mm, page_alloc: actually ignore mempolicies for high priority allocations
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b 109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
4595ef88 299 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
4595ef88 303 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
304 inode->i_mapping->nrpages += pages;
305
800d8c63
KS
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 312 unsigned long flags;
800d8c63 313
4595ef88 314 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
4595ef88 318 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 319
0f079694 320 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
321}
322
7a5d0fbb
HD
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
f7942430 329 struct radix_tree_node *node;
5b9c98f3 330 void __rcu **pslot;
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
b93b0163 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
f7942430 336 if (!item)
6dbaf22c 337 return -ENOENT;
7a5d0fbb
HD
338 if (item != expected)
339 return -ENOENT;
b93b0163 340 __radix_tree_replace(&mapping->i_pages, node, pslot,
c7df8ad2 341 replacement, NULL);
7a5d0fbb
HD
342 return 0;
343}
344
d1899228
HD
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
b93b0163 358 item = radix_tree_lookup(&mapping->i_pages, index);
d1899228
HD
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
5a6e75f8
KS
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
e496cf3d 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
5b9c98f3 398static int shmem_huge __read_mostly;
5a6e75f8 399
f1f5929c 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
f1f5929c 438#endif
5a6e75f8 439
779750d2
KS
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
253fd0f0 444 LIST_HEAD(to_remove);
779750d2
KS
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 471 list_move(&info->shrinklist, &to_remove);
779750d2 472 removed++;
779750d2
KS
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
253fd0f0
KS
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
779750d2
KS
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
b3cd54b2
KS
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
779750d2 498
b3cd54b2 499 page = find_get_page(inode->i_mapping,
779750d2
KS
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
b3cd54b2 504 /* No huge page at the end of the file: nothing to split */
779750d2 505 if (!PageTransHuge(page)) {
779750d2
KS
506 put_page(page);
507 goto drop;
508 }
509
b3cd54b2
KS
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
779750d2
KS
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
b3cd54b2
KS
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
779750d2
KS
529
530 split++;
531drop:
532 list_del_init(&info->shrinklist);
533 removed++;
b3cd54b2 534leave:
779750d2
KS
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544}
545
546static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548{
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555}
556
557static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559{
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562}
e496cf3d 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
564
565#define shmem_huge SHMEM_HUGE_DENY
566
779750d2
KS
567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569{
570 return 0;
571}
e496cf3d 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 573
89fdcd26
YS
574static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
575{
576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
577 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
578 shmem_huge != SHMEM_HUGE_DENY)
579 return true;
580 return false;
581}
582
46f65ec1
HD
583/*
584 * Like add_to_page_cache_locked, but error if expected item has gone.
585 */
586static int shmem_add_to_page_cache(struct page *page,
587 struct address_space *mapping,
fed400a1 588 pgoff_t index, void *expected)
46f65ec1 589{
800d8c63 590 int error, nr = hpage_nr_pages(page);
46f65ec1 591
800d8c63
KS
592 VM_BUG_ON_PAGE(PageTail(page), page);
593 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
594 VM_BUG_ON_PAGE(!PageLocked(page), page);
595 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 596 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 597
800d8c63 598 page_ref_add(page, nr);
b065b432
HD
599 page->mapping = mapping;
600 page->index = index;
601
b93b0163 602 xa_lock_irq(&mapping->i_pages);
800d8c63
KS
603 if (PageTransHuge(page)) {
604 void __rcu **results;
605 pgoff_t idx;
606 int i;
607
608 error = 0;
b93b0163 609 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
800d8c63
KS
610 &results, &idx, index, 1) &&
611 idx < index + HPAGE_PMD_NR) {
612 error = -EEXIST;
613 }
614
615 if (!error) {
616 for (i = 0; i < HPAGE_PMD_NR; i++) {
b93b0163 617 error = radix_tree_insert(&mapping->i_pages,
800d8c63
KS
618 index + i, page + i);
619 VM_BUG_ON(error);
620 }
621 count_vm_event(THP_FILE_ALLOC);
622 }
623 } else if (!expected) {
b93b0163 624 error = radix_tree_insert(&mapping->i_pages, index, page);
800d8c63 625 } else {
b065b432
HD
626 error = shmem_radix_tree_replace(mapping, index, expected,
627 page);
800d8c63
KS
628 }
629
46f65ec1 630 if (!error) {
800d8c63
KS
631 mapping->nrpages += nr;
632 if (PageTransHuge(page))
11fb9989
MG
633 __inc_node_page_state(page, NR_SHMEM_THPS);
634 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
635 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b93b0163 636 xa_unlock_irq(&mapping->i_pages);
b065b432
HD
637 } else {
638 page->mapping = NULL;
b93b0163 639 xa_unlock_irq(&mapping->i_pages);
800d8c63 640 page_ref_sub(page, nr);
46f65ec1 641 }
46f65ec1
HD
642 return error;
643}
644
6922c0c7
HD
645/*
646 * Like delete_from_page_cache, but substitutes swap for page.
647 */
648static void shmem_delete_from_page_cache(struct page *page, void *radswap)
649{
650 struct address_space *mapping = page->mapping;
651 int error;
652
800d8c63
KS
653 VM_BUG_ON_PAGE(PageCompound(page), page);
654
b93b0163 655 xa_lock_irq(&mapping->i_pages);
6922c0c7
HD
656 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
657 page->mapping = NULL;
658 mapping->nrpages--;
11fb9989
MG
659 __dec_node_page_state(page, NR_FILE_PAGES);
660 __dec_node_page_state(page, NR_SHMEM);
b93b0163 661 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 662 put_page(page);
6922c0c7
HD
663 BUG_ON(error);
664}
665
7a5d0fbb
HD
666/*
667 * Remove swap entry from radix tree, free the swap and its page cache.
668 */
669static int shmem_free_swap(struct address_space *mapping,
670 pgoff_t index, void *radswap)
671{
6dbaf22c 672 void *old;
7a5d0fbb 673
b93b0163
MW
674 xa_lock_irq(&mapping->i_pages);
675 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
676 xa_unlock_irq(&mapping->i_pages);
6dbaf22c
JW
677 if (old != radswap)
678 return -ENOENT;
679 free_swap_and_cache(radix_to_swp_entry(radswap));
680 return 0;
7a5d0fbb
HD
681}
682
6a15a370
VB
683/*
684 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 685 * given offsets are swapped out.
6a15a370 686 *
b93b0163 687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
688 * as long as the inode doesn't go away and racy results are not a problem.
689 */
48131e03
VB
690unsigned long shmem_partial_swap_usage(struct address_space *mapping,
691 pgoff_t start, pgoff_t end)
6a15a370 692{
6a15a370 693 struct radix_tree_iter iter;
5b9c98f3 694 void __rcu **slot;
6a15a370 695 struct page *page;
48131e03 696 unsigned long swapped = 0;
6a15a370
VB
697
698 rcu_read_lock();
699
b93b0163 700 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
6a15a370
VB
701 if (iter.index >= end)
702 break;
703
704 page = radix_tree_deref_slot(slot);
705
2cf938aa
MW
706 if (radix_tree_deref_retry(page)) {
707 slot = radix_tree_iter_retry(&iter);
708 continue;
709 }
6a15a370
VB
710
711 if (radix_tree_exceptional_entry(page))
712 swapped++;
713
714 if (need_resched()) {
148deab2 715 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 716 cond_resched_rcu();
6a15a370
VB
717 }
718 }
719
720 rcu_read_unlock();
721
722 return swapped << PAGE_SHIFT;
723}
724
48131e03
VB
725/*
726 * Determine (in bytes) how many of the shmem object's pages mapped by the
727 * given vma is swapped out.
728 *
b93b0163 729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
730 * as long as the inode doesn't go away and racy results are not a problem.
731 */
732unsigned long shmem_swap_usage(struct vm_area_struct *vma)
733{
734 struct inode *inode = file_inode(vma->vm_file);
735 struct shmem_inode_info *info = SHMEM_I(inode);
736 struct address_space *mapping = inode->i_mapping;
737 unsigned long swapped;
738
739 /* Be careful as we don't hold info->lock */
740 swapped = READ_ONCE(info->swapped);
741
742 /*
743 * The easier cases are when the shmem object has nothing in swap, or
744 * the vma maps it whole. Then we can simply use the stats that we
745 * already track.
746 */
747 if (!swapped)
748 return 0;
749
750 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
751 return swapped << PAGE_SHIFT;
752
753 /* Here comes the more involved part */
754 return shmem_partial_swap_usage(mapping,
755 linear_page_index(vma, vma->vm_start),
756 linear_page_index(vma, vma->vm_end));
757}
758
24513264
HD
759/*
760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
761 */
762void shmem_unlock_mapping(struct address_space *mapping)
763{
764 struct pagevec pvec;
765 pgoff_t indices[PAGEVEC_SIZE];
766 pgoff_t index = 0;
767
86679820 768 pagevec_init(&pvec);
24513264
HD
769 /*
770 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
771 */
772 while (!mapping_unevictable(mapping)) {
773 /*
774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
776 */
0cd6144a
JW
777 pvec.nr = find_get_entries(mapping, index,
778 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
779 if (!pvec.nr)
780 break;
781 index = indices[pvec.nr - 1] + 1;
0cd6144a 782 pagevec_remove_exceptionals(&pvec);
24513264
HD
783 check_move_unevictable_pages(pvec.pages, pvec.nr);
784 pagevec_release(&pvec);
785 cond_resched();
786 }
7a5d0fbb
HD
787}
788
789/*
790 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 792 */
1635f6a7
HD
793static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
794 bool unfalloc)
1da177e4 795{
285b2c4f 796 struct address_space *mapping = inode->i_mapping;
1da177e4 797 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
798 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
799 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
800 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
801 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 802 struct pagevec pvec;
7a5d0fbb
HD
803 pgoff_t indices[PAGEVEC_SIZE];
804 long nr_swaps_freed = 0;
285b2c4f 805 pgoff_t index;
bda97eab
HD
806 int i;
807
83e4fa9c
HD
808 if (lend == -1)
809 end = -1; /* unsigned, so actually very big */
bda97eab 810
86679820 811 pagevec_init(&pvec);
bda97eab 812 index = start;
83e4fa9c 813 while (index < end) {
0cd6144a
JW
814 pvec.nr = find_get_entries(mapping, index,
815 min(end - index, (pgoff_t)PAGEVEC_SIZE),
816 pvec.pages, indices);
7a5d0fbb
HD
817 if (!pvec.nr)
818 break;
bda97eab
HD
819 for (i = 0; i < pagevec_count(&pvec); i++) {
820 struct page *page = pvec.pages[i];
821
7a5d0fbb 822 index = indices[i];
83e4fa9c 823 if (index >= end)
bda97eab
HD
824 break;
825
7a5d0fbb 826 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
827 if (unfalloc)
828 continue;
7a5d0fbb
HD
829 nr_swaps_freed += !shmem_free_swap(mapping,
830 index, page);
bda97eab 831 continue;
7a5d0fbb
HD
832 }
833
800d8c63
KS
834 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
835
7a5d0fbb 836 if (!trylock_page(page))
bda97eab 837 continue;
800d8c63
KS
838
839 if (PageTransTail(page)) {
840 /* Middle of THP: zero out the page */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 } else if (PageTransHuge(page)) {
845 if (index == round_down(end, HPAGE_PMD_NR)) {
846 /*
847 * Range ends in the middle of THP:
848 * zero out the page
849 */
850 clear_highpage(page);
851 unlock_page(page);
852 continue;
853 }
854 index += HPAGE_PMD_NR - 1;
855 i += HPAGE_PMD_NR - 1;
856 }
857
1635f6a7 858 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
859 VM_BUG_ON_PAGE(PageTail(page), page);
860 if (page_mapping(page) == mapping) {
309381fe 861 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
862 truncate_inode_page(mapping, page);
863 }
bda97eab 864 }
bda97eab
HD
865 unlock_page(page);
866 }
0cd6144a 867 pagevec_remove_exceptionals(&pvec);
24513264 868 pagevec_release(&pvec);
bda97eab
HD
869 cond_resched();
870 index++;
871 }
1da177e4 872
83e4fa9c 873 if (partial_start) {
bda97eab 874 struct page *page = NULL;
9e18eb29 875 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 876 if (page) {
09cbfeaf 877 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
878 if (start > end) {
879 top = partial_end;
880 partial_end = 0;
881 }
882 zero_user_segment(page, partial_start, top);
883 set_page_dirty(page);
884 unlock_page(page);
09cbfeaf 885 put_page(page);
83e4fa9c
HD
886 }
887 }
888 if (partial_end) {
889 struct page *page = NULL;
9e18eb29 890 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
891 if (page) {
892 zero_user_segment(page, 0, partial_end);
bda97eab
HD
893 set_page_dirty(page);
894 unlock_page(page);
09cbfeaf 895 put_page(page);
bda97eab
HD
896 }
897 }
83e4fa9c
HD
898 if (start >= end)
899 return;
bda97eab
HD
900
901 index = start;
b1a36650 902 while (index < end) {
bda97eab 903 cond_resched();
0cd6144a
JW
904
905 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 906 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 907 pvec.pages, indices);
7a5d0fbb 908 if (!pvec.nr) {
b1a36650
HD
909 /* If all gone or hole-punch or unfalloc, we're done */
910 if (index == start || end != -1)
bda97eab 911 break;
b1a36650 912 /* But if truncating, restart to make sure all gone */
bda97eab
HD
913 index = start;
914 continue;
915 }
bda97eab
HD
916 for (i = 0; i < pagevec_count(&pvec); i++) {
917 struct page *page = pvec.pages[i];
918
7a5d0fbb 919 index = indices[i];
83e4fa9c 920 if (index >= end)
bda97eab
HD
921 break;
922
7a5d0fbb 923 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
924 if (unfalloc)
925 continue;
b1a36650
HD
926 if (shmem_free_swap(mapping, index, page)) {
927 /* Swap was replaced by page: retry */
928 index--;
929 break;
930 }
931 nr_swaps_freed++;
7a5d0fbb
HD
932 continue;
933 }
934
bda97eab 935 lock_page(page);
800d8c63
KS
936
937 if (PageTransTail(page)) {
938 /* Middle of THP: zero out the page */
939 clear_highpage(page);
940 unlock_page(page);
941 /*
942 * Partial thp truncate due 'start' in middle
943 * of THP: don't need to look on these pages
944 * again on !pvec.nr restart.
945 */
946 if (index != round_down(end, HPAGE_PMD_NR))
947 start++;
948 continue;
949 } else if (PageTransHuge(page)) {
950 if (index == round_down(end, HPAGE_PMD_NR)) {
951 /*
952 * Range ends in the middle of THP:
953 * zero out the page
954 */
955 clear_highpage(page);
956 unlock_page(page);
957 continue;
958 }
959 index += HPAGE_PMD_NR - 1;
960 i += HPAGE_PMD_NR - 1;
961 }
962
1635f6a7 963 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
964 VM_BUG_ON_PAGE(PageTail(page), page);
965 if (page_mapping(page) == mapping) {
309381fe 966 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 967 truncate_inode_page(mapping, page);
b1a36650
HD
968 } else {
969 /* Page was replaced by swap: retry */
970 unlock_page(page);
971 index--;
972 break;
1635f6a7 973 }
7a5d0fbb 974 }
bda97eab
HD
975 unlock_page(page);
976 }
0cd6144a 977 pagevec_remove_exceptionals(&pvec);
24513264 978 pagevec_release(&pvec);
bda97eab
HD
979 index++;
980 }
94c1e62d 981
4595ef88 982 spin_lock_irq(&info->lock);
7a5d0fbb 983 info->swapped -= nr_swaps_freed;
1da177e4 984 shmem_recalc_inode(inode);
4595ef88 985 spin_unlock_irq(&info->lock);
1635f6a7 986}
1da177e4 987
1635f6a7
HD
988void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
989{
990 shmem_undo_range(inode, lstart, lend, false);
078cd827 991 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 992}
94c1e62d 993EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 994
a528d35e
DH
995static int shmem_getattr(const struct path *path, struct kstat *stat,
996 u32 request_mask, unsigned int query_flags)
44a30220 997{
a528d35e 998 struct inode *inode = path->dentry->d_inode;
44a30220 999 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1000 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1001
d0424c42 1002 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1003 spin_lock_irq(&info->lock);
d0424c42 1004 shmem_recalc_inode(inode);
4595ef88 1005 spin_unlock_irq(&info->lock);
d0424c42 1006 }
44a30220 1007 generic_fillattr(inode, stat);
89fdcd26
YS
1008
1009 if (is_huge_enabled(sb_info))
1010 stat->blksize = HPAGE_PMD_SIZE;
1011
44a30220
YZ
1012 return 0;
1013}
1014
94c1e62d 1015static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1016{
75c3cfa8 1017 struct inode *inode = d_inode(dentry);
40e041a2 1018 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1019 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1020 int error;
1021
31051c85 1022 error = setattr_prepare(dentry, attr);
db78b877
CH
1023 if (error)
1024 return error;
1025
94c1e62d
HD
1026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1027 loff_t oldsize = inode->i_size;
1028 loff_t newsize = attr->ia_size;
3889e6e7 1029
40e041a2
DH
1030 /* protected by i_mutex */
1031 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1032 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1033 return -EPERM;
1034
94c1e62d 1035 if (newsize != oldsize) {
77142517
KK
1036 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1037 oldsize, newsize);
1038 if (error)
1039 return error;
94c1e62d 1040 i_size_write(inode, newsize);
078cd827 1041 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1042 }
afa2db2f 1043 if (newsize <= oldsize) {
94c1e62d 1044 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1045 if (oldsize > holebegin)
1046 unmap_mapping_range(inode->i_mapping,
1047 holebegin, 0, 1);
1048 if (info->alloced)
1049 shmem_truncate_range(inode,
1050 newsize, (loff_t)-1);
94c1e62d 1051 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
779750d2
KS
1055
1056 /*
1057 * Part of the huge page can be beyond i_size: subject
1058 * to shrink under memory pressure.
1059 */
1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1061 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1062 /*
1063 * _careful to defend against unlocked access to
1064 * ->shrink_list in shmem_unused_huge_shrink()
1065 */
1066 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1067 list_add_tail(&info->shrinklist,
1068 &sbinfo->shrinklist);
1069 sbinfo->shrinklist_len++;
1070 }
1071 spin_unlock(&sbinfo->shrinklist_lock);
1072 }
94c1e62d 1073 }
1da177e4
LT
1074 }
1075
db78b877 1076 setattr_copy(inode, attr);
db78b877 1077 if (attr->ia_valid & ATTR_MODE)
feda821e 1078 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1079 return error;
1080}
1081
1f895f75 1082static void shmem_evict_inode(struct inode *inode)
1da177e4 1083{
1da177e4 1084 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1086
3889e6e7 1087 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1088 shmem_unacct_size(info->flags, inode->i_size);
1089 inode->i_size = 0;
3889e6e7 1090 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1091 if (!list_empty(&info->shrinklist)) {
1092 spin_lock(&sbinfo->shrinklist_lock);
1093 if (!list_empty(&info->shrinklist)) {
1094 list_del_init(&info->shrinklist);
1095 sbinfo->shrinklist_len--;
1096 }
1097 spin_unlock(&sbinfo->shrinklist_lock);
1098 }
1da177e4 1099 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1100 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1101 list_del_init(&info->swaplist);
cb5f7b9a 1102 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1103 }
3ed47db3 1104 }
b09e0fa4 1105
38f38657 1106 simple_xattrs_free(&info->xattrs);
0f3c42f5 1107 WARN_ON(inode->i_blocks);
5b04c689 1108 shmem_free_inode(inode->i_sb);
dbd5768f 1109 clear_inode(inode);
1da177e4
LT
1110}
1111
478922e2
MW
1112static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1113{
1114 struct radix_tree_iter iter;
5b9c98f3 1115 void __rcu **slot;
478922e2
MW
1116 unsigned long found = -1;
1117 unsigned int checked = 0;
1118
1119 rcu_read_lock();
1120 radix_tree_for_each_slot(slot, root, &iter, 0) {
5b9c98f3
MK
1121 void *entry = radix_tree_deref_slot(slot);
1122
1123 if (radix_tree_deref_retry(entry)) {
1124 slot = radix_tree_iter_retry(&iter);
1125 continue;
1126 }
1127 if (entry == item) {
478922e2
MW
1128 found = iter.index;
1129 break;
1130 }
1131 checked++;
1132 if ((checked % 4096) != 0)
1133 continue;
1134 slot = radix_tree_iter_resume(slot, &iter);
1135 cond_resched_rcu();
1136 }
1137
1138 rcu_read_unlock();
1139 return found;
1140}
1141
46f65ec1
HD
1142/*
1143 * If swap found in inode, free it and move page from swapcache to filecache.
1144 */
41ffe5d5 1145static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1146 swp_entry_t swap, struct page **pagep)
1da177e4 1147{
285b2c4f 1148 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1149 void *radswap;
41ffe5d5 1150 pgoff_t index;
bde05d1c
HD
1151 gfp_t gfp;
1152 int error = 0;
1da177e4 1153
46f65ec1 1154 radswap = swp_to_radix_entry(swap);
b93b0163 1155 index = find_swap_entry(&mapping->i_pages, radswap);
46f65ec1 1156 if (index == -1)
00501b53 1157 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1158
1b1b32f2
HD
1159 /*
1160 * Move _head_ to start search for next from here.
1f895f75 1161 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1162 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1163 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1164 */
1165 if (shmem_swaplist.next != &info->swaplist)
1166 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1167
bde05d1c
HD
1168 gfp = mapping_gfp_mask(mapping);
1169 if (shmem_should_replace_page(*pagep, gfp)) {
1170 mutex_unlock(&shmem_swaplist_mutex);
1171 error = shmem_replace_page(pagep, gfp, info, index);
1172 mutex_lock(&shmem_swaplist_mutex);
1173 /*
1174 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1175 * allocation, but the inode might have been freed while we
1176 * dropped it: although a racing shmem_evict_inode() cannot
1177 * complete without emptying the radix_tree, our page lock
1178 * on this swapcache page is not enough to prevent that -
1179 * free_swap_and_cache() of our swap entry will only
1180 * trylock_page(), removing swap from radix_tree whatever.
1181 *
1182 * We must not proceed to shmem_add_to_page_cache() if the
1183 * inode has been freed, but of course we cannot rely on
1184 * inode or mapping or info to check that. However, we can
1185 * safely check if our swap entry is still in use (and here
1186 * it can't have got reused for another page): if it's still
1187 * in use, then the inode cannot have been freed yet, and we
1188 * can safely proceed (if it's no longer in use, that tells
1189 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1190 */
1191 if (!page_swapcount(*pagep))
1192 error = -ENOENT;
1193 }
1194
d13d1443 1195 /*
778dd893
HD
1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1199 */
bde05d1c
HD
1200 if (!error)
1201 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1202 radswap);
48f170fb 1203 if (error != -ENOMEM) {
46f65ec1
HD
1204 /*
1205 * Truncation and eviction use free_swap_and_cache(), which
1206 * only does trylock page: if we raced, best clean up here.
1207 */
bde05d1c
HD
1208 delete_from_swap_cache(*pagep);
1209 set_page_dirty(*pagep);
46f65ec1 1210 if (!error) {
4595ef88 1211 spin_lock_irq(&info->lock);
46f65ec1 1212 info->swapped--;
4595ef88 1213 spin_unlock_irq(&info->lock);
46f65ec1
HD
1214 swap_free(swap);
1215 }
1da177e4 1216 }
2e0e26c7 1217 return error;
1da177e4
LT
1218}
1219
1220/*
46f65ec1 1221 * Search through swapped inodes to find and replace swap by page.
1da177e4 1222 */
41ffe5d5 1223int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1224{
41ffe5d5 1225 struct list_head *this, *next;
1da177e4 1226 struct shmem_inode_info *info;
00501b53 1227 struct mem_cgroup *memcg;
bde05d1c
HD
1228 int error = 0;
1229
1230 /*
1231 * There's a faint possibility that swap page was replaced before
0142ef6c 1232 * caller locked it: caller will come back later with the right page.
bde05d1c 1233 */
0142ef6c 1234 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1235 goto out;
778dd893
HD
1236
1237 /*
1238 * Charge page using GFP_KERNEL while we can wait, before taking
1239 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 * Charged back to the user (not to caller) when swap account is used.
778dd893 1241 */
2cf85583
TH
1242 error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1243 &memcg, false);
778dd893
HD
1244 if (error)
1245 goto out;
46f65ec1 1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1247 error = -EAGAIN;
1da177e4 1248
cb5f7b9a 1249 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1250 list_for_each_safe(this, next, &shmem_swaplist) {
1251 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1252 if (info->swapped)
00501b53 1253 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1254 else
1255 list_del_init(&info->swaplist);
cb5f7b9a 1256 cond_resched();
00501b53 1257 if (error != -EAGAIN)
778dd893 1258 break;
00501b53 1259 /* found nothing in this: move on to search the next */
1da177e4 1260 }
cb5f7b9a 1261 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1262
00501b53
JW
1263 if (error) {
1264 if (error != -ENOMEM)
1265 error = 0;
f627c2f5 1266 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1267 } else
f627c2f5 1268 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1269out:
aaa46865 1270 unlock_page(page);
09cbfeaf 1271 put_page(page);
778dd893 1272 return error;
1da177e4
LT
1273}
1274
1275/*
1276 * Move the page from the page cache to the swap cache.
1277 */
1278static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279{
1280 struct shmem_inode_info *info;
1da177e4 1281 struct address_space *mapping;
1da177e4 1282 struct inode *inode;
6922c0c7
HD
1283 swp_entry_t swap;
1284 pgoff_t index;
1da177e4 1285
800d8c63 1286 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1287 BUG_ON(!PageLocked(page));
1da177e4
LT
1288 mapping = page->mapping;
1289 index = page->index;
1290 inode = mapping->host;
1291 info = SHMEM_I(inode);
1292 if (info->flags & VM_LOCKED)
1293 goto redirty;
d9fe526a 1294 if (!total_swap_pages)
1da177e4
LT
1295 goto redirty;
1296
d9fe526a 1297 /*
97b713ba
CH
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1302 * threads or sync.
d9fe526a 1303 */
48f170fb
HD
1304 if (!wbc->for_reclaim) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1306 goto redirty;
1307 }
1635f6a7
HD
1308
1309 /*
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1313 *
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1319 */
1320 if (!PageUptodate(page)) {
1aac1400
HD
1321 if (inode->i_private) {
1322 struct shmem_falloc *shmem_falloc;
1323 spin_lock(&inode->i_lock);
1324 shmem_falloc = inode->i_private;
1325 if (shmem_falloc &&
8e205f77 1326 !shmem_falloc->waitq &&
1aac1400
HD
1327 index >= shmem_falloc->start &&
1328 index < shmem_falloc->next)
1329 shmem_falloc->nr_unswapped++;
1330 else
1331 shmem_falloc = NULL;
1332 spin_unlock(&inode->i_lock);
1333 if (shmem_falloc)
1334 goto redirty;
1335 }
1635f6a7
HD
1336 clear_highpage(page);
1337 flush_dcache_page(page);
1338 SetPageUptodate(page);
1339 }
1340
38d8b4e6 1341 swap = get_swap_page(page);
48f170fb
HD
1342 if (!swap.val)
1343 goto redirty;
d9fe526a 1344
b1dea800
HD
1345 /*
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
b1dea800 1349 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1352 */
48f170fb
HD
1353 mutex_lock(&shmem_swaplist_mutex);
1354 if (list_empty(&info->swaplist))
1355 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1356
48f170fb 1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1358 spin_lock_irq(&info->lock);
6922c0c7 1359 shmem_recalc_inode(inode);
267a4c76 1360 info->swapped++;
4595ef88 1361 spin_unlock_irq(&info->lock);
6922c0c7 1362
267a4c76
HD
1363 swap_shmem_alloc(swap);
1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365
6922c0c7 1366 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1367 BUG_ON(page_mapped(page));
9fab5619 1368 swap_writepage(page, wbc);
1da177e4
LT
1369 return 0;
1370 }
1371
6922c0c7 1372 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1373 put_swap_page(page, swap);
1da177e4
LT
1374redirty:
1375 set_page_dirty(page);
d9fe526a
HD
1376 if (wbc->for_reclaim)
1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1378 unlock_page(page);
1379 return 0;
1da177e4
LT
1380}
1381
75edd345 1382#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1383static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1384{
095f1fc4 1385 char buffer[64];
680d794b 1386
71fe804b 1387 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1388 return; /* show nothing */
680d794b 1389
a7a88b23 1390 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1391
1392 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1393}
71fe804b
LS
1394
1395static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396{
1397 struct mempolicy *mpol = NULL;
1398 if (sbinfo->mpol) {
1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1400 mpol = sbinfo->mpol;
1401 mpol_get(mpol);
1402 spin_unlock(&sbinfo->stat_lock);
1403 }
1404 return mpol;
1405}
75edd345
HD
1406#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408{
1409}
1410static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412 return NULL;
1413}
1414#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415#ifndef CONFIG_NUMA
1416#define vm_policy vm_private_data
1417#endif
680d794b 1418
800d8c63
KS
1419static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 struct shmem_inode_info *info, pgoff_t index)
1421{
1422 /* Create a pseudo vma that just contains the policy */
daa28075 1423 memset(vma, 0, sizeof(*vma));
2c4541e2 1424 vma_init(vma, NULL);
800d8c63
KS
1425 /* Bias interleave by inode number to distribute better across nodes */
1426 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1427 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428}
1429
1430static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431{
1432 /* Drop reference taken by mpol_shared_policy_lookup() */
1433 mpol_cond_put(vma->vm_policy);
1434}
1435
41ffe5d5
HD
1436static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1438{
1da177e4 1439 struct vm_area_struct pvma;
18a2f371 1440 struct page *page;
e9e9b7ec 1441 struct vm_fault vmf;
52cd3b07 1442
800d8c63 1443 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1444 vmf.vma = &pvma;
1445 vmf.address = 0;
1446 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1447 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1448
800d8c63
KS
1449 return page;
1450}
1451
1452static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453 struct shmem_inode_info *info, pgoff_t index)
1454{
1455 struct vm_area_struct pvma;
1456 struct inode *inode = &info->vfs_inode;
1457 struct address_space *mapping = inode->i_mapping;
4620a06e 1458 pgoff_t idx, hindex;
800d8c63
KS
1459 void __rcu **results;
1460 struct page *page;
1461
e496cf3d 1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1463 return NULL;
1464
4620a06e 1465 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63 1466 rcu_read_lock();
b93b0163 1467 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
800d8c63
KS
1468 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469 rcu_read_unlock();
1470 return NULL;
1471 }
1472 rcu_read_unlock();
18a2f371 1473
800d8c63
KS
1474 shmem_pseudo_vma_init(&pvma, info, hindex);
1475 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477 shmem_pseudo_vma_destroy(&pvma);
1478 if (page)
1479 prep_transhuge_page(page);
18a2f371 1480 return page;
1da177e4
LT
1481}
1482
02098fea 1483static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1484 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1485{
1486 struct vm_area_struct pvma;
18a2f371 1487 struct page *page;
1da177e4 1488
800d8c63
KS
1489 shmem_pseudo_vma_init(&pvma, info, index);
1490 page = alloc_page_vma(gfp, &pvma, 0);
1491 shmem_pseudo_vma_destroy(&pvma);
1492
1493 return page;
1494}
1495
1496static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1497 struct inode *inode,
800d8c63
KS
1498 pgoff_t index, bool huge)
1499{
0f079694 1500 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1501 struct page *page;
1502 int nr;
1503 int err = -ENOSPC;
52cd3b07 1504
e496cf3d 1505 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1506 huge = false;
1507 nr = huge ? HPAGE_PMD_NR : 1;
1508
0f079694 1509 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1510 goto failed;
800d8c63
KS
1511
1512 if (huge)
1513 page = shmem_alloc_hugepage(gfp, info, index);
1514 else
1515 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1516 if (page) {
1517 __SetPageLocked(page);
1518 __SetPageSwapBacked(page);
800d8c63 1519 return page;
75edd345 1520 }
18a2f371 1521
800d8c63 1522 err = -ENOMEM;
0f079694 1523 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1524failed:
1525 return ERR_PTR(err);
1da177e4 1526}
71fe804b 1527
bde05d1c
HD
1528/*
1529 * When a page is moved from swapcache to shmem filecache (either by the
1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532 * ignorance of the mapping it belongs to. If that mapping has special
1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534 * we may need to copy to a suitable page before moving to filecache.
1535 *
1536 * In a future release, this may well be extended to respect cpuset and
1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538 * but for now it is a simple matter of zone.
1539 */
1540static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541{
1542 return page_zonenum(page) > gfp_zone(gfp);
1543}
1544
1545static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546 struct shmem_inode_info *info, pgoff_t index)
1547{
1548 struct page *oldpage, *newpage;
1549 struct address_space *swap_mapping;
1550 pgoff_t swap_index;
1551 int error;
1552
1553 oldpage = *pagep;
1554 swap_index = page_private(oldpage);
1555 swap_mapping = page_mapping(oldpage);
1556
1557 /*
1558 * We have arrived here because our zones are constrained, so don't
1559 * limit chance of success by further cpuset and node constraints.
1560 */
1561 gfp &= ~GFP_CONSTRAINT_MASK;
1562 newpage = shmem_alloc_page(gfp, info, index);
1563 if (!newpage)
1564 return -ENOMEM;
bde05d1c 1565
09cbfeaf 1566 get_page(newpage);
bde05d1c 1567 copy_highpage(newpage, oldpage);
0142ef6c 1568 flush_dcache_page(newpage);
bde05d1c 1569
9956edf3
HD
1570 __SetPageLocked(newpage);
1571 __SetPageSwapBacked(newpage);
bde05d1c 1572 SetPageUptodate(newpage);
bde05d1c 1573 set_page_private(newpage, swap_index);
bde05d1c
HD
1574 SetPageSwapCache(newpage);
1575
1576 /*
1577 * Our caller will very soon move newpage out of swapcache, but it's
1578 * a nice clean interface for us to replace oldpage by newpage there.
1579 */
b93b0163 1580 xa_lock_irq(&swap_mapping->i_pages);
bde05d1c
HD
1581 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582 newpage);
0142ef6c 1583 if (!error) {
11fb9989
MG
1584 __inc_node_page_state(newpage, NR_FILE_PAGES);
1585 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1586 }
b93b0163 1587 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1588
0142ef6c
HD
1589 if (unlikely(error)) {
1590 /*
1591 * Is this possible? I think not, now that our callers check
1592 * both PageSwapCache and page_private after getting page lock;
1593 * but be defensive. Reverse old to newpage for clear and free.
1594 */
1595 oldpage = newpage;
1596 } else {
6a93ca8f 1597 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1598 lru_cache_add_anon(newpage);
1599 *pagep = newpage;
1600 }
bde05d1c
HD
1601
1602 ClearPageSwapCache(oldpage);
1603 set_page_private(oldpage, 0);
1604
1605 unlock_page(oldpage);
09cbfeaf
KS
1606 put_page(oldpage);
1607 put_page(oldpage);
0142ef6c 1608 return error;
bde05d1c
HD
1609}
1610
1da177e4 1611/*
68da9f05 1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1613 *
1614 * If we allocate a new one we do not mark it dirty. That's up to the
1615 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1616 * entry since a page cannot live in both the swap and page cache.
1617 *
1618 * fault_mm and fault_type are only supplied by shmem_fault:
1619 * otherwise they are NULL.
1da177e4 1620 */
41ffe5d5 1621static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1622 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1623 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1624{
1625 struct address_space *mapping = inode->i_mapping;
23f919d4 1626 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1627 struct shmem_sb_info *sbinfo;
9e18eb29 1628 struct mm_struct *charge_mm;
00501b53 1629 struct mem_cgroup *memcg;
27ab7006 1630 struct page *page;
1da177e4 1631 swp_entry_t swap;
657e3038 1632 enum sgp_type sgp_huge = sgp;
800d8c63 1633 pgoff_t hindex = index;
1da177e4 1634 int error;
54af6042 1635 int once = 0;
1635f6a7 1636 int alloced = 0;
1da177e4 1637
09cbfeaf 1638 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1639 return -EFBIG;
657e3038
KS
1640 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1641 sgp = SGP_CACHE;
1da177e4 1642repeat:
54af6042 1643 swap.val = 0;
0cd6144a 1644 page = find_lock_entry(mapping, index);
54af6042
HD
1645 if (radix_tree_exceptional_entry(page)) {
1646 swap = radix_to_swp_entry(page);
1647 page = NULL;
1648 }
1649
75edd345 1650 if (sgp <= SGP_CACHE &&
09cbfeaf 1651 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1652 error = -EINVAL;
267a4c76 1653 goto unlock;
54af6042
HD
1654 }
1655
66d2f4d2
HD
1656 if (page && sgp == SGP_WRITE)
1657 mark_page_accessed(page);
1658
1635f6a7
HD
1659 /* fallocated page? */
1660 if (page && !PageUptodate(page)) {
1661 if (sgp != SGP_READ)
1662 goto clear;
1663 unlock_page(page);
09cbfeaf 1664 put_page(page);
1635f6a7
HD
1665 page = NULL;
1666 }
54af6042 1667 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1668 *pagep = page;
1669 return 0;
27ab7006
HD
1670 }
1671
1672 /*
54af6042
HD
1673 * Fast cache lookup did not find it:
1674 * bring it back from swap or allocate.
27ab7006 1675 */
54af6042 1676 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1677 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1678
1da177e4
LT
1679 if (swap.val) {
1680 /* Look it up and read it in.. */
ec560175 1681 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1682 if (!page) {
9e18eb29
ALC
1683 /* Or update major stats only when swapin succeeds?? */
1684 if (fault_type) {
68da9f05 1685 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1686 count_vm_event(PGMAJFAULT);
2262185c 1687 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1688 }
1689 /* Here we actually start the io */
41ffe5d5 1690 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1691 if (!page) {
54af6042
HD
1692 error = -ENOMEM;
1693 goto failed;
1da177e4 1694 }
1da177e4
LT
1695 }
1696
1697 /* We have to do this with page locked to prevent races */
54af6042 1698 lock_page(page);
0142ef6c 1699 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1700 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1701 error = -EEXIST; /* try again */
d1899228 1702 goto unlock;
bde05d1c 1703 }
27ab7006 1704 if (!PageUptodate(page)) {
1da177e4 1705 error = -EIO;
54af6042 1706 goto failed;
1da177e4 1707 }
54af6042
HD
1708 wait_on_page_writeback(page);
1709
bde05d1c
HD
1710 if (shmem_should_replace_page(page, gfp)) {
1711 error = shmem_replace_page(&page, gfp, info, index);
1712 if (error)
1713 goto failed;
1da177e4 1714 }
27ab7006 1715
2cf85583 1716 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
f627c2f5 1717 false);
d1899228 1718 if (!error) {
aa3b1895 1719 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1720 swp_to_radix_entry(swap));
215c02bc
HD
1721 /*
1722 * We already confirmed swap under page lock, and make
1723 * no memory allocation here, so usually no possibility
1724 * of error; but free_swap_and_cache() only trylocks a
1725 * page, so it is just possible that the entry has been
1726 * truncated or holepunched since swap was confirmed.
1727 * shmem_undo_range() will have done some of the
1728 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1729 * the rest.
215c02bc
HD
1730 * Reset swap.val? No, leave it so "failed" goes back to
1731 * "repeat": reading a hole and writing should succeed.
1732 */
00501b53 1733 if (error) {
f627c2f5 1734 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1735 delete_from_swap_cache(page);
00501b53 1736 }
d1899228 1737 }
54af6042
HD
1738 if (error)
1739 goto failed;
1740
f627c2f5 1741 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1742
4595ef88 1743 spin_lock_irq(&info->lock);
285b2c4f 1744 info->swapped--;
54af6042 1745 shmem_recalc_inode(inode);
4595ef88 1746 spin_unlock_irq(&info->lock);
54af6042 1747
66d2f4d2
HD
1748 if (sgp == SGP_WRITE)
1749 mark_page_accessed(page);
1750
54af6042 1751 delete_from_swap_cache(page);
27ab7006
HD
1752 set_page_dirty(page);
1753 swap_free(swap);
1754
54af6042 1755 } else {
cfda0526
MR
1756 if (vma && userfaultfd_missing(vma)) {
1757 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1758 return 0;
1759 }
1760
800d8c63
KS
1761 /* shmem_symlink() */
1762 if (mapping->a_ops != &shmem_aops)
1763 goto alloc_nohuge;
657e3038 1764 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1765 goto alloc_nohuge;
1766 if (shmem_huge == SHMEM_HUGE_FORCE)
1767 goto alloc_huge;
1768 switch (sbinfo->huge) {
1769 loff_t i_size;
1770 pgoff_t off;
1771 case SHMEM_HUGE_NEVER:
1772 goto alloc_nohuge;
1773 case SHMEM_HUGE_WITHIN_SIZE:
1774 off = round_up(index, HPAGE_PMD_NR);
1775 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1776 if (i_size >= HPAGE_PMD_SIZE &&
1777 i_size >> PAGE_SHIFT >= off)
1778 goto alloc_huge;
1779 /* fallthrough */
1780 case SHMEM_HUGE_ADVISE:
657e3038
KS
1781 if (sgp_huge == SGP_HUGE)
1782 goto alloc_huge;
1783 /* TODO: implement fadvise() hints */
800d8c63 1784 goto alloc_nohuge;
54af6042 1785 }
1da177e4 1786
800d8c63 1787alloc_huge:
0f079694 1788 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1789 if (IS_ERR(page)) {
0f079694 1790alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1791 index, false);
1da177e4 1792 }
800d8c63 1793 if (IS_ERR(page)) {
779750d2 1794 int retry = 5;
800d8c63
KS
1795 error = PTR_ERR(page);
1796 page = NULL;
779750d2
KS
1797 if (error != -ENOSPC)
1798 goto failed;
1799 /*
1800 * Try to reclaim some spece by splitting a huge page
1801 * beyond i_size on the filesystem.
1802 */
1803 while (retry--) {
1804 int ret;
1805 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1806 if (ret == SHRINK_STOP)
1807 break;
1808 if (ret)
1809 goto alloc_nohuge;
1810 }
800d8c63
KS
1811 goto failed;
1812 }
1813
1814 if (PageTransHuge(page))
1815 hindex = round_down(index, HPAGE_PMD_NR);
1816 else
1817 hindex = index;
1818
66d2f4d2 1819 if (sgp == SGP_WRITE)
eb39d618 1820 __SetPageReferenced(page);
66d2f4d2 1821
2cf85583 1822 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
800d8c63 1823 PageTransHuge(page));
54af6042 1824 if (error)
800d8c63
KS
1825 goto unacct;
1826 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1827 compound_order(page));
b065b432 1828 if (!error) {
800d8c63 1829 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1830 NULL);
b065b432
HD
1831 radix_tree_preload_end();
1832 }
1833 if (error) {
800d8c63
KS
1834 mem_cgroup_cancel_charge(page, memcg,
1835 PageTransHuge(page));
1836 goto unacct;
b065b432 1837 }
800d8c63
KS
1838 mem_cgroup_commit_charge(page, memcg, false,
1839 PageTransHuge(page));
54af6042
HD
1840 lru_cache_add_anon(page);
1841
4595ef88 1842 spin_lock_irq(&info->lock);
800d8c63
KS
1843 info->alloced += 1 << compound_order(page);
1844 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1845 shmem_recalc_inode(inode);
4595ef88 1846 spin_unlock_irq(&info->lock);
1635f6a7 1847 alloced = true;
54af6042 1848
779750d2
KS
1849 if (PageTransHuge(page) &&
1850 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1851 hindex + HPAGE_PMD_NR - 1) {
1852 /*
1853 * Part of the huge page is beyond i_size: subject
1854 * to shrink under memory pressure.
1855 */
1856 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1857 /*
1858 * _careful to defend against unlocked access to
1859 * ->shrink_list in shmem_unused_huge_shrink()
1860 */
1861 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1862 list_add_tail(&info->shrinklist,
1863 &sbinfo->shrinklist);
1864 sbinfo->shrinklist_len++;
1865 }
1866 spin_unlock(&sbinfo->shrinklist_lock);
1867 }
1868
ec9516fb 1869 /*
1635f6a7
HD
1870 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1871 */
1872 if (sgp == SGP_FALLOC)
1873 sgp = SGP_WRITE;
1874clear:
1875 /*
1876 * Let SGP_WRITE caller clear ends if write does not fill page;
1877 * but SGP_FALLOC on a page fallocated earlier must initialize
1878 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1879 */
800d8c63
KS
1880 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1881 struct page *head = compound_head(page);
1882 int i;
1883
1884 for (i = 0; i < (1 << compound_order(head)); i++) {
1885 clear_highpage(head + i);
1886 flush_dcache_page(head + i);
1887 }
1888 SetPageUptodate(head);
ec9516fb 1889 }
1da177e4 1890 }
bde05d1c 1891
54af6042 1892 /* Perhaps the file has been truncated since we checked */
75edd345 1893 if (sgp <= SGP_CACHE &&
09cbfeaf 1894 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1895 if (alloced) {
1896 ClearPageDirty(page);
1897 delete_from_page_cache(page);
4595ef88 1898 spin_lock_irq(&info->lock);
267a4c76 1899 shmem_recalc_inode(inode);
4595ef88 1900 spin_unlock_irq(&info->lock);
267a4c76 1901 }
54af6042 1902 error = -EINVAL;
267a4c76 1903 goto unlock;
e83c32e8 1904 }
800d8c63 1905 *pagep = page + index - hindex;
54af6042 1906 return 0;
1da177e4 1907
59a16ead 1908 /*
54af6042 1909 * Error recovery.
59a16ead 1910 */
54af6042 1911unacct:
0f079694 1912 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1913
1914 if (PageTransHuge(page)) {
1915 unlock_page(page);
1916 put_page(page);
1917 goto alloc_nohuge;
1918 }
54af6042 1919failed:
267a4c76 1920 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1921 error = -EEXIST;
1922unlock:
27ab7006 1923 if (page) {
54af6042 1924 unlock_page(page);
09cbfeaf 1925 put_page(page);
54af6042
HD
1926 }
1927 if (error == -ENOSPC && !once++) {
4595ef88 1928 spin_lock_irq(&info->lock);
54af6042 1929 shmem_recalc_inode(inode);
4595ef88 1930 spin_unlock_irq(&info->lock);
27ab7006 1931 goto repeat;
ff36b801 1932 }
d1899228 1933 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1934 goto repeat;
1935 return error;
1da177e4
LT
1936}
1937
10d20bd2
LT
1938/*
1939 * This is like autoremove_wake_function, but it removes the wait queue
1940 * entry unconditionally - even if something else had already woken the
1941 * target.
1942 */
ac6424b9 1943static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1944{
1945 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1946 list_del_init(&wait->entry);
10d20bd2
LT
1947 return ret;
1948}
1949
20acce67 1950static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1951{
11bac800 1952 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1953 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1954 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1955 enum sgp_type sgp;
20acce67
SJ
1956 int err;
1957 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1958
f00cdc6d
HD
1959 /*
1960 * Trinity finds that probing a hole which tmpfs is punching can
1961 * prevent the hole-punch from ever completing: which in turn
1962 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1963 * faulting pages into the hole while it's being punched. Although
1964 * shmem_undo_range() does remove the additions, it may be unable to
1965 * keep up, as each new page needs its own unmap_mapping_range() call,
1966 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1967 *
1968 * It does not matter if we sometimes reach this check just before the
1969 * hole-punch begins, so that one fault then races with the punch:
1970 * we just need to make racing faults a rare case.
1971 *
1972 * The implementation below would be much simpler if we just used a
1973 * standard mutex or completion: but we cannot take i_mutex in fault,
1974 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1975 */
1976 if (unlikely(inode->i_private)) {
1977 struct shmem_falloc *shmem_falloc;
1978
1979 spin_lock(&inode->i_lock);
1980 shmem_falloc = inode->i_private;
8e205f77
HD
1981 if (shmem_falloc &&
1982 shmem_falloc->waitq &&
1983 vmf->pgoff >= shmem_falloc->start &&
1984 vmf->pgoff < shmem_falloc->next) {
1985 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1986 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1987
1988 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1989 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1990 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1991 /* It's polite to up mmap_sem if we can */
f00cdc6d 1992 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1993 ret = VM_FAULT_RETRY;
f00cdc6d 1994 }
8e205f77
HD
1995
1996 shmem_falloc_waitq = shmem_falloc->waitq;
1997 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1998 TASK_UNINTERRUPTIBLE);
1999 spin_unlock(&inode->i_lock);
2000 schedule();
2001
2002 /*
2003 * shmem_falloc_waitq points into the shmem_fallocate()
2004 * stack of the hole-punching task: shmem_falloc_waitq
2005 * is usually invalid by the time we reach here, but
2006 * finish_wait() does not dereference it in that case;
2007 * though i_lock needed lest racing with wake_up_all().
2008 */
2009 spin_lock(&inode->i_lock);
2010 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2011 spin_unlock(&inode->i_lock);
2012 return ret;
f00cdc6d 2013 }
8e205f77 2014 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2015 }
2016
657e3038 2017 sgp = SGP_CACHE;
18600332
MH
2018
2019 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2020 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2021 sgp = SGP_NOHUGE;
18600332
MH
2022 else if (vma->vm_flags & VM_HUGEPAGE)
2023 sgp = SGP_HUGE;
657e3038 2024
20acce67 2025 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2026 gfp, vma, vmf, &ret);
20acce67
SJ
2027 if (err)
2028 return vmf_error(err);
68da9f05 2029 return ret;
1da177e4
LT
2030}
2031
c01d5b30
HD
2032unsigned long shmem_get_unmapped_area(struct file *file,
2033 unsigned long uaddr, unsigned long len,
2034 unsigned long pgoff, unsigned long flags)
2035{
2036 unsigned long (*get_area)(struct file *,
2037 unsigned long, unsigned long, unsigned long, unsigned long);
2038 unsigned long addr;
2039 unsigned long offset;
2040 unsigned long inflated_len;
2041 unsigned long inflated_addr;
2042 unsigned long inflated_offset;
2043
2044 if (len > TASK_SIZE)
2045 return -ENOMEM;
2046
2047 get_area = current->mm->get_unmapped_area;
2048 addr = get_area(file, uaddr, len, pgoff, flags);
2049
e496cf3d 2050 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2051 return addr;
2052 if (IS_ERR_VALUE(addr))
2053 return addr;
2054 if (addr & ~PAGE_MASK)
2055 return addr;
2056 if (addr > TASK_SIZE - len)
2057 return addr;
2058
2059 if (shmem_huge == SHMEM_HUGE_DENY)
2060 return addr;
2061 if (len < HPAGE_PMD_SIZE)
2062 return addr;
2063 if (flags & MAP_FIXED)
2064 return addr;
2065 /*
2066 * Our priority is to support MAP_SHARED mapped hugely;
2067 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2068 * But if caller specified an address hint, respect that as before.
2069 */
2070 if (uaddr)
2071 return addr;
2072
2073 if (shmem_huge != SHMEM_HUGE_FORCE) {
2074 struct super_block *sb;
2075
2076 if (file) {
2077 VM_BUG_ON(file->f_op != &shmem_file_operations);
2078 sb = file_inode(file)->i_sb;
2079 } else {
2080 /*
2081 * Called directly from mm/mmap.c, or drivers/char/mem.c
2082 * for "/dev/zero", to create a shared anonymous object.
2083 */
2084 if (IS_ERR(shm_mnt))
2085 return addr;
2086 sb = shm_mnt->mnt_sb;
2087 }
3089bf61 2088 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2089 return addr;
2090 }
2091
2092 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2093 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2094 return addr;
2095 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2096 return addr;
2097
2098 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2099 if (inflated_len > TASK_SIZE)
2100 return addr;
2101 if (inflated_len < len)
2102 return addr;
2103
2104 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2105 if (IS_ERR_VALUE(inflated_addr))
2106 return addr;
2107 if (inflated_addr & ~PAGE_MASK)
2108 return addr;
2109
2110 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2111 inflated_addr += offset - inflated_offset;
2112 if (inflated_offset > offset)
2113 inflated_addr += HPAGE_PMD_SIZE;
2114
2115 if (inflated_addr > TASK_SIZE - len)
2116 return addr;
2117 return inflated_addr;
2118}
2119
1da177e4 2120#ifdef CONFIG_NUMA
41ffe5d5 2121static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2122{
496ad9aa 2123 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2124 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2125}
2126
d8dc74f2
AB
2127static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2128 unsigned long addr)
1da177e4 2129{
496ad9aa 2130 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2131 pgoff_t index;
1da177e4 2132
41ffe5d5
HD
2133 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2134 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2135}
2136#endif
2137
2138int shmem_lock(struct file *file, int lock, struct user_struct *user)
2139{
496ad9aa 2140 struct inode *inode = file_inode(file);
1da177e4
LT
2141 struct shmem_inode_info *info = SHMEM_I(inode);
2142 int retval = -ENOMEM;
2143
4595ef88 2144 spin_lock_irq(&info->lock);
1da177e4
LT
2145 if (lock && !(info->flags & VM_LOCKED)) {
2146 if (!user_shm_lock(inode->i_size, user))
2147 goto out_nomem;
2148 info->flags |= VM_LOCKED;
89e004ea 2149 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2150 }
2151 if (!lock && (info->flags & VM_LOCKED) && user) {
2152 user_shm_unlock(inode->i_size, user);
2153 info->flags &= ~VM_LOCKED;
89e004ea 2154 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2155 }
2156 retval = 0;
89e004ea 2157
1da177e4 2158out_nomem:
4595ef88 2159 spin_unlock_irq(&info->lock);
1da177e4
LT
2160 return retval;
2161}
2162
9b83a6a8 2163static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2164{
2165 file_accessed(file);
2166 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2167 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2168 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2169 (vma->vm_end & HPAGE_PMD_MASK)) {
2170 khugepaged_enter(vma, vma->vm_flags);
2171 }
1da177e4
LT
2172 return 0;
2173}
2174
454abafe 2175static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2176 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2177{
2178 struct inode *inode;
2179 struct shmem_inode_info *info;
2180 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2181
5b04c689
PE
2182 if (shmem_reserve_inode(sb))
2183 return NULL;
1da177e4
LT
2184
2185 inode = new_inode(sb);
2186 if (inode) {
85fe4025 2187 inode->i_ino = get_next_ino();
454abafe 2188 inode_init_owner(inode, dir, mode);
1da177e4 2189 inode->i_blocks = 0;
078cd827 2190 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2191 inode->i_generation = get_seconds();
1da177e4
LT
2192 info = SHMEM_I(inode);
2193 memset(info, 0, (char *)inode - (char *)info);
2194 spin_lock_init(&info->lock);
40e041a2 2195 info->seals = F_SEAL_SEAL;
0b0a0806 2196 info->flags = flags & VM_NORESERVE;
779750d2 2197 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2198 INIT_LIST_HEAD(&info->swaplist);
38f38657 2199 simple_xattrs_init(&info->xattrs);
72c04902 2200 cache_no_acl(inode);
1da177e4
LT
2201
2202 switch (mode & S_IFMT) {
2203 default:
39f0247d 2204 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2205 init_special_inode(inode, mode, dev);
2206 break;
2207 case S_IFREG:
14fcc23f 2208 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2209 inode->i_op = &shmem_inode_operations;
2210 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2211 mpol_shared_policy_init(&info->policy,
2212 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2213 break;
2214 case S_IFDIR:
d8c76e6f 2215 inc_nlink(inode);
1da177e4
LT
2216 /* Some things misbehave if size == 0 on a directory */
2217 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2218 inode->i_op = &shmem_dir_inode_operations;
2219 inode->i_fop = &simple_dir_operations;
2220 break;
2221 case S_IFLNK:
2222 /*
2223 * Must not load anything in the rbtree,
2224 * mpol_free_shared_policy will not be called.
2225 */
71fe804b 2226 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2227 break;
2228 }
5b04c689
PE
2229 } else
2230 shmem_free_inode(sb);
1da177e4
LT
2231 return inode;
2232}
2233
0cd6144a
JW
2234bool shmem_mapping(struct address_space *mapping)
2235{
f8005451 2236 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2237}
2238
8d103963
MR
2239static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2240 pmd_t *dst_pmd,
2241 struct vm_area_struct *dst_vma,
2242 unsigned long dst_addr,
2243 unsigned long src_addr,
2244 bool zeropage,
2245 struct page **pagep)
4c27fe4c
MR
2246{
2247 struct inode *inode = file_inode(dst_vma->vm_file);
2248 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2249 struct address_space *mapping = inode->i_mapping;
2250 gfp_t gfp = mapping_gfp_mask(mapping);
2251 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2252 struct mem_cgroup *memcg;
2253 spinlock_t *ptl;
2254 void *page_kaddr;
2255 struct page *page;
2256 pte_t _dst_pte, *dst_pte;
2257 int ret;
2258
cb658a45 2259 ret = -ENOMEM;
0f079694 2260 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2261 goto out;
4c27fe4c 2262
cb658a45 2263 if (!*pagep) {
4c27fe4c
MR
2264 page = shmem_alloc_page(gfp, info, pgoff);
2265 if (!page)
0f079694 2266 goto out_unacct_blocks;
4c27fe4c 2267
8d103963
MR
2268 if (!zeropage) { /* mcopy_atomic */
2269 page_kaddr = kmap_atomic(page);
2270 ret = copy_from_user(page_kaddr,
2271 (const void __user *)src_addr,
2272 PAGE_SIZE);
2273 kunmap_atomic(page_kaddr);
2274
2275 /* fallback to copy_from_user outside mmap_sem */
2276 if (unlikely(ret)) {
2277 *pagep = page;
2278 shmem_inode_unacct_blocks(inode, 1);
2279 /* don't free the page */
2280 return -EFAULT;
2281 }
2282 } else { /* mfill_zeropage_atomic */
2283 clear_highpage(page);
4c27fe4c
MR
2284 }
2285 } else {
2286 page = *pagep;
2287 *pagep = NULL;
2288 }
2289
9cc90c66
AA
2290 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2291 __SetPageLocked(page);
2292 __SetPageSwapBacked(page);
a425d358 2293 __SetPageUptodate(page);
9cc90c66 2294
2cf85583 2295 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
4c27fe4c
MR
2296 if (ret)
2297 goto out_release;
2298
2299 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2300 if (!ret) {
2301 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2302 radix_tree_preload_end();
2303 }
2304 if (ret)
2305 goto out_release_uncharge;
2306
2307 mem_cgroup_commit_charge(page, memcg, false, false);
2308
2309 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2310 if (dst_vma->vm_flags & VM_WRITE)
2311 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2312
2313 ret = -EEXIST;
2314 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2315 if (!pte_none(*dst_pte))
2316 goto out_release_uncharge_unlock;
2317
4c27fe4c
MR
2318 lru_cache_add_anon(page);
2319
2320 spin_lock(&info->lock);
2321 info->alloced++;
2322 inode->i_blocks += BLOCKS_PER_PAGE;
2323 shmem_recalc_inode(inode);
2324 spin_unlock(&info->lock);
2325
2326 inc_mm_counter(dst_mm, mm_counter_file(page));
2327 page_add_file_rmap(page, false);
2328 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2329
2330 /* No need to invalidate - it was non-present before */
2331 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2332 unlock_page(page);
2333 pte_unmap_unlock(dst_pte, ptl);
2334 ret = 0;
2335out:
2336 return ret;
2337out_release_uncharge_unlock:
2338 pte_unmap_unlock(dst_pte, ptl);
2339out_release_uncharge:
2340 mem_cgroup_cancel_charge(page, memcg, false);
2341out_release:
9cc90c66 2342 unlock_page(page);
4c27fe4c 2343 put_page(page);
4c27fe4c 2344out_unacct_blocks:
0f079694 2345 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2346 goto out;
2347}
2348
8d103963
MR
2349int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2350 pmd_t *dst_pmd,
2351 struct vm_area_struct *dst_vma,
2352 unsigned long dst_addr,
2353 unsigned long src_addr,
2354 struct page **pagep)
2355{
2356 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2357 dst_addr, src_addr, false, pagep);
2358}
2359
2360int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2361 pmd_t *dst_pmd,
2362 struct vm_area_struct *dst_vma,
2363 unsigned long dst_addr)
2364{
2365 struct page *page = NULL;
2366
2367 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2368 dst_addr, 0, true, &page);
2369}
2370
1da177e4 2371#ifdef CONFIG_TMPFS
92e1d5be 2372static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2373static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2374
6d9d88d0
JS
2375#ifdef CONFIG_TMPFS_XATTR
2376static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2377#else
2378#define shmem_initxattrs NULL
2379#endif
2380
1da177e4 2381static int
800d15a5
NP
2382shmem_write_begin(struct file *file, struct address_space *mapping,
2383 loff_t pos, unsigned len, unsigned flags,
2384 struct page **pagep, void **fsdata)
1da177e4 2385{
800d15a5 2386 struct inode *inode = mapping->host;
40e041a2 2387 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2388 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2389
2390 /* i_mutex is held by caller */
3f472cc9 2391 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2392 if (info->seals & F_SEAL_WRITE)
2393 return -EPERM;
2394 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2395 return -EPERM;
2396 }
2397
9e18eb29 2398 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2399}
2400
2401static int
2402shmem_write_end(struct file *file, struct address_space *mapping,
2403 loff_t pos, unsigned len, unsigned copied,
2404 struct page *page, void *fsdata)
2405{
2406 struct inode *inode = mapping->host;
2407
d3602444
HD
2408 if (pos + copied > inode->i_size)
2409 i_size_write(inode, pos + copied);
2410
ec9516fb 2411 if (!PageUptodate(page)) {
800d8c63
KS
2412 struct page *head = compound_head(page);
2413 if (PageTransCompound(page)) {
2414 int i;
2415
2416 for (i = 0; i < HPAGE_PMD_NR; i++) {
2417 if (head + i == page)
2418 continue;
2419 clear_highpage(head + i);
2420 flush_dcache_page(head + i);
2421 }
2422 }
09cbfeaf
KS
2423 if (copied < PAGE_SIZE) {
2424 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2425 zero_user_segments(page, 0, from,
09cbfeaf 2426 from + copied, PAGE_SIZE);
ec9516fb 2427 }
800d8c63 2428 SetPageUptodate(head);
ec9516fb 2429 }
800d15a5 2430 set_page_dirty(page);
6746aff7 2431 unlock_page(page);
09cbfeaf 2432 put_page(page);
800d15a5 2433
800d15a5 2434 return copied;
1da177e4
LT
2435}
2436
2ba5bbed 2437static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2438{
6e58e79d
AV
2439 struct file *file = iocb->ki_filp;
2440 struct inode *inode = file_inode(file);
1da177e4 2441 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2442 pgoff_t index;
2443 unsigned long offset;
a0ee5ec5 2444 enum sgp_type sgp = SGP_READ;
f7c1d074 2445 int error = 0;
cb66a7a1 2446 ssize_t retval = 0;
6e58e79d 2447 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2448
2449 /*
2450 * Might this read be for a stacking filesystem? Then when reading
2451 * holes of a sparse file, we actually need to allocate those pages,
2452 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2453 */
777eda2c 2454 if (!iter_is_iovec(to))
75edd345 2455 sgp = SGP_CACHE;
1da177e4 2456
09cbfeaf
KS
2457 index = *ppos >> PAGE_SHIFT;
2458 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2459
2460 for (;;) {
2461 struct page *page = NULL;
41ffe5d5
HD
2462 pgoff_t end_index;
2463 unsigned long nr, ret;
1da177e4
LT
2464 loff_t i_size = i_size_read(inode);
2465
09cbfeaf 2466 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2467 if (index > end_index)
2468 break;
2469 if (index == end_index) {
09cbfeaf 2470 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2471 if (nr <= offset)
2472 break;
2473 }
2474
9e18eb29 2475 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2476 if (error) {
2477 if (error == -EINVAL)
2478 error = 0;
1da177e4
LT
2479 break;
2480 }
75edd345
HD
2481 if (page) {
2482 if (sgp == SGP_CACHE)
2483 set_page_dirty(page);
d3602444 2484 unlock_page(page);
75edd345 2485 }
1da177e4
LT
2486
2487 /*
2488 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2489 * are called without i_mutex protection against truncate
1da177e4 2490 */
09cbfeaf 2491 nr = PAGE_SIZE;
1da177e4 2492 i_size = i_size_read(inode);
09cbfeaf 2493 end_index = i_size >> PAGE_SHIFT;
1da177e4 2494 if (index == end_index) {
09cbfeaf 2495 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2496 if (nr <= offset) {
2497 if (page)
09cbfeaf 2498 put_page(page);
1da177e4
LT
2499 break;
2500 }
2501 }
2502 nr -= offset;
2503
2504 if (page) {
2505 /*
2506 * If users can be writing to this page using arbitrary
2507 * virtual addresses, take care about potential aliasing
2508 * before reading the page on the kernel side.
2509 */
2510 if (mapping_writably_mapped(mapping))
2511 flush_dcache_page(page);
2512 /*
2513 * Mark the page accessed if we read the beginning.
2514 */
2515 if (!offset)
2516 mark_page_accessed(page);
b5810039 2517 } else {
1da177e4 2518 page = ZERO_PAGE(0);
09cbfeaf 2519 get_page(page);
b5810039 2520 }
1da177e4
LT
2521
2522 /*
2523 * Ok, we have the page, and it's up-to-date, so
2524 * now we can copy it to user space...
1da177e4 2525 */
2ba5bbed 2526 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2527 retval += ret;
1da177e4 2528 offset += ret;
09cbfeaf
KS
2529 index += offset >> PAGE_SHIFT;
2530 offset &= ~PAGE_MASK;
1da177e4 2531
09cbfeaf 2532 put_page(page);
2ba5bbed 2533 if (!iov_iter_count(to))
1da177e4 2534 break;
6e58e79d
AV
2535 if (ret < nr) {
2536 error = -EFAULT;
2537 break;
2538 }
1da177e4
LT
2539 cond_resched();
2540 }
2541
09cbfeaf 2542 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2543 file_accessed(file);
2544 return retval ? retval : error;
1da177e4
LT
2545}
2546
220f2ac9
HD
2547/*
2548 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2549 */
2550static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2551 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2552{
2553 struct page *page;
2554 struct pagevec pvec;
2555 pgoff_t indices[PAGEVEC_SIZE];
2556 bool done = false;
2557 int i;
2558
86679820 2559 pagevec_init(&pvec);
220f2ac9
HD
2560 pvec.nr = 1; /* start small: we may be there already */
2561 while (!done) {
0cd6144a 2562 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2563 pvec.nr, pvec.pages, indices);
2564 if (!pvec.nr) {
965c8e59 2565 if (whence == SEEK_DATA)
220f2ac9
HD
2566 index = end;
2567 break;
2568 }
2569 for (i = 0; i < pvec.nr; i++, index++) {
2570 if (index < indices[i]) {
965c8e59 2571 if (whence == SEEK_HOLE) {
220f2ac9
HD
2572 done = true;
2573 break;
2574 }
2575 index = indices[i];
2576 }
2577 page = pvec.pages[i];
2578 if (page && !radix_tree_exceptional_entry(page)) {
2579 if (!PageUptodate(page))
2580 page = NULL;
2581 }
2582 if (index >= end ||
965c8e59
AM
2583 (page && whence == SEEK_DATA) ||
2584 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2585 done = true;
2586 break;
2587 }
2588 }
0cd6144a 2589 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2590 pagevec_release(&pvec);
2591 pvec.nr = PAGEVEC_SIZE;
2592 cond_resched();
2593 }
2594 return index;
2595}
2596
965c8e59 2597static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2598{
2599 struct address_space *mapping = file->f_mapping;
2600 struct inode *inode = mapping->host;
2601 pgoff_t start, end;
2602 loff_t new_offset;
2603
965c8e59
AM
2604 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2605 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2606 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2607 inode_lock(inode);
220f2ac9
HD
2608 /* We're holding i_mutex so we can access i_size directly */
2609
2610 if (offset < 0)
2611 offset = -EINVAL;
2612 else if (offset >= inode->i_size)
2613 offset = -ENXIO;
2614 else {
09cbfeaf
KS
2615 start = offset >> PAGE_SHIFT;
2616 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2617 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2618 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2619 if (new_offset > offset) {
2620 if (new_offset < inode->i_size)
2621 offset = new_offset;
965c8e59 2622 else if (whence == SEEK_DATA)
220f2ac9
HD
2623 offset = -ENXIO;
2624 else
2625 offset = inode->i_size;
2626 }
2627 }
2628
387aae6f
HD
2629 if (offset >= 0)
2630 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2631 inode_unlock(inode);
220f2ac9
HD
2632 return offset;
2633}
2634
83e4fa9c
HD
2635static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2636 loff_t len)
2637{
496ad9aa 2638 struct inode *inode = file_inode(file);
e2d12e22 2639 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2640 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2641 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2642 pgoff_t start, index, end;
2643 int error;
83e4fa9c 2644
13ace4d0
HD
2645 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2646 return -EOPNOTSUPP;
2647
5955102c 2648 inode_lock(inode);
83e4fa9c
HD
2649
2650 if (mode & FALLOC_FL_PUNCH_HOLE) {
2651 struct address_space *mapping = file->f_mapping;
2652 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2653 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2654 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2655
40e041a2
DH
2656 /* protected by i_mutex */
2657 if (info->seals & F_SEAL_WRITE) {
2658 error = -EPERM;
2659 goto out;
2660 }
2661
8e205f77 2662 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2663 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2664 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2665 spin_lock(&inode->i_lock);
2666 inode->i_private = &shmem_falloc;
2667 spin_unlock(&inode->i_lock);
2668
83e4fa9c
HD
2669 if ((u64)unmap_end > (u64)unmap_start)
2670 unmap_mapping_range(mapping, unmap_start,
2671 1 + unmap_end - unmap_start, 0);
2672 shmem_truncate_range(inode, offset, offset + len - 1);
2673 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2674
2675 spin_lock(&inode->i_lock);
2676 inode->i_private = NULL;
2677 wake_up_all(&shmem_falloc_waitq);
2055da97 2678 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2679 spin_unlock(&inode->i_lock);
83e4fa9c 2680 error = 0;
8e205f77 2681 goto out;
e2d12e22
HD
2682 }
2683
2684 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2685 error = inode_newsize_ok(inode, offset + len);
2686 if (error)
2687 goto out;
2688
40e041a2
DH
2689 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2690 error = -EPERM;
2691 goto out;
2692 }
2693
09cbfeaf
KS
2694 start = offset >> PAGE_SHIFT;
2695 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2696 /* Try to avoid a swapstorm if len is impossible to satisfy */
2697 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2698 error = -ENOSPC;
2699 goto out;
83e4fa9c
HD
2700 }
2701
8e205f77 2702 shmem_falloc.waitq = NULL;
1aac1400
HD
2703 shmem_falloc.start = start;
2704 shmem_falloc.next = start;
2705 shmem_falloc.nr_falloced = 0;
2706 shmem_falloc.nr_unswapped = 0;
2707 spin_lock(&inode->i_lock);
2708 inode->i_private = &shmem_falloc;
2709 spin_unlock(&inode->i_lock);
2710
e2d12e22
HD
2711 for (index = start; index < end; index++) {
2712 struct page *page;
2713
2714 /*
2715 * Good, the fallocate(2) manpage permits EINTR: we may have
2716 * been interrupted because we are using up too much memory.
2717 */
2718 if (signal_pending(current))
2719 error = -EINTR;
1aac1400
HD
2720 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2721 error = -ENOMEM;
e2d12e22 2722 else
9e18eb29 2723 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2724 if (error) {
1635f6a7 2725 /* Remove the !PageUptodate pages we added */
7f556567
HD
2726 if (index > start) {
2727 shmem_undo_range(inode,
2728 (loff_t)start << PAGE_SHIFT,
2729 ((loff_t)index << PAGE_SHIFT) - 1, true);
2730 }
1aac1400 2731 goto undone;
e2d12e22
HD
2732 }
2733
1aac1400
HD
2734 /*
2735 * Inform shmem_writepage() how far we have reached.
2736 * No need for lock or barrier: we have the page lock.
2737 */
2738 shmem_falloc.next++;
2739 if (!PageUptodate(page))
2740 shmem_falloc.nr_falloced++;
2741
e2d12e22 2742 /*
1635f6a7
HD
2743 * If !PageUptodate, leave it that way so that freeable pages
2744 * can be recognized if we need to rollback on error later.
2745 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2746 * than free the pages we are allocating (and SGP_CACHE pages
2747 * might still be clean: we now need to mark those dirty too).
2748 */
2749 set_page_dirty(page);
2750 unlock_page(page);
09cbfeaf 2751 put_page(page);
e2d12e22
HD
2752 cond_resched();
2753 }
2754
2755 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2756 i_size_write(inode, offset + len);
078cd827 2757 inode->i_ctime = current_time(inode);
1aac1400
HD
2758undone:
2759 spin_lock(&inode->i_lock);
2760 inode->i_private = NULL;
2761 spin_unlock(&inode->i_lock);
e2d12e22 2762out:
5955102c 2763 inode_unlock(inode);
83e4fa9c
HD
2764 return error;
2765}
2766
726c3342 2767static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2768{
726c3342 2769 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2770
2771 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2772 buf->f_bsize = PAGE_SIZE;
1da177e4 2773 buf->f_namelen = NAME_MAX;
0edd73b3 2774 if (sbinfo->max_blocks) {
1da177e4 2775 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2776 buf->f_bavail =
2777 buf->f_bfree = sbinfo->max_blocks -
2778 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2779 }
2780 if (sbinfo->max_inodes) {
1da177e4
LT
2781 buf->f_files = sbinfo->max_inodes;
2782 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2783 }
2784 /* else leave those fields 0 like simple_statfs */
2785 return 0;
2786}
2787
2788/*
2789 * File creation. Allocate an inode, and we're done..
2790 */
2791static int
1a67aafb 2792shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2793{
0b0a0806 2794 struct inode *inode;
1da177e4
LT
2795 int error = -ENOSPC;
2796
454abafe 2797 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2798 if (inode) {
feda821e
CH
2799 error = simple_acl_create(dir, inode);
2800 if (error)
2801 goto out_iput;
2a7dba39 2802 error = security_inode_init_security(inode, dir,
9d8f13ba 2803 &dentry->d_name,
6d9d88d0 2804 shmem_initxattrs, NULL);
feda821e
CH
2805 if (error && error != -EOPNOTSUPP)
2806 goto out_iput;
37ec43cd 2807
718deb6b 2808 error = 0;
1da177e4 2809 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2810 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2811 d_instantiate(dentry, inode);
2812 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2813 }
2814 return error;
feda821e
CH
2815out_iput:
2816 iput(inode);
2817 return error;
1da177e4
LT
2818}
2819
60545d0d
AV
2820static int
2821shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2822{
2823 struct inode *inode;
2824 int error = -ENOSPC;
2825
2826 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2827 if (inode) {
2828 error = security_inode_init_security(inode, dir,
2829 NULL,
2830 shmem_initxattrs, NULL);
feda821e
CH
2831 if (error && error != -EOPNOTSUPP)
2832 goto out_iput;
2833 error = simple_acl_create(dir, inode);
2834 if (error)
2835 goto out_iput;
60545d0d
AV
2836 d_tmpfile(dentry, inode);
2837 }
2838 return error;
feda821e
CH
2839out_iput:
2840 iput(inode);
2841 return error;
60545d0d
AV
2842}
2843
18bb1db3 2844static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2845{
2846 int error;
2847
2848 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2849 return error;
d8c76e6f 2850 inc_nlink(dir);
1da177e4
LT
2851 return 0;
2852}
2853
4acdaf27 2854static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2855 bool excl)
1da177e4
LT
2856{
2857 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2858}
2859
2860/*
2861 * Link a file..
2862 */
2863static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2864{
75c3cfa8 2865 struct inode *inode = d_inode(old_dentry);
5b04c689 2866 int ret;
1da177e4
LT
2867
2868 /*
2869 * No ordinary (disk based) filesystem counts links as inodes;
2870 * but each new link needs a new dentry, pinning lowmem, and
2871 * tmpfs dentries cannot be pruned until they are unlinked.
2872 */
5b04c689
PE
2873 ret = shmem_reserve_inode(inode->i_sb);
2874 if (ret)
2875 goto out;
1da177e4
LT
2876
2877 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2878 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2879 inc_nlink(inode);
7de9c6ee 2880 ihold(inode); /* New dentry reference */
1da177e4
LT
2881 dget(dentry); /* Extra pinning count for the created dentry */
2882 d_instantiate(dentry, inode);
5b04c689
PE
2883out:
2884 return ret;
1da177e4
LT
2885}
2886
2887static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2888{
75c3cfa8 2889 struct inode *inode = d_inode(dentry);
1da177e4 2890
5b04c689
PE
2891 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2892 shmem_free_inode(inode->i_sb);
1da177e4
LT
2893
2894 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2895 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2896 drop_nlink(inode);
1da177e4
LT
2897 dput(dentry); /* Undo the count from "create" - this does all the work */
2898 return 0;
2899}
2900
2901static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2902{
2903 if (!simple_empty(dentry))
2904 return -ENOTEMPTY;
2905
75c3cfa8 2906 drop_nlink(d_inode(dentry));
9a53c3a7 2907 drop_nlink(dir);
1da177e4
LT
2908 return shmem_unlink(dir, dentry);
2909}
2910
37456771
MS
2911static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2912{
e36cb0b8
DH
2913 bool old_is_dir = d_is_dir(old_dentry);
2914 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2915
2916 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2917 if (old_is_dir) {
2918 drop_nlink(old_dir);
2919 inc_nlink(new_dir);
2920 } else {
2921 drop_nlink(new_dir);
2922 inc_nlink(old_dir);
2923 }
2924 }
2925 old_dir->i_ctime = old_dir->i_mtime =
2926 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2927 d_inode(old_dentry)->i_ctime =
078cd827 2928 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2929
2930 return 0;
2931}
2932
46fdb794
MS
2933static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2934{
2935 struct dentry *whiteout;
2936 int error;
2937
2938 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2939 if (!whiteout)
2940 return -ENOMEM;
2941
2942 error = shmem_mknod(old_dir, whiteout,
2943 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2944 dput(whiteout);
2945 if (error)
2946 return error;
2947
2948 /*
2949 * Cheat and hash the whiteout while the old dentry is still in
2950 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2951 *
2952 * d_lookup() will consistently find one of them at this point,
2953 * not sure which one, but that isn't even important.
2954 */
2955 d_rehash(whiteout);
2956 return 0;
2957}
2958
1da177e4
LT
2959/*
2960 * The VFS layer already does all the dentry stuff for rename,
2961 * we just have to decrement the usage count for the target if
2962 * it exists so that the VFS layer correctly free's it when it
2963 * gets overwritten.
2964 */
3b69ff51 2965static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2966{
75c3cfa8 2967 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2968 int they_are_dirs = S_ISDIR(inode->i_mode);
2969
46fdb794 2970 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2971 return -EINVAL;
2972
37456771
MS
2973 if (flags & RENAME_EXCHANGE)
2974 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2975
1da177e4
LT
2976 if (!simple_empty(new_dentry))
2977 return -ENOTEMPTY;
2978
46fdb794
MS
2979 if (flags & RENAME_WHITEOUT) {
2980 int error;
2981
2982 error = shmem_whiteout(old_dir, old_dentry);
2983 if (error)
2984 return error;
2985 }
2986
75c3cfa8 2987 if (d_really_is_positive(new_dentry)) {
1da177e4 2988 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2989 if (they_are_dirs) {
75c3cfa8 2990 drop_nlink(d_inode(new_dentry));
9a53c3a7 2991 drop_nlink(old_dir);
b928095b 2992 }
1da177e4 2993 } else if (they_are_dirs) {
9a53c3a7 2994 drop_nlink(old_dir);
d8c76e6f 2995 inc_nlink(new_dir);
1da177e4
LT
2996 }
2997
2998 old_dir->i_size -= BOGO_DIRENT_SIZE;
2999 new_dir->i_size += BOGO_DIRENT_SIZE;
3000 old_dir->i_ctime = old_dir->i_mtime =
3001 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3002 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3003 return 0;
3004}
3005
3006static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3007{
3008 int error;
3009 int len;
3010 struct inode *inode;
9276aad6 3011 struct page *page;
1da177e4
LT
3012
3013 len = strlen(symname) + 1;
09cbfeaf 3014 if (len > PAGE_SIZE)
1da177e4
LT
3015 return -ENAMETOOLONG;
3016
0825a6f9
JP
3017 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3018 VM_NORESERVE);
1da177e4
LT
3019 if (!inode)
3020 return -ENOSPC;
3021
9d8f13ba 3022 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3023 shmem_initxattrs, NULL);
570bc1c2
SS
3024 if (error) {
3025 if (error != -EOPNOTSUPP) {
3026 iput(inode);
3027 return error;
3028 }
3029 error = 0;
3030 }
3031
1da177e4 3032 inode->i_size = len-1;
69f07ec9 3033 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3034 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3035 if (!inode->i_link) {
69f07ec9
HD
3036 iput(inode);
3037 return -ENOMEM;
3038 }
3039 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3040 } else {
e8ecde25 3041 inode_nohighmem(inode);
9e18eb29 3042 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3043 if (error) {
3044 iput(inode);
3045 return error;
3046 }
14fcc23f 3047 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3048 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3049 memcpy(page_address(page), symname, len);
ec9516fb 3050 SetPageUptodate(page);
1da177e4 3051 set_page_dirty(page);
6746aff7 3052 unlock_page(page);
09cbfeaf 3053 put_page(page);
1da177e4 3054 }
1da177e4 3055 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3056 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3057 d_instantiate(dentry, inode);
3058 dget(dentry);
3059 return 0;
3060}
3061
fceef393 3062static void shmem_put_link(void *arg)
1da177e4 3063{
fceef393
AV
3064 mark_page_accessed(arg);
3065 put_page(arg);
1da177e4
LT
3066}
3067
6b255391 3068static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3069 struct inode *inode,
3070 struct delayed_call *done)
1da177e4 3071{
1da177e4 3072 struct page *page = NULL;
6b255391 3073 int error;
6a6c9904
AV
3074 if (!dentry) {
3075 page = find_get_page(inode->i_mapping, 0);
3076 if (!page)
3077 return ERR_PTR(-ECHILD);
3078 if (!PageUptodate(page)) {
3079 put_page(page);
3080 return ERR_PTR(-ECHILD);
3081 }
3082 } else {
9e18eb29 3083 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3084 if (error)
3085 return ERR_PTR(error);
3086 unlock_page(page);
3087 }
fceef393 3088 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3089 return page_address(page);
1da177e4
LT
3090}
3091
b09e0fa4 3092#ifdef CONFIG_TMPFS_XATTR
46711810 3093/*
b09e0fa4
EP
3094 * Superblocks without xattr inode operations may get some security.* xattr
3095 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3096 * like ACLs, we also need to implement the security.* handlers at
3097 * filesystem level, though.
3098 */
3099
6d9d88d0
JS
3100/*
3101 * Callback for security_inode_init_security() for acquiring xattrs.
3102 */
3103static int shmem_initxattrs(struct inode *inode,
3104 const struct xattr *xattr_array,
3105 void *fs_info)
3106{
3107 struct shmem_inode_info *info = SHMEM_I(inode);
3108 const struct xattr *xattr;
38f38657 3109 struct simple_xattr *new_xattr;
6d9d88d0
JS
3110 size_t len;
3111
3112 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3113 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3114 if (!new_xattr)
3115 return -ENOMEM;
3116
3117 len = strlen(xattr->name) + 1;
3118 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3119 GFP_KERNEL);
3120 if (!new_xattr->name) {
3121 kfree(new_xattr);
3122 return -ENOMEM;
3123 }
3124
3125 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3126 XATTR_SECURITY_PREFIX_LEN);
3127 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3128 xattr->name, len);
3129
38f38657 3130 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3131 }
3132
3133 return 0;
3134}
3135
aa7c5241 3136static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3137 struct dentry *unused, struct inode *inode,
3138 const char *name, void *buffer, size_t size)
b09e0fa4 3139{
b296821a 3140 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3141
aa7c5241 3142 name = xattr_full_name(handler, name);
38f38657 3143 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3144}
3145
aa7c5241 3146static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3147 struct dentry *unused, struct inode *inode,
3148 const char *name, const void *value,
3149 size_t size, int flags)
b09e0fa4 3150{
59301226 3151 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3152
aa7c5241 3153 name = xattr_full_name(handler, name);
38f38657 3154 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3155}
3156
aa7c5241
AG
3157static const struct xattr_handler shmem_security_xattr_handler = {
3158 .prefix = XATTR_SECURITY_PREFIX,
3159 .get = shmem_xattr_handler_get,
3160 .set = shmem_xattr_handler_set,
3161};
b09e0fa4 3162
aa7c5241
AG
3163static const struct xattr_handler shmem_trusted_xattr_handler = {
3164 .prefix = XATTR_TRUSTED_PREFIX,
3165 .get = shmem_xattr_handler_get,
3166 .set = shmem_xattr_handler_set,
3167};
b09e0fa4 3168
aa7c5241
AG
3169static const struct xattr_handler *shmem_xattr_handlers[] = {
3170#ifdef CONFIG_TMPFS_POSIX_ACL
3171 &posix_acl_access_xattr_handler,
3172 &posix_acl_default_xattr_handler,
3173#endif
3174 &shmem_security_xattr_handler,
3175 &shmem_trusted_xattr_handler,
3176 NULL
3177};
b09e0fa4
EP
3178
3179static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3180{
75c3cfa8 3181 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3182 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3183}
3184#endif /* CONFIG_TMPFS_XATTR */
3185
69f07ec9 3186static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3187 .get_link = simple_get_link,
b09e0fa4 3188#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3189 .listxattr = shmem_listxattr,
b09e0fa4
EP
3190#endif
3191};
3192
3193static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3194 .get_link = shmem_get_link,
b09e0fa4 3195#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3196 .listxattr = shmem_listxattr,
39f0247d 3197#endif
b09e0fa4 3198};
39f0247d 3199
91828a40
DG
3200static struct dentry *shmem_get_parent(struct dentry *child)
3201{
3202 return ERR_PTR(-ESTALE);
3203}
3204
3205static int shmem_match(struct inode *ino, void *vfh)
3206{
3207 __u32 *fh = vfh;
3208 __u64 inum = fh[2];
3209 inum = (inum << 32) | fh[1];
3210 return ino->i_ino == inum && fh[0] == ino->i_generation;
3211}
3212
12ba780d
AG
3213/* Find any alias of inode, but prefer a hashed alias */
3214static struct dentry *shmem_find_alias(struct inode *inode)
3215{
3216 struct dentry *alias = d_find_alias(inode);
3217
3218 return alias ?: d_find_any_alias(inode);
3219}
3220
3221
480b116c
CH
3222static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3223 struct fid *fid, int fh_len, int fh_type)
91828a40 3224{
91828a40 3225 struct inode *inode;
480b116c 3226 struct dentry *dentry = NULL;
35c2a7f4 3227 u64 inum;
480b116c
CH
3228
3229 if (fh_len < 3)
3230 return NULL;
91828a40 3231
35c2a7f4
HD
3232 inum = fid->raw[2];
3233 inum = (inum << 32) | fid->raw[1];
3234
480b116c
CH
3235 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3236 shmem_match, fid->raw);
91828a40 3237 if (inode) {
12ba780d 3238 dentry = shmem_find_alias(inode);
91828a40
DG
3239 iput(inode);
3240 }
3241
480b116c 3242 return dentry;
91828a40
DG
3243}
3244
b0b0382b
AV
3245static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3246 struct inode *parent)
91828a40 3247{
5fe0c237
AK
3248 if (*len < 3) {
3249 *len = 3;
94e07a75 3250 return FILEID_INVALID;
5fe0c237 3251 }
91828a40 3252
1d3382cb 3253 if (inode_unhashed(inode)) {
91828a40
DG
3254 /* Unfortunately insert_inode_hash is not idempotent,
3255 * so as we hash inodes here rather than at creation
3256 * time, we need a lock to ensure we only try
3257 * to do it once
3258 */
3259 static DEFINE_SPINLOCK(lock);
3260 spin_lock(&lock);
1d3382cb 3261 if (inode_unhashed(inode))
91828a40
DG
3262 __insert_inode_hash(inode,
3263 inode->i_ino + inode->i_generation);
3264 spin_unlock(&lock);
3265 }
3266
3267 fh[0] = inode->i_generation;
3268 fh[1] = inode->i_ino;
3269 fh[2] = ((__u64)inode->i_ino) >> 32;
3270
3271 *len = 3;
3272 return 1;
3273}
3274
39655164 3275static const struct export_operations shmem_export_ops = {
91828a40 3276 .get_parent = shmem_get_parent,
91828a40 3277 .encode_fh = shmem_encode_fh,
480b116c 3278 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3279};
3280
680d794b 3281static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3282 bool remount)
1da177e4
LT
3283{
3284 char *this_char, *value, *rest;
49cd0a5c 3285 struct mempolicy *mpol = NULL;
8751e039
EB
3286 uid_t uid;
3287 gid_t gid;
1da177e4 3288
b00dc3ad
HD
3289 while (options != NULL) {
3290 this_char = options;
3291 for (;;) {
3292 /*
3293 * NUL-terminate this option: unfortunately,
3294 * mount options form a comma-separated list,
3295 * but mpol's nodelist may also contain commas.
3296 */
3297 options = strchr(options, ',');
3298 if (options == NULL)
3299 break;
3300 options++;
3301 if (!isdigit(*options)) {
3302 options[-1] = '\0';
3303 break;
3304 }
3305 }
1da177e4
LT
3306 if (!*this_char)
3307 continue;
3308 if ((value = strchr(this_char,'=')) != NULL) {
3309 *value++ = 0;
3310 } else {
1170532b
JP
3311 pr_err("tmpfs: No value for mount option '%s'\n",
3312 this_char);
49cd0a5c 3313 goto error;
1da177e4
LT
3314 }
3315
3316 if (!strcmp(this_char,"size")) {
3317 unsigned long long size;
3318 size = memparse(value,&rest);
3319 if (*rest == '%') {
3320 size <<= PAGE_SHIFT;
3321 size *= totalram_pages;
3322 do_div(size, 100);
3323 rest++;
3324 }
3325 if (*rest)
3326 goto bad_val;
680d794b 3327 sbinfo->max_blocks =
09cbfeaf 3328 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3329 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3330 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3331 if (*rest)
3332 goto bad_val;
3333 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3334 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3335 if (*rest)
3336 goto bad_val;
3337 } else if (!strcmp(this_char,"mode")) {
680d794b 3338 if (remount)
1da177e4 3339 continue;
680d794b 3340 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3341 if (*rest)
3342 goto bad_val;
3343 } else if (!strcmp(this_char,"uid")) {
680d794b 3344 if (remount)
1da177e4 3345 continue;
8751e039 3346 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3347 if (*rest)
3348 goto bad_val;
8751e039
EB
3349 sbinfo->uid = make_kuid(current_user_ns(), uid);
3350 if (!uid_valid(sbinfo->uid))
3351 goto bad_val;
1da177e4 3352 } else if (!strcmp(this_char,"gid")) {
680d794b 3353 if (remount)
1da177e4 3354 continue;
8751e039 3355 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3356 if (*rest)
3357 goto bad_val;
8751e039
EB
3358 sbinfo->gid = make_kgid(current_user_ns(), gid);
3359 if (!gid_valid(sbinfo->gid))
3360 goto bad_val;
e496cf3d 3361#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3362 } else if (!strcmp(this_char, "huge")) {
3363 int huge;
3364 huge = shmem_parse_huge(value);
3365 if (huge < 0)
3366 goto bad_val;
3367 if (!has_transparent_hugepage() &&
3368 huge != SHMEM_HUGE_NEVER)
3369 goto bad_val;
3370 sbinfo->huge = huge;
3371#endif
3372#ifdef CONFIG_NUMA
7339ff83 3373 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3374 mpol_put(mpol);
3375 mpol = NULL;
3376 if (mpol_parse_str(value, &mpol))
7339ff83 3377 goto bad_val;
5a6e75f8 3378#endif
1da177e4 3379 } else {
1170532b 3380 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3381 goto error;
1da177e4
LT
3382 }
3383 }
49cd0a5c 3384 sbinfo->mpol = mpol;
1da177e4
LT
3385 return 0;
3386
3387bad_val:
1170532b 3388 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3389 value, this_char);
49cd0a5c
GT
3390error:
3391 mpol_put(mpol);
1da177e4
LT
3392 return 1;
3393
3394}
3395
3396static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3397{
3398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3399 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3400 unsigned long inodes;
3401 int error = -EINVAL;
3402
5f00110f 3403 config.mpol = NULL;
680d794b 3404 if (shmem_parse_options(data, &config, true))
0edd73b3 3405 return error;
1da177e4 3406
0edd73b3 3407 spin_lock(&sbinfo->stat_lock);
0edd73b3 3408 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3409 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3410 goto out;
680d794b 3411 if (config.max_inodes < inodes)
0edd73b3
HD
3412 goto out;
3413 /*
54af6042 3414 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3415 * but we must separately disallow unlimited->limited, because
3416 * in that case we have no record of how much is already in use.
3417 */
680d794b 3418 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3419 goto out;
680d794b 3420 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3421 goto out;
3422
3423 error = 0;
5a6e75f8 3424 sbinfo->huge = config.huge;
680d794b 3425 sbinfo->max_blocks = config.max_blocks;
680d794b 3426 sbinfo->max_inodes = config.max_inodes;
3427 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3428
5f00110f
GT
3429 /*
3430 * Preserve previous mempolicy unless mpol remount option was specified.
3431 */
3432 if (config.mpol) {
3433 mpol_put(sbinfo->mpol);
3434 sbinfo->mpol = config.mpol; /* transfers initial ref */
3435 }
0edd73b3
HD
3436out:
3437 spin_unlock(&sbinfo->stat_lock);
3438 return error;
1da177e4 3439}
680d794b 3440
34c80b1d 3441static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3442{
34c80b1d 3443 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3444
3445 if (sbinfo->max_blocks != shmem_default_max_blocks())
3446 seq_printf(seq, ",size=%luk",
09cbfeaf 3447 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3448 if (sbinfo->max_inodes != shmem_default_max_inodes())
3449 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3450 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3451 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3452 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3453 seq_printf(seq, ",uid=%u",
3454 from_kuid_munged(&init_user_ns, sbinfo->uid));
3455 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3456 seq_printf(seq, ",gid=%u",
3457 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3458#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3459 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3460 if (sbinfo->huge)
3461 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3462#endif
71fe804b 3463 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3464 return 0;
3465}
9183df25 3466
680d794b 3467#endif /* CONFIG_TMPFS */
1da177e4
LT
3468
3469static void shmem_put_super(struct super_block *sb)
3470{
602586a8
HD
3471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3472
3473 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3474 mpol_put(sbinfo->mpol);
602586a8 3475 kfree(sbinfo);
1da177e4
LT
3476 sb->s_fs_info = NULL;
3477}
3478
2b2af54a 3479int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3480{
3481 struct inode *inode;
0edd73b3 3482 struct shmem_sb_info *sbinfo;
680d794b 3483 int err = -ENOMEM;
3484
3485 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3486 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3487 L1_CACHE_BYTES), GFP_KERNEL);
3488 if (!sbinfo)
3489 return -ENOMEM;
3490
0825a6f9 3491 sbinfo->mode = 0777 | S_ISVTX;
76aac0e9
DH
3492 sbinfo->uid = current_fsuid();
3493 sbinfo->gid = current_fsgid();
680d794b 3494 sb->s_fs_info = sbinfo;
1da177e4 3495
0edd73b3 3496#ifdef CONFIG_TMPFS
1da177e4
LT
3497 /*
3498 * Per default we only allow half of the physical ram per
3499 * tmpfs instance, limiting inodes to one per page of lowmem;
3500 * but the internal instance is left unlimited.
3501 */
1751e8a6 3502 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b 3503 sbinfo->max_blocks = shmem_default_max_blocks();
3504 sbinfo->max_inodes = shmem_default_max_inodes();
3505 if (shmem_parse_options(data, sbinfo, false)) {
3506 err = -EINVAL;
3507 goto failed;
3508 }
ca4e0519 3509 } else {
1751e8a6 3510 sb->s_flags |= SB_NOUSER;
1da177e4 3511 }
91828a40 3512 sb->s_export_op = &shmem_export_ops;
1751e8a6 3513 sb->s_flags |= SB_NOSEC;
1da177e4 3514#else
1751e8a6 3515 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3516#endif
3517
0edd73b3 3518 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3519 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3520 goto failed;
680d794b 3521 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3522 spin_lock_init(&sbinfo->shrinklist_lock);
3523 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3524
285b2c4f 3525 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3526 sb->s_blocksize = PAGE_SIZE;
3527 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3528 sb->s_magic = TMPFS_MAGIC;
3529 sb->s_op = &shmem_ops;
cfd95a9c 3530 sb->s_time_gran = 1;
b09e0fa4 3531#ifdef CONFIG_TMPFS_XATTR
39f0247d 3532 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3533#endif
3534#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3535 sb->s_flags |= SB_POSIXACL;
39f0247d 3536#endif
2b4db796 3537 uuid_gen(&sb->s_uuid);
0edd73b3 3538
454abafe 3539 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3540 if (!inode)
3541 goto failed;
680d794b 3542 inode->i_uid = sbinfo->uid;
3543 inode->i_gid = sbinfo->gid;
318ceed0
AV
3544 sb->s_root = d_make_root(inode);
3545 if (!sb->s_root)
48fde701 3546 goto failed;
1da177e4
LT
3547 return 0;
3548
1da177e4
LT
3549failed:
3550 shmem_put_super(sb);
3551 return err;
3552}
3553
fcc234f8 3554static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3555
3556static struct inode *shmem_alloc_inode(struct super_block *sb)
3557{
41ffe5d5
HD
3558 struct shmem_inode_info *info;
3559 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3560 if (!info)
1da177e4 3561 return NULL;
41ffe5d5 3562 return &info->vfs_inode;
1da177e4
LT
3563}
3564
41ffe5d5 3565static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3566{
3567 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3568 if (S_ISLNK(inode->i_mode))
3569 kfree(inode->i_link);
fa0d7e3d
NP
3570 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3571}
3572
1da177e4
LT
3573static void shmem_destroy_inode(struct inode *inode)
3574{
09208d15 3575 if (S_ISREG(inode->i_mode))
1da177e4 3576 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3577 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3578}
3579
41ffe5d5 3580static void shmem_init_inode(void *foo)
1da177e4 3581{
41ffe5d5
HD
3582 struct shmem_inode_info *info = foo;
3583 inode_init_once(&info->vfs_inode);
1da177e4
LT
3584}
3585
9a8ec03e 3586static void shmem_init_inodecache(void)
1da177e4
LT
3587{
3588 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3589 sizeof(struct shmem_inode_info),
5d097056 3590 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3591}
3592
41ffe5d5 3593static void shmem_destroy_inodecache(void)
1da177e4 3594{
1a1d92c1 3595 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3596}
3597
f5e54d6e 3598static const struct address_space_operations shmem_aops = {
1da177e4 3599 .writepage = shmem_writepage,
76719325 3600 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3601#ifdef CONFIG_TMPFS
800d15a5
NP
3602 .write_begin = shmem_write_begin,
3603 .write_end = shmem_write_end,
1da177e4 3604#endif
1c93923c 3605#ifdef CONFIG_MIGRATION
304dbdb7 3606 .migratepage = migrate_page,
1c93923c 3607#endif
aa261f54 3608 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3609};
3610
15ad7cdc 3611static const struct file_operations shmem_file_operations = {
1da177e4 3612 .mmap = shmem_mmap,
c01d5b30 3613 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3614#ifdef CONFIG_TMPFS
220f2ac9 3615 .llseek = shmem_file_llseek,
2ba5bbed 3616 .read_iter = shmem_file_read_iter,
8174202b 3617 .write_iter = generic_file_write_iter,
1b061d92 3618 .fsync = noop_fsync,
82c156f8 3619 .splice_read = generic_file_splice_read,
f6cb85d0 3620 .splice_write = iter_file_splice_write,
83e4fa9c 3621 .fallocate = shmem_fallocate,
1da177e4
LT
3622#endif
3623};
3624
92e1d5be 3625static const struct inode_operations shmem_inode_operations = {
44a30220 3626 .getattr = shmem_getattr,
94c1e62d 3627 .setattr = shmem_setattr,
b09e0fa4 3628#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3629 .listxattr = shmem_listxattr,
feda821e 3630 .set_acl = simple_set_acl,
b09e0fa4 3631#endif
1da177e4
LT
3632};
3633
92e1d5be 3634static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3635#ifdef CONFIG_TMPFS
3636 .create = shmem_create,
3637 .lookup = simple_lookup,
3638 .link = shmem_link,
3639 .unlink = shmem_unlink,
3640 .symlink = shmem_symlink,
3641 .mkdir = shmem_mkdir,
3642 .rmdir = shmem_rmdir,
3643 .mknod = shmem_mknod,
2773bf00 3644 .rename = shmem_rename2,
60545d0d 3645 .tmpfile = shmem_tmpfile,
1da177e4 3646#endif
b09e0fa4 3647#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3648 .listxattr = shmem_listxattr,
b09e0fa4 3649#endif
39f0247d 3650#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3651 .setattr = shmem_setattr,
feda821e 3652 .set_acl = simple_set_acl,
39f0247d
AG
3653#endif
3654};
3655
92e1d5be 3656static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3657#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3658 .listxattr = shmem_listxattr,
b09e0fa4 3659#endif
39f0247d 3660#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3661 .setattr = shmem_setattr,
feda821e 3662 .set_acl = simple_set_acl,
39f0247d 3663#endif
1da177e4
LT
3664};
3665
759b9775 3666static const struct super_operations shmem_ops = {
1da177e4
LT
3667 .alloc_inode = shmem_alloc_inode,
3668 .destroy_inode = shmem_destroy_inode,
3669#ifdef CONFIG_TMPFS
3670 .statfs = shmem_statfs,
3671 .remount_fs = shmem_remount_fs,
680d794b 3672 .show_options = shmem_show_options,
1da177e4 3673#endif
1f895f75 3674 .evict_inode = shmem_evict_inode,
1da177e4
LT
3675 .drop_inode = generic_delete_inode,
3676 .put_super = shmem_put_super,
779750d2
KS
3677#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3678 .nr_cached_objects = shmem_unused_huge_count,
3679 .free_cached_objects = shmem_unused_huge_scan,
3680#endif
1da177e4
LT
3681};
3682
f0f37e2f 3683static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3684 .fault = shmem_fault,
d7c17551 3685 .map_pages = filemap_map_pages,
1da177e4
LT
3686#ifdef CONFIG_NUMA
3687 .set_policy = shmem_set_policy,
3688 .get_policy = shmem_get_policy,
3689#endif
3690};
3691
3c26ff6e
AV
3692static struct dentry *shmem_mount(struct file_system_type *fs_type,
3693 int flags, const char *dev_name, void *data)
1da177e4 3694{
3c26ff6e 3695 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3696}
3697
41ffe5d5 3698static struct file_system_type shmem_fs_type = {
1da177e4
LT
3699 .owner = THIS_MODULE,
3700 .name = "tmpfs",
3c26ff6e 3701 .mount = shmem_mount,
1da177e4 3702 .kill_sb = kill_litter_super,
2b8576cb 3703 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3704};
1da177e4 3705
41ffe5d5 3706int __init shmem_init(void)
1da177e4
LT
3707{
3708 int error;
3709
16203a7a
RL
3710 /* If rootfs called this, don't re-init */
3711 if (shmem_inode_cachep)
3712 return 0;
3713
9a8ec03e 3714 shmem_init_inodecache();
1da177e4 3715
41ffe5d5 3716 error = register_filesystem(&shmem_fs_type);
1da177e4 3717 if (error) {
1170532b 3718 pr_err("Could not register tmpfs\n");
1da177e4
LT
3719 goto out2;
3720 }
95dc112a 3721
ca4e0519 3722 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3723 if (IS_ERR(shm_mnt)) {
3724 error = PTR_ERR(shm_mnt);
1170532b 3725 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3726 goto out1;
3727 }
5a6e75f8 3728
e496cf3d 3729#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 3730 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3731 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3732 else
3733 shmem_huge = 0; /* just in case it was patched */
3734#endif
1da177e4
LT
3735 return 0;
3736
3737out1:
41ffe5d5 3738 unregister_filesystem(&shmem_fs_type);
1da177e4 3739out2:
41ffe5d5 3740 shmem_destroy_inodecache();
1da177e4
LT
3741 shm_mnt = ERR_PTR(error);
3742 return error;
3743}
853ac43a 3744
e496cf3d 3745#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3746static ssize_t shmem_enabled_show(struct kobject *kobj,
3747 struct kobj_attribute *attr, char *buf)
3748{
3749 int values[] = {
3750 SHMEM_HUGE_ALWAYS,
3751 SHMEM_HUGE_WITHIN_SIZE,
3752 SHMEM_HUGE_ADVISE,
3753 SHMEM_HUGE_NEVER,
3754 SHMEM_HUGE_DENY,
3755 SHMEM_HUGE_FORCE,
3756 };
3757 int i, count;
3758
3759 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3760 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3761
3762 count += sprintf(buf + count, fmt,
3763 shmem_format_huge(values[i]));
3764 }
3765 buf[count - 1] = '\n';
3766 return count;
3767}
3768
3769static ssize_t shmem_enabled_store(struct kobject *kobj,
3770 struct kobj_attribute *attr, const char *buf, size_t count)
3771{
3772 char tmp[16];
3773 int huge;
3774
3775 if (count + 1 > sizeof(tmp))
3776 return -EINVAL;
3777 memcpy(tmp, buf, count);
3778 tmp[count] = '\0';
3779 if (count && tmp[count - 1] == '\n')
3780 tmp[count - 1] = '\0';
3781
3782 huge = shmem_parse_huge(tmp);
3783 if (huge == -EINVAL)
3784 return -EINVAL;
3785 if (!has_transparent_hugepage() &&
3786 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3787 return -EINVAL;
3788
3789 shmem_huge = huge;
435c0b87 3790 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3791 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3792 return count;
3793}
3794
3795struct kobj_attribute shmem_enabled_attr =
3796 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3797#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3798
3b33719c 3799#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3800bool shmem_huge_enabled(struct vm_area_struct *vma)
3801{
3802 struct inode *inode = file_inode(vma->vm_file);
3803 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3804 loff_t i_size;
3805 pgoff_t off;
3806
3807 if (shmem_huge == SHMEM_HUGE_FORCE)
3808 return true;
3809 if (shmem_huge == SHMEM_HUGE_DENY)
3810 return false;
3811 switch (sbinfo->huge) {
3812 case SHMEM_HUGE_NEVER:
3813 return false;
3814 case SHMEM_HUGE_ALWAYS:
3815 return true;
3816 case SHMEM_HUGE_WITHIN_SIZE:
3817 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3818 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3819 if (i_size >= HPAGE_PMD_SIZE &&
3820 i_size >> PAGE_SHIFT >= off)
3821 return true;
c8402871 3822 /* fall through */
f3f0e1d2
KS
3823 case SHMEM_HUGE_ADVISE:
3824 /* TODO: implement fadvise() hints */
3825 return (vma->vm_flags & VM_HUGEPAGE);
3826 default:
3827 VM_BUG_ON(1);
3828 return false;
3829 }
3830}
3b33719c 3831#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 3832
853ac43a
MM
3833#else /* !CONFIG_SHMEM */
3834
3835/*
3836 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3837 *
3838 * This is intended for small system where the benefits of the full
3839 * shmem code (swap-backed and resource-limited) are outweighed by
3840 * their complexity. On systems without swap this code should be
3841 * effectively equivalent, but much lighter weight.
3842 */
3843
41ffe5d5 3844static struct file_system_type shmem_fs_type = {
853ac43a 3845 .name = "tmpfs",
3c26ff6e 3846 .mount = ramfs_mount,
853ac43a 3847 .kill_sb = kill_litter_super,
2b8576cb 3848 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3849};
3850
41ffe5d5 3851int __init shmem_init(void)
853ac43a 3852{
41ffe5d5 3853 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3854
41ffe5d5 3855 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3856 BUG_ON(IS_ERR(shm_mnt));
3857
3858 return 0;
3859}
3860
41ffe5d5 3861int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3862{
3863 return 0;
3864}
3865
3f96b79a
HD
3866int shmem_lock(struct file *file, int lock, struct user_struct *user)
3867{
3868 return 0;
3869}
3870
24513264
HD
3871void shmem_unlock_mapping(struct address_space *mapping)
3872{
3873}
3874
c01d5b30
HD
3875#ifdef CONFIG_MMU
3876unsigned long shmem_get_unmapped_area(struct file *file,
3877 unsigned long addr, unsigned long len,
3878 unsigned long pgoff, unsigned long flags)
3879{
3880 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3881}
3882#endif
3883
41ffe5d5 3884void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3885{
41ffe5d5 3886 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3887}
3888EXPORT_SYMBOL_GPL(shmem_truncate_range);
3889
0b0a0806
HD
3890#define shmem_vm_ops generic_file_vm_ops
3891#define shmem_file_operations ramfs_file_operations
454abafe 3892#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3893#define shmem_acct_size(flags, size) 0
3894#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3895
3896#endif /* CONFIG_SHMEM */
3897
3898/* common code */
1da177e4 3899
703321b6 3900static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 3901 unsigned long flags, unsigned int i_flags)
1da177e4 3902{
1da177e4 3903 struct inode *inode;
93dec2da 3904 struct file *res;
1da177e4 3905
703321b6
MA
3906 if (IS_ERR(mnt))
3907 return ERR_CAST(mnt);
1da177e4 3908
285b2c4f 3909 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3910 return ERR_PTR(-EINVAL);
3911
3912 if (shmem_acct_size(flags, size))
3913 return ERR_PTR(-ENOMEM);
3914
93dec2da
AV
3915 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3916 flags);
dac2d1f6
AV
3917 if (unlikely(!inode)) {
3918 shmem_unacct_size(flags, size);
3919 return ERR_PTR(-ENOSPC);
3920 }
c7277090 3921 inode->i_flags |= i_flags;
1da177e4 3922 inode->i_size = size;
6d6b77f1 3923 clear_nlink(inode); /* It is unlinked */
26567cdb 3924 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
3925 if (!IS_ERR(res))
3926 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3927 &shmem_file_operations);
26567cdb 3928 if (IS_ERR(res))
93dec2da 3929 iput(inode);
6b4d0b27 3930 return res;
1da177e4 3931}
c7277090
EP
3932
3933/**
3934 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3935 * kernel internal. There will be NO LSM permission checks against the
3936 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3937 * higher layer. The users are the big_key and shm implementations. LSM
3938 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3939 * @name: name for dentry (to be seen in /proc/<pid>/maps
3940 * @size: size to be set for the file
3941 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3942 */
3943struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3944{
703321b6 3945 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
3946}
3947
3948/**
3949 * shmem_file_setup - get an unlinked file living in tmpfs
3950 * @name: name for dentry (to be seen in /proc/<pid>/maps
3951 * @size: size to be set for the file
3952 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3953 */
3954struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3955{
703321b6 3956 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 3957}
395e0ddc 3958EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3959
703321b6
MA
3960/**
3961 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3962 * @mnt: the tmpfs mount where the file will be created
3963 * @name: name for dentry (to be seen in /proc/<pid>/maps
3964 * @size: size to be set for the file
3965 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3966 */
3967struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3968 loff_t size, unsigned long flags)
3969{
3970 return __shmem_file_setup(mnt, name, size, flags, 0);
3971}
3972EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3973
46711810 3974/**
1da177e4 3975 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3976 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3977 */
3978int shmem_zero_setup(struct vm_area_struct *vma)
3979{
3980 struct file *file;
3981 loff_t size = vma->vm_end - vma->vm_start;
3982
66fc1303
HD
3983 /*
3984 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3985 * between XFS directory reading and selinux: since this file is only
3986 * accessible to the user through its mapping, use S_PRIVATE flag to
3987 * bypass file security, in the same way as shmem_kernel_file_setup().
3988 */
703321b6 3989 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
3990 if (IS_ERR(file))
3991 return PTR_ERR(file);
3992
3993 if (vma->vm_file)
3994 fput(vma->vm_file);
3995 vma->vm_file = file;
3996 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 3997
e496cf3d 3998 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
3999 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4000 (vma->vm_end & HPAGE_PMD_MASK)) {
4001 khugepaged_enter(vma, vma->vm_flags);
4002 }
4003
1da177e4
LT
4004 return 0;
4005}
d9d90e5e
HD
4006
4007/**
4008 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4009 * @mapping: the page's address_space
4010 * @index: the page index
4011 * @gfp: the page allocator flags to use if allocating
4012 *
4013 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4014 * with any new page allocations done using the specified allocation flags.
4015 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4016 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4017 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4018 *
68da9f05
HD
4019 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4020 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4021 */
4022struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4023 pgoff_t index, gfp_t gfp)
4024{
68da9f05
HD
4025#ifdef CONFIG_SHMEM
4026 struct inode *inode = mapping->host;
9276aad6 4027 struct page *page;
68da9f05
HD
4028 int error;
4029
4030 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4031 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4032 gfp, NULL, NULL, NULL);
68da9f05
HD
4033 if (error)
4034 page = ERR_PTR(error);
4035 else
4036 unlock_page(page);
4037 return page;
4038#else
4039 /*
4040 * The tiny !SHMEM case uses ramfs without swap
4041 */
d9d90e5e 4042 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4043#endif
d9d90e5e
HD
4044}
4045EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);