kernel/printk/printk.c: revert "printk: enable interrupts before calling console_tryl...
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400 82/*
f00cdc6d
HD
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
86 */
87struct shmem_falloc {
f00cdc6d 88 int mode; /* FALLOC_FL mode currently operating */
1aac1400
HD
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93};
94
285b2c4f 95/* Flag allocation requirements to shmem_getpage */
1da177e4 96enum sgp_type {
1da177e4
LT
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
102};
103
b76db735 104#ifdef CONFIG_TMPFS
680d794b 105static unsigned long shmem_default_max_blocks(void)
106{
107 return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
b76db735 114#endif
680d794b 115
bde05d1c
HD
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127}
1da177e4 128
1da177e4
LT
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131 return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
0b0a0806 142 return (flags & VM_NORESERVE) ?
191c5424 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 if (!(flags & VM_NORESERVE))
1da177e4
LT
149 vm_unacct_memory(VM_ACCT(size));
150}
151
152/*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158static inline int shmem_acct_block(unsigned long flags)
159{
0b0a0806 160 return (flags & VM_NORESERVE) ?
191c5424 161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
162}
163
164static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165{
0b0a0806 166 if (flags & VM_NORESERVE)
1da177e4
LT
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168}
169
759b9775 170static const struct super_operations shmem_ops;
f5e54d6e 171static const struct address_space_operations shmem_aops;
15ad7cdc 172static const struct file_operations shmem_file_operations;
92e1d5be
AV
173static const struct inode_operations shmem_inode_operations;
174static const struct inode_operations shmem_dir_inode_operations;
175static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 176static const struct vm_operations_struct shmem_vm_ops;
1da177e4 177
6c231b7b 178static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 179 .ra_pages = 0, /* No readahead */
4f98a2fe 180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
181};
182
183static LIST_HEAD(shmem_swaplist);
cb5f7b9a 184static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 185
5b04c689
PE
186static int shmem_reserve_inode(struct super_block *sb)
187{
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199}
200
201static void shmem_free_inode(struct super_block *sb)
202{
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209}
210
46711810 211/**
41ffe5d5 212 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
54af6042
HD
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 233 info->alloced -= freed;
54af6042 234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 235 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
236 }
237}
238
7a5d0fbb
HD
239/*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244{
245 void **pslot;
6dbaf22c 246 void *item;
7a5d0fbb
HD
247
248 VM_BUG_ON(!expected);
6dbaf22c 249 VM_BUG_ON(!replacement);
7a5d0fbb 250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
251 if (!pslot)
252 return -ENOENT;
253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
254 if (item != expected)
255 return -ENOENT;
6dbaf22c 256 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
257 return 0;
258}
259
d1899228
HD
260/*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267static bool shmem_confirm_swap(struct address_space *mapping,
268 pgoff_t index, swp_entry_t swap)
269{
270 void *item;
271
272 rcu_read_lock();
273 item = radix_tree_lookup(&mapping->page_tree, index);
274 rcu_read_unlock();
275 return item == swp_to_radix_entry(swap);
276}
277
46f65ec1
HD
278/*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281static int shmem_add_to_page_cache(struct page *page,
282 struct address_space *mapping,
283 pgoff_t index, gfp_t gfp, void *expected)
284{
b065b432 285 int error;
46f65ec1 286
309381fe
SL
287 VM_BUG_ON_PAGE(!PageLocked(page), page);
288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 289
b065b432
HD
290 page_cache_get(page);
291 page->mapping = mapping;
292 page->index = index;
293
294 spin_lock_irq(&mapping->tree_lock);
46f65ec1 295 if (!expected)
b065b432
HD
296 error = radix_tree_insert(&mapping->page_tree, index, page);
297 else
298 error = shmem_radix_tree_replace(mapping, index, expected,
299 page);
46f65ec1 300 if (!error) {
b065b432
HD
301 mapping->nrpages++;
302 __inc_zone_page_state(page, NR_FILE_PAGES);
303 __inc_zone_page_state(page, NR_SHMEM);
304 spin_unlock_irq(&mapping->tree_lock);
305 } else {
306 page->mapping = NULL;
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
46f65ec1 309 }
46f65ec1
HD
310 return error;
311}
312
6922c0c7
HD
313/*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317{
318 struct address_space *mapping = page->mapping;
319 int error;
320
321 spin_lock_irq(&mapping->tree_lock);
322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 page->mapping = NULL;
324 mapping->nrpages--;
325 __dec_zone_page_state(page, NR_FILE_PAGES);
326 __dec_zone_page_state(page, NR_SHMEM);
327 spin_unlock_irq(&mapping->tree_lock);
328 page_cache_release(page);
329 BUG_ON(error);
330}
331
7a5d0fbb
HD
332/*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335static int shmem_free_swap(struct address_space *mapping,
336 pgoff_t index, void *radswap)
337{
6dbaf22c 338 void *old;
7a5d0fbb
HD
339
340 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 342 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
343 if (old != radswap)
344 return -ENOENT;
345 free_swap_and_cache(radix_to_swp_entry(radswap));
346 return 0;
7a5d0fbb
HD
347}
348
24513264
HD
349/*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352void shmem_unlock_mapping(struct address_space *mapping)
353{
354 struct pagevec pvec;
355 pgoff_t indices[PAGEVEC_SIZE];
356 pgoff_t index = 0;
357
358 pagevec_init(&pvec, 0);
359 /*
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 */
362 while (!mapping_unevictable(mapping)) {
363 /*
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 */
0cd6144a
JW
367 pvec.nr = find_get_entries(mapping, index,
368 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
369 if (!pvec.nr)
370 break;
371 index = indices[pvec.nr - 1] + 1;
0cd6144a 372 pagevec_remove_exceptionals(&pvec);
24513264
HD
373 check_move_unevictable_pages(pvec.pages, pvec.nr);
374 pagevec_release(&pvec);
375 cond_resched();
376 }
7a5d0fbb
HD
377}
378
379/*
380 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 382 */
1635f6a7
HD
383static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 bool unfalloc)
1da177e4 385{
285b2c4f 386 struct address_space *mapping = inode->i_mapping;
1da177e4 387 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 392 struct pagevec pvec;
7a5d0fbb
HD
393 pgoff_t indices[PAGEVEC_SIZE];
394 long nr_swaps_freed = 0;
285b2c4f 395 pgoff_t index;
bda97eab
HD
396 int i;
397
83e4fa9c
HD
398 if (lend == -1)
399 end = -1; /* unsigned, so actually very big */
bda97eab
HD
400
401 pagevec_init(&pvec, 0);
402 index = start;
83e4fa9c 403 while (index < end) {
0cd6144a
JW
404 pvec.nr = find_get_entries(mapping, index,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 pvec.pages, indices);
7a5d0fbb
HD
407 if (!pvec.nr)
408 break;
bda97eab
HD
409 mem_cgroup_uncharge_start();
410 for (i = 0; i < pagevec_count(&pvec); i++) {
411 struct page *page = pvec.pages[i];
412
7a5d0fbb 413 index = indices[i];
83e4fa9c 414 if (index >= end)
bda97eab
HD
415 break;
416
7a5d0fbb 417 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
418 if (unfalloc)
419 continue;
7a5d0fbb
HD
420 nr_swaps_freed += !shmem_free_swap(mapping,
421 index, page);
bda97eab 422 continue;
7a5d0fbb
HD
423 }
424
425 if (!trylock_page(page))
bda97eab 426 continue;
1635f6a7
HD
427 if (!unfalloc || !PageUptodate(page)) {
428 if (page->mapping == mapping) {
309381fe 429 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
430 truncate_inode_page(mapping, page);
431 }
bda97eab 432 }
bda97eab
HD
433 unlock_page(page);
434 }
0cd6144a 435 pagevec_remove_exceptionals(&pvec);
24513264 436 pagevec_release(&pvec);
bda97eab
HD
437 mem_cgroup_uncharge_end();
438 cond_resched();
439 index++;
440 }
1da177e4 441
83e4fa9c 442 if (partial_start) {
bda97eab
HD
443 struct page *page = NULL;
444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 if (page) {
83e4fa9c
HD
446 unsigned int top = PAGE_CACHE_SIZE;
447 if (start > end) {
448 top = partial_end;
449 partial_end = 0;
450 }
451 zero_user_segment(page, partial_start, top);
452 set_page_dirty(page);
453 unlock_page(page);
454 page_cache_release(page);
455 }
456 }
457 if (partial_end) {
458 struct page *page = NULL;
459 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 if (page) {
461 zero_user_segment(page, 0, partial_end);
bda97eab
HD
462 set_page_dirty(page);
463 unlock_page(page);
464 page_cache_release(page);
465 }
466 }
83e4fa9c
HD
467 if (start >= end)
468 return;
bda97eab
HD
469
470 index = start;
471 for ( ; ; ) {
472 cond_resched();
0cd6144a
JW
473
474 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 475 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 476 pvec.pages, indices);
7a5d0fbb 477 if (!pvec.nr) {
1635f6a7 478 if (index == start || unfalloc)
bda97eab
HD
479 break;
480 index = start;
481 continue;
482 }
1635f6a7 483 if ((index == start || unfalloc) && indices[0] >= end) {
0cd6144a 484 pagevec_remove_exceptionals(&pvec);
24513264 485 pagevec_release(&pvec);
bda97eab
HD
486 break;
487 }
488 mem_cgroup_uncharge_start();
489 for (i = 0; i < pagevec_count(&pvec); i++) {
490 struct page *page = pvec.pages[i];
491
7a5d0fbb 492 index = indices[i];
83e4fa9c 493 if (index >= end)
bda97eab
HD
494 break;
495
7a5d0fbb 496 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
497 if (unfalloc)
498 continue;
7a5d0fbb
HD
499 nr_swaps_freed += !shmem_free_swap(mapping,
500 index, page);
501 continue;
502 }
503
bda97eab 504 lock_page(page);
1635f6a7
HD
505 if (!unfalloc || !PageUptodate(page)) {
506 if (page->mapping == mapping) {
309381fe 507 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
508 truncate_inode_page(mapping, page);
509 }
7a5d0fbb 510 }
bda97eab
HD
511 unlock_page(page);
512 }
0cd6144a 513 pagevec_remove_exceptionals(&pvec);
24513264 514 pagevec_release(&pvec);
bda97eab
HD
515 mem_cgroup_uncharge_end();
516 index++;
517 }
94c1e62d 518
1da177e4 519 spin_lock(&info->lock);
7a5d0fbb 520 info->swapped -= nr_swaps_freed;
1da177e4
LT
521 shmem_recalc_inode(inode);
522 spin_unlock(&info->lock);
1635f6a7 523}
1da177e4 524
1635f6a7
HD
525void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526{
527 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 528 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 529}
94c1e62d 530EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 531
94c1e62d 532static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
533{
534 struct inode *inode = dentry->d_inode;
1da177e4
LT
535 int error;
536
db78b877
CH
537 error = inode_change_ok(inode, attr);
538 if (error)
539 return error;
540
94c1e62d
HD
541 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542 loff_t oldsize = inode->i_size;
543 loff_t newsize = attr->ia_size;
3889e6e7 544
94c1e62d
HD
545 if (newsize != oldsize) {
546 i_size_write(inode, newsize);
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 if (newsize < oldsize) {
550 loff_t holebegin = round_up(newsize, PAGE_SIZE);
551 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552 shmem_truncate_range(inode, newsize, (loff_t)-1);
553 /* unmap again to remove racily COWed private pages */
554 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555 }
1da177e4
LT
556 }
557
db78b877 558 setattr_copy(inode, attr);
db78b877 559 if (attr->ia_valid & ATTR_MODE)
feda821e 560 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
561 return error;
562}
563
1f895f75 564static void shmem_evict_inode(struct inode *inode)
1da177e4 565{
1da177e4
LT
566 struct shmem_inode_info *info = SHMEM_I(inode);
567
3889e6e7 568 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
569 shmem_unacct_size(info->flags, inode->i_size);
570 inode->i_size = 0;
3889e6e7 571 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 572 if (!list_empty(&info->swaplist)) {
cb5f7b9a 573 mutex_lock(&shmem_swaplist_mutex);
1da177e4 574 list_del_init(&info->swaplist);
cb5f7b9a 575 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 576 }
69f07ec9
HD
577 } else
578 kfree(info->symlink);
b09e0fa4 579
38f38657 580 simple_xattrs_free(&info->xattrs);
0f3c42f5 581 WARN_ON(inode->i_blocks);
5b04c689 582 shmem_free_inode(inode->i_sb);
dbd5768f 583 clear_inode(inode);
1da177e4
LT
584}
585
46f65ec1
HD
586/*
587 * If swap found in inode, free it and move page from swapcache to filecache.
588 */
41ffe5d5 589static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 590 swp_entry_t swap, struct page **pagep)
1da177e4 591{
285b2c4f 592 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 593 void *radswap;
41ffe5d5 594 pgoff_t index;
bde05d1c
HD
595 gfp_t gfp;
596 int error = 0;
1da177e4 597
46f65ec1 598 radswap = swp_to_radix_entry(swap);
e504f3fd 599 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 600 if (index == -1)
285b2c4f 601 return 0;
2e0e26c7 602
1b1b32f2
HD
603 /*
604 * Move _head_ to start search for next from here.
1f895f75 605 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 606 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 607 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
608 */
609 if (shmem_swaplist.next != &info->swaplist)
610 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 611
bde05d1c
HD
612 gfp = mapping_gfp_mask(mapping);
613 if (shmem_should_replace_page(*pagep, gfp)) {
614 mutex_unlock(&shmem_swaplist_mutex);
615 error = shmem_replace_page(pagep, gfp, info, index);
616 mutex_lock(&shmem_swaplist_mutex);
617 /*
618 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
619 * allocation, but the inode might have been freed while we
620 * dropped it: although a racing shmem_evict_inode() cannot
621 * complete without emptying the radix_tree, our page lock
622 * on this swapcache page is not enough to prevent that -
623 * free_swap_and_cache() of our swap entry will only
624 * trylock_page(), removing swap from radix_tree whatever.
625 *
626 * We must not proceed to shmem_add_to_page_cache() if the
627 * inode has been freed, but of course we cannot rely on
628 * inode or mapping or info to check that. However, we can
629 * safely check if our swap entry is still in use (and here
630 * it can't have got reused for another page): if it's still
631 * in use, then the inode cannot have been freed yet, and we
632 * can safely proceed (if it's no longer in use, that tells
633 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
634 */
635 if (!page_swapcount(*pagep))
636 error = -ENOENT;
637 }
638
d13d1443 639 /*
778dd893
HD
640 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 643 */
bde05d1c
HD
644 if (!error)
645 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 646 GFP_NOWAIT, radswap);
48f170fb 647 if (error != -ENOMEM) {
46f65ec1
HD
648 /*
649 * Truncation and eviction use free_swap_and_cache(), which
650 * only does trylock page: if we raced, best clean up here.
651 */
bde05d1c
HD
652 delete_from_swap_cache(*pagep);
653 set_page_dirty(*pagep);
46f65ec1
HD
654 if (!error) {
655 spin_lock(&info->lock);
656 info->swapped--;
657 spin_unlock(&info->lock);
658 swap_free(swap);
659 }
2e0e26c7 660 error = 1; /* not an error, but entry was found */
1da177e4 661 }
2e0e26c7 662 return error;
1da177e4
LT
663}
664
665/*
46f65ec1 666 * Search through swapped inodes to find and replace swap by page.
1da177e4 667 */
41ffe5d5 668int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 669{
41ffe5d5 670 struct list_head *this, *next;
1da177e4
LT
671 struct shmem_inode_info *info;
672 int found = 0;
bde05d1c
HD
673 int error = 0;
674
675 /*
676 * There's a faint possibility that swap page was replaced before
0142ef6c 677 * caller locked it: caller will come back later with the right page.
bde05d1c 678 */
0142ef6c 679 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 680 goto out;
778dd893
HD
681
682 /*
683 * Charge page using GFP_KERNEL while we can wait, before taking
684 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685 * Charged back to the user (not to caller) when swap account is used.
778dd893 686 */
d715ae08 687 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
778dd893
HD
688 if (error)
689 goto out;
46f65ec1 690 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 691
cb5f7b9a 692 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
693 list_for_each_safe(this, next, &shmem_swaplist) {
694 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 695 if (info->swapped)
bde05d1c 696 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
697 else
698 list_del_init(&info->swaplist);
cb5f7b9a 699 cond_resched();
2e0e26c7 700 if (found)
778dd893 701 break;
1da177e4 702 }
cb5f7b9a 703 mutex_unlock(&shmem_swaplist_mutex);
778dd893 704
778dd893
HD
705 if (found < 0)
706 error = found;
707out:
aaa46865
HD
708 unlock_page(page);
709 page_cache_release(page);
778dd893 710 return error;
1da177e4
LT
711}
712
713/*
714 * Move the page from the page cache to the swap cache.
715 */
716static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717{
718 struct shmem_inode_info *info;
1da177e4 719 struct address_space *mapping;
1da177e4 720 struct inode *inode;
6922c0c7
HD
721 swp_entry_t swap;
722 pgoff_t index;
1da177e4
LT
723
724 BUG_ON(!PageLocked(page));
1da177e4
LT
725 mapping = page->mapping;
726 index = page->index;
727 inode = mapping->host;
728 info = SHMEM_I(inode);
729 if (info->flags & VM_LOCKED)
730 goto redirty;
d9fe526a 731 if (!total_swap_pages)
1da177e4
LT
732 goto redirty;
733
d9fe526a
HD
734 /*
735 * shmem_backing_dev_info's capabilities prevent regular writeback or
736 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 737 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 738 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 739 * and not for the writeback threads or sync.
d9fe526a 740 */
48f170fb
HD
741 if (!wbc->for_reclaim) {
742 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
743 goto redirty;
744 }
1635f6a7
HD
745
746 /*
747 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748 * value into swapfile.c, the only way we can correctly account for a
749 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
750 *
751 * That's okay for a page already fallocated earlier, but if we have
752 * not yet completed the fallocation, then (a) we want to keep track
753 * of this page in case we have to undo it, and (b) it may not be a
754 * good idea to continue anyway, once we're pushing into swap. So
755 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
756 */
757 if (!PageUptodate(page)) {
1aac1400
HD
758 if (inode->i_private) {
759 struct shmem_falloc *shmem_falloc;
760 spin_lock(&inode->i_lock);
761 shmem_falloc = inode->i_private;
762 if (shmem_falloc &&
f00cdc6d 763 !shmem_falloc->mode &&
1aac1400
HD
764 index >= shmem_falloc->start &&
765 index < shmem_falloc->next)
766 shmem_falloc->nr_unswapped++;
767 else
768 shmem_falloc = NULL;
769 spin_unlock(&inode->i_lock);
770 if (shmem_falloc)
771 goto redirty;
772 }
1635f6a7
HD
773 clear_highpage(page);
774 flush_dcache_page(page);
775 SetPageUptodate(page);
776 }
777
48f170fb
HD
778 swap = get_swap_page();
779 if (!swap.val)
780 goto redirty;
d9fe526a 781
b1dea800
HD
782 /*
783 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
784 * if it's not already there. Do it now before the page is
785 * moved to swap cache, when its pagelock no longer protects
b1dea800 786 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
787 * we've incremented swapped, because shmem_unuse_inode() will
788 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 789 */
48f170fb
HD
790 mutex_lock(&shmem_swaplist_mutex);
791 if (list_empty(&info->swaplist))
792 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 793
48f170fb 794 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 795 swap_shmem_alloc(swap);
6922c0c7
HD
796 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798 spin_lock(&info->lock);
799 info->swapped++;
800 shmem_recalc_inode(inode);
826267cf 801 spin_unlock(&info->lock);
6922c0c7
HD
802
803 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 804 BUG_ON(page_mapped(page));
9fab5619 805 swap_writepage(page, wbc);
1da177e4
LT
806 return 0;
807 }
808
6922c0c7 809 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 810 swapcache_free(swap, NULL);
1da177e4
LT
811redirty:
812 set_page_dirty(page);
d9fe526a
HD
813 if (wbc->for_reclaim)
814 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
815 unlock_page(page);
816 return 0;
1da177e4
LT
817}
818
819#ifdef CONFIG_NUMA
680d794b 820#ifdef CONFIG_TMPFS
71fe804b 821static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 822{
095f1fc4 823 char buffer[64];
680d794b 824
71fe804b 825 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 826 return; /* show nothing */
680d794b 827
a7a88b23 828 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
829
830 seq_printf(seq, ",mpol=%s", buffer);
680d794b 831}
71fe804b
LS
832
833static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834{
835 struct mempolicy *mpol = NULL;
836 if (sbinfo->mpol) {
837 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
838 mpol = sbinfo->mpol;
839 mpol_get(mpol);
840 spin_unlock(&sbinfo->stat_lock);
841 }
842 return mpol;
843}
680d794b 844#endif /* CONFIG_TMPFS */
845
41ffe5d5
HD
846static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847 struct shmem_inode_info *info, pgoff_t index)
1da177e4 848{
1da177e4 849 struct vm_area_struct pvma;
18a2f371 850 struct page *page;
52cd3b07 851
1da177e4 852 /* Create a pseudo vma that just contains the policy */
c4cc6d07 853 pvma.vm_start = 0;
09c231cb
NZ
854 /* Bias interleave by inode number to distribute better across nodes */
855 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 856 pvma.vm_ops = NULL;
18a2f371
MG
857 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859 page = swapin_readahead(swap, gfp, &pvma, 0);
860
861 /* Drop reference taken by mpol_shared_policy_lookup() */
862 mpol_cond_put(pvma.vm_policy);
863
864 return page;
1da177e4
LT
865}
866
02098fea 867static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 868 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
869{
870 struct vm_area_struct pvma;
18a2f371 871 struct page *page;
1da177e4 872
c4cc6d07
HD
873 /* Create a pseudo vma that just contains the policy */
874 pvma.vm_start = 0;
09c231cb
NZ
875 /* Bias interleave by inode number to distribute better across nodes */
876 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 877 pvma.vm_ops = NULL;
41ffe5d5 878 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 879
18a2f371
MG
880 page = alloc_page_vma(gfp, &pvma, 0);
881
882 /* Drop reference taken by mpol_shared_policy_lookup() */
883 mpol_cond_put(pvma.vm_policy);
884
885 return page;
1da177e4 886}
680d794b 887#else /* !CONFIG_NUMA */
888#ifdef CONFIG_TMPFS
41ffe5d5 889static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 890{
891}
892#endif /* CONFIG_TMPFS */
893
41ffe5d5
HD
894static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895 struct shmem_inode_info *info, pgoff_t index)
1da177e4 896{
41ffe5d5 897 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
898}
899
02098fea 900static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 901 struct shmem_inode_info *info, pgoff_t index)
1da177e4 902{
e84e2e13 903 return alloc_page(gfp);
1da177e4 904}
680d794b 905#endif /* CONFIG_NUMA */
1da177e4 906
71fe804b
LS
907#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909{
910 return NULL;
911}
912#endif
913
bde05d1c
HD
914/*
915 * When a page is moved from swapcache to shmem filecache (either by the
916 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917 * shmem_unuse_inode()), it may have been read in earlier from swap, in
918 * ignorance of the mapping it belongs to. If that mapping has special
919 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920 * we may need to copy to a suitable page before moving to filecache.
921 *
922 * In a future release, this may well be extended to respect cpuset and
923 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924 * but for now it is a simple matter of zone.
925 */
926static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927{
928 return page_zonenum(page) > gfp_zone(gfp);
929}
930
931static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932 struct shmem_inode_info *info, pgoff_t index)
933{
934 struct page *oldpage, *newpage;
935 struct address_space *swap_mapping;
936 pgoff_t swap_index;
937 int error;
938
939 oldpage = *pagep;
940 swap_index = page_private(oldpage);
941 swap_mapping = page_mapping(oldpage);
942
943 /*
944 * We have arrived here because our zones are constrained, so don't
945 * limit chance of success by further cpuset and node constraints.
946 */
947 gfp &= ~GFP_CONSTRAINT_MASK;
948 newpage = shmem_alloc_page(gfp, info, index);
949 if (!newpage)
950 return -ENOMEM;
bde05d1c 951
bde05d1c
HD
952 page_cache_get(newpage);
953 copy_highpage(newpage, oldpage);
0142ef6c 954 flush_dcache_page(newpage);
bde05d1c 955
bde05d1c 956 __set_page_locked(newpage);
bde05d1c 957 SetPageUptodate(newpage);
bde05d1c 958 SetPageSwapBacked(newpage);
bde05d1c 959 set_page_private(newpage, swap_index);
bde05d1c
HD
960 SetPageSwapCache(newpage);
961
962 /*
963 * Our caller will very soon move newpage out of swapcache, but it's
964 * a nice clean interface for us to replace oldpage by newpage there.
965 */
966 spin_lock_irq(&swap_mapping->tree_lock);
967 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968 newpage);
0142ef6c
HD
969 if (!error) {
970 __inc_zone_page_state(newpage, NR_FILE_PAGES);
971 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
972 }
bde05d1c 973 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 974
0142ef6c
HD
975 if (unlikely(error)) {
976 /*
977 * Is this possible? I think not, now that our callers check
978 * both PageSwapCache and page_private after getting page lock;
979 * but be defensive. Reverse old to newpage for clear and free.
980 */
981 oldpage = newpage;
982 } else {
983 mem_cgroup_replace_page_cache(oldpage, newpage);
984 lru_cache_add_anon(newpage);
985 *pagep = newpage;
986 }
bde05d1c
HD
987
988 ClearPageSwapCache(oldpage);
989 set_page_private(oldpage, 0);
990
991 unlock_page(oldpage);
992 page_cache_release(oldpage);
993 page_cache_release(oldpage);
0142ef6c 994 return error;
bde05d1c
HD
995}
996
1da177e4 997/*
68da9f05 998 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
999 *
1000 * If we allocate a new one we do not mark it dirty. That's up to the
1001 * vm. If we swap it in we mark it dirty since we also free the swap
1002 * entry since a page cannot live in both the swap and page cache
1003 */
41ffe5d5 1004static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1005 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1006{
1007 struct address_space *mapping = inode->i_mapping;
54af6042 1008 struct shmem_inode_info *info;
1da177e4 1009 struct shmem_sb_info *sbinfo;
27ab7006 1010 struct page *page;
1da177e4
LT
1011 swp_entry_t swap;
1012 int error;
54af6042 1013 int once = 0;
1635f6a7 1014 int alloced = 0;
1da177e4 1015
41ffe5d5 1016 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1017 return -EFBIG;
1da177e4 1018repeat:
54af6042 1019 swap.val = 0;
0cd6144a 1020 page = find_lock_entry(mapping, index);
54af6042
HD
1021 if (radix_tree_exceptional_entry(page)) {
1022 swap = radix_to_swp_entry(page);
1023 page = NULL;
1024 }
1025
1635f6a7 1026 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1027 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028 error = -EINVAL;
1029 goto failed;
1030 }
1031
1635f6a7
HD
1032 /* fallocated page? */
1033 if (page && !PageUptodate(page)) {
1034 if (sgp != SGP_READ)
1035 goto clear;
1036 unlock_page(page);
1037 page_cache_release(page);
1038 page = NULL;
1039 }
54af6042 1040 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1041 *pagep = page;
1042 return 0;
27ab7006
HD
1043 }
1044
1045 /*
54af6042
HD
1046 * Fast cache lookup did not find it:
1047 * bring it back from swap or allocate.
27ab7006 1048 */
54af6042
HD
1049 info = SHMEM_I(inode);
1050 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1051
1da177e4
LT
1052 if (swap.val) {
1053 /* Look it up and read it in.. */
27ab7006
HD
1054 page = lookup_swap_cache(swap);
1055 if (!page) {
1da177e4 1056 /* here we actually do the io */
68da9f05
HD
1057 if (fault_type)
1058 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1059 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1060 if (!page) {
54af6042
HD
1061 error = -ENOMEM;
1062 goto failed;
1da177e4 1063 }
1da177e4
LT
1064 }
1065
1066 /* We have to do this with page locked to prevent races */
54af6042 1067 lock_page(page);
0142ef6c 1068 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1069 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1070 error = -EEXIST; /* try again */
d1899228 1071 goto unlock;
bde05d1c 1072 }
27ab7006 1073 if (!PageUptodate(page)) {
1da177e4 1074 error = -EIO;
54af6042 1075 goto failed;
1da177e4 1076 }
54af6042
HD
1077 wait_on_page_writeback(page);
1078
bde05d1c
HD
1079 if (shmem_should_replace_page(page, gfp)) {
1080 error = shmem_replace_page(&page, gfp, info, index);
1081 if (error)
1082 goto failed;
1da177e4 1083 }
27ab7006 1084
d715ae08 1085 error = mem_cgroup_charge_file(page, current->mm,
aa3b1895 1086 gfp & GFP_RECLAIM_MASK);
d1899228 1087 if (!error) {
aa3b1895
HD
1088 error = shmem_add_to_page_cache(page, mapping, index,
1089 gfp, swp_to_radix_entry(swap));
215c02bc
HD
1090 /*
1091 * We already confirmed swap under page lock, and make
1092 * no memory allocation here, so usually no possibility
1093 * of error; but free_swap_and_cache() only trylocks a
1094 * page, so it is just possible that the entry has been
1095 * truncated or holepunched since swap was confirmed.
1096 * shmem_undo_range() will have done some of the
1097 * unaccounting, now delete_from_swap_cache() will do
1098 * the rest (including mem_cgroup_uncharge_swapcache).
1099 * Reset swap.val? No, leave it so "failed" goes back to
1100 * "repeat": reading a hole and writing should succeed.
1101 */
1102 if (error)
1103 delete_from_swap_cache(page);
d1899228 1104 }
54af6042
HD
1105 if (error)
1106 goto failed;
1107
1108 spin_lock(&info->lock);
285b2c4f 1109 info->swapped--;
54af6042 1110 shmem_recalc_inode(inode);
27ab7006 1111 spin_unlock(&info->lock);
54af6042
HD
1112
1113 delete_from_swap_cache(page);
27ab7006
HD
1114 set_page_dirty(page);
1115 swap_free(swap);
1116
54af6042
HD
1117 } else {
1118 if (shmem_acct_block(info->flags)) {
1119 error = -ENOSPC;
1120 goto failed;
1da177e4 1121 }
0edd73b3 1122 if (sbinfo->max_blocks) {
fc5da22a 1123 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1124 sbinfo->max_blocks) >= 0) {
1125 error = -ENOSPC;
1126 goto unacct;
1127 }
7e496299 1128 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1129 }
1da177e4 1130
54af6042
HD
1131 page = shmem_alloc_page(gfp, info, index);
1132 if (!page) {
1133 error = -ENOMEM;
1134 goto decused;
1da177e4
LT
1135 }
1136
07a42788 1137 __SetPageSwapBacked(page);
54af6042 1138 __set_page_locked(page);
d715ae08 1139 error = mem_cgroup_charge_file(page, current->mm,
aa3b1895 1140 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1141 if (error)
1142 goto decused;
5e4c0d97 1143 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1144 if (!error) {
1145 error = shmem_add_to_page_cache(page, mapping, index,
1146 gfp, NULL);
1147 radix_tree_preload_end();
1148 }
1149 if (error) {
1150 mem_cgroup_uncharge_cache_page(page);
1151 goto decused;
1152 }
54af6042
HD
1153 lru_cache_add_anon(page);
1154
1155 spin_lock(&info->lock);
1da177e4 1156 info->alloced++;
54af6042
HD
1157 inode->i_blocks += BLOCKS_PER_PAGE;
1158 shmem_recalc_inode(inode);
1da177e4 1159 spin_unlock(&info->lock);
1635f6a7 1160 alloced = true;
54af6042 1161
ec9516fb 1162 /*
1635f6a7
HD
1163 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1164 */
1165 if (sgp == SGP_FALLOC)
1166 sgp = SGP_WRITE;
1167clear:
1168 /*
1169 * Let SGP_WRITE caller clear ends if write does not fill page;
1170 * but SGP_FALLOC on a page fallocated earlier must initialize
1171 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1172 */
1173 if (sgp != SGP_WRITE) {
1174 clear_highpage(page);
1175 flush_dcache_page(page);
1176 SetPageUptodate(page);
1177 }
a0ee5ec5 1178 if (sgp == SGP_DIRTY)
27ab7006 1179 set_page_dirty(page);
1da177e4 1180 }
bde05d1c 1181
54af6042 1182 /* Perhaps the file has been truncated since we checked */
1635f6a7 1183 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1184 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1185 error = -EINVAL;
1635f6a7
HD
1186 if (alloced)
1187 goto trunc;
1188 else
1189 goto failed;
e83c32e8 1190 }
54af6042
HD
1191 *pagep = page;
1192 return 0;
1da177e4 1193
59a16ead 1194 /*
54af6042 1195 * Error recovery.
59a16ead 1196 */
54af6042 1197trunc:
1635f6a7 1198 info = SHMEM_I(inode);
54af6042
HD
1199 ClearPageDirty(page);
1200 delete_from_page_cache(page);
1201 spin_lock(&info->lock);
1202 info->alloced--;
1203 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1204 spin_unlock(&info->lock);
54af6042 1205decused:
1635f6a7 1206 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1207 if (sbinfo->max_blocks)
1208 percpu_counter_add(&sbinfo->used_blocks, -1);
1209unacct:
1210 shmem_unacct_blocks(info->flags, 1);
1211failed:
d1899228
HD
1212 if (swap.val && error != -EINVAL &&
1213 !shmem_confirm_swap(mapping, index, swap))
1214 error = -EEXIST;
1215unlock:
27ab7006 1216 if (page) {
54af6042 1217 unlock_page(page);
27ab7006 1218 page_cache_release(page);
54af6042
HD
1219 }
1220 if (error == -ENOSPC && !once++) {
1221 info = SHMEM_I(inode);
1222 spin_lock(&info->lock);
1223 shmem_recalc_inode(inode);
1224 spin_unlock(&info->lock);
27ab7006 1225 goto repeat;
ff36b801 1226 }
d1899228 1227 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1228 goto repeat;
1229 return error;
1da177e4
LT
1230}
1231
d0217ac0 1232static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1233{
496ad9aa 1234 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1235 int error;
68da9f05 1236 int ret = VM_FAULT_LOCKED;
1da177e4 1237
f00cdc6d
HD
1238 /*
1239 * Trinity finds that probing a hole which tmpfs is punching can
1240 * prevent the hole-punch from ever completing: which in turn
1241 * locks writers out with its hold on i_mutex. So refrain from
1242 * faulting pages into the hole while it's being punched, and
1243 * wait on i_mutex to be released if vmf->flags permits.
1244 */
1245 if (unlikely(inode->i_private)) {
1246 struct shmem_falloc *shmem_falloc;
1247
1248 spin_lock(&inode->i_lock);
1249 shmem_falloc = inode->i_private;
1250 if (!shmem_falloc ||
1251 shmem_falloc->mode != FALLOC_FL_PUNCH_HOLE ||
1252 vmf->pgoff < shmem_falloc->start ||
1253 vmf->pgoff >= shmem_falloc->next)
1254 shmem_falloc = NULL;
1255 spin_unlock(&inode->i_lock);
1256 /*
1257 * i_lock has protected us from taking shmem_falloc seriously
1258 * once return from shmem_fallocate() went back up that stack.
1259 * i_lock does not serialize with i_mutex at all, but it does
1260 * not matter if sometimes we wait unnecessarily, or sometimes
1261 * miss out on waiting: we just need to make those cases rare.
1262 */
1263 if (shmem_falloc) {
1264 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1265 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1266 up_read(&vma->vm_mm->mmap_sem);
1267 mutex_lock(&inode->i_mutex);
1268 mutex_unlock(&inode->i_mutex);
1269 return VM_FAULT_RETRY;
1270 }
1271 /* cond_resched? Leave that to GUP or return to user */
1272 return VM_FAULT_NOPAGE;
1273 }
1274 }
1275
27d54b39 1276 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1277 if (error)
1278 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1279
456f998e
YH
1280 if (ret & VM_FAULT_MAJOR) {
1281 count_vm_event(PGMAJFAULT);
1282 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1283 }
68da9f05 1284 return ret;
1da177e4
LT
1285}
1286
1da177e4 1287#ifdef CONFIG_NUMA
41ffe5d5 1288static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1289{
496ad9aa 1290 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1291 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1292}
1293
d8dc74f2
AB
1294static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1295 unsigned long addr)
1da177e4 1296{
496ad9aa 1297 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1298 pgoff_t index;
1da177e4 1299
41ffe5d5
HD
1300 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1301 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1302}
1303#endif
1304
1305int shmem_lock(struct file *file, int lock, struct user_struct *user)
1306{
496ad9aa 1307 struct inode *inode = file_inode(file);
1da177e4
LT
1308 struct shmem_inode_info *info = SHMEM_I(inode);
1309 int retval = -ENOMEM;
1310
1311 spin_lock(&info->lock);
1312 if (lock && !(info->flags & VM_LOCKED)) {
1313 if (!user_shm_lock(inode->i_size, user))
1314 goto out_nomem;
1315 info->flags |= VM_LOCKED;
89e004ea 1316 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1317 }
1318 if (!lock && (info->flags & VM_LOCKED) && user) {
1319 user_shm_unlock(inode->i_size, user);
1320 info->flags &= ~VM_LOCKED;
89e004ea 1321 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1322 }
1323 retval = 0;
89e004ea 1324
1da177e4
LT
1325out_nomem:
1326 spin_unlock(&info->lock);
1327 return retval;
1328}
1329
9b83a6a8 1330static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1331{
1332 file_accessed(file);
1333 vma->vm_ops = &shmem_vm_ops;
1334 return 0;
1335}
1336
454abafe 1337static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1338 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1339{
1340 struct inode *inode;
1341 struct shmem_inode_info *info;
1342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1343
5b04c689
PE
1344 if (shmem_reserve_inode(sb))
1345 return NULL;
1da177e4
LT
1346
1347 inode = new_inode(sb);
1348 if (inode) {
85fe4025 1349 inode->i_ino = get_next_ino();
454abafe 1350 inode_init_owner(inode, dir, mode);
1da177e4 1351 inode->i_blocks = 0;
1da177e4
LT
1352 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1353 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1354 inode->i_generation = get_seconds();
1da177e4
LT
1355 info = SHMEM_I(inode);
1356 memset(info, 0, (char *)inode - (char *)info);
1357 spin_lock_init(&info->lock);
0b0a0806 1358 info->flags = flags & VM_NORESERVE;
1da177e4 1359 INIT_LIST_HEAD(&info->swaplist);
38f38657 1360 simple_xattrs_init(&info->xattrs);
72c04902 1361 cache_no_acl(inode);
1da177e4
LT
1362
1363 switch (mode & S_IFMT) {
1364 default:
39f0247d 1365 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1366 init_special_inode(inode, mode, dev);
1367 break;
1368 case S_IFREG:
14fcc23f 1369 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1370 inode->i_op = &shmem_inode_operations;
1371 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1372 mpol_shared_policy_init(&info->policy,
1373 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1374 break;
1375 case S_IFDIR:
d8c76e6f 1376 inc_nlink(inode);
1da177e4
LT
1377 /* Some things misbehave if size == 0 on a directory */
1378 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1379 inode->i_op = &shmem_dir_inode_operations;
1380 inode->i_fop = &simple_dir_operations;
1381 break;
1382 case S_IFLNK:
1383 /*
1384 * Must not load anything in the rbtree,
1385 * mpol_free_shared_policy will not be called.
1386 */
71fe804b 1387 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1388 break;
1389 }
5b04c689
PE
1390 } else
1391 shmem_free_inode(sb);
1da177e4
LT
1392 return inode;
1393}
1394
0cd6144a
JW
1395bool shmem_mapping(struct address_space *mapping)
1396{
1397 return mapping->backing_dev_info == &shmem_backing_dev_info;
1398}
1399
1da177e4 1400#ifdef CONFIG_TMPFS
92e1d5be 1401static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1402static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1403
6d9d88d0
JS
1404#ifdef CONFIG_TMPFS_XATTR
1405static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1406#else
1407#define shmem_initxattrs NULL
1408#endif
1409
1da177e4 1410static int
800d15a5
NP
1411shmem_write_begin(struct file *file, struct address_space *mapping,
1412 loff_t pos, unsigned len, unsigned flags,
1413 struct page **pagep, void **fsdata)
1da177e4 1414{
2457aec6 1415 int ret;
800d15a5
NP
1416 struct inode *inode = mapping->host;
1417 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2457aec6
MG
1418 ret = shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1419 if (ret == 0 && *pagep)
1420 init_page_accessed(*pagep);
1421 return ret;
800d15a5
NP
1422}
1423
1424static int
1425shmem_write_end(struct file *file, struct address_space *mapping,
1426 loff_t pos, unsigned len, unsigned copied,
1427 struct page *page, void *fsdata)
1428{
1429 struct inode *inode = mapping->host;
1430
d3602444
HD
1431 if (pos + copied > inode->i_size)
1432 i_size_write(inode, pos + copied);
1433
ec9516fb
HD
1434 if (!PageUptodate(page)) {
1435 if (copied < PAGE_CACHE_SIZE) {
1436 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1437 zero_user_segments(page, 0, from,
1438 from + copied, PAGE_CACHE_SIZE);
1439 }
1440 SetPageUptodate(page);
1441 }
800d15a5 1442 set_page_dirty(page);
6746aff7 1443 unlock_page(page);
800d15a5
NP
1444 page_cache_release(page);
1445
800d15a5 1446 return copied;
1da177e4
LT
1447}
1448
2ba5bbed 1449static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1450{
6e58e79d
AV
1451 struct file *file = iocb->ki_filp;
1452 struct inode *inode = file_inode(file);
1da177e4 1453 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1454 pgoff_t index;
1455 unsigned long offset;
a0ee5ec5 1456 enum sgp_type sgp = SGP_READ;
f7c1d074 1457 int error = 0;
cb66a7a1 1458 ssize_t retval = 0;
6e58e79d 1459 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1460
1461 /*
1462 * Might this read be for a stacking filesystem? Then when reading
1463 * holes of a sparse file, we actually need to allocate those pages,
1464 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1465 */
1466 if (segment_eq(get_fs(), KERNEL_DS))
1467 sgp = SGP_DIRTY;
1da177e4
LT
1468
1469 index = *ppos >> PAGE_CACHE_SHIFT;
1470 offset = *ppos & ~PAGE_CACHE_MASK;
1471
1472 for (;;) {
1473 struct page *page = NULL;
41ffe5d5
HD
1474 pgoff_t end_index;
1475 unsigned long nr, ret;
1da177e4
LT
1476 loff_t i_size = i_size_read(inode);
1477
1478 end_index = i_size >> PAGE_CACHE_SHIFT;
1479 if (index > end_index)
1480 break;
1481 if (index == end_index) {
1482 nr = i_size & ~PAGE_CACHE_MASK;
1483 if (nr <= offset)
1484 break;
1485 }
1486
6e58e79d
AV
1487 error = shmem_getpage(inode, index, &page, sgp, NULL);
1488 if (error) {
1489 if (error == -EINVAL)
1490 error = 0;
1da177e4
LT
1491 break;
1492 }
d3602444
HD
1493 if (page)
1494 unlock_page(page);
1da177e4
LT
1495
1496 /*
1497 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1498 * are called without i_mutex protection against truncate
1da177e4
LT
1499 */
1500 nr = PAGE_CACHE_SIZE;
1501 i_size = i_size_read(inode);
1502 end_index = i_size >> PAGE_CACHE_SHIFT;
1503 if (index == end_index) {
1504 nr = i_size & ~PAGE_CACHE_MASK;
1505 if (nr <= offset) {
1506 if (page)
1507 page_cache_release(page);
1508 break;
1509 }
1510 }
1511 nr -= offset;
1512
1513 if (page) {
1514 /*
1515 * If users can be writing to this page using arbitrary
1516 * virtual addresses, take care about potential aliasing
1517 * before reading the page on the kernel side.
1518 */
1519 if (mapping_writably_mapped(mapping))
1520 flush_dcache_page(page);
1521 /*
1522 * Mark the page accessed if we read the beginning.
1523 */
1524 if (!offset)
1525 mark_page_accessed(page);
b5810039 1526 } else {
1da177e4 1527 page = ZERO_PAGE(0);
b5810039
NP
1528 page_cache_get(page);
1529 }
1da177e4
LT
1530
1531 /*
1532 * Ok, we have the page, and it's up-to-date, so
1533 * now we can copy it to user space...
1da177e4 1534 */
2ba5bbed 1535 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1536 retval += ret;
1da177e4
LT
1537 offset += ret;
1538 index += offset >> PAGE_CACHE_SHIFT;
1539 offset &= ~PAGE_CACHE_MASK;
1540
1541 page_cache_release(page);
2ba5bbed 1542 if (!iov_iter_count(to))
1da177e4 1543 break;
6e58e79d
AV
1544 if (ret < nr) {
1545 error = -EFAULT;
1546 break;
1547 }
1da177e4
LT
1548 cond_resched();
1549 }
1550
1551 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1552 file_accessed(file);
1553 return retval ? retval : error;
1da177e4
LT
1554}
1555
708e3508
HD
1556static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1557 struct pipe_inode_info *pipe, size_t len,
1558 unsigned int flags)
1559{
1560 struct address_space *mapping = in->f_mapping;
71f0e07a 1561 struct inode *inode = mapping->host;
708e3508
HD
1562 unsigned int loff, nr_pages, req_pages;
1563 struct page *pages[PIPE_DEF_BUFFERS];
1564 struct partial_page partial[PIPE_DEF_BUFFERS];
1565 struct page *page;
1566 pgoff_t index, end_index;
1567 loff_t isize, left;
1568 int error, page_nr;
1569 struct splice_pipe_desc spd = {
1570 .pages = pages,
1571 .partial = partial,
047fe360 1572 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1573 .flags = flags,
1574 .ops = &page_cache_pipe_buf_ops,
1575 .spd_release = spd_release_page,
1576 };
1577
71f0e07a 1578 isize = i_size_read(inode);
708e3508
HD
1579 if (unlikely(*ppos >= isize))
1580 return 0;
1581
1582 left = isize - *ppos;
1583 if (unlikely(left < len))
1584 len = left;
1585
1586 if (splice_grow_spd(pipe, &spd))
1587 return -ENOMEM;
1588
1589 index = *ppos >> PAGE_CACHE_SHIFT;
1590 loff = *ppos & ~PAGE_CACHE_MASK;
1591 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1592 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1593
708e3508
HD
1594 spd.nr_pages = find_get_pages_contig(mapping, index,
1595 nr_pages, spd.pages);
1596 index += spd.nr_pages;
708e3508 1597 error = 0;
708e3508 1598
71f0e07a 1599 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1600 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1601 if (error)
1602 break;
1603 unlock_page(page);
708e3508
HD
1604 spd.pages[spd.nr_pages++] = page;
1605 index++;
1606 }
1607
708e3508
HD
1608 index = *ppos >> PAGE_CACHE_SHIFT;
1609 nr_pages = spd.nr_pages;
1610 spd.nr_pages = 0;
71f0e07a 1611
708e3508
HD
1612 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1613 unsigned int this_len;
1614
1615 if (!len)
1616 break;
1617
708e3508
HD
1618 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1619 page = spd.pages[page_nr];
1620
71f0e07a 1621 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1622 error = shmem_getpage(inode, index, &page,
1623 SGP_CACHE, NULL);
1624 if (error)
708e3508 1625 break;
71f0e07a
HD
1626 unlock_page(page);
1627 page_cache_release(spd.pages[page_nr]);
1628 spd.pages[page_nr] = page;
708e3508 1629 }
71f0e07a
HD
1630
1631 isize = i_size_read(inode);
708e3508
HD
1632 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1633 if (unlikely(!isize || index > end_index))
1634 break;
1635
708e3508
HD
1636 if (end_index == index) {
1637 unsigned int plen;
1638
708e3508
HD
1639 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1640 if (plen <= loff)
1641 break;
1642
708e3508
HD
1643 this_len = min(this_len, plen - loff);
1644 len = this_len;
1645 }
1646
1647 spd.partial[page_nr].offset = loff;
1648 spd.partial[page_nr].len = this_len;
1649 len -= this_len;
1650 loff = 0;
1651 spd.nr_pages++;
1652 index++;
1653 }
1654
708e3508
HD
1655 while (page_nr < nr_pages)
1656 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1657
1658 if (spd.nr_pages)
1659 error = splice_to_pipe(pipe, &spd);
1660
047fe360 1661 splice_shrink_spd(&spd);
708e3508
HD
1662
1663 if (error > 0) {
1664 *ppos += error;
1665 file_accessed(in);
1666 }
1667 return error;
1668}
1669
220f2ac9
HD
1670/*
1671 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1672 */
1673static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1674 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1675{
1676 struct page *page;
1677 struct pagevec pvec;
1678 pgoff_t indices[PAGEVEC_SIZE];
1679 bool done = false;
1680 int i;
1681
1682 pagevec_init(&pvec, 0);
1683 pvec.nr = 1; /* start small: we may be there already */
1684 while (!done) {
0cd6144a 1685 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1686 pvec.nr, pvec.pages, indices);
1687 if (!pvec.nr) {
965c8e59 1688 if (whence == SEEK_DATA)
220f2ac9
HD
1689 index = end;
1690 break;
1691 }
1692 for (i = 0; i < pvec.nr; i++, index++) {
1693 if (index < indices[i]) {
965c8e59 1694 if (whence == SEEK_HOLE) {
220f2ac9
HD
1695 done = true;
1696 break;
1697 }
1698 index = indices[i];
1699 }
1700 page = pvec.pages[i];
1701 if (page && !radix_tree_exceptional_entry(page)) {
1702 if (!PageUptodate(page))
1703 page = NULL;
1704 }
1705 if (index >= end ||
965c8e59
AM
1706 (page && whence == SEEK_DATA) ||
1707 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1708 done = true;
1709 break;
1710 }
1711 }
0cd6144a 1712 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1713 pagevec_release(&pvec);
1714 pvec.nr = PAGEVEC_SIZE;
1715 cond_resched();
1716 }
1717 return index;
1718}
1719
965c8e59 1720static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1721{
1722 struct address_space *mapping = file->f_mapping;
1723 struct inode *inode = mapping->host;
1724 pgoff_t start, end;
1725 loff_t new_offset;
1726
965c8e59
AM
1727 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1728 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1729 MAX_LFS_FILESIZE, i_size_read(inode));
1730 mutex_lock(&inode->i_mutex);
1731 /* We're holding i_mutex so we can access i_size directly */
1732
1733 if (offset < 0)
1734 offset = -EINVAL;
1735 else if (offset >= inode->i_size)
1736 offset = -ENXIO;
1737 else {
1738 start = offset >> PAGE_CACHE_SHIFT;
1739 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1740 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1741 new_offset <<= PAGE_CACHE_SHIFT;
1742 if (new_offset > offset) {
1743 if (new_offset < inode->i_size)
1744 offset = new_offset;
965c8e59 1745 else if (whence == SEEK_DATA)
220f2ac9
HD
1746 offset = -ENXIO;
1747 else
1748 offset = inode->i_size;
1749 }
1750 }
1751
387aae6f
HD
1752 if (offset >= 0)
1753 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1754 mutex_unlock(&inode->i_mutex);
1755 return offset;
1756}
1757
83e4fa9c
HD
1758static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1759 loff_t len)
1760{
496ad9aa 1761 struct inode *inode = file_inode(file);
e2d12e22 1762 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1763 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1764 pgoff_t start, index, end;
1765 int error;
83e4fa9c 1766
13ace4d0
HD
1767 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1768 return -EOPNOTSUPP;
1769
83e4fa9c
HD
1770 mutex_lock(&inode->i_mutex);
1771
f00cdc6d
HD
1772 shmem_falloc.mode = mode & ~FALLOC_FL_KEEP_SIZE;
1773
83e4fa9c
HD
1774 if (mode & FALLOC_FL_PUNCH_HOLE) {
1775 struct address_space *mapping = file->f_mapping;
1776 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1777 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1778
f00cdc6d
HD
1779 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1780 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1781 spin_lock(&inode->i_lock);
1782 inode->i_private = &shmem_falloc;
1783 spin_unlock(&inode->i_lock);
1784
83e4fa9c
HD
1785 if ((u64)unmap_end > (u64)unmap_start)
1786 unmap_mapping_range(mapping, unmap_start,
1787 1 + unmap_end - unmap_start, 0);
1788 shmem_truncate_range(inode, offset, offset + len - 1);
1789 /* No need to unmap again: hole-punching leaves COWed pages */
1790 error = 0;
f00cdc6d 1791 goto undone;
e2d12e22
HD
1792 }
1793
1794 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1795 error = inode_newsize_ok(inode, offset + len);
1796 if (error)
1797 goto out;
1798
1799 start = offset >> PAGE_CACHE_SHIFT;
1800 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1801 /* Try to avoid a swapstorm if len is impossible to satisfy */
1802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1803 error = -ENOSPC;
1804 goto out;
83e4fa9c
HD
1805 }
1806
1aac1400
HD
1807 shmem_falloc.start = start;
1808 shmem_falloc.next = start;
1809 shmem_falloc.nr_falloced = 0;
1810 shmem_falloc.nr_unswapped = 0;
1811 spin_lock(&inode->i_lock);
1812 inode->i_private = &shmem_falloc;
1813 spin_unlock(&inode->i_lock);
1814
e2d12e22
HD
1815 for (index = start; index < end; index++) {
1816 struct page *page;
1817
1818 /*
1819 * Good, the fallocate(2) manpage permits EINTR: we may have
1820 * been interrupted because we are using up too much memory.
1821 */
1822 if (signal_pending(current))
1823 error = -EINTR;
1aac1400
HD
1824 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1825 error = -ENOMEM;
e2d12e22 1826 else
1635f6a7 1827 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1828 NULL);
1829 if (error) {
1635f6a7
HD
1830 /* Remove the !PageUptodate pages we added */
1831 shmem_undo_range(inode,
1832 (loff_t)start << PAGE_CACHE_SHIFT,
1833 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1834 goto undone;
e2d12e22
HD
1835 }
1836
1aac1400
HD
1837 /*
1838 * Inform shmem_writepage() how far we have reached.
1839 * No need for lock or barrier: we have the page lock.
1840 */
1841 shmem_falloc.next++;
1842 if (!PageUptodate(page))
1843 shmem_falloc.nr_falloced++;
1844
e2d12e22 1845 /*
1635f6a7
HD
1846 * If !PageUptodate, leave it that way so that freeable pages
1847 * can be recognized if we need to rollback on error later.
1848 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1849 * than free the pages we are allocating (and SGP_CACHE pages
1850 * might still be clean: we now need to mark those dirty too).
1851 */
1852 set_page_dirty(page);
1853 unlock_page(page);
1854 page_cache_release(page);
1855 cond_resched();
1856 }
1857
1858 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1859 i_size_write(inode, offset + len);
e2d12e22 1860 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1861undone:
1862 spin_lock(&inode->i_lock);
1863 inode->i_private = NULL;
1864 spin_unlock(&inode->i_lock);
e2d12e22 1865out:
83e4fa9c
HD
1866 mutex_unlock(&inode->i_mutex);
1867 return error;
1868}
1869
726c3342 1870static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1871{
726c3342 1872 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1873
1874 buf->f_type = TMPFS_MAGIC;
1875 buf->f_bsize = PAGE_CACHE_SIZE;
1876 buf->f_namelen = NAME_MAX;
0edd73b3 1877 if (sbinfo->max_blocks) {
1da177e4 1878 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1879 buf->f_bavail =
1880 buf->f_bfree = sbinfo->max_blocks -
1881 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1882 }
1883 if (sbinfo->max_inodes) {
1da177e4
LT
1884 buf->f_files = sbinfo->max_inodes;
1885 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1886 }
1887 /* else leave those fields 0 like simple_statfs */
1888 return 0;
1889}
1890
1891/*
1892 * File creation. Allocate an inode, and we're done..
1893 */
1894static int
1a67aafb 1895shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1896{
0b0a0806 1897 struct inode *inode;
1da177e4
LT
1898 int error = -ENOSPC;
1899
454abafe 1900 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1901 if (inode) {
feda821e
CH
1902 error = simple_acl_create(dir, inode);
1903 if (error)
1904 goto out_iput;
2a7dba39 1905 error = security_inode_init_security(inode, dir,
9d8f13ba 1906 &dentry->d_name,
6d9d88d0 1907 shmem_initxattrs, NULL);
feda821e
CH
1908 if (error && error != -EOPNOTSUPP)
1909 goto out_iput;
37ec43cd 1910
718deb6b 1911 error = 0;
1da177e4
LT
1912 dir->i_size += BOGO_DIRENT_SIZE;
1913 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1914 d_instantiate(dentry, inode);
1915 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1916 }
1917 return error;
feda821e
CH
1918out_iput:
1919 iput(inode);
1920 return error;
1da177e4
LT
1921}
1922
60545d0d
AV
1923static int
1924shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1925{
1926 struct inode *inode;
1927 int error = -ENOSPC;
1928
1929 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1930 if (inode) {
1931 error = security_inode_init_security(inode, dir,
1932 NULL,
1933 shmem_initxattrs, NULL);
feda821e
CH
1934 if (error && error != -EOPNOTSUPP)
1935 goto out_iput;
1936 error = simple_acl_create(dir, inode);
1937 if (error)
1938 goto out_iput;
60545d0d
AV
1939 d_tmpfile(dentry, inode);
1940 }
1941 return error;
feda821e
CH
1942out_iput:
1943 iput(inode);
1944 return error;
60545d0d
AV
1945}
1946
18bb1db3 1947static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1948{
1949 int error;
1950
1951 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1952 return error;
d8c76e6f 1953 inc_nlink(dir);
1da177e4
LT
1954 return 0;
1955}
1956
4acdaf27 1957static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 1958 bool excl)
1da177e4
LT
1959{
1960 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1961}
1962
1963/*
1964 * Link a file..
1965 */
1966static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1967{
1968 struct inode *inode = old_dentry->d_inode;
5b04c689 1969 int ret;
1da177e4
LT
1970
1971 /*
1972 * No ordinary (disk based) filesystem counts links as inodes;
1973 * but each new link needs a new dentry, pinning lowmem, and
1974 * tmpfs dentries cannot be pruned until they are unlinked.
1975 */
5b04c689
PE
1976 ret = shmem_reserve_inode(inode->i_sb);
1977 if (ret)
1978 goto out;
1da177e4
LT
1979
1980 dir->i_size += BOGO_DIRENT_SIZE;
1981 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1982 inc_nlink(inode);
7de9c6ee 1983 ihold(inode); /* New dentry reference */
1da177e4
LT
1984 dget(dentry); /* Extra pinning count for the created dentry */
1985 d_instantiate(dentry, inode);
5b04c689
PE
1986out:
1987 return ret;
1da177e4
LT
1988}
1989
1990static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1991{
1992 struct inode *inode = dentry->d_inode;
1993
5b04c689
PE
1994 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1995 shmem_free_inode(inode->i_sb);
1da177e4
LT
1996
1997 dir->i_size -= BOGO_DIRENT_SIZE;
1998 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1999 drop_nlink(inode);
1da177e4
LT
2000 dput(dentry); /* Undo the count from "create" - this does all the work */
2001 return 0;
2002}
2003
2004static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2005{
2006 if (!simple_empty(dentry))
2007 return -ENOTEMPTY;
2008
9a53c3a7
DH
2009 drop_nlink(dentry->d_inode);
2010 drop_nlink(dir);
1da177e4
LT
2011 return shmem_unlink(dir, dentry);
2012}
2013
2014/*
2015 * The VFS layer already does all the dentry stuff for rename,
2016 * we just have to decrement the usage count for the target if
2017 * it exists so that the VFS layer correctly free's it when it
2018 * gets overwritten.
2019 */
2020static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2021{
2022 struct inode *inode = old_dentry->d_inode;
2023 int they_are_dirs = S_ISDIR(inode->i_mode);
2024
2025 if (!simple_empty(new_dentry))
2026 return -ENOTEMPTY;
2027
2028 if (new_dentry->d_inode) {
2029 (void) shmem_unlink(new_dir, new_dentry);
2030 if (they_are_dirs)
9a53c3a7 2031 drop_nlink(old_dir);
1da177e4 2032 } else if (they_are_dirs) {
9a53c3a7 2033 drop_nlink(old_dir);
d8c76e6f 2034 inc_nlink(new_dir);
1da177e4
LT
2035 }
2036
2037 old_dir->i_size -= BOGO_DIRENT_SIZE;
2038 new_dir->i_size += BOGO_DIRENT_SIZE;
2039 old_dir->i_ctime = old_dir->i_mtime =
2040 new_dir->i_ctime = new_dir->i_mtime =
2041 inode->i_ctime = CURRENT_TIME;
2042 return 0;
2043}
2044
2045static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2046{
2047 int error;
2048 int len;
2049 struct inode *inode;
9276aad6 2050 struct page *page;
1da177e4
LT
2051 char *kaddr;
2052 struct shmem_inode_info *info;
2053
2054 len = strlen(symname) + 1;
2055 if (len > PAGE_CACHE_SIZE)
2056 return -ENAMETOOLONG;
2057
454abafe 2058 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2059 if (!inode)
2060 return -ENOSPC;
2061
9d8f13ba 2062 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2063 shmem_initxattrs, NULL);
570bc1c2
SS
2064 if (error) {
2065 if (error != -EOPNOTSUPP) {
2066 iput(inode);
2067 return error;
2068 }
2069 error = 0;
2070 }
2071
1da177e4
LT
2072 info = SHMEM_I(inode);
2073 inode->i_size = len-1;
69f07ec9
HD
2074 if (len <= SHORT_SYMLINK_LEN) {
2075 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2076 if (!info->symlink) {
2077 iput(inode);
2078 return -ENOMEM;
2079 }
2080 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2081 } else {
2082 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2083 if (error) {
2084 iput(inode);
2085 return error;
2086 }
14fcc23f 2087 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2088 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2089 kaddr = kmap_atomic(page);
1da177e4 2090 memcpy(kaddr, symname, len);
9b04c5fe 2091 kunmap_atomic(kaddr);
ec9516fb 2092 SetPageUptodate(page);
1da177e4 2093 set_page_dirty(page);
6746aff7 2094 unlock_page(page);
1da177e4
LT
2095 page_cache_release(page);
2096 }
1da177e4
LT
2097 dir->i_size += BOGO_DIRENT_SIZE;
2098 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2099 d_instantiate(dentry, inode);
2100 dget(dentry);
2101 return 0;
2102}
2103
69f07ec9 2104static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2105{
69f07ec9 2106 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2107 return NULL;
1da177e4
LT
2108}
2109
cc314eef 2110static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2111{
2112 struct page *page = NULL;
41ffe5d5
HD
2113 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2114 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2115 if (page)
2116 unlock_page(page);
cc314eef 2117 return page;
1da177e4
LT
2118}
2119
cc314eef 2120static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2121{
2122 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2123 struct page *page = cookie;
1da177e4
LT
2124 kunmap(page);
2125 mark_page_accessed(page);
2126 page_cache_release(page);
1da177e4
LT
2127 }
2128}
2129
b09e0fa4 2130#ifdef CONFIG_TMPFS_XATTR
46711810 2131/*
b09e0fa4
EP
2132 * Superblocks without xattr inode operations may get some security.* xattr
2133 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2134 * like ACLs, we also need to implement the security.* handlers at
2135 * filesystem level, though.
2136 */
2137
6d9d88d0
JS
2138/*
2139 * Callback for security_inode_init_security() for acquiring xattrs.
2140 */
2141static int shmem_initxattrs(struct inode *inode,
2142 const struct xattr *xattr_array,
2143 void *fs_info)
2144{
2145 struct shmem_inode_info *info = SHMEM_I(inode);
2146 const struct xattr *xattr;
38f38657 2147 struct simple_xattr *new_xattr;
6d9d88d0
JS
2148 size_t len;
2149
2150 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2151 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2152 if (!new_xattr)
2153 return -ENOMEM;
2154
2155 len = strlen(xattr->name) + 1;
2156 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2157 GFP_KERNEL);
2158 if (!new_xattr->name) {
2159 kfree(new_xattr);
2160 return -ENOMEM;
2161 }
2162
2163 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2164 XATTR_SECURITY_PREFIX_LEN);
2165 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2166 xattr->name, len);
2167
38f38657 2168 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2169 }
2170
2171 return 0;
2172}
2173
bb435453 2174static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2175#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2176 &posix_acl_access_xattr_handler,
2177 &posix_acl_default_xattr_handler,
b09e0fa4 2178#endif
39f0247d
AG
2179 NULL
2180};
b09e0fa4
EP
2181
2182static int shmem_xattr_validate(const char *name)
2183{
2184 struct { const char *prefix; size_t len; } arr[] = {
2185 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2186 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2187 };
2188 int i;
2189
2190 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2191 size_t preflen = arr[i].len;
2192 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2193 if (!name[preflen])
2194 return -EINVAL;
2195 return 0;
2196 }
2197 }
2198 return -EOPNOTSUPP;
2199}
2200
2201static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2202 void *buffer, size_t size)
2203{
38f38657 2204 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2205 int err;
2206
2207 /*
2208 * If this is a request for a synthetic attribute in the system.*
2209 * namespace use the generic infrastructure to resolve a handler
2210 * for it via sb->s_xattr.
2211 */
2212 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2213 return generic_getxattr(dentry, name, buffer, size);
2214
2215 err = shmem_xattr_validate(name);
2216 if (err)
2217 return err;
2218
38f38657 2219 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2220}
2221
2222static int shmem_setxattr(struct dentry *dentry, const char *name,
2223 const void *value, size_t size, int flags)
2224{
38f38657 2225 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2226 int err;
2227
2228 /*
2229 * If this is a request for a synthetic attribute in the system.*
2230 * namespace use the generic infrastructure to resolve a handler
2231 * for it via sb->s_xattr.
2232 */
2233 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2234 return generic_setxattr(dentry, name, value, size, flags);
2235
2236 err = shmem_xattr_validate(name);
2237 if (err)
2238 return err;
2239
38f38657 2240 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2241}
2242
2243static int shmem_removexattr(struct dentry *dentry, const char *name)
2244{
38f38657 2245 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2246 int err;
2247
2248 /*
2249 * If this is a request for a synthetic attribute in the system.*
2250 * namespace use the generic infrastructure to resolve a handler
2251 * for it via sb->s_xattr.
2252 */
2253 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2254 return generic_removexattr(dentry, name);
2255
2256 err = shmem_xattr_validate(name);
2257 if (err)
2258 return err;
2259
38f38657 2260 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2261}
2262
2263static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2264{
38f38657
AR
2265 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2266 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2267}
2268#endif /* CONFIG_TMPFS_XATTR */
2269
69f07ec9 2270static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2271 .readlink = generic_readlink,
69f07ec9 2272 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2273#ifdef CONFIG_TMPFS_XATTR
2274 .setxattr = shmem_setxattr,
2275 .getxattr = shmem_getxattr,
2276 .listxattr = shmem_listxattr,
2277 .removexattr = shmem_removexattr,
2278#endif
2279};
2280
2281static const struct inode_operations shmem_symlink_inode_operations = {
2282 .readlink = generic_readlink,
2283 .follow_link = shmem_follow_link,
2284 .put_link = shmem_put_link,
2285#ifdef CONFIG_TMPFS_XATTR
2286 .setxattr = shmem_setxattr,
2287 .getxattr = shmem_getxattr,
2288 .listxattr = shmem_listxattr,
2289 .removexattr = shmem_removexattr,
39f0247d 2290#endif
b09e0fa4 2291};
39f0247d 2292
91828a40
DG
2293static struct dentry *shmem_get_parent(struct dentry *child)
2294{
2295 return ERR_PTR(-ESTALE);
2296}
2297
2298static int shmem_match(struct inode *ino, void *vfh)
2299{
2300 __u32 *fh = vfh;
2301 __u64 inum = fh[2];
2302 inum = (inum << 32) | fh[1];
2303 return ino->i_ino == inum && fh[0] == ino->i_generation;
2304}
2305
480b116c
CH
2306static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2307 struct fid *fid, int fh_len, int fh_type)
91828a40 2308{
91828a40 2309 struct inode *inode;
480b116c 2310 struct dentry *dentry = NULL;
35c2a7f4 2311 u64 inum;
480b116c
CH
2312
2313 if (fh_len < 3)
2314 return NULL;
91828a40 2315
35c2a7f4
HD
2316 inum = fid->raw[2];
2317 inum = (inum << 32) | fid->raw[1];
2318
480b116c
CH
2319 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2320 shmem_match, fid->raw);
91828a40 2321 if (inode) {
480b116c 2322 dentry = d_find_alias(inode);
91828a40
DG
2323 iput(inode);
2324 }
2325
480b116c 2326 return dentry;
91828a40
DG
2327}
2328
b0b0382b
AV
2329static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2330 struct inode *parent)
91828a40 2331{
5fe0c237
AK
2332 if (*len < 3) {
2333 *len = 3;
94e07a75 2334 return FILEID_INVALID;
5fe0c237 2335 }
91828a40 2336
1d3382cb 2337 if (inode_unhashed(inode)) {
91828a40
DG
2338 /* Unfortunately insert_inode_hash is not idempotent,
2339 * so as we hash inodes here rather than at creation
2340 * time, we need a lock to ensure we only try
2341 * to do it once
2342 */
2343 static DEFINE_SPINLOCK(lock);
2344 spin_lock(&lock);
1d3382cb 2345 if (inode_unhashed(inode))
91828a40
DG
2346 __insert_inode_hash(inode,
2347 inode->i_ino + inode->i_generation);
2348 spin_unlock(&lock);
2349 }
2350
2351 fh[0] = inode->i_generation;
2352 fh[1] = inode->i_ino;
2353 fh[2] = ((__u64)inode->i_ino) >> 32;
2354
2355 *len = 3;
2356 return 1;
2357}
2358
39655164 2359static const struct export_operations shmem_export_ops = {
91828a40 2360 .get_parent = shmem_get_parent,
91828a40 2361 .encode_fh = shmem_encode_fh,
480b116c 2362 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2363};
2364
680d794b 2365static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2366 bool remount)
1da177e4
LT
2367{
2368 char *this_char, *value, *rest;
49cd0a5c 2369 struct mempolicy *mpol = NULL;
8751e039
EB
2370 uid_t uid;
2371 gid_t gid;
1da177e4 2372
b00dc3ad
HD
2373 while (options != NULL) {
2374 this_char = options;
2375 for (;;) {
2376 /*
2377 * NUL-terminate this option: unfortunately,
2378 * mount options form a comma-separated list,
2379 * but mpol's nodelist may also contain commas.
2380 */
2381 options = strchr(options, ',');
2382 if (options == NULL)
2383 break;
2384 options++;
2385 if (!isdigit(*options)) {
2386 options[-1] = '\0';
2387 break;
2388 }
2389 }
1da177e4
LT
2390 if (!*this_char)
2391 continue;
2392 if ((value = strchr(this_char,'=')) != NULL) {
2393 *value++ = 0;
2394 } else {
2395 printk(KERN_ERR
2396 "tmpfs: No value for mount option '%s'\n",
2397 this_char);
49cd0a5c 2398 goto error;
1da177e4
LT
2399 }
2400
2401 if (!strcmp(this_char,"size")) {
2402 unsigned long long size;
2403 size = memparse(value,&rest);
2404 if (*rest == '%') {
2405 size <<= PAGE_SHIFT;
2406 size *= totalram_pages;
2407 do_div(size, 100);
2408 rest++;
2409 }
2410 if (*rest)
2411 goto bad_val;
680d794b 2412 sbinfo->max_blocks =
2413 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2414 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2415 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2416 if (*rest)
2417 goto bad_val;
2418 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2419 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2420 if (*rest)
2421 goto bad_val;
2422 } else if (!strcmp(this_char,"mode")) {
680d794b 2423 if (remount)
1da177e4 2424 continue;
680d794b 2425 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2426 if (*rest)
2427 goto bad_val;
2428 } else if (!strcmp(this_char,"uid")) {
680d794b 2429 if (remount)
1da177e4 2430 continue;
8751e039 2431 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2432 if (*rest)
2433 goto bad_val;
8751e039
EB
2434 sbinfo->uid = make_kuid(current_user_ns(), uid);
2435 if (!uid_valid(sbinfo->uid))
2436 goto bad_val;
1da177e4 2437 } else if (!strcmp(this_char,"gid")) {
680d794b 2438 if (remount)
1da177e4 2439 continue;
8751e039 2440 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2441 if (*rest)
2442 goto bad_val;
8751e039
EB
2443 sbinfo->gid = make_kgid(current_user_ns(), gid);
2444 if (!gid_valid(sbinfo->gid))
2445 goto bad_val;
7339ff83 2446 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2447 mpol_put(mpol);
2448 mpol = NULL;
2449 if (mpol_parse_str(value, &mpol))
7339ff83 2450 goto bad_val;
1da177e4
LT
2451 } else {
2452 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2453 this_char);
49cd0a5c 2454 goto error;
1da177e4
LT
2455 }
2456 }
49cd0a5c 2457 sbinfo->mpol = mpol;
1da177e4
LT
2458 return 0;
2459
2460bad_val:
2461 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2462 value, this_char);
49cd0a5c
GT
2463error:
2464 mpol_put(mpol);
1da177e4
LT
2465 return 1;
2466
2467}
2468
2469static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2470{
2471 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2472 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2473 unsigned long inodes;
2474 int error = -EINVAL;
2475
5f00110f 2476 config.mpol = NULL;
680d794b 2477 if (shmem_parse_options(data, &config, true))
0edd73b3 2478 return error;
1da177e4 2479
0edd73b3 2480 spin_lock(&sbinfo->stat_lock);
0edd73b3 2481 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2482 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2483 goto out;
680d794b 2484 if (config.max_inodes < inodes)
0edd73b3
HD
2485 goto out;
2486 /*
54af6042 2487 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2488 * but we must separately disallow unlimited->limited, because
2489 * in that case we have no record of how much is already in use.
2490 */
680d794b 2491 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2492 goto out;
680d794b 2493 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2494 goto out;
2495
2496 error = 0;
680d794b 2497 sbinfo->max_blocks = config.max_blocks;
680d794b 2498 sbinfo->max_inodes = config.max_inodes;
2499 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2500
5f00110f
GT
2501 /*
2502 * Preserve previous mempolicy unless mpol remount option was specified.
2503 */
2504 if (config.mpol) {
2505 mpol_put(sbinfo->mpol);
2506 sbinfo->mpol = config.mpol; /* transfers initial ref */
2507 }
0edd73b3
HD
2508out:
2509 spin_unlock(&sbinfo->stat_lock);
2510 return error;
1da177e4 2511}
680d794b 2512
34c80b1d 2513static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2514{
34c80b1d 2515 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2516
2517 if (sbinfo->max_blocks != shmem_default_max_blocks())
2518 seq_printf(seq, ",size=%luk",
2519 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2520 if (sbinfo->max_inodes != shmem_default_max_inodes())
2521 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2522 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2523 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2524 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2525 seq_printf(seq, ",uid=%u",
2526 from_kuid_munged(&init_user_ns, sbinfo->uid));
2527 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2528 seq_printf(seq, ",gid=%u",
2529 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2530 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2531 return 0;
2532}
2533#endif /* CONFIG_TMPFS */
1da177e4
LT
2534
2535static void shmem_put_super(struct super_block *sb)
2536{
602586a8
HD
2537 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2538
2539 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2540 mpol_put(sbinfo->mpol);
602586a8 2541 kfree(sbinfo);
1da177e4
LT
2542 sb->s_fs_info = NULL;
2543}
2544
2b2af54a 2545int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2546{
2547 struct inode *inode;
0edd73b3 2548 struct shmem_sb_info *sbinfo;
680d794b 2549 int err = -ENOMEM;
2550
2551 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2552 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2553 L1_CACHE_BYTES), GFP_KERNEL);
2554 if (!sbinfo)
2555 return -ENOMEM;
2556
680d794b 2557 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2558 sbinfo->uid = current_fsuid();
2559 sbinfo->gid = current_fsgid();
680d794b 2560 sb->s_fs_info = sbinfo;
1da177e4 2561
0edd73b3 2562#ifdef CONFIG_TMPFS
1da177e4
LT
2563 /*
2564 * Per default we only allow half of the physical ram per
2565 * tmpfs instance, limiting inodes to one per page of lowmem;
2566 * but the internal instance is left unlimited.
2567 */
ca4e0519 2568 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 2569 sbinfo->max_blocks = shmem_default_max_blocks();
2570 sbinfo->max_inodes = shmem_default_max_inodes();
2571 if (shmem_parse_options(data, sbinfo, false)) {
2572 err = -EINVAL;
2573 goto failed;
2574 }
ca4e0519
AV
2575 } else {
2576 sb->s_flags |= MS_NOUSER;
1da177e4 2577 }
91828a40 2578 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2579 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2580#else
2581 sb->s_flags |= MS_NOUSER;
2582#endif
2583
0edd73b3 2584 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2585 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2586 goto failed;
680d794b 2587 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2588
285b2c4f 2589 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2590 sb->s_blocksize = PAGE_CACHE_SIZE;
2591 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2592 sb->s_magic = TMPFS_MAGIC;
2593 sb->s_op = &shmem_ops;
cfd95a9c 2594 sb->s_time_gran = 1;
b09e0fa4 2595#ifdef CONFIG_TMPFS_XATTR
39f0247d 2596 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2597#endif
2598#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2599 sb->s_flags |= MS_POSIXACL;
2600#endif
0edd73b3 2601
454abafe 2602 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2603 if (!inode)
2604 goto failed;
680d794b 2605 inode->i_uid = sbinfo->uid;
2606 inode->i_gid = sbinfo->gid;
318ceed0
AV
2607 sb->s_root = d_make_root(inode);
2608 if (!sb->s_root)
48fde701 2609 goto failed;
1da177e4
LT
2610 return 0;
2611
1da177e4
LT
2612failed:
2613 shmem_put_super(sb);
2614 return err;
2615}
2616
fcc234f8 2617static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2618
2619static struct inode *shmem_alloc_inode(struct super_block *sb)
2620{
41ffe5d5
HD
2621 struct shmem_inode_info *info;
2622 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2623 if (!info)
1da177e4 2624 return NULL;
41ffe5d5 2625 return &info->vfs_inode;
1da177e4
LT
2626}
2627
41ffe5d5 2628static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2629{
2630 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2631 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2632}
2633
1da177e4
LT
2634static void shmem_destroy_inode(struct inode *inode)
2635{
09208d15 2636 if (S_ISREG(inode->i_mode))
1da177e4 2637 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2638 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2639}
2640
41ffe5d5 2641static void shmem_init_inode(void *foo)
1da177e4 2642{
41ffe5d5
HD
2643 struct shmem_inode_info *info = foo;
2644 inode_init_once(&info->vfs_inode);
1da177e4
LT
2645}
2646
41ffe5d5 2647static int shmem_init_inodecache(void)
1da177e4
LT
2648{
2649 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2650 sizeof(struct shmem_inode_info),
41ffe5d5 2651 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2652 return 0;
2653}
2654
41ffe5d5 2655static void shmem_destroy_inodecache(void)
1da177e4 2656{
1a1d92c1 2657 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2658}
2659
f5e54d6e 2660static const struct address_space_operations shmem_aops = {
1da177e4 2661 .writepage = shmem_writepage,
76719325 2662 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2663#ifdef CONFIG_TMPFS
800d15a5
NP
2664 .write_begin = shmem_write_begin,
2665 .write_end = shmem_write_end,
1da177e4 2666#endif
304dbdb7 2667 .migratepage = migrate_page,
aa261f54 2668 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2669};
2670
15ad7cdc 2671static const struct file_operations shmem_file_operations = {
1da177e4
LT
2672 .mmap = shmem_mmap,
2673#ifdef CONFIG_TMPFS
220f2ac9 2674 .llseek = shmem_file_llseek,
2ba5bbed 2675 .read = new_sync_read,
8174202b 2676 .write = new_sync_write,
2ba5bbed 2677 .read_iter = shmem_file_read_iter,
8174202b 2678 .write_iter = generic_file_write_iter,
1b061d92 2679 .fsync = noop_fsync,
708e3508 2680 .splice_read = shmem_file_splice_read,
f6cb85d0 2681 .splice_write = iter_file_splice_write,
83e4fa9c 2682 .fallocate = shmem_fallocate,
1da177e4
LT
2683#endif
2684};
2685
92e1d5be 2686static const struct inode_operations shmem_inode_operations = {
94c1e62d 2687 .setattr = shmem_setattr,
b09e0fa4
EP
2688#ifdef CONFIG_TMPFS_XATTR
2689 .setxattr = shmem_setxattr,
2690 .getxattr = shmem_getxattr,
2691 .listxattr = shmem_listxattr,
2692 .removexattr = shmem_removexattr,
feda821e 2693 .set_acl = simple_set_acl,
b09e0fa4 2694#endif
1da177e4
LT
2695};
2696
92e1d5be 2697static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2698#ifdef CONFIG_TMPFS
2699 .create = shmem_create,
2700 .lookup = simple_lookup,
2701 .link = shmem_link,
2702 .unlink = shmem_unlink,
2703 .symlink = shmem_symlink,
2704 .mkdir = shmem_mkdir,
2705 .rmdir = shmem_rmdir,
2706 .mknod = shmem_mknod,
2707 .rename = shmem_rename,
60545d0d 2708 .tmpfile = shmem_tmpfile,
1da177e4 2709#endif
b09e0fa4
EP
2710#ifdef CONFIG_TMPFS_XATTR
2711 .setxattr = shmem_setxattr,
2712 .getxattr = shmem_getxattr,
2713 .listxattr = shmem_listxattr,
2714 .removexattr = shmem_removexattr,
2715#endif
39f0247d 2716#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2717 .setattr = shmem_setattr,
feda821e 2718 .set_acl = simple_set_acl,
39f0247d
AG
2719#endif
2720};
2721
92e1d5be 2722static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2723#ifdef CONFIG_TMPFS_XATTR
2724 .setxattr = shmem_setxattr,
2725 .getxattr = shmem_getxattr,
2726 .listxattr = shmem_listxattr,
2727 .removexattr = shmem_removexattr,
2728#endif
39f0247d 2729#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2730 .setattr = shmem_setattr,
feda821e 2731 .set_acl = simple_set_acl,
39f0247d 2732#endif
1da177e4
LT
2733};
2734
759b9775 2735static const struct super_operations shmem_ops = {
1da177e4
LT
2736 .alloc_inode = shmem_alloc_inode,
2737 .destroy_inode = shmem_destroy_inode,
2738#ifdef CONFIG_TMPFS
2739 .statfs = shmem_statfs,
2740 .remount_fs = shmem_remount_fs,
680d794b 2741 .show_options = shmem_show_options,
1da177e4 2742#endif
1f895f75 2743 .evict_inode = shmem_evict_inode,
1da177e4
LT
2744 .drop_inode = generic_delete_inode,
2745 .put_super = shmem_put_super,
2746};
2747
f0f37e2f 2748static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2749 .fault = shmem_fault,
d7c17551 2750 .map_pages = filemap_map_pages,
1da177e4
LT
2751#ifdef CONFIG_NUMA
2752 .set_policy = shmem_set_policy,
2753 .get_policy = shmem_get_policy,
2754#endif
0b173bc4 2755 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2756};
2757
3c26ff6e
AV
2758static struct dentry *shmem_mount(struct file_system_type *fs_type,
2759 int flags, const char *dev_name, void *data)
1da177e4 2760{
3c26ff6e 2761 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2762}
2763
41ffe5d5 2764static struct file_system_type shmem_fs_type = {
1da177e4
LT
2765 .owner = THIS_MODULE,
2766 .name = "tmpfs",
3c26ff6e 2767 .mount = shmem_mount,
1da177e4 2768 .kill_sb = kill_litter_super,
2b8576cb 2769 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2770};
1da177e4 2771
41ffe5d5 2772int __init shmem_init(void)
1da177e4
LT
2773{
2774 int error;
2775
16203a7a
RL
2776 /* If rootfs called this, don't re-init */
2777 if (shmem_inode_cachep)
2778 return 0;
2779
e0bf68dd
PZ
2780 error = bdi_init(&shmem_backing_dev_info);
2781 if (error)
2782 goto out4;
2783
41ffe5d5 2784 error = shmem_init_inodecache();
1da177e4
LT
2785 if (error)
2786 goto out3;
2787
41ffe5d5 2788 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2789 if (error) {
2790 printk(KERN_ERR "Could not register tmpfs\n");
2791 goto out2;
2792 }
95dc112a 2793
ca4e0519 2794 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
2795 if (IS_ERR(shm_mnt)) {
2796 error = PTR_ERR(shm_mnt);
2797 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2798 goto out1;
2799 }
2800 return 0;
2801
2802out1:
41ffe5d5 2803 unregister_filesystem(&shmem_fs_type);
1da177e4 2804out2:
41ffe5d5 2805 shmem_destroy_inodecache();
1da177e4 2806out3:
e0bf68dd
PZ
2807 bdi_destroy(&shmem_backing_dev_info);
2808out4:
1da177e4
LT
2809 shm_mnt = ERR_PTR(error);
2810 return error;
2811}
853ac43a
MM
2812
2813#else /* !CONFIG_SHMEM */
2814
2815/*
2816 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2817 *
2818 * This is intended for small system where the benefits of the full
2819 * shmem code (swap-backed and resource-limited) are outweighed by
2820 * their complexity. On systems without swap this code should be
2821 * effectively equivalent, but much lighter weight.
2822 */
2823
41ffe5d5 2824static struct file_system_type shmem_fs_type = {
853ac43a 2825 .name = "tmpfs",
3c26ff6e 2826 .mount = ramfs_mount,
853ac43a 2827 .kill_sb = kill_litter_super,
2b8576cb 2828 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2829};
2830
41ffe5d5 2831int __init shmem_init(void)
853ac43a 2832{
41ffe5d5 2833 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2834
41ffe5d5 2835 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2836 BUG_ON(IS_ERR(shm_mnt));
2837
2838 return 0;
2839}
2840
41ffe5d5 2841int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2842{
2843 return 0;
2844}
2845
3f96b79a
HD
2846int shmem_lock(struct file *file, int lock, struct user_struct *user)
2847{
2848 return 0;
2849}
2850
24513264
HD
2851void shmem_unlock_mapping(struct address_space *mapping)
2852{
2853}
2854
41ffe5d5 2855void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2856{
41ffe5d5 2857 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2858}
2859EXPORT_SYMBOL_GPL(shmem_truncate_range);
2860
0b0a0806
HD
2861#define shmem_vm_ops generic_file_vm_ops
2862#define shmem_file_operations ramfs_file_operations
454abafe 2863#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2864#define shmem_acct_size(flags, size) 0
2865#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2866
2867#endif /* CONFIG_SHMEM */
2868
2869/* common code */
1da177e4 2870
3451538a 2871static struct dentry_operations anon_ops = {
118b2302 2872 .d_dname = simple_dname
3451538a
AV
2873};
2874
c7277090
EP
2875static struct file *__shmem_file_setup(const char *name, loff_t size,
2876 unsigned long flags, unsigned int i_flags)
1da177e4 2877{
6b4d0b27 2878 struct file *res;
1da177e4 2879 struct inode *inode;
2c48b9c4 2880 struct path path;
3451538a 2881 struct super_block *sb;
1da177e4
LT
2882 struct qstr this;
2883
2884 if (IS_ERR(shm_mnt))
6b4d0b27 2885 return ERR_CAST(shm_mnt);
1da177e4 2886
285b2c4f 2887 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2888 return ERR_PTR(-EINVAL);
2889
2890 if (shmem_acct_size(flags, size))
2891 return ERR_PTR(-ENOMEM);
2892
6b4d0b27 2893 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2894 this.name = name;
2895 this.len = strlen(name);
2896 this.hash = 0; /* will go */
3451538a
AV
2897 sb = shm_mnt->mnt_sb;
2898 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2899 if (!path.dentry)
1da177e4 2900 goto put_memory;
3451538a 2901 d_set_d_op(path.dentry, &anon_ops);
2c48b9c4 2902 path.mnt = mntget(shm_mnt);
1da177e4 2903
6b4d0b27 2904 res = ERR_PTR(-ENOSPC);
3451538a 2905 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2906 if (!inode)
4b42af81 2907 goto put_dentry;
1da177e4 2908
c7277090 2909 inode->i_flags |= i_flags;
2c48b9c4 2910 d_instantiate(path.dentry, inode);
1da177e4 2911 inode->i_size = size;
6d6b77f1 2912 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
2913 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2914 if (IS_ERR(res))
4b42af81 2915 goto put_dentry;
4b42af81 2916
6b4d0b27 2917 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 2918 &shmem_file_operations);
6b4d0b27 2919 if (IS_ERR(res))
4b42af81
AV
2920 goto put_dentry;
2921
6b4d0b27 2922 return res;
1da177e4 2923
1da177e4 2924put_dentry:
2c48b9c4 2925 path_put(&path);
1da177e4
LT
2926put_memory:
2927 shmem_unacct_size(flags, size);
6b4d0b27 2928 return res;
1da177e4 2929}
c7277090
EP
2930
2931/**
2932 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2933 * kernel internal. There will be NO LSM permission checks against the
2934 * underlying inode. So users of this interface must do LSM checks at a
2935 * higher layer. The one user is the big_key implementation. LSM checks
2936 * are provided at the key level rather than the inode level.
2937 * @name: name for dentry (to be seen in /proc/<pid>/maps
2938 * @size: size to be set for the file
2939 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2940 */
2941struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2942{
2943 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2944}
2945
2946/**
2947 * shmem_file_setup - get an unlinked file living in tmpfs
2948 * @name: name for dentry (to be seen in /proc/<pid>/maps
2949 * @size: size to be set for the file
2950 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2951 */
2952struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2953{
2954 return __shmem_file_setup(name, size, flags, 0);
2955}
395e0ddc 2956EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2957
46711810 2958/**
1da177e4 2959 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2960 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2961 */
2962int shmem_zero_setup(struct vm_area_struct *vma)
2963{
2964 struct file *file;
2965 loff_t size = vma->vm_end - vma->vm_start;
2966
2967 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2968 if (IS_ERR(file))
2969 return PTR_ERR(file);
2970
2971 if (vma->vm_file)
2972 fput(vma->vm_file);
2973 vma->vm_file = file;
2974 vma->vm_ops = &shmem_vm_ops;
2975 return 0;
2976}
d9d90e5e
HD
2977
2978/**
2979 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2980 * @mapping: the page's address_space
2981 * @index: the page index
2982 * @gfp: the page allocator flags to use if allocating
2983 *
2984 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2985 * with any new page allocations done using the specified allocation flags.
2986 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2987 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2988 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2989 *
68da9f05
HD
2990 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2991 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
2992 */
2993struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2994 pgoff_t index, gfp_t gfp)
2995{
68da9f05
HD
2996#ifdef CONFIG_SHMEM
2997 struct inode *inode = mapping->host;
9276aad6 2998 struct page *page;
68da9f05
HD
2999 int error;
3000
3001 BUG_ON(mapping->a_ops != &shmem_aops);
3002 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3003 if (error)
3004 page = ERR_PTR(error);
3005 else
3006 unlock_page(page);
3007 return page;
3008#else
3009 /*
3010 * The tiny !SHMEM case uses ramfs without swap
3011 */
d9d90e5e 3012 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3013#endif
d9d90e5e
HD
3014}
3015EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);