mm/page_alloc.c: broken deferred calculation
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b 109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
4595ef88 299 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
4595ef88 303 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
304 inode->i_mapping->nrpages += pages;
305
800d8c63
KS
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 312 unsigned long flags;
800d8c63 313
4595ef88 314 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
4595ef88 318 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 319
0f079694 320 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
321}
322
7a5d0fbb
HD
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
f7942430 329 struct radix_tree_node *node;
7a5d0fbb 330 void **pslot;
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
f7942430
JW
335 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
336 if (!item)
6dbaf22c 337 return -ENOENT;
7a5d0fbb
HD
338 if (item != expected)
339 return -ENOENT;
4d693d08 340 __radix_tree_replace(&mapping->page_tree, node, pslot,
c7df8ad2 341 replacement, NULL);
7a5d0fbb
HD
342 return 0;
343}
344
d1899228
HD
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
358 item = radix_tree_lookup(&mapping->page_tree, index);
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
5a6e75f8
KS
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
e496cf3d 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
398int shmem_huge __read_mostly;
399
f1f5929c 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
f1f5929c 438#endif
5a6e75f8 439
779750d2
KS
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
253fd0f0 444 LIST_HEAD(to_remove);
779750d2
KS
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 471 list_move(&info->shrinklist, &to_remove);
779750d2 472 removed++;
779750d2
KS
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
253fd0f0
KS
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
779750d2
KS
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
496 if (nr_to_split && split >= nr_to_split) {
497 iput(inode);
498 continue;
499 }
500
501 page = find_lock_page(inode->i_mapping,
502 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
503 if (!page)
504 goto drop;
505
506 if (!PageTransHuge(page)) {
507 unlock_page(page);
508 put_page(page);
509 goto drop;
510 }
511
512 ret = split_huge_page(page);
513 unlock_page(page);
514 put_page(page);
515
516 if (ret) {
517 /* split failed: leave it on the list */
518 iput(inode);
519 continue;
520 }
521
522 split++;
523drop:
524 list_del_init(&info->shrinklist);
525 removed++;
526 iput(inode);
527 }
528
529 spin_lock(&sbinfo->shrinklist_lock);
530 list_splice_tail(&list, &sbinfo->shrinklist);
531 sbinfo->shrinklist_len -= removed;
532 spin_unlock(&sbinfo->shrinklist_lock);
533
534 return split;
535}
536
537static long shmem_unused_huge_scan(struct super_block *sb,
538 struct shrink_control *sc)
539{
540 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
541
542 if (!READ_ONCE(sbinfo->shrinklist_len))
543 return SHRINK_STOP;
544
545 return shmem_unused_huge_shrink(sbinfo, sc, 0);
546}
547
548static long shmem_unused_huge_count(struct super_block *sb,
549 struct shrink_control *sc)
550{
551 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
552 return READ_ONCE(sbinfo->shrinklist_len);
553}
e496cf3d 554#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
555
556#define shmem_huge SHMEM_HUGE_DENY
557
779750d2
KS
558static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
559 struct shrink_control *sc, unsigned long nr_to_split)
560{
561 return 0;
562}
e496cf3d 563#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 564
46f65ec1
HD
565/*
566 * Like add_to_page_cache_locked, but error if expected item has gone.
567 */
568static int shmem_add_to_page_cache(struct page *page,
569 struct address_space *mapping,
fed400a1 570 pgoff_t index, void *expected)
46f65ec1 571{
800d8c63 572 int error, nr = hpage_nr_pages(page);
46f65ec1 573
800d8c63
KS
574 VM_BUG_ON_PAGE(PageTail(page), page);
575 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
576 VM_BUG_ON_PAGE(!PageLocked(page), page);
577 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 578 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 579
800d8c63 580 page_ref_add(page, nr);
b065b432
HD
581 page->mapping = mapping;
582 page->index = index;
583
584 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
585 if (PageTransHuge(page)) {
586 void __rcu **results;
587 pgoff_t idx;
588 int i;
589
590 error = 0;
591 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
592 &results, &idx, index, 1) &&
593 idx < index + HPAGE_PMD_NR) {
594 error = -EEXIST;
595 }
596
597 if (!error) {
598 for (i = 0; i < HPAGE_PMD_NR; i++) {
599 error = radix_tree_insert(&mapping->page_tree,
600 index + i, page + i);
601 VM_BUG_ON(error);
602 }
603 count_vm_event(THP_FILE_ALLOC);
604 }
605 } else if (!expected) {
b065b432 606 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 607 } else {
b065b432
HD
608 error = shmem_radix_tree_replace(mapping, index, expected,
609 page);
800d8c63
KS
610 }
611
46f65ec1 612 if (!error) {
800d8c63
KS
613 mapping->nrpages += nr;
614 if (PageTransHuge(page))
11fb9989
MG
615 __inc_node_page_state(page, NR_SHMEM_THPS);
616 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
617 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
618 spin_unlock_irq(&mapping->tree_lock);
619 } else {
620 page->mapping = NULL;
621 spin_unlock_irq(&mapping->tree_lock);
800d8c63 622 page_ref_sub(page, nr);
46f65ec1 623 }
46f65ec1
HD
624 return error;
625}
626
6922c0c7
HD
627/*
628 * Like delete_from_page_cache, but substitutes swap for page.
629 */
630static void shmem_delete_from_page_cache(struct page *page, void *radswap)
631{
632 struct address_space *mapping = page->mapping;
633 int error;
634
800d8c63
KS
635 VM_BUG_ON_PAGE(PageCompound(page), page);
636
6922c0c7
HD
637 spin_lock_irq(&mapping->tree_lock);
638 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
639 page->mapping = NULL;
640 mapping->nrpages--;
11fb9989
MG
641 __dec_node_page_state(page, NR_FILE_PAGES);
642 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 643 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 644 put_page(page);
6922c0c7
HD
645 BUG_ON(error);
646}
647
7a5d0fbb
HD
648/*
649 * Remove swap entry from radix tree, free the swap and its page cache.
650 */
651static int shmem_free_swap(struct address_space *mapping,
652 pgoff_t index, void *radswap)
653{
6dbaf22c 654 void *old;
7a5d0fbb
HD
655
656 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 657 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 658 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
659 if (old != radswap)
660 return -ENOENT;
661 free_swap_and_cache(radix_to_swp_entry(radswap));
662 return 0;
7a5d0fbb
HD
663}
664
6a15a370
VB
665/*
666 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 667 * given offsets are swapped out.
6a15a370
VB
668 *
669 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
670 * as long as the inode doesn't go away and racy results are not a problem.
671 */
48131e03
VB
672unsigned long shmem_partial_swap_usage(struct address_space *mapping,
673 pgoff_t start, pgoff_t end)
6a15a370 674{
6a15a370
VB
675 struct radix_tree_iter iter;
676 void **slot;
677 struct page *page;
48131e03 678 unsigned long swapped = 0;
6a15a370
VB
679
680 rcu_read_lock();
681
6a15a370
VB
682 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
683 if (iter.index >= end)
684 break;
685
686 page = radix_tree_deref_slot(slot);
687
2cf938aa
MW
688 if (radix_tree_deref_retry(page)) {
689 slot = radix_tree_iter_retry(&iter);
690 continue;
691 }
6a15a370
VB
692
693 if (radix_tree_exceptional_entry(page))
694 swapped++;
695
696 if (need_resched()) {
148deab2 697 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 698 cond_resched_rcu();
6a15a370
VB
699 }
700 }
701
702 rcu_read_unlock();
703
704 return swapped << PAGE_SHIFT;
705}
706
48131e03
VB
707/*
708 * Determine (in bytes) how many of the shmem object's pages mapped by the
709 * given vma is swapped out.
710 *
711 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
712 * as long as the inode doesn't go away and racy results are not a problem.
713 */
714unsigned long shmem_swap_usage(struct vm_area_struct *vma)
715{
716 struct inode *inode = file_inode(vma->vm_file);
717 struct shmem_inode_info *info = SHMEM_I(inode);
718 struct address_space *mapping = inode->i_mapping;
719 unsigned long swapped;
720
721 /* Be careful as we don't hold info->lock */
722 swapped = READ_ONCE(info->swapped);
723
724 /*
725 * The easier cases are when the shmem object has nothing in swap, or
726 * the vma maps it whole. Then we can simply use the stats that we
727 * already track.
728 */
729 if (!swapped)
730 return 0;
731
732 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
733 return swapped << PAGE_SHIFT;
734
735 /* Here comes the more involved part */
736 return shmem_partial_swap_usage(mapping,
737 linear_page_index(vma, vma->vm_start),
738 linear_page_index(vma, vma->vm_end));
739}
740
24513264
HD
741/*
742 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
743 */
744void shmem_unlock_mapping(struct address_space *mapping)
745{
746 struct pagevec pvec;
747 pgoff_t indices[PAGEVEC_SIZE];
748 pgoff_t index = 0;
749
86679820 750 pagevec_init(&pvec);
24513264
HD
751 /*
752 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
753 */
754 while (!mapping_unevictable(mapping)) {
755 /*
756 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
757 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
758 */
0cd6144a
JW
759 pvec.nr = find_get_entries(mapping, index,
760 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
761 if (!pvec.nr)
762 break;
763 index = indices[pvec.nr - 1] + 1;
0cd6144a 764 pagevec_remove_exceptionals(&pvec);
24513264
HD
765 check_move_unevictable_pages(pvec.pages, pvec.nr);
766 pagevec_release(&pvec);
767 cond_resched();
768 }
7a5d0fbb
HD
769}
770
771/*
772 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 773 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 774 */
1635f6a7
HD
775static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
776 bool unfalloc)
1da177e4 777{
285b2c4f 778 struct address_space *mapping = inode->i_mapping;
1da177e4 779 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
780 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
781 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
782 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
783 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 784 struct pagevec pvec;
7a5d0fbb
HD
785 pgoff_t indices[PAGEVEC_SIZE];
786 long nr_swaps_freed = 0;
285b2c4f 787 pgoff_t index;
bda97eab
HD
788 int i;
789
83e4fa9c
HD
790 if (lend == -1)
791 end = -1; /* unsigned, so actually very big */
bda97eab 792
86679820 793 pagevec_init(&pvec);
bda97eab 794 index = start;
83e4fa9c 795 while (index < end) {
0cd6144a
JW
796 pvec.nr = find_get_entries(mapping, index,
797 min(end - index, (pgoff_t)PAGEVEC_SIZE),
798 pvec.pages, indices);
7a5d0fbb
HD
799 if (!pvec.nr)
800 break;
bda97eab
HD
801 for (i = 0; i < pagevec_count(&pvec); i++) {
802 struct page *page = pvec.pages[i];
803
7a5d0fbb 804 index = indices[i];
83e4fa9c 805 if (index >= end)
bda97eab
HD
806 break;
807
7a5d0fbb 808 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
809 if (unfalloc)
810 continue;
7a5d0fbb
HD
811 nr_swaps_freed += !shmem_free_swap(mapping,
812 index, page);
bda97eab 813 continue;
7a5d0fbb
HD
814 }
815
800d8c63
KS
816 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
817
7a5d0fbb 818 if (!trylock_page(page))
bda97eab 819 continue;
800d8c63
KS
820
821 if (PageTransTail(page)) {
822 /* Middle of THP: zero out the page */
823 clear_highpage(page);
824 unlock_page(page);
825 continue;
826 } else if (PageTransHuge(page)) {
827 if (index == round_down(end, HPAGE_PMD_NR)) {
828 /*
829 * Range ends in the middle of THP:
830 * zero out the page
831 */
832 clear_highpage(page);
833 unlock_page(page);
834 continue;
835 }
836 index += HPAGE_PMD_NR - 1;
837 i += HPAGE_PMD_NR - 1;
838 }
839
1635f6a7 840 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
841 VM_BUG_ON_PAGE(PageTail(page), page);
842 if (page_mapping(page) == mapping) {
309381fe 843 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
844 truncate_inode_page(mapping, page);
845 }
bda97eab 846 }
bda97eab
HD
847 unlock_page(page);
848 }
0cd6144a 849 pagevec_remove_exceptionals(&pvec);
24513264 850 pagevec_release(&pvec);
bda97eab
HD
851 cond_resched();
852 index++;
853 }
1da177e4 854
83e4fa9c 855 if (partial_start) {
bda97eab 856 struct page *page = NULL;
9e18eb29 857 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 858 if (page) {
09cbfeaf 859 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
860 if (start > end) {
861 top = partial_end;
862 partial_end = 0;
863 }
864 zero_user_segment(page, partial_start, top);
865 set_page_dirty(page);
866 unlock_page(page);
09cbfeaf 867 put_page(page);
83e4fa9c
HD
868 }
869 }
870 if (partial_end) {
871 struct page *page = NULL;
9e18eb29 872 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
873 if (page) {
874 zero_user_segment(page, 0, partial_end);
bda97eab
HD
875 set_page_dirty(page);
876 unlock_page(page);
09cbfeaf 877 put_page(page);
bda97eab
HD
878 }
879 }
83e4fa9c
HD
880 if (start >= end)
881 return;
bda97eab
HD
882
883 index = start;
b1a36650 884 while (index < end) {
bda97eab 885 cond_resched();
0cd6144a
JW
886
887 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 888 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 889 pvec.pages, indices);
7a5d0fbb 890 if (!pvec.nr) {
b1a36650
HD
891 /* If all gone or hole-punch or unfalloc, we're done */
892 if (index == start || end != -1)
bda97eab 893 break;
b1a36650 894 /* But if truncating, restart to make sure all gone */
bda97eab
HD
895 index = start;
896 continue;
897 }
bda97eab
HD
898 for (i = 0; i < pagevec_count(&pvec); i++) {
899 struct page *page = pvec.pages[i];
900
7a5d0fbb 901 index = indices[i];
83e4fa9c 902 if (index >= end)
bda97eab
HD
903 break;
904
7a5d0fbb 905 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
906 if (unfalloc)
907 continue;
b1a36650
HD
908 if (shmem_free_swap(mapping, index, page)) {
909 /* Swap was replaced by page: retry */
910 index--;
911 break;
912 }
913 nr_swaps_freed++;
7a5d0fbb
HD
914 continue;
915 }
916
bda97eab 917 lock_page(page);
800d8c63
KS
918
919 if (PageTransTail(page)) {
920 /* Middle of THP: zero out the page */
921 clear_highpage(page);
922 unlock_page(page);
923 /*
924 * Partial thp truncate due 'start' in middle
925 * of THP: don't need to look on these pages
926 * again on !pvec.nr restart.
927 */
928 if (index != round_down(end, HPAGE_PMD_NR))
929 start++;
930 continue;
931 } else if (PageTransHuge(page)) {
932 if (index == round_down(end, HPAGE_PMD_NR)) {
933 /*
934 * Range ends in the middle of THP:
935 * zero out the page
936 */
937 clear_highpage(page);
938 unlock_page(page);
939 continue;
940 }
941 index += HPAGE_PMD_NR - 1;
942 i += HPAGE_PMD_NR - 1;
943 }
944
1635f6a7 945 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
946 VM_BUG_ON_PAGE(PageTail(page), page);
947 if (page_mapping(page) == mapping) {
309381fe 948 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 949 truncate_inode_page(mapping, page);
b1a36650
HD
950 } else {
951 /* Page was replaced by swap: retry */
952 unlock_page(page);
953 index--;
954 break;
1635f6a7 955 }
7a5d0fbb 956 }
bda97eab
HD
957 unlock_page(page);
958 }
0cd6144a 959 pagevec_remove_exceptionals(&pvec);
24513264 960 pagevec_release(&pvec);
bda97eab
HD
961 index++;
962 }
94c1e62d 963
4595ef88 964 spin_lock_irq(&info->lock);
7a5d0fbb 965 info->swapped -= nr_swaps_freed;
1da177e4 966 shmem_recalc_inode(inode);
4595ef88 967 spin_unlock_irq(&info->lock);
1635f6a7 968}
1da177e4 969
1635f6a7
HD
970void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
971{
972 shmem_undo_range(inode, lstart, lend, false);
078cd827 973 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 974}
94c1e62d 975EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 976
a528d35e
DH
977static int shmem_getattr(const struct path *path, struct kstat *stat,
978 u32 request_mask, unsigned int query_flags)
44a30220 979{
a528d35e 980 struct inode *inode = path->dentry->d_inode;
44a30220
YZ
981 struct shmem_inode_info *info = SHMEM_I(inode);
982
d0424c42 983 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 984 spin_lock_irq(&info->lock);
d0424c42 985 shmem_recalc_inode(inode);
4595ef88 986 spin_unlock_irq(&info->lock);
d0424c42 987 }
44a30220 988 generic_fillattr(inode, stat);
44a30220
YZ
989 return 0;
990}
991
94c1e62d 992static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 993{
75c3cfa8 994 struct inode *inode = d_inode(dentry);
40e041a2 995 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 996 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
997 int error;
998
31051c85 999 error = setattr_prepare(dentry, attr);
db78b877
CH
1000 if (error)
1001 return error;
1002
94c1e62d
HD
1003 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1004 loff_t oldsize = inode->i_size;
1005 loff_t newsize = attr->ia_size;
3889e6e7 1006
40e041a2
DH
1007 /* protected by i_mutex */
1008 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1009 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1010 return -EPERM;
1011
94c1e62d 1012 if (newsize != oldsize) {
77142517
KK
1013 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1014 oldsize, newsize);
1015 if (error)
1016 return error;
94c1e62d 1017 i_size_write(inode, newsize);
078cd827 1018 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1019 }
afa2db2f 1020 if (newsize <= oldsize) {
94c1e62d 1021 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1022 if (oldsize > holebegin)
1023 unmap_mapping_range(inode->i_mapping,
1024 holebegin, 0, 1);
1025 if (info->alloced)
1026 shmem_truncate_range(inode,
1027 newsize, (loff_t)-1);
94c1e62d 1028 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1029 if (oldsize > holebegin)
1030 unmap_mapping_range(inode->i_mapping,
1031 holebegin, 0, 1);
779750d2
KS
1032
1033 /*
1034 * Part of the huge page can be beyond i_size: subject
1035 * to shrink under memory pressure.
1036 */
1037 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1038 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1039 /*
1040 * _careful to defend against unlocked access to
1041 * ->shrink_list in shmem_unused_huge_shrink()
1042 */
1043 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1044 list_add_tail(&info->shrinklist,
1045 &sbinfo->shrinklist);
1046 sbinfo->shrinklist_len++;
1047 }
1048 spin_unlock(&sbinfo->shrinklist_lock);
1049 }
94c1e62d 1050 }
1da177e4
LT
1051 }
1052
db78b877 1053 setattr_copy(inode, attr);
db78b877 1054 if (attr->ia_valid & ATTR_MODE)
feda821e 1055 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1056 return error;
1057}
1058
1f895f75 1059static void shmem_evict_inode(struct inode *inode)
1da177e4 1060{
1da177e4 1061 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1062 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1063
3889e6e7 1064 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1065 shmem_unacct_size(info->flags, inode->i_size);
1066 inode->i_size = 0;
3889e6e7 1067 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1068 if (!list_empty(&info->shrinklist)) {
1069 spin_lock(&sbinfo->shrinklist_lock);
1070 if (!list_empty(&info->shrinklist)) {
1071 list_del_init(&info->shrinklist);
1072 sbinfo->shrinklist_len--;
1073 }
1074 spin_unlock(&sbinfo->shrinklist_lock);
1075 }
1da177e4 1076 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1077 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1078 list_del_init(&info->swaplist);
cb5f7b9a 1079 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1080 }
3ed47db3 1081 }
b09e0fa4 1082
38f38657 1083 simple_xattrs_free(&info->xattrs);
0f3c42f5 1084 WARN_ON(inode->i_blocks);
5b04c689 1085 shmem_free_inode(inode->i_sb);
dbd5768f 1086 clear_inode(inode);
1da177e4
LT
1087}
1088
478922e2
MW
1089static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1090{
1091 struct radix_tree_iter iter;
1092 void **slot;
1093 unsigned long found = -1;
1094 unsigned int checked = 0;
1095
1096 rcu_read_lock();
1097 radix_tree_for_each_slot(slot, root, &iter, 0) {
1098 if (*slot == item) {
1099 found = iter.index;
1100 break;
1101 }
1102 checked++;
1103 if ((checked % 4096) != 0)
1104 continue;
1105 slot = radix_tree_iter_resume(slot, &iter);
1106 cond_resched_rcu();
1107 }
1108
1109 rcu_read_unlock();
1110 return found;
1111}
1112
46f65ec1
HD
1113/*
1114 * If swap found in inode, free it and move page from swapcache to filecache.
1115 */
41ffe5d5 1116static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1117 swp_entry_t swap, struct page **pagep)
1da177e4 1118{
285b2c4f 1119 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1120 void *radswap;
41ffe5d5 1121 pgoff_t index;
bde05d1c
HD
1122 gfp_t gfp;
1123 int error = 0;
1da177e4 1124
46f65ec1 1125 radswap = swp_to_radix_entry(swap);
478922e2 1126 index = find_swap_entry(&mapping->page_tree, radswap);
46f65ec1 1127 if (index == -1)
00501b53 1128 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1129
1b1b32f2
HD
1130 /*
1131 * Move _head_ to start search for next from here.
1f895f75 1132 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1133 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1134 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1135 */
1136 if (shmem_swaplist.next != &info->swaplist)
1137 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1138
bde05d1c
HD
1139 gfp = mapping_gfp_mask(mapping);
1140 if (shmem_should_replace_page(*pagep, gfp)) {
1141 mutex_unlock(&shmem_swaplist_mutex);
1142 error = shmem_replace_page(pagep, gfp, info, index);
1143 mutex_lock(&shmem_swaplist_mutex);
1144 /*
1145 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1146 * allocation, but the inode might have been freed while we
1147 * dropped it: although a racing shmem_evict_inode() cannot
1148 * complete without emptying the radix_tree, our page lock
1149 * on this swapcache page is not enough to prevent that -
1150 * free_swap_and_cache() of our swap entry will only
1151 * trylock_page(), removing swap from radix_tree whatever.
1152 *
1153 * We must not proceed to shmem_add_to_page_cache() if the
1154 * inode has been freed, but of course we cannot rely on
1155 * inode or mapping or info to check that. However, we can
1156 * safely check if our swap entry is still in use (and here
1157 * it can't have got reused for another page): if it's still
1158 * in use, then the inode cannot have been freed yet, and we
1159 * can safely proceed (if it's no longer in use, that tells
1160 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1161 */
1162 if (!page_swapcount(*pagep))
1163 error = -ENOENT;
1164 }
1165
d13d1443 1166 /*
778dd893
HD
1167 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1170 */
bde05d1c
HD
1171 if (!error)
1172 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1173 radswap);
48f170fb 1174 if (error != -ENOMEM) {
46f65ec1
HD
1175 /*
1176 * Truncation and eviction use free_swap_and_cache(), which
1177 * only does trylock page: if we raced, best clean up here.
1178 */
bde05d1c
HD
1179 delete_from_swap_cache(*pagep);
1180 set_page_dirty(*pagep);
46f65ec1 1181 if (!error) {
4595ef88 1182 spin_lock_irq(&info->lock);
46f65ec1 1183 info->swapped--;
4595ef88 1184 spin_unlock_irq(&info->lock);
46f65ec1
HD
1185 swap_free(swap);
1186 }
1da177e4 1187 }
2e0e26c7 1188 return error;
1da177e4
LT
1189}
1190
1191/*
46f65ec1 1192 * Search through swapped inodes to find and replace swap by page.
1da177e4 1193 */
41ffe5d5 1194int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1195{
41ffe5d5 1196 struct list_head *this, *next;
1da177e4 1197 struct shmem_inode_info *info;
00501b53 1198 struct mem_cgroup *memcg;
bde05d1c
HD
1199 int error = 0;
1200
1201 /*
1202 * There's a faint possibility that swap page was replaced before
0142ef6c 1203 * caller locked it: caller will come back later with the right page.
bde05d1c 1204 */
0142ef6c 1205 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1206 goto out;
778dd893
HD
1207
1208 /*
1209 * Charge page using GFP_KERNEL while we can wait, before taking
1210 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211 * Charged back to the user (not to caller) when swap account is used.
778dd893 1212 */
f627c2f5
KS
1213 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1214 false);
778dd893
HD
1215 if (error)
1216 goto out;
46f65ec1 1217 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1218 error = -EAGAIN;
1da177e4 1219
cb5f7b9a 1220 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1221 list_for_each_safe(this, next, &shmem_swaplist) {
1222 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1223 if (info->swapped)
00501b53 1224 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1225 else
1226 list_del_init(&info->swaplist);
cb5f7b9a 1227 cond_resched();
00501b53 1228 if (error != -EAGAIN)
778dd893 1229 break;
00501b53 1230 /* found nothing in this: move on to search the next */
1da177e4 1231 }
cb5f7b9a 1232 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1233
00501b53
JW
1234 if (error) {
1235 if (error != -ENOMEM)
1236 error = 0;
f627c2f5 1237 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1238 } else
f627c2f5 1239 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1240out:
aaa46865 1241 unlock_page(page);
09cbfeaf 1242 put_page(page);
778dd893 1243 return error;
1da177e4
LT
1244}
1245
1246/*
1247 * Move the page from the page cache to the swap cache.
1248 */
1249static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1250{
1251 struct shmem_inode_info *info;
1da177e4 1252 struct address_space *mapping;
1da177e4 1253 struct inode *inode;
6922c0c7
HD
1254 swp_entry_t swap;
1255 pgoff_t index;
1da177e4 1256
800d8c63 1257 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1258 BUG_ON(!PageLocked(page));
1da177e4
LT
1259 mapping = page->mapping;
1260 index = page->index;
1261 inode = mapping->host;
1262 info = SHMEM_I(inode);
1263 if (info->flags & VM_LOCKED)
1264 goto redirty;
d9fe526a 1265 if (!total_swap_pages)
1da177e4
LT
1266 goto redirty;
1267
d9fe526a 1268 /*
97b713ba
CH
1269 * Our capabilities prevent regular writeback or sync from ever calling
1270 * shmem_writepage; but a stacking filesystem might use ->writepage of
1271 * its underlying filesystem, in which case tmpfs should write out to
1272 * swap only in response to memory pressure, and not for the writeback
1273 * threads or sync.
d9fe526a 1274 */
48f170fb
HD
1275 if (!wbc->for_reclaim) {
1276 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1277 goto redirty;
1278 }
1635f6a7
HD
1279
1280 /*
1281 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282 * value into swapfile.c, the only way we can correctly account for a
1283 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1284 *
1285 * That's okay for a page already fallocated earlier, but if we have
1286 * not yet completed the fallocation, then (a) we want to keep track
1287 * of this page in case we have to undo it, and (b) it may not be a
1288 * good idea to continue anyway, once we're pushing into swap. So
1289 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1290 */
1291 if (!PageUptodate(page)) {
1aac1400
HD
1292 if (inode->i_private) {
1293 struct shmem_falloc *shmem_falloc;
1294 spin_lock(&inode->i_lock);
1295 shmem_falloc = inode->i_private;
1296 if (shmem_falloc &&
8e205f77 1297 !shmem_falloc->waitq &&
1aac1400
HD
1298 index >= shmem_falloc->start &&
1299 index < shmem_falloc->next)
1300 shmem_falloc->nr_unswapped++;
1301 else
1302 shmem_falloc = NULL;
1303 spin_unlock(&inode->i_lock);
1304 if (shmem_falloc)
1305 goto redirty;
1306 }
1635f6a7
HD
1307 clear_highpage(page);
1308 flush_dcache_page(page);
1309 SetPageUptodate(page);
1310 }
1311
38d8b4e6 1312 swap = get_swap_page(page);
48f170fb
HD
1313 if (!swap.val)
1314 goto redirty;
d9fe526a 1315
37e84351
VD
1316 if (mem_cgroup_try_charge_swap(page, swap))
1317 goto free_swap;
1318
b1dea800
HD
1319 /*
1320 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1321 * if it's not already there. Do it now before the page is
1322 * moved to swap cache, when its pagelock no longer protects
b1dea800 1323 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1324 * we've incremented swapped, because shmem_unuse_inode() will
1325 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1326 */
48f170fb
HD
1327 mutex_lock(&shmem_swaplist_mutex);
1328 if (list_empty(&info->swaplist))
1329 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1330
48f170fb 1331 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1332 spin_lock_irq(&info->lock);
6922c0c7 1333 shmem_recalc_inode(inode);
267a4c76 1334 info->swapped++;
4595ef88 1335 spin_unlock_irq(&info->lock);
6922c0c7 1336
267a4c76
HD
1337 swap_shmem_alloc(swap);
1338 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1339
6922c0c7 1340 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1341 BUG_ON(page_mapped(page));
9fab5619 1342 swap_writepage(page, wbc);
1da177e4
LT
1343 return 0;
1344 }
1345
6922c0c7 1346 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1347free_swap:
75f6d6d2 1348 put_swap_page(page, swap);
1da177e4
LT
1349redirty:
1350 set_page_dirty(page);
d9fe526a
HD
1351 if (wbc->for_reclaim)
1352 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1353 unlock_page(page);
1354 return 0;
1da177e4
LT
1355}
1356
75edd345 1357#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1358static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1359{
095f1fc4 1360 char buffer[64];
680d794b 1361
71fe804b 1362 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1363 return; /* show nothing */
680d794b 1364
a7a88b23 1365 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1366
1367 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1368}
71fe804b
LS
1369
1370static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1371{
1372 struct mempolicy *mpol = NULL;
1373 if (sbinfo->mpol) {
1374 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1375 mpol = sbinfo->mpol;
1376 mpol_get(mpol);
1377 spin_unlock(&sbinfo->stat_lock);
1378 }
1379 return mpol;
1380}
75edd345
HD
1381#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1382static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1383{
1384}
1385static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1386{
1387 return NULL;
1388}
1389#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1390#ifndef CONFIG_NUMA
1391#define vm_policy vm_private_data
1392#endif
680d794b 1393
800d8c63
KS
1394static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1395 struct shmem_inode_info *info, pgoff_t index)
1396{
1397 /* Create a pseudo vma that just contains the policy */
1398 vma->vm_start = 0;
1399 /* Bias interleave by inode number to distribute better across nodes */
1400 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1401 vma->vm_ops = NULL;
1402 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1403}
1404
1405static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1406{
1407 /* Drop reference taken by mpol_shared_policy_lookup() */
1408 mpol_cond_put(vma->vm_policy);
1409}
1410
41ffe5d5
HD
1411static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1412 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1413{
1da177e4 1414 struct vm_area_struct pvma;
18a2f371 1415 struct page *page;
52cd3b07 1416
800d8c63 1417 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1418 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1419 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1420
800d8c63
KS
1421 return page;
1422}
1423
1424static struct page *shmem_alloc_hugepage(gfp_t gfp,
1425 struct shmem_inode_info *info, pgoff_t index)
1426{
1427 struct vm_area_struct pvma;
1428 struct inode *inode = &info->vfs_inode;
1429 struct address_space *mapping = inode->i_mapping;
4620a06e 1430 pgoff_t idx, hindex;
800d8c63
KS
1431 void __rcu **results;
1432 struct page *page;
1433
e496cf3d 1434 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1435 return NULL;
1436
4620a06e 1437 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1438 rcu_read_lock();
1439 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1440 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1441 rcu_read_unlock();
1442 return NULL;
1443 }
1444 rcu_read_unlock();
18a2f371 1445
800d8c63
KS
1446 shmem_pseudo_vma_init(&pvma, info, hindex);
1447 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1448 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1449 shmem_pseudo_vma_destroy(&pvma);
1450 if (page)
1451 prep_transhuge_page(page);
18a2f371 1452 return page;
1da177e4
LT
1453}
1454
02098fea 1455static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1456 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1457{
1458 struct vm_area_struct pvma;
18a2f371 1459 struct page *page;
1da177e4 1460
800d8c63
KS
1461 shmem_pseudo_vma_init(&pvma, info, index);
1462 page = alloc_page_vma(gfp, &pvma, 0);
1463 shmem_pseudo_vma_destroy(&pvma);
1464
1465 return page;
1466}
1467
1468static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1469 struct inode *inode,
800d8c63
KS
1470 pgoff_t index, bool huge)
1471{
0f079694 1472 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1473 struct page *page;
1474 int nr;
1475 int err = -ENOSPC;
52cd3b07 1476
e496cf3d 1477 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1478 huge = false;
1479 nr = huge ? HPAGE_PMD_NR : 1;
1480
0f079694 1481 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1482 goto failed;
800d8c63
KS
1483
1484 if (huge)
1485 page = shmem_alloc_hugepage(gfp, info, index);
1486 else
1487 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1488 if (page) {
1489 __SetPageLocked(page);
1490 __SetPageSwapBacked(page);
800d8c63 1491 return page;
75edd345 1492 }
18a2f371 1493
800d8c63 1494 err = -ENOMEM;
0f079694 1495 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1496failed:
1497 return ERR_PTR(err);
1da177e4 1498}
71fe804b 1499
bde05d1c
HD
1500/*
1501 * When a page is moved from swapcache to shmem filecache (either by the
1502 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1503 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1504 * ignorance of the mapping it belongs to. If that mapping has special
1505 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1506 * we may need to copy to a suitable page before moving to filecache.
1507 *
1508 * In a future release, this may well be extended to respect cpuset and
1509 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1510 * but for now it is a simple matter of zone.
1511 */
1512static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1513{
1514 return page_zonenum(page) > gfp_zone(gfp);
1515}
1516
1517static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1518 struct shmem_inode_info *info, pgoff_t index)
1519{
1520 struct page *oldpage, *newpage;
1521 struct address_space *swap_mapping;
1522 pgoff_t swap_index;
1523 int error;
1524
1525 oldpage = *pagep;
1526 swap_index = page_private(oldpage);
1527 swap_mapping = page_mapping(oldpage);
1528
1529 /*
1530 * We have arrived here because our zones are constrained, so don't
1531 * limit chance of success by further cpuset and node constraints.
1532 */
1533 gfp &= ~GFP_CONSTRAINT_MASK;
1534 newpage = shmem_alloc_page(gfp, info, index);
1535 if (!newpage)
1536 return -ENOMEM;
bde05d1c 1537
09cbfeaf 1538 get_page(newpage);
bde05d1c 1539 copy_highpage(newpage, oldpage);
0142ef6c 1540 flush_dcache_page(newpage);
bde05d1c 1541
9956edf3
HD
1542 __SetPageLocked(newpage);
1543 __SetPageSwapBacked(newpage);
bde05d1c 1544 SetPageUptodate(newpage);
bde05d1c 1545 set_page_private(newpage, swap_index);
bde05d1c
HD
1546 SetPageSwapCache(newpage);
1547
1548 /*
1549 * Our caller will very soon move newpage out of swapcache, but it's
1550 * a nice clean interface for us to replace oldpage by newpage there.
1551 */
1552 spin_lock_irq(&swap_mapping->tree_lock);
1553 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1554 newpage);
0142ef6c 1555 if (!error) {
11fb9989
MG
1556 __inc_node_page_state(newpage, NR_FILE_PAGES);
1557 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1558 }
bde05d1c 1559 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1560
0142ef6c
HD
1561 if (unlikely(error)) {
1562 /*
1563 * Is this possible? I think not, now that our callers check
1564 * both PageSwapCache and page_private after getting page lock;
1565 * but be defensive. Reverse old to newpage for clear and free.
1566 */
1567 oldpage = newpage;
1568 } else {
6a93ca8f 1569 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1570 lru_cache_add_anon(newpage);
1571 *pagep = newpage;
1572 }
bde05d1c
HD
1573
1574 ClearPageSwapCache(oldpage);
1575 set_page_private(oldpage, 0);
1576
1577 unlock_page(oldpage);
09cbfeaf
KS
1578 put_page(oldpage);
1579 put_page(oldpage);
0142ef6c 1580 return error;
bde05d1c
HD
1581}
1582
1da177e4 1583/*
68da9f05 1584 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1585 *
1586 * If we allocate a new one we do not mark it dirty. That's up to the
1587 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1588 * entry since a page cannot live in both the swap and page cache.
1589 *
1590 * fault_mm and fault_type are only supplied by shmem_fault:
1591 * otherwise they are NULL.
1da177e4 1592 */
41ffe5d5 1593static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1594 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1595 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1596{
1597 struct address_space *mapping = inode->i_mapping;
23f919d4 1598 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1599 struct shmem_sb_info *sbinfo;
9e18eb29 1600 struct mm_struct *charge_mm;
00501b53 1601 struct mem_cgroup *memcg;
27ab7006 1602 struct page *page;
1da177e4 1603 swp_entry_t swap;
657e3038 1604 enum sgp_type sgp_huge = sgp;
800d8c63 1605 pgoff_t hindex = index;
1da177e4 1606 int error;
54af6042 1607 int once = 0;
1635f6a7 1608 int alloced = 0;
1da177e4 1609
09cbfeaf 1610 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1611 return -EFBIG;
657e3038
KS
1612 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1613 sgp = SGP_CACHE;
1da177e4 1614repeat:
54af6042 1615 swap.val = 0;
0cd6144a 1616 page = find_lock_entry(mapping, index);
54af6042
HD
1617 if (radix_tree_exceptional_entry(page)) {
1618 swap = radix_to_swp_entry(page);
1619 page = NULL;
1620 }
1621
75edd345 1622 if (sgp <= SGP_CACHE &&
09cbfeaf 1623 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1624 error = -EINVAL;
267a4c76 1625 goto unlock;
54af6042
HD
1626 }
1627
66d2f4d2
HD
1628 if (page && sgp == SGP_WRITE)
1629 mark_page_accessed(page);
1630
1635f6a7
HD
1631 /* fallocated page? */
1632 if (page && !PageUptodate(page)) {
1633 if (sgp != SGP_READ)
1634 goto clear;
1635 unlock_page(page);
09cbfeaf 1636 put_page(page);
1635f6a7
HD
1637 page = NULL;
1638 }
54af6042 1639 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1640 *pagep = page;
1641 return 0;
27ab7006
HD
1642 }
1643
1644 /*
54af6042
HD
1645 * Fast cache lookup did not find it:
1646 * bring it back from swap or allocate.
27ab7006 1647 */
54af6042 1648 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1649 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1650
1da177e4
LT
1651 if (swap.val) {
1652 /* Look it up and read it in.. */
ec560175 1653 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1654 if (!page) {
9e18eb29
ALC
1655 /* Or update major stats only when swapin succeeds?? */
1656 if (fault_type) {
68da9f05 1657 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1658 count_vm_event(PGMAJFAULT);
2262185c 1659 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1660 }
1661 /* Here we actually start the io */
41ffe5d5 1662 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1663 if (!page) {
54af6042
HD
1664 error = -ENOMEM;
1665 goto failed;
1da177e4 1666 }
1da177e4
LT
1667 }
1668
1669 /* We have to do this with page locked to prevent races */
54af6042 1670 lock_page(page);
0142ef6c 1671 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1672 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1673 error = -EEXIST; /* try again */
d1899228 1674 goto unlock;
bde05d1c 1675 }
27ab7006 1676 if (!PageUptodate(page)) {
1da177e4 1677 error = -EIO;
54af6042 1678 goto failed;
1da177e4 1679 }
54af6042
HD
1680 wait_on_page_writeback(page);
1681
bde05d1c
HD
1682 if (shmem_should_replace_page(page, gfp)) {
1683 error = shmem_replace_page(&page, gfp, info, index);
1684 if (error)
1685 goto failed;
1da177e4 1686 }
27ab7006 1687
9e18eb29 1688 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1689 false);
d1899228 1690 if (!error) {
aa3b1895 1691 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1692 swp_to_radix_entry(swap));
215c02bc
HD
1693 /*
1694 * We already confirmed swap under page lock, and make
1695 * no memory allocation here, so usually no possibility
1696 * of error; but free_swap_and_cache() only trylocks a
1697 * page, so it is just possible that the entry has been
1698 * truncated or holepunched since swap was confirmed.
1699 * shmem_undo_range() will have done some of the
1700 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1701 * the rest.
215c02bc
HD
1702 * Reset swap.val? No, leave it so "failed" goes back to
1703 * "repeat": reading a hole and writing should succeed.
1704 */
00501b53 1705 if (error) {
f627c2f5 1706 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1707 delete_from_swap_cache(page);
00501b53 1708 }
d1899228 1709 }
54af6042
HD
1710 if (error)
1711 goto failed;
1712
f627c2f5 1713 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1714
4595ef88 1715 spin_lock_irq(&info->lock);
285b2c4f 1716 info->swapped--;
54af6042 1717 shmem_recalc_inode(inode);
4595ef88 1718 spin_unlock_irq(&info->lock);
54af6042 1719
66d2f4d2
HD
1720 if (sgp == SGP_WRITE)
1721 mark_page_accessed(page);
1722
54af6042 1723 delete_from_swap_cache(page);
27ab7006
HD
1724 set_page_dirty(page);
1725 swap_free(swap);
1726
54af6042 1727 } else {
cfda0526
MR
1728 if (vma && userfaultfd_missing(vma)) {
1729 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1730 return 0;
1731 }
1732
800d8c63
KS
1733 /* shmem_symlink() */
1734 if (mapping->a_ops != &shmem_aops)
1735 goto alloc_nohuge;
657e3038 1736 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1737 goto alloc_nohuge;
1738 if (shmem_huge == SHMEM_HUGE_FORCE)
1739 goto alloc_huge;
1740 switch (sbinfo->huge) {
1741 loff_t i_size;
1742 pgoff_t off;
1743 case SHMEM_HUGE_NEVER:
1744 goto alloc_nohuge;
1745 case SHMEM_HUGE_WITHIN_SIZE:
1746 off = round_up(index, HPAGE_PMD_NR);
1747 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1748 if (i_size >= HPAGE_PMD_SIZE &&
1749 i_size >> PAGE_SHIFT >= off)
1750 goto alloc_huge;
1751 /* fallthrough */
1752 case SHMEM_HUGE_ADVISE:
657e3038
KS
1753 if (sgp_huge == SGP_HUGE)
1754 goto alloc_huge;
1755 /* TODO: implement fadvise() hints */
800d8c63 1756 goto alloc_nohuge;
54af6042 1757 }
1da177e4 1758
800d8c63 1759alloc_huge:
0f079694 1760 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1761 if (IS_ERR(page)) {
0f079694 1762alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1763 index, false);
1da177e4 1764 }
800d8c63 1765 if (IS_ERR(page)) {
779750d2 1766 int retry = 5;
800d8c63
KS
1767 error = PTR_ERR(page);
1768 page = NULL;
779750d2
KS
1769 if (error != -ENOSPC)
1770 goto failed;
1771 /*
1772 * Try to reclaim some spece by splitting a huge page
1773 * beyond i_size on the filesystem.
1774 */
1775 while (retry--) {
1776 int ret;
1777 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1778 if (ret == SHRINK_STOP)
1779 break;
1780 if (ret)
1781 goto alloc_nohuge;
1782 }
800d8c63
KS
1783 goto failed;
1784 }
1785
1786 if (PageTransHuge(page))
1787 hindex = round_down(index, HPAGE_PMD_NR);
1788 else
1789 hindex = index;
1790
66d2f4d2 1791 if (sgp == SGP_WRITE)
eb39d618 1792 __SetPageReferenced(page);
66d2f4d2 1793
9e18eb29 1794 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1795 PageTransHuge(page));
54af6042 1796 if (error)
800d8c63
KS
1797 goto unacct;
1798 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1799 compound_order(page));
b065b432 1800 if (!error) {
800d8c63 1801 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1802 NULL);
b065b432
HD
1803 radix_tree_preload_end();
1804 }
1805 if (error) {
800d8c63
KS
1806 mem_cgroup_cancel_charge(page, memcg,
1807 PageTransHuge(page));
1808 goto unacct;
b065b432 1809 }
800d8c63
KS
1810 mem_cgroup_commit_charge(page, memcg, false,
1811 PageTransHuge(page));
54af6042
HD
1812 lru_cache_add_anon(page);
1813
4595ef88 1814 spin_lock_irq(&info->lock);
800d8c63
KS
1815 info->alloced += 1 << compound_order(page);
1816 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1817 shmem_recalc_inode(inode);
4595ef88 1818 spin_unlock_irq(&info->lock);
1635f6a7 1819 alloced = true;
54af6042 1820
779750d2
KS
1821 if (PageTransHuge(page) &&
1822 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1823 hindex + HPAGE_PMD_NR - 1) {
1824 /*
1825 * Part of the huge page is beyond i_size: subject
1826 * to shrink under memory pressure.
1827 */
1828 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1829 /*
1830 * _careful to defend against unlocked access to
1831 * ->shrink_list in shmem_unused_huge_shrink()
1832 */
1833 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1834 list_add_tail(&info->shrinklist,
1835 &sbinfo->shrinklist);
1836 sbinfo->shrinklist_len++;
1837 }
1838 spin_unlock(&sbinfo->shrinklist_lock);
1839 }
1840
ec9516fb 1841 /*
1635f6a7
HD
1842 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1843 */
1844 if (sgp == SGP_FALLOC)
1845 sgp = SGP_WRITE;
1846clear:
1847 /*
1848 * Let SGP_WRITE caller clear ends if write does not fill page;
1849 * but SGP_FALLOC on a page fallocated earlier must initialize
1850 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1851 */
800d8c63
KS
1852 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1853 struct page *head = compound_head(page);
1854 int i;
1855
1856 for (i = 0; i < (1 << compound_order(head)); i++) {
1857 clear_highpage(head + i);
1858 flush_dcache_page(head + i);
1859 }
1860 SetPageUptodate(head);
ec9516fb 1861 }
1da177e4 1862 }
bde05d1c 1863
54af6042 1864 /* Perhaps the file has been truncated since we checked */
75edd345 1865 if (sgp <= SGP_CACHE &&
09cbfeaf 1866 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1867 if (alloced) {
1868 ClearPageDirty(page);
1869 delete_from_page_cache(page);
4595ef88 1870 spin_lock_irq(&info->lock);
267a4c76 1871 shmem_recalc_inode(inode);
4595ef88 1872 spin_unlock_irq(&info->lock);
267a4c76 1873 }
54af6042 1874 error = -EINVAL;
267a4c76 1875 goto unlock;
e83c32e8 1876 }
800d8c63 1877 *pagep = page + index - hindex;
54af6042 1878 return 0;
1da177e4 1879
59a16ead 1880 /*
54af6042 1881 * Error recovery.
59a16ead 1882 */
54af6042 1883unacct:
0f079694 1884 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1885
1886 if (PageTransHuge(page)) {
1887 unlock_page(page);
1888 put_page(page);
1889 goto alloc_nohuge;
1890 }
54af6042 1891failed:
267a4c76 1892 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1893 error = -EEXIST;
1894unlock:
27ab7006 1895 if (page) {
54af6042 1896 unlock_page(page);
09cbfeaf 1897 put_page(page);
54af6042
HD
1898 }
1899 if (error == -ENOSPC && !once++) {
4595ef88 1900 spin_lock_irq(&info->lock);
54af6042 1901 shmem_recalc_inode(inode);
4595ef88 1902 spin_unlock_irq(&info->lock);
27ab7006 1903 goto repeat;
ff36b801 1904 }
d1899228 1905 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1906 goto repeat;
1907 return error;
1da177e4
LT
1908}
1909
10d20bd2
LT
1910/*
1911 * This is like autoremove_wake_function, but it removes the wait queue
1912 * entry unconditionally - even if something else had already woken the
1913 * target.
1914 */
ac6424b9 1915static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1916{
1917 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1918 list_del_init(&wait->entry);
10d20bd2
LT
1919 return ret;
1920}
1921
11bac800 1922static int shmem_fault(struct vm_fault *vmf)
1da177e4 1923{
11bac800 1924 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1925 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1926 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1927 enum sgp_type sgp;
1da177e4 1928 int error;
68da9f05 1929 int ret = VM_FAULT_LOCKED;
1da177e4 1930
f00cdc6d
HD
1931 /*
1932 * Trinity finds that probing a hole which tmpfs is punching can
1933 * prevent the hole-punch from ever completing: which in turn
1934 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1935 * faulting pages into the hole while it's being punched. Although
1936 * shmem_undo_range() does remove the additions, it may be unable to
1937 * keep up, as each new page needs its own unmap_mapping_range() call,
1938 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1939 *
1940 * It does not matter if we sometimes reach this check just before the
1941 * hole-punch begins, so that one fault then races with the punch:
1942 * we just need to make racing faults a rare case.
1943 *
1944 * The implementation below would be much simpler if we just used a
1945 * standard mutex or completion: but we cannot take i_mutex in fault,
1946 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1947 */
1948 if (unlikely(inode->i_private)) {
1949 struct shmem_falloc *shmem_falloc;
1950
1951 spin_lock(&inode->i_lock);
1952 shmem_falloc = inode->i_private;
8e205f77
HD
1953 if (shmem_falloc &&
1954 shmem_falloc->waitq &&
1955 vmf->pgoff >= shmem_falloc->start &&
1956 vmf->pgoff < shmem_falloc->next) {
1957 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1958 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1959
1960 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1961 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1962 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1963 /* It's polite to up mmap_sem if we can */
f00cdc6d 1964 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1965 ret = VM_FAULT_RETRY;
f00cdc6d 1966 }
8e205f77
HD
1967
1968 shmem_falloc_waitq = shmem_falloc->waitq;
1969 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1970 TASK_UNINTERRUPTIBLE);
1971 spin_unlock(&inode->i_lock);
1972 schedule();
1973
1974 /*
1975 * shmem_falloc_waitq points into the shmem_fallocate()
1976 * stack of the hole-punching task: shmem_falloc_waitq
1977 * is usually invalid by the time we reach here, but
1978 * finish_wait() does not dereference it in that case;
1979 * though i_lock needed lest racing with wake_up_all().
1980 */
1981 spin_lock(&inode->i_lock);
1982 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1983 spin_unlock(&inode->i_lock);
1984 return ret;
f00cdc6d 1985 }
8e205f77 1986 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1987 }
1988
657e3038 1989 sgp = SGP_CACHE;
18600332
MH
1990
1991 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1992 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 1993 sgp = SGP_NOHUGE;
18600332
MH
1994 else if (vma->vm_flags & VM_HUGEPAGE)
1995 sgp = SGP_HUGE;
657e3038
KS
1996
1997 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 1998 gfp, vma, vmf, &ret);
d0217ac0
NP
1999 if (error)
2000 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 2001 return ret;
1da177e4
LT
2002}
2003
c01d5b30
HD
2004unsigned long shmem_get_unmapped_area(struct file *file,
2005 unsigned long uaddr, unsigned long len,
2006 unsigned long pgoff, unsigned long flags)
2007{
2008 unsigned long (*get_area)(struct file *,
2009 unsigned long, unsigned long, unsigned long, unsigned long);
2010 unsigned long addr;
2011 unsigned long offset;
2012 unsigned long inflated_len;
2013 unsigned long inflated_addr;
2014 unsigned long inflated_offset;
2015
2016 if (len > TASK_SIZE)
2017 return -ENOMEM;
2018
2019 get_area = current->mm->get_unmapped_area;
2020 addr = get_area(file, uaddr, len, pgoff, flags);
2021
e496cf3d 2022 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2023 return addr;
2024 if (IS_ERR_VALUE(addr))
2025 return addr;
2026 if (addr & ~PAGE_MASK)
2027 return addr;
2028 if (addr > TASK_SIZE - len)
2029 return addr;
2030
2031 if (shmem_huge == SHMEM_HUGE_DENY)
2032 return addr;
2033 if (len < HPAGE_PMD_SIZE)
2034 return addr;
2035 if (flags & MAP_FIXED)
2036 return addr;
2037 /*
2038 * Our priority is to support MAP_SHARED mapped hugely;
2039 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2040 * But if caller specified an address hint, respect that as before.
2041 */
2042 if (uaddr)
2043 return addr;
2044
2045 if (shmem_huge != SHMEM_HUGE_FORCE) {
2046 struct super_block *sb;
2047
2048 if (file) {
2049 VM_BUG_ON(file->f_op != &shmem_file_operations);
2050 sb = file_inode(file)->i_sb;
2051 } else {
2052 /*
2053 * Called directly from mm/mmap.c, or drivers/char/mem.c
2054 * for "/dev/zero", to create a shared anonymous object.
2055 */
2056 if (IS_ERR(shm_mnt))
2057 return addr;
2058 sb = shm_mnt->mnt_sb;
2059 }
3089bf61 2060 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2061 return addr;
2062 }
2063
2064 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2065 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2066 return addr;
2067 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2068 return addr;
2069
2070 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2071 if (inflated_len > TASK_SIZE)
2072 return addr;
2073 if (inflated_len < len)
2074 return addr;
2075
2076 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2077 if (IS_ERR_VALUE(inflated_addr))
2078 return addr;
2079 if (inflated_addr & ~PAGE_MASK)
2080 return addr;
2081
2082 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2083 inflated_addr += offset - inflated_offset;
2084 if (inflated_offset > offset)
2085 inflated_addr += HPAGE_PMD_SIZE;
2086
2087 if (inflated_addr > TASK_SIZE - len)
2088 return addr;
2089 return inflated_addr;
2090}
2091
1da177e4 2092#ifdef CONFIG_NUMA
41ffe5d5 2093static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2094{
496ad9aa 2095 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2096 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2097}
2098
d8dc74f2
AB
2099static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2100 unsigned long addr)
1da177e4 2101{
496ad9aa 2102 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2103 pgoff_t index;
1da177e4 2104
41ffe5d5
HD
2105 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2106 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2107}
2108#endif
2109
2110int shmem_lock(struct file *file, int lock, struct user_struct *user)
2111{
496ad9aa 2112 struct inode *inode = file_inode(file);
1da177e4
LT
2113 struct shmem_inode_info *info = SHMEM_I(inode);
2114 int retval = -ENOMEM;
2115
4595ef88 2116 spin_lock_irq(&info->lock);
1da177e4
LT
2117 if (lock && !(info->flags & VM_LOCKED)) {
2118 if (!user_shm_lock(inode->i_size, user))
2119 goto out_nomem;
2120 info->flags |= VM_LOCKED;
89e004ea 2121 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2122 }
2123 if (!lock && (info->flags & VM_LOCKED) && user) {
2124 user_shm_unlock(inode->i_size, user);
2125 info->flags &= ~VM_LOCKED;
89e004ea 2126 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2127 }
2128 retval = 0;
89e004ea 2129
1da177e4 2130out_nomem:
4595ef88 2131 spin_unlock_irq(&info->lock);
1da177e4
LT
2132 return retval;
2133}
2134
9b83a6a8 2135static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2136{
2137 file_accessed(file);
2138 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2139 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2140 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2141 (vma->vm_end & HPAGE_PMD_MASK)) {
2142 khugepaged_enter(vma, vma->vm_flags);
2143 }
1da177e4
LT
2144 return 0;
2145}
2146
454abafe 2147static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2148 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2149{
2150 struct inode *inode;
2151 struct shmem_inode_info *info;
2152 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2153
5b04c689
PE
2154 if (shmem_reserve_inode(sb))
2155 return NULL;
1da177e4
LT
2156
2157 inode = new_inode(sb);
2158 if (inode) {
85fe4025 2159 inode->i_ino = get_next_ino();
454abafe 2160 inode_init_owner(inode, dir, mode);
1da177e4 2161 inode->i_blocks = 0;
078cd827 2162 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2163 inode->i_generation = get_seconds();
1da177e4
LT
2164 info = SHMEM_I(inode);
2165 memset(info, 0, (char *)inode - (char *)info);
2166 spin_lock_init(&info->lock);
40e041a2 2167 info->seals = F_SEAL_SEAL;
0b0a0806 2168 info->flags = flags & VM_NORESERVE;
779750d2 2169 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2170 INIT_LIST_HEAD(&info->swaplist);
38f38657 2171 simple_xattrs_init(&info->xattrs);
72c04902 2172 cache_no_acl(inode);
1da177e4
LT
2173
2174 switch (mode & S_IFMT) {
2175 default:
39f0247d 2176 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2177 init_special_inode(inode, mode, dev);
2178 break;
2179 case S_IFREG:
14fcc23f 2180 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2181 inode->i_op = &shmem_inode_operations;
2182 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2183 mpol_shared_policy_init(&info->policy,
2184 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2185 break;
2186 case S_IFDIR:
d8c76e6f 2187 inc_nlink(inode);
1da177e4
LT
2188 /* Some things misbehave if size == 0 on a directory */
2189 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2190 inode->i_op = &shmem_dir_inode_operations;
2191 inode->i_fop = &simple_dir_operations;
2192 break;
2193 case S_IFLNK:
2194 /*
2195 * Must not load anything in the rbtree,
2196 * mpol_free_shared_policy will not be called.
2197 */
71fe804b 2198 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2199 break;
2200 }
5b04c689
PE
2201 } else
2202 shmem_free_inode(sb);
1da177e4
LT
2203 return inode;
2204}
2205
0cd6144a
JW
2206bool shmem_mapping(struct address_space *mapping)
2207{
f8005451 2208 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2209}
2210
8d103963
MR
2211static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2212 pmd_t *dst_pmd,
2213 struct vm_area_struct *dst_vma,
2214 unsigned long dst_addr,
2215 unsigned long src_addr,
2216 bool zeropage,
2217 struct page **pagep)
4c27fe4c
MR
2218{
2219 struct inode *inode = file_inode(dst_vma->vm_file);
2220 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2221 struct address_space *mapping = inode->i_mapping;
2222 gfp_t gfp = mapping_gfp_mask(mapping);
2223 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2224 struct mem_cgroup *memcg;
2225 spinlock_t *ptl;
2226 void *page_kaddr;
2227 struct page *page;
2228 pte_t _dst_pte, *dst_pte;
2229 int ret;
2230
cb658a45 2231 ret = -ENOMEM;
0f079694 2232 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2233 goto out;
4c27fe4c 2234
cb658a45 2235 if (!*pagep) {
4c27fe4c
MR
2236 page = shmem_alloc_page(gfp, info, pgoff);
2237 if (!page)
0f079694 2238 goto out_unacct_blocks;
4c27fe4c 2239
8d103963
MR
2240 if (!zeropage) { /* mcopy_atomic */
2241 page_kaddr = kmap_atomic(page);
2242 ret = copy_from_user(page_kaddr,
2243 (const void __user *)src_addr,
2244 PAGE_SIZE);
2245 kunmap_atomic(page_kaddr);
2246
2247 /* fallback to copy_from_user outside mmap_sem */
2248 if (unlikely(ret)) {
2249 *pagep = page;
2250 shmem_inode_unacct_blocks(inode, 1);
2251 /* don't free the page */
2252 return -EFAULT;
2253 }
2254 } else { /* mfill_zeropage_atomic */
2255 clear_highpage(page);
4c27fe4c
MR
2256 }
2257 } else {
2258 page = *pagep;
2259 *pagep = NULL;
2260 }
2261
9cc90c66
AA
2262 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2263 __SetPageLocked(page);
2264 __SetPageSwapBacked(page);
a425d358 2265 __SetPageUptodate(page);
9cc90c66 2266
4c27fe4c
MR
2267 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2268 if (ret)
2269 goto out_release;
2270
2271 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2272 if (!ret) {
2273 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2274 radix_tree_preload_end();
2275 }
2276 if (ret)
2277 goto out_release_uncharge;
2278
2279 mem_cgroup_commit_charge(page, memcg, false, false);
2280
2281 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2282 if (dst_vma->vm_flags & VM_WRITE)
2283 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2284
2285 ret = -EEXIST;
2286 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2287 if (!pte_none(*dst_pte))
2288 goto out_release_uncharge_unlock;
2289
4c27fe4c
MR
2290 lru_cache_add_anon(page);
2291
2292 spin_lock(&info->lock);
2293 info->alloced++;
2294 inode->i_blocks += BLOCKS_PER_PAGE;
2295 shmem_recalc_inode(inode);
2296 spin_unlock(&info->lock);
2297
2298 inc_mm_counter(dst_mm, mm_counter_file(page));
2299 page_add_file_rmap(page, false);
2300 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2301
2302 /* No need to invalidate - it was non-present before */
2303 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2304 unlock_page(page);
2305 pte_unmap_unlock(dst_pte, ptl);
2306 ret = 0;
2307out:
2308 return ret;
2309out_release_uncharge_unlock:
2310 pte_unmap_unlock(dst_pte, ptl);
2311out_release_uncharge:
2312 mem_cgroup_cancel_charge(page, memcg, false);
2313out_release:
9cc90c66 2314 unlock_page(page);
4c27fe4c 2315 put_page(page);
4c27fe4c 2316out_unacct_blocks:
0f079694 2317 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2318 goto out;
2319}
2320
8d103963
MR
2321int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2322 pmd_t *dst_pmd,
2323 struct vm_area_struct *dst_vma,
2324 unsigned long dst_addr,
2325 unsigned long src_addr,
2326 struct page **pagep)
2327{
2328 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2329 dst_addr, src_addr, false, pagep);
2330}
2331
2332int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2333 pmd_t *dst_pmd,
2334 struct vm_area_struct *dst_vma,
2335 unsigned long dst_addr)
2336{
2337 struct page *page = NULL;
2338
2339 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2340 dst_addr, 0, true, &page);
2341}
2342
1da177e4 2343#ifdef CONFIG_TMPFS
92e1d5be 2344static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2345static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2346
6d9d88d0
JS
2347#ifdef CONFIG_TMPFS_XATTR
2348static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2349#else
2350#define shmem_initxattrs NULL
2351#endif
2352
1da177e4 2353static int
800d15a5
NP
2354shmem_write_begin(struct file *file, struct address_space *mapping,
2355 loff_t pos, unsigned len, unsigned flags,
2356 struct page **pagep, void **fsdata)
1da177e4 2357{
800d15a5 2358 struct inode *inode = mapping->host;
40e041a2 2359 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2360 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2361
2362 /* i_mutex is held by caller */
3f472cc9 2363 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2364 if (info->seals & F_SEAL_WRITE)
2365 return -EPERM;
2366 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2367 return -EPERM;
2368 }
2369
9e18eb29 2370 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2371}
2372
2373static int
2374shmem_write_end(struct file *file, struct address_space *mapping,
2375 loff_t pos, unsigned len, unsigned copied,
2376 struct page *page, void *fsdata)
2377{
2378 struct inode *inode = mapping->host;
2379
d3602444
HD
2380 if (pos + copied > inode->i_size)
2381 i_size_write(inode, pos + copied);
2382
ec9516fb 2383 if (!PageUptodate(page)) {
800d8c63
KS
2384 struct page *head = compound_head(page);
2385 if (PageTransCompound(page)) {
2386 int i;
2387
2388 for (i = 0; i < HPAGE_PMD_NR; i++) {
2389 if (head + i == page)
2390 continue;
2391 clear_highpage(head + i);
2392 flush_dcache_page(head + i);
2393 }
2394 }
09cbfeaf
KS
2395 if (copied < PAGE_SIZE) {
2396 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2397 zero_user_segments(page, 0, from,
09cbfeaf 2398 from + copied, PAGE_SIZE);
ec9516fb 2399 }
800d8c63 2400 SetPageUptodate(head);
ec9516fb 2401 }
800d15a5 2402 set_page_dirty(page);
6746aff7 2403 unlock_page(page);
09cbfeaf 2404 put_page(page);
800d15a5 2405
800d15a5 2406 return copied;
1da177e4
LT
2407}
2408
2ba5bbed 2409static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2410{
6e58e79d
AV
2411 struct file *file = iocb->ki_filp;
2412 struct inode *inode = file_inode(file);
1da177e4 2413 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2414 pgoff_t index;
2415 unsigned long offset;
a0ee5ec5 2416 enum sgp_type sgp = SGP_READ;
f7c1d074 2417 int error = 0;
cb66a7a1 2418 ssize_t retval = 0;
6e58e79d 2419 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2420
2421 /*
2422 * Might this read be for a stacking filesystem? Then when reading
2423 * holes of a sparse file, we actually need to allocate those pages,
2424 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2425 */
777eda2c 2426 if (!iter_is_iovec(to))
75edd345 2427 sgp = SGP_CACHE;
1da177e4 2428
09cbfeaf
KS
2429 index = *ppos >> PAGE_SHIFT;
2430 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2431
2432 for (;;) {
2433 struct page *page = NULL;
41ffe5d5
HD
2434 pgoff_t end_index;
2435 unsigned long nr, ret;
1da177e4
LT
2436 loff_t i_size = i_size_read(inode);
2437
09cbfeaf 2438 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2439 if (index > end_index)
2440 break;
2441 if (index == end_index) {
09cbfeaf 2442 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2443 if (nr <= offset)
2444 break;
2445 }
2446
9e18eb29 2447 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2448 if (error) {
2449 if (error == -EINVAL)
2450 error = 0;
1da177e4
LT
2451 break;
2452 }
75edd345
HD
2453 if (page) {
2454 if (sgp == SGP_CACHE)
2455 set_page_dirty(page);
d3602444 2456 unlock_page(page);
75edd345 2457 }
1da177e4
LT
2458
2459 /*
2460 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2461 * are called without i_mutex protection against truncate
1da177e4 2462 */
09cbfeaf 2463 nr = PAGE_SIZE;
1da177e4 2464 i_size = i_size_read(inode);
09cbfeaf 2465 end_index = i_size >> PAGE_SHIFT;
1da177e4 2466 if (index == end_index) {
09cbfeaf 2467 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2468 if (nr <= offset) {
2469 if (page)
09cbfeaf 2470 put_page(page);
1da177e4
LT
2471 break;
2472 }
2473 }
2474 nr -= offset;
2475
2476 if (page) {
2477 /*
2478 * If users can be writing to this page using arbitrary
2479 * virtual addresses, take care about potential aliasing
2480 * before reading the page on the kernel side.
2481 */
2482 if (mapping_writably_mapped(mapping))
2483 flush_dcache_page(page);
2484 /*
2485 * Mark the page accessed if we read the beginning.
2486 */
2487 if (!offset)
2488 mark_page_accessed(page);
b5810039 2489 } else {
1da177e4 2490 page = ZERO_PAGE(0);
09cbfeaf 2491 get_page(page);
b5810039 2492 }
1da177e4
LT
2493
2494 /*
2495 * Ok, we have the page, and it's up-to-date, so
2496 * now we can copy it to user space...
1da177e4 2497 */
2ba5bbed 2498 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2499 retval += ret;
1da177e4 2500 offset += ret;
09cbfeaf
KS
2501 index += offset >> PAGE_SHIFT;
2502 offset &= ~PAGE_MASK;
1da177e4 2503
09cbfeaf 2504 put_page(page);
2ba5bbed 2505 if (!iov_iter_count(to))
1da177e4 2506 break;
6e58e79d
AV
2507 if (ret < nr) {
2508 error = -EFAULT;
2509 break;
2510 }
1da177e4
LT
2511 cond_resched();
2512 }
2513
09cbfeaf 2514 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2515 file_accessed(file);
2516 return retval ? retval : error;
1da177e4
LT
2517}
2518
220f2ac9
HD
2519/*
2520 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2521 */
2522static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2523 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2524{
2525 struct page *page;
2526 struct pagevec pvec;
2527 pgoff_t indices[PAGEVEC_SIZE];
2528 bool done = false;
2529 int i;
2530
86679820 2531 pagevec_init(&pvec);
220f2ac9
HD
2532 pvec.nr = 1; /* start small: we may be there already */
2533 while (!done) {
0cd6144a 2534 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2535 pvec.nr, pvec.pages, indices);
2536 if (!pvec.nr) {
965c8e59 2537 if (whence == SEEK_DATA)
220f2ac9
HD
2538 index = end;
2539 break;
2540 }
2541 for (i = 0; i < pvec.nr; i++, index++) {
2542 if (index < indices[i]) {
965c8e59 2543 if (whence == SEEK_HOLE) {
220f2ac9
HD
2544 done = true;
2545 break;
2546 }
2547 index = indices[i];
2548 }
2549 page = pvec.pages[i];
2550 if (page && !radix_tree_exceptional_entry(page)) {
2551 if (!PageUptodate(page))
2552 page = NULL;
2553 }
2554 if (index >= end ||
965c8e59
AM
2555 (page && whence == SEEK_DATA) ||
2556 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2557 done = true;
2558 break;
2559 }
2560 }
0cd6144a 2561 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2562 pagevec_release(&pvec);
2563 pvec.nr = PAGEVEC_SIZE;
2564 cond_resched();
2565 }
2566 return index;
2567}
2568
965c8e59 2569static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2570{
2571 struct address_space *mapping = file->f_mapping;
2572 struct inode *inode = mapping->host;
2573 pgoff_t start, end;
2574 loff_t new_offset;
2575
965c8e59
AM
2576 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2577 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2578 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2579 inode_lock(inode);
220f2ac9
HD
2580 /* We're holding i_mutex so we can access i_size directly */
2581
2582 if (offset < 0)
2583 offset = -EINVAL;
2584 else if (offset >= inode->i_size)
2585 offset = -ENXIO;
2586 else {
09cbfeaf
KS
2587 start = offset >> PAGE_SHIFT;
2588 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2589 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2590 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2591 if (new_offset > offset) {
2592 if (new_offset < inode->i_size)
2593 offset = new_offset;
965c8e59 2594 else if (whence == SEEK_DATA)
220f2ac9
HD
2595 offset = -ENXIO;
2596 else
2597 offset = inode->i_size;
2598 }
2599 }
2600
387aae6f
HD
2601 if (offset >= 0)
2602 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2603 inode_unlock(inode);
220f2ac9
HD
2604 return offset;
2605}
2606
05f65b5c
DH
2607/*
2608 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2609 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2610 */
2611#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2612#define LAST_SCAN 4 /* about 150ms max */
2613
2614static void shmem_tag_pins(struct address_space *mapping)
2615{
2616 struct radix_tree_iter iter;
2617 void **slot;
2618 pgoff_t start;
2619 struct page *page;
2620
2621 lru_add_drain();
2622 start = 0;
2623 rcu_read_lock();
2624
05f65b5c
DH
2625 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2626 page = radix_tree_deref_slot(slot);
2627 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2628 if (radix_tree_deref_retry(page)) {
2629 slot = radix_tree_iter_retry(&iter);
2630 continue;
2631 }
05f65b5c
DH
2632 } else if (page_count(page) - page_mapcount(page) > 1) {
2633 spin_lock_irq(&mapping->tree_lock);
2634 radix_tree_tag_set(&mapping->page_tree, iter.index,
2635 SHMEM_TAG_PINNED);
2636 spin_unlock_irq(&mapping->tree_lock);
2637 }
2638
2639 if (need_resched()) {
148deab2 2640 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2641 cond_resched_rcu();
05f65b5c
DH
2642 }
2643 }
2644 rcu_read_unlock();
2645}
2646
2647/*
2648 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2649 * via get_user_pages(), drivers might have some pending I/O without any active
2650 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2651 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2652 * them to be dropped.
2653 * The caller must guarantee that no new user will acquire writable references
2654 * to those pages to avoid races.
2655 */
40e041a2
DH
2656static int shmem_wait_for_pins(struct address_space *mapping)
2657{
05f65b5c
DH
2658 struct radix_tree_iter iter;
2659 void **slot;
2660 pgoff_t start;
2661 struct page *page;
2662 int error, scan;
2663
2664 shmem_tag_pins(mapping);
2665
2666 error = 0;
2667 for (scan = 0; scan <= LAST_SCAN; scan++) {
2668 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2669 break;
2670
2671 if (!scan)
2672 lru_add_drain_all();
2673 else if (schedule_timeout_killable((HZ << scan) / 200))
2674 scan = LAST_SCAN;
2675
2676 start = 0;
2677 rcu_read_lock();
05f65b5c
DH
2678 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2679 start, SHMEM_TAG_PINNED) {
2680
2681 page = radix_tree_deref_slot(slot);
2682 if (radix_tree_exception(page)) {
2cf938aa
MW
2683 if (radix_tree_deref_retry(page)) {
2684 slot = radix_tree_iter_retry(&iter);
2685 continue;
2686 }
05f65b5c
DH
2687
2688 page = NULL;
2689 }
2690
2691 if (page &&
2692 page_count(page) - page_mapcount(page) != 1) {
2693 if (scan < LAST_SCAN)
2694 goto continue_resched;
2695
2696 /*
2697 * On the last scan, we clean up all those tags
2698 * we inserted; but make a note that we still
2699 * found pages pinned.
2700 */
2701 error = -EBUSY;
2702 }
2703
2704 spin_lock_irq(&mapping->tree_lock);
2705 radix_tree_tag_clear(&mapping->page_tree,
2706 iter.index, SHMEM_TAG_PINNED);
2707 spin_unlock_irq(&mapping->tree_lock);
2708continue_resched:
2709 if (need_resched()) {
148deab2 2710 slot = radix_tree_iter_resume(slot, &iter);
05f65b5c 2711 cond_resched_rcu();
05f65b5c
DH
2712 }
2713 }
2714 rcu_read_unlock();
2715 }
2716
2717 return error;
40e041a2
DH
2718}
2719
2720#define F_ALL_SEALS (F_SEAL_SEAL | \
2721 F_SEAL_SHRINK | \
2722 F_SEAL_GROW | \
2723 F_SEAL_WRITE)
2724
2725int shmem_add_seals(struct file *file, unsigned int seals)
2726{
2727 struct inode *inode = file_inode(file);
2728 struct shmem_inode_info *info = SHMEM_I(inode);
2729 int error;
2730
2731 /*
2732 * SEALING
2733 * Sealing allows multiple parties to share a shmem-file but restrict
2734 * access to a specific subset of file operations. Seals can only be
2735 * added, but never removed. This way, mutually untrusted parties can
2736 * share common memory regions with a well-defined policy. A malicious
2737 * peer can thus never perform unwanted operations on a shared object.
2738 *
2739 * Seals are only supported on special shmem-files and always affect
2740 * the whole underlying inode. Once a seal is set, it may prevent some
2741 * kinds of access to the file. Currently, the following seals are
2742 * defined:
2743 * SEAL_SEAL: Prevent further seals from being set on this file
2744 * SEAL_SHRINK: Prevent the file from shrinking
2745 * SEAL_GROW: Prevent the file from growing
2746 * SEAL_WRITE: Prevent write access to the file
2747 *
2748 * As we don't require any trust relationship between two parties, we
2749 * must prevent seals from being removed. Therefore, sealing a file
2750 * only adds a given set of seals to the file, it never touches
2751 * existing seals. Furthermore, the "setting seals"-operation can be
2752 * sealed itself, which basically prevents any further seal from being
2753 * added.
2754 *
2755 * Semantics of sealing are only defined on volatile files. Only
2756 * anonymous shmem files support sealing. More importantly, seals are
2757 * never written to disk. Therefore, there's no plan to support it on
2758 * other file types.
2759 */
2760
2761 if (file->f_op != &shmem_file_operations)
2762 return -EINVAL;
2763 if (!(file->f_mode & FMODE_WRITE))
2764 return -EPERM;
2765 if (seals & ~(unsigned int)F_ALL_SEALS)
2766 return -EINVAL;
2767
5955102c 2768 inode_lock(inode);
40e041a2
DH
2769
2770 if (info->seals & F_SEAL_SEAL) {
2771 error = -EPERM;
2772 goto unlock;
2773 }
2774
2775 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2776 error = mapping_deny_writable(file->f_mapping);
2777 if (error)
2778 goto unlock;
2779
2780 error = shmem_wait_for_pins(file->f_mapping);
2781 if (error) {
2782 mapping_allow_writable(file->f_mapping);
2783 goto unlock;
2784 }
2785 }
2786
2787 info->seals |= seals;
2788 error = 0;
2789
2790unlock:
5955102c 2791 inode_unlock(inode);
40e041a2
DH
2792 return error;
2793}
2794EXPORT_SYMBOL_GPL(shmem_add_seals);
2795
2796int shmem_get_seals(struct file *file)
2797{
2798 if (file->f_op != &shmem_file_operations)
2799 return -EINVAL;
2800
2801 return SHMEM_I(file_inode(file))->seals;
2802}
2803EXPORT_SYMBOL_GPL(shmem_get_seals);
2804
2805long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2806{
2807 long error;
2808
2809 switch (cmd) {
2810 case F_ADD_SEALS:
2811 /* disallow upper 32bit */
2812 if (arg > UINT_MAX)
2813 return -EINVAL;
2814
2815 error = shmem_add_seals(file, arg);
2816 break;
2817 case F_GET_SEALS:
2818 error = shmem_get_seals(file);
2819 break;
2820 default:
2821 error = -EINVAL;
2822 break;
2823 }
2824
2825 return error;
2826}
2827
83e4fa9c
HD
2828static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2829 loff_t len)
2830{
496ad9aa 2831 struct inode *inode = file_inode(file);
e2d12e22 2832 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2833 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2834 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2835 pgoff_t start, index, end;
2836 int error;
83e4fa9c 2837
13ace4d0
HD
2838 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2839 return -EOPNOTSUPP;
2840
5955102c 2841 inode_lock(inode);
83e4fa9c
HD
2842
2843 if (mode & FALLOC_FL_PUNCH_HOLE) {
2844 struct address_space *mapping = file->f_mapping;
2845 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2846 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2847 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2848
40e041a2
DH
2849 /* protected by i_mutex */
2850 if (info->seals & F_SEAL_WRITE) {
2851 error = -EPERM;
2852 goto out;
2853 }
2854
8e205f77 2855 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2856 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2857 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2858 spin_lock(&inode->i_lock);
2859 inode->i_private = &shmem_falloc;
2860 spin_unlock(&inode->i_lock);
2861
83e4fa9c
HD
2862 if ((u64)unmap_end > (u64)unmap_start)
2863 unmap_mapping_range(mapping, unmap_start,
2864 1 + unmap_end - unmap_start, 0);
2865 shmem_truncate_range(inode, offset, offset + len - 1);
2866 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2867
2868 spin_lock(&inode->i_lock);
2869 inode->i_private = NULL;
2870 wake_up_all(&shmem_falloc_waitq);
2055da97 2871 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2872 spin_unlock(&inode->i_lock);
83e4fa9c 2873 error = 0;
8e205f77 2874 goto out;
e2d12e22
HD
2875 }
2876
2877 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2878 error = inode_newsize_ok(inode, offset + len);
2879 if (error)
2880 goto out;
2881
40e041a2
DH
2882 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2883 error = -EPERM;
2884 goto out;
2885 }
2886
09cbfeaf
KS
2887 start = offset >> PAGE_SHIFT;
2888 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2889 /* Try to avoid a swapstorm if len is impossible to satisfy */
2890 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2891 error = -ENOSPC;
2892 goto out;
83e4fa9c
HD
2893 }
2894
8e205f77 2895 shmem_falloc.waitq = NULL;
1aac1400
HD
2896 shmem_falloc.start = start;
2897 shmem_falloc.next = start;
2898 shmem_falloc.nr_falloced = 0;
2899 shmem_falloc.nr_unswapped = 0;
2900 spin_lock(&inode->i_lock);
2901 inode->i_private = &shmem_falloc;
2902 spin_unlock(&inode->i_lock);
2903
e2d12e22
HD
2904 for (index = start; index < end; index++) {
2905 struct page *page;
2906
2907 /*
2908 * Good, the fallocate(2) manpage permits EINTR: we may have
2909 * been interrupted because we are using up too much memory.
2910 */
2911 if (signal_pending(current))
2912 error = -EINTR;
1aac1400
HD
2913 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2914 error = -ENOMEM;
e2d12e22 2915 else
9e18eb29 2916 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2917 if (error) {
1635f6a7 2918 /* Remove the !PageUptodate pages we added */
7f556567
HD
2919 if (index > start) {
2920 shmem_undo_range(inode,
2921 (loff_t)start << PAGE_SHIFT,
2922 ((loff_t)index << PAGE_SHIFT) - 1, true);
2923 }
1aac1400 2924 goto undone;
e2d12e22
HD
2925 }
2926
1aac1400
HD
2927 /*
2928 * Inform shmem_writepage() how far we have reached.
2929 * No need for lock or barrier: we have the page lock.
2930 */
2931 shmem_falloc.next++;
2932 if (!PageUptodate(page))
2933 shmem_falloc.nr_falloced++;
2934
e2d12e22 2935 /*
1635f6a7
HD
2936 * If !PageUptodate, leave it that way so that freeable pages
2937 * can be recognized if we need to rollback on error later.
2938 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2939 * than free the pages we are allocating (and SGP_CACHE pages
2940 * might still be clean: we now need to mark those dirty too).
2941 */
2942 set_page_dirty(page);
2943 unlock_page(page);
09cbfeaf 2944 put_page(page);
e2d12e22
HD
2945 cond_resched();
2946 }
2947
2948 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2949 i_size_write(inode, offset + len);
078cd827 2950 inode->i_ctime = current_time(inode);
1aac1400
HD
2951undone:
2952 spin_lock(&inode->i_lock);
2953 inode->i_private = NULL;
2954 spin_unlock(&inode->i_lock);
e2d12e22 2955out:
5955102c 2956 inode_unlock(inode);
83e4fa9c
HD
2957 return error;
2958}
2959
726c3342 2960static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2961{
726c3342 2962 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2963
2964 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2965 buf->f_bsize = PAGE_SIZE;
1da177e4 2966 buf->f_namelen = NAME_MAX;
0edd73b3 2967 if (sbinfo->max_blocks) {
1da177e4 2968 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2969 buf->f_bavail =
2970 buf->f_bfree = sbinfo->max_blocks -
2971 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2972 }
2973 if (sbinfo->max_inodes) {
1da177e4
LT
2974 buf->f_files = sbinfo->max_inodes;
2975 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2976 }
2977 /* else leave those fields 0 like simple_statfs */
2978 return 0;
2979}
2980
2981/*
2982 * File creation. Allocate an inode, and we're done..
2983 */
2984static int
1a67aafb 2985shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2986{
0b0a0806 2987 struct inode *inode;
1da177e4
LT
2988 int error = -ENOSPC;
2989
454abafe 2990 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2991 if (inode) {
feda821e
CH
2992 error = simple_acl_create(dir, inode);
2993 if (error)
2994 goto out_iput;
2a7dba39 2995 error = security_inode_init_security(inode, dir,
9d8f13ba 2996 &dentry->d_name,
6d9d88d0 2997 shmem_initxattrs, NULL);
feda821e
CH
2998 if (error && error != -EOPNOTSUPP)
2999 goto out_iput;
37ec43cd 3000
718deb6b 3001 error = 0;
1da177e4 3002 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3003 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3004 d_instantiate(dentry, inode);
3005 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
3006 }
3007 return error;
feda821e
CH
3008out_iput:
3009 iput(inode);
3010 return error;
1da177e4
LT
3011}
3012
60545d0d
AV
3013static int
3014shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3015{
3016 struct inode *inode;
3017 int error = -ENOSPC;
3018
3019 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3020 if (inode) {
3021 error = security_inode_init_security(inode, dir,
3022 NULL,
3023 shmem_initxattrs, NULL);
feda821e
CH
3024 if (error && error != -EOPNOTSUPP)
3025 goto out_iput;
3026 error = simple_acl_create(dir, inode);
3027 if (error)
3028 goto out_iput;
60545d0d
AV
3029 d_tmpfile(dentry, inode);
3030 }
3031 return error;
feda821e
CH
3032out_iput:
3033 iput(inode);
3034 return error;
60545d0d
AV
3035}
3036
18bb1db3 3037static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
3038{
3039 int error;
3040
3041 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3042 return error;
d8c76e6f 3043 inc_nlink(dir);
1da177e4
LT
3044 return 0;
3045}
3046
4acdaf27 3047static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 3048 bool excl)
1da177e4
LT
3049{
3050 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3051}
3052
3053/*
3054 * Link a file..
3055 */
3056static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3057{
75c3cfa8 3058 struct inode *inode = d_inode(old_dentry);
5b04c689 3059 int ret;
1da177e4
LT
3060
3061 /*
3062 * No ordinary (disk based) filesystem counts links as inodes;
3063 * but each new link needs a new dentry, pinning lowmem, and
3064 * tmpfs dentries cannot be pruned until they are unlinked.
3065 */
5b04c689
PE
3066 ret = shmem_reserve_inode(inode->i_sb);
3067 if (ret)
3068 goto out;
1da177e4
LT
3069
3070 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3071 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 3072 inc_nlink(inode);
7de9c6ee 3073 ihold(inode); /* New dentry reference */
1da177e4
LT
3074 dget(dentry); /* Extra pinning count for the created dentry */
3075 d_instantiate(dentry, inode);
5b04c689
PE
3076out:
3077 return ret;
1da177e4
LT
3078}
3079
3080static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3081{
75c3cfa8 3082 struct inode *inode = d_inode(dentry);
1da177e4 3083
5b04c689
PE
3084 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3085 shmem_free_inode(inode->i_sb);
1da177e4
LT
3086
3087 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 3088 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 3089 drop_nlink(inode);
1da177e4
LT
3090 dput(dentry); /* Undo the count from "create" - this does all the work */
3091 return 0;
3092}
3093
3094static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3095{
3096 if (!simple_empty(dentry))
3097 return -ENOTEMPTY;
3098
75c3cfa8 3099 drop_nlink(d_inode(dentry));
9a53c3a7 3100 drop_nlink(dir);
1da177e4
LT
3101 return shmem_unlink(dir, dentry);
3102}
3103
37456771
MS
3104static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3105{
e36cb0b8
DH
3106 bool old_is_dir = d_is_dir(old_dentry);
3107 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3108
3109 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3110 if (old_is_dir) {
3111 drop_nlink(old_dir);
3112 inc_nlink(new_dir);
3113 } else {
3114 drop_nlink(new_dir);
3115 inc_nlink(old_dir);
3116 }
3117 }
3118 old_dir->i_ctime = old_dir->i_mtime =
3119 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3120 d_inode(old_dentry)->i_ctime =
078cd827 3121 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3122
3123 return 0;
3124}
3125
46fdb794
MS
3126static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3127{
3128 struct dentry *whiteout;
3129 int error;
3130
3131 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3132 if (!whiteout)
3133 return -ENOMEM;
3134
3135 error = shmem_mknod(old_dir, whiteout,
3136 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3137 dput(whiteout);
3138 if (error)
3139 return error;
3140
3141 /*
3142 * Cheat and hash the whiteout while the old dentry is still in
3143 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3144 *
3145 * d_lookup() will consistently find one of them at this point,
3146 * not sure which one, but that isn't even important.
3147 */
3148 d_rehash(whiteout);
3149 return 0;
3150}
3151
1da177e4
LT
3152/*
3153 * The VFS layer already does all the dentry stuff for rename,
3154 * we just have to decrement the usage count for the target if
3155 * it exists so that the VFS layer correctly free's it when it
3156 * gets overwritten.
3157 */
3b69ff51 3158static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3159{
75c3cfa8 3160 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3161 int they_are_dirs = S_ISDIR(inode->i_mode);
3162
46fdb794 3163 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3164 return -EINVAL;
3165
37456771
MS
3166 if (flags & RENAME_EXCHANGE)
3167 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3168
1da177e4
LT
3169 if (!simple_empty(new_dentry))
3170 return -ENOTEMPTY;
3171
46fdb794
MS
3172 if (flags & RENAME_WHITEOUT) {
3173 int error;
3174
3175 error = shmem_whiteout(old_dir, old_dentry);
3176 if (error)
3177 return error;
3178 }
3179
75c3cfa8 3180 if (d_really_is_positive(new_dentry)) {
1da177e4 3181 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3182 if (they_are_dirs) {
75c3cfa8 3183 drop_nlink(d_inode(new_dentry));
9a53c3a7 3184 drop_nlink(old_dir);
b928095b 3185 }
1da177e4 3186 } else if (they_are_dirs) {
9a53c3a7 3187 drop_nlink(old_dir);
d8c76e6f 3188 inc_nlink(new_dir);
1da177e4
LT
3189 }
3190
3191 old_dir->i_size -= BOGO_DIRENT_SIZE;
3192 new_dir->i_size += BOGO_DIRENT_SIZE;
3193 old_dir->i_ctime = old_dir->i_mtime =
3194 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3195 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3196 return 0;
3197}
3198
3199static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3200{
3201 int error;
3202 int len;
3203 struct inode *inode;
9276aad6 3204 struct page *page;
1da177e4
LT
3205 struct shmem_inode_info *info;
3206
3207 len = strlen(symname) + 1;
09cbfeaf 3208 if (len > PAGE_SIZE)
1da177e4
LT
3209 return -ENAMETOOLONG;
3210
454abafe 3211 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3212 if (!inode)
3213 return -ENOSPC;
3214
9d8f13ba 3215 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3216 shmem_initxattrs, NULL);
570bc1c2
SS
3217 if (error) {
3218 if (error != -EOPNOTSUPP) {
3219 iput(inode);
3220 return error;
3221 }
3222 error = 0;
3223 }
3224
1da177e4
LT
3225 info = SHMEM_I(inode);
3226 inode->i_size = len-1;
69f07ec9 3227 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3228 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3229 if (!inode->i_link) {
69f07ec9
HD
3230 iput(inode);
3231 return -ENOMEM;
3232 }
3233 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3234 } else {
e8ecde25 3235 inode_nohighmem(inode);
9e18eb29 3236 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3237 if (error) {
3238 iput(inode);
3239 return error;
3240 }
14fcc23f 3241 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3242 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3243 memcpy(page_address(page), symname, len);
ec9516fb 3244 SetPageUptodate(page);
1da177e4 3245 set_page_dirty(page);
6746aff7 3246 unlock_page(page);
09cbfeaf 3247 put_page(page);
1da177e4 3248 }
1da177e4 3249 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3250 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3251 d_instantiate(dentry, inode);
3252 dget(dentry);
3253 return 0;
3254}
3255
fceef393 3256static void shmem_put_link(void *arg)
1da177e4 3257{
fceef393
AV
3258 mark_page_accessed(arg);
3259 put_page(arg);
1da177e4
LT
3260}
3261
6b255391 3262static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3263 struct inode *inode,
3264 struct delayed_call *done)
1da177e4 3265{
1da177e4 3266 struct page *page = NULL;
6b255391 3267 int error;
6a6c9904
AV
3268 if (!dentry) {
3269 page = find_get_page(inode->i_mapping, 0);
3270 if (!page)
3271 return ERR_PTR(-ECHILD);
3272 if (!PageUptodate(page)) {
3273 put_page(page);
3274 return ERR_PTR(-ECHILD);
3275 }
3276 } else {
9e18eb29 3277 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3278 if (error)
3279 return ERR_PTR(error);
3280 unlock_page(page);
3281 }
fceef393 3282 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3283 return page_address(page);
1da177e4
LT
3284}
3285
b09e0fa4 3286#ifdef CONFIG_TMPFS_XATTR
46711810 3287/*
b09e0fa4
EP
3288 * Superblocks without xattr inode operations may get some security.* xattr
3289 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3290 * like ACLs, we also need to implement the security.* handlers at
3291 * filesystem level, though.
3292 */
3293
6d9d88d0
JS
3294/*
3295 * Callback for security_inode_init_security() for acquiring xattrs.
3296 */
3297static int shmem_initxattrs(struct inode *inode,
3298 const struct xattr *xattr_array,
3299 void *fs_info)
3300{
3301 struct shmem_inode_info *info = SHMEM_I(inode);
3302 const struct xattr *xattr;
38f38657 3303 struct simple_xattr *new_xattr;
6d9d88d0
JS
3304 size_t len;
3305
3306 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3307 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3308 if (!new_xattr)
3309 return -ENOMEM;
3310
3311 len = strlen(xattr->name) + 1;
3312 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3313 GFP_KERNEL);
3314 if (!new_xattr->name) {
3315 kfree(new_xattr);
3316 return -ENOMEM;
3317 }
3318
3319 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3320 XATTR_SECURITY_PREFIX_LEN);
3321 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3322 xattr->name, len);
3323
38f38657 3324 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3325 }
3326
3327 return 0;
3328}
3329
aa7c5241 3330static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3331 struct dentry *unused, struct inode *inode,
3332 const char *name, void *buffer, size_t size)
b09e0fa4 3333{
b296821a 3334 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3335
aa7c5241 3336 name = xattr_full_name(handler, name);
38f38657 3337 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3338}
3339
aa7c5241 3340static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3341 struct dentry *unused, struct inode *inode,
3342 const char *name, const void *value,
3343 size_t size, int flags)
b09e0fa4 3344{
59301226 3345 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3346
aa7c5241 3347 name = xattr_full_name(handler, name);
38f38657 3348 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3349}
3350
aa7c5241
AG
3351static const struct xattr_handler shmem_security_xattr_handler = {
3352 .prefix = XATTR_SECURITY_PREFIX,
3353 .get = shmem_xattr_handler_get,
3354 .set = shmem_xattr_handler_set,
3355};
b09e0fa4 3356
aa7c5241
AG
3357static const struct xattr_handler shmem_trusted_xattr_handler = {
3358 .prefix = XATTR_TRUSTED_PREFIX,
3359 .get = shmem_xattr_handler_get,
3360 .set = shmem_xattr_handler_set,
3361};
b09e0fa4 3362
aa7c5241
AG
3363static const struct xattr_handler *shmem_xattr_handlers[] = {
3364#ifdef CONFIG_TMPFS_POSIX_ACL
3365 &posix_acl_access_xattr_handler,
3366 &posix_acl_default_xattr_handler,
3367#endif
3368 &shmem_security_xattr_handler,
3369 &shmem_trusted_xattr_handler,
3370 NULL
3371};
b09e0fa4
EP
3372
3373static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3374{
75c3cfa8 3375 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3376 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3377}
3378#endif /* CONFIG_TMPFS_XATTR */
3379
69f07ec9 3380static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3381 .get_link = simple_get_link,
b09e0fa4 3382#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3383 .listxattr = shmem_listxattr,
b09e0fa4
EP
3384#endif
3385};
3386
3387static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3388 .get_link = shmem_get_link,
b09e0fa4 3389#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3390 .listxattr = shmem_listxattr,
39f0247d 3391#endif
b09e0fa4 3392};
39f0247d 3393
91828a40
DG
3394static struct dentry *shmem_get_parent(struct dentry *child)
3395{
3396 return ERR_PTR(-ESTALE);
3397}
3398
3399static int shmem_match(struct inode *ino, void *vfh)
3400{
3401 __u32 *fh = vfh;
3402 __u64 inum = fh[2];
3403 inum = (inum << 32) | fh[1];
3404 return ino->i_ino == inum && fh[0] == ino->i_generation;
3405}
3406
480b116c
CH
3407static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3408 struct fid *fid, int fh_len, int fh_type)
91828a40 3409{
91828a40 3410 struct inode *inode;
480b116c 3411 struct dentry *dentry = NULL;
35c2a7f4 3412 u64 inum;
480b116c
CH
3413
3414 if (fh_len < 3)
3415 return NULL;
91828a40 3416
35c2a7f4
HD
3417 inum = fid->raw[2];
3418 inum = (inum << 32) | fid->raw[1];
3419
480b116c
CH
3420 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3421 shmem_match, fid->raw);
91828a40 3422 if (inode) {
480b116c 3423 dentry = d_find_alias(inode);
91828a40
DG
3424 iput(inode);
3425 }
3426
480b116c 3427 return dentry;
91828a40
DG
3428}
3429
b0b0382b
AV
3430static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3431 struct inode *parent)
91828a40 3432{
5fe0c237
AK
3433 if (*len < 3) {
3434 *len = 3;
94e07a75 3435 return FILEID_INVALID;
5fe0c237 3436 }
91828a40 3437
1d3382cb 3438 if (inode_unhashed(inode)) {
91828a40
DG
3439 /* Unfortunately insert_inode_hash is not idempotent,
3440 * so as we hash inodes here rather than at creation
3441 * time, we need a lock to ensure we only try
3442 * to do it once
3443 */
3444 static DEFINE_SPINLOCK(lock);
3445 spin_lock(&lock);
1d3382cb 3446 if (inode_unhashed(inode))
91828a40
DG
3447 __insert_inode_hash(inode,
3448 inode->i_ino + inode->i_generation);
3449 spin_unlock(&lock);
3450 }
3451
3452 fh[0] = inode->i_generation;
3453 fh[1] = inode->i_ino;
3454 fh[2] = ((__u64)inode->i_ino) >> 32;
3455
3456 *len = 3;
3457 return 1;
3458}
3459
39655164 3460static const struct export_operations shmem_export_ops = {
91828a40 3461 .get_parent = shmem_get_parent,
91828a40 3462 .encode_fh = shmem_encode_fh,
480b116c 3463 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3464};
3465
680d794b 3466static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3467 bool remount)
1da177e4
LT
3468{
3469 char *this_char, *value, *rest;
49cd0a5c 3470 struct mempolicy *mpol = NULL;
8751e039
EB
3471 uid_t uid;
3472 gid_t gid;
1da177e4 3473
b00dc3ad
HD
3474 while (options != NULL) {
3475 this_char = options;
3476 for (;;) {
3477 /*
3478 * NUL-terminate this option: unfortunately,
3479 * mount options form a comma-separated list,
3480 * but mpol's nodelist may also contain commas.
3481 */
3482 options = strchr(options, ',');
3483 if (options == NULL)
3484 break;
3485 options++;
3486 if (!isdigit(*options)) {
3487 options[-1] = '\0';
3488 break;
3489 }
3490 }
1da177e4
LT
3491 if (!*this_char)
3492 continue;
3493 if ((value = strchr(this_char,'=')) != NULL) {
3494 *value++ = 0;
3495 } else {
1170532b
JP
3496 pr_err("tmpfs: No value for mount option '%s'\n",
3497 this_char);
49cd0a5c 3498 goto error;
1da177e4
LT
3499 }
3500
3501 if (!strcmp(this_char,"size")) {
3502 unsigned long long size;
3503 size = memparse(value,&rest);
3504 if (*rest == '%') {
3505 size <<= PAGE_SHIFT;
3506 size *= totalram_pages;
3507 do_div(size, 100);
3508 rest++;
3509 }
3510 if (*rest)
3511 goto bad_val;
680d794b 3512 sbinfo->max_blocks =
09cbfeaf 3513 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3514 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3515 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3516 if (*rest)
3517 goto bad_val;
3518 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3519 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3520 if (*rest)
3521 goto bad_val;
3522 } else if (!strcmp(this_char,"mode")) {
680d794b 3523 if (remount)
1da177e4 3524 continue;
680d794b 3525 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3526 if (*rest)
3527 goto bad_val;
3528 } else if (!strcmp(this_char,"uid")) {
680d794b 3529 if (remount)
1da177e4 3530 continue;
8751e039 3531 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3532 if (*rest)
3533 goto bad_val;
8751e039
EB
3534 sbinfo->uid = make_kuid(current_user_ns(), uid);
3535 if (!uid_valid(sbinfo->uid))
3536 goto bad_val;
1da177e4 3537 } else if (!strcmp(this_char,"gid")) {
680d794b 3538 if (remount)
1da177e4 3539 continue;
8751e039 3540 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3541 if (*rest)
3542 goto bad_val;
8751e039
EB
3543 sbinfo->gid = make_kgid(current_user_ns(), gid);
3544 if (!gid_valid(sbinfo->gid))
3545 goto bad_val;
e496cf3d 3546#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3547 } else if (!strcmp(this_char, "huge")) {
3548 int huge;
3549 huge = shmem_parse_huge(value);
3550 if (huge < 0)
3551 goto bad_val;
3552 if (!has_transparent_hugepage() &&
3553 huge != SHMEM_HUGE_NEVER)
3554 goto bad_val;
3555 sbinfo->huge = huge;
3556#endif
3557#ifdef CONFIG_NUMA
7339ff83 3558 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3559 mpol_put(mpol);
3560 mpol = NULL;
3561 if (mpol_parse_str(value, &mpol))
7339ff83 3562 goto bad_val;
5a6e75f8 3563#endif
1da177e4 3564 } else {
1170532b 3565 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3566 goto error;
1da177e4
LT
3567 }
3568 }
49cd0a5c 3569 sbinfo->mpol = mpol;
1da177e4
LT
3570 return 0;
3571
3572bad_val:
1170532b 3573 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3574 value, this_char);
49cd0a5c
GT
3575error:
3576 mpol_put(mpol);
1da177e4
LT
3577 return 1;
3578
3579}
3580
3581static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3582{
3583 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3584 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3585 unsigned long inodes;
3586 int error = -EINVAL;
3587
5f00110f 3588 config.mpol = NULL;
680d794b 3589 if (shmem_parse_options(data, &config, true))
0edd73b3 3590 return error;
1da177e4 3591
0edd73b3 3592 spin_lock(&sbinfo->stat_lock);
0edd73b3 3593 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3594 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3595 goto out;
680d794b 3596 if (config.max_inodes < inodes)
0edd73b3
HD
3597 goto out;
3598 /*
54af6042 3599 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3600 * but we must separately disallow unlimited->limited, because
3601 * in that case we have no record of how much is already in use.
3602 */
680d794b 3603 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3604 goto out;
680d794b 3605 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3606 goto out;
3607
3608 error = 0;
5a6e75f8 3609 sbinfo->huge = config.huge;
680d794b 3610 sbinfo->max_blocks = config.max_blocks;
680d794b 3611 sbinfo->max_inodes = config.max_inodes;
3612 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3613
5f00110f
GT
3614 /*
3615 * Preserve previous mempolicy unless mpol remount option was specified.
3616 */
3617 if (config.mpol) {
3618 mpol_put(sbinfo->mpol);
3619 sbinfo->mpol = config.mpol; /* transfers initial ref */
3620 }
0edd73b3
HD
3621out:
3622 spin_unlock(&sbinfo->stat_lock);
3623 return error;
1da177e4 3624}
680d794b 3625
34c80b1d 3626static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3627{
34c80b1d 3628 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3629
3630 if (sbinfo->max_blocks != shmem_default_max_blocks())
3631 seq_printf(seq, ",size=%luk",
09cbfeaf 3632 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3633 if (sbinfo->max_inodes != shmem_default_max_inodes())
3634 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3635 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3636 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3637 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3638 seq_printf(seq, ",uid=%u",
3639 from_kuid_munged(&init_user_ns, sbinfo->uid));
3640 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3641 seq_printf(seq, ",gid=%u",
3642 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3643#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3644 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3645 if (sbinfo->huge)
3646 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3647#endif
71fe804b 3648 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3649 return 0;
3650}
9183df25
DH
3651
3652#define MFD_NAME_PREFIX "memfd:"
3653#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3654#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3655
749df87b 3656#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
9183df25
DH
3657
3658SYSCALL_DEFINE2(memfd_create,
3659 const char __user *, uname,
3660 unsigned int, flags)
3661{
3662 struct shmem_inode_info *info;
3663 struct file *file;
3664 int fd, error;
3665 char *name;
3666 long len;
3667
749df87b
MK
3668 if (!(flags & MFD_HUGETLB)) {
3669 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3670 return -EINVAL;
3671 } else {
3672 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3673 if (flags & MFD_ALLOW_SEALING)
3674 return -EINVAL;
3675 /* Allow huge page size encoding in flags. */
3676 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3677 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3678 return -EINVAL;
3679 }
9183df25
DH
3680
3681 /* length includes terminating zero */
3682 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3683 if (len <= 0)
3684 return -EFAULT;
3685 if (len > MFD_NAME_MAX_LEN + 1)
3686 return -EINVAL;
3687
0ee931c4 3688 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
9183df25
DH
3689 if (!name)
3690 return -ENOMEM;
3691
3692 strcpy(name, MFD_NAME_PREFIX);
3693 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3694 error = -EFAULT;
3695 goto err_name;
3696 }
3697
3698 /* terminating-zero may have changed after strnlen_user() returned */
3699 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3700 error = -EFAULT;
3701 goto err_name;
3702 }
3703
3704 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3705 if (fd < 0) {
3706 error = fd;
3707 goto err_name;
3708 }
3709
749df87b
MK
3710 if (flags & MFD_HUGETLB) {
3711 struct user_struct *user = NULL;
3712
3713 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3714 HUGETLB_ANONHUGE_INODE,
3715 (flags >> MFD_HUGE_SHIFT) &
3716 MFD_HUGE_MASK);
3717 } else
3718 file = shmem_file_setup(name, 0, VM_NORESERVE);
9183df25
DH
3719 if (IS_ERR(file)) {
3720 error = PTR_ERR(file);
3721 goto err_fd;
3722 }
9183df25
DH
3723 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3724 file->f_flags |= O_RDWR | O_LARGEFILE;
749df87b
MK
3725
3726 if (flags & MFD_ALLOW_SEALING) {
3727 /*
3728 * flags check at beginning of function ensures
3729 * this is not a hugetlbfs (MFD_HUGETLB) file.
3730 */
3731 info = SHMEM_I(file_inode(file));
9183df25 3732 info->seals &= ~F_SEAL_SEAL;
749df87b 3733 }
9183df25
DH
3734
3735 fd_install(fd, file);
3736 kfree(name);
3737 return fd;
3738
3739err_fd:
3740 put_unused_fd(fd);
3741err_name:
3742 kfree(name);
3743 return error;
3744}
3745
680d794b 3746#endif /* CONFIG_TMPFS */
1da177e4
LT
3747
3748static void shmem_put_super(struct super_block *sb)
3749{
602586a8
HD
3750 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3751
3752 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3753 mpol_put(sbinfo->mpol);
602586a8 3754 kfree(sbinfo);
1da177e4
LT
3755 sb->s_fs_info = NULL;
3756}
3757
2b2af54a 3758int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3759{
3760 struct inode *inode;
0edd73b3 3761 struct shmem_sb_info *sbinfo;
680d794b 3762 int err = -ENOMEM;
3763
3764 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3765 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3766 L1_CACHE_BYTES), GFP_KERNEL);
3767 if (!sbinfo)
3768 return -ENOMEM;
3769
680d794b 3770 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3771 sbinfo->uid = current_fsuid();
3772 sbinfo->gid = current_fsgid();
680d794b 3773 sb->s_fs_info = sbinfo;
1da177e4 3774
0edd73b3 3775#ifdef CONFIG_TMPFS
1da177e4
LT
3776 /*
3777 * Per default we only allow half of the physical ram per
3778 * tmpfs instance, limiting inodes to one per page of lowmem;
3779 * but the internal instance is left unlimited.
3780 */
ca4e0519 3781 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 3782 sbinfo->max_blocks = shmem_default_max_blocks();
3783 sbinfo->max_inodes = shmem_default_max_inodes();
3784 if (shmem_parse_options(data, sbinfo, false)) {
3785 err = -EINVAL;
3786 goto failed;
3787 }
ca4e0519
AV
3788 } else {
3789 sb->s_flags |= MS_NOUSER;
1da177e4 3790 }
91828a40 3791 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3792 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3793#else
3794 sb->s_flags |= MS_NOUSER;
3795#endif
3796
0edd73b3 3797 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3798 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3799 goto failed;
680d794b 3800 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3801 spin_lock_init(&sbinfo->shrinklist_lock);
3802 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3803
285b2c4f 3804 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3805 sb->s_blocksize = PAGE_SIZE;
3806 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3807 sb->s_magic = TMPFS_MAGIC;
3808 sb->s_op = &shmem_ops;
cfd95a9c 3809 sb->s_time_gran = 1;
b09e0fa4 3810#ifdef CONFIG_TMPFS_XATTR
39f0247d 3811 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3812#endif
3813#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3814 sb->s_flags |= MS_POSIXACL;
3815#endif
2b4db796 3816 uuid_gen(&sb->s_uuid);
0edd73b3 3817
454abafe 3818 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3819 if (!inode)
3820 goto failed;
680d794b 3821 inode->i_uid = sbinfo->uid;
3822 inode->i_gid = sbinfo->gid;
318ceed0
AV
3823 sb->s_root = d_make_root(inode);
3824 if (!sb->s_root)
48fde701 3825 goto failed;
1da177e4
LT
3826 return 0;
3827
1da177e4
LT
3828failed:
3829 shmem_put_super(sb);
3830 return err;
3831}
3832
fcc234f8 3833static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3834
3835static struct inode *shmem_alloc_inode(struct super_block *sb)
3836{
41ffe5d5
HD
3837 struct shmem_inode_info *info;
3838 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3839 if (!info)
1da177e4 3840 return NULL;
41ffe5d5 3841 return &info->vfs_inode;
1da177e4
LT
3842}
3843
41ffe5d5 3844static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3845{
3846 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3847 if (S_ISLNK(inode->i_mode))
3848 kfree(inode->i_link);
fa0d7e3d
NP
3849 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3850}
3851
1da177e4
LT
3852static void shmem_destroy_inode(struct inode *inode)
3853{
09208d15 3854 if (S_ISREG(inode->i_mode))
1da177e4 3855 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3856 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3857}
3858
41ffe5d5 3859static void shmem_init_inode(void *foo)
1da177e4 3860{
41ffe5d5
HD
3861 struct shmem_inode_info *info = foo;
3862 inode_init_once(&info->vfs_inode);
1da177e4
LT
3863}
3864
9a8ec03e 3865static void shmem_init_inodecache(void)
1da177e4
LT
3866{
3867 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3868 sizeof(struct shmem_inode_info),
5d097056 3869 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3870}
3871
41ffe5d5 3872static void shmem_destroy_inodecache(void)
1da177e4 3873{
1a1d92c1 3874 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3875}
3876
f5e54d6e 3877static const struct address_space_operations shmem_aops = {
1da177e4 3878 .writepage = shmem_writepage,
76719325 3879 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3880#ifdef CONFIG_TMPFS
800d15a5
NP
3881 .write_begin = shmem_write_begin,
3882 .write_end = shmem_write_end,
1da177e4 3883#endif
1c93923c 3884#ifdef CONFIG_MIGRATION
304dbdb7 3885 .migratepage = migrate_page,
1c93923c 3886#endif
aa261f54 3887 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3888};
3889
15ad7cdc 3890static const struct file_operations shmem_file_operations = {
1da177e4 3891 .mmap = shmem_mmap,
c01d5b30 3892 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3893#ifdef CONFIG_TMPFS
220f2ac9 3894 .llseek = shmem_file_llseek,
2ba5bbed 3895 .read_iter = shmem_file_read_iter,
8174202b 3896 .write_iter = generic_file_write_iter,
1b061d92 3897 .fsync = noop_fsync,
82c156f8 3898 .splice_read = generic_file_splice_read,
f6cb85d0 3899 .splice_write = iter_file_splice_write,
83e4fa9c 3900 .fallocate = shmem_fallocate,
1da177e4
LT
3901#endif
3902};
3903
92e1d5be 3904static const struct inode_operations shmem_inode_operations = {
44a30220 3905 .getattr = shmem_getattr,
94c1e62d 3906 .setattr = shmem_setattr,
b09e0fa4 3907#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3908 .listxattr = shmem_listxattr,
feda821e 3909 .set_acl = simple_set_acl,
b09e0fa4 3910#endif
1da177e4
LT
3911};
3912
92e1d5be 3913static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3914#ifdef CONFIG_TMPFS
3915 .create = shmem_create,
3916 .lookup = simple_lookup,
3917 .link = shmem_link,
3918 .unlink = shmem_unlink,
3919 .symlink = shmem_symlink,
3920 .mkdir = shmem_mkdir,
3921 .rmdir = shmem_rmdir,
3922 .mknod = shmem_mknod,
2773bf00 3923 .rename = shmem_rename2,
60545d0d 3924 .tmpfile = shmem_tmpfile,
1da177e4 3925#endif
b09e0fa4 3926#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3927 .listxattr = shmem_listxattr,
b09e0fa4 3928#endif
39f0247d 3929#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3930 .setattr = shmem_setattr,
feda821e 3931 .set_acl = simple_set_acl,
39f0247d
AG
3932#endif
3933};
3934
92e1d5be 3935static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3936#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3937 .listxattr = shmem_listxattr,
b09e0fa4 3938#endif
39f0247d 3939#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3940 .setattr = shmem_setattr,
feda821e 3941 .set_acl = simple_set_acl,
39f0247d 3942#endif
1da177e4
LT
3943};
3944
759b9775 3945static const struct super_operations shmem_ops = {
1da177e4
LT
3946 .alloc_inode = shmem_alloc_inode,
3947 .destroy_inode = shmem_destroy_inode,
3948#ifdef CONFIG_TMPFS
3949 .statfs = shmem_statfs,
3950 .remount_fs = shmem_remount_fs,
680d794b 3951 .show_options = shmem_show_options,
1da177e4 3952#endif
1f895f75 3953 .evict_inode = shmem_evict_inode,
1da177e4
LT
3954 .drop_inode = generic_delete_inode,
3955 .put_super = shmem_put_super,
779750d2
KS
3956#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3957 .nr_cached_objects = shmem_unused_huge_count,
3958 .free_cached_objects = shmem_unused_huge_scan,
3959#endif
1da177e4
LT
3960};
3961
f0f37e2f 3962static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3963 .fault = shmem_fault,
d7c17551 3964 .map_pages = filemap_map_pages,
1da177e4
LT
3965#ifdef CONFIG_NUMA
3966 .set_policy = shmem_set_policy,
3967 .get_policy = shmem_get_policy,
3968#endif
3969};
3970
3c26ff6e
AV
3971static struct dentry *shmem_mount(struct file_system_type *fs_type,
3972 int flags, const char *dev_name, void *data)
1da177e4 3973{
3c26ff6e 3974 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3975}
3976
41ffe5d5 3977static struct file_system_type shmem_fs_type = {
1da177e4
LT
3978 .owner = THIS_MODULE,
3979 .name = "tmpfs",
3c26ff6e 3980 .mount = shmem_mount,
1da177e4 3981 .kill_sb = kill_litter_super,
2b8576cb 3982 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3983};
1da177e4 3984
41ffe5d5 3985int __init shmem_init(void)
1da177e4
LT
3986{
3987 int error;
3988
16203a7a
RL
3989 /* If rootfs called this, don't re-init */
3990 if (shmem_inode_cachep)
3991 return 0;
3992
9a8ec03e 3993 shmem_init_inodecache();
1da177e4 3994
41ffe5d5 3995 error = register_filesystem(&shmem_fs_type);
1da177e4 3996 if (error) {
1170532b 3997 pr_err("Could not register tmpfs\n");
1da177e4
LT
3998 goto out2;
3999 }
95dc112a 4000
ca4e0519 4001 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
4002 if (IS_ERR(shm_mnt)) {
4003 error = PTR_ERR(shm_mnt);
1170532b 4004 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
4005 goto out1;
4006 }
5a6e75f8 4007
e496cf3d 4008#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 4009 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4010 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4011 else
4012 shmem_huge = 0; /* just in case it was patched */
4013#endif
1da177e4
LT
4014 return 0;
4015
4016out1:
41ffe5d5 4017 unregister_filesystem(&shmem_fs_type);
1da177e4 4018out2:
41ffe5d5 4019 shmem_destroy_inodecache();
1da177e4
LT
4020 shm_mnt = ERR_PTR(error);
4021 return error;
4022}
853ac43a 4023
e496cf3d 4024#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
4025static ssize_t shmem_enabled_show(struct kobject *kobj,
4026 struct kobj_attribute *attr, char *buf)
4027{
4028 int values[] = {
4029 SHMEM_HUGE_ALWAYS,
4030 SHMEM_HUGE_WITHIN_SIZE,
4031 SHMEM_HUGE_ADVISE,
4032 SHMEM_HUGE_NEVER,
4033 SHMEM_HUGE_DENY,
4034 SHMEM_HUGE_FORCE,
4035 };
4036 int i, count;
4037
4038 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4039 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4040
4041 count += sprintf(buf + count, fmt,
4042 shmem_format_huge(values[i]));
4043 }
4044 buf[count - 1] = '\n';
4045 return count;
4046}
4047
4048static ssize_t shmem_enabled_store(struct kobject *kobj,
4049 struct kobj_attribute *attr, const char *buf, size_t count)
4050{
4051 char tmp[16];
4052 int huge;
4053
4054 if (count + 1 > sizeof(tmp))
4055 return -EINVAL;
4056 memcpy(tmp, buf, count);
4057 tmp[count] = '\0';
4058 if (count && tmp[count - 1] == '\n')
4059 tmp[count - 1] = '\0';
4060
4061 huge = shmem_parse_huge(tmp);
4062 if (huge == -EINVAL)
4063 return -EINVAL;
4064 if (!has_transparent_hugepage() &&
4065 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4066 return -EINVAL;
4067
4068 shmem_huge = huge;
435c0b87 4069 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
4070 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4071 return count;
4072}
4073
4074struct kobj_attribute shmem_enabled_attr =
4075 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 4076#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 4077
3b33719c 4078#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
4079bool shmem_huge_enabled(struct vm_area_struct *vma)
4080{
4081 struct inode *inode = file_inode(vma->vm_file);
4082 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4083 loff_t i_size;
4084 pgoff_t off;
4085
4086 if (shmem_huge == SHMEM_HUGE_FORCE)
4087 return true;
4088 if (shmem_huge == SHMEM_HUGE_DENY)
4089 return false;
4090 switch (sbinfo->huge) {
4091 case SHMEM_HUGE_NEVER:
4092 return false;
4093 case SHMEM_HUGE_ALWAYS:
4094 return true;
4095 case SHMEM_HUGE_WITHIN_SIZE:
4096 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4097 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4098 if (i_size >= HPAGE_PMD_SIZE &&
4099 i_size >> PAGE_SHIFT >= off)
4100 return true;
4101 case SHMEM_HUGE_ADVISE:
4102 /* TODO: implement fadvise() hints */
4103 return (vma->vm_flags & VM_HUGEPAGE);
4104 default:
4105 VM_BUG_ON(1);
4106 return false;
4107 }
4108}
3b33719c 4109#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4110
853ac43a
MM
4111#else /* !CONFIG_SHMEM */
4112
4113/*
4114 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4115 *
4116 * This is intended for small system where the benefits of the full
4117 * shmem code (swap-backed and resource-limited) are outweighed by
4118 * their complexity. On systems without swap this code should be
4119 * effectively equivalent, but much lighter weight.
4120 */
4121
41ffe5d5 4122static struct file_system_type shmem_fs_type = {
853ac43a 4123 .name = "tmpfs",
3c26ff6e 4124 .mount = ramfs_mount,
853ac43a 4125 .kill_sb = kill_litter_super,
2b8576cb 4126 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4127};
4128
41ffe5d5 4129int __init shmem_init(void)
853ac43a 4130{
41ffe5d5 4131 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4132
41ffe5d5 4133 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4134 BUG_ON(IS_ERR(shm_mnt));
4135
4136 return 0;
4137}
4138
41ffe5d5 4139int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
4140{
4141 return 0;
4142}
4143
3f96b79a
HD
4144int shmem_lock(struct file *file, int lock, struct user_struct *user)
4145{
4146 return 0;
4147}
4148
24513264
HD
4149void shmem_unlock_mapping(struct address_space *mapping)
4150{
4151}
4152
c01d5b30
HD
4153#ifdef CONFIG_MMU
4154unsigned long shmem_get_unmapped_area(struct file *file,
4155 unsigned long addr, unsigned long len,
4156 unsigned long pgoff, unsigned long flags)
4157{
4158 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4159}
4160#endif
4161
41ffe5d5 4162void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4163{
41ffe5d5 4164 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4165}
4166EXPORT_SYMBOL_GPL(shmem_truncate_range);
4167
0b0a0806
HD
4168#define shmem_vm_ops generic_file_vm_ops
4169#define shmem_file_operations ramfs_file_operations
454abafe 4170#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4171#define shmem_acct_size(flags, size) 0
4172#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4173
4174#endif /* CONFIG_SHMEM */
4175
4176/* common code */
1da177e4 4177
19938e35 4178static const struct dentry_operations anon_ops = {
118b2302 4179 .d_dname = simple_dname
3451538a
AV
4180};
4181
c7277090
EP
4182static struct file *__shmem_file_setup(const char *name, loff_t size,
4183 unsigned long flags, unsigned int i_flags)
1da177e4 4184{
6b4d0b27 4185 struct file *res;
1da177e4 4186 struct inode *inode;
2c48b9c4 4187 struct path path;
3451538a 4188 struct super_block *sb;
1da177e4
LT
4189 struct qstr this;
4190
4191 if (IS_ERR(shm_mnt))
6b4d0b27 4192 return ERR_CAST(shm_mnt);
1da177e4 4193
285b2c4f 4194 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4195 return ERR_PTR(-EINVAL);
4196
4197 if (shmem_acct_size(flags, size))
4198 return ERR_PTR(-ENOMEM);
4199
6b4d0b27 4200 res = ERR_PTR(-ENOMEM);
1da177e4
LT
4201 this.name = name;
4202 this.len = strlen(name);
4203 this.hash = 0; /* will go */
3451538a 4204 sb = shm_mnt->mnt_sb;
66ee4b88 4205 path.mnt = mntget(shm_mnt);
3451538a 4206 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 4207 if (!path.dentry)
1da177e4 4208 goto put_memory;
3451538a 4209 d_set_d_op(path.dentry, &anon_ops);
1da177e4 4210
6b4d0b27 4211 res = ERR_PTR(-ENOSPC);
3451538a 4212 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 4213 if (!inode)
66ee4b88 4214 goto put_memory;
1da177e4 4215
c7277090 4216 inode->i_flags |= i_flags;
2c48b9c4 4217 d_instantiate(path.dentry, inode);
1da177e4 4218 inode->i_size = size;
6d6b77f1 4219 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
4220 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4221 if (IS_ERR(res))
66ee4b88 4222 goto put_path;
4b42af81 4223
6b4d0b27 4224 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4225 &shmem_file_operations);
6b4d0b27 4226 if (IS_ERR(res))
66ee4b88 4227 goto put_path;
4b42af81 4228
6b4d0b27 4229 return res;
1da177e4 4230
1da177e4
LT
4231put_memory:
4232 shmem_unacct_size(flags, size);
66ee4b88
KK
4233put_path:
4234 path_put(&path);
6b4d0b27 4235 return res;
1da177e4 4236}
c7277090
EP
4237
4238/**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * kernel internal. There will be NO LSM permission checks against the
4241 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4242 * higher layer. The users are the big_key and shm implementations. LSM
4243 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
4248struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249{
4250 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4251}
4252
4253/**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
4259struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260{
4261 return __shmem_file_setup(name, size, flags, 0);
4262}
395e0ddc 4263EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4264
46711810 4265/**
1da177e4 4266 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4267 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4268 */
4269int shmem_zero_setup(struct vm_area_struct *vma)
4270{
4271 struct file *file;
4272 loff_t size = vma->vm_end - vma->vm_start;
4273
66fc1303
HD
4274 /*
4275 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4276 * between XFS directory reading and selinux: since this file is only
4277 * accessible to the user through its mapping, use S_PRIVATE flag to
4278 * bypass file security, in the same way as shmem_kernel_file_setup().
4279 */
4280 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4281 if (IS_ERR(file))
4282 return PTR_ERR(file);
4283
4284 if (vma->vm_file)
4285 fput(vma->vm_file);
4286 vma->vm_file = file;
4287 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4288
e496cf3d 4289 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4290 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4291 (vma->vm_end & HPAGE_PMD_MASK)) {
4292 khugepaged_enter(vma, vma->vm_flags);
4293 }
4294
1da177e4
LT
4295 return 0;
4296}
d9d90e5e
HD
4297
4298/**
4299 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4300 * @mapping: the page's address_space
4301 * @index: the page index
4302 * @gfp: the page allocator flags to use if allocating
4303 *
4304 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4305 * with any new page allocations done using the specified allocation flags.
4306 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4307 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4308 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4309 *
68da9f05
HD
4310 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4311 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4312 */
4313struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4314 pgoff_t index, gfp_t gfp)
4315{
68da9f05
HD
4316#ifdef CONFIG_SHMEM
4317 struct inode *inode = mapping->host;
9276aad6 4318 struct page *page;
68da9f05
HD
4319 int error;
4320
4321 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4322 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4323 gfp, NULL, NULL, NULL);
68da9f05
HD
4324 if (error)
4325 page = ERR_PTR(error);
4326 else
4327 unlock_page(page);
4328 return page;
4329#else
4330 /*
4331 * The tiny !SHMEM case uses ramfs without swap
4332 */
d9d90e5e 4333 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4334#endif
d9d90e5e
HD
4335}
4336EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);