shmem: fix faulting into a hole, not taking i_mutex
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400 82/*
f00cdc6d
HD
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
86 */
87struct shmem_falloc {
8e205f77 88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93};
94
285b2c4f 95/* Flag allocation requirements to shmem_getpage */
1da177e4 96enum sgp_type {
1da177e4
LT
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
102};
103
b76db735 104#ifdef CONFIG_TMPFS
680d794b 105static unsigned long shmem_default_max_blocks(void)
106{
107 return totalram_pages / 2;
108}
109
110static unsigned long shmem_default_max_inodes(void)
111{
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113}
b76db735 114#endif
680d794b 115
bde05d1c
HD
116static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
119static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124{
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127}
1da177e4 128
1da177e4
LT
129static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130{
131 return sb->s_fs_info;
132}
133
134/*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140static inline int shmem_acct_size(unsigned long flags, loff_t size)
141{
0b0a0806 142 return (flags & VM_NORESERVE) ?
191c5424 143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
144}
145
146static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 if (!(flags & VM_NORESERVE))
1da177e4
LT
149 vm_unacct_memory(VM_ACCT(size));
150}
151
152/*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158static inline int shmem_acct_block(unsigned long flags)
159{
0b0a0806 160 return (flags & VM_NORESERVE) ?
191c5424 161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
162}
163
164static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165{
0b0a0806 166 if (flags & VM_NORESERVE)
1da177e4
LT
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168}
169
759b9775 170static const struct super_operations shmem_ops;
f5e54d6e 171static const struct address_space_operations shmem_aops;
15ad7cdc 172static const struct file_operations shmem_file_operations;
92e1d5be
AV
173static const struct inode_operations shmem_inode_operations;
174static const struct inode_operations shmem_dir_inode_operations;
175static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 176static const struct vm_operations_struct shmem_vm_ops;
1da177e4 177
6c231b7b 178static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 179 .ra_pages = 0, /* No readahead */
4f98a2fe 180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
181};
182
183static LIST_HEAD(shmem_swaplist);
cb5f7b9a 184static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 185
5b04c689
PE
186static int shmem_reserve_inode(struct super_block *sb)
187{
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199}
200
201static void shmem_free_inode(struct super_block *sb)
202{
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209}
210
46711810 211/**
41ffe5d5 212 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223static void shmem_recalc_inode(struct inode *inode)
224{
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
54af6042
HD
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 233 info->alloced -= freed;
54af6042 234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 235 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
236 }
237}
238
7a5d0fbb
HD
239/*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244{
245 void **pslot;
6dbaf22c 246 void *item;
7a5d0fbb
HD
247
248 VM_BUG_ON(!expected);
6dbaf22c 249 VM_BUG_ON(!replacement);
7a5d0fbb 250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
251 if (!pslot)
252 return -ENOENT;
253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
254 if (item != expected)
255 return -ENOENT;
6dbaf22c 256 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
257 return 0;
258}
259
d1899228
HD
260/*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267static bool shmem_confirm_swap(struct address_space *mapping,
268 pgoff_t index, swp_entry_t swap)
269{
270 void *item;
271
272 rcu_read_lock();
273 item = radix_tree_lookup(&mapping->page_tree, index);
274 rcu_read_unlock();
275 return item == swp_to_radix_entry(swap);
276}
277
46f65ec1
HD
278/*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281static int shmem_add_to_page_cache(struct page *page,
282 struct address_space *mapping,
283 pgoff_t index, gfp_t gfp, void *expected)
284{
b065b432 285 int error;
46f65ec1 286
309381fe
SL
287 VM_BUG_ON_PAGE(!PageLocked(page), page);
288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 289
b065b432
HD
290 page_cache_get(page);
291 page->mapping = mapping;
292 page->index = index;
293
294 spin_lock_irq(&mapping->tree_lock);
46f65ec1 295 if (!expected)
b065b432
HD
296 error = radix_tree_insert(&mapping->page_tree, index, page);
297 else
298 error = shmem_radix_tree_replace(mapping, index, expected,
299 page);
46f65ec1 300 if (!error) {
b065b432
HD
301 mapping->nrpages++;
302 __inc_zone_page_state(page, NR_FILE_PAGES);
303 __inc_zone_page_state(page, NR_SHMEM);
304 spin_unlock_irq(&mapping->tree_lock);
305 } else {
306 page->mapping = NULL;
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
46f65ec1 309 }
46f65ec1
HD
310 return error;
311}
312
6922c0c7
HD
313/*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317{
318 struct address_space *mapping = page->mapping;
319 int error;
320
321 spin_lock_irq(&mapping->tree_lock);
322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 page->mapping = NULL;
324 mapping->nrpages--;
325 __dec_zone_page_state(page, NR_FILE_PAGES);
326 __dec_zone_page_state(page, NR_SHMEM);
327 spin_unlock_irq(&mapping->tree_lock);
328 page_cache_release(page);
329 BUG_ON(error);
330}
331
7a5d0fbb
HD
332/*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335static int shmem_free_swap(struct address_space *mapping,
336 pgoff_t index, void *radswap)
337{
6dbaf22c 338 void *old;
7a5d0fbb
HD
339
340 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 342 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
343 if (old != radswap)
344 return -ENOENT;
345 free_swap_and_cache(radix_to_swp_entry(radswap));
346 return 0;
7a5d0fbb
HD
347}
348
24513264
HD
349/*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352void shmem_unlock_mapping(struct address_space *mapping)
353{
354 struct pagevec pvec;
355 pgoff_t indices[PAGEVEC_SIZE];
356 pgoff_t index = 0;
357
358 pagevec_init(&pvec, 0);
359 /*
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 */
362 while (!mapping_unevictable(mapping)) {
363 /*
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 */
0cd6144a
JW
367 pvec.nr = find_get_entries(mapping, index,
368 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
369 if (!pvec.nr)
370 break;
371 index = indices[pvec.nr - 1] + 1;
0cd6144a 372 pagevec_remove_exceptionals(&pvec);
24513264
HD
373 check_move_unevictable_pages(pvec.pages, pvec.nr);
374 pagevec_release(&pvec);
375 cond_resched();
376 }
7a5d0fbb
HD
377}
378
379/*
380 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 382 */
1635f6a7
HD
383static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 bool unfalloc)
1da177e4 385{
285b2c4f 386 struct address_space *mapping = inode->i_mapping;
1da177e4 387 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 392 struct pagevec pvec;
7a5d0fbb
HD
393 pgoff_t indices[PAGEVEC_SIZE];
394 long nr_swaps_freed = 0;
285b2c4f 395 pgoff_t index;
bda97eab
HD
396 int i;
397
83e4fa9c
HD
398 if (lend == -1)
399 end = -1; /* unsigned, so actually very big */
bda97eab
HD
400
401 pagevec_init(&pvec, 0);
402 index = start;
83e4fa9c 403 while (index < end) {
0cd6144a
JW
404 pvec.nr = find_get_entries(mapping, index,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 pvec.pages, indices);
7a5d0fbb
HD
407 if (!pvec.nr)
408 break;
bda97eab
HD
409 mem_cgroup_uncharge_start();
410 for (i = 0; i < pagevec_count(&pvec); i++) {
411 struct page *page = pvec.pages[i];
412
7a5d0fbb 413 index = indices[i];
83e4fa9c 414 if (index >= end)
bda97eab
HD
415 break;
416
7a5d0fbb 417 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
418 if (unfalloc)
419 continue;
7a5d0fbb
HD
420 nr_swaps_freed += !shmem_free_swap(mapping,
421 index, page);
bda97eab 422 continue;
7a5d0fbb
HD
423 }
424
425 if (!trylock_page(page))
bda97eab 426 continue;
1635f6a7
HD
427 if (!unfalloc || !PageUptodate(page)) {
428 if (page->mapping == mapping) {
309381fe 429 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
430 truncate_inode_page(mapping, page);
431 }
bda97eab 432 }
bda97eab
HD
433 unlock_page(page);
434 }
0cd6144a 435 pagevec_remove_exceptionals(&pvec);
24513264 436 pagevec_release(&pvec);
bda97eab
HD
437 mem_cgroup_uncharge_end();
438 cond_resched();
439 index++;
440 }
1da177e4 441
83e4fa9c 442 if (partial_start) {
bda97eab
HD
443 struct page *page = NULL;
444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 if (page) {
83e4fa9c
HD
446 unsigned int top = PAGE_CACHE_SIZE;
447 if (start > end) {
448 top = partial_end;
449 partial_end = 0;
450 }
451 zero_user_segment(page, partial_start, top);
452 set_page_dirty(page);
453 unlock_page(page);
454 page_cache_release(page);
455 }
456 }
457 if (partial_end) {
458 struct page *page = NULL;
459 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 if (page) {
461 zero_user_segment(page, 0, partial_end);
bda97eab
HD
462 set_page_dirty(page);
463 unlock_page(page);
464 page_cache_release(page);
465 }
466 }
83e4fa9c
HD
467 if (start >= end)
468 return;
bda97eab
HD
469
470 index = start;
471 for ( ; ; ) {
472 cond_resched();
0cd6144a
JW
473
474 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 475 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 476 pvec.pages, indices);
7a5d0fbb 477 if (!pvec.nr) {
1635f6a7 478 if (index == start || unfalloc)
bda97eab
HD
479 break;
480 index = start;
481 continue;
482 }
1635f6a7 483 if ((index == start || unfalloc) && indices[0] >= end) {
0cd6144a 484 pagevec_remove_exceptionals(&pvec);
24513264 485 pagevec_release(&pvec);
bda97eab
HD
486 break;
487 }
488 mem_cgroup_uncharge_start();
489 for (i = 0; i < pagevec_count(&pvec); i++) {
490 struct page *page = pvec.pages[i];
491
7a5d0fbb 492 index = indices[i];
83e4fa9c 493 if (index >= end)
bda97eab
HD
494 break;
495
7a5d0fbb 496 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
497 if (unfalloc)
498 continue;
7a5d0fbb
HD
499 nr_swaps_freed += !shmem_free_swap(mapping,
500 index, page);
501 continue;
502 }
503
bda97eab 504 lock_page(page);
1635f6a7
HD
505 if (!unfalloc || !PageUptodate(page)) {
506 if (page->mapping == mapping) {
309381fe 507 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
508 truncate_inode_page(mapping, page);
509 }
7a5d0fbb 510 }
bda97eab
HD
511 unlock_page(page);
512 }
0cd6144a 513 pagevec_remove_exceptionals(&pvec);
24513264 514 pagevec_release(&pvec);
bda97eab
HD
515 mem_cgroup_uncharge_end();
516 index++;
517 }
94c1e62d 518
1da177e4 519 spin_lock(&info->lock);
7a5d0fbb 520 info->swapped -= nr_swaps_freed;
1da177e4
LT
521 shmem_recalc_inode(inode);
522 spin_unlock(&info->lock);
1635f6a7 523}
1da177e4 524
1635f6a7
HD
525void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
526{
527 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 528 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 529}
94c1e62d 530EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 531
94c1e62d 532static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
533{
534 struct inode *inode = dentry->d_inode;
1da177e4
LT
535 int error;
536
db78b877
CH
537 error = inode_change_ok(inode, attr);
538 if (error)
539 return error;
540
94c1e62d
HD
541 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
542 loff_t oldsize = inode->i_size;
543 loff_t newsize = attr->ia_size;
3889e6e7 544
94c1e62d
HD
545 if (newsize != oldsize) {
546 i_size_write(inode, newsize);
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 }
549 if (newsize < oldsize) {
550 loff_t holebegin = round_up(newsize, PAGE_SIZE);
551 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
552 shmem_truncate_range(inode, newsize, (loff_t)-1);
553 /* unmap again to remove racily COWed private pages */
554 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
555 }
1da177e4
LT
556 }
557
db78b877 558 setattr_copy(inode, attr);
db78b877 559 if (attr->ia_valid & ATTR_MODE)
feda821e 560 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
561 return error;
562}
563
1f895f75 564static void shmem_evict_inode(struct inode *inode)
1da177e4 565{
1da177e4
LT
566 struct shmem_inode_info *info = SHMEM_I(inode);
567
3889e6e7 568 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
569 shmem_unacct_size(info->flags, inode->i_size);
570 inode->i_size = 0;
3889e6e7 571 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 572 if (!list_empty(&info->swaplist)) {
cb5f7b9a 573 mutex_lock(&shmem_swaplist_mutex);
1da177e4 574 list_del_init(&info->swaplist);
cb5f7b9a 575 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 576 }
69f07ec9
HD
577 } else
578 kfree(info->symlink);
b09e0fa4 579
38f38657 580 simple_xattrs_free(&info->xattrs);
0f3c42f5 581 WARN_ON(inode->i_blocks);
5b04c689 582 shmem_free_inode(inode->i_sb);
dbd5768f 583 clear_inode(inode);
1da177e4
LT
584}
585
46f65ec1
HD
586/*
587 * If swap found in inode, free it and move page from swapcache to filecache.
588 */
41ffe5d5 589static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 590 swp_entry_t swap, struct page **pagep)
1da177e4 591{
285b2c4f 592 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 593 void *radswap;
41ffe5d5 594 pgoff_t index;
bde05d1c
HD
595 gfp_t gfp;
596 int error = 0;
1da177e4 597
46f65ec1 598 radswap = swp_to_radix_entry(swap);
e504f3fd 599 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 600 if (index == -1)
285b2c4f 601 return 0;
2e0e26c7 602
1b1b32f2
HD
603 /*
604 * Move _head_ to start search for next from here.
1f895f75 605 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 606 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 607 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
608 */
609 if (shmem_swaplist.next != &info->swaplist)
610 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 611
bde05d1c
HD
612 gfp = mapping_gfp_mask(mapping);
613 if (shmem_should_replace_page(*pagep, gfp)) {
614 mutex_unlock(&shmem_swaplist_mutex);
615 error = shmem_replace_page(pagep, gfp, info, index);
616 mutex_lock(&shmem_swaplist_mutex);
617 /*
618 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
619 * allocation, but the inode might have been freed while we
620 * dropped it: although a racing shmem_evict_inode() cannot
621 * complete without emptying the radix_tree, our page lock
622 * on this swapcache page is not enough to prevent that -
623 * free_swap_and_cache() of our swap entry will only
624 * trylock_page(), removing swap from radix_tree whatever.
625 *
626 * We must not proceed to shmem_add_to_page_cache() if the
627 * inode has been freed, but of course we cannot rely on
628 * inode or mapping or info to check that. However, we can
629 * safely check if our swap entry is still in use (and here
630 * it can't have got reused for another page): if it's still
631 * in use, then the inode cannot have been freed yet, and we
632 * can safely proceed (if it's no longer in use, that tells
633 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
634 */
635 if (!page_swapcount(*pagep))
636 error = -ENOENT;
637 }
638
d13d1443 639 /*
778dd893
HD
640 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
641 * but also to hold up shmem_evict_inode(): so inode cannot be freed
642 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 643 */
bde05d1c
HD
644 if (!error)
645 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 646 GFP_NOWAIT, radswap);
48f170fb 647 if (error != -ENOMEM) {
46f65ec1
HD
648 /*
649 * Truncation and eviction use free_swap_and_cache(), which
650 * only does trylock page: if we raced, best clean up here.
651 */
bde05d1c
HD
652 delete_from_swap_cache(*pagep);
653 set_page_dirty(*pagep);
46f65ec1
HD
654 if (!error) {
655 spin_lock(&info->lock);
656 info->swapped--;
657 spin_unlock(&info->lock);
658 swap_free(swap);
659 }
2e0e26c7 660 error = 1; /* not an error, but entry was found */
1da177e4 661 }
2e0e26c7 662 return error;
1da177e4
LT
663}
664
665/*
46f65ec1 666 * Search through swapped inodes to find and replace swap by page.
1da177e4 667 */
41ffe5d5 668int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 669{
41ffe5d5 670 struct list_head *this, *next;
1da177e4
LT
671 struct shmem_inode_info *info;
672 int found = 0;
bde05d1c
HD
673 int error = 0;
674
675 /*
676 * There's a faint possibility that swap page was replaced before
0142ef6c 677 * caller locked it: caller will come back later with the right page.
bde05d1c 678 */
0142ef6c 679 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 680 goto out;
778dd893
HD
681
682 /*
683 * Charge page using GFP_KERNEL while we can wait, before taking
684 * the shmem_swaplist_mutex which might hold up shmem_writepage().
685 * Charged back to the user (not to caller) when swap account is used.
778dd893 686 */
d715ae08 687 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
778dd893
HD
688 if (error)
689 goto out;
46f65ec1 690 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 691
cb5f7b9a 692 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
693 list_for_each_safe(this, next, &shmem_swaplist) {
694 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 695 if (info->swapped)
bde05d1c 696 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
697 else
698 list_del_init(&info->swaplist);
cb5f7b9a 699 cond_resched();
2e0e26c7 700 if (found)
778dd893 701 break;
1da177e4 702 }
cb5f7b9a 703 mutex_unlock(&shmem_swaplist_mutex);
778dd893 704
778dd893
HD
705 if (found < 0)
706 error = found;
707out:
aaa46865
HD
708 unlock_page(page);
709 page_cache_release(page);
778dd893 710 return error;
1da177e4
LT
711}
712
713/*
714 * Move the page from the page cache to the swap cache.
715 */
716static int shmem_writepage(struct page *page, struct writeback_control *wbc)
717{
718 struct shmem_inode_info *info;
1da177e4 719 struct address_space *mapping;
1da177e4 720 struct inode *inode;
6922c0c7
HD
721 swp_entry_t swap;
722 pgoff_t index;
1da177e4
LT
723
724 BUG_ON(!PageLocked(page));
1da177e4
LT
725 mapping = page->mapping;
726 index = page->index;
727 inode = mapping->host;
728 info = SHMEM_I(inode);
729 if (info->flags & VM_LOCKED)
730 goto redirty;
d9fe526a 731 if (!total_swap_pages)
1da177e4
LT
732 goto redirty;
733
d9fe526a
HD
734 /*
735 * shmem_backing_dev_info's capabilities prevent regular writeback or
736 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 737 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 738 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 739 * and not for the writeback threads or sync.
d9fe526a 740 */
48f170fb
HD
741 if (!wbc->for_reclaim) {
742 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
743 goto redirty;
744 }
1635f6a7
HD
745
746 /*
747 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
748 * value into swapfile.c, the only way we can correctly account for a
749 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
750 *
751 * That's okay for a page already fallocated earlier, but if we have
752 * not yet completed the fallocation, then (a) we want to keep track
753 * of this page in case we have to undo it, and (b) it may not be a
754 * good idea to continue anyway, once we're pushing into swap. So
755 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
756 */
757 if (!PageUptodate(page)) {
1aac1400
HD
758 if (inode->i_private) {
759 struct shmem_falloc *shmem_falloc;
760 spin_lock(&inode->i_lock);
761 shmem_falloc = inode->i_private;
762 if (shmem_falloc &&
8e205f77 763 !shmem_falloc->waitq &&
1aac1400
HD
764 index >= shmem_falloc->start &&
765 index < shmem_falloc->next)
766 shmem_falloc->nr_unswapped++;
767 else
768 shmem_falloc = NULL;
769 spin_unlock(&inode->i_lock);
770 if (shmem_falloc)
771 goto redirty;
772 }
1635f6a7
HD
773 clear_highpage(page);
774 flush_dcache_page(page);
775 SetPageUptodate(page);
776 }
777
48f170fb
HD
778 swap = get_swap_page();
779 if (!swap.val)
780 goto redirty;
d9fe526a 781
b1dea800
HD
782 /*
783 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
784 * if it's not already there. Do it now before the page is
785 * moved to swap cache, when its pagelock no longer protects
b1dea800 786 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
787 * we've incremented swapped, because shmem_unuse_inode() will
788 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 789 */
48f170fb
HD
790 mutex_lock(&shmem_swaplist_mutex);
791 if (list_empty(&info->swaplist))
792 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 793
48f170fb 794 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 795 swap_shmem_alloc(swap);
6922c0c7
HD
796 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
797
798 spin_lock(&info->lock);
799 info->swapped++;
800 shmem_recalc_inode(inode);
826267cf 801 spin_unlock(&info->lock);
6922c0c7
HD
802
803 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 804 BUG_ON(page_mapped(page));
9fab5619 805 swap_writepage(page, wbc);
1da177e4
LT
806 return 0;
807 }
808
6922c0c7 809 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 810 swapcache_free(swap, NULL);
1da177e4
LT
811redirty:
812 set_page_dirty(page);
d9fe526a
HD
813 if (wbc->for_reclaim)
814 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
815 unlock_page(page);
816 return 0;
1da177e4
LT
817}
818
819#ifdef CONFIG_NUMA
680d794b 820#ifdef CONFIG_TMPFS
71fe804b 821static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 822{
095f1fc4 823 char buffer[64];
680d794b 824
71fe804b 825 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 826 return; /* show nothing */
680d794b 827
a7a88b23 828 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
829
830 seq_printf(seq, ",mpol=%s", buffer);
680d794b 831}
71fe804b
LS
832
833static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
834{
835 struct mempolicy *mpol = NULL;
836 if (sbinfo->mpol) {
837 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
838 mpol = sbinfo->mpol;
839 mpol_get(mpol);
840 spin_unlock(&sbinfo->stat_lock);
841 }
842 return mpol;
843}
680d794b 844#endif /* CONFIG_TMPFS */
845
41ffe5d5
HD
846static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
847 struct shmem_inode_info *info, pgoff_t index)
1da177e4 848{
1da177e4 849 struct vm_area_struct pvma;
18a2f371 850 struct page *page;
52cd3b07 851
1da177e4 852 /* Create a pseudo vma that just contains the policy */
c4cc6d07 853 pvma.vm_start = 0;
09c231cb
NZ
854 /* Bias interleave by inode number to distribute better across nodes */
855 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 856 pvma.vm_ops = NULL;
18a2f371
MG
857 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
858
859 page = swapin_readahead(swap, gfp, &pvma, 0);
860
861 /* Drop reference taken by mpol_shared_policy_lookup() */
862 mpol_cond_put(pvma.vm_policy);
863
864 return page;
1da177e4
LT
865}
866
02098fea 867static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 868 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
869{
870 struct vm_area_struct pvma;
18a2f371 871 struct page *page;
1da177e4 872
c4cc6d07
HD
873 /* Create a pseudo vma that just contains the policy */
874 pvma.vm_start = 0;
09c231cb
NZ
875 /* Bias interleave by inode number to distribute better across nodes */
876 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 877 pvma.vm_ops = NULL;
41ffe5d5 878 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 879
18a2f371
MG
880 page = alloc_page_vma(gfp, &pvma, 0);
881
882 /* Drop reference taken by mpol_shared_policy_lookup() */
883 mpol_cond_put(pvma.vm_policy);
884
885 return page;
1da177e4 886}
680d794b 887#else /* !CONFIG_NUMA */
888#ifdef CONFIG_TMPFS
41ffe5d5 889static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 890{
891}
892#endif /* CONFIG_TMPFS */
893
41ffe5d5
HD
894static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
895 struct shmem_inode_info *info, pgoff_t index)
1da177e4 896{
41ffe5d5 897 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
898}
899
02098fea 900static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 901 struct shmem_inode_info *info, pgoff_t index)
1da177e4 902{
e84e2e13 903 return alloc_page(gfp);
1da177e4 904}
680d794b 905#endif /* CONFIG_NUMA */
1da177e4 906
71fe804b
LS
907#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
908static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
909{
910 return NULL;
911}
912#endif
913
bde05d1c
HD
914/*
915 * When a page is moved from swapcache to shmem filecache (either by the
916 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
917 * shmem_unuse_inode()), it may have been read in earlier from swap, in
918 * ignorance of the mapping it belongs to. If that mapping has special
919 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
920 * we may need to copy to a suitable page before moving to filecache.
921 *
922 * In a future release, this may well be extended to respect cpuset and
923 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
924 * but for now it is a simple matter of zone.
925 */
926static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
927{
928 return page_zonenum(page) > gfp_zone(gfp);
929}
930
931static int shmem_replace_page(struct page **pagep, gfp_t gfp,
932 struct shmem_inode_info *info, pgoff_t index)
933{
934 struct page *oldpage, *newpage;
935 struct address_space *swap_mapping;
936 pgoff_t swap_index;
937 int error;
938
939 oldpage = *pagep;
940 swap_index = page_private(oldpage);
941 swap_mapping = page_mapping(oldpage);
942
943 /*
944 * We have arrived here because our zones are constrained, so don't
945 * limit chance of success by further cpuset and node constraints.
946 */
947 gfp &= ~GFP_CONSTRAINT_MASK;
948 newpage = shmem_alloc_page(gfp, info, index);
949 if (!newpage)
950 return -ENOMEM;
bde05d1c 951
bde05d1c
HD
952 page_cache_get(newpage);
953 copy_highpage(newpage, oldpage);
0142ef6c 954 flush_dcache_page(newpage);
bde05d1c 955
bde05d1c 956 __set_page_locked(newpage);
bde05d1c 957 SetPageUptodate(newpage);
bde05d1c 958 SetPageSwapBacked(newpage);
bde05d1c 959 set_page_private(newpage, swap_index);
bde05d1c
HD
960 SetPageSwapCache(newpage);
961
962 /*
963 * Our caller will very soon move newpage out of swapcache, but it's
964 * a nice clean interface for us to replace oldpage by newpage there.
965 */
966 spin_lock_irq(&swap_mapping->tree_lock);
967 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
968 newpage);
0142ef6c
HD
969 if (!error) {
970 __inc_zone_page_state(newpage, NR_FILE_PAGES);
971 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
972 }
bde05d1c 973 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 974
0142ef6c
HD
975 if (unlikely(error)) {
976 /*
977 * Is this possible? I think not, now that our callers check
978 * both PageSwapCache and page_private after getting page lock;
979 * but be defensive. Reverse old to newpage for clear and free.
980 */
981 oldpage = newpage;
982 } else {
983 mem_cgroup_replace_page_cache(oldpage, newpage);
984 lru_cache_add_anon(newpage);
985 *pagep = newpage;
986 }
bde05d1c
HD
987
988 ClearPageSwapCache(oldpage);
989 set_page_private(oldpage, 0);
990
991 unlock_page(oldpage);
992 page_cache_release(oldpage);
993 page_cache_release(oldpage);
0142ef6c 994 return error;
bde05d1c
HD
995}
996
1da177e4 997/*
68da9f05 998 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
999 *
1000 * If we allocate a new one we do not mark it dirty. That's up to the
1001 * vm. If we swap it in we mark it dirty since we also free the swap
1002 * entry since a page cannot live in both the swap and page cache
1003 */
41ffe5d5 1004static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1005 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1006{
1007 struct address_space *mapping = inode->i_mapping;
54af6042 1008 struct shmem_inode_info *info;
1da177e4 1009 struct shmem_sb_info *sbinfo;
27ab7006 1010 struct page *page;
1da177e4
LT
1011 swp_entry_t swap;
1012 int error;
54af6042 1013 int once = 0;
1635f6a7 1014 int alloced = 0;
1da177e4 1015
41ffe5d5 1016 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1017 return -EFBIG;
1da177e4 1018repeat:
54af6042 1019 swap.val = 0;
0cd6144a 1020 page = find_lock_entry(mapping, index);
54af6042
HD
1021 if (radix_tree_exceptional_entry(page)) {
1022 swap = radix_to_swp_entry(page);
1023 page = NULL;
1024 }
1025
1635f6a7 1026 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1027 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1028 error = -EINVAL;
1029 goto failed;
1030 }
1031
66d2f4d2
HD
1032 if (page && sgp == SGP_WRITE)
1033 mark_page_accessed(page);
1034
1635f6a7
HD
1035 /* fallocated page? */
1036 if (page && !PageUptodate(page)) {
1037 if (sgp != SGP_READ)
1038 goto clear;
1039 unlock_page(page);
1040 page_cache_release(page);
1041 page = NULL;
1042 }
54af6042 1043 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1044 *pagep = page;
1045 return 0;
27ab7006
HD
1046 }
1047
1048 /*
54af6042
HD
1049 * Fast cache lookup did not find it:
1050 * bring it back from swap or allocate.
27ab7006 1051 */
54af6042
HD
1052 info = SHMEM_I(inode);
1053 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1054
1da177e4
LT
1055 if (swap.val) {
1056 /* Look it up and read it in.. */
27ab7006
HD
1057 page = lookup_swap_cache(swap);
1058 if (!page) {
1da177e4 1059 /* here we actually do the io */
68da9f05
HD
1060 if (fault_type)
1061 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1062 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1063 if (!page) {
54af6042
HD
1064 error = -ENOMEM;
1065 goto failed;
1da177e4 1066 }
1da177e4
LT
1067 }
1068
1069 /* We have to do this with page locked to prevent races */
54af6042 1070 lock_page(page);
0142ef6c 1071 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1072 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1073 error = -EEXIST; /* try again */
d1899228 1074 goto unlock;
bde05d1c 1075 }
27ab7006 1076 if (!PageUptodate(page)) {
1da177e4 1077 error = -EIO;
54af6042 1078 goto failed;
1da177e4 1079 }
54af6042
HD
1080 wait_on_page_writeback(page);
1081
bde05d1c
HD
1082 if (shmem_should_replace_page(page, gfp)) {
1083 error = shmem_replace_page(&page, gfp, info, index);
1084 if (error)
1085 goto failed;
1da177e4 1086 }
27ab7006 1087
d715ae08 1088 error = mem_cgroup_charge_file(page, current->mm,
aa3b1895 1089 gfp & GFP_RECLAIM_MASK);
d1899228 1090 if (!error) {
aa3b1895
HD
1091 error = shmem_add_to_page_cache(page, mapping, index,
1092 gfp, swp_to_radix_entry(swap));
215c02bc
HD
1093 /*
1094 * We already confirmed swap under page lock, and make
1095 * no memory allocation here, so usually no possibility
1096 * of error; but free_swap_and_cache() only trylocks a
1097 * page, so it is just possible that the entry has been
1098 * truncated or holepunched since swap was confirmed.
1099 * shmem_undo_range() will have done some of the
1100 * unaccounting, now delete_from_swap_cache() will do
1101 * the rest (including mem_cgroup_uncharge_swapcache).
1102 * Reset swap.val? No, leave it so "failed" goes back to
1103 * "repeat": reading a hole and writing should succeed.
1104 */
1105 if (error)
1106 delete_from_swap_cache(page);
d1899228 1107 }
54af6042
HD
1108 if (error)
1109 goto failed;
1110
1111 spin_lock(&info->lock);
285b2c4f 1112 info->swapped--;
54af6042 1113 shmem_recalc_inode(inode);
27ab7006 1114 spin_unlock(&info->lock);
54af6042 1115
66d2f4d2
HD
1116 if (sgp == SGP_WRITE)
1117 mark_page_accessed(page);
1118
54af6042 1119 delete_from_swap_cache(page);
27ab7006
HD
1120 set_page_dirty(page);
1121 swap_free(swap);
1122
54af6042
HD
1123 } else {
1124 if (shmem_acct_block(info->flags)) {
1125 error = -ENOSPC;
1126 goto failed;
1da177e4 1127 }
0edd73b3 1128 if (sbinfo->max_blocks) {
fc5da22a 1129 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1130 sbinfo->max_blocks) >= 0) {
1131 error = -ENOSPC;
1132 goto unacct;
1133 }
7e496299 1134 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1135 }
1da177e4 1136
54af6042
HD
1137 page = shmem_alloc_page(gfp, info, index);
1138 if (!page) {
1139 error = -ENOMEM;
1140 goto decused;
1da177e4
LT
1141 }
1142
07a42788 1143 __SetPageSwapBacked(page);
54af6042 1144 __set_page_locked(page);
66d2f4d2
HD
1145 if (sgp == SGP_WRITE)
1146 init_page_accessed(page);
1147
d715ae08 1148 error = mem_cgroup_charge_file(page, current->mm,
aa3b1895 1149 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1150 if (error)
1151 goto decused;
5e4c0d97 1152 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1153 if (!error) {
1154 error = shmem_add_to_page_cache(page, mapping, index,
1155 gfp, NULL);
1156 radix_tree_preload_end();
1157 }
1158 if (error) {
1159 mem_cgroup_uncharge_cache_page(page);
1160 goto decused;
1161 }
54af6042
HD
1162 lru_cache_add_anon(page);
1163
1164 spin_lock(&info->lock);
1da177e4 1165 info->alloced++;
54af6042
HD
1166 inode->i_blocks += BLOCKS_PER_PAGE;
1167 shmem_recalc_inode(inode);
1da177e4 1168 spin_unlock(&info->lock);
1635f6a7 1169 alloced = true;
54af6042 1170
ec9516fb 1171 /*
1635f6a7
HD
1172 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1173 */
1174 if (sgp == SGP_FALLOC)
1175 sgp = SGP_WRITE;
1176clear:
1177 /*
1178 * Let SGP_WRITE caller clear ends if write does not fill page;
1179 * but SGP_FALLOC on a page fallocated earlier must initialize
1180 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1181 */
1182 if (sgp != SGP_WRITE) {
1183 clear_highpage(page);
1184 flush_dcache_page(page);
1185 SetPageUptodate(page);
1186 }
a0ee5ec5 1187 if (sgp == SGP_DIRTY)
27ab7006 1188 set_page_dirty(page);
1da177e4 1189 }
bde05d1c 1190
54af6042 1191 /* Perhaps the file has been truncated since we checked */
1635f6a7 1192 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1193 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1194 error = -EINVAL;
1635f6a7
HD
1195 if (alloced)
1196 goto trunc;
1197 else
1198 goto failed;
e83c32e8 1199 }
54af6042
HD
1200 *pagep = page;
1201 return 0;
1da177e4 1202
59a16ead 1203 /*
54af6042 1204 * Error recovery.
59a16ead 1205 */
54af6042 1206trunc:
1635f6a7 1207 info = SHMEM_I(inode);
54af6042
HD
1208 ClearPageDirty(page);
1209 delete_from_page_cache(page);
1210 spin_lock(&info->lock);
1211 info->alloced--;
1212 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1213 spin_unlock(&info->lock);
54af6042 1214decused:
1635f6a7 1215 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1216 if (sbinfo->max_blocks)
1217 percpu_counter_add(&sbinfo->used_blocks, -1);
1218unacct:
1219 shmem_unacct_blocks(info->flags, 1);
1220failed:
d1899228
HD
1221 if (swap.val && error != -EINVAL &&
1222 !shmem_confirm_swap(mapping, index, swap))
1223 error = -EEXIST;
1224unlock:
27ab7006 1225 if (page) {
54af6042 1226 unlock_page(page);
27ab7006 1227 page_cache_release(page);
54af6042
HD
1228 }
1229 if (error == -ENOSPC && !once++) {
1230 info = SHMEM_I(inode);
1231 spin_lock(&info->lock);
1232 shmem_recalc_inode(inode);
1233 spin_unlock(&info->lock);
27ab7006 1234 goto repeat;
ff36b801 1235 }
d1899228 1236 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1237 goto repeat;
1238 return error;
1da177e4
LT
1239}
1240
d0217ac0 1241static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1242{
496ad9aa 1243 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1244 int error;
68da9f05 1245 int ret = VM_FAULT_LOCKED;
1da177e4 1246
f00cdc6d
HD
1247 /*
1248 * Trinity finds that probing a hole which tmpfs is punching can
1249 * prevent the hole-punch from ever completing: which in turn
1250 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1251 * faulting pages into the hole while it's being punched. Although
1252 * shmem_undo_range() does remove the additions, it may be unable to
1253 * keep up, as each new page needs its own unmap_mapping_range() call,
1254 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1255 *
1256 * It does not matter if we sometimes reach this check just before the
1257 * hole-punch begins, so that one fault then races with the punch:
1258 * we just need to make racing faults a rare case.
1259 *
1260 * The implementation below would be much simpler if we just used a
1261 * standard mutex or completion: but we cannot take i_mutex in fault,
1262 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1263 */
1264 if (unlikely(inode->i_private)) {
1265 struct shmem_falloc *shmem_falloc;
1266
1267 spin_lock(&inode->i_lock);
1268 shmem_falloc = inode->i_private;
8e205f77
HD
1269 if (shmem_falloc &&
1270 shmem_falloc->waitq &&
1271 vmf->pgoff >= shmem_falloc->start &&
1272 vmf->pgoff < shmem_falloc->next) {
1273 wait_queue_head_t *shmem_falloc_waitq;
1274 DEFINE_WAIT(shmem_fault_wait);
1275
1276 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1277 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1278 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1279 /* It's polite to up mmap_sem if we can */
f00cdc6d 1280 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1281 ret = VM_FAULT_RETRY;
f00cdc6d 1282 }
8e205f77
HD
1283
1284 shmem_falloc_waitq = shmem_falloc->waitq;
1285 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1286 TASK_UNINTERRUPTIBLE);
1287 spin_unlock(&inode->i_lock);
1288 schedule();
1289
1290 /*
1291 * shmem_falloc_waitq points into the shmem_fallocate()
1292 * stack of the hole-punching task: shmem_falloc_waitq
1293 * is usually invalid by the time we reach here, but
1294 * finish_wait() does not dereference it in that case;
1295 * though i_lock needed lest racing with wake_up_all().
1296 */
1297 spin_lock(&inode->i_lock);
1298 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1299 spin_unlock(&inode->i_lock);
1300 return ret;
f00cdc6d 1301 }
8e205f77 1302 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1303 }
1304
27d54b39 1305 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1306 if (error)
1307 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1308
456f998e
YH
1309 if (ret & VM_FAULT_MAJOR) {
1310 count_vm_event(PGMAJFAULT);
1311 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1312 }
68da9f05 1313 return ret;
1da177e4
LT
1314}
1315
1da177e4 1316#ifdef CONFIG_NUMA
41ffe5d5 1317static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1318{
496ad9aa 1319 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1320 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1321}
1322
d8dc74f2
AB
1323static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1324 unsigned long addr)
1da177e4 1325{
496ad9aa 1326 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1327 pgoff_t index;
1da177e4 1328
41ffe5d5
HD
1329 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1330 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1331}
1332#endif
1333
1334int shmem_lock(struct file *file, int lock, struct user_struct *user)
1335{
496ad9aa 1336 struct inode *inode = file_inode(file);
1da177e4
LT
1337 struct shmem_inode_info *info = SHMEM_I(inode);
1338 int retval = -ENOMEM;
1339
1340 spin_lock(&info->lock);
1341 if (lock && !(info->flags & VM_LOCKED)) {
1342 if (!user_shm_lock(inode->i_size, user))
1343 goto out_nomem;
1344 info->flags |= VM_LOCKED;
89e004ea 1345 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1346 }
1347 if (!lock && (info->flags & VM_LOCKED) && user) {
1348 user_shm_unlock(inode->i_size, user);
1349 info->flags &= ~VM_LOCKED;
89e004ea 1350 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1351 }
1352 retval = 0;
89e004ea 1353
1da177e4
LT
1354out_nomem:
1355 spin_unlock(&info->lock);
1356 return retval;
1357}
1358
9b83a6a8 1359static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1360{
1361 file_accessed(file);
1362 vma->vm_ops = &shmem_vm_ops;
1363 return 0;
1364}
1365
454abafe 1366static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1367 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1368{
1369 struct inode *inode;
1370 struct shmem_inode_info *info;
1371 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1372
5b04c689
PE
1373 if (shmem_reserve_inode(sb))
1374 return NULL;
1da177e4
LT
1375
1376 inode = new_inode(sb);
1377 if (inode) {
85fe4025 1378 inode->i_ino = get_next_ino();
454abafe 1379 inode_init_owner(inode, dir, mode);
1da177e4 1380 inode->i_blocks = 0;
1da177e4
LT
1381 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1382 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1383 inode->i_generation = get_seconds();
1da177e4
LT
1384 info = SHMEM_I(inode);
1385 memset(info, 0, (char *)inode - (char *)info);
1386 spin_lock_init(&info->lock);
0b0a0806 1387 info->flags = flags & VM_NORESERVE;
1da177e4 1388 INIT_LIST_HEAD(&info->swaplist);
38f38657 1389 simple_xattrs_init(&info->xattrs);
72c04902 1390 cache_no_acl(inode);
1da177e4
LT
1391
1392 switch (mode & S_IFMT) {
1393 default:
39f0247d 1394 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1395 init_special_inode(inode, mode, dev);
1396 break;
1397 case S_IFREG:
14fcc23f 1398 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1399 inode->i_op = &shmem_inode_operations;
1400 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1401 mpol_shared_policy_init(&info->policy,
1402 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1403 break;
1404 case S_IFDIR:
d8c76e6f 1405 inc_nlink(inode);
1da177e4
LT
1406 /* Some things misbehave if size == 0 on a directory */
1407 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1408 inode->i_op = &shmem_dir_inode_operations;
1409 inode->i_fop = &simple_dir_operations;
1410 break;
1411 case S_IFLNK:
1412 /*
1413 * Must not load anything in the rbtree,
1414 * mpol_free_shared_policy will not be called.
1415 */
71fe804b 1416 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1417 break;
1418 }
5b04c689
PE
1419 } else
1420 shmem_free_inode(sb);
1da177e4
LT
1421 return inode;
1422}
1423
0cd6144a
JW
1424bool shmem_mapping(struct address_space *mapping)
1425{
1426 return mapping->backing_dev_info == &shmem_backing_dev_info;
1427}
1428
1da177e4 1429#ifdef CONFIG_TMPFS
92e1d5be 1430static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1431static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1432
6d9d88d0
JS
1433#ifdef CONFIG_TMPFS_XATTR
1434static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1435#else
1436#define shmem_initxattrs NULL
1437#endif
1438
1da177e4 1439static int
800d15a5
NP
1440shmem_write_begin(struct file *file, struct address_space *mapping,
1441 loff_t pos, unsigned len, unsigned flags,
1442 struct page **pagep, void **fsdata)
1da177e4 1443{
800d15a5
NP
1444 struct inode *inode = mapping->host;
1445 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
66d2f4d2 1446 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1447}
1448
1449static int
1450shmem_write_end(struct file *file, struct address_space *mapping,
1451 loff_t pos, unsigned len, unsigned copied,
1452 struct page *page, void *fsdata)
1453{
1454 struct inode *inode = mapping->host;
1455
d3602444
HD
1456 if (pos + copied > inode->i_size)
1457 i_size_write(inode, pos + copied);
1458
ec9516fb
HD
1459 if (!PageUptodate(page)) {
1460 if (copied < PAGE_CACHE_SIZE) {
1461 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1462 zero_user_segments(page, 0, from,
1463 from + copied, PAGE_CACHE_SIZE);
1464 }
1465 SetPageUptodate(page);
1466 }
800d15a5 1467 set_page_dirty(page);
6746aff7 1468 unlock_page(page);
800d15a5
NP
1469 page_cache_release(page);
1470
800d15a5 1471 return copied;
1da177e4
LT
1472}
1473
2ba5bbed 1474static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1475{
6e58e79d
AV
1476 struct file *file = iocb->ki_filp;
1477 struct inode *inode = file_inode(file);
1da177e4 1478 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1479 pgoff_t index;
1480 unsigned long offset;
a0ee5ec5 1481 enum sgp_type sgp = SGP_READ;
f7c1d074 1482 int error = 0;
cb66a7a1 1483 ssize_t retval = 0;
6e58e79d 1484 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1485
1486 /*
1487 * Might this read be for a stacking filesystem? Then when reading
1488 * holes of a sparse file, we actually need to allocate those pages,
1489 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1490 */
1491 if (segment_eq(get_fs(), KERNEL_DS))
1492 sgp = SGP_DIRTY;
1da177e4
LT
1493
1494 index = *ppos >> PAGE_CACHE_SHIFT;
1495 offset = *ppos & ~PAGE_CACHE_MASK;
1496
1497 for (;;) {
1498 struct page *page = NULL;
41ffe5d5
HD
1499 pgoff_t end_index;
1500 unsigned long nr, ret;
1da177e4
LT
1501 loff_t i_size = i_size_read(inode);
1502
1503 end_index = i_size >> PAGE_CACHE_SHIFT;
1504 if (index > end_index)
1505 break;
1506 if (index == end_index) {
1507 nr = i_size & ~PAGE_CACHE_MASK;
1508 if (nr <= offset)
1509 break;
1510 }
1511
6e58e79d
AV
1512 error = shmem_getpage(inode, index, &page, sgp, NULL);
1513 if (error) {
1514 if (error == -EINVAL)
1515 error = 0;
1da177e4
LT
1516 break;
1517 }
d3602444
HD
1518 if (page)
1519 unlock_page(page);
1da177e4
LT
1520
1521 /*
1522 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1523 * are called without i_mutex protection against truncate
1da177e4
LT
1524 */
1525 nr = PAGE_CACHE_SIZE;
1526 i_size = i_size_read(inode);
1527 end_index = i_size >> PAGE_CACHE_SHIFT;
1528 if (index == end_index) {
1529 nr = i_size & ~PAGE_CACHE_MASK;
1530 if (nr <= offset) {
1531 if (page)
1532 page_cache_release(page);
1533 break;
1534 }
1535 }
1536 nr -= offset;
1537
1538 if (page) {
1539 /*
1540 * If users can be writing to this page using arbitrary
1541 * virtual addresses, take care about potential aliasing
1542 * before reading the page on the kernel side.
1543 */
1544 if (mapping_writably_mapped(mapping))
1545 flush_dcache_page(page);
1546 /*
1547 * Mark the page accessed if we read the beginning.
1548 */
1549 if (!offset)
1550 mark_page_accessed(page);
b5810039 1551 } else {
1da177e4 1552 page = ZERO_PAGE(0);
b5810039
NP
1553 page_cache_get(page);
1554 }
1da177e4
LT
1555
1556 /*
1557 * Ok, we have the page, and it's up-to-date, so
1558 * now we can copy it to user space...
1da177e4 1559 */
2ba5bbed 1560 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1561 retval += ret;
1da177e4
LT
1562 offset += ret;
1563 index += offset >> PAGE_CACHE_SHIFT;
1564 offset &= ~PAGE_CACHE_MASK;
1565
1566 page_cache_release(page);
2ba5bbed 1567 if (!iov_iter_count(to))
1da177e4 1568 break;
6e58e79d
AV
1569 if (ret < nr) {
1570 error = -EFAULT;
1571 break;
1572 }
1da177e4
LT
1573 cond_resched();
1574 }
1575
1576 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1577 file_accessed(file);
1578 return retval ? retval : error;
1da177e4
LT
1579}
1580
708e3508
HD
1581static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 struct pipe_inode_info *pipe, size_t len,
1583 unsigned int flags)
1584{
1585 struct address_space *mapping = in->f_mapping;
71f0e07a 1586 struct inode *inode = mapping->host;
708e3508
HD
1587 unsigned int loff, nr_pages, req_pages;
1588 struct page *pages[PIPE_DEF_BUFFERS];
1589 struct partial_page partial[PIPE_DEF_BUFFERS];
1590 struct page *page;
1591 pgoff_t index, end_index;
1592 loff_t isize, left;
1593 int error, page_nr;
1594 struct splice_pipe_desc spd = {
1595 .pages = pages,
1596 .partial = partial,
047fe360 1597 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1598 .flags = flags,
1599 .ops = &page_cache_pipe_buf_ops,
1600 .spd_release = spd_release_page,
1601 };
1602
71f0e07a 1603 isize = i_size_read(inode);
708e3508
HD
1604 if (unlikely(*ppos >= isize))
1605 return 0;
1606
1607 left = isize - *ppos;
1608 if (unlikely(left < len))
1609 len = left;
1610
1611 if (splice_grow_spd(pipe, &spd))
1612 return -ENOMEM;
1613
1614 index = *ppos >> PAGE_CACHE_SHIFT;
1615 loff = *ppos & ~PAGE_CACHE_MASK;
1616 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1617 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1618
708e3508
HD
1619 spd.nr_pages = find_get_pages_contig(mapping, index,
1620 nr_pages, spd.pages);
1621 index += spd.nr_pages;
708e3508 1622 error = 0;
708e3508 1623
71f0e07a 1624 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1625 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626 if (error)
1627 break;
1628 unlock_page(page);
708e3508
HD
1629 spd.pages[spd.nr_pages++] = page;
1630 index++;
1631 }
1632
708e3508
HD
1633 index = *ppos >> PAGE_CACHE_SHIFT;
1634 nr_pages = spd.nr_pages;
1635 spd.nr_pages = 0;
71f0e07a 1636
708e3508
HD
1637 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638 unsigned int this_len;
1639
1640 if (!len)
1641 break;
1642
708e3508
HD
1643 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644 page = spd.pages[page_nr];
1645
71f0e07a 1646 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1647 error = shmem_getpage(inode, index, &page,
1648 SGP_CACHE, NULL);
1649 if (error)
708e3508 1650 break;
71f0e07a
HD
1651 unlock_page(page);
1652 page_cache_release(spd.pages[page_nr]);
1653 spd.pages[page_nr] = page;
708e3508 1654 }
71f0e07a
HD
1655
1656 isize = i_size_read(inode);
708e3508
HD
1657 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658 if (unlikely(!isize || index > end_index))
1659 break;
1660
708e3508
HD
1661 if (end_index == index) {
1662 unsigned int plen;
1663
708e3508
HD
1664 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665 if (plen <= loff)
1666 break;
1667
708e3508
HD
1668 this_len = min(this_len, plen - loff);
1669 len = this_len;
1670 }
1671
1672 spd.partial[page_nr].offset = loff;
1673 spd.partial[page_nr].len = this_len;
1674 len -= this_len;
1675 loff = 0;
1676 spd.nr_pages++;
1677 index++;
1678 }
1679
708e3508
HD
1680 while (page_nr < nr_pages)
1681 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1682
1683 if (spd.nr_pages)
1684 error = splice_to_pipe(pipe, &spd);
1685
047fe360 1686 splice_shrink_spd(&spd);
708e3508
HD
1687
1688 if (error > 0) {
1689 *ppos += error;
1690 file_accessed(in);
1691 }
1692 return error;
1693}
1694
220f2ac9
HD
1695/*
1696 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697 */
1698static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1699 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1700{
1701 struct page *page;
1702 struct pagevec pvec;
1703 pgoff_t indices[PAGEVEC_SIZE];
1704 bool done = false;
1705 int i;
1706
1707 pagevec_init(&pvec, 0);
1708 pvec.nr = 1; /* start small: we may be there already */
1709 while (!done) {
0cd6144a 1710 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1711 pvec.nr, pvec.pages, indices);
1712 if (!pvec.nr) {
965c8e59 1713 if (whence == SEEK_DATA)
220f2ac9
HD
1714 index = end;
1715 break;
1716 }
1717 for (i = 0; i < pvec.nr; i++, index++) {
1718 if (index < indices[i]) {
965c8e59 1719 if (whence == SEEK_HOLE) {
220f2ac9
HD
1720 done = true;
1721 break;
1722 }
1723 index = indices[i];
1724 }
1725 page = pvec.pages[i];
1726 if (page && !radix_tree_exceptional_entry(page)) {
1727 if (!PageUptodate(page))
1728 page = NULL;
1729 }
1730 if (index >= end ||
965c8e59
AM
1731 (page && whence == SEEK_DATA) ||
1732 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1733 done = true;
1734 break;
1735 }
1736 }
0cd6144a 1737 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1738 pagevec_release(&pvec);
1739 pvec.nr = PAGEVEC_SIZE;
1740 cond_resched();
1741 }
1742 return index;
1743}
1744
965c8e59 1745static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1746{
1747 struct address_space *mapping = file->f_mapping;
1748 struct inode *inode = mapping->host;
1749 pgoff_t start, end;
1750 loff_t new_offset;
1751
965c8e59
AM
1752 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1753 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1754 MAX_LFS_FILESIZE, i_size_read(inode));
1755 mutex_lock(&inode->i_mutex);
1756 /* We're holding i_mutex so we can access i_size directly */
1757
1758 if (offset < 0)
1759 offset = -EINVAL;
1760 else if (offset >= inode->i_size)
1761 offset = -ENXIO;
1762 else {
1763 start = offset >> PAGE_CACHE_SHIFT;
1764 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1765 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1766 new_offset <<= PAGE_CACHE_SHIFT;
1767 if (new_offset > offset) {
1768 if (new_offset < inode->i_size)
1769 offset = new_offset;
965c8e59 1770 else if (whence == SEEK_DATA)
220f2ac9
HD
1771 offset = -ENXIO;
1772 else
1773 offset = inode->i_size;
1774 }
1775 }
1776
387aae6f
HD
1777 if (offset >= 0)
1778 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1779 mutex_unlock(&inode->i_mutex);
1780 return offset;
1781}
1782
83e4fa9c
HD
1783static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1784 loff_t len)
1785{
496ad9aa 1786 struct inode *inode = file_inode(file);
e2d12e22 1787 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1788 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1789 pgoff_t start, index, end;
1790 int error;
83e4fa9c 1791
13ace4d0
HD
1792 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1793 return -EOPNOTSUPP;
1794
83e4fa9c
HD
1795 mutex_lock(&inode->i_mutex);
1796
1797 if (mode & FALLOC_FL_PUNCH_HOLE) {
1798 struct address_space *mapping = file->f_mapping;
1799 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1800 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 1801 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 1802
8e205f77 1803 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
1804 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1805 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1806 spin_lock(&inode->i_lock);
1807 inode->i_private = &shmem_falloc;
1808 spin_unlock(&inode->i_lock);
1809
83e4fa9c
HD
1810 if ((u64)unmap_end > (u64)unmap_start)
1811 unmap_mapping_range(mapping, unmap_start,
1812 1 + unmap_end - unmap_start, 0);
1813 shmem_truncate_range(inode, offset, offset + len - 1);
1814 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
1815
1816 spin_lock(&inode->i_lock);
1817 inode->i_private = NULL;
1818 wake_up_all(&shmem_falloc_waitq);
1819 spin_unlock(&inode->i_lock);
83e4fa9c 1820 error = 0;
8e205f77 1821 goto out;
e2d12e22
HD
1822 }
1823
1824 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1825 error = inode_newsize_ok(inode, offset + len);
1826 if (error)
1827 goto out;
1828
1829 start = offset >> PAGE_CACHE_SHIFT;
1830 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1831 /* Try to avoid a swapstorm if len is impossible to satisfy */
1832 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1833 error = -ENOSPC;
1834 goto out;
83e4fa9c
HD
1835 }
1836
8e205f77 1837 shmem_falloc.waitq = NULL;
1aac1400
HD
1838 shmem_falloc.start = start;
1839 shmem_falloc.next = start;
1840 shmem_falloc.nr_falloced = 0;
1841 shmem_falloc.nr_unswapped = 0;
1842 spin_lock(&inode->i_lock);
1843 inode->i_private = &shmem_falloc;
1844 spin_unlock(&inode->i_lock);
1845
e2d12e22
HD
1846 for (index = start; index < end; index++) {
1847 struct page *page;
1848
1849 /*
1850 * Good, the fallocate(2) manpage permits EINTR: we may have
1851 * been interrupted because we are using up too much memory.
1852 */
1853 if (signal_pending(current))
1854 error = -EINTR;
1aac1400
HD
1855 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1856 error = -ENOMEM;
e2d12e22 1857 else
1635f6a7 1858 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1859 NULL);
1860 if (error) {
1635f6a7
HD
1861 /* Remove the !PageUptodate pages we added */
1862 shmem_undo_range(inode,
1863 (loff_t)start << PAGE_CACHE_SHIFT,
1864 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1865 goto undone;
e2d12e22
HD
1866 }
1867
1aac1400
HD
1868 /*
1869 * Inform shmem_writepage() how far we have reached.
1870 * No need for lock or barrier: we have the page lock.
1871 */
1872 shmem_falloc.next++;
1873 if (!PageUptodate(page))
1874 shmem_falloc.nr_falloced++;
1875
e2d12e22 1876 /*
1635f6a7
HD
1877 * If !PageUptodate, leave it that way so that freeable pages
1878 * can be recognized if we need to rollback on error later.
1879 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1880 * than free the pages we are allocating (and SGP_CACHE pages
1881 * might still be clean: we now need to mark those dirty too).
1882 */
1883 set_page_dirty(page);
1884 unlock_page(page);
1885 page_cache_release(page);
1886 cond_resched();
1887 }
1888
1889 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1890 i_size_write(inode, offset + len);
e2d12e22 1891 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1892undone:
1893 spin_lock(&inode->i_lock);
1894 inode->i_private = NULL;
1895 spin_unlock(&inode->i_lock);
e2d12e22 1896out:
83e4fa9c
HD
1897 mutex_unlock(&inode->i_mutex);
1898 return error;
1899}
1900
726c3342 1901static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1902{
726c3342 1903 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1904
1905 buf->f_type = TMPFS_MAGIC;
1906 buf->f_bsize = PAGE_CACHE_SIZE;
1907 buf->f_namelen = NAME_MAX;
0edd73b3 1908 if (sbinfo->max_blocks) {
1da177e4 1909 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1910 buf->f_bavail =
1911 buf->f_bfree = sbinfo->max_blocks -
1912 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1913 }
1914 if (sbinfo->max_inodes) {
1da177e4
LT
1915 buf->f_files = sbinfo->max_inodes;
1916 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1917 }
1918 /* else leave those fields 0 like simple_statfs */
1919 return 0;
1920}
1921
1922/*
1923 * File creation. Allocate an inode, and we're done..
1924 */
1925static int
1a67aafb 1926shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1927{
0b0a0806 1928 struct inode *inode;
1da177e4
LT
1929 int error = -ENOSPC;
1930
454abafe 1931 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1932 if (inode) {
feda821e
CH
1933 error = simple_acl_create(dir, inode);
1934 if (error)
1935 goto out_iput;
2a7dba39 1936 error = security_inode_init_security(inode, dir,
9d8f13ba 1937 &dentry->d_name,
6d9d88d0 1938 shmem_initxattrs, NULL);
feda821e
CH
1939 if (error && error != -EOPNOTSUPP)
1940 goto out_iput;
37ec43cd 1941
718deb6b 1942 error = 0;
1da177e4
LT
1943 dir->i_size += BOGO_DIRENT_SIZE;
1944 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1945 d_instantiate(dentry, inode);
1946 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1947 }
1948 return error;
feda821e
CH
1949out_iput:
1950 iput(inode);
1951 return error;
1da177e4
LT
1952}
1953
60545d0d
AV
1954static int
1955shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1956{
1957 struct inode *inode;
1958 int error = -ENOSPC;
1959
1960 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1961 if (inode) {
1962 error = security_inode_init_security(inode, dir,
1963 NULL,
1964 shmem_initxattrs, NULL);
feda821e
CH
1965 if (error && error != -EOPNOTSUPP)
1966 goto out_iput;
1967 error = simple_acl_create(dir, inode);
1968 if (error)
1969 goto out_iput;
60545d0d
AV
1970 d_tmpfile(dentry, inode);
1971 }
1972 return error;
feda821e
CH
1973out_iput:
1974 iput(inode);
1975 return error;
60545d0d
AV
1976}
1977
18bb1db3 1978static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1979{
1980 int error;
1981
1982 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1983 return error;
d8c76e6f 1984 inc_nlink(dir);
1da177e4
LT
1985 return 0;
1986}
1987
4acdaf27 1988static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 1989 bool excl)
1da177e4
LT
1990{
1991 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1992}
1993
1994/*
1995 * Link a file..
1996 */
1997static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1998{
1999 struct inode *inode = old_dentry->d_inode;
5b04c689 2000 int ret;
1da177e4
LT
2001
2002 /*
2003 * No ordinary (disk based) filesystem counts links as inodes;
2004 * but each new link needs a new dentry, pinning lowmem, and
2005 * tmpfs dentries cannot be pruned until they are unlinked.
2006 */
5b04c689
PE
2007 ret = shmem_reserve_inode(inode->i_sb);
2008 if (ret)
2009 goto out;
1da177e4
LT
2010
2011 dir->i_size += BOGO_DIRENT_SIZE;
2012 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2013 inc_nlink(inode);
7de9c6ee 2014 ihold(inode); /* New dentry reference */
1da177e4
LT
2015 dget(dentry); /* Extra pinning count for the created dentry */
2016 d_instantiate(dentry, inode);
5b04c689
PE
2017out:
2018 return ret;
1da177e4
LT
2019}
2020
2021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2022{
2023 struct inode *inode = dentry->d_inode;
2024
5b04c689
PE
2025 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2026 shmem_free_inode(inode->i_sb);
1da177e4
LT
2027
2028 dir->i_size -= BOGO_DIRENT_SIZE;
2029 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2030 drop_nlink(inode);
1da177e4
LT
2031 dput(dentry); /* Undo the count from "create" - this does all the work */
2032 return 0;
2033}
2034
2035static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2036{
2037 if (!simple_empty(dentry))
2038 return -ENOTEMPTY;
2039
9a53c3a7
DH
2040 drop_nlink(dentry->d_inode);
2041 drop_nlink(dir);
1da177e4
LT
2042 return shmem_unlink(dir, dentry);
2043}
2044
2045/*
2046 * The VFS layer already does all the dentry stuff for rename,
2047 * we just have to decrement the usage count for the target if
2048 * it exists so that the VFS layer correctly free's it when it
2049 * gets overwritten.
2050 */
2051static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2052{
2053 struct inode *inode = old_dentry->d_inode;
2054 int they_are_dirs = S_ISDIR(inode->i_mode);
2055
2056 if (!simple_empty(new_dentry))
2057 return -ENOTEMPTY;
2058
2059 if (new_dentry->d_inode) {
2060 (void) shmem_unlink(new_dir, new_dentry);
2061 if (they_are_dirs)
9a53c3a7 2062 drop_nlink(old_dir);
1da177e4 2063 } else if (they_are_dirs) {
9a53c3a7 2064 drop_nlink(old_dir);
d8c76e6f 2065 inc_nlink(new_dir);
1da177e4
LT
2066 }
2067
2068 old_dir->i_size -= BOGO_DIRENT_SIZE;
2069 new_dir->i_size += BOGO_DIRENT_SIZE;
2070 old_dir->i_ctime = old_dir->i_mtime =
2071 new_dir->i_ctime = new_dir->i_mtime =
2072 inode->i_ctime = CURRENT_TIME;
2073 return 0;
2074}
2075
2076static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2077{
2078 int error;
2079 int len;
2080 struct inode *inode;
9276aad6 2081 struct page *page;
1da177e4
LT
2082 char *kaddr;
2083 struct shmem_inode_info *info;
2084
2085 len = strlen(symname) + 1;
2086 if (len > PAGE_CACHE_SIZE)
2087 return -ENAMETOOLONG;
2088
454abafe 2089 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2090 if (!inode)
2091 return -ENOSPC;
2092
9d8f13ba 2093 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2094 shmem_initxattrs, NULL);
570bc1c2
SS
2095 if (error) {
2096 if (error != -EOPNOTSUPP) {
2097 iput(inode);
2098 return error;
2099 }
2100 error = 0;
2101 }
2102
1da177e4
LT
2103 info = SHMEM_I(inode);
2104 inode->i_size = len-1;
69f07ec9
HD
2105 if (len <= SHORT_SYMLINK_LEN) {
2106 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2107 if (!info->symlink) {
2108 iput(inode);
2109 return -ENOMEM;
2110 }
2111 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2112 } else {
2113 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2114 if (error) {
2115 iput(inode);
2116 return error;
2117 }
14fcc23f 2118 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2119 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2120 kaddr = kmap_atomic(page);
1da177e4 2121 memcpy(kaddr, symname, len);
9b04c5fe 2122 kunmap_atomic(kaddr);
ec9516fb 2123 SetPageUptodate(page);
1da177e4 2124 set_page_dirty(page);
6746aff7 2125 unlock_page(page);
1da177e4
LT
2126 page_cache_release(page);
2127 }
1da177e4
LT
2128 dir->i_size += BOGO_DIRENT_SIZE;
2129 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2130 d_instantiate(dentry, inode);
2131 dget(dentry);
2132 return 0;
2133}
2134
69f07ec9 2135static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2136{
69f07ec9 2137 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2138 return NULL;
1da177e4
LT
2139}
2140
cc314eef 2141static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2142{
2143 struct page *page = NULL;
41ffe5d5
HD
2144 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2145 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2146 if (page)
2147 unlock_page(page);
cc314eef 2148 return page;
1da177e4
LT
2149}
2150
cc314eef 2151static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2152{
2153 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2154 struct page *page = cookie;
1da177e4
LT
2155 kunmap(page);
2156 mark_page_accessed(page);
2157 page_cache_release(page);
1da177e4
LT
2158 }
2159}
2160
b09e0fa4 2161#ifdef CONFIG_TMPFS_XATTR
46711810 2162/*
b09e0fa4
EP
2163 * Superblocks without xattr inode operations may get some security.* xattr
2164 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2165 * like ACLs, we also need to implement the security.* handlers at
2166 * filesystem level, though.
2167 */
2168
6d9d88d0
JS
2169/*
2170 * Callback for security_inode_init_security() for acquiring xattrs.
2171 */
2172static int shmem_initxattrs(struct inode *inode,
2173 const struct xattr *xattr_array,
2174 void *fs_info)
2175{
2176 struct shmem_inode_info *info = SHMEM_I(inode);
2177 const struct xattr *xattr;
38f38657 2178 struct simple_xattr *new_xattr;
6d9d88d0
JS
2179 size_t len;
2180
2181 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2182 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2183 if (!new_xattr)
2184 return -ENOMEM;
2185
2186 len = strlen(xattr->name) + 1;
2187 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2188 GFP_KERNEL);
2189 if (!new_xattr->name) {
2190 kfree(new_xattr);
2191 return -ENOMEM;
2192 }
2193
2194 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2195 XATTR_SECURITY_PREFIX_LEN);
2196 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2197 xattr->name, len);
2198
38f38657 2199 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2200 }
2201
2202 return 0;
2203}
2204
bb435453 2205static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2206#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2207 &posix_acl_access_xattr_handler,
2208 &posix_acl_default_xattr_handler,
b09e0fa4 2209#endif
39f0247d
AG
2210 NULL
2211};
b09e0fa4
EP
2212
2213static int shmem_xattr_validate(const char *name)
2214{
2215 struct { const char *prefix; size_t len; } arr[] = {
2216 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2217 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2218 };
2219 int i;
2220
2221 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2222 size_t preflen = arr[i].len;
2223 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2224 if (!name[preflen])
2225 return -EINVAL;
2226 return 0;
2227 }
2228 }
2229 return -EOPNOTSUPP;
2230}
2231
2232static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2233 void *buffer, size_t size)
2234{
38f38657 2235 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2236 int err;
2237
2238 /*
2239 * If this is a request for a synthetic attribute in the system.*
2240 * namespace use the generic infrastructure to resolve a handler
2241 * for it via sb->s_xattr.
2242 */
2243 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2244 return generic_getxattr(dentry, name, buffer, size);
2245
2246 err = shmem_xattr_validate(name);
2247 if (err)
2248 return err;
2249
38f38657 2250 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2251}
2252
2253static int shmem_setxattr(struct dentry *dentry, const char *name,
2254 const void *value, size_t size, int flags)
2255{
38f38657 2256 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2257 int err;
2258
2259 /*
2260 * If this is a request for a synthetic attribute in the system.*
2261 * namespace use the generic infrastructure to resolve a handler
2262 * for it via sb->s_xattr.
2263 */
2264 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2265 return generic_setxattr(dentry, name, value, size, flags);
2266
2267 err = shmem_xattr_validate(name);
2268 if (err)
2269 return err;
2270
38f38657 2271 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2272}
2273
2274static int shmem_removexattr(struct dentry *dentry, const char *name)
2275{
38f38657 2276 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2277 int err;
2278
2279 /*
2280 * If this is a request for a synthetic attribute in the system.*
2281 * namespace use the generic infrastructure to resolve a handler
2282 * for it via sb->s_xattr.
2283 */
2284 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2285 return generic_removexattr(dentry, name);
2286
2287 err = shmem_xattr_validate(name);
2288 if (err)
2289 return err;
2290
38f38657 2291 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2292}
2293
2294static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2295{
38f38657
AR
2296 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2297 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2298}
2299#endif /* CONFIG_TMPFS_XATTR */
2300
69f07ec9 2301static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2302 .readlink = generic_readlink,
69f07ec9 2303 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2304#ifdef CONFIG_TMPFS_XATTR
2305 .setxattr = shmem_setxattr,
2306 .getxattr = shmem_getxattr,
2307 .listxattr = shmem_listxattr,
2308 .removexattr = shmem_removexattr,
2309#endif
2310};
2311
2312static const struct inode_operations shmem_symlink_inode_operations = {
2313 .readlink = generic_readlink,
2314 .follow_link = shmem_follow_link,
2315 .put_link = shmem_put_link,
2316#ifdef CONFIG_TMPFS_XATTR
2317 .setxattr = shmem_setxattr,
2318 .getxattr = shmem_getxattr,
2319 .listxattr = shmem_listxattr,
2320 .removexattr = shmem_removexattr,
39f0247d 2321#endif
b09e0fa4 2322};
39f0247d 2323
91828a40
DG
2324static struct dentry *shmem_get_parent(struct dentry *child)
2325{
2326 return ERR_PTR(-ESTALE);
2327}
2328
2329static int shmem_match(struct inode *ino, void *vfh)
2330{
2331 __u32 *fh = vfh;
2332 __u64 inum = fh[2];
2333 inum = (inum << 32) | fh[1];
2334 return ino->i_ino == inum && fh[0] == ino->i_generation;
2335}
2336
480b116c
CH
2337static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2338 struct fid *fid, int fh_len, int fh_type)
91828a40 2339{
91828a40 2340 struct inode *inode;
480b116c 2341 struct dentry *dentry = NULL;
35c2a7f4 2342 u64 inum;
480b116c
CH
2343
2344 if (fh_len < 3)
2345 return NULL;
91828a40 2346
35c2a7f4
HD
2347 inum = fid->raw[2];
2348 inum = (inum << 32) | fid->raw[1];
2349
480b116c
CH
2350 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2351 shmem_match, fid->raw);
91828a40 2352 if (inode) {
480b116c 2353 dentry = d_find_alias(inode);
91828a40
DG
2354 iput(inode);
2355 }
2356
480b116c 2357 return dentry;
91828a40
DG
2358}
2359
b0b0382b
AV
2360static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2361 struct inode *parent)
91828a40 2362{
5fe0c237
AK
2363 if (*len < 3) {
2364 *len = 3;
94e07a75 2365 return FILEID_INVALID;
5fe0c237 2366 }
91828a40 2367
1d3382cb 2368 if (inode_unhashed(inode)) {
91828a40
DG
2369 /* Unfortunately insert_inode_hash is not idempotent,
2370 * so as we hash inodes here rather than at creation
2371 * time, we need a lock to ensure we only try
2372 * to do it once
2373 */
2374 static DEFINE_SPINLOCK(lock);
2375 spin_lock(&lock);
1d3382cb 2376 if (inode_unhashed(inode))
91828a40
DG
2377 __insert_inode_hash(inode,
2378 inode->i_ino + inode->i_generation);
2379 spin_unlock(&lock);
2380 }
2381
2382 fh[0] = inode->i_generation;
2383 fh[1] = inode->i_ino;
2384 fh[2] = ((__u64)inode->i_ino) >> 32;
2385
2386 *len = 3;
2387 return 1;
2388}
2389
39655164 2390static const struct export_operations shmem_export_ops = {
91828a40 2391 .get_parent = shmem_get_parent,
91828a40 2392 .encode_fh = shmem_encode_fh,
480b116c 2393 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2394};
2395
680d794b 2396static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2397 bool remount)
1da177e4
LT
2398{
2399 char *this_char, *value, *rest;
49cd0a5c 2400 struct mempolicy *mpol = NULL;
8751e039
EB
2401 uid_t uid;
2402 gid_t gid;
1da177e4 2403
b00dc3ad
HD
2404 while (options != NULL) {
2405 this_char = options;
2406 for (;;) {
2407 /*
2408 * NUL-terminate this option: unfortunately,
2409 * mount options form a comma-separated list,
2410 * but mpol's nodelist may also contain commas.
2411 */
2412 options = strchr(options, ',');
2413 if (options == NULL)
2414 break;
2415 options++;
2416 if (!isdigit(*options)) {
2417 options[-1] = '\0';
2418 break;
2419 }
2420 }
1da177e4
LT
2421 if (!*this_char)
2422 continue;
2423 if ((value = strchr(this_char,'=')) != NULL) {
2424 *value++ = 0;
2425 } else {
2426 printk(KERN_ERR
2427 "tmpfs: No value for mount option '%s'\n",
2428 this_char);
49cd0a5c 2429 goto error;
1da177e4
LT
2430 }
2431
2432 if (!strcmp(this_char,"size")) {
2433 unsigned long long size;
2434 size = memparse(value,&rest);
2435 if (*rest == '%') {
2436 size <<= PAGE_SHIFT;
2437 size *= totalram_pages;
2438 do_div(size, 100);
2439 rest++;
2440 }
2441 if (*rest)
2442 goto bad_val;
680d794b 2443 sbinfo->max_blocks =
2444 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2445 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2446 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2447 if (*rest)
2448 goto bad_val;
2449 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2450 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2451 if (*rest)
2452 goto bad_val;
2453 } else if (!strcmp(this_char,"mode")) {
680d794b 2454 if (remount)
1da177e4 2455 continue;
680d794b 2456 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2457 if (*rest)
2458 goto bad_val;
2459 } else if (!strcmp(this_char,"uid")) {
680d794b 2460 if (remount)
1da177e4 2461 continue;
8751e039 2462 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2463 if (*rest)
2464 goto bad_val;
8751e039
EB
2465 sbinfo->uid = make_kuid(current_user_ns(), uid);
2466 if (!uid_valid(sbinfo->uid))
2467 goto bad_val;
1da177e4 2468 } else if (!strcmp(this_char,"gid")) {
680d794b 2469 if (remount)
1da177e4 2470 continue;
8751e039 2471 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2472 if (*rest)
2473 goto bad_val;
8751e039
EB
2474 sbinfo->gid = make_kgid(current_user_ns(), gid);
2475 if (!gid_valid(sbinfo->gid))
2476 goto bad_val;
7339ff83 2477 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2478 mpol_put(mpol);
2479 mpol = NULL;
2480 if (mpol_parse_str(value, &mpol))
7339ff83 2481 goto bad_val;
1da177e4
LT
2482 } else {
2483 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2484 this_char);
49cd0a5c 2485 goto error;
1da177e4
LT
2486 }
2487 }
49cd0a5c 2488 sbinfo->mpol = mpol;
1da177e4
LT
2489 return 0;
2490
2491bad_val:
2492 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2493 value, this_char);
49cd0a5c
GT
2494error:
2495 mpol_put(mpol);
1da177e4
LT
2496 return 1;
2497
2498}
2499
2500static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2501{
2502 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2503 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2504 unsigned long inodes;
2505 int error = -EINVAL;
2506
5f00110f 2507 config.mpol = NULL;
680d794b 2508 if (shmem_parse_options(data, &config, true))
0edd73b3 2509 return error;
1da177e4 2510
0edd73b3 2511 spin_lock(&sbinfo->stat_lock);
0edd73b3 2512 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2513 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2514 goto out;
680d794b 2515 if (config.max_inodes < inodes)
0edd73b3
HD
2516 goto out;
2517 /*
54af6042 2518 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2519 * but we must separately disallow unlimited->limited, because
2520 * in that case we have no record of how much is already in use.
2521 */
680d794b 2522 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2523 goto out;
680d794b 2524 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2525 goto out;
2526
2527 error = 0;
680d794b 2528 sbinfo->max_blocks = config.max_blocks;
680d794b 2529 sbinfo->max_inodes = config.max_inodes;
2530 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2531
5f00110f
GT
2532 /*
2533 * Preserve previous mempolicy unless mpol remount option was specified.
2534 */
2535 if (config.mpol) {
2536 mpol_put(sbinfo->mpol);
2537 sbinfo->mpol = config.mpol; /* transfers initial ref */
2538 }
0edd73b3
HD
2539out:
2540 spin_unlock(&sbinfo->stat_lock);
2541 return error;
1da177e4 2542}
680d794b 2543
34c80b1d 2544static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2545{
34c80b1d 2546 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2547
2548 if (sbinfo->max_blocks != shmem_default_max_blocks())
2549 seq_printf(seq, ",size=%luk",
2550 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2551 if (sbinfo->max_inodes != shmem_default_max_inodes())
2552 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2553 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2554 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2555 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2556 seq_printf(seq, ",uid=%u",
2557 from_kuid_munged(&init_user_ns, sbinfo->uid));
2558 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2559 seq_printf(seq, ",gid=%u",
2560 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2561 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2562 return 0;
2563}
2564#endif /* CONFIG_TMPFS */
1da177e4
LT
2565
2566static void shmem_put_super(struct super_block *sb)
2567{
602586a8
HD
2568 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2569
2570 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2571 mpol_put(sbinfo->mpol);
602586a8 2572 kfree(sbinfo);
1da177e4
LT
2573 sb->s_fs_info = NULL;
2574}
2575
2b2af54a 2576int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2577{
2578 struct inode *inode;
0edd73b3 2579 struct shmem_sb_info *sbinfo;
680d794b 2580 int err = -ENOMEM;
2581
2582 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2583 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2584 L1_CACHE_BYTES), GFP_KERNEL);
2585 if (!sbinfo)
2586 return -ENOMEM;
2587
680d794b 2588 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2589 sbinfo->uid = current_fsuid();
2590 sbinfo->gid = current_fsgid();
680d794b 2591 sb->s_fs_info = sbinfo;
1da177e4 2592
0edd73b3 2593#ifdef CONFIG_TMPFS
1da177e4
LT
2594 /*
2595 * Per default we only allow half of the physical ram per
2596 * tmpfs instance, limiting inodes to one per page of lowmem;
2597 * but the internal instance is left unlimited.
2598 */
ca4e0519 2599 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 2600 sbinfo->max_blocks = shmem_default_max_blocks();
2601 sbinfo->max_inodes = shmem_default_max_inodes();
2602 if (shmem_parse_options(data, sbinfo, false)) {
2603 err = -EINVAL;
2604 goto failed;
2605 }
ca4e0519
AV
2606 } else {
2607 sb->s_flags |= MS_NOUSER;
1da177e4 2608 }
91828a40 2609 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2610 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2611#else
2612 sb->s_flags |= MS_NOUSER;
2613#endif
2614
0edd73b3 2615 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2616 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2617 goto failed;
680d794b 2618 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2619
285b2c4f 2620 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2621 sb->s_blocksize = PAGE_CACHE_SIZE;
2622 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2623 sb->s_magic = TMPFS_MAGIC;
2624 sb->s_op = &shmem_ops;
cfd95a9c 2625 sb->s_time_gran = 1;
b09e0fa4 2626#ifdef CONFIG_TMPFS_XATTR
39f0247d 2627 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2628#endif
2629#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2630 sb->s_flags |= MS_POSIXACL;
2631#endif
0edd73b3 2632
454abafe 2633 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2634 if (!inode)
2635 goto failed;
680d794b 2636 inode->i_uid = sbinfo->uid;
2637 inode->i_gid = sbinfo->gid;
318ceed0
AV
2638 sb->s_root = d_make_root(inode);
2639 if (!sb->s_root)
48fde701 2640 goto failed;
1da177e4
LT
2641 return 0;
2642
1da177e4
LT
2643failed:
2644 shmem_put_super(sb);
2645 return err;
2646}
2647
fcc234f8 2648static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2649
2650static struct inode *shmem_alloc_inode(struct super_block *sb)
2651{
41ffe5d5
HD
2652 struct shmem_inode_info *info;
2653 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2654 if (!info)
1da177e4 2655 return NULL;
41ffe5d5 2656 return &info->vfs_inode;
1da177e4
LT
2657}
2658
41ffe5d5 2659static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2660{
2661 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2662 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2663}
2664
1da177e4
LT
2665static void shmem_destroy_inode(struct inode *inode)
2666{
09208d15 2667 if (S_ISREG(inode->i_mode))
1da177e4 2668 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2669 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2670}
2671
41ffe5d5 2672static void shmem_init_inode(void *foo)
1da177e4 2673{
41ffe5d5
HD
2674 struct shmem_inode_info *info = foo;
2675 inode_init_once(&info->vfs_inode);
1da177e4
LT
2676}
2677
41ffe5d5 2678static int shmem_init_inodecache(void)
1da177e4
LT
2679{
2680 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2681 sizeof(struct shmem_inode_info),
41ffe5d5 2682 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2683 return 0;
2684}
2685
41ffe5d5 2686static void shmem_destroy_inodecache(void)
1da177e4 2687{
1a1d92c1 2688 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2689}
2690
f5e54d6e 2691static const struct address_space_operations shmem_aops = {
1da177e4 2692 .writepage = shmem_writepage,
76719325 2693 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2694#ifdef CONFIG_TMPFS
800d15a5
NP
2695 .write_begin = shmem_write_begin,
2696 .write_end = shmem_write_end,
1da177e4 2697#endif
304dbdb7 2698 .migratepage = migrate_page,
aa261f54 2699 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2700};
2701
15ad7cdc 2702static const struct file_operations shmem_file_operations = {
1da177e4
LT
2703 .mmap = shmem_mmap,
2704#ifdef CONFIG_TMPFS
220f2ac9 2705 .llseek = shmem_file_llseek,
2ba5bbed 2706 .read = new_sync_read,
8174202b 2707 .write = new_sync_write,
2ba5bbed 2708 .read_iter = shmem_file_read_iter,
8174202b 2709 .write_iter = generic_file_write_iter,
1b061d92 2710 .fsync = noop_fsync,
708e3508 2711 .splice_read = shmem_file_splice_read,
f6cb85d0 2712 .splice_write = iter_file_splice_write,
83e4fa9c 2713 .fallocate = shmem_fallocate,
1da177e4
LT
2714#endif
2715};
2716
92e1d5be 2717static const struct inode_operations shmem_inode_operations = {
94c1e62d 2718 .setattr = shmem_setattr,
b09e0fa4
EP
2719#ifdef CONFIG_TMPFS_XATTR
2720 .setxattr = shmem_setxattr,
2721 .getxattr = shmem_getxattr,
2722 .listxattr = shmem_listxattr,
2723 .removexattr = shmem_removexattr,
feda821e 2724 .set_acl = simple_set_acl,
b09e0fa4 2725#endif
1da177e4
LT
2726};
2727
92e1d5be 2728static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2729#ifdef CONFIG_TMPFS
2730 .create = shmem_create,
2731 .lookup = simple_lookup,
2732 .link = shmem_link,
2733 .unlink = shmem_unlink,
2734 .symlink = shmem_symlink,
2735 .mkdir = shmem_mkdir,
2736 .rmdir = shmem_rmdir,
2737 .mknod = shmem_mknod,
2738 .rename = shmem_rename,
60545d0d 2739 .tmpfile = shmem_tmpfile,
1da177e4 2740#endif
b09e0fa4
EP
2741#ifdef CONFIG_TMPFS_XATTR
2742 .setxattr = shmem_setxattr,
2743 .getxattr = shmem_getxattr,
2744 .listxattr = shmem_listxattr,
2745 .removexattr = shmem_removexattr,
2746#endif
39f0247d 2747#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2748 .setattr = shmem_setattr,
feda821e 2749 .set_acl = simple_set_acl,
39f0247d
AG
2750#endif
2751};
2752
92e1d5be 2753static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2754#ifdef CONFIG_TMPFS_XATTR
2755 .setxattr = shmem_setxattr,
2756 .getxattr = shmem_getxattr,
2757 .listxattr = shmem_listxattr,
2758 .removexattr = shmem_removexattr,
2759#endif
39f0247d 2760#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2761 .setattr = shmem_setattr,
feda821e 2762 .set_acl = simple_set_acl,
39f0247d 2763#endif
1da177e4
LT
2764};
2765
759b9775 2766static const struct super_operations shmem_ops = {
1da177e4
LT
2767 .alloc_inode = shmem_alloc_inode,
2768 .destroy_inode = shmem_destroy_inode,
2769#ifdef CONFIG_TMPFS
2770 .statfs = shmem_statfs,
2771 .remount_fs = shmem_remount_fs,
680d794b 2772 .show_options = shmem_show_options,
1da177e4 2773#endif
1f895f75 2774 .evict_inode = shmem_evict_inode,
1da177e4
LT
2775 .drop_inode = generic_delete_inode,
2776 .put_super = shmem_put_super,
2777};
2778
f0f37e2f 2779static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2780 .fault = shmem_fault,
d7c17551 2781 .map_pages = filemap_map_pages,
1da177e4
LT
2782#ifdef CONFIG_NUMA
2783 .set_policy = shmem_set_policy,
2784 .get_policy = shmem_get_policy,
2785#endif
0b173bc4 2786 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2787};
2788
3c26ff6e
AV
2789static struct dentry *shmem_mount(struct file_system_type *fs_type,
2790 int flags, const char *dev_name, void *data)
1da177e4 2791{
3c26ff6e 2792 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2793}
2794
41ffe5d5 2795static struct file_system_type shmem_fs_type = {
1da177e4
LT
2796 .owner = THIS_MODULE,
2797 .name = "tmpfs",
3c26ff6e 2798 .mount = shmem_mount,
1da177e4 2799 .kill_sb = kill_litter_super,
2b8576cb 2800 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2801};
1da177e4 2802
41ffe5d5 2803int __init shmem_init(void)
1da177e4
LT
2804{
2805 int error;
2806
16203a7a
RL
2807 /* If rootfs called this, don't re-init */
2808 if (shmem_inode_cachep)
2809 return 0;
2810
e0bf68dd
PZ
2811 error = bdi_init(&shmem_backing_dev_info);
2812 if (error)
2813 goto out4;
2814
41ffe5d5 2815 error = shmem_init_inodecache();
1da177e4
LT
2816 if (error)
2817 goto out3;
2818
41ffe5d5 2819 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2820 if (error) {
2821 printk(KERN_ERR "Could not register tmpfs\n");
2822 goto out2;
2823 }
95dc112a 2824
ca4e0519 2825 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
2826 if (IS_ERR(shm_mnt)) {
2827 error = PTR_ERR(shm_mnt);
2828 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2829 goto out1;
2830 }
2831 return 0;
2832
2833out1:
41ffe5d5 2834 unregister_filesystem(&shmem_fs_type);
1da177e4 2835out2:
41ffe5d5 2836 shmem_destroy_inodecache();
1da177e4 2837out3:
e0bf68dd
PZ
2838 bdi_destroy(&shmem_backing_dev_info);
2839out4:
1da177e4
LT
2840 shm_mnt = ERR_PTR(error);
2841 return error;
2842}
853ac43a
MM
2843
2844#else /* !CONFIG_SHMEM */
2845
2846/*
2847 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2848 *
2849 * This is intended for small system where the benefits of the full
2850 * shmem code (swap-backed and resource-limited) are outweighed by
2851 * their complexity. On systems without swap this code should be
2852 * effectively equivalent, but much lighter weight.
2853 */
2854
41ffe5d5 2855static struct file_system_type shmem_fs_type = {
853ac43a 2856 .name = "tmpfs",
3c26ff6e 2857 .mount = ramfs_mount,
853ac43a 2858 .kill_sb = kill_litter_super,
2b8576cb 2859 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2860};
2861
41ffe5d5 2862int __init shmem_init(void)
853ac43a 2863{
41ffe5d5 2864 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2865
41ffe5d5 2866 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2867 BUG_ON(IS_ERR(shm_mnt));
2868
2869 return 0;
2870}
2871
41ffe5d5 2872int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2873{
2874 return 0;
2875}
2876
3f96b79a
HD
2877int shmem_lock(struct file *file, int lock, struct user_struct *user)
2878{
2879 return 0;
2880}
2881
24513264
HD
2882void shmem_unlock_mapping(struct address_space *mapping)
2883{
2884}
2885
41ffe5d5 2886void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2887{
41ffe5d5 2888 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2889}
2890EXPORT_SYMBOL_GPL(shmem_truncate_range);
2891
0b0a0806
HD
2892#define shmem_vm_ops generic_file_vm_ops
2893#define shmem_file_operations ramfs_file_operations
454abafe 2894#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2895#define shmem_acct_size(flags, size) 0
2896#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2897
2898#endif /* CONFIG_SHMEM */
2899
2900/* common code */
1da177e4 2901
3451538a 2902static struct dentry_operations anon_ops = {
118b2302 2903 .d_dname = simple_dname
3451538a
AV
2904};
2905
c7277090
EP
2906static struct file *__shmem_file_setup(const char *name, loff_t size,
2907 unsigned long flags, unsigned int i_flags)
1da177e4 2908{
6b4d0b27 2909 struct file *res;
1da177e4 2910 struct inode *inode;
2c48b9c4 2911 struct path path;
3451538a 2912 struct super_block *sb;
1da177e4
LT
2913 struct qstr this;
2914
2915 if (IS_ERR(shm_mnt))
6b4d0b27 2916 return ERR_CAST(shm_mnt);
1da177e4 2917
285b2c4f 2918 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2919 return ERR_PTR(-EINVAL);
2920
2921 if (shmem_acct_size(flags, size))
2922 return ERR_PTR(-ENOMEM);
2923
6b4d0b27 2924 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2925 this.name = name;
2926 this.len = strlen(name);
2927 this.hash = 0; /* will go */
3451538a
AV
2928 sb = shm_mnt->mnt_sb;
2929 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2930 if (!path.dentry)
1da177e4 2931 goto put_memory;
3451538a 2932 d_set_d_op(path.dentry, &anon_ops);
2c48b9c4 2933 path.mnt = mntget(shm_mnt);
1da177e4 2934
6b4d0b27 2935 res = ERR_PTR(-ENOSPC);
3451538a 2936 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2937 if (!inode)
4b42af81 2938 goto put_dentry;
1da177e4 2939
c7277090 2940 inode->i_flags |= i_flags;
2c48b9c4 2941 d_instantiate(path.dentry, inode);
1da177e4 2942 inode->i_size = size;
6d6b77f1 2943 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
2944 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2945 if (IS_ERR(res))
4b42af81 2946 goto put_dentry;
4b42af81 2947
6b4d0b27 2948 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 2949 &shmem_file_operations);
6b4d0b27 2950 if (IS_ERR(res))
4b42af81
AV
2951 goto put_dentry;
2952
6b4d0b27 2953 return res;
1da177e4 2954
1da177e4 2955put_dentry:
2c48b9c4 2956 path_put(&path);
1da177e4
LT
2957put_memory:
2958 shmem_unacct_size(flags, size);
6b4d0b27 2959 return res;
1da177e4 2960}
c7277090
EP
2961
2962/**
2963 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2964 * kernel internal. There will be NO LSM permission checks against the
2965 * underlying inode. So users of this interface must do LSM checks at a
2966 * higher layer. The one user is the big_key implementation. LSM checks
2967 * are provided at the key level rather than the inode level.
2968 * @name: name for dentry (to be seen in /proc/<pid>/maps
2969 * @size: size to be set for the file
2970 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2971 */
2972struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2973{
2974 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2975}
2976
2977/**
2978 * shmem_file_setup - get an unlinked file living in tmpfs
2979 * @name: name for dentry (to be seen in /proc/<pid>/maps
2980 * @size: size to be set for the file
2981 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2982 */
2983struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2984{
2985 return __shmem_file_setup(name, size, flags, 0);
2986}
395e0ddc 2987EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2988
46711810 2989/**
1da177e4 2990 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2991 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2992 */
2993int shmem_zero_setup(struct vm_area_struct *vma)
2994{
2995 struct file *file;
2996 loff_t size = vma->vm_end - vma->vm_start;
2997
2998 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2999 if (IS_ERR(file))
3000 return PTR_ERR(file);
3001
3002 if (vma->vm_file)
3003 fput(vma->vm_file);
3004 vma->vm_file = file;
3005 vma->vm_ops = &shmem_vm_ops;
3006 return 0;
3007}
d9d90e5e
HD
3008
3009/**
3010 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3011 * @mapping: the page's address_space
3012 * @index: the page index
3013 * @gfp: the page allocator flags to use if allocating
3014 *
3015 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3016 * with any new page allocations done using the specified allocation flags.
3017 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3018 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3019 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3020 *
68da9f05
HD
3021 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3022 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3023 */
3024struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3025 pgoff_t index, gfp_t gfp)
3026{
68da9f05
HD
3027#ifdef CONFIG_SHMEM
3028 struct inode *inode = mapping->host;
9276aad6 3029 struct page *page;
68da9f05
HD
3030 int error;
3031
3032 BUG_ON(mapping->a_ops != &shmem_aops);
3033 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3034 if (error)
3035 page = ERR_PTR(error);
3036 else
3037 unlock_page(page);
3038 return page;
3039#else
3040 /*
3041 * The tiny !SHMEM case uses ramfs without swap
3042 */
d9d90e5e 3043 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3044#endif
d9d90e5e
HD
3045}
3046EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);