder, size_t buffer_size,
808 size_t align, int flags, size_t *left_over,
809 unsigned int *num)
810{
811 int nr_objs;
812 size_t mgmt_size;
813 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 814
fbaccacf
SR
815 /*
816 * The slab management structure can be either off the slab or
817 * on it. For the latter case, the memory allocated for a
818 * slab is used for:
819 *
820 * - The struct slab
821 * - One kmem_bufctl_t for each object
822 * - Padding to respect alignment of @align
823 * - @buffer_size bytes for each object
824 *
825 * If the slab management structure is off the slab, then the
826 * alignment will already be calculated into the size. Because
827 * the slabs are all pages aligned, the objects will be at the
828 * correct alignment when allocated.
829 */
830 if (flags & CFLGS_OFF_SLAB) {
831 mgmt_size = 0;
832 nr_objs = slab_size / buffer_size;
833
834 if (nr_objs > SLAB_LIMIT)
835 nr_objs = SLAB_LIMIT;
836 } else {
837 /*
838 * Ignore padding for the initial guess. The padding
839 * is at most @align-1 bytes, and @buffer_size is at
840 * least @align. In the worst case, this result will
841 * be one greater than the number of objects that fit
842 * into the memory allocation when taking the padding
843 * into account.
844 */
845 nr_objs = (slab_size - sizeof(struct slab)) /
846 (buffer_size + sizeof(kmem_bufctl_t));
847
848 /*
849 * This calculated number will be either the right
850 * amount, or one greater than what we want.
851 */
852 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
853 > slab_size)
854 nr_objs--;
855
856 if (nr_objs > SLAB_LIMIT)
857 nr_objs = SLAB_LIMIT;
858
859 mgmt_size = slab_mgmt_size(nr_objs, align);
860 }
861 *num = nr_objs;
862 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
863}
864
865#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
866
a737b3e2
AM
867static void __slab_error(const char *function, struct kmem_cache *cachep,
868 char *msg)
1da177e4
LT
869{
870 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 871 function, cachep->name, msg);
1da177e4
LT
872 dump_stack();
873}
874
3395ee05
PM
875/*
876 * By default on NUMA we use alien caches to stage the freeing of
877 * objects allocated from other nodes. This causes massive memory
878 * inefficiencies when using fake NUMA setup to split memory into a
879 * large number of small nodes, so it can be disabled on the command
880 * line
881 */
882
883static int use_alien_caches __read_mostly = 1;
1807a1aa 884static int numa_platform __read_mostly = 1;
3395ee05
PM
885static int __init noaliencache_setup(char *s)
886{
887 use_alien_caches = 0;
888 return 1;
889}
890__setup("noaliencache", noaliencache_setup);
891
8fce4d8e
CL
892#ifdef CONFIG_NUMA
893/*
894 * Special reaping functions for NUMA systems called from cache_reap().
895 * These take care of doing round robin flushing of alien caches (containing
896 * objects freed on different nodes from which they were allocated) and the
897 * flushing of remote pcps by calling drain_node_pages.
898 */
899static DEFINE_PER_CPU(unsigned long, reap_node);
900
901static void init_reap_node(int cpu)
902{
903 int node;
904
905 node = next_node(cpu_to_node(cpu), node_online_map);
906 if (node == MAX_NUMNODES)
442295c9 907 node = first_node(node_online_map);
8fce4d8e 908
7f6b8876 909 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
910}
911
912static void next_reap_node(void)
913{
914 int node = __get_cpu_var(reap_node);
915
8fce4d8e
CL
916 node = next_node(node, node_online_map);
917 if (unlikely(node >= MAX_NUMNODES))
918 node = first_node(node_online_map);
919 __get_cpu_var(reap_node) = node;
920}
921
922#else
923#define init_reap_node(cpu) do { } while (0)
924#define next_reap_node(void) do { } while (0)
925#endif
926
1da177e4
LT
927/*
928 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
929 * via the workqueue/eventd.
930 * Add the CPU number into the expiration time to minimize the possibility of
931 * the CPUs getting into lockstep and contending for the global cache chain
932 * lock.
933 */
897e679b 934static void __cpuinit start_cpu_timer(int cpu)
1da177e4 935{
52bad64d 936 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
937
938 /*
939 * When this gets called from do_initcalls via cpucache_init(),
940 * init_workqueues() has already run, so keventd will be setup
941 * at that time.
942 */
52bad64d 943 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 944 init_reap_node(cpu);
65f27f38 945 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
946 schedule_delayed_work_on(cpu, reap_work,
947 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
948 }
949}
950
e498be7d 951static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 952 int batchcount)
1da177e4 953{
b28a02de 954 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
955 struct array_cache *nc = NULL;
956
e498be7d 957 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
958 if (nc) {
959 nc->avail = 0;
960 nc->limit = entries;
961 nc->batchcount = batchcount;
962 nc->touched = 0;
e498be7d 963 spin_lock_init(&nc->lock);
1da177e4
LT
964 }
965 return nc;
966}
967
3ded175a
CL
968/*
969 * Transfer objects in one arraycache to another.
970 * Locking must be handled by the caller.
971 *
972 * Return the number of entries transferred.
973 */
974static int transfer_objects(struct array_cache *to,
975 struct array_cache *from, unsigned int max)
976{
977 /* Figure out how many entries to transfer */
978 int nr = min(min(from->avail, max), to->limit - to->avail);
979
980 if (!nr)
981 return 0;
982
983 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
984 sizeof(void *) *nr);
985
986 from->avail -= nr;
987 to->avail += nr;
988 to->touched = 1;
989 return nr;
990}
991
765c4507
CL
992#ifndef CONFIG_NUMA
993
994#define drain_alien_cache(cachep, alien) do { } while (0)
995#define reap_alien(cachep, l3) do { } while (0)
996
997static inline struct array_cache **alloc_alien_cache(int node, int limit)
998{
999 return (struct array_cache **)BAD_ALIEN_MAGIC;
1000}
1001
1002static inline void free_alien_cache(struct array_cache **ac_ptr)
1003{
1004}
1005
1006static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1007{
1008 return 0;
1009}
1010
1011static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1012 gfp_t flags)
1013{
1014 return NULL;
1015}
1016
8b98c169 1017static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1018 gfp_t flags, int nodeid)
1019{
1020 return NULL;
1021}
1022
1023#else /* CONFIG_NUMA */
1024
8b98c169 1025static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1026static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1027
5295a74c 1028static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1029{
1030 struct array_cache **ac_ptr;
8ef82866 1031 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1032 int i;
1033
1034 if (limit > 1)
1035 limit = 12;
1036 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1037 if (ac_ptr) {
1038 for_each_node(i) {
1039 if (i == node || !node_online(i)) {
1040 ac_ptr[i] = NULL;
1041 continue;
1042 }
1043 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1044 if (!ac_ptr[i]) {
cc550def 1045 for (i--; i >= 0; i--)
e498be7d
CL
1046 kfree(ac_ptr[i]);
1047 kfree(ac_ptr);
1048 return NULL;
1049 }
1050 }
1051 }
1052 return ac_ptr;
1053}
1054
5295a74c 1055static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1056{
1057 int i;
1058
1059 if (!ac_ptr)
1060 return;
e498be7d 1061 for_each_node(i)
b28a02de 1062 kfree(ac_ptr[i]);
e498be7d
CL
1063 kfree(ac_ptr);
1064}
1065
343e0d7a 1066static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1067 struct array_cache *ac, int node)
e498be7d
CL
1068{
1069 struct kmem_list3 *rl3 = cachep->nodelists[node];
1070
1071 if (ac->avail) {
1072 spin_lock(&rl3->list_lock);
e00946fe
CL
1073 /*
1074 * Stuff objects into the remote nodes shared array first.
1075 * That way we could avoid the overhead of putting the objects
1076 * into the free lists and getting them back later.
1077 */
693f7d36 1078 if (rl3->shared)
1079 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1080
ff69416e 1081 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1082 ac->avail = 0;
1083 spin_unlock(&rl3->list_lock);
1084 }
1085}
1086
8fce4d8e
CL
1087/*
1088 * Called from cache_reap() to regularly drain alien caches round robin.
1089 */
1090static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1091{
1092 int node = __get_cpu_var(reap_node);
1093
1094 if (l3->alien) {
1095 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1096
1097 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1098 __drain_alien_cache(cachep, ac, node);
1099 spin_unlock_irq(&ac->lock);
1100 }
1101 }
1102}
1103
a737b3e2
AM
1104static void drain_alien_cache(struct kmem_cache *cachep,
1105 struct array_cache **alien)
e498be7d 1106{
b28a02de 1107 int i = 0;
e498be7d
CL
1108 struct array_cache *ac;
1109 unsigned long flags;
1110
1111 for_each_online_node(i) {
4484ebf1 1112 ac = alien[i];
e498be7d
CL
1113 if (ac) {
1114 spin_lock_irqsave(&ac->lock, flags);
1115 __drain_alien_cache(cachep, ac, i);
1116 spin_unlock_irqrestore(&ac->lock, flags);
1117 }
1118 }
1119}
729bd0b7 1120
873623df 1121static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1122{
1123 struct slab *slabp = virt_to_slab(objp);
1124 int nodeid = slabp->nodeid;
1125 struct kmem_list3 *l3;
1126 struct array_cache *alien = NULL;
1ca4cb24
PE
1127 int node;
1128
1129 node = numa_node_id();
729bd0b7
PE
1130
1131 /*
1132 * Make sure we are not freeing a object from another node to the array
1133 * cache on this cpu.
1134 */
62918a03 1135 if (likely(slabp->nodeid == node))
729bd0b7
PE
1136 return 0;
1137
1ca4cb24 1138 l3 = cachep->nodelists[node];
729bd0b7
PE
1139 STATS_INC_NODEFREES(cachep);
1140 if (l3->alien && l3->alien[nodeid]) {
1141 alien = l3->alien[nodeid];
873623df 1142 spin_lock(&alien->lock);
729bd0b7
PE
1143 if (unlikely(alien->avail == alien->limit)) {
1144 STATS_INC_ACOVERFLOW(cachep);
1145 __drain_alien_cache(cachep, alien, nodeid);
1146 }
1147 alien->entry[alien->avail++] = objp;
1148 spin_unlock(&alien->lock);
1149 } else {
1150 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1151 free_block(cachep, &objp, 1, nodeid);
1152 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1153 }
1154 return 1;
1155}
e498be7d
CL
1156#endif
1157
fbf1e473
AM
1158static void __cpuinit cpuup_canceled(long cpu)
1159{
1160 struct kmem_cache *cachep;
1161 struct kmem_list3 *l3 = NULL;
1162 int node = cpu_to_node(cpu);
c5f59f08 1163 node_to_cpumask_ptr(mask, node);
fbf1e473
AM
1164
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 struct array_cache *nc;
1167 struct array_cache *shared;
1168 struct array_cache **alien;
fbf1e473 1169
fbf1e473
AM
1170 /* cpu is dead; no one can alloc from it. */
1171 nc = cachep->array[cpu];
1172 cachep->array[cpu] = NULL;
1173 l3 = cachep->nodelists[node];
1174
1175 if (!l3)
1176 goto free_array_cache;
1177
1178 spin_lock_irq(&l3->list_lock);
1179
1180 /* Free limit for this kmem_list3 */
1181 l3->free_limit -= cachep->batchcount;
1182 if (nc)
1183 free_block(cachep, nc->entry, nc->avail, node);
1184
c5f59f08 1185 if (!cpus_empty(*mask)) {
fbf1e473
AM
1186 spin_unlock_irq(&l3->list_lock);
1187 goto free_array_cache;
1188 }
1189
1190 shared = l3->shared;
1191 if (shared) {
1192 free_block(cachep, shared->entry,
1193 shared->avail, node);
1194 l3->shared = NULL;
1195 }
1196
1197 alien = l3->alien;
1198 l3->alien = NULL;
1199
1200 spin_unlock_irq(&l3->list_lock);
1201
1202 kfree(shared);
1203 if (alien) {
1204 drain_alien_cache(cachep, alien);
1205 free_alien_cache(alien);
1206 }
1207free_array_cache:
1208 kfree(nc);
1209 }
1210 /*
1211 * In the previous loop, all the objects were freed to
1212 * the respective cache's slabs, now we can go ahead and
1213 * shrink each nodelist to its limit.
1214 */
1215 list_for_each_entry(cachep, &cache_chain, next) {
1216 l3 = cachep->nodelists[node];
1217 if (!l3)
1218 continue;
1219 drain_freelist(cachep, l3, l3->free_objects);
1220 }
1221}
1222
1223static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1224{
343e0d7a 1225 struct kmem_cache *cachep;
e498be7d
CL
1226 struct kmem_list3 *l3 = NULL;
1227 int node = cpu_to_node(cpu);
ea02e3dd 1228 const int memsize = sizeof(struct kmem_list3);
1da177e4 1229
fbf1e473
AM
1230 /*
1231 * We need to do this right in the beginning since
1232 * alloc_arraycache's are going to use this list.
1233 * kmalloc_node allows us to add the slab to the right
1234 * kmem_list3 and not this cpu's kmem_list3
1235 */
1236
1237 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1238 /*
fbf1e473
AM
1239 * Set up the size64 kmemlist for cpu before we can
1240 * begin anything. Make sure some other cpu on this
1241 * node has not already allocated this
e498be7d 1242 */
fbf1e473
AM
1243 if (!cachep->nodelists[node]) {
1244 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1245 if (!l3)
1246 goto bad;
1247 kmem_list3_init(l3);
1248 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1249 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1250
a737b3e2 1251 /*
fbf1e473
AM
1252 * The l3s don't come and go as CPUs come and
1253 * go. cache_chain_mutex is sufficient
1254 * protection here.
e498be7d 1255 */
fbf1e473 1256 cachep->nodelists[node] = l3;
e498be7d
CL
1257 }
1258
fbf1e473
AM
1259 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1260 cachep->nodelists[node]->free_limit =
1261 (1 + nr_cpus_node(node)) *
1262 cachep->batchcount + cachep->num;
1263 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1264 }
1265
1266 /*
1267 * Now we can go ahead with allocating the shared arrays and
1268 * array caches
1269 */
1270 list_for_each_entry(cachep, &cache_chain, next) {
1271 struct array_cache *nc;
1272 struct array_cache *shared = NULL;
1273 struct array_cache **alien = NULL;
1274
1275 nc = alloc_arraycache(node, cachep->limit,
1276 cachep->batchcount);
1277 if (!nc)
1278 goto bad;
1279 if (cachep->shared) {
1280 shared = alloc_arraycache(node,
1281 cachep->shared * cachep->batchcount,
1282 0xbaadf00d);
12d00f6a
AM
1283 if (!shared) {
1284 kfree(nc);
1da177e4 1285 goto bad;
12d00f6a 1286 }
fbf1e473
AM
1287 }
1288 if (use_alien_caches) {
1289 alien = alloc_alien_cache(node, cachep->limit);
12d00f6a
AM
1290 if (!alien) {
1291 kfree(shared);
1292 kfree(nc);
fbf1e473 1293 goto bad;
12d00f6a 1294 }
fbf1e473
AM
1295 }
1296 cachep->array[cpu] = nc;
1297 l3 = cachep->nodelists[node];
1298 BUG_ON(!l3);
1299
1300 spin_lock_irq(&l3->list_lock);
1301 if (!l3->shared) {
1302 /*
1303 * We are serialised from CPU_DEAD or
1304 * CPU_UP_CANCELLED by the cpucontrol lock
1305 */
1306 l3->shared = shared;
1307 shared = NULL;
1308 }
4484ebf1 1309#ifdef CONFIG_NUMA
fbf1e473
AM
1310 if (!l3->alien) {
1311 l3->alien = alien;
1312 alien = NULL;
1da177e4 1313 }
fbf1e473
AM
1314#endif
1315 spin_unlock_irq(&l3->list_lock);
1316 kfree(shared);
1317 free_alien_cache(alien);
1318 }
1319 return 0;
1320bad:
12d00f6a 1321 cpuup_canceled(cpu);
fbf1e473
AM
1322 return -ENOMEM;
1323}
1324
1325static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1326 unsigned long action, void *hcpu)
1327{
1328 long cpu = (long)hcpu;
1329 int err = 0;
1330
1331 switch (action) {
fbf1e473
AM
1332 case CPU_UP_PREPARE:
1333 case CPU_UP_PREPARE_FROZEN:
95402b38 1334 mutex_lock(&cache_chain_mutex);
fbf1e473 1335 err = cpuup_prepare(cpu);
95402b38 1336 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1337 break;
1338 case CPU_ONLINE:
8bb78442 1339 case CPU_ONLINE_FROZEN:
1da177e4
LT
1340 start_cpu_timer(cpu);
1341 break;
1342#ifdef CONFIG_HOTPLUG_CPU
5830c590 1343 case CPU_DOWN_PREPARE:
8bb78442 1344 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1345 /*
1346 * Shutdown cache reaper. Note that the cache_chain_mutex is
1347 * held so that if cache_reap() is invoked it cannot do
1348 * anything expensive but will only modify reap_work
1349 * and reschedule the timer.
1350 */
1351 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1352 /* Now the cache_reaper is guaranteed to be not running. */
1353 per_cpu(reap_work, cpu).work.func = NULL;
1354 break;
1355 case CPU_DOWN_FAILED:
8bb78442 1356 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1357 start_cpu_timer(cpu);
1358 break;
1da177e4 1359 case CPU_DEAD:
8bb78442 1360 case CPU_DEAD_FROZEN:
4484ebf1
RT
1361 /*
1362 * Even if all the cpus of a node are down, we don't free the
1363 * kmem_list3 of any cache. This to avoid a race between
1364 * cpu_down, and a kmalloc allocation from another cpu for
1365 * memory from the node of the cpu going down. The list3
1366 * structure is usually allocated from kmem_cache_create() and
1367 * gets destroyed at kmem_cache_destroy().
1368 */
183ff22b 1369 /* fall through */
8f5be20b 1370#endif
1da177e4 1371 case CPU_UP_CANCELED:
8bb78442 1372 case CPU_UP_CANCELED_FROZEN:
95402b38 1373 mutex_lock(&cache_chain_mutex);
fbf1e473 1374 cpuup_canceled(cpu);
fc0abb14 1375 mutex_unlock(&cache_chain_mutex);
1da177e4 1376 break;
1da177e4 1377 }
fbf1e473 1378 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1379}
1380
74b85f37
CS
1381static struct notifier_block __cpuinitdata cpucache_notifier = {
1382 &cpuup_callback, NULL, 0
1383};
1da177e4 1384
e498be7d
CL
1385/*
1386 * swap the static kmem_list3 with kmalloced memory
1387 */
a737b3e2
AM
1388static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1389 int nodeid)
e498be7d
CL
1390{
1391 struct kmem_list3 *ptr;
1392
e498be7d
CL
1393 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1394 BUG_ON(!ptr);
1395
1396 local_irq_disable();
1397 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1398 /*
1399 * Do not assume that spinlocks can be initialized via memcpy:
1400 */
1401 spin_lock_init(&ptr->list_lock);
1402
e498be7d
CL
1403 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1404 cachep->nodelists[nodeid] = ptr;
1405 local_irq_enable();
1406}
1407
556a169d
PE
1408/*
1409 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1410 * size of kmem_list3.
1411 */
1412static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1413{
1414 int node;
1415
1416 for_each_online_node(node) {
1417 cachep->nodelists[node] = &initkmem_list3[index + node];
1418 cachep->nodelists[node]->next_reap = jiffies +
1419 REAPTIMEOUT_LIST3 +
1420 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1421 }
1422}
1423
a737b3e2
AM
1424/*
1425 * Initialisation. Called after the page allocator have been initialised and
1426 * before smp_init().
1da177e4
LT
1427 */
1428void __init kmem_cache_init(void)
1429{
1430 size_t left_over;
1431 struct cache_sizes *sizes;
1432 struct cache_names *names;
e498be7d 1433 int i;
07ed76b2 1434 int order;
1ca4cb24 1435 int node;
e498be7d 1436
1807a1aa 1437 if (num_possible_nodes() == 1) {
62918a03 1438 use_alien_caches = 0;
1807a1aa
SS
1439 numa_platform = 0;
1440 }
62918a03 1441
e498be7d
CL
1442 for (i = 0; i < NUM_INIT_LISTS; i++) {
1443 kmem_list3_init(&initkmem_list3[i]);
1444 if (i < MAX_NUMNODES)
1445 cache_cache.nodelists[i] = NULL;
1446 }
556a169d 1447 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1448
1449 /*
1450 * Fragmentation resistance on low memory - only use bigger
1451 * page orders on machines with more than 32MB of memory.
1452 */
1453 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1454 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1455
1da177e4
LT
1456 /* Bootstrap is tricky, because several objects are allocated
1457 * from caches that do not exist yet:
a737b3e2
AM
1458 * 1) initialize the cache_cache cache: it contains the struct
1459 * kmem_cache structures of all caches, except cache_cache itself:
1460 * cache_cache is statically allocated.
e498be7d
CL
1461 * Initially an __init data area is used for the head array and the
1462 * kmem_list3 structures, it's replaced with a kmalloc allocated
1463 * array at the end of the bootstrap.
1da177e4 1464 * 2) Create the first kmalloc cache.
343e0d7a 1465 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1466 * An __init data area is used for the head array.
1467 * 3) Create the remaining kmalloc caches, with minimally sized
1468 * head arrays.
1da177e4
LT
1469 * 4) Replace the __init data head arrays for cache_cache and the first
1470 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1471 * 5) Replace the __init data for kmem_list3 for cache_cache and
1472 * the other cache's with kmalloc allocated memory.
1473 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1474 */
1475
1ca4cb24
PE
1476 node = numa_node_id();
1477
1da177e4 1478 /* 1) create the cache_cache */
1da177e4
LT
1479 INIT_LIST_HEAD(&cache_chain);
1480 list_add(&cache_cache.next, &cache_chain);
1481 cache_cache.colour_off = cache_line_size();
1482 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1483 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1484
8da3430d
ED
1485 /*
1486 * struct kmem_cache size depends on nr_node_ids, which
1487 * can be less than MAX_NUMNODES.
1488 */
1489 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1490 nr_node_ids * sizeof(struct kmem_list3 *);
1491#if DEBUG
1492 cache_cache.obj_size = cache_cache.buffer_size;
1493#endif
a737b3e2
AM
1494 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1495 cache_line_size());
6a2d7a95
ED
1496 cache_cache.reciprocal_buffer_size =
1497 reciprocal_value(cache_cache.buffer_size);
1da177e4 1498
07ed76b2
JS
1499 for (order = 0; order < MAX_ORDER; order++) {
1500 cache_estimate(order, cache_cache.buffer_size,
1501 cache_line_size(), 0, &left_over, &cache_cache.num);
1502 if (cache_cache.num)
1503 break;
1504 }
40094fa6 1505 BUG_ON(!cache_cache.num);
07ed76b2 1506 cache_cache.gfporder = order;
b28a02de 1507 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1508 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1509 sizeof(struct slab), cache_line_size());
1da177e4
LT
1510
1511 /* 2+3) create the kmalloc caches */
1512 sizes = malloc_sizes;
1513 names = cache_names;
1514
a737b3e2
AM
1515 /*
1516 * Initialize the caches that provide memory for the array cache and the
1517 * kmem_list3 structures first. Without this, further allocations will
1518 * bug.
e498be7d
CL
1519 */
1520
1521 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1522 sizes[INDEX_AC].cs_size,
1523 ARCH_KMALLOC_MINALIGN,
1524 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1525 NULL);
e498be7d 1526
a737b3e2 1527 if (INDEX_AC != INDEX_L3) {
e498be7d 1528 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1529 kmem_cache_create(names[INDEX_L3].name,
1530 sizes[INDEX_L3].cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1533 NULL);
a737b3e2 1534 }
e498be7d 1535
e0a42726
IM
1536 slab_early_init = 0;
1537
1da177e4 1538 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1539 /*
1540 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1541 * This should be particularly beneficial on SMP boxes, as it
1542 * eliminates "false sharing".
1543 * Note for systems short on memory removing the alignment will
e498be7d
CL
1544 * allow tighter packing of the smaller caches.
1545 */
a737b3e2 1546 if (!sizes->cs_cachep) {
e498be7d 1547 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1548 sizes->cs_size,
1549 ARCH_KMALLOC_MINALIGN,
1550 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1551 NULL);
a737b3e2 1552 }
4b51d669
CL
1553#ifdef CONFIG_ZONE_DMA
1554 sizes->cs_dmacachep = kmem_cache_create(
1555 names->name_dma,
a737b3e2
AM
1556 sizes->cs_size,
1557 ARCH_KMALLOC_MINALIGN,
1558 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1559 SLAB_PANIC,
20c2df83 1560 NULL);
4b51d669 1561#endif
1da177e4
LT
1562 sizes++;
1563 names++;
1564 }
1565 /* 4) Replace the bootstrap head arrays */
1566 {
2b2d5493 1567 struct array_cache *ptr;
e498be7d 1568
1da177e4 1569 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1570
1da177e4 1571 local_irq_disable();
9a2dba4b
PE
1572 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1573 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1574 sizeof(struct arraycache_init));
2b2d5493
IM
1575 /*
1576 * Do not assume that spinlocks can be initialized via memcpy:
1577 */
1578 spin_lock_init(&ptr->lock);
1579
1da177e4
LT
1580 cache_cache.array[smp_processor_id()] = ptr;
1581 local_irq_enable();
e498be7d 1582
1da177e4 1583 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1584
1da177e4 1585 local_irq_disable();
9a2dba4b 1586 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1587 != &initarray_generic.cache);
9a2dba4b 1588 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1589 sizeof(struct arraycache_init));
2b2d5493
IM
1590 /*
1591 * Do not assume that spinlocks can be initialized via memcpy:
1592 */
1593 spin_lock_init(&ptr->lock);
1594
e498be7d 1595 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1596 ptr;
1da177e4
LT
1597 local_irq_enable();
1598 }
e498be7d
CL
1599 /* 5) Replace the bootstrap kmem_list3's */
1600 {
1ca4cb24
PE
1601 int nid;
1602
9c09a95c 1603 for_each_online_node(nid) {
ec1f5eee 1604 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1605
e498be7d 1606 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1607 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1608
1609 if (INDEX_AC != INDEX_L3) {
1610 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1611 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1612 }
1613 }
1614 }
1da177e4 1615
e498be7d 1616 /* 6) resize the head arrays to their final sizes */
1da177e4 1617 {
343e0d7a 1618 struct kmem_cache *cachep;
fc0abb14 1619 mutex_lock(&cache_chain_mutex);
1da177e4 1620 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1621 if (enable_cpucache(cachep))
1622 BUG();
fc0abb14 1623 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1624 }
1625
056c6241
RT
1626 /* Annotate slab for lockdep -- annotate the malloc caches */
1627 init_lock_keys();
1628
1629
1da177e4
LT
1630 /* Done! */
1631 g_cpucache_up = FULL;
1632
a737b3e2
AM
1633 /*
1634 * Register a cpu startup notifier callback that initializes
1635 * cpu_cache_get for all new cpus
1da177e4
LT
1636 */
1637 register_cpu_notifier(&cpucache_notifier);
1da177e4 1638
a737b3e2
AM
1639 /*
1640 * The reap timers are started later, with a module init call: That part
1641 * of the kernel is not yet operational.
1da177e4
LT
1642 */
1643}
1644
1645static int __init cpucache_init(void)
1646{
1647 int cpu;
1648
a737b3e2
AM
1649 /*
1650 * Register the timers that return unneeded pages to the page allocator
1da177e4 1651 */
e498be7d 1652 for_each_online_cpu(cpu)
a737b3e2 1653 start_cpu_timer(cpu);
1da177e4
LT
1654 return 0;
1655}
1da177e4
LT
1656__initcall(cpucache_init);
1657
1658/*
1659 * Interface to system's page allocator. No need to hold the cache-lock.
1660 *
1661 * If we requested dmaable memory, we will get it. Even if we
1662 * did not request dmaable memory, we might get it, but that
1663 * would be relatively rare and ignorable.
1664 */
343e0d7a 1665static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1666{
1667 struct page *page;
e1b6aa6f 1668 int nr_pages;
1da177e4
LT
1669 int i;
1670
d6fef9da 1671#ifndef CONFIG_MMU
e1b6aa6f
CH
1672 /*
1673 * Nommu uses slab's for process anonymous memory allocations, and thus
1674 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1675 */
e1b6aa6f 1676 flags |= __GFP_COMP;
d6fef9da 1677#endif
765c4507 1678
3c517a61 1679 flags |= cachep->gfpflags;
e12ba74d
MG
1680 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1681 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1682
1683 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1684 if (!page)
1685 return NULL;
1da177e4 1686
e1b6aa6f 1687 nr_pages = (1 << cachep->gfporder);
1da177e4 1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1689 add_zone_page_state(page_zone(page),
1690 NR_SLAB_RECLAIMABLE, nr_pages);
1691 else
1692 add_zone_page_state(page_zone(page),
1693 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1694 for (i = 0; i < nr_pages; i++)
1695 __SetPageSlab(page + i);
1696 return page_address(page);
1da177e4
LT
1697}
1698
1699/*
1700 * Interface to system's page release.
1701 */
343e0d7a 1702static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1703{
b28a02de 1704 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1705 struct page *page = virt_to_page(addr);
1706 const unsigned long nr_freed = i;
1707
972d1a7b
CL
1708 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1709 sub_zone_page_state(page_zone(page),
1710 NR_SLAB_RECLAIMABLE, nr_freed);
1711 else
1712 sub_zone_page_state(page_zone(page),
1713 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1714 while (i--) {
f205b2fe
NP
1715 BUG_ON(!PageSlab(page));
1716 __ClearPageSlab(page);
1da177e4
LT
1717 page++;
1718 }
1da177e4
LT
1719 if (current->reclaim_state)
1720 current->reclaim_state->reclaimed_slab += nr_freed;
1721 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1722}
1723
1724static void kmem_rcu_free(struct rcu_head *head)
1725{
b28a02de 1726 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1727 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1728
1729 kmem_freepages(cachep, slab_rcu->addr);
1730 if (OFF_SLAB(cachep))
1731 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1732}
1733
1734#if DEBUG
1735
1736#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1737static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1738 unsigned long caller)
1da177e4 1739{
3dafccf2 1740 int size = obj_size(cachep);
1da177e4 1741
3dafccf2 1742 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1743
b28a02de 1744 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1745 return;
1746
b28a02de
PE
1747 *addr++ = 0x12345678;
1748 *addr++ = caller;
1749 *addr++ = smp_processor_id();
1750 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1751 {
1752 unsigned long *sptr = &caller;
1753 unsigned long svalue;
1754
1755 while (!kstack_end(sptr)) {
1756 svalue = *sptr++;
1757 if (kernel_text_address(svalue)) {
b28a02de 1758 *addr++ = svalue;
1da177e4
LT
1759 size -= sizeof(unsigned long);
1760 if (size <= sizeof(unsigned long))
1761 break;
1762 }
1763 }
1764
1765 }
b28a02de 1766 *addr++ = 0x87654321;
1da177e4
LT
1767}
1768#endif
1769
343e0d7a 1770static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1771{
3dafccf2
MS
1772 int size = obj_size(cachep);
1773 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1774
1775 memset(addr, val, size);
b28a02de 1776 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1777}
1778
1779static void dump_line(char *data, int offset, int limit)
1780{
1781 int i;
aa83aa40
DJ
1782 unsigned char error = 0;
1783 int bad_count = 0;
1784
1da177e4 1785 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1786 for (i = 0; i < limit; i++) {
1787 if (data[offset + i] != POISON_FREE) {
1788 error = data[offset + i];
1789 bad_count++;
1790 }
b28a02de 1791 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1792 }
1da177e4 1793 printk("\n");
aa83aa40
DJ
1794
1795 if (bad_count == 1) {
1796 error ^= POISON_FREE;
1797 if (!(error & (error - 1))) {
1798 printk(KERN_ERR "Single bit error detected. Probably "
1799 "bad RAM.\n");
1800#ifdef CONFIG_X86
1801 printk(KERN_ERR "Run memtest86+ or a similar memory "
1802 "test tool.\n");
1803#else
1804 printk(KERN_ERR "Run a memory test tool.\n");
1805#endif
1806 }
1807 }
1da177e4
LT
1808}
1809#endif
1810
1811#if DEBUG
1812
343e0d7a 1813static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1814{
1815 int i, size;
1816 char *realobj;
1817
1818 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1819 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1820 *dbg_redzone1(cachep, objp),
1821 *dbg_redzone2(cachep, objp));
1da177e4
LT
1822 }
1823
1824 if (cachep->flags & SLAB_STORE_USER) {
1825 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1826 *dbg_userword(cachep, objp));
1da177e4 1827 print_symbol("(%s)",
a737b3e2 1828 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1829 printk("\n");
1830 }
3dafccf2
MS
1831 realobj = (char *)objp + obj_offset(cachep);
1832 size = obj_size(cachep);
b28a02de 1833 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1834 int limit;
1835 limit = 16;
b28a02de
PE
1836 if (i + limit > size)
1837 limit = size - i;
1da177e4
LT
1838 dump_line(realobj, i, limit);
1839 }
1840}
1841
343e0d7a 1842static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1843{
1844 char *realobj;
1845 int size, i;
1846 int lines = 0;
1847
3dafccf2
MS
1848 realobj = (char *)objp + obj_offset(cachep);
1849 size = obj_size(cachep);
1da177e4 1850
b28a02de 1851 for (i = 0; i < size; i++) {
1da177e4 1852 char exp = POISON_FREE;
b28a02de 1853 if (i == size - 1)
1da177e4
LT
1854 exp = POISON_END;
1855 if (realobj[i] != exp) {
1856 int limit;
1857 /* Mismatch ! */
1858 /* Print header */
1859 if (lines == 0) {
b28a02de 1860 printk(KERN_ERR
e94a40c5
DH
1861 "Slab corruption: %s start=%p, len=%d\n",
1862 cachep->name, realobj, size);
1da177e4
LT
1863 print_objinfo(cachep, objp, 0);
1864 }
1865 /* Hexdump the affected line */
b28a02de 1866 i = (i / 16) * 16;
1da177e4 1867 limit = 16;
b28a02de
PE
1868 if (i + limit > size)
1869 limit = size - i;
1da177e4
LT
1870 dump_line(realobj, i, limit);
1871 i += 16;
1872 lines++;
1873 /* Limit to 5 lines */
1874 if (lines > 5)
1875 break;
1876 }
1877 }
1878 if (lines != 0) {
1879 /* Print some data about the neighboring objects, if they
1880 * exist:
1881 */
6ed5eb22 1882 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1883 unsigned int objnr;
1da177e4 1884
8fea4e96 1885 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1886 if (objnr) {
8fea4e96 1887 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1888 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1889 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1890 realobj, size);
1da177e4
LT
1891 print_objinfo(cachep, objp, 2);
1892 }
b28a02de 1893 if (objnr + 1 < cachep->num) {
8fea4e96 1894 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1895 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1896 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1897 realobj, size);
1da177e4
LT
1898 print_objinfo(cachep, objp, 2);
1899 }
1900 }
1901}
1902#endif
1903
12dd36fa
MD
1904#if DEBUG
1905/**
911851e6
RD
1906 * slab_destroy_objs - destroy a slab and its objects
1907 * @cachep: cache pointer being destroyed
1908 * @slabp: slab pointer being destroyed
1909 *
1910 * Call the registered destructor for each object in a slab that is being
1911 * destroyed.
1da177e4 1912 */
343e0d7a 1913static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1914{
1da177e4
LT
1915 int i;
1916 for (i = 0; i < cachep->num; i++) {
8fea4e96 1917 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1918
1919 if (cachep->flags & SLAB_POISON) {
1920#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1921 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1922 OFF_SLAB(cachep))
b28a02de 1923 kernel_map_pages(virt_to_page(objp),
a737b3e2 1924 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1925 else
1926 check_poison_obj(cachep, objp);
1927#else
1928 check_poison_obj(cachep, objp);
1929#endif
1930 }
1931 if (cachep->flags & SLAB_RED_ZONE) {
1932 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1933 slab_error(cachep, "start of a freed object "
b28a02de 1934 "was overwritten");
1da177e4
LT
1935 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1936 slab_error(cachep, "end of a freed object "
b28a02de 1937 "was overwritten");
1da177e4 1938 }
1da177e4 1939 }
12dd36fa 1940}
1da177e4 1941#else
343e0d7a 1942static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1943{
12dd36fa 1944}
1da177e4
LT
1945#endif
1946
911851e6
RD
1947/**
1948 * slab_destroy - destroy and release all objects in a slab
1949 * @cachep: cache pointer being destroyed
1950 * @slabp: slab pointer being destroyed
1951 *
12dd36fa 1952 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1953 * Before calling the slab must have been unlinked from the cache. The
1954 * cache-lock is not held/needed.
12dd36fa 1955 */
343e0d7a 1956static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1957{
1958 void *addr = slabp->s_mem - slabp->colouroff;
1959
1960 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1961 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1962 struct slab_rcu *slab_rcu;
1963
b28a02de 1964 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1965 slab_rcu->cachep = cachep;
1966 slab_rcu->addr = addr;
1967 call_rcu(&slab_rcu->head, kmem_rcu_free);
1968 } else {
1969 kmem_freepages(cachep, addr);
873623df
IM
1970 if (OFF_SLAB(cachep))
1971 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1972 }
1973}
1974
117f6eb1
CL
1975static void __kmem_cache_destroy(struct kmem_cache *cachep)
1976{
1977 int i;
1978 struct kmem_list3 *l3;
1979
1980 for_each_online_cpu(i)
1981 kfree(cachep->array[i]);
1982
1983 /* NUMA: free the list3 structures */
1984 for_each_online_node(i) {
1985 l3 = cachep->nodelists[i];
1986 if (l3) {
1987 kfree(l3->shared);
1988 free_alien_cache(l3->alien);
1989 kfree(l3);
1990 }
1991 }
1992 kmem_cache_free(&cache_cache, cachep);
1993}
1994
1995
4d268eba 1996/**
a70773dd
RD
1997 * calculate_slab_order - calculate size (page order) of slabs
1998 * @cachep: pointer to the cache that is being created
1999 * @size: size of objects to be created in this cache.
2000 * @align: required alignment for the objects.
2001 * @flags: slab allocation flags
2002 *
2003 * Also calculates the number of objects per slab.
4d268eba
PE
2004 *
2005 * This could be made much more intelligent. For now, try to avoid using
2006 * high order pages for slabs. When the gfp() functions are more friendly
2007 * towards high-order requests, this should be changed.
2008 */
a737b3e2 2009static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2010 size_t size, size_t align, unsigned long flags)
4d268eba 2011{
b1ab41c4 2012 unsigned long offslab_limit;
4d268eba 2013 size_t left_over = 0;
9888e6fa 2014 int gfporder;
4d268eba 2015
0aa817f0 2016 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2017 unsigned int num;
2018 size_t remainder;
2019
9888e6fa 2020 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2021 if (!num)
2022 continue;
9888e6fa 2023
b1ab41c4
IM
2024 if (flags & CFLGS_OFF_SLAB) {
2025 /*
2026 * Max number of objs-per-slab for caches which
2027 * use off-slab slabs. Needed to avoid a possible
2028 * looping condition in cache_grow().
2029 */
2030 offslab_limit = size - sizeof(struct slab);
2031 offslab_limit /= sizeof(kmem_bufctl_t);
2032
2033 if (num > offslab_limit)
2034 break;
2035 }
4d268eba 2036
9888e6fa 2037 /* Found something acceptable - save it away */
4d268eba 2038 cachep->num = num;
9888e6fa 2039 cachep->gfporder = gfporder;
4d268eba
PE
2040 left_over = remainder;
2041
f78bb8ad
LT
2042 /*
2043 * A VFS-reclaimable slab tends to have most allocations
2044 * as GFP_NOFS and we really don't want to have to be allocating
2045 * higher-order pages when we are unable to shrink dcache.
2046 */
2047 if (flags & SLAB_RECLAIM_ACCOUNT)
2048 break;
2049
4d268eba
PE
2050 /*
2051 * Large number of objects is good, but very large slabs are
2052 * currently bad for the gfp()s.
2053 */
9888e6fa 2054 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2055 break;
2056
9888e6fa
LT
2057 /*
2058 * Acceptable internal fragmentation?
2059 */
a737b3e2 2060 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2061 break;
2062 }
2063 return left_over;
2064}
2065
38bdc32a 2066static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2067{
2ed3a4ef
CL
2068 if (g_cpucache_up == FULL)
2069 return enable_cpucache(cachep);
2070
f30cf7d1
PE
2071 if (g_cpucache_up == NONE) {
2072 /*
2073 * Note: the first kmem_cache_create must create the cache
2074 * that's used by kmalloc(24), otherwise the creation of
2075 * further caches will BUG().
2076 */
2077 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2078
2079 /*
2080 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2081 * the first cache, then we need to set up all its list3s,
2082 * otherwise the creation of further caches will BUG().
2083 */
2084 set_up_list3s(cachep, SIZE_AC);
2085 if (INDEX_AC == INDEX_L3)
2086 g_cpucache_up = PARTIAL_L3;
2087 else
2088 g_cpucache_up = PARTIAL_AC;
2089 } else {
2090 cachep->array[smp_processor_id()] =
2091 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2092
2093 if (g_cpucache_up == PARTIAL_AC) {
2094 set_up_list3s(cachep, SIZE_L3);
2095 g_cpucache_up = PARTIAL_L3;
2096 } else {
2097 int node;
556a169d 2098 for_each_online_node(node) {
f30cf7d1
PE
2099 cachep->nodelists[node] =
2100 kmalloc_node(sizeof(struct kmem_list3),
2101 GFP_KERNEL, node);
2102 BUG_ON(!cachep->nodelists[node]);
2103 kmem_list3_init(cachep->nodelists[node]);
2104 }
2105 }
2106 }
2107 cachep->nodelists[numa_node_id()]->next_reap =
2108 jiffies + REAPTIMEOUT_LIST3 +
2109 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2110
2111 cpu_cache_get(cachep)->avail = 0;
2112 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2113 cpu_cache_get(cachep)->batchcount = 1;
2114 cpu_cache_get(cachep)->touched = 0;
2115 cachep->batchcount = 1;
2116 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2117 return 0;
f30cf7d1
PE
2118}
2119
1da177e4
LT
2120/**
2121 * kmem_cache_create - Create a cache.
2122 * @name: A string which is used in /proc/slabinfo to identify this cache.
2123 * @size: The size of objects to be created in this cache.
2124 * @align: The required alignment for the objects.
2125 * @flags: SLAB flags
2126 * @ctor: A constructor for the objects.
1da177e4
LT
2127 *
2128 * Returns a ptr to the cache on success, NULL on failure.
2129 * Cannot be called within a int, but can be interrupted.
20c2df83 2130 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2131 *
2132 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2133 * the module calling this has to destroy the cache before getting unloaded.
2134 *
1da177e4
LT
2135 * The flags are
2136 *
2137 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2138 * to catch references to uninitialised memory.
2139 *
2140 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2141 * for buffer overruns.
2142 *
1da177e4
LT
2143 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2144 * cacheline. This can be beneficial if you're counting cycles as closely
2145 * as davem.
2146 */
343e0d7a 2147struct kmem_cache *
1da177e4 2148kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2 2149 unsigned long flags,
4ba9b9d0 2150 void (*ctor)(struct kmem_cache *, void *))
1da177e4
LT
2151{
2152 size_t left_over, slab_size, ralign;
7a7c381d 2153 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2154
2155 /*
2156 * Sanity checks... these are all serious usage bugs.
2157 */
a737b3e2 2158 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2159 size > KMALLOC_MAX_SIZE) {
a737b3e2
AM
2160 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2161 name);
b28a02de
PE
2162 BUG();
2163 }
1da177e4 2164
f0188f47 2165 /*
8f5be20b
RT
2166 * We use cache_chain_mutex to ensure a consistent view of
2167 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2168 */
95402b38 2169 get_online_cpus();
fc0abb14 2170 mutex_lock(&cache_chain_mutex);
4f12bb4f 2171
7a7c381d 2172 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2173 char tmp;
2174 int res;
2175
2176 /*
2177 * This happens when the module gets unloaded and doesn't
2178 * destroy its slab cache and no-one else reuses the vmalloc
2179 * area of the module. Print a warning.
2180 */
138ae663 2181 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2182 if (res) {
b4169525 2183 printk(KERN_ERR
2184 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2185 pc->buffer_size);
4f12bb4f
AM
2186 continue;
2187 }
2188
b28a02de 2189 if (!strcmp(pc->name, name)) {
b4169525 2190 printk(KERN_ERR
2191 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2192 dump_stack();
2193 goto oops;
2194 }
2195 }
2196
1da177e4
LT
2197#if DEBUG
2198 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2199#if FORCED_DEBUG
2200 /*
2201 * Enable redzoning and last user accounting, except for caches with
2202 * large objects, if the increased size would increase the object size
2203 * above the next power of two: caches with object sizes just above a
2204 * power of two have a significant amount of internal fragmentation.
2205 */
87a927c7
DW
2206 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2207 2 * sizeof(unsigned long long)))
b28a02de 2208 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2209 if (!(flags & SLAB_DESTROY_BY_RCU))
2210 flags |= SLAB_POISON;
2211#endif
2212 if (flags & SLAB_DESTROY_BY_RCU)
2213 BUG_ON(flags & SLAB_POISON);
2214#endif
1da177e4 2215 /*
a737b3e2
AM
2216 * Always checks flags, a caller might be expecting debug support which
2217 * isn't available.
1da177e4 2218 */
40094fa6 2219 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2220
a737b3e2
AM
2221 /*
2222 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2223 * unaligned accesses for some archs when redzoning is used, and makes
2224 * sure any on-slab bufctl's are also correctly aligned.
2225 */
b28a02de
PE
2226 if (size & (BYTES_PER_WORD - 1)) {
2227 size += (BYTES_PER_WORD - 1);
2228 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2229 }
2230
a737b3e2
AM
2231 /* calculate the final buffer alignment: */
2232
1da177e4
LT
2233 /* 1) arch recommendation: can be overridden for debug */
2234 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2235 /*
2236 * Default alignment: as specified by the arch code. Except if
2237 * an object is really small, then squeeze multiple objects into
2238 * one cacheline.
1da177e4
LT
2239 */
2240 ralign = cache_line_size();
b28a02de 2241 while (size <= ralign / 2)
1da177e4
LT
2242 ralign /= 2;
2243 } else {
2244 ralign = BYTES_PER_WORD;
2245 }
ca5f9703
PE
2246
2247 /*
87a927c7
DW
2248 * Redzoning and user store require word alignment or possibly larger.
2249 * Note this will be overridden by architecture or caller mandated
2250 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2251 */
87a927c7
DW
2252 if (flags & SLAB_STORE_USER)
2253 ralign = BYTES_PER_WORD;
2254
2255 if (flags & SLAB_RED_ZONE) {
2256 ralign = REDZONE_ALIGN;
2257 /* If redzoning, ensure that the second redzone is suitably
2258 * aligned, by adjusting the object size accordingly. */
2259 size += REDZONE_ALIGN - 1;
2260 size &= ~(REDZONE_ALIGN - 1);
2261 }
ca5f9703 2262
a44b56d3 2263 /* 2) arch mandated alignment */
1da177e4
LT
2264 if (ralign < ARCH_SLAB_MINALIGN) {
2265 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2266 }
a44b56d3 2267 /* 3) caller mandated alignment */
1da177e4
LT
2268 if (ralign < align) {
2269 ralign = align;
1da177e4 2270 }
a44b56d3 2271 /* disable debug if necessary */
b46b8f19 2272 if (ralign > __alignof__(unsigned long long))
a44b56d3 2273 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2274 /*
ca5f9703 2275 * 4) Store it.
1da177e4
LT
2276 */
2277 align = ralign;
2278
2279 /* Get cache's description obj. */
e94b1766 2280 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2281 if (!cachep)
4f12bb4f 2282 goto oops;
1da177e4
LT
2283
2284#if DEBUG
3dafccf2 2285 cachep->obj_size = size;
1da177e4 2286
ca5f9703
PE
2287 /*
2288 * Both debugging options require word-alignment which is calculated
2289 * into align above.
2290 */
1da177e4 2291 if (flags & SLAB_RED_ZONE) {
1da177e4 2292 /* add space for red zone words */
b46b8f19
DW
2293 cachep->obj_offset += sizeof(unsigned long long);
2294 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2295 }
2296 if (flags & SLAB_STORE_USER) {
ca5f9703 2297 /* user store requires one word storage behind the end of
87a927c7
DW
2298 * the real object. But if the second red zone needs to be
2299 * aligned to 64 bits, we must allow that much space.
1da177e4 2300 */
87a927c7
DW
2301 if (flags & SLAB_RED_ZONE)
2302 size += REDZONE_ALIGN;
2303 else
2304 size += BYTES_PER_WORD;
1da177e4
LT
2305 }
2306#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2307 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2308 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2309 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2310 size = PAGE_SIZE;
2311 }
2312#endif
2313#endif
2314
e0a42726
IM
2315 /*
2316 * Determine if the slab management is 'on' or 'off' slab.
2317 * (bootstrapping cannot cope with offslab caches so don't do
2318 * it too early on.)
2319 */
2320 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2321 /*
2322 * Size is large, assume best to place the slab management obj
2323 * off-slab (should allow better packing of objs).
2324 */
2325 flags |= CFLGS_OFF_SLAB;
2326
2327 size = ALIGN(size, align);
2328
f78bb8ad 2329 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2330
2331 if (!cachep->num) {
b4169525 2332 printk(KERN_ERR
2333 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2334 kmem_cache_free(&cache_cache, cachep);
2335 cachep = NULL;
4f12bb4f 2336 goto oops;
1da177e4 2337 }
b28a02de
PE
2338 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2339 + sizeof(struct slab), align);
1da177e4
LT
2340
2341 /*
2342 * If the slab has been placed off-slab, and we have enough space then
2343 * move it on-slab. This is at the expense of any extra colouring.
2344 */
2345 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2346 flags &= ~CFLGS_OFF_SLAB;
2347 left_over -= slab_size;
2348 }
2349
2350 if (flags & CFLGS_OFF_SLAB) {
2351 /* really off slab. No need for manual alignment */
b28a02de
PE
2352 slab_size =
2353 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2354 }
2355
2356 cachep->colour_off = cache_line_size();
2357 /* Offset must be a multiple of the alignment. */
2358 if (cachep->colour_off < align)
2359 cachep->colour_off = align;
b28a02de 2360 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2361 cachep->slab_size = slab_size;
2362 cachep->flags = flags;
2363 cachep->gfpflags = 0;
4b51d669 2364 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2365 cachep->gfpflags |= GFP_DMA;
3dafccf2 2366 cachep->buffer_size = size;
6a2d7a95 2367 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2368
e5ac9c5a 2369 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2370 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2371 /*
2372 * This is a possibility for one of the malloc_sizes caches.
2373 * But since we go off slab only for object size greater than
2374 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2375 * this should not happen at all.
2376 * But leave a BUG_ON for some lucky dude.
2377 */
6cb8f913 2378 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2379 }
1da177e4 2380 cachep->ctor = ctor;
1da177e4
LT
2381 cachep->name = name;
2382
2ed3a4ef
CL
2383 if (setup_cpu_cache(cachep)) {
2384 __kmem_cache_destroy(cachep);
2385 cachep = NULL;
2386 goto oops;
2387 }
1da177e4 2388
1da177e4
LT
2389 /* cache setup completed, link it into the list */
2390 list_add(&cachep->next, &cache_chain);
a737b3e2 2391oops:
1da177e4
LT
2392 if (!cachep && (flags & SLAB_PANIC))
2393 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2394 name);
fc0abb14 2395 mutex_unlock(&cache_chain_mutex);
95402b38 2396 put_online_cpus();
1da177e4
LT
2397 return cachep;
2398}
2399EXPORT_SYMBOL(kmem_cache_create);
2400
2401#if DEBUG
2402static void check_irq_off(void)
2403{
2404 BUG_ON(!irqs_disabled());
2405}
2406
2407static void check_irq_on(void)
2408{
2409 BUG_ON(irqs_disabled());
2410}
2411
343e0d7a 2412static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2413{
2414#ifdef CONFIG_SMP
2415 check_irq_off();
e498be7d 2416 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2417#endif
2418}
e498be7d 2419
343e0d7a 2420static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2421{
2422#ifdef CONFIG_SMP
2423 check_irq_off();
2424 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2425#endif
2426}
2427
1da177e4
LT
2428#else
2429#define check_irq_off() do { } while(0)
2430#define check_irq_on() do { } while(0)
2431#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2432#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2433#endif
2434
aab2207c
CL
2435static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2436 struct array_cache *ac,
2437 int force, int node);
2438
1da177e4
LT
2439static void do_drain(void *arg)
2440{
a737b3e2 2441 struct kmem_cache *cachep = arg;
1da177e4 2442 struct array_cache *ac;
ff69416e 2443 int node = numa_node_id();
1da177e4
LT
2444
2445 check_irq_off();
9a2dba4b 2446 ac = cpu_cache_get(cachep);
ff69416e
CL
2447 spin_lock(&cachep->nodelists[node]->list_lock);
2448 free_block(cachep, ac->entry, ac->avail, node);
2449 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2450 ac->avail = 0;
2451}
2452
343e0d7a 2453static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2454{
e498be7d
CL
2455 struct kmem_list3 *l3;
2456 int node;
2457
a07fa394 2458 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2459 check_irq_on();
b28a02de 2460 for_each_online_node(node) {
e498be7d 2461 l3 = cachep->nodelists[node];
a4523a8b
RD
2462 if (l3 && l3->alien)
2463 drain_alien_cache(cachep, l3->alien);
2464 }
2465
2466 for_each_online_node(node) {
2467 l3 = cachep->nodelists[node];
2468 if (l3)
aab2207c 2469 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2470 }
1da177e4
LT
2471}
2472
ed11d9eb
CL
2473/*
2474 * Remove slabs from the list of free slabs.
2475 * Specify the number of slabs to drain in tofree.
2476 *
2477 * Returns the actual number of slabs released.
2478 */
2479static int drain_freelist(struct kmem_cache *cache,
2480 struct kmem_list3 *l3, int tofree)
1da177e4 2481{
ed11d9eb
CL
2482 struct list_head *p;
2483 int nr_freed;
1da177e4 2484 struct slab *slabp;
1da177e4 2485
ed11d9eb
CL
2486 nr_freed = 0;
2487 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2488
ed11d9eb 2489 spin_lock_irq(&l3->list_lock);
e498be7d 2490 p = l3->slabs_free.prev;
ed11d9eb
CL
2491 if (p == &l3->slabs_free) {
2492 spin_unlock_irq(&l3->list_lock);
2493 goto out;
2494 }
1da177e4 2495
ed11d9eb 2496 slabp = list_entry(p, struct slab, list);
1da177e4 2497#if DEBUG
40094fa6 2498 BUG_ON(slabp->inuse);
1da177e4
LT
2499#endif
2500 list_del(&slabp->list);
ed11d9eb
CL
2501 /*
2502 * Safe to drop the lock. The slab is no longer linked
2503 * to the cache.
2504 */
2505 l3->free_objects -= cache->num;
e498be7d 2506 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2507 slab_destroy(cache, slabp);
2508 nr_freed++;
1da177e4 2509 }
ed11d9eb
CL
2510out:
2511 return nr_freed;
1da177e4
LT
2512}
2513
8f5be20b 2514/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2515static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2516{
2517 int ret = 0, i = 0;
2518 struct kmem_list3 *l3;
2519
2520 drain_cpu_caches(cachep);
2521
2522 check_irq_on();
2523 for_each_online_node(i) {
2524 l3 = cachep->nodelists[i];
ed11d9eb
CL
2525 if (!l3)
2526 continue;
2527
2528 drain_freelist(cachep, l3, l3->free_objects);
2529
2530 ret += !list_empty(&l3->slabs_full) ||
2531 !list_empty(&l3->slabs_partial);
e498be7d
CL
2532 }
2533 return (ret ? 1 : 0);
2534}
2535
1da177e4
LT
2536/**
2537 * kmem_cache_shrink - Shrink a cache.
2538 * @cachep: The cache to shrink.
2539 *
2540 * Releases as many slabs as possible for a cache.
2541 * To help debugging, a zero exit status indicates all slabs were released.
2542 */
343e0d7a 2543int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2544{
8f5be20b 2545 int ret;
40094fa6 2546 BUG_ON(!cachep || in_interrupt());
1da177e4 2547
95402b38 2548 get_online_cpus();
8f5be20b
RT
2549 mutex_lock(&cache_chain_mutex);
2550 ret = __cache_shrink(cachep);
2551 mutex_unlock(&cache_chain_mutex);
95402b38 2552 put_online_cpus();
8f5be20b 2553 return ret;
1da177e4
LT
2554}
2555EXPORT_SYMBOL(kmem_cache_shrink);
2556
2557/**
2558 * kmem_cache_destroy - delete a cache
2559 * @cachep: the cache to destroy
2560 *
72fd4a35 2561 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2562 *
2563 * It is expected this function will be called by a module when it is
2564 * unloaded. This will remove the cache completely, and avoid a duplicate
2565 * cache being allocated each time a module is loaded and unloaded, if the
2566 * module doesn't have persistent in-kernel storage across loads and unloads.
2567 *
2568 * The cache must be empty before calling this function.
2569 *
2570 * The caller must guarantee that noone will allocate memory from the cache
2571 * during the kmem_cache_destroy().
2572 */
133d205a 2573void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2574{
40094fa6 2575 BUG_ON(!cachep || in_interrupt());
1da177e4 2576
1da177e4 2577 /* Find the cache in the chain of caches. */
95402b38 2578 get_online_cpus();
fc0abb14 2579 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2580 /*
2581 * the chain is never empty, cache_cache is never destroyed
2582 */
2583 list_del(&cachep->next);
1da177e4
LT
2584 if (__cache_shrink(cachep)) {
2585 slab_error(cachep, "Can't free all objects");
b28a02de 2586 list_add(&cachep->next, &cache_chain);
fc0abb14 2587 mutex_unlock(&cache_chain_mutex);
95402b38 2588 put_online_cpus();
133d205a 2589 return;
1da177e4
LT
2590 }
2591
2592 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2593 synchronize_rcu();
1da177e4 2594
117f6eb1 2595 __kmem_cache_destroy(cachep);
8f5be20b 2596 mutex_unlock(&cache_chain_mutex);
95402b38 2597 put_online_cpus();
1da177e4
LT
2598}
2599EXPORT_SYMBOL(kmem_cache_destroy);
2600
e5ac9c5a
RT
2601/*
2602 * Get the memory for a slab management obj.
2603 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2604 * always come from malloc_sizes caches. The slab descriptor cannot
2605 * come from the same cache which is getting created because,
2606 * when we are searching for an appropriate cache for these
2607 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2608 * If we are creating a malloc_sizes cache here it would not be visible to
2609 * kmem_find_general_cachep till the initialization is complete.
2610 * Hence we cannot have slabp_cache same as the original cache.
2611 */
343e0d7a 2612static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2613 int colour_off, gfp_t local_flags,
2614 int nodeid)
1da177e4
LT
2615{
2616 struct slab *slabp;
b28a02de 2617
1da177e4
LT
2618 if (OFF_SLAB(cachep)) {
2619 /* Slab management obj is off-slab. */
5b74ada7 2620 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2621 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2622 if (!slabp)
2623 return NULL;
2624 } else {
b28a02de 2625 slabp = objp + colour_off;
1da177e4
LT
2626 colour_off += cachep->slab_size;
2627 }
2628 slabp->inuse = 0;
2629 slabp->colouroff = colour_off;
b28a02de 2630 slabp->s_mem = objp + colour_off;
5b74ada7 2631 slabp->nodeid = nodeid;
e51bfd0a 2632 slabp->free = 0;
1da177e4
LT
2633 return slabp;
2634}
2635
2636static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2637{
b28a02de 2638 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2639}
2640
343e0d7a 2641static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2642 struct slab *slabp)
1da177e4
LT
2643{
2644 int i;
2645
2646 for (i = 0; i < cachep->num; i++) {
8fea4e96 2647 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2648#if DEBUG
2649 /* need to poison the objs? */
2650 if (cachep->flags & SLAB_POISON)
2651 poison_obj(cachep, objp, POISON_FREE);
2652 if (cachep->flags & SLAB_STORE_USER)
2653 *dbg_userword(cachep, objp) = NULL;
2654
2655 if (cachep->flags & SLAB_RED_ZONE) {
2656 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2657 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2658 }
2659 /*
a737b3e2
AM
2660 * Constructors are not allowed to allocate memory from the same
2661 * cache which they are a constructor for. Otherwise, deadlock.
2662 * They must also be threaded.
1da177e4
LT
2663 */
2664 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
4ba9b9d0 2665 cachep->ctor(cachep, objp + obj_offset(cachep));
1da177e4
LT
2666
2667 if (cachep->flags & SLAB_RED_ZONE) {
2668 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2669 slab_error(cachep, "constructor overwrote the"
b28a02de 2670 " end of an object");
1da177e4
LT
2671 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2672 slab_error(cachep, "constructor overwrote the"
b28a02de 2673 " start of an object");
1da177e4 2674 }
a737b3e2
AM
2675 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2676 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2677 kernel_map_pages(virt_to_page(objp),
3dafccf2 2678 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2679#else
2680 if (cachep->ctor)
4ba9b9d0 2681 cachep->ctor(cachep, objp);
1da177e4 2682#endif
b28a02de 2683 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2684 }
b28a02de 2685 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2686}
2687
343e0d7a 2688static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2689{
4b51d669
CL
2690 if (CONFIG_ZONE_DMA_FLAG) {
2691 if (flags & GFP_DMA)
2692 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2693 else
2694 BUG_ON(cachep->gfpflags & GFP_DMA);
2695 }
1da177e4
LT
2696}
2697
a737b3e2
AM
2698static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2699 int nodeid)
78d382d7 2700{
8fea4e96 2701 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2702 kmem_bufctl_t next;
2703
2704 slabp->inuse++;
2705 next = slab_bufctl(slabp)[slabp->free];
2706#if DEBUG
2707 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2708 WARN_ON(slabp->nodeid != nodeid);
2709#endif
2710 slabp->free = next;
2711
2712 return objp;
2713}
2714
a737b3e2
AM
2715static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2716 void *objp, int nodeid)
78d382d7 2717{
8fea4e96 2718 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2719
2720#if DEBUG
2721 /* Verify that the slab belongs to the intended node */
2722 WARN_ON(slabp->nodeid != nodeid);
2723
871751e2 2724 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2725 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2726 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2727 BUG();
2728 }
2729#endif
2730 slab_bufctl(slabp)[objnr] = slabp->free;
2731 slabp->free = objnr;
2732 slabp->inuse--;
2733}
2734
4776874f
PE
2735/*
2736 * Map pages beginning at addr to the given cache and slab. This is required
2737 * for the slab allocator to be able to lookup the cache and slab of a
2738 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2739 */
2740static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2741 void *addr)
1da177e4 2742{
4776874f 2743 int nr_pages;
1da177e4
LT
2744 struct page *page;
2745
4776874f 2746 page = virt_to_page(addr);
84097518 2747
4776874f 2748 nr_pages = 1;
84097518 2749 if (likely(!PageCompound(page)))
4776874f
PE
2750 nr_pages <<= cache->gfporder;
2751
1da177e4 2752 do {
4776874f
PE
2753 page_set_cache(page, cache);
2754 page_set_slab(page, slab);
1da177e4 2755 page++;
4776874f 2756 } while (--nr_pages);
1da177e4
LT
2757}
2758
2759/*
2760 * Grow (by 1) the number of slabs within a cache. This is called by
2761 * kmem_cache_alloc() when there are no active objs left in a cache.
2762 */
3c517a61
CL
2763static int cache_grow(struct kmem_cache *cachep,
2764 gfp_t flags, int nodeid, void *objp)
1da177e4 2765{
b28a02de 2766 struct slab *slabp;
b28a02de
PE
2767 size_t offset;
2768 gfp_t local_flags;
e498be7d 2769 struct kmem_list3 *l3;
1da177e4 2770
a737b3e2
AM
2771 /*
2772 * Be lazy and only check for valid flags here, keeping it out of the
2773 * critical path in kmem_cache_alloc().
1da177e4 2774 */
6cb06229
CL
2775 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2776 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2777
2e1217cf 2778 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2779 check_irq_off();
2e1217cf
RT
2780 l3 = cachep->nodelists[nodeid];
2781 spin_lock(&l3->list_lock);
1da177e4
LT
2782
2783 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2784 offset = l3->colour_next;
2785 l3->colour_next++;
2786 if (l3->colour_next >= cachep->colour)
2787 l3->colour_next = 0;
2788 spin_unlock(&l3->list_lock);
1da177e4 2789
2e1217cf 2790 offset *= cachep->colour_off;
1da177e4
LT
2791
2792 if (local_flags & __GFP_WAIT)
2793 local_irq_enable();
2794
2795 /*
2796 * The test for missing atomic flag is performed here, rather than
2797 * the more obvious place, simply to reduce the critical path length
2798 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2799 * will eventually be caught here (where it matters).
2800 */
2801 kmem_flagcheck(cachep, flags);
2802
a737b3e2
AM
2803 /*
2804 * Get mem for the objs. Attempt to allocate a physical page from
2805 * 'nodeid'.
e498be7d 2806 */
3c517a61 2807 if (!objp)
b8c1c5da 2808 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2809 if (!objp)
1da177e4
LT
2810 goto failed;
2811
2812 /* Get slab management. */
3c517a61 2813 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2814 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2815 if (!slabp)
1da177e4
LT
2816 goto opps1;
2817
4776874f 2818 slab_map_pages(cachep, slabp, objp);
1da177e4 2819
a35afb83 2820 cache_init_objs(cachep, slabp);
1da177e4
LT
2821
2822 if (local_flags & __GFP_WAIT)
2823 local_irq_disable();
2824 check_irq_off();
e498be7d 2825 spin_lock(&l3->list_lock);
1da177e4
LT
2826
2827 /* Make slab active. */
e498be7d 2828 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2829 STATS_INC_GROWN(cachep);
e498be7d
CL
2830 l3->free_objects += cachep->num;
2831 spin_unlock(&l3->list_lock);
1da177e4 2832 return 1;
a737b3e2 2833opps1:
1da177e4 2834 kmem_freepages(cachep, objp);
a737b3e2 2835failed:
1da177e4
LT
2836 if (local_flags & __GFP_WAIT)
2837 local_irq_disable();
2838 return 0;
2839}
2840
2841#if DEBUG
2842
2843/*
2844 * Perform extra freeing checks:
2845 * - detect bad pointers.
2846 * - POISON/RED_ZONE checking
1da177e4
LT
2847 */
2848static void kfree_debugcheck(const void *objp)
2849{
1da177e4
LT
2850 if (!virt_addr_valid(objp)) {
2851 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2852 (unsigned long)objp);
2853 BUG();
1da177e4 2854 }
1da177e4
LT
2855}
2856
58ce1fd5
PE
2857static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2858{
b46b8f19 2859 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2860
2861 redzone1 = *dbg_redzone1(cache, obj);
2862 redzone2 = *dbg_redzone2(cache, obj);
2863
2864 /*
2865 * Redzone is ok.
2866 */
2867 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2868 return;
2869
2870 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2871 slab_error(cache, "double free detected");
2872 else
2873 slab_error(cache, "memory outside object was overwritten");
2874
b46b8f19 2875 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2876 obj, redzone1, redzone2);
2877}
2878
343e0d7a 2879static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2880 void *caller)
1da177e4
LT
2881{
2882 struct page *page;
2883 unsigned int objnr;
2884 struct slab *slabp;
2885
80cbd911
MW
2886 BUG_ON(virt_to_cache(objp) != cachep);
2887
3dafccf2 2888 objp -= obj_offset(cachep);
1da177e4 2889 kfree_debugcheck(objp);
b49af68f 2890 page = virt_to_head_page(objp);
1da177e4 2891
065d41cb 2892 slabp = page_get_slab(page);
1da177e4
LT
2893
2894 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2895 verify_redzone_free(cachep, objp);
1da177e4
LT
2896 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2897 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2898 }
2899 if (cachep->flags & SLAB_STORE_USER)
2900 *dbg_userword(cachep, objp) = caller;
2901
8fea4e96 2902 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2903
2904 BUG_ON(objnr >= cachep->num);
8fea4e96 2905 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2906
871751e2
AV
2907#ifdef CONFIG_DEBUG_SLAB_LEAK
2908 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2909#endif
1da177e4
LT
2910 if (cachep->flags & SLAB_POISON) {
2911#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2912 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2913 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2914 kernel_map_pages(virt_to_page(objp),
3dafccf2 2915 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2916 } else {
2917 poison_obj(cachep, objp, POISON_FREE);
2918 }
2919#else
2920 poison_obj(cachep, objp, POISON_FREE);
2921#endif
2922 }
2923 return objp;
2924}
2925
343e0d7a 2926static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2927{
2928 kmem_bufctl_t i;
2929 int entries = 0;
b28a02de 2930
1da177e4
LT
2931 /* Check slab's freelist to see if this obj is there. */
2932 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2933 entries++;
2934 if (entries > cachep->num || i >= cachep->num)
2935 goto bad;
2936 }
2937 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2938bad:
2939 printk(KERN_ERR "slab: Internal list corruption detected in "
2940 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2941 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2942 for (i = 0;
264132bc 2943 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2944 i++) {
a737b3e2 2945 if (i % 16 == 0)
1da177e4 2946 printk("\n%03x:", i);
b28a02de 2947 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2948 }
2949 printk("\n");
2950 BUG();
2951 }
2952}
2953#else
2954#define kfree_debugcheck(x) do { } while(0)
2955#define cache_free_debugcheck(x,objp,z) (objp)
2956#define check_slabp(x,y) do { } while(0)
2957#endif
2958
343e0d7a 2959static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2960{
2961 int batchcount;
2962 struct kmem_list3 *l3;
2963 struct array_cache *ac;
1ca4cb24
PE
2964 int node;
2965
6d2144d3 2966retry:
1da177e4 2967 check_irq_off();
6d2144d3 2968 node = numa_node_id();
9a2dba4b 2969 ac = cpu_cache_get(cachep);
1da177e4
LT
2970 batchcount = ac->batchcount;
2971 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2972 /*
2973 * If there was little recent activity on this cache, then
2974 * perform only a partial refill. Otherwise we could generate
2975 * refill bouncing.
1da177e4
LT
2976 */
2977 batchcount = BATCHREFILL_LIMIT;
2978 }
1ca4cb24 2979 l3 = cachep->nodelists[node];
e498be7d
CL
2980
2981 BUG_ON(ac->avail > 0 || !l3);
2982 spin_lock(&l3->list_lock);
1da177e4 2983
3ded175a
CL
2984 /* See if we can refill from the shared array */
2985 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2986 goto alloc_done;
2987
1da177e4
LT
2988 while (batchcount > 0) {
2989 struct list_head *entry;
2990 struct slab *slabp;
2991 /* Get slab alloc is to come from. */
2992 entry = l3->slabs_partial.next;
2993 if (entry == &l3->slabs_partial) {
2994 l3->free_touched = 1;
2995 entry = l3->slabs_free.next;
2996 if (entry == &l3->slabs_free)
2997 goto must_grow;
2998 }
2999
3000 slabp = list_entry(entry, struct slab, list);
3001 check_slabp(cachep, slabp);
3002 check_spinlock_acquired(cachep);
714b8171
PE
3003
3004 /*
3005 * The slab was either on partial or free list so
3006 * there must be at least one object available for
3007 * allocation.
3008 */
3009 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3010
1da177e4 3011 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3012 STATS_INC_ALLOCED(cachep);
3013 STATS_INC_ACTIVE(cachep);
3014 STATS_SET_HIGH(cachep);
3015
78d382d7 3016 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3017 node);
1da177e4
LT
3018 }
3019 check_slabp(cachep, slabp);
3020
3021 /* move slabp to correct slabp list: */
3022 list_del(&slabp->list);
3023 if (slabp->free == BUFCTL_END)
3024 list_add(&slabp->list, &l3->slabs_full);
3025 else
3026 list_add(&slabp->list, &l3->slabs_partial);
3027 }
3028
a737b3e2 3029must_grow:
1da177e4 3030 l3->free_objects -= ac->avail;
a737b3e2 3031alloc_done:
e498be7d 3032 spin_unlock(&l3->list_lock);
1da177e4
LT
3033
3034 if (unlikely(!ac->avail)) {
3035 int x;
3c517a61 3036 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3037
a737b3e2 3038 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3039 ac = cpu_cache_get(cachep);
a737b3e2 3040 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3041 return NULL;
3042
a737b3e2 3043 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3044 goto retry;
3045 }
3046 ac->touched = 1;
e498be7d 3047 return ac->entry[--ac->avail];
1da177e4
LT
3048}
3049
a737b3e2
AM
3050static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3051 gfp_t flags)
1da177e4
LT
3052{
3053 might_sleep_if(flags & __GFP_WAIT);
3054#if DEBUG
3055 kmem_flagcheck(cachep, flags);
3056#endif
3057}
3058
3059#if DEBUG
a737b3e2
AM
3060static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3061 gfp_t flags, void *objp, void *caller)
1da177e4 3062{
b28a02de 3063 if (!objp)
1da177e4 3064 return objp;
b28a02de 3065 if (cachep->flags & SLAB_POISON) {
1da177e4 3066#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3067 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3068 kernel_map_pages(virt_to_page(objp),
3dafccf2 3069 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3070 else
3071 check_poison_obj(cachep, objp);
3072#else
3073 check_poison_obj(cachep, objp);
3074#endif
3075 poison_obj(cachep, objp, POISON_INUSE);
3076 }
3077 if (cachep->flags & SLAB_STORE_USER)
3078 *dbg_userword(cachep, objp) = caller;
3079
3080 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3081 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3082 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3083 slab_error(cachep, "double free, or memory outside"
3084 " object was overwritten");
b28a02de 3085 printk(KERN_ERR
b46b8f19 3086 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3087 objp, *dbg_redzone1(cachep, objp),
3088 *dbg_redzone2(cachep, objp));
1da177e4
LT
3089 }
3090 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3091 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3092 }
871751e2
AV
3093#ifdef CONFIG_DEBUG_SLAB_LEAK
3094 {
3095 struct slab *slabp;
3096 unsigned objnr;
3097
b49af68f 3098 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3099 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3100 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3101 }
3102#endif
3dafccf2 3103 objp += obj_offset(cachep);
4f104934 3104 if (cachep->ctor && cachep->flags & SLAB_POISON)
4ba9b9d0 3105 cachep->ctor(cachep, objp);
a44b56d3
KH
3106#if ARCH_SLAB_MINALIGN
3107 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3108 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3109 objp, ARCH_SLAB_MINALIGN);
3110 }
3111#endif
1da177e4
LT
3112 return objp;
3113}
3114#else
3115#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3116#endif
3117
8a8b6502
AM
3118#ifdef CONFIG_FAILSLAB
3119
3120static struct failslab_attr {
3121
3122 struct fault_attr attr;
3123
3124 u32 ignore_gfp_wait;
3125#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3126 struct dentry *ignore_gfp_wait_file;
3127#endif
3128
3129} failslab = {
3130 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3131 .ignore_gfp_wait = 1,
8a8b6502
AM
3132};
3133
3134static int __init setup_failslab(char *str)
3135{
3136 return setup_fault_attr(&failslab.attr, str);
3137}
3138__setup("failslab=", setup_failslab);
3139
3140static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3141{
3142 if (cachep == &cache_cache)
3143 return 0;
3144 if (flags & __GFP_NOFAIL)
3145 return 0;
3146 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3147 return 0;
3148
3149 return should_fail(&failslab.attr, obj_size(cachep));
3150}
3151
3152#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3153
3154static int __init failslab_debugfs(void)
3155{
3156 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3157 struct dentry *dir;
3158 int err;
3159
824ebef1 3160 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3161 if (err)
3162 return err;
3163 dir = failslab.attr.dentries.dir;
3164
3165 failslab.ignore_gfp_wait_file =
3166 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3167 &failslab.ignore_gfp_wait);
3168
3169 if (!failslab.ignore_gfp_wait_file) {
3170 err = -ENOMEM;
3171 debugfs_remove(failslab.ignore_gfp_wait_file);
3172 cleanup_fault_attr_dentries(&failslab.attr);
3173 }
3174
3175 return err;
3176}
3177
3178late_initcall(failslab_debugfs);
3179
3180#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3181
3182#else /* CONFIG_FAILSLAB */
3183
3184static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3185{
3186 return 0;
3187}
3188
3189#endif /* CONFIG_FAILSLAB */
3190
343e0d7a 3191static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3192{
b28a02de 3193 void *objp;
1da177e4
LT
3194 struct array_cache *ac;
3195
5c382300 3196 check_irq_off();
8a8b6502 3197
9a2dba4b 3198 ac = cpu_cache_get(cachep);
1da177e4
LT
3199 if (likely(ac->avail)) {
3200 STATS_INC_ALLOCHIT(cachep);
3201 ac->touched = 1;
e498be7d 3202 objp = ac->entry[--ac->avail];
1da177e4
LT
3203 } else {
3204 STATS_INC_ALLOCMISS(cachep);
3205 objp = cache_alloc_refill(cachep, flags);
3206 }
5c382300
AK
3207 return objp;
3208}
3209
e498be7d 3210#ifdef CONFIG_NUMA
c61afb18 3211/*
b2455396 3212 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3213 *
3214 * If we are in_interrupt, then process context, including cpusets and
3215 * mempolicy, may not apply and should not be used for allocation policy.
3216 */
3217static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3218{
3219 int nid_alloc, nid_here;
3220
765c4507 3221 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3222 return NULL;
3223 nid_alloc = nid_here = numa_node_id();
3224 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3225 nid_alloc = cpuset_mem_spread_node();
3226 else if (current->mempolicy)
3227 nid_alloc = slab_node(current->mempolicy);
3228 if (nid_alloc != nid_here)
8b98c169 3229 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3230 return NULL;
3231}
3232
765c4507
CL
3233/*
3234 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3235 * certain node and fall back is permitted. First we scan all the
3236 * available nodelists for available objects. If that fails then we
3237 * perform an allocation without specifying a node. This allows the page
3238 * allocator to do its reclaim / fallback magic. We then insert the
3239 * slab into the proper nodelist and then allocate from it.
765c4507 3240 */
8c8cc2c1 3241static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3242{
8c8cc2c1
PE
3243 struct zonelist *zonelist;
3244 gfp_t local_flags;
765c4507
CL
3245 struct zone **z;
3246 void *obj = NULL;
3c517a61 3247 int nid;
8c8cc2c1
PE
3248
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3251
0e88460d 3252 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3253 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3254
3c517a61
CL
3255retry:
3256 /*
3257 * Look through allowed nodes for objects available
3258 * from existing per node queues.
3259 */
aedb0eb1 3260 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3261 nid = zone_to_nid(*z);
aedb0eb1 3262
02a0e53d 3263 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3264 cache->nodelists[nid] &&
3265 cache->nodelists[nid]->free_objects)
3266 obj = ____cache_alloc_node(cache,
3267 flags | GFP_THISNODE, nid);
3268 }
3269
cfce6604 3270 if (!obj) {
3c517a61
CL
3271 /*
3272 * This allocation will be performed within the constraints
3273 * of the current cpuset / memory policy requirements.
3274 * We may trigger various forms of reclaim on the allowed
3275 * set and go into memory reserves if necessary.
3276 */
dd47ea75
CL
3277 if (local_flags & __GFP_WAIT)
3278 local_irq_enable();
3279 kmem_flagcheck(cache, flags);
9ac33b2b 3280 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3281 if (local_flags & __GFP_WAIT)
3282 local_irq_disable();
3c517a61
CL
3283 if (obj) {
3284 /*
3285 * Insert into the appropriate per node queues
3286 */
3287 nid = page_to_nid(virt_to_page(obj));
3288 if (cache_grow(cache, flags, nid, obj)) {
3289 obj = ____cache_alloc_node(cache,
3290 flags | GFP_THISNODE, nid);
3291 if (!obj)
3292 /*
3293 * Another processor may allocate the
3294 * objects in the slab since we are
3295 * not holding any locks.
3296 */
3297 goto retry;
3298 } else {
b6a60451 3299 /* cache_grow already freed obj */
3c517a61
CL
3300 obj = NULL;
3301 }
3302 }
aedb0eb1 3303 }
765c4507
CL
3304 return obj;
3305}
3306
e498be7d
CL
3307/*
3308 * A interface to enable slab creation on nodeid
1da177e4 3309 */
8b98c169 3310static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3311 int nodeid)
e498be7d
CL
3312{
3313 struct list_head *entry;
b28a02de
PE
3314 struct slab *slabp;
3315 struct kmem_list3 *l3;
3316 void *obj;
b28a02de
PE
3317 int x;
3318
3319 l3 = cachep->nodelists[nodeid];
3320 BUG_ON(!l3);
3321
a737b3e2 3322retry:
ca3b9b91 3323 check_irq_off();
b28a02de
PE
3324 spin_lock(&l3->list_lock);
3325 entry = l3->slabs_partial.next;
3326 if (entry == &l3->slabs_partial) {
3327 l3->free_touched = 1;
3328 entry = l3->slabs_free.next;
3329 if (entry == &l3->slabs_free)
3330 goto must_grow;
3331 }
3332
3333 slabp = list_entry(entry, struct slab, list);
3334 check_spinlock_acquired_node(cachep, nodeid);
3335 check_slabp(cachep, slabp);
3336
3337 STATS_INC_NODEALLOCS(cachep);
3338 STATS_INC_ACTIVE(cachep);
3339 STATS_SET_HIGH(cachep);
3340
3341 BUG_ON(slabp->inuse == cachep->num);
3342
78d382d7 3343 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3344 check_slabp(cachep, slabp);
3345 l3->free_objects--;
3346 /* move slabp to correct slabp list: */
3347 list_del(&slabp->list);
3348
a737b3e2 3349 if (slabp->free == BUFCTL_END)
b28a02de 3350 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3351 else
b28a02de 3352 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3353
b28a02de
PE
3354 spin_unlock(&l3->list_lock);
3355 goto done;
e498be7d 3356
a737b3e2 3357must_grow:
b28a02de 3358 spin_unlock(&l3->list_lock);
3c517a61 3359 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3360 if (x)
3361 goto retry;
1da177e4 3362
8c8cc2c1 3363 return fallback_alloc(cachep, flags);
e498be7d 3364
a737b3e2 3365done:
b28a02de 3366 return obj;
e498be7d 3367}
8c8cc2c1
PE
3368
3369/**
3370 * kmem_cache_alloc_node - Allocate an object on the specified node
3371 * @cachep: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 * @nodeid: node number of the target node.
3374 * @caller: return address of caller, used for debug information
3375 *
3376 * Identical to kmem_cache_alloc but it will allocate memory on the given
3377 * node, which can improve the performance for cpu bound structures.
3378 *
3379 * Fallback to other node is possible if __GFP_THISNODE is not set.
3380 */
3381static __always_inline void *
3382__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3383 void *caller)
3384{
3385 unsigned long save_flags;
3386 void *ptr;
3387
824ebef1
AM
3388 if (should_failslab(cachep, flags))
3389 return NULL;
3390
8c8cc2c1
PE
3391 cache_alloc_debugcheck_before(cachep, flags);
3392 local_irq_save(save_flags);
3393
3394 if (unlikely(nodeid == -1))
3395 nodeid = numa_node_id();
3396
3397 if (unlikely(!cachep->nodelists[nodeid])) {
3398 /* Node not bootstrapped yet */
3399 ptr = fallback_alloc(cachep, flags);
3400 goto out;
3401 }
3402
3403 if (nodeid == numa_node_id()) {
3404 /*
3405 * Use the locally cached objects if possible.
3406 * However ____cache_alloc does not allow fallback
3407 * to other nodes. It may fail while we still have
3408 * objects on other nodes available.
3409 */
3410 ptr = ____cache_alloc(cachep, flags);
3411 if (ptr)
3412 goto out;
3413 }
3414 /* ___cache_alloc_node can fall back to other nodes */
3415 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3416 out:
3417 local_irq_restore(save_flags);
3418 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3419
d07dbea4
CL
3420 if (unlikely((flags & __GFP_ZERO) && ptr))
3421 memset(ptr, 0, obj_size(cachep));
3422
8c8cc2c1
PE
3423 return ptr;
3424}
3425
3426static __always_inline void *
3427__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3428{
3429 void *objp;
3430
3431 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3432 objp = alternate_node_alloc(cache, flags);
3433 if (objp)
3434 goto out;
3435 }
3436 objp = ____cache_alloc(cache, flags);
3437
3438 /*
3439 * We may just have run out of memory on the local node.
3440 * ____cache_alloc_node() knows how to locate memory on other nodes
3441 */
3442 if (!objp)
3443 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3444
3445 out:
3446 return objp;
3447}
3448#else
3449
3450static __always_inline void *
3451__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3452{
3453 return ____cache_alloc(cachep, flags);
3454}
3455
3456#endif /* CONFIG_NUMA */
3457
3458static __always_inline void *
3459__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3460{
3461 unsigned long save_flags;
3462 void *objp;
3463
824ebef1
AM
3464 if (should_failslab(cachep, flags))
3465 return NULL;
3466
8c8cc2c1
PE
3467 cache_alloc_debugcheck_before(cachep, flags);
3468 local_irq_save(save_flags);
3469 objp = __do_cache_alloc(cachep, flags);
3470 local_irq_restore(save_flags);
3471 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3472 prefetchw(objp);
3473
d07dbea4
CL
3474 if (unlikely((flags & __GFP_ZERO) && objp))
3475 memset(objp, 0, obj_size(cachep));
3476
8c8cc2c1
PE
3477 return objp;
3478}
e498be7d
CL
3479
3480/*
3481 * Caller needs to acquire correct kmem_list's list_lock
3482 */
343e0d7a 3483static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3484 int node)
1da177e4
LT
3485{
3486 int i;
e498be7d 3487 struct kmem_list3 *l3;
1da177e4
LT
3488
3489 for (i = 0; i < nr_objects; i++) {
3490 void *objp = objpp[i];
3491 struct slab *slabp;
1da177e4 3492
6ed5eb22 3493 slabp = virt_to_slab(objp);
ff69416e 3494 l3 = cachep->nodelists[node];
1da177e4 3495 list_del(&slabp->list);
ff69416e 3496 check_spinlock_acquired_node(cachep, node);
1da177e4 3497 check_slabp(cachep, slabp);
78d382d7 3498 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3499 STATS_DEC_ACTIVE(cachep);
e498be7d 3500 l3->free_objects++;
1da177e4
LT
3501 check_slabp(cachep, slabp);
3502
3503 /* fixup slab chains */
3504 if (slabp->inuse == 0) {
e498be7d
CL
3505 if (l3->free_objects > l3->free_limit) {
3506 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3507 /* No need to drop any previously held
3508 * lock here, even if we have a off-slab slab
3509 * descriptor it is guaranteed to come from
3510 * a different cache, refer to comments before
3511 * alloc_slabmgmt.
3512 */
1da177e4
LT
3513 slab_destroy(cachep, slabp);
3514 } else {
e498be7d 3515 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3516 }
3517 } else {
3518 /* Unconditionally move a slab to the end of the
3519 * partial list on free - maximum time for the
3520 * other objects to be freed, too.
3521 */
e498be7d 3522 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3523 }
3524 }
3525}
3526
343e0d7a 3527static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3528{
3529 int batchcount;
e498be7d 3530 struct kmem_list3 *l3;
ff69416e 3531 int node = numa_node_id();
1da177e4
LT
3532
3533 batchcount = ac->batchcount;
3534#if DEBUG
3535 BUG_ON(!batchcount || batchcount > ac->avail);
3536#endif
3537 check_irq_off();
ff69416e 3538 l3 = cachep->nodelists[node];
873623df 3539 spin_lock(&l3->list_lock);
e498be7d
CL
3540 if (l3->shared) {
3541 struct array_cache *shared_array = l3->shared;
b28a02de 3542 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3543 if (max) {
3544 if (batchcount > max)
3545 batchcount = max;
e498be7d 3546 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3547 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3548 shared_array->avail += batchcount;
3549 goto free_done;
3550 }
3551 }
3552
ff69416e 3553 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3554free_done:
1da177e4
LT
3555#if STATS
3556 {
3557 int i = 0;
3558 struct list_head *p;
3559
e498be7d
CL
3560 p = l3->slabs_free.next;
3561 while (p != &(l3->slabs_free)) {
1da177e4
LT
3562 struct slab *slabp;
3563
3564 slabp = list_entry(p, struct slab, list);
3565 BUG_ON(slabp->inuse);
3566
3567 i++;
3568 p = p->next;
3569 }
3570 STATS_SET_FREEABLE(cachep, i);
3571 }
3572#endif
e498be7d 3573 spin_unlock(&l3->list_lock);
1da177e4 3574 ac->avail -= batchcount;
a737b3e2 3575 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3576}
3577
3578/*
a737b3e2
AM
3579 * Release an obj back to its cache. If the obj has a constructed state, it must
3580 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3581 */
873623df 3582static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3583{
9a2dba4b 3584 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3585
3586 check_irq_off();
3587 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3588
1807a1aa
SS
3589 /*
3590 * Skip calling cache_free_alien() when the platform is not numa.
3591 * This will avoid cache misses that happen while accessing slabp (which
3592 * is per page memory reference) to get nodeid. Instead use a global
3593 * variable to skip the call, which is mostly likely to be present in
3594 * the cache.
3595 */
3596 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3597 return;
3598
1da177e4
LT
3599 if (likely(ac->avail < ac->limit)) {
3600 STATS_INC_FREEHIT(cachep);
e498be7d 3601 ac->entry[ac->avail++] = objp;
1da177e4
LT
3602 return;
3603 } else {
3604 STATS_INC_FREEMISS(cachep);
3605 cache_flusharray(cachep, ac);
e498be7d 3606 ac->entry[ac->avail++] = objp;
1da177e4
LT
3607 }
3608}
3609
3610/**
3611 * kmem_cache_alloc - Allocate an object
3612 * @cachep: The cache to allocate from.
3613 * @flags: See kmalloc().
3614 *
3615 * Allocate an object from this cache. The flags are only relevant
3616 * if the cache has no available objects.
3617 */
343e0d7a 3618void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3619{
7fd6b141 3620 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3621}
3622EXPORT_SYMBOL(kmem_cache_alloc);
3623
3624/**
7682486b 3625 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3626 * @cachep: the cache we're checking against
3627 * @ptr: pointer to validate
3628 *
7682486b 3629 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3630 * it is _not_ a guarantee that the pointer is actually
3631 * part of the slab cache in question, but it at least
3632 * validates that the pointer can be dereferenced and
3633 * looks half-way sane.
3634 *
3635 * Currently only used for dentry validation.
3636 */
b7f869a2 3637int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3638{
b28a02de 3639 unsigned long addr = (unsigned long)ptr;
1da177e4 3640 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3641 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3642 unsigned long size = cachep->buffer_size;
1da177e4
LT
3643 struct page *page;
3644
3645 if (unlikely(addr < min_addr))
3646 goto out;
3647 if (unlikely(addr > (unsigned long)high_memory - size))
3648 goto out;
3649 if (unlikely(addr & align_mask))
3650 goto out;
3651 if (unlikely(!kern_addr_valid(addr)))
3652 goto out;
3653 if (unlikely(!kern_addr_valid(addr + size - 1)))
3654 goto out;
3655 page = virt_to_page(ptr);
3656 if (unlikely(!PageSlab(page)))
3657 goto out;
065d41cb 3658 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3659 goto out;
3660 return 1;
a737b3e2 3661out:
1da177e4
LT
3662 return 0;
3663}
3664
3665#ifdef CONFIG_NUMA
8b98c169
CH
3666void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3667{
3668 return __cache_alloc_node(cachep, flags, nodeid,
3669 __builtin_return_address(0));
3670}
1da177e4
LT
3671EXPORT_SYMBOL(kmem_cache_alloc_node);
3672
8b98c169
CH
3673static __always_inline void *
3674__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3675{
343e0d7a 3676 struct kmem_cache *cachep;
97e2bde4
MS
3677
3678 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3679 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3680 return cachep;
97e2bde4
MS
3681 return kmem_cache_alloc_node(cachep, flags, node);
3682}
8b98c169
CH
3683
3684#ifdef CONFIG_DEBUG_SLAB
3685void *__kmalloc_node(size_t size, gfp_t flags, int node)
3686{
3687 return __do_kmalloc_node(size, flags, node,
3688 __builtin_return_address(0));
3689}
dbe5e69d 3690EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3691
3692void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3693 int node, void *caller)
3694{
3695 return __do_kmalloc_node(size, flags, node, caller);
3696}
3697EXPORT_SYMBOL(__kmalloc_node_track_caller);
3698#else
3699void *__kmalloc_node(size_t size, gfp_t flags, int node)
3700{
3701 return __do_kmalloc_node(size, flags, node, NULL);
3702}
3703EXPORT_SYMBOL(__kmalloc_node);
3704#endif /* CONFIG_DEBUG_SLAB */
3705#endif /* CONFIG_NUMA */
1da177e4
LT
3706
3707/**
800590f5 3708 * __do_kmalloc - allocate memory
1da177e4 3709 * @size: how many bytes of memory are required.
800590f5 3710 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3711 * @caller: function caller for debug tracking of the caller
1da177e4 3712 */
7fd6b141
PE
3713static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714 void *caller)
1da177e4 3715{
343e0d7a 3716 struct kmem_cache *cachep;
1da177e4 3717
97e2bde4
MS
3718 /* If you want to save a few bytes .text space: replace
3719 * __ with kmem_.
3720 * Then kmalloc uses the uninlined functions instead of the inline
3721 * functions.
3722 */
3723 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3724 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3725 return cachep;
7fd6b141
PE
3726 return __cache_alloc(cachep, flags, caller);
3727}
3728
7fd6b141 3729
1d2c8eea 3730#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3731void *__kmalloc(size_t size, gfp_t flags)
3732{
871751e2 3733 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3734}
3735EXPORT_SYMBOL(__kmalloc);
3736
7fd6b141
PE
3737void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3738{
3739 return __do_kmalloc(size, flags, caller);
3740}
3741EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3742
3743#else
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
3746 return __do_kmalloc(size, flags, NULL);
3747}
3748EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3749#endif
3750
1da177e4
LT
3751/**
3752 * kmem_cache_free - Deallocate an object
3753 * @cachep: The cache the allocation was from.
3754 * @objp: The previously allocated object.
3755 *
3756 * Free an object which was previously allocated from this
3757 * cache.
3758 */
343e0d7a 3759void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3760{
3761 unsigned long flags;
3762
3763 local_irq_save(flags);
898552c9 3764 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3765 __cache_free(cachep, objp);
1da177e4
LT
3766 local_irq_restore(flags);
3767}
3768EXPORT_SYMBOL(kmem_cache_free);
3769
1da177e4
LT
3770/**
3771 * kfree - free previously allocated memory
3772 * @objp: pointer returned by kmalloc.
3773 *
80e93eff
PE
3774 * If @objp is NULL, no operation is performed.
3775 *
1da177e4
LT
3776 * Don't free memory not originally allocated by kmalloc()
3777 * or you will run into trouble.
3778 */
3779void kfree(const void *objp)
3780{
343e0d7a 3781 struct kmem_cache *c;
1da177e4
LT
3782 unsigned long flags;
3783
6cb8f913 3784 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3785 return;
3786 local_irq_save(flags);
3787 kfree_debugcheck(objp);
6ed5eb22 3788 c = virt_to_cache(objp);
f9b8404c 3789 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3790 __cache_free(c, (void *)objp);
1da177e4
LT
3791 local_irq_restore(flags);
3792}
3793EXPORT_SYMBOL(kfree);
3794
343e0d7a 3795unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3796{
3dafccf2 3797 return obj_size(cachep);
1da177e4
LT
3798}
3799EXPORT_SYMBOL(kmem_cache_size);
3800
343e0d7a 3801const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3802{
3803 return cachep->name;
3804}
3805EXPORT_SYMBOL_GPL(kmem_cache_name);
3806
e498be7d 3807/*
183ff22b 3808 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3809 */
343e0d7a 3810static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3811{
3812 int node;
3813 struct kmem_list3 *l3;
cafeb02e 3814 struct array_cache *new_shared;
3395ee05 3815 struct array_cache **new_alien = NULL;
e498be7d 3816
9c09a95c 3817 for_each_online_node(node) {
cafeb02e 3818
3395ee05
PM
3819 if (use_alien_caches) {
3820 new_alien = alloc_alien_cache(node, cachep->limit);
3821 if (!new_alien)
3822 goto fail;
3823 }
cafeb02e 3824
63109846
ED
3825 new_shared = NULL;
3826 if (cachep->shared) {
3827 new_shared = alloc_arraycache(node,
0718dc2a 3828 cachep->shared*cachep->batchcount,
a737b3e2 3829 0xbaadf00d);
63109846
ED
3830 if (!new_shared) {
3831 free_alien_cache(new_alien);
3832 goto fail;
3833 }
0718dc2a 3834 }
cafeb02e 3835
a737b3e2
AM
3836 l3 = cachep->nodelists[node];
3837 if (l3) {
cafeb02e
CL
3838 struct array_cache *shared = l3->shared;
3839
e498be7d
CL
3840 spin_lock_irq(&l3->list_lock);
3841
cafeb02e 3842 if (shared)
0718dc2a
CL
3843 free_block(cachep, shared->entry,
3844 shared->avail, node);
e498be7d 3845
cafeb02e
CL
3846 l3->shared = new_shared;
3847 if (!l3->alien) {
e498be7d
CL
3848 l3->alien = new_alien;
3849 new_alien = NULL;
3850 }
b28a02de 3851 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3852 cachep->batchcount + cachep->num;
e498be7d 3853 spin_unlock_irq(&l3->list_lock);
cafeb02e 3854 kfree(shared);
e498be7d
CL
3855 free_alien_cache(new_alien);
3856 continue;
3857 }
a737b3e2 3858 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3859 if (!l3) {
3860 free_alien_cache(new_alien);
3861 kfree(new_shared);
e498be7d 3862 goto fail;
0718dc2a 3863 }
e498be7d
CL
3864
3865 kmem_list3_init(l3);
3866 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3867 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3868 l3->shared = new_shared;
e498be7d 3869 l3->alien = new_alien;
b28a02de 3870 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3871 cachep->batchcount + cachep->num;
e498be7d
CL
3872 cachep->nodelists[node] = l3;
3873 }
cafeb02e 3874 return 0;
0718dc2a 3875
a737b3e2 3876fail:
0718dc2a
CL
3877 if (!cachep->next.next) {
3878 /* Cache is not active yet. Roll back what we did */
3879 node--;
3880 while (node >= 0) {
3881 if (cachep->nodelists[node]) {
3882 l3 = cachep->nodelists[node];
3883
3884 kfree(l3->shared);
3885 free_alien_cache(l3->alien);
3886 kfree(l3);
3887 cachep->nodelists[node] = NULL;
3888 }
3889 node--;
3890 }
3891 }
cafeb02e 3892 return -ENOMEM;
e498be7d
CL
3893}
3894
1da177e4 3895struct ccupdate_struct {
343e0d7a 3896 struct kmem_cache *cachep;
1da177e4
LT
3897 struct array_cache *new[NR_CPUS];
3898};
3899
3900static void do_ccupdate_local(void *info)
3901{
a737b3e2 3902 struct ccupdate_struct *new = info;
1da177e4
LT
3903 struct array_cache *old;
3904
3905 check_irq_off();
9a2dba4b 3906 old = cpu_cache_get(new->cachep);
e498be7d 3907
1da177e4
LT
3908 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3909 new->new[smp_processor_id()] = old;
3910}
3911
b5d8ca7c 3912/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3913static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3914 int batchcount, int shared)
1da177e4 3915{
d2e7b7d0 3916 struct ccupdate_struct *new;
2ed3a4ef 3917 int i;
1da177e4 3918
d2e7b7d0
SS
3919 new = kzalloc(sizeof(*new), GFP_KERNEL);
3920 if (!new)
3921 return -ENOMEM;
3922
e498be7d 3923 for_each_online_cpu(i) {
d2e7b7d0 3924 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3925 batchcount);
d2e7b7d0 3926 if (!new->new[i]) {
b28a02de 3927 for (i--; i >= 0; i--)
d2e7b7d0
SS
3928 kfree(new->new[i]);
3929 kfree(new);
e498be7d 3930 return -ENOMEM;
1da177e4
LT
3931 }
3932 }
d2e7b7d0 3933 new->cachep = cachep;
1da177e4 3934
d2e7b7d0 3935 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3936
1da177e4 3937 check_irq_on();
1da177e4
LT
3938 cachep->batchcount = batchcount;
3939 cachep->limit = limit;
e498be7d 3940 cachep->shared = shared;
1da177e4 3941
e498be7d 3942 for_each_online_cpu(i) {
d2e7b7d0 3943 struct array_cache *ccold = new->new[i];
1da177e4
LT
3944 if (!ccold)
3945 continue;
e498be7d 3946 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3947 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3948 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3949 kfree(ccold);
3950 }
d2e7b7d0 3951 kfree(new);
2ed3a4ef 3952 return alloc_kmemlist(cachep);
1da177e4
LT
3953}
3954
b5d8ca7c 3955/* Called with cache_chain_mutex held always */
2ed3a4ef 3956static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3957{
3958 int err;
3959 int limit, shared;
3960
a737b3e2
AM
3961 /*
3962 * The head array serves three purposes:
1da177e4
LT
3963 * - create a LIFO ordering, i.e. return objects that are cache-warm
3964 * - reduce the number of spinlock operations.
a737b3e2 3965 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3966 * bufctl chains: array operations are cheaper.
3967 * The numbers are guessed, we should auto-tune as described by
3968 * Bonwick.
3969 */
3dafccf2 3970 if (cachep->buffer_size > 131072)
1da177e4 3971 limit = 1;
3dafccf2 3972 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3973 limit = 8;
3dafccf2 3974 else if (cachep->buffer_size > 1024)
1da177e4 3975 limit = 24;
3dafccf2 3976 else if (cachep->buffer_size > 256)
1da177e4
LT
3977 limit = 54;
3978 else
3979 limit = 120;
3980
a737b3e2
AM
3981 /*
3982 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3983 * allocation behaviour: Most allocs on one cpu, most free operations
3984 * on another cpu. For these cases, an efficient object passing between
3985 * cpus is necessary. This is provided by a shared array. The array
3986 * replaces Bonwick's magazine layer.
3987 * On uniprocessor, it's functionally equivalent (but less efficient)
3988 * to a larger limit. Thus disabled by default.
3989 */
3990 shared = 0;
364fbb29 3991 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3992 shared = 8;
1da177e4
LT
3993
3994#if DEBUG
a737b3e2
AM
3995 /*
3996 * With debugging enabled, large batchcount lead to excessively long
3997 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3998 */
3999 if (limit > 32)
4000 limit = 32;
4001#endif
b28a02de 4002 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4003 if (err)
4004 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4005 cachep->name, -err);
2ed3a4ef 4006 return err;
1da177e4
LT
4007}
4008
1b55253a
CL
4009/*
4010 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4011 * necessary. Note that the l3 listlock also protects the array_cache
4012 * if drain_array() is used on the shared array.
1b55253a
CL
4013 */
4014void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4015 struct array_cache *ac, int force, int node)
1da177e4
LT
4016{
4017 int tofree;
4018
1b55253a
CL
4019 if (!ac || !ac->avail)
4020 return;
1da177e4
LT
4021 if (ac->touched && !force) {
4022 ac->touched = 0;
b18e7e65 4023 } else {
1b55253a 4024 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4025 if (ac->avail) {
4026 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4027 if (tofree > ac->avail)
4028 tofree = (ac->avail + 1) / 2;
4029 free_block(cachep, ac->entry, tofree, node);
4030 ac->avail -= tofree;
4031 memmove(ac->entry, &(ac->entry[tofree]),
4032 sizeof(void *) * ac->avail);
4033 }
1b55253a 4034 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4035 }
4036}
4037
4038/**
4039 * cache_reap - Reclaim memory from caches.
05fb6bf0 4040 * @w: work descriptor
1da177e4
LT
4041 *
4042 * Called from workqueue/eventd every few seconds.
4043 * Purpose:
4044 * - clear the per-cpu caches for this CPU.
4045 * - return freeable pages to the main free memory pool.
4046 *
a737b3e2
AM
4047 * If we cannot acquire the cache chain mutex then just give up - we'll try
4048 * again on the next iteration.
1da177e4 4049 */
7c5cae36 4050static void cache_reap(struct work_struct *w)
1da177e4 4051{
7a7c381d 4052 struct kmem_cache *searchp;
e498be7d 4053 struct kmem_list3 *l3;
aab2207c 4054 int node = numa_node_id();
7c5cae36
CL
4055 struct delayed_work *work =
4056 container_of(w, struct delayed_work, work);
1da177e4 4057
7c5cae36 4058 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4059 /* Give up. Setup the next iteration. */
7c5cae36 4060 goto out;
1da177e4 4061
7a7c381d 4062 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4063 check_irq_on();
4064
35386e3b
CL
4065 /*
4066 * We only take the l3 lock if absolutely necessary and we
4067 * have established with reasonable certainty that
4068 * we can do some work if the lock was obtained.
4069 */
aab2207c 4070 l3 = searchp->nodelists[node];
35386e3b 4071
8fce4d8e 4072 reap_alien(searchp, l3);
1da177e4 4073
aab2207c 4074 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4075
35386e3b
CL
4076 /*
4077 * These are racy checks but it does not matter
4078 * if we skip one check or scan twice.
4079 */
e498be7d 4080 if (time_after(l3->next_reap, jiffies))
35386e3b 4081 goto next;
1da177e4 4082
e498be7d 4083 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4084
aab2207c 4085 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4086
ed11d9eb 4087 if (l3->free_touched)
e498be7d 4088 l3->free_touched = 0;
ed11d9eb
CL
4089 else {
4090 int freed;
1da177e4 4091
ed11d9eb
CL
4092 freed = drain_freelist(searchp, l3, (l3->free_limit +
4093 5 * searchp->num - 1) / (5 * searchp->num));
4094 STATS_ADD_REAPED(searchp, freed);
4095 }
35386e3b 4096next:
1da177e4
LT
4097 cond_resched();
4098 }
4099 check_irq_on();
fc0abb14 4100 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4101 next_reap_node();
7c5cae36 4102out:
a737b3e2 4103 /* Set up the next iteration */
7c5cae36 4104 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4105}
4106
158a9624 4107#ifdef CONFIG_SLABINFO
1da177e4 4108
85289f98 4109static void print_slabinfo_header(struct seq_file *m)
1da177e4 4110{
85289f98
PE
4111 /*
4112 * Output format version, so at least we can change it
4113 * without _too_ many complaints.
4114 */
1da177e4 4115#if STATS
85289f98 4116 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4117#else
85289f98 4118 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4119#endif
85289f98
PE
4120 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4121 "<objperslab> <pagesperslab>");
4122 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4123 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4124#if STATS
85289f98 4125 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4126 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4127 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4128#endif
85289f98
PE
4129 seq_putc(m, '\n');
4130}
4131
4132static void *s_start(struct seq_file *m, loff_t *pos)
4133{
4134 loff_t n = *pos;
85289f98 4135
fc0abb14 4136 mutex_lock(&cache_chain_mutex);
85289f98
PE
4137 if (!n)
4138 print_slabinfo_header(m);
b92151ba
PE
4139
4140 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4141}
4142
4143static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4144{
b92151ba 4145 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4146}
4147
4148static void s_stop(struct seq_file *m, void *p)
4149{
fc0abb14 4150 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4151}
4152
4153static int s_show(struct seq_file *m, void *p)
4154{
b92151ba 4155 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4156 struct slab *slabp;
4157 unsigned long active_objs;
4158 unsigned long num_objs;
4159 unsigned long active_slabs = 0;
4160 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4161 const char *name;
1da177e4 4162 char *error = NULL;
e498be7d
CL
4163 int node;
4164 struct kmem_list3 *l3;
1da177e4 4165
1da177e4
LT
4166 active_objs = 0;
4167 num_slabs = 0;
e498be7d
CL
4168 for_each_online_node(node) {
4169 l3 = cachep->nodelists[node];
4170 if (!l3)
4171 continue;
4172
ca3b9b91
RT
4173 check_irq_on();
4174 spin_lock_irq(&l3->list_lock);
e498be7d 4175
7a7c381d 4176 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4177 if (slabp->inuse != cachep->num && !error)
4178 error = "slabs_full accounting error";
4179 active_objs += cachep->num;
4180 active_slabs++;
4181 }
7a7c381d 4182 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4183 if (slabp->inuse == cachep->num && !error)
4184 error = "slabs_partial inuse accounting error";
4185 if (!slabp->inuse && !error)
4186 error = "slabs_partial/inuse accounting error";
4187 active_objs += slabp->inuse;
4188 active_slabs++;
4189 }
7a7c381d 4190 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4191 if (slabp->inuse && !error)
4192 error = "slabs_free/inuse accounting error";
4193 num_slabs++;
4194 }
4195 free_objects += l3->free_objects;
4484ebf1
RT
4196 if (l3->shared)
4197 shared_avail += l3->shared->avail;
e498be7d 4198
ca3b9b91 4199 spin_unlock_irq(&l3->list_lock);
1da177e4 4200 }
b28a02de
PE
4201 num_slabs += active_slabs;
4202 num_objs = num_slabs * cachep->num;
e498be7d 4203 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4204 error = "free_objects accounting error";
4205
b28a02de 4206 name = cachep->name;
1da177e4
LT
4207 if (error)
4208 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4209
4210 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4211 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4212 cachep->num, (1 << cachep->gfporder));
1da177e4 4213 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4214 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4215 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4216 active_slabs, num_slabs, shared_avail);
1da177e4 4217#if STATS
b28a02de 4218 { /* list3 stats */
1da177e4
LT
4219 unsigned long high = cachep->high_mark;
4220 unsigned long allocs = cachep->num_allocations;
4221 unsigned long grown = cachep->grown;
4222 unsigned long reaped = cachep->reaped;
4223 unsigned long errors = cachep->errors;
4224 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4225 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4226 unsigned long node_frees = cachep->node_frees;
fb7faf33 4227 unsigned long overflows = cachep->node_overflow;
1da177e4 4228
e498be7d 4229 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4230 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4231 reaped, errors, max_freeable, node_allocs,
fb7faf33 4232 node_frees, overflows);
1da177e4
LT
4233 }
4234 /* cpu stats */
4235 {
4236 unsigned long allochit = atomic_read(&cachep->allochit);
4237 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4238 unsigned long freehit = atomic_read(&cachep->freehit);
4239 unsigned long freemiss = atomic_read(&cachep->freemiss);
4240
4241 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4242 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4243 }
4244#endif
4245 seq_putc(m, '\n');
1da177e4
LT
4246 return 0;
4247}
4248
4249/*
4250 * slabinfo_op - iterator that generates /proc/slabinfo
4251 *
4252 * Output layout:
4253 * cache-name
4254 * num-active-objs
4255 * total-objs
4256 * object size
4257 * num-active-slabs
4258 * total-slabs
4259 * num-pages-per-slab
4260 * + further values on SMP and with statistics enabled
4261 */
4262
15ad7cdc 4263const struct seq_operations slabinfo_op = {
b28a02de
PE
4264 .start = s_start,
4265 .next = s_next,
4266 .stop = s_stop,
4267 .show = s_show,
1da177e4
LT
4268};
4269
4270#define MAX_SLABINFO_WRITE 128
4271/**
4272 * slabinfo_write - Tuning for the slab allocator
4273 * @file: unused
4274 * @buffer: user buffer
4275 * @count: data length
4276 * @ppos: unused
4277 */
b28a02de
PE
4278ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4279 size_t count, loff_t *ppos)
1da177e4 4280{
b28a02de 4281 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4282 int limit, batchcount, shared, res;
7a7c381d 4283 struct kmem_cache *cachep;
b28a02de 4284
1da177e4
LT
4285 if (count > MAX_SLABINFO_WRITE)
4286 return -EINVAL;
4287 if (copy_from_user(&kbuf, buffer, count))
4288 return -EFAULT;
b28a02de 4289 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4290
4291 tmp = strchr(kbuf, ' ');
4292 if (!tmp)
4293 return -EINVAL;
4294 *tmp = '\0';
4295 tmp++;
4296 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4297 return -EINVAL;
4298
4299 /* Find the cache in the chain of caches. */
fc0abb14 4300 mutex_lock(&cache_chain_mutex);
1da177e4 4301 res = -EINVAL;
7a7c381d 4302 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4303 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4304 if (limit < 1 || batchcount < 1 ||
4305 batchcount > limit || shared < 0) {
e498be7d 4306 res = 0;
1da177e4 4307 } else {
e498be7d 4308 res = do_tune_cpucache(cachep, limit,
b28a02de 4309 batchcount, shared);
1da177e4
LT
4310 }
4311 break;
4312 }
4313 }
fc0abb14 4314 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4315 if (res >= 0)
4316 res = count;
4317 return res;
4318}
871751e2
AV
4319
4320#ifdef CONFIG_DEBUG_SLAB_LEAK
4321
4322static void *leaks_start(struct seq_file *m, loff_t *pos)
4323{
871751e2 4324 mutex_lock(&cache_chain_mutex);
b92151ba 4325 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4326}
4327
4328static inline int add_caller(unsigned long *n, unsigned long v)
4329{
4330 unsigned long *p;
4331 int l;
4332 if (!v)
4333 return 1;
4334 l = n[1];
4335 p = n + 2;
4336 while (l) {
4337 int i = l/2;
4338 unsigned long *q = p + 2 * i;
4339 if (*q == v) {
4340 q[1]++;
4341 return 1;
4342 }
4343 if (*q > v) {
4344 l = i;
4345 } else {
4346 p = q + 2;
4347 l -= i + 1;
4348 }
4349 }
4350 if (++n[1] == n[0])
4351 return 0;
4352 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4353 p[0] = v;
4354 p[1] = 1;
4355 return 1;
4356}
4357
4358static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4359{
4360 void *p;
4361 int i;
4362 if (n[0] == n[1])
4363 return;
4364 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4365 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4366 continue;
4367 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4368 return;
4369 }
4370}
4371
4372static void show_symbol(struct seq_file *m, unsigned long address)
4373{
4374#ifdef CONFIG_KALLSYMS
871751e2 4375 unsigned long offset, size;
9281acea 4376 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4377
a5c43dae 4378 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4379 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4380 if (modname[0])
871751e2
AV
4381 seq_printf(m, " [%s]", modname);
4382 return;
4383 }
4384#endif
4385 seq_printf(m, "%p", (void *)address);
4386}
4387
4388static int leaks_show(struct seq_file *m, void *p)
4389{
b92151ba 4390 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4391 struct slab *slabp;
4392 struct kmem_list3 *l3;
4393 const char *name;
4394 unsigned long *n = m->private;
4395 int node;
4396 int i;
4397
4398 if (!(cachep->flags & SLAB_STORE_USER))
4399 return 0;
4400 if (!(cachep->flags & SLAB_RED_ZONE))
4401 return 0;
4402
4403 /* OK, we can do it */
4404
4405 n[1] = 0;
4406
4407 for_each_online_node(node) {
4408 l3 = cachep->nodelists[node];
4409 if (!l3)
4410 continue;
4411
4412 check_irq_on();
4413 spin_lock_irq(&l3->list_lock);
4414
7a7c381d 4415 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4416 handle_slab(n, cachep, slabp);
7a7c381d 4417 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4418 handle_slab(n, cachep, slabp);
871751e2
AV
4419 spin_unlock_irq(&l3->list_lock);
4420 }
4421 name = cachep->name;
4422 if (n[0] == n[1]) {
4423 /* Increase the buffer size */
4424 mutex_unlock(&cache_chain_mutex);
4425 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4426 if (!m->private) {
4427 /* Too bad, we are really out */
4428 m->private = n;
4429 mutex_lock(&cache_chain_mutex);
4430 return -ENOMEM;
4431 }
4432 *(unsigned long *)m->private = n[0] * 2;
4433 kfree(n);
4434 mutex_lock(&cache_chain_mutex);
4435 /* Now make sure this entry will be retried */
4436 m->count = m->size;
4437 return 0;
4438 }
4439 for (i = 0; i < n[1]; i++) {
4440 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4441 show_symbol(m, n[2*i+2]);
4442 seq_putc(m, '\n');
4443 }
d2e7b7d0 4444
871751e2
AV
4445 return 0;
4446}
4447
15ad7cdc 4448const struct seq_operations slabstats_op = {
871751e2
AV
4449 .start = leaks_start,
4450 .next = s_next,
4451 .stop = s_stop,
4452 .show = leaks_show,
4453};
4454#endif
1da177e4
LT
4455#endif
4456
00e145b6
MS
4457/**
4458 * ksize - get the actual amount of memory allocated for a given object
4459 * @objp: Pointer to the object
4460 *
4461 * kmalloc may internally round up allocations and return more memory
4462 * than requested. ksize() can be used to determine the actual amount of
4463 * memory allocated. The caller may use this additional memory, even though
4464 * a smaller amount of memory was initially specified with the kmalloc call.
4465 * The caller must guarantee that objp points to a valid object previously
4466 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4467 * must not be freed during the duration of the call.
4468 */
fd76bab2 4469size_t ksize(const void *objp)
1da177e4 4470{
ef8b4520
CL
4471 BUG_ON(!objp);
4472 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4473 return 0;
1da177e4 4474
6ed5eb22 4475 return obj_size(virt_to_cache(objp));
1da177e4 4476}
f8fcc933 4477EXPORT_SYMBOL(ksize);