Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
174cd4b1 32#include <linux/sched/signal.h>
b95f1b31 33#include <linux/export.h>
853ac43a 34#include <linux/swap.h>
e2e40f2c 35#include <linux/uio.h>
f3f0e1d2 36#include <linux/khugepaged.h>
749df87b 37#include <linux/hugetlb.h>
853ac43a 38
95cc09d6
AA
39#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
853ac43a
MM
41static struct vfsmount *shm_mnt;
42
43#ifdef CONFIG_SHMEM
1da177e4
LT
44/*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
39f0247d 50#include <linux/xattr.h>
a5694255 51#include <linux/exportfs.h>
1c7c474c 52#include <linux/posix_acl.h>
feda821e 53#include <linux/posix_acl_xattr.h>
1da177e4 54#include <linux/mman.h>
1da177e4
LT
55#include <linux/string.h>
56#include <linux/slab.h>
57#include <linux/backing-dev.h>
58#include <linux/shmem_fs.h>
1da177e4 59#include <linux/writeback.h>
1da177e4 60#include <linux/blkdev.h>
bda97eab 61#include <linux/pagevec.h>
41ffe5d5 62#include <linux/percpu_counter.h>
83e4fa9c 63#include <linux/falloc.h>
708e3508 64#include <linux/splice.h>
1da177e4
LT
65#include <linux/security.h>
66#include <linux/swapops.h>
67#include <linux/mempolicy.h>
68#include <linux/namei.h>
b00dc3ad 69#include <linux/ctype.h>
304dbdb7 70#include <linux/migrate.h>
c1f60a5a 71#include <linux/highmem.h>
680d794b 72#include <linux/seq_file.h>
92562927 73#include <linux/magic.h>
9183df25 74#include <linux/syscalls.h>
40e041a2 75#include <linux/fcntl.h>
9183df25 76#include <uapi/linux/memfd.h>
cfda0526 77#include <linux/userfaultfd_k.h>
4c27fe4c 78#include <linux/rmap.h>
2b4db796 79#include <linux/uuid.h>
304dbdb7 80
7c0f6ba6 81#include <linux/uaccess.h>
1da177e4
LT
82#include <asm/pgtable.h>
83
dd56b046
MG
84#include "internal.h"
85
09cbfeaf
KS
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 88
1da177e4
LT
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
69f07ec9
HD
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
1aac1400 95/*
f00cdc6d
HD
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
99 */
100struct shmem_falloc {
8e205f77 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b 109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05 123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 124 struct page **pagep, enum sgp_type sgp,
cfda0526
MR
125 gfp_t gfp, struct vm_area_struct *vma,
126 struct vm_fault *vmf, int *fault_type);
68da9f05 127
f3f0e1d2 128int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 129 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
130{
131 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 132 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 133}
1da177e4 134
1da177e4
LT
135static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136{
137 return sb->s_fs_info;
138}
139
140/*
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
145 */
146static inline int shmem_acct_size(unsigned long flags, loff_t size)
147{
0b0a0806 148 return (flags & VM_NORESERVE) ?
191c5424 149 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
150}
151
152static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153{
0b0a0806 154 if (!(flags & VM_NORESERVE))
1da177e4
LT
155 vm_unacct_memory(VM_ACCT(size));
156}
157
77142517
KK
158static inline int shmem_reacct_size(unsigned long flags,
159 loff_t oldsize, loff_t newsize)
160{
161 if (!(flags & VM_NORESERVE)) {
162 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
163 return security_vm_enough_memory_mm(current->mm,
164 VM_ACCT(newsize) - VM_ACCT(oldsize));
165 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
166 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
167 }
168 return 0;
169}
170
1da177e4
LT
171/*
172 * ... whereas tmpfs objects are accounted incrementally as
75edd345 173 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 */
800d8c63 177static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 178{
800d8c63
KS
179 if (!(flags & VM_NORESERVE))
180 return 0;
181
182 return security_vm_enough_memory_mm(current->mm,
183 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
184}
185
186static inline void shmem_unacct_blocks(unsigned long flags, long pages)
187{
0b0a0806 188 if (flags & VM_NORESERVE)
09cbfeaf 189 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
190}
191
0f079694
MR
192static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
193{
194 struct shmem_inode_info *info = SHMEM_I(inode);
195 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
196
197 if (shmem_acct_block(info->flags, pages))
198 return false;
199
200 if (sbinfo->max_blocks) {
201 if (percpu_counter_compare(&sbinfo->used_blocks,
202 sbinfo->max_blocks - pages) > 0)
203 goto unacct;
204 percpu_counter_add(&sbinfo->used_blocks, pages);
205 }
206
207 return true;
208
209unacct:
210 shmem_unacct_blocks(info->flags, pages);
211 return false;
212}
213
214static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
215{
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218
219 if (sbinfo->max_blocks)
220 percpu_counter_sub(&sbinfo->used_blocks, pages);
221 shmem_unacct_blocks(info->flags, pages);
222}
223
759b9775 224static const struct super_operations shmem_ops;
f5e54d6e 225static const struct address_space_operations shmem_aops;
15ad7cdc 226static const struct file_operations shmem_file_operations;
92e1d5be
AV
227static const struct inode_operations shmem_inode_operations;
228static const struct inode_operations shmem_dir_inode_operations;
229static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 230static const struct vm_operations_struct shmem_vm_ops;
779750d2 231static struct file_system_type shmem_fs_type;
1da177e4 232
b0506e48
MR
233bool vma_is_shmem(struct vm_area_struct *vma)
234{
235 return vma->vm_ops == &shmem_vm_ops;
236}
237
1da177e4 238static LIST_HEAD(shmem_swaplist);
cb5f7b9a 239static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 240
5b04c689
PE
241static int shmem_reserve_inode(struct super_block *sb)
242{
243 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
244 if (sbinfo->max_inodes) {
245 spin_lock(&sbinfo->stat_lock);
246 if (!sbinfo->free_inodes) {
247 spin_unlock(&sbinfo->stat_lock);
248 return -ENOSPC;
249 }
250 sbinfo->free_inodes--;
251 spin_unlock(&sbinfo->stat_lock);
252 }
253 return 0;
254}
255
256static void shmem_free_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 sbinfo->free_inodes++;
262 spin_unlock(&sbinfo->stat_lock);
263 }
264}
265
46711810 266/**
41ffe5d5 267 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
268 * @inode: inode to recalc
269 *
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
272 *
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
275 *
276 * It has to be called with the spinlock held.
277 */
278static void shmem_recalc_inode(struct inode *inode)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 long freed;
282
283 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
284 if (freed > 0) {
285 info->alloced -= freed;
54af6042 286 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 287 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
288 }
289}
290
800d8c63
KS
291bool shmem_charge(struct inode *inode, long pages)
292{
293 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 294 unsigned long flags;
800d8c63 295
0f079694 296 if (!shmem_inode_acct_block(inode, pages))
800d8c63 297 return false;
b1cc94ab 298
4595ef88 299 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
300 info->alloced += pages;
301 inode->i_blocks += pages * BLOCKS_PER_PAGE;
302 shmem_recalc_inode(inode);
4595ef88 303 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
304 inode->i_mapping->nrpages += pages;
305
800d8c63
KS
306 return true;
307}
308
309void shmem_uncharge(struct inode *inode, long pages)
310{
311 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 312 unsigned long flags;
800d8c63 313
4595ef88 314 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
315 info->alloced -= pages;
316 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
317 shmem_recalc_inode(inode);
4595ef88 318 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 319
0f079694 320 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
321}
322
7a5d0fbb
HD
323/*
324 * Replace item expected in radix tree by a new item, while holding tree lock.
325 */
326static int shmem_radix_tree_replace(struct address_space *mapping,
327 pgoff_t index, void *expected, void *replacement)
328{
f7942430 329 struct radix_tree_node *node;
5b9c98f3 330 void __rcu **pslot;
6dbaf22c 331 void *item;
7a5d0fbb
HD
332
333 VM_BUG_ON(!expected);
6dbaf22c 334 VM_BUG_ON(!replacement);
b93b0163 335 item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
f7942430 336 if (!item)
6dbaf22c 337 return -ENOENT;
7a5d0fbb
HD
338 if (item != expected)
339 return -ENOENT;
b93b0163 340 __radix_tree_replace(&mapping->i_pages, node, pslot,
c7df8ad2 341 replacement, NULL);
7a5d0fbb
HD
342 return 0;
343}
344
d1899228
HD
345/*
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
348 *
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
351 */
352static bool shmem_confirm_swap(struct address_space *mapping,
353 pgoff_t index, swp_entry_t swap)
354{
355 void *item;
356
357 rcu_read_lock();
b93b0163 358 item = radix_tree_lookup(&mapping->i_pages, index);
d1899228
HD
359 rcu_read_unlock();
360 return item == swp_to_radix_entry(swap);
361}
362
5a6e75f8
KS
363/*
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
365 *
366 * SHMEM_HUGE_NEVER:
367 * disables huge pages for the mount;
368 * SHMEM_HUGE_ALWAYS:
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
373 * SHMEM_HUGE_ADVISE:
374 * only allocate huge pages if requested with fadvise()/madvise();
375 */
376
377#define SHMEM_HUGE_NEVER 0
378#define SHMEM_HUGE_ALWAYS 1
379#define SHMEM_HUGE_WITHIN_SIZE 2
380#define SHMEM_HUGE_ADVISE 3
381
382/*
383 * Special values.
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
385 *
386 * SHMEM_HUGE_DENY:
387 * disables huge on shm_mnt and all mounts, for emergency use;
388 * SHMEM_HUGE_FORCE:
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
390 *
391 */
392#define SHMEM_HUGE_DENY (-1)
393#define SHMEM_HUGE_FORCE (-2)
394
e496cf3d 395#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
396/* ifdef here to avoid bloating shmem.o when not necessary */
397
5b9c98f3 398static int shmem_huge __read_mostly;
5a6e75f8 399
f1f5929c 400#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
401static int shmem_parse_huge(const char *str)
402{
403 if (!strcmp(str, "never"))
404 return SHMEM_HUGE_NEVER;
405 if (!strcmp(str, "always"))
406 return SHMEM_HUGE_ALWAYS;
407 if (!strcmp(str, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE;
409 if (!strcmp(str, "advise"))
410 return SHMEM_HUGE_ADVISE;
411 if (!strcmp(str, "deny"))
412 return SHMEM_HUGE_DENY;
413 if (!strcmp(str, "force"))
414 return SHMEM_HUGE_FORCE;
415 return -EINVAL;
416}
417
418static const char *shmem_format_huge(int huge)
419{
420 switch (huge) {
421 case SHMEM_HUGE_NEVER:
422 return "never";
423 case SHMEM_HUGE_ALWAYS:
424 return "always";
425 case SHMEM_HUGE_WITHIN_SIZE:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE:
428 return "advise";
429 case SHMEM_HUGE_DENY:
430 return "deny";
431 case SHMEM_HUGE_FORCE:
432 return "force";
433 default:
434 VM_BUG_ON(1);
435 return "bad_val";
436 }
437}
f1f5929c 438#endif
5a6e75f8 439
779750d2
KS
440static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
441 struct shrink_control *sc, unsigned long nr_to_split)
442{
443 LIST_HEAD(list), *pos, *next;
253fd0f0 444 LIST_HEAD(to_remove);
779750d2
KS
445 struct inode *inode;
446 struct shmem_inode_info *info;
447 struct page *page;
448 unsigned long batch = sc ? sc->nr_to_scan : 128;
449 int removed = 0, split = 0;
450
451 if (list_empty(&sbinfo->shrinklist))
452 return SHRINK_STOP;
453
454 spin_lock(&sbinfo->shrinklist_lock);
455 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
456 info = list_entry(pos, struct shmem_inode_info, shrinklist);
457
458 /* pin the inode */
459 inode = igrab(&info->vfs_inode);
460
461 /* inode is about to be evicted */
462 if (!inode) {
463 list_del_init(&info->shrinklist);
464 removed++;
465 goto next;
466 }
467
468 /* Check if there's anything to gain */
469 if (round_up(inode->i_size, PAGE_SIZE) ==
470 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 471 list_move(&info->shrinklist, &to_remove);
779750d2 472 removed++;
779750d2
KS
473 goto next;
474 }
475
476 list_move(&info->shrinklist, &list);
477next:
478 if (!--batch)
479 break;
480 }
481 spin_unlock(&sbinfo->shrinklist_lock);
482
253fd0f0
KS
483 list_for_each_safe(pos, next, &to_remove) {
484 info = list_entry(pos, struct shmem_inode_info, shrinklist);
485 inode = &info->vfs_inode;
486 list_del_init(&info->shrinklist);
487 iput(inode);
488 }
489
779750d2
KS
490 list_for_each_safe(pos, next, &list) {
491 int ret;
492
493 info = list_entry(pos, struct shmem_inode_info, shrinklist);
494 inode = &info->vfs_inode;
495
b3cd54b2
KS
496 if (nr_to_split && split >= nr_to_split)
497 goto leave;
779750d2 498
b3cd54b2 499 page = find_get_page(inode->i_mapping,
779750d2
KS
500 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
501 if (!page)
502 goto drop;
503
b3cd54b2 504 /* No huge page at the end of the file: nothing to split */
779750d2 505 if (!PageTransHuge(page)) {
779750d2
KS
506 put_page(page);
507 goto drop;
508 }
509
b3cd54b2
KS
510 /*
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
513 *
514 * Waiting for the lock may lead to deadlock in the
515 * reclaim path.
516 */
517 if (!trylock_page(page)) {
518 put_page(page);
519 goto leave;
520 }
521
779750d2
KS
522 ret = split_huge_page(page);
523 unlock_page(page);
524 put_page(page);
525
b3cd54b2
KS
526 /* If split failed leave the inode on the list */
527 if (ret)
528 goto leave;
779750d2
KS
529
530 split++;
531drop:
532 list_del_init(&info->shrinklist);
533 removed++;
b3cd54b2 534leave:
779750d2
KS
535 iput(inode);
536 }
537
538 spin_lock(&sbinfo->shrinklist_lock);
539 list_splice_tail(&list, &sbinfo->shrinklist);
540 sbinfo->shrinklist_len -= removed;
541 spin_unlock(&sbinfo->shrinklist_lock);
542
543 return split;
544}
545
546static long shmem_unused_huge_scan(struct super_block *sb,
547 struct shrink_control *sc)
548{
549 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
550
551 if (!READ_ONCE(sbinfo->shrinklist_len))
552 return SHRINK_STOP;
553
554 return shmem_unused_huge_shrink(sbinfo, sc, 0);
555}
556
557static long shmem_unused_huge_count(struct super_block *sb,
558 struct shrink_control *sc)
559{
560 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
561 return READ_ONCE(sbinfo->shrinklist_len);
562}
e496cf3d 563#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
564
565#define shmem_huge SHMEM_HUGE_DENY
566
779750d2
KS
567static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
568 struct shrink_control *sc, unsigned long nr_to_split)
569{
570 return 0;
571}
e496cf3d 572#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 573
89fdcd26
YS
574static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
575{
576 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
577 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
578 shmem_huge != SHMEM_HUGE_DENY)
579 return true;
580 return false;
581}
582
46f65ec1
HD
583/*
584 * Like add_to_page_cache_locked, but error if expected item has gone.
585 */
586static int shmem_add_to_page_cache(struct page *page,
587 struct address_space *mapping,
fed400a1 588 pgoff_t index, void *expected)
46f65ec1 589{
800d8c63 590 int error, nr = hpage_nr_pages(page);
46f65ec1 591
800d8c63
KS
592 VM_BUG_ON_PAGE(PageTail(page), page);
593 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
594 VM_BUG_ON_PAGE(!PageLocked(page), page);
595 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 596 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 597
800d8c63 598 page_ref_add(page, nr);
b065b432
HD
599 page->mapping = mapping;
600 page->index = index;
601
b93b0163 602 xa_lock_irq(&mapping->i_pages);
800d8c63
KS
603 if (PageTransHuge(page)) {
604 void __rcu **results;
605 pgoff_t idx;
606 int i;
607
608 error = 0;
b93b0163 609 if (radix_tree_gang_lookup_slot(&mapping->i_pages,
800d8c63
KS
610 &results, &idx, index, 1) &&
611 idx < index + HPAGE_PMD_NR) {
612 error = -EEXIST;
613 }
614
615 if (!error) {
616 for (i = 0; i < HPAGE_PMD_NR; i++) {
b93b0163 617 error = radix_tree_insert(&mapping->i_pages,
800d8c63
KS
618 index + i, page + i);
619 VM_BUG_ON(error);
620 }
621 count_vm_event(THP_FILE_ALLOC);
622 }
623 } else if (!expected) {
b93b0163 624 error = radix_tree_insert(&mapping->i_pages, index, page);
800d8c63 625 } else {
b065b432
HD
626 error = shmem_radix_tree_replace(mapping, index, expected,
627 page);
800d8c63
KS
628 }
629
46f65ec1 630 if (!error) {
800d8c63
KS
631 mapping->nrpages += nr;
632 if (PageTransHuge(page))
11fb9989
MG
633 __inc_node_page_state(page, NR_SHMEM_THPS);
634 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
635 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b93b0163 636 xa_unlock_irq(&mapping->i_pages);
b065b432
HD
637 } else {
638 page->mapping = NULL;
b93b0163 639 xa_unlock_irq(&mapping->i_pages);
800d8c63 640 page_ref_sub(page, nr);
46f65ec1 641 }
46f65ec1
HD
642 return error;
643}
644
6922c0c7
HD
645/*
646 * Like delete_from_page_cache, but substitutes swap for page.
647 */
648static void shmem_delete_from_page_cache(struct page *page, void *radswap)
649{
650 struct address_space *mapping = page->mapping;
651 int error;
652
800d8c63
KS
653 VM_BUG_ON_PAGE(PageCompound(page), page);
654
b93b0163 655 xa_lock_irq(&mapping->i_pages);
6922c0c7
HD
656 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
657 page->mapping = NULL;
658 mapping->nrpages--;
11fb9989
MG
659 __dec_node_page_state(page, NR_FILE_PAGES);
660 __dec_node_page_state(page, NR_SHMEM);
b93b0163 661 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 662 put_page(page);
6922c0c7
HD
663 BUG_ON(error);
664}
665
7a5d0fbb
HD
666/*
667 * Remove swap entry from radix tree, free the swap and its page cache.
668 */
669static int shmem_free_swap(struct address_space *mapping,
670 pgoff_t index, void *radswap)
671{
6dbaf22c 672 void *old;
7a5d0fbb 673
b93b0163
MW
674 xa_lock_irq(&mapping->i_pages);
675 old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
676 xa_unlock_irq(&mapping->i_pages);
6dbaf22c
JW
677 if (old != radswap)
678 return -ENOENT;
679 free_swap_and_cache(radix_to_swp_entry(radswap));
680 return 0;
7a5d0fbb
HD
681}
682
6a15a370
VB
683/*
684 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 685 * given offsets are swapped out.
6a15a370 686 *
b93b0163 687 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
688 * as long as the inode doesn't go away and racy results are not a problem.
689 */
48131e03
VB
690unsigned long shmem_partial_swap_usage(struct address_space *mapping,
691 pgoff_t start, pgoff_t end)
6a15a370 692{
6a15a370 693 struct radix_tree_iter iter;
5b9c98f3 694 void __rcu **slot;
6a15a370 695 struct page *page;
48131e03 696 unsigned long swapped = 0;
6a15a370
VB
697
698 rcu_read_lock();
699
b93b0163 700 radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
6a15a370
VB
701 if (iter.index >= end)
702 break;
703
704 page = radix_tree_deref_slot(slot);
705
2cf938aa
MW
706 if (radix_tree_deref_retry(page)) {
707 slot = radix_tree_iter_retry(&iter);
708 continue;
709 }
6a15a370
VB
710
711 if (radix_tree_exceptional_entry(page))
712 swapped++;
713
714 if (need_resched()) {
148deab2 715 slot = radix_tree_iter_resume(slot, &iter);
6a15a370 716 cond_resched_rcu();
6a15a370
VB
717 }
718 }
719
720 rcu_read_unlock();
721
722 return swapped << PAGE_SHIFT;
723}
724
48131e03
VB
725/*
726 * Determine (in bytes) how many of the shmem object's pages mapped by the
727 * given vma is swapped out.
728 *
b93b0163 729 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
730 * as long as the inode doesn't go away and racy results are not a problem.
731 */
732unsigned long shmem_swap_usage(struct vm_area_struct *vma)
733{
734 struct inode *inode = file_inode(vma->vm_file);
735 struct shmem_inode_info *info = SHMEM_I(inode);
736 struct address_space *mapping = inode->i_mapping;
737 unsigned long swapped;
738
739 /* Be careful as we don't hold info->lock */
740 swapped = READ_ONCE(info->swapped);
741
742 /*
743 * The easier cases are when the shmem object has nothing in swap, or
744 * the vma maps it whole. Then we can simply use the stats that we
745 * already track.
746 */
747 if (!swapped)
748 return 0;
749
750 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
751 return swapped << PAGE_SHIFT;
752
753 /* Here comes the more involved part */
754 return shmem_partial_swap_usage(mapping,
755 linear_page_index(vma, vma->vm_start),
756 linear_page_index(vma, vma->vm_end));
757}
758
24513264
HD
759/*
760 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
761 */
762void shmem_unlock_mapping(struct address_space *mapping)
763{
764 struct pagevec pvec;
765 pgoff_t indices[PAGEVEC_SIZE];
766 pgoff_t index = 0;
767
86679820 768 pagevec_init(&pvec);
24513264
HD
769 /*
770 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
771 */
772 while (!mapping_unevictable(mapping)) {
773 /*
774 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
775 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
776 */
0cd6144a
JW
777 pvec.nr = find_get_entries(mapping, index,
778 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
779 if (!pvec.nr)
780 break;
781 index = indices[pvec.nr - 1] + 1;
0cd6144a 782 pagevec_remove_exceptionals(&pvec);
24513264
HD
783 check_move_unevictable_pages(pvec.pages, pvec.nr);
784 pagevec_release(&pvec);
785 cond_resched();
786 }
7a5d0fbb
HD
787}
788
789/*
790 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 791 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 792 */
1635f6a7
HD
793static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
794 bool unfalloc)
1da177e4 795{
285b2c4f 796 struct address_space *mapping = inode->i_mapping;
1da177e4 797 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
798 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
799 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
800 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
801 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 802 struct pagevec pvec;
7a5d0fbb
HD
803 pgoff_t indices[PAGEVEC_SIZE];
804 long nr_swaps_freed = 0;
285b2c4f 805 pgoff_t index;
bda97eab
HD
806 int i;
807
83e4fa9c
HD
808 if (lend == -1)
809 end = -1; /* unsigned, so actually very big */
bda97eab 810
86679820 811 pagevec_init(&pvec);
bda97eab 812 index = start;
83e4fa9c 813 while (index < end) {
0cd6144a
JW
814 pvec.nr = find_get_entries(mapping, index,
815 min(end - index, (pgoff_t)PAGEVEC_SIZE),
816 pvec.pages, indices);
7a5d0fbb
HD
817 if (!pvec.nr)
818 break;
bda97eab
HD
819 for (i = 0; i < pagevec_count(&pvec); i++) {
820 struct page *page = pvec.pages[i];
821
7a5d0fbb 822 index = indices[i];
83e4fa9c 823 if (index >= end)
bda97eab
HD
824 break;
825
7a5d0fbb 826 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
827 if (unfalloc)
828 continue;
7a5d0fbb
HD
829 nr_swaps_freed += !shmem_free_swap(mapping,
830 index, page);
bda97eab 831 continue;
7a5d0fbb
HD
832 }
833
800d8c63
KS
834 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
835
7a5d0fbb 836 if (!trylock_page(page))
bda97eab 837 continue;
800d8c63
KS
838
839 if (PageTransTail(page)) {
840 /* Middle of THP: zero out the page */
841 clear_highpage(page);
842 unlock_page(page);
843 continue;
844 } else if (PageTransHuge(page)) {
845 if (index == round_down(end, HPAGE_PMD_NR)) {
846 /*
847 * Range ends in the middle of THP:
848 * zero out the page
849 */
850 clear_highpage(page);
851 unlock_page(page);
852 continue;
853 }
854 index += HPAGE_PMD_NR - 1;
855 i += HPAGE_PMD_NR - 1;
856 }
857
1635f6a7 858 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
859 VM_BUG_ON_PAGE(PageTail(page), page);
860 if (page_mapping(page) == mapping) {
309381fe 861 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
862 truncate_inode_page(mapping, page);
863 }
bda97eab 864 }
bda97eab
HD
865 unlock_page(page);
866 }
0cd6144a 867 pagevec_remove_exceptionals(&pvec);
24513264 868 pagevec_release(&pvec);
bda97eab
HD
869 cond_resched();
870 index++;
871 }
1da177e4 872
83e4fa9c 873 if (partial_start) {
bda97eab 874 struct page *page = NULL;
9e18eb29 875 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 876 if (page) {
09cbfeaf 877 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
878 if (start > end) {
879 top = partial_end;
880 partial_end = 0;
881 }
882 zero_user_segment(page, partial_start, top);
883 set_page_dirty(page);
884 unlock_page(page);
09cbfeaf 885 put_page(page);
83e4fa9c
HD
886 }
887 }
888 if (partial_end) {
889 struct page *page = NULL;
9e18eb29 890 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
891 if (page) {
892 zero_user_segment(page, 0, partial_end);
bda97eab
HD
893 set_page_dirty(page);
894 unlock_page(page);
09cbfeaf 895 put_page(page);
bda97eab
HD
896 }
897 }
83e4fa9c
HD
898 if (start >= end)
899 return;
bda97eab
HD
900
901 index = start;
b1a36650 902 while (index < end) {
bda97eab 903 cond_resched();
0cd6144a
JW
904
905 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 906 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 907 pvec.pages, indices);
7a5d0fbb 908 if (!pvec.nr) {
b1a36650
HD
909 /* If all gone or hole-punch or unfalloc, we're done */
910 if (index == start || end != -1)
bda97eab 911 break;
b1a36650 912 /* But if truncating, restart to make sure all gone */
bda97eab
HD
913 index = start;
914 continue;
915 }
bda97eab
HD
916 for (i = 0; i < pagevec_count(&pvec); i++) {
917 struct page *page = pvec.pages[i];
918
7a5d0fbb 919 index = indices[i];
83e4fa9c 920 if (index >= end)
bda97eab
HD
921 break;
922
7a5d0fbb 923 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
924 if (unfalloc)
925 continue;
b1a36650
HD
926 if (shmem_free_swap(mapping, index, page)) {
927 /* Swap was replaced by page: retry */
928 index--;
929 break;
930 }
931 nr_swaps_freed++;
7a5d0fbb
HD
932 continue;
933 }
934
bda97eab 935 lock_page(page);
800d8c63
KS
936
937 if (PageTransTail(page)) {
938 /* Middle of THP: zero out the page */
939 clear_highpage(page);
940 unlock_page(page);
941 /*
942 * Partial thp truncate due 'start' in middle
943 * of THP: don't need to look on these pages
944 * again on !pvec.nr restart.
945 */
946 if (index != round_down(end, HPAGE_PMD_NR))
947 start++;
948 continue;
949 } else if (PageTransHuge(page)) {
950 if (index == round_down(end, HPAGE_PMD_NR)) {
951 /*
952 * Range ends in the middle of THP:
953 * zero out the page
954 */
955 clear_highpage(page);
956 unlock_page(page);
957 continue;
958 }
959 index += HPAGE_PMD_NR - 1;
960 i += HPAGE_PMD_NR - 1;
961 }
962
1635f6a7 963 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
964 VM_BUG_ON_PAGE(PageTail(page), page);
965 if (page_mapping(page) == mapping) {
309381fe 966 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 967 truncate_inode_page(mapping, page);
b1a36650
HD
968 } else {
969 /* Page was replaced by swap: retry */
970 unlock_page(page);
971 index--;
972 break;
1635f6a7 973 }
7a5d0fbb 974 }
bda97eab
HD
975 unlock_page(page);
976 }
0cd6144a 977 pagevec_remove_exceptionals(&pvec);
24513264 978 pagevec_release(&pvec);
bda97eab
HD
979 index++;
980 }
94c1e62d 981
4595ef88 982 spin_lock_irq(&info->lock);
7a5d0fbb 983 info->swapped -= nr_swaps_freed;
1da177e4 984 shmem_recalc_inode(inode);
4595ef88 985 spin_unlock_irq(&info->lock);
1635f6a7 986}
1da177e4 987
1635f6a7
HD
988void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
989{
990 shmem_undo_range(inode, lstart, lend, false);
078cd827 991 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 992}
94c1e62d 993EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 994
a528d35e
DH
995static int shmem_getattr(const struct path *path, struct kstat *stat,
996 u32 request_mask, unsigned int query_flags)
44a30220 997{
a528d35e 998 struct inode *inode = path->dentry->d_inode;
44a30220 999 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1000 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1001
d0424c42 1002 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1003 spin_lock_irq(&info->lock);
d0424c42 1004 shmem_recalc_inode(inode);
4595ef88 1005 spin_unlock_irq(&info->lock);
d0424c42 1006 }
44a30220 1007 generic_fillattr(inode, stat);
89fdcd26
YS
1008
1009 if (is_huge_enabled(sb_info))
1010 stat->blksize = HPAGE_PMD_SIZE;
1011
44a30220
YZ
1012 return 0;
1013}
1014
94c1e62d 1015static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1016{
75c3cfa8 1017 struct inode *inode = d_inode(dentry);
40e041a2 1018 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1019 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1020 int error;
1021
31051c85 1022 error = setattr_prepare(dentry, attr);
db78b877
CH
1023 if (error)
1024 return error;
1025
94c1e62d
HD
1026 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1027 loff_t oldsize = inode->i_size;
1028 loff_t newsize = attr->ia_size;
3889e6e7 1029
40e041a2
DH
1030 /* protected by i_mutex */
1031 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1032 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1033 return -EPERM;
1034
94c1e62d 1035 if (newsize != oldsize) {
77142517
KK
1036 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1037 oldsize, newsize);
1038 if (error)
1039 return error;
94c1e62d 1040 i_size_write(inode, newsize);
078cd827 1041 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1042 }
afa2db2f 1043 if (newsize <= oldsize) {
94c1e62d 1044 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1045 if (oldsize > holebegin)
1046 unmap_mapping_range(inode->i_mapping,
1047 holebegin, 0, 1);
1048 if (info->alloced)
1049 shmem_truncate_range(inode,
1050 newsize, (loff_t)-1);
94c1e62d 1051 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1052 if (oldsize > holebegin)
1053 unmap_mapping_range(inode->i_mapping,
1054 holebegin, 0, 1);
779750d2
KS
1055
1056 /*
1057 * Part of the huge page can be beyond i_size: subject
1058 * to shrink under memory pressure.
1059 */
1060 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1061 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1062 /*
1063 * _careful to defend against unlocked access to
1064 * ->shrink_list in shmem_unused_huge_shrink()
1065 */
1066 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1067 list_add_tail(&info->shrinklist,
1068 &sbinfo->shrinklist);
1069 sbinfo->shrinklist_len++;
1070 }
1071 spin_unlock(&sbinfo->shrinklist_lock);
1072 }
94c1e62d 1073 }
1da177e4
LT
1074 }
1075
db78b877 1076 setattr_copy(inode, attr);
db78b877 1077 if (attr->ia_valid & ATTR_MODE)
feda821e 1078 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1079 return error;
1080}
1081
1f895f75 1082static void shmem_evict_inode(struct inode *inode)
1da177e4 1083{
1da177e4 1084 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1086
3889e6e7 1087 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1088 shmem_unacct_size(info->flags, inode->i_size);
1089 inode->i_size = 0;
3889e6e7 1090 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1091 if (!list_empty(&info->shrinklist)) {
1092 spin_lock(&sbinfo->shrinklist_lock);
1093 if (!list_empty(&info->shrinklist)) {
1094 list_del_init(&info->shrinklist);
1095 sbinfo->shrinklist_len--;
1096 }
1097 spin_unlock(&sbinfo->shrinklist_lock);
1098 }
1da177e4 1099 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1100 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1101 list_del_init(&info->swaplist);
cb5f7b9a 1102 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1103 }
3ed47db3 1104 }
b09e0fa4 1105
38f38657 1106 simple_xattrs_free(&info->xattrs);
0f3c42f5 1107 WARN_ON(inode->i_blocks);
5b04c689 1108 shmem_free_inode(inode->i_sb);
dbd5768f 1109 clear_inode(inode);
1da177e4
LT
1110}
1111
478922e2
MW
1112static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1113{
1114 struct radix_tree_iter iter;
5b9c98f3 1115 void __rcu **slot;
478922e2
MW
1116 unsigned long found = -1;
1117 unsigned int checked = 0;
1118
1119 rcu_read_lock();
1120 radix_tree_for_each_slot(slot, root, &iter, 0) {
5b9c98f3
MK
1121 void *entry = radix_tree_deref_slot(slot);
1122
1123 if (radix_tree_deref_retry(entry)) {
1124 slot = radix_tree_iter_retry(&iter);
1125 continue;
1126 }
1127 if (entry == item) {
478922e2
MW
1128 found = iter.index;
1129 break;
1130 }
1131 checked++;
1132 if ((checked % 4096) != 0)
1133 continue;
1134 slot = radix_tree_iter_resume(slot, &iter);
1135 cond_resched_rcu();
1136 }
1137
1138 rcu_read_unlock();
1139 return found;
1140}
1141
46f65ec1
HD
1142/*
1143 * If swap found in inode, free it and move page from swapcache to filecache.
1144 */
41ffe5d5 1145static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1146 swp_entry_t swap, struct page **pagep)
1da177e4 1147{
285b2c4f 1148 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1149 void *radswap;
41ffe5d5 1150 pgoff_t index;
bde05d1c
HD
1151 gfp_t gfp;
1152 int error = 0;
1da177e4 1153
46f65ec1 1154 radswap = swp_to_radix_entry(swap);
b93b0163 1155 index = find_swap_entry(&mapping->i_pages, radswap);
46f65ec1 1156 if (index == -1)
00501b53 1157 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1158
1b1b32f2
HD
1159 /*
1160 * Move _head_ to start search for next from here.
1f895f75 1161 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1162 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1163 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1164 */
1165 if (shmem_swaplist.next != &info->swaplist)
1166 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1167
bde05d1c
HD
1168 gfp = mapping_gfp_mask(mapping);
1169 if (shmem_should_replace_page(*pagep, gfp)) {
1170 mutex_unlock(&shmem_swaplist_mutex);
1171 error = shmem_replace_page(pagep, gfp, info, index);
1172 mutex_lock(&shmem_swaplist_mutex);
1173 /*
1174 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1175 * allocation, but the inode might have been freed while we
1176 * dropped it: although a racing shmem_evict_inode() cannot
1177 * complete without emptying the radix_tree, our page lock
1178 * on this swapcache page is not enough to prevent that -
1179 * free_swap_and_cache() of our swap entry will only
1180 * trylock_page(), removing swap from radix_tree whatever.
1181 *
1182 * We must not proceed to shmem_add_to_page_cache() if the
1183 * inode has been freed, but of course we cannot rely on
1184 * inode or mapping or info to check that. However, we can
1185 * safely check if our swap entry is still in use (and here
1186 * it can't have got reused for another page): if it's still
1187 * in use, then the inode cannot have been freed yet, and we
1188 * can safely proceed (if it's no longer in use, that tells
1189 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1190 */
1191 if (!page_swapcount(*pagep))
1192 error = -ENOENT;
1193 }
1194
d13d1443 1195 /*
778dd893
HD
1196 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1197 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1198 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1199 */
bde05d1c
HD
1200 if (!error)
1201 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1202 radswap);
48f170fb 1203 if (error != -ENOMEM) {
46f65ec1
HD
1204 /*
1205 * Truncation and eviction use free_swap_and_cache(), which
1206 * only does trylock page: if we raced, best clean up here.
1207 */
bde05d1c
HD
1208 delete_from_swap_cache(*pagep);
1209 set_page_dirty(*pagep);
46f65ec1 1210 if (!error) {
4595ef88 1211 spin_lock_irq(&info->lock);
46f65ec1 1212 info->swapped--;
4595ef88 1213 spin_unlock_irq(&info->lock);
46f65ec1
HD
1214 swap_free(swap);
1215 }
1da177e4 1216 }
2e0e26c7 1217 return error;
1da177e4
LT
1218}
1219
1220/*
46f65ec1 1221 * Search through swapped inodes to find and replace swap by page.
1da177e4 1222 */
41ffe5d5 1223int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1224{
41ffe5d5 1225 struct list_head *this, *next;
1da177e4 1226 struct shmem_inode_info *info;
00501b53 1227 struct mem_cgroup *memcg;
bde05d1c
HD
1228 int error = 0;
1229
1230 /*
1231 * There's a faint possibility that swap page was replaced before
0142ef6c 1232 * caller locked it: caller will come back later with the right page.
bde05d1c 1233 */
0142ef6c 1234 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1235 goto out;
778dd893
HD
1236
1237 /*
1238 * Charge page using GFP_KERNEL while we can wait, before taking
1239 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1240 * Charged back to the user (not to caller) when swap account is used.
778dd893 1241 */
f627c2f5
KS
1242 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1243 false);
778dd893
HD
1244 if (error)
1245 goto out;
46f65ec1 1246 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1247 error = -EAGAIN;
1da177e4 1248
cb5f7b9a 1249 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1250 list_for_each_safe(this, next, &shmem_swaplist) {
1251 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1252 if (info->swapped)
00501b53 1253 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1254 else
1255 list_del_init(&info->swaplist);
cb5f7b9a 1256 cond_resched();
00501b53 1257 if (error != -EAGAIN)
778dd893 1258 break;
00501b53 1259 /* found nothing in this: move on to search the next */
1da177e4 1260 }
cb5f7b9a 1261 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1262
00501b53
JW
1263 if (error) {
1264 if (error != -ENOMEM)
1265 error = 0;
f627c2f5 1266 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1267 } else
f627c2f5 1268 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1269out:
aaa46865 1270 unlock_page(page);
09cbfeaf 1271 put_page(page);
778dd893 1272 return error;
1da177e4
LT
1273}
1274
1275/*
1276 * Move the page from the page cache to the swap cache.
1277 */
1278static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279{
1280 struct shmem_inode_info *info;
1da177e4 1281 struct address_space *mapping;
1da177e4 1282 struct inode *inode;
6922c0c7
HD
1283 swp_entry_t swap;
1284 pgoff_t index;
1da177e4 1285
800d8c63 1286 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1287 BUG_ON(!PageLocked(page));
1da177e4
LT
1288 mapping = page->mapping;
1289 index = page->index;
1290 inode = mapping->host;
1291 info = SHMEM_I(inode);
1292 if (info->flags & VM_LOCKED)
1293 goto redirty;
d9fe526a 1294 if (!total_swap_pages)
1da177e4
LT
1295 goto redirty;
1296
d9fe526a 1297 /*
97b713ba
CH
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1302 * threads or sync.
d9fe526a 1303 */
48f170fb
HD
1304 if (!wbc->for_reclaim) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1306 goto redirty;
1307 }
1635f6a7
HD
1308
1309 /*
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1313 *
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1319 */
1320 if (!PageUptodate(page)) {
1aac1400
HD
1321 if (inode->i_private) {
1322 struct shmem_falloc *shmem_falloc;
1323 spin_lock(&inode->i_lock);
1324 shmem_falloc = inode->i_private;
1325 if (shmem_falloc &&
8e205f77 1326 !shmem_falloc->waitq &&
1aac1400
HD
1327 index >= shmem_falloc->start &&
1328 index < shmem_falloc->next)
1329 shmem_falloc->nr_unswapped++;
1330 else
1331 shmem_falloc = NULL;
1332 spin_unlock(&inode->i_lock);
1333 if (shmem_falloc)
1334 goto redirty;
1335 }
1635f6a7
HD
1336 clear_highpage(page);
1337 flush_dcache_page(page);
1338 SetPageUptodate(page);
1339 }
1340
38d8b4e6 1341 swap = get_swap_page(page);
48f170fb
HD
1342 if (!swap.val)
1343 goto redirty;
d9fe526a 1344
b1dea800
HD
1345 /*
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
b1dea800 1349 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1352 */
48f170fb
HD
1353 mutex_lock(&shmem_swaplist_mutex);
1354 if (list_empty(&info->swaplist))
1355 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1356
48f170fb 1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1358 spin_lock_irq(&info->lock);
6922c0c7 1359 shmem_recalc_inode(inode);
267a4c76 1360 info->swapped++;
4595ef88 1361 spin_unlock_irq(&info->lock);
6922c0c7 1362
267a4c76
HD
1363 swap_shmem_alloc(swap);
1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365
6922c0c7 1366 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1367 BUG_ON(page_mapped(page));
9fab5619 1368 swap_writepage(page, wbc);
1da177e4
LT
1369 return 0;
1370 }
1371
6922c0c7 1372 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1373 put_swap_page(page, swap);
1da177e4
LT
1374redirty:
1375 set_page_dirty(page);
d9fe526a
HD
1376 if (wbc->for_reclaim)
1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1378 unlock_page(page);
1379 return 0;
1da177e4
LT
1380}
1381
75edd345 1382#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1383static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1384{
095f1fc4 1385 char buffer[64];
680d794b 1386
71fe804b 1387 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1388 return; /* show nothing */
680d794b 1389
a7a88b23 1390 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1391
1392 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1393}
71fe804b
LS
1394
1395static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396{
1397 struct mempolicy *mpol = NULL;
1398 if (sbinfo->mpol) {
1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1400 mpol = sbinfo->mpol;
1401 mpol_get(mpol);
1402 spin_unlock(&sbinfo->stat_lock);
1403 }
1404 return mpol;
1405}
75edd345
HD
1406#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408{
1409}
1410static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412 return NULL;
1413}
1414#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415#ifndef CONFIG_NUMA
1416#define vm_policy vm_private_data
1417#endif
680d794b 1418
800d8c63
KS
1419static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 struct shmem_inode_info *info, pgoff_t index)
1421{
1422 /* Create a pseudo vma that just contains the policy */
daa28075 1423 memset(vma, 0, sizeof(*vma));
800d8c63
KS
1424 /* Bias interleave by inode number to distribute better across nodes */
1425 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1426 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1427}
1428
1429static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1430{
1431 /* Drop reference taken by mpol_shared_policy_lookup() */
1432 mpol_cond_put(vma->vm_policy);
1433}
1434
41ffe5d5
HD
1435static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1436 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1437{
1da177e4 1438 struct vm_area_struct pvma;
18a2f371 1439 struct page *page;
e9e9b7ec 1440 struct vm_fault vmf;
52cd3b07 1441
800d8c63 1442 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1443 vmf.vma = &pvma;
1444 vmf.address = 0;
1445 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1446 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1447
800d8c63
KS
1448 return page;
1449}
1450
1451static struct page *shmem_alloc_hugepage(gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1453{
1454 struct vm_area_struct pvma;
1455 struct inode *inode = &info->vfs_inode;
1456 struct address_space *mapping = inode->i_mapping;
4620a06e 1457 pgoff_t idx, hindex;
800d8c63
KS
1458 void __rcu **results;
1459 struct page *page;
1460
e496cf3d 1461 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1462 return NULL;
1463
4620a06e 1464 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63 1465 rcu_read_lock();
b93b0163 1466 if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
800d8c63
KS
1467 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1468 rcu_read_unlock();
1469 return NULL;
1470 }
1471 rcu_read_unlock();
18a2f371 1472
800d8c63
KS
1473 shmem_pseudo_vma_init(&pvma, info, hindex);
1474 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1475 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1476 shmem_pseudo_vma_destroy(&pvma);
1477 if (page)
1478 prep_transhuge_page(page);
18a2f371 1479 return page;
1da177e4
LT
1480}
1481
02098fea 1482static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1483 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1484{
1485 struct vm_area_struct pvma;
18a2f371 1486 struct page *page;
1da177e4 1487
800d8c63
KS
1488 shmem_pseudo_vma_init(&pvma, info, index);
1489 page = alloc_page_vma(gfp, &pvma, 0);
1490 shmem_pseudo_vma_destroy(&pvma);
1491
1492 return page;
1493}
1494
1495static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1496 struct inode *inode,
800d8c63
KS
1497 pgoff_t index, bool huge)
1498{
0f079694 1499 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1500 struct page *page;
1501 int nr;
1502 int err = -ENOSPC;
52cd3b07 1503
e496cf3d 1504 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1505 huge = false;
1506 nr = huge ? HPAGE_PMD_NR : 1;
1507
0f079694 1508 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1509 goto failed;
800d8c63
KS
1510
1511 if (huge)
1512 page = shmem_alloc_hugepage(gfp, info, index);
1513 else
1514 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1515 if (page) {
1516 __SetPageLocked(page);
1517 __SetPageSwapBacked(page);
800d8c63 1518 return page;
75edd345 1519 }
18a2f371 1520
800d8c63 1521 err = -ENOMEM;
0f079694 1522 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1523failed:
1524 return ERR_PTR(err);
1da177e4 1525}
71fe804b 1526
bde05d1c
HD
1527/*
1528 * When a page is moved from swapcache to shmem filecache (either by the
1529 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1530 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1531 * ignorance of the mapping it belongs to. If that mapping has special
1532 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1533 * we may need to copy to a suitable page before moving to filecache.
1534 *
1535 * In a future release, this may well be extended to respect cpuset and
1536 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1537 * but for now it is a simple matter of zone.
1538 */
1539static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1540{
1541 return page_zonenum(page) > gfp_zone(gfp);
1542}
1543
1544static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1545 struct shmem_inode_info *info, pgoff_t index)
1546{
1547 struct page *oldpage, *newpage;
1548 struct address_space *swap_mapping;
1549 pgoff_t swap_index;
1550 int error;
1551
1552 oldpage = *pagep;
1553 swap_index = page_private(oldpage);
1554 swap_mapping = page_mapping(oldpage);
1555
1556 /*
1557 * We have arrived here because our zones are constrained, so don't
1558 * limit chance of success by further cpuset and node constraints.
1559 */
1560 gfp &= ~GFP_CONSTRAINT_MASK;
1561 newpage = shmem_alloc_page(gfp, info, index);
1562 if (!newpage)
1563 return -ENOMEM;
bde05d1c 1564
09cbfeaf 1565 get_page(newpage);
bde05d1c 1566 copy_highpage(newpage, oldpage);
0142ef6c 1567 flush_dcache_page(newpage);
bde05d1c 1568
9956edf3
HD
1569 __SetPageLocked(newpage);
1570 __SetPageSwapBacked(newpage);
bde05d1c 1571 SetPageUptodate(newpage);
bde05d1c 1572 set_page_private(newpage, swap_index);
bde05d1c
HD
1573 SetPageSwapCache(newpage);
1574
1575 /*
1576 * Our caller will very soon move newpage out of swapcache, but it's
1577 * a nice clean interface for us to replace oldpage by newpage there.
1578 */
b93b0163 1579 xa_lock_irq(&swap_mapping->i_pages);
bde05d1c
HD
1580 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1581 newpage);
0142ef6c 1582 if (!error) {
11fb9989
MG
1583 __inc_node_page_state(newpage, NR_FILE_PAGES);
1584 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1585 }
b93b0163 1586 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1587
0142ef6c
HD
1588 if (unlikely(error)) {
1589 /*
1590 * Is this possible? I think not, now that our callers check
1591 * both PageSwapCache and page_private after getting page lock;
1592 * but be defensive. Reverse old to newpage for clear and free.
1593 */
1594 oldpage = newpage;
1595 } else {
6a93ca8f 1596 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1597 lru_cache_add_anon(newpage);
1598 *pagep = newpage;
1599 }
bde05d1c
HD
1600
1601 ClearPageSwapCache(oldpage);
1602 set_page_private(oldpage, 0);
1603
1604 unlock_page(oldpage);
09cbfeaf
KS
1605 put_page(oldpage);
1606 put_page(oldpage);
0142ef6c 1607 return error;
bde05d1c
HD
1608}
1609
1da177e4 1610/*
68da9f05 1611 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1612 *
1613 * If we allocate a new one we do not mark it dirty. That's up to the
1614 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1615 * entry since a page cannot live in both the swap and page cache.
1616 *
1617 * fault_mm and fault_type are only supplied by shmem_fault:
1618 * otherwise they are NULL.
1da177e4 1619 */
41ffe5d5 1620static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1621 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
cfda0526 1622 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1da177e4
LT
1623{
1624 struct address_space *mapping = inode->i_mapping;
23f919d4 1625 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1626 struct shmem_sb_info *sbinfo;
9e18eb29 1627 struct mm_struct *charge_mm;
00501b53 1628 struct mem_cgroup *memcg;
27ab7006 1629 struct page *page;
1da177e4 1630 swp_entry_t swap;
657e3038 1631 enum sgp_type sgp_huge = sgp;
800d8c63 1632 pgoff_t hindex = index;
1da177e4 1633 int error;
54af6042 1634 int once = 0;
1635f6a7 1635 int alloced = 0;
1da177e4 1636
09cbfeaf 1637 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1638 return -EFBIG;
657e3038
KS
1639 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1640 sgp = SGP_CACHE;
1da177e4 1641repeat:
54af6042 1642 swap.val = 0;
0cd6144a 1643 page = find_lock_entry(mapping, index);
54af6042
HD
1644 if (radix_tree_exceptional_entry(page)) {
1645 swap = radix_to_swp_entry(page);
1646 page = NULL;
1647 }
1648
75edd345 1649 if (sgp <= SGP_CACHE &&
09cbfeaf 1650 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1651 error = -EINVAL;
267a4c76 1652 goto unlock;
54af6042
HD
1653 }
1654
66d2f4d2
HD
1655 if (page && sgp == SGP_WRITE)
1656 mark_page_accessed(page);
1657
1635f6a7
HD
1658 /* fallocated page? */
1659 if (page && !PageUptodate(page)) {
1660 if (sgp != SGP_READ)
1661 goto clear;
1662 unlock_page(page);
09cbfeaf 1663 put_page(page);
1635f6a7
HD
1664 page = NULL;
1665 }
54af6042 1666 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1667 *pagep = page;
1668 return 0;
27ab7006
HD
1669 }
1670
1671 /*
54af6042
HD
1672 * Fast cache lookup did not find it:
1673 * bring it back from swap or allocate.
27ab7006 1674 */
54af6042 1675 sbinfo = SHMEM_SB(inode->i_sb);
cfda0526 1676 charge_mm = vma ? vma->vm_mm : current->mm;
1da177e4 1677
1da177e4
LT
1678 if (swap.val) {
1679 /* Look it up and read it in.. */
ec560175 1680 page = lookup_swap_cache(swap, NULL, 0);
27ab7006 1681 if (!page) {
9e18eb29
ALC
1682 /* Or update major stats only when swapin succeeds?? */
1683 if (fault_type) {
68da9f05 1684 *fault_type |= VM_FAULT_MAJOR;
9e18eb29 1685 count_vm_event(PGMAJFAULT);
2262185c 1686 count_memcg_event_mm(charge_mm, PGMAJFAULT);
9e18eb29
ALC
1687 }
1688 /* Here we actually start the io */
41ffe5d5 1689 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1690 if (!page) {
54af6042
HD
1691 error = -ENOMEM;
1692 goto failed;
1da177e4 1693 }
1da177e4
LT
1694 }
1695
1696 /* We have to do this with page locked to prevent races */
54af6042 1697 lock_page(page);
0142ef6c 1698 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1699 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1700 error = -EEXIST; /* try again */
d1899228 1701 goto unlock;
bde05d1c 1702 }
27ab7006 1703 if (!PageUptodate(page)) {
1da177e4 1704 error = -EIO;
54af6042 1705 goto failed;
1da177e4 1706 }
54af6042
HD
1707 wait_on_page_writeback(page);
1708
bde05d1c
HD
1709 if (shmem_should_replace_page(page, gfp)) {
1710 error = shmem_replace_page(&page, gfp, info, index);
1711 if (error)
1712 goto failed;
1da177e4 1713 }
27ab7006 1714
9e18eb29 1715 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1716 false);
d1899228 1717 if (!error) {
aa3b1895 1718 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1719 swp_to_radix_entry(swap));
215c02bc
HD
1720 /*
1721 * We already confirmed swap under page lock, and make
1722 * no memory allocation here, so usually no possibility
1723 * of error; but free_swap_and_cache() only trylocks a
1724 * page, so it is just possible that the entry has been
1725 * truncated or holepunched since swap was confirmed.
1726 * shmem_undo_range() will have done some of the
1727 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1728 * the rest.
215c02bc
HD
1729 * Reset swap.val? No, leave it so "failed" goes back to
1730 * "repeat": reading a hole and writing should succeed.
1731 */
00501b53 1732 if (error) {
f627c2f5 1733 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1734 delete_from_swap_cache(page);
00501b53 1735 }
d1899228 1736 }
54af6042
HD
1737 if (error)
1738 goto failed;
1739
f627c2f5 1740 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1741
4595ef88 1742 spin_lock_irq(&info->lock);
285b2c4f 1743 info->swapped--;
54af6042 1744 shmem_recalc_inode(inode);
4595ef88 1745 spin_unlock_irq(&info->lock);
54af6042 1746
66d2f4d2
HD
1747 if (sgp == SGP_WRITE)
1748 mark_page_accessed(page);
1749
54af6042 1750 delete_from_swap_cache(page);
27ab7006
HD
1751 set_page_dirty(page);
1752 swap_free(swap);
1753
54af6042 1754 } else {
cfda0526
MR
1755 if (vma && userfaultfd_missing(vma)) {
1756 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1757 return 0;
1758 }
1759
800d8c63
KS
1760 /* shmem_symlink() */
1761 if (mapping->a_ops != &shmem_aops)
1762 goto alloc_nohuge;
657e3038 1763 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1764 goto alloc_nohuge;
1765 if (shmem_huge == SHMEM_HUGE_FORCE)
1766 goto alloc_huge;
1767 switch (sbinfo->huge) {
1768 loff_t i_size;
1769 pgoff_t off;
1770 case SHMEM_HUGE_NEVER:
1771 goto alloc_nohuge;
1772 case SHMEM_HUGE_WITHIN_SIZE:
1773 off = round_up(index, HPAGE_PMD_NR);
1774 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1775 if (i_size >= HPAGE_PMD_SIZE &&
1776 i_size >> PAGE_SHIFT >= off)
1777 goto alloc_huge;
1778 /* fallthrough */
1779 case SHMEM_HUGE_ADVISE:
657e3038
KS
1780 if (sgp_huge == SGP_HUGE)
1781 goto alloc_huge;
1782 /* TODO: implement fadvise() hints */
800d8c63 1783 goto alloc_nohuge;
54af6042 1784 }
1da177e4 1785
800d8c63 1786alloc_huge:
0f079694 1787 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
800d8c63 1788 if (IS_ERR(page)) {
0f079694 1789alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
800d8c63 1790 index, false);
1da177e4 1791 }
800d8c63 1792 if (IS_ERR(page)) {
779750d2 1793 int retry = 5;
800d8c63
KS
1794 error = PTR_ERR(page);
1795 page = NULL;
779750d2
KS
1796 if (error != -ENOSPC)
1797 goto failed;
1798 /*
1799 * Try to reclaim some spece by splitting a huge page
1800 * beyond i_size on the filesystem.
1801 */
1802 while (retry--) {
1803 int ret;
1804 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1805 if (ret == SHRINK_STOP)
1806 break;
1807 if (ret)
1808 goto alloc_nohuge;
1809 }
800d8c63
KS
1810 goto failed;
1811 }
1812
1813 if (PageTransHuge(page))
1814 hindex = round_down(index, HPAGE_PMD_NR);
1815 else
1816 hindex = index;
1817
66d2f4d2 1818 if (sgp == SGP_WRITE)
eb39d618 1819 __SetPageReferenced(page);
66d2f4d2 1820
9e18eb29 1821 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1822 PageTransHuge(page));
54af6042 1823 if (error)
800d8c63
KS
1824 goto unacct;
1825 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1826 compound_order(page));
b065b432 1827 if (!error) {
800d8c63 1828 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1829 NULL);
b065b432
HD
1830 radix_tree_preload_end();
1831 }
1832 if (error) {
800d8c63
KS
1833 mem_cgroup_cancel_charge(page, memcg,
1834 PageTransHuge(page));
1835 goto unacct;
b065b432 1836 }
800d8c63
KS
1837 mem_cgroup_commit_charge(page, memcg, false,
1838 PageTransHuge(page));
54af6042
HD
1839 lru_cache_add_anon(page);
1840
4595ef88 1841 spin_lock_irq(&info->lock);
800d8c63
KS
1842 info->alloced += 1 << compound_order(page);
1843 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1844 shmem_recalc_inode(inode);
4595ef88 1845 spin_unlock_irq(&info->lock);
1635f6a7 1846 alloced = true;
54af6042 1847
779750d2
KS
1848 if (PageTransHuge(page) &&
1849 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1850 hindex + HPAGE_PMD_NR - 1) {
1851 /*
1852 * Part of the huge page is beyond i_size: subject
1853 * to shrink under memory pressure.
1854 */
1855 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1856 /*
1857 * _careful to defend against unlocked access to
1858 * ->shrink_list in shmem_unused_huge_shrink()
1859 */
1860 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1861 list_add_tail(&info->shrinklist,
1862 &sbinfo->shrinklist);
1863 sbinfo->shrinklist_len++;
1864 }
1865 spin_unlock(&sbinfo->shrinklist_lock);
1866 }
1867
ec9516fb 1868 /*
1635f6a7
HD
1869 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1870 */
1871 if (sgp == SGP_FALLOC)
1872 sgp = SGP_WRITE;
1873clear:
1874 /*
1875 * Let SGP_WRITE caller clear ends if write does not fill page;
1876 * but SGP_FALLOC on a page fallocated earlier must initialize
1877 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1878 */
800d8c63
KS
1879 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1880 struct page *head = compound_head(page);
1881 int i;
1882
1883 for (i = 0; i < (1 << compound_order(head)); i++) {
1884 clear_highpage(head + i);
1885 flush_dcache_page(head + i);
1886 }
1887 SetPageUptodate(head);
ec9516fb 1888 }
1da177e4 1889 }
bde05d1c 1890
54af6042 1891 /* Perhaps the file has been truncated since we checked */
75edd345 1892 if (sgp <= SGP_CACHE &&
09cbfeaf 1893 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1894 if (alloced) {
1895 ClearPageDirty(page);
1896 delete_from_page_cache(page);
4595ef88 1897 spin_lock_irq(&info->lock);
267a4c76 1898 shmem_recalc_inode(inode);
4595ef88 1899 spin_unlock_irq(&info->lock);
267a4c76 1900 }
54af6042 1901 error = -EINVAL;
267a4c76 1902 goto unlock;
e83c32e8 1903 }
800d8c63 1904 *pagep = page + index - hindex;
54af6042 1905 return 0;
1da177e4 1906
59a16ead 1907 /*
54af6042 1908 * Error recovery.
59a16ead 1909 */
54af6042 1910unacct:
0f079694 1911 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
800d8c63
KS
1912
1913 if (PageTransHuge(page)) {
1914 unlock_page(page);
1915 put_page(page);
1916 goto alloc_nohuge;
1917 }
54af6042 1918failed:
267a4c76 1919 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1920 error = -EEXIST;
1921unlock:
27ab7006 1922 if (page) {
54af6042 1923 unlock_page(page);
09cbfeaf 1924 put_page(page);
54af6042
HD
1925 }
1926 if (error == -ENOSPC && !once++) {
4595ef88 1927 spin_lock_irq(&info->lock);
54af6042 1928 shmem_recalc_inode(inode);
4595ef88 1929 spin_unlock_irq(&info->lock);
27ab7006 1930 goto repeat;
ff36b801 1931 }
d1899228 1932 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1933 goto repeat;
1934 return error;
1da177e4
LT
1935}
1936
10d20bd2
LT
1937/*
1938 * This is like autoremove_wake_function, but it removes the wait queue
1939 * entry unconditionally - even if something else had already woken the
1940 * target.
1941 */
ac6424b9 1942static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1943{
1944 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1945 list_del_init(&wait->entry);
10d20bd2
LT
1946 return ret;
1947}
1948
20acce67 1949static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1950{
11bac800 1951 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1952 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1953 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1954 enum sgp_type sgp;
20acce67
SJ
1955 int err;
1956 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1957
f00cdc6d
HD
1958 /*
1959 * Trinity finds that probing a hole which tmpfs is punching can
1960 * prevent the hole-punch from ever completing: which in turn
1961 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1962 * faulting pages into the hole while it's being punched. Although
1963 * shmem_undo_range() does remove the additions, it may be unable to
1964 * keep up, as each new page needs its own unmap_mapping_range() call,
1965 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1966 *
1967 * It does not matter if we sometimes reach this check just before the
1968 * hole-punch begins, so that one fault then races with the punch:
1969 * we just need to make racing faults a rare case.
1970 *
1971 * The implementation below would be much simpler if we just used a
1972 * standard mutex or completion: but we cannot take i_mutex in fault,
1973 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1974 */
1975 if (unlikely(inode->i_private)) {
1976 struct shmem_falloc *shmem_falloc;
1977
1978 spin_lock(&inode->i_lock);
1979 shmem_falloc = inode->i_private;
8e205f77
HD
1980 if (shmem_falloc &&
1981 shmem_falloc->waitq &&
1982 vmf->pgoff >= shmem_falloc->start &&
1983 vmf->pgoff < shmem_falloc->next) {
1984 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 1985 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
1986
1987 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1988 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1989 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1990 /* It's polite to up mmap_sem if we can */
f00cdc6d 1991 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1992 ret = VM_FAULT_RETRY;
f00cdc6d 1993 }
8e205f77
HD
1994
1995 shmem_falloc_waitq = shmem_falloc->waitq;
1996 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1997 TASK_UNINTERRUPTIBLE);
1998 spin_unlock(&inode->i_lock);
1999 schedule();
2000
2001 /*
2002 * shmem_falloc_waitq points into the shmem_fallocate()
2003 * stack of the hole-punching task: shmem_falloc_waitq
2004 * is usually invalid by the time we reach here, but
2005 * finish_wait() does not dereference it in that case;
2006 * though i_lock needed lest racing with wake_up_all().
2007 */
2008 spin_lock(&inode->i_lock);
2009 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2010 spin_unlock(&inode->i_lock);
2011 return ret;
f00cdc6d 2012 }
8e205f77 2013 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2014 }
2015
657e3038 2016 sgp = SGP_CACHE;
18600332
MH
2017
2018 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2019 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2020 sgp = SGP_NOHUGE;
18600332
MH
2021 else if (vma->vm_flags & VM_HUGEPAGE)
2022 sgp = SGP_HUGE;
657e3038 2023
20acce67 2024 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2025 gfp, vma, vmf, &ret);
20acce67
SJ
2026 if (err)
2027 return vmf_error(err);
68da9f05 2028 return ret;
1da177e4
LT
2029}
2030
c01d5b30
HD
2031unsigned long shmem_get_unmapped_area(struct file *file,
2032 unsigned long uaddr, unsigned long len,
2033 unsigned long pgoff, unsigned long flags)
2034{
2035 unsigned long (*get_area)(struct file *,
2036 unsigned long, unsigned long, unsigned long, unsigned long);
2037 unsigned long addr;
2038 unsigned long offset;
2039 unsigned long inflated_len;
2040 unsigned long inflated_addr;
2041 unsigned long inflated_offset;
2042
2043 if (len > TASK_SIZE)
2044 return -ENOMEM;
2045
2046 get_area = current->mm->get_unmapped_area;
2047 addr = get_area(file, uaddr, len, pgoff, flags);
2048
e496cf3d 2049 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2050 return addr;
2051 if (IS_ERR_VALUE(addr))
2052 return addr;
2053 if (addr & ~PAGE_MASK)
2054 return addr;
2055 if (addr > TASK_SIZE - len)
2056 return addr;
2057
2058 if (shmem_huge == SHMEM_HUGE_DENY)
2059 return addr;
2060 if (len < HPAGE_PMD_SIZE)
2061 return addr;
2062 if (flags & MAP_FIXED)
2063 return addr;
2064 /*
2065 * Our priority is to support MAP_SHARED mapped hugely;
2066 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2067 * But if caller specified an address hint, respect that as before.
2068 */
2069 if (uaddr)
2070 return addr;
2071
2072 if (shmem_huge != SHMEM_HUGE_FORCE) {
2073 struct super_block *sb;
2074
2075 if (file) {
2076 VM_BUG_ON(file->f_op != &shmem_file_operations);
2077 sb = file_inode(file)->i_sb;
2078 } else {
2079 /*
2080 * Called directly from mm/mmap.c, or drivers/char/mem.c
2081 * for "/dev/zero", to create a shared anonymous object.
2082 */
2083 if (IS_ERR(shm_mnt))
2084 return addr;
2085 sb = shm_mnt->mnt_sb;
2086 }
3089bf61 2087 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2088 return addr;
2089 }
2090
2091 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2092 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2093 return addr;
2094 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2095 return addr;
2096
2097 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2098 if (inflated_len > TASK_SIZE)
2099 return addr;
2100 if (inflated_len < len)
2101 return addr;
2102
2103 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2104 if (IS_ERR_VALUE(inflated_addr))
2105 return addr;
2106 if (inflated_addr & ~PAGE_MASK)
2107 return addr;
2108
2109 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2110 inflated_addr += offset - inflated_offset;
2111 if (inflated_offset > offset)
2112 inflated_addr += HPAGE_PMD_SIZE;
2113
2114 if (inflated_addr > TASK_SIZE - len)
2115 return addr;
2116 return inflated_addr;
2117}
2118
1da177e4 2119#ifdef CONFIG_NUMA
41ffe5d5 2120static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2121{
496ad9aa 2122 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2123 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2124}
2125
d8dc74f2
AB
2126static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2127 unsigned long addr)
1da177e4 2128{
496ad9aa 2129 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2130 pgoff_t index;
1da177e4 2131
41ffe5d5
HD
2132 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2133 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2134}
2135#endif
2136
2137int shmem_lock(struct file *file, int lock, struct user_struct *user)
2138{
496ad9aa 2139 struct inode *inode = file_inode(file);
1da177e4
LT
2140 struct shmem_inode_info *info = SHMEM_I(inode);
2141 int retval = -ENOMEM;
2142
4595ef88 2143 spin_lock_irq(&info->lock);
1da177e4
LT
2144 if (lock && !(info->flags & VM_LOCKED)) {
2145 if (!user_shm_lock(inode->i_size, user))
2146 goto out_nomem;
2147 info->flags |= VM_LOCKED;
89e004ea 2148 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2149 }
2150 if (!lock && (info->flags & VM_LOCKED) && user) {
2151 user_shm_unlock(inode->i_size, user);
2152 info->flags &= ~VM_LOCKED;
89e004ea 2153 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2154 }
2155 retval = 0;
89e004ea 2156
1da177e4 2157out_nomem:
4595ef88 2158 spin_unlock_irq(&info->lock);
1da177e4
LT
2159 return retval;
2160}
2161
9b83a6a8 2162static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2163{
2164 file_accessed(file);
2165 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2166 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2167 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2168 (vma->vm_end & HPAGE_PMD_MASK)) {
2169 khugepaged_enter(vma, vma->vm_flags);
2170 }
1da177e4
LT
2171 return 0;
2172}
2173
454abafe 2174static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2175 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2176{
2177 struct inode *inode;
2178 struct shmem_inode_info *info;
2179 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2180
5b04c689
PE
2181 if (shmem_reserve_inode(sb))
2182 return NULL;
1da177e4
LT
2183
2184 inode = new_inode(sb);
2185 if (inode) {
85fe4025 2186 inode->i_ino = get_next_ino();
454abafe 2187 inode_init_owner(inode, dir, mode);
1da177e4 2188 inode->i_blocks = 0;
078cd827 2189 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2190 inode->i_generation = get_seconds();
1da177e4
LT
2191 info = SHMEM_I(inode);
2192 memset(info, 0, (char *)inode - (char *)info);
2193 spin_lock_init(&info->lock);
40e041a2 2194 info->seals = F_SEAL_SEAL;
0b0a0806 2195 info->flags = flags & VM_NORESERVE;
779750d2 2196 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2197 INIT_LIST_HEAD(&info->swaplist);
38f38657 2198 simple_xattrs_init(&info->xattrs);
72c04902 2199 cache_no_acl(inode);
1da177e4
LT
2200
2201 switch (mode & S_IFMT) {
2202 default:
39f0247d 2203 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2204 init_special_inode(inode, mode, dev);
2205 break;
2206 case S_IFREG:
14fcc23f 2207 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2208 inode->i_op = &shmem_inode_operations;
2209 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2210 mpol_shared_policy_init(&info->policy,
2211 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2212 break;
2213 case S_IFDIR:
d8c76e6f 2214 inc_nlink(inode);
1da177e4
LT
2215 /* Some things misbehave if size == 0 on a directory */
2216 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2217 inode->i_op = &shmem_dir_inode_operations;
2218 inode->i_fop = &simple_dir_operations;
2219 break;
2220 case S_IFLNK:
2221 /*
2222 * Must not load anything in the rbtree,
2223 * mpol_free_shared_policy will not be called.
2224 */
71fe804b 2225 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2226 break;
2227 }
5b04c689
PE
2228 } else
2229 shmem_free_inode(sb);
1da177e4
LT
2230 return inode;
2231}
2232
0cd6144a
JW
2233bool shmem_mapping(struct address_space *mapping)
2234{
f8005451 2235 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2236}
2237
8d103963
MR
2238static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2239 pmd_t *dst_pmd,
2240 struct vm_area_struct *dst_vma,
2241 unsigned long dst_addr,
2242 unsigned long src_addr,
2243 bool zeropage,
2244 struct page **pagep)
4c27fe4c
MR
2245{
2246 struct inode *inode = file_inode(dst_vma->vm_file);
2247 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2248 struct address_space *mapping = inode->i_mapping;
2249 gfp_t gfp = mapping_gfp_mask(mapping);
2250 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2251 struct mem_cgroup *memcg;
2252 spinlock_t *ptl;
2253 void *page_kaddr;
2254 struct page *page;
2255 pte_t _dst_pte, *dst_pte;
2256 int ret;
2257
cb658a45 2258 ret = -ENOMEM;
0f079694 2259 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2260 goto out;
4c27fe4c 2261
cb658a45 2262 if (!*pagep) {
4c27fe4c
MR
2263 page = shmem_alloc_page(gfp, info, pgoff);
2264 if (!page)
0f079694 2265 goto out_unacct_blocks;
4c27fe4c 2266
8d103963
MR
2267 if (!zeropage) { /* mcopy_atomic */
2268 page_kaddr = kmap_atomic(page);
2269 ret = copy_from_user(page_kaddr,
2270 (const void __user *)src_addr,
2271 PAGE_SIZE);
2272 kunmap_atomic(page_kaddr);
2273
2274 /* fallback to copy_from_user outside mmap_sem */
2275 if (unlikely(ret)) {
2276 *pagep = page;
2277 shmem_inode_unacct_blocks(inode, 1);
2278 /* don't free the page */
2279 return -EFAULT;
2280 }
2281 } else { /* mfill_zeropage_atomic */
2282 clear_highpage(page);
4c27fe4c
MR
2283 }
2284 } else {
2285 page = *pagep;
2286 *pagep = NULL;
2287 }
2288
9cc90c66
AA
2289 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2290 __SetPageLocked(page);
2291 __SetPageSwapBacked(page);
a425d358 2292 __SetPageUptodate(page);
9cc90c66 2293
4c27fe4c
MR
2294 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2295 if (ret)
2296 goto out_release;
2297
2298 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2299 if (!ret) {
2300 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2301 radix_tree_preload_end();
2302 }
2303 if (ret)
2304 goto out_release_uncharge;
2305
2306 mem_cgroup_commit_charge(page, memcg, false, false);
2307
2308 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2309 if (dst_vma->vm_flags & VM_WRITE)
2310 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2311
2312 ret = -EEXIST;
2313 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2314 if (!pte_none(*dst_pte))
2315 goto out_release_uncharge_unlock;
2316
4c27fe4c
MR
2317 lru_cache_add_anon(page);
2318
2319 spin_lock(&info->lock);
2320 info->alloced++;
2321 inode->i_blocks += BLOCKS_PER_PAGE;
2322 shmem_recalc_inode(inode);
2323 spin_unlock(&info->lock);
2324
2325 inc_mm_counter(dst_mm, mm_counter_file(page));
2326 page_add_file_rmap(page, false);
2327 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2328
2329 /* No need to invalidate - it was non-present before */
2330 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2331 unlock_page(page);
2332 pte_unmap_unlock(dst_pte, ptl);
2333 ret = 0;
2334out:
2335 return ret;
2336out_release_uncharge_unlock:
2337 pte_unmap_unlock(dst_pte, ptl);
2338out_release_uncharge:
2339 mem_cgroup_cancel_charge(page, memcg, false);
2340out_release:
9cc90c66 2341 unlock_page(page);
4c27fe4c 2342 put_page(page);
4c27fe4c 2343out_unacct_blocks:
0f079694 2344 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2345 goto out;
2346}
2347
8d103963
MR
2348int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2349 pmd_t *dst_pmd,
2350 struct vm_area_struct *dst_vma,
2351 unsigned long dst_addr,
2352 unsigned long src_addr,
2353 struct page **pagep)
2354{
2355 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2356 dst_addr, src_addr, false, pagep);
2357}
2358
2359int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2360 pmd_t *dst_pmd,
2361 struct vm_area_struct *dst_vma,
2362 unsigned long dst_addr)
2363{
2364 struct page *page = NULL;
2365
2366 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2367 dst_addr, 0, true, &page);
2368}
2369
1da177e4 2370#ifdef CONFIG_TMPFS
92e1d5be 2371static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2372static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2373
6d9d88d0
JS
2374#ifdef CONFIG_TMPFS_XATTR
2375static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2376#else
2377#define shmem_initxattrs NULL
2378#endif
2379
1da177e4 2380static int
800d15a5
NP
2381shmem_write_begin(struct file *file, struct address_space *mapping,
2382 loff_t pos, unsigned len, unsigned flags,
2383 struct page **pagep, void **fsdata)
1da177e4 2384{
800d15a5 2385 struct inode *inode = mapping->host;
40e041a2 2386 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2387 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2388
2389 /* i_mutex is held by caller */
3f472cc9 2390 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
40e041a2
DH
2391 if (info->seals & F_SEAL_WRITE)
2392 return -EPERM;
2393 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2394 return -EPERM;
2395 }
2396
9e18eb29 2397 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2398}
2399
2400static int
2401shmem_write_end(struct file *file, struct address_space *mapping,
2402 loff_t pos, unsigned len, unsigned copied,
2403 struct page *page, void *fsdata)
2404{
2405 struct inode *inode = mapping->host;
2406
d3602444
HD
2407 if (pos + copied > inode->i_size)
2408 i_size_write(inode, pos + copied);
2409
ec9516fb 2410 if (!PageUptodate(page)) {
800d8c63
KS
2411 struct page *head = compound_head(page);
2412 if (PageTransCompound(page)) {
2413 int i;
2414
2415 for (i = 0; i < HPAGE_PMD_NR; i++) {
2416 if (head + i == page)
2417 continue;
2418 clear_highpage(head + i);
2419 flush_dcache_page(head + i);
2420 }
2421 }
09cbfeaf
KS
2422 if (copied < PAGE_SIZE) {
2423 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2424 zero_user_segments(page, 0, from,
09cbfeaf 2425 from + copied, PAGE_SIZE);
ec9516fb 2426 }
800d8c63 2427 SetPageUptodate(head);
ec9516fb 2428 }
800d15a5 2429 set_page_dirty(page);
6746aff7 2430 unlock_page(page);
09cbfeaf 2431 put_page(page);
800d15a5 2432
800d15a5 2433 return copied;
1da177e4
LT
2434}
2435
2ba5bbed 2436static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2437{
6e58e79d
AV
2438 struct file *file = iocb->ki_filp;
2439 struct inode *inode = file_inode(file);
1da177e4 2440 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2441 pgoff_t index;
2442 unsigned long offset;
a0ee5ec5 2443 enum sgp_type sgp = SGP_READ;
f7c1d074 2444 int error = 0;
cb66a7a1 2445 ssize_t retval = 0;
6e58e79d 2446 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2447
2448 /*
2449 * Might this read be for a stacking filesystem? Then when reading
2450 * holes of a sparse file, we actually need to allocate those pages,
2451 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2452 */
777eda2c 2453 if (!iter_is_iovec(to))
75edd345 2454 sgp = SGP_CACHE;
1da177e4 2455
09cbfeaf
KS
2456 index = *ppos >> PAGE_SHIFT;
2457 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2458
2459 for (;;) {
2460 struct page *page = NULL;
41ffe5d5
HD
2461 pgoff_t end_index;
2462 unsigned long nr, ret;
1da177e4
LT
2463 loff_t i_size = i_size_read(inode);
2464
09cbfeaf 2465 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2466 if (index > end_index)
2467 break;
2468 if (index == end_index) {
09cbfeaf 2469 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2470 if (nr <= offset)
2471 break;
2472 }
2473
9e18eb29 2474 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2475 if (error) {
2476 if (error == -EINVAL)
2477 error = 0;
1da177e4
LT
2478 break;
2479 }
75edd345
HD
2480 if (page) {
2481 if (sgp == SGP_CACHE)
2482 set_page_dirty(page);
d3602444 2483 unlock_page(page);
75edd345 2484 }
1da177e4
LT
2485
2486 /*
2487 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2488 * are called without i_mutex protection against truncate
1da177e4 2489 */
09cbfeaf 2490 nr = PAGE_SIZE;
1da177e4 2491 i_size = i_size_read(inode);
09cbfeaf 2492 end_index = i_size >> PAGE_SHIFT;
1da177e4 2493 if (index == end_index) {
09cbfeaf 2494 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2495 if (nr <= offset) {
2496 if (page)
09cbfeaf 2497 put_page(page);
1da177e4
LT
2498 break;
2499 }
2500 }
2501 nr -= offset;
2502
2503 if (page) {
2504 /*
2505 * If users can be writing to this page using arbitrary
2506 * virtual addresses, take care about potential aliasing
2507 * before reading the page on the kernel side.
2508 */
2509 if (mapping_writably_mapped(mapping))
2510 flush_dcache_page(page);
2511 /*
2512 * Mark the page accessed if we read the beginning.
2513 */
2514 if (!offset)
2515 mark_page_accessed(page);
b5810039 2516 } else {
1da177e4 2517 page = ZERO_PAGE(0);
09cbfeaf 2518 get_page(page);
b5810039 2519 }
1da177e4
LT
2520
2521 /*
2522 * Ok, we have the page, and it's up-to-date, so
2523 * now we can copy it to user space...
1da177e4 2524 */
2ba5bbed 2525 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2526 retval += ret;
1da177e4 2527 offset += ret;
09cbfeaf
KS
2528 index += offset >> PAGE_SHIFT;
2529 offset &= ~PAGE_MASK;
1da177e4 2530
09cbfeaf 2531 put_page(page);
2ba5bbed 2532 if (!iov_iter_count(to))
1da177e4 2533 break;
6e58e79d
AV
2534 if (ret < nr) {
2535 error = -EFAULT;
2536 break;
2537 }
1da177e4
LT
2538 cond_resched();
2539 }
2540
09cbfeaf 2541 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2542 file_accessed(file);
2543 return retval ? retval : error;
1da177e4
LT
2544}
2545
220f2ac9
HD
2546/*
2547 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2548 */
2549static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2550 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2551{
2552 struct page *page;
2553 struct pagevec pvec;
2554 pgoff_t indices[PAGEVEC_SIZE];
2555 bool done = false;
2556 int i;
2557
86679820 2558 pagevec_init(&pvec);
220f2ac9
HD
2559 pvec.nr = 1; /* start small: we may be there already */
2560 while (!done) {
0cd6144a 2561 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2562 pvec.nr, pvec.pages, indices);
2563 if (!pvec.nr) {
965c8e59 2564 if (whence == SEEK_DATA)
220f2ac9
HD
2565 index = end;
2566 break;
2567 }
2568 for (i = 0; i < pvec.nr; i++, index++) {
2569 if (index < indices[i]) {
965c8e59 2570 if (whence == SEEK_HOLE) {
220f2ac9
HD
2571 done = true;
2572 break;
2573 }
2574 index = indices[i];
2575 }
2576 page = pvec.pages[i];
2577 if (page && !radix_tree_exceptional_entry(page)) {
2578 if (!PageUptodate(page))
2579 page = NULL;
2580 }
2581 if (index >= end ||
965c8e59
AM
2582 (page && whence == SEEK_DATA) ||
2583 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2584 done = true;
2585 break;
2586 }
2587 }
0cd6144a 2588 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2589 pagevec_release(&pvec);
2590 pvec.nr = PAGEVEC_SIZE;
2591 cond_resched();
2592 }
2593 return index;
2594}
2595
965c8e59 2596static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2597{
2598 struct address_space *mapping = file->f_mapping;
2599 struct inode *inode = mapping->host;
2600 pgoff_t start, end;
2601 loff_t new_offset;
2602
965c8e59
AM
2603 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2604 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2605 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2606 inode_lock(inode);
220f2ac9
HD
2607 /* We're holding i_mutex so we can access i_size directly */
2608
2609 if (offset < 0)
2610 offset = -EINVAL;
2611 else if (offset >= inode->i_size)
2612 offset = -ENXIO;
2613 else {
09cbfeaf
KS
2614 start = offset >> PAGE_SHIFT;
2615 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2616 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2617 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2618 if (new_offset > offset) {
2619 if (new_offset < inode->i_size)
2620 offset = new_offset;
965c8e59 2621 else if (whence == SEEK_DATA)
220f2ac9
HD
2622 offset = -ENXIO;
2623 else
2624 offset = inode->i_size;
2625 }
2626 }
2627
387aae6f
HD
2628 if (offset >= 0)
2629 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2630 inode_unlock(inode);
220f2ac9
HD
2631 return offset;
2632}
2633
83e4fa9c
HD
2634static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2635 loff_t len)
2636{
496ad9aa 2637 struct inode *inode = file_inode(file);
e2d12e22 2638 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2639 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2640 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2641 pgoff_t start, index, end;
2642 int error;
83e4fa9c 2643
13ace4d0
HD
2644 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2645 return -EOPNOTSUPP;
2646
5955102c 2647 inode_lock(inode);
83e4fa9c
HD
2648
2649 if (mode & FALLOC_FL_PUNCH_HOLE) {
2650 struct address_space *mapping = file->f_mapping;
2651 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2652 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2653 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2654
40e041a2
DH
2655 /* protected by i_mutex */
2656 if (info->seals & F_SEAL_WRITE) {
2657 error = -EPERM;
2658 goto out;
2659 }
2660
8e205f77 2661 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2662 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2663 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2664 spin_lock(&inode->i_lock);
2665 inode->i_private = &shmem_falloc;
2666 spin_unlock(&inode->i_lock);
2667
83e4fa9c
HD
2668 if ((u64)unmap_end > (u64)unmap_start)
2669 unmap_mapping_range(mapping, unmap_start,
2670 1 + unmap_end - unmap_start, 0);
2671 shmem_truncate_range(inode, offset, offset + len - 1);
2672 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2673
2674 spin_lock(&inode->i_lock);
2675 inode->i_private = NULL;
2676 wake_up_all(&shmem_falloc_waitq);
2055da97 2677 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2678 spin_unlock(&inode->i_lock);
83e4fa9c 2679 error = 0;
8e205f77 2680 goto out;
e2d12e22
HD
2681 }
2682
2683 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2684 error = inode_newsize_ok(inode, offset + len);
2685 if (error)
2686 goto out;
2687
40e041a2
DH
2688 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2689 error = -EPERM;
2690 goto out;
2691 }
2692
09cbfeaf
KS
2693 start = offset >> PAGE_SHIFT;
2694 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2695 /* Try to avoid a swapstorm if len is impossible to satisfy */
2696 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2697 error = -ENOSPC;
2698 goto out;
83e4fa9c
HD
2699 }
2700
8e205f77 2701 shmem_falloc.waitq = NULL;
1aac1400
HD
2702 shmem_falloc.start = start;
2703 shmem_falloc.next = start;
2704 shmem_falloc.nr_falloced = 0;
2705 shmem_falloc.nr_unswapped = 0;
2706 spin_lock(&inode->i_lock);
2707 inode->i_private = &shmem_falloc;
2708 spin_unlock(&inode->i_lock);
2709
e2d12e22
HD
2710 for (index = start; index < end; index++) {
2711 struct page *page;
2712
2713 /*
2714 * Good, the fallocate(2) manpage permits EINTR: we may have
2715 * been interrupted because we are using up too much memory.
2716 */
2717 if (signal_pending(current))
2718 error = -EINTR;
1aac1400
HD
2719 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2720 error = -ENOMEM;
e2d12e22 2721 else
9e18eb29 2722 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2723 if (error) {
1635f6a7 2724 /* Remove the !PageUptodate pages we added */
7f556567
HD
2725 if (index > start) {
2726 shmem_undo_range(inode,
2727 (loff_t)start << PAGE_SHIFT,
2728 ((loff_t)index << PAGE_SHIFT) - 1, true);
2729 }
1aac1400 2730 goto undone;
e2d12e22
HD
2731 }
2732
1aac1400
HD
2733 /*
2734 * Inform shmem_writepage() how far we have reached.
2735 * No need for lock or barrier: we have the page lock.
2736 */
2737 shmem_falloc.next++;
2738 if (!PageUptodate(page))
2739 shmem_falloc.nr_falloced++;
2740
e2d12e22 2741 /*
1635f6a7
HD
2742 * If !PageUptodate, leave it that way so that freeable pages
2743 * can be recognized if we need to rollback on error later.
2744 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2745 * than free the pages we are allocating (and SGP_CACHE pages
2746 * might still be clean: we now need to mark those dirty too).
2747 */
2748 set_page_dirty(page);
2749 unlock_page(page);
09cbfeaf 2750 put_page(page);
e2d12e22
HD
2751 cond_resched();
2752 }
2753
2754 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2755 i_size_write(inode, offset + len);
078cd827 2756 inode->i_ctime = current_time(inode);
1aac1400
HD
2757undone:
2758 spin_lock(&inode->i_lock);
2759 inode->i_private = NULL;
2760 spin_unlock(&inode->i_lock);
e2d12e22 2761out:
5955102c 2762 inode_unlock(inode);
83e4fa9c
HD
2763 return error;
2764}
2765
726c3342 2766static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2767{
726c3342 2768 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2769
2770 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2771 buf->f_bsize = PAGE_SIZE;
1da177e4 2772 buf->f_namelen = NAME_MAX;
0edd73b3 2773 if (sbinfo->max_blocks) {
1da177e4 2774 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2775 buf->f_bavail =
2776 buf->f_bfree = sbinfo->max_blocks -
2777 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2778 }
2779 if (sbinfo->max_inodes) {
1da177e4
LT
2780 buf->f_files = sbinfo->max_inodes;
2781 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2782 }
2783 /* else leave those fields 0 like simple_statfs */
2784 return 0;
2785}
2786
2787/*
2788 * File creation. Allocate an inode, and we're done..
2789 */
2790static int
1a67aafb 2791shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2792{
0b0a0806 2793 struct inode *inode;
1da177e4
LT
2794 int error = -ENOSPC;
2795
454abafe 2796 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2797 if (inode) {
feda821e
CH
2798 error = simple_acl_create(dir, inode);
2799 if (error)
2800 goto out_iput;
2a7dba39 2801 error = security_inode_init_security(inode, dir,
9d8f13ba 2802 &dentry->d_name,
6d9d88d0 2803 shmem_initxattrs, NULL);
feda821e
CH
2804 if (error && error != -EOPNOTSUPP)
2805 goto out_iput;
37ec43cd 2806
718deb6b 2807 error = 0;
1da177e4 2808 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2809 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2810 d_instantiate(dentry, inode);
2811 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2812 }
2813 return error;
feda821e
CH
2814out_iput:
2815 iput(inode);
2816 return error;
1da177e4
LT
2817}
2818
60545d0d
AV
2819static int
2820shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2821{
2822 struct inode *inode;
2823 int error = -ENOSPC;
2824
2825 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2826 if (inode) {
2827 error = security_inode_init_security(inode, dir,
2828 NULL,
2829 shmem_initxattrs, NULL);
feda821e
CH
2830 if (error && error != -EOPNOTSUPP)
2831 goto out_iput;
2832 error = simple_acl_create(dir, inode);
2833 if (error)
2834 goto out_iput;
60545d0d
AV
2835 d_tmpfile(dentry, inode);
2836 }
2837 return error;
feda821e
CH
2838out_iput:
2839 iput(inode);
2840 return error;
60545d0d
AV
2841}
2842
18bb1db3 2843static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2844{
2845 int error;
2846
2847 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2848 return error;
d8c76e6f 2849 inc_nlink(dir);
1da177e4
LT
2850 return 0;
2851}
2852
4acdaf27 2853static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2854 bool excl)
1da177e4
LT
2855{
2856 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2857}
2858
2859/*
2860 * Link a file..
2861 */
2862static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2863{
75c3cfa8 2864 struct inode *inode = d_inode(old_dentry);
5b04c689 2865 int ret;
1da177e4
LT
2866
2867 /*
2868 * No ordinary (disk based) filesystem counts links as inodes;
2869 * but each new link needs a new dentry, pinning lowmem, and
2870 * tmpfs dentries cannot be pruned until they are unlinked.
2871 */
5b04c689
PE
2872 ret = shmem_reserve_inode(inode->i_sb);
2873 if (ret)
2874 goto out;
1da177e4
LT
2875
2876 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2877 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2878 inc_nlink(inode);
7de9c6ee 2879 ihold(inode); /* New dentry reference */
1da177e4
LT
2880 dget(dentry); /* Extra pinning count for the created dentry */
2881 d_instantiate(dentry, inode);
5b04c689
PE
2882out:
2883 return ret;
1da177e4
LT
2884}
2885
2886static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2887{
75c3cfa8 2888 struct inode *inode = d_inode(dentry);
1da177e4 2889
5b04c689
PE
2890 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2891 shmem_free_inode(inode->i_sb);
1da177e4
LT
2892
2893 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2894 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2895 drop_nlink(inode);
1da177e4
LT
2896 dput(dentry); /* Undo the count from "create" - this does all the work */
2897 return 0;
2898}
2899
2900static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2901{
2902 if (!simple_empty(dentry))
2903 return -ENOTEMPTY;
2904
75c3cfa8 2905 drop_nlink(d_inode(dentry));
9a53c3a7 2906 drop_nlink(dir);
1da177e4
LT
2907 return shmem_unlink(dir, dentry);
2908}
2909
37456771
MS
2910static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2911{
e36cb0b8
DH
2912 bool old_is_dir = d_is_dir(old_dentry);
2913 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2914
2915 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2916 if (old_is_dir) {
2917 drop_nlink(old_dir);
2918 inc_nlink(new_dir);
2919 } else {
2920 drop_nlink(new_dir);
2921 inc_nlink(old_dir);
2922 }
2923 }
2924 old_dir->i_ctime = old_dir->i_mtime =
2925 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2926 d_inode(old_dentry)->i_ctime =
078cd827 2927 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2928
2929 return 0;
2930}
2931
46fdb794
MS
2932static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2933{
2934 struct dentry *whiteout;
2935 int error;
2936
2937 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2938 if (!whiteout)
2939 return -ENOMEM;
2940
2941 error = shmem_mknod(old_dir, whiteout,
2942 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2943 dput(whiteout);
2944 if (error)
2945 return error;
2946
2947 /*
2948 * Cheat and hash the whiteout while the old dentry is still in
2949 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2950 *
2951 * d_lookup() will consistently find one of them at this point,
2952 * not sure which one, but that isn't even important.
2953 */
2954 d_rehash(whiteout);
2955 return 0;
2956}
2957
1da177e4
LT
2958/*
2959 * The VFS layer already does all the dentry stuff for rename,
2960 * we just have to decrement the usage count for the target if
2961 * it exists so that the VFS layer correctly free's it when it
2962 * gets overwritten.
2963 */
3b69ff51 2964static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2965{
75c3cfa8 2966 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2967 int they_are_dirs = S_ISDIR(inode->i_mode);
2968
46fdb794 2969 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2970 return -EINVAL;
2971
37456771
MS
2972 if (flags & RENAME_EXCHANGE)
2973 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2974
1da177e4
LT
2975 if (!simple_empty(new_dentry))
2976 return -ENOTEMPTY;
2977
46fdb794
MS
2978 if (flags & RENAME_WHITEOUT) {
2979 int error;
2980
2981 error = shmem_whiteout(old_dir, old_dentry);
2982 if (error)
2983 return error;
2984 }
2985
75c3cfa8 2986 if (d_really_is_positive(new_dentry)) {
1da177e4 2987 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2988 if (they_are_dirs) {
75c3cfa8 2989 drop_nlink(d_inode(new_dentry));
9a53c3a7 2990 drop_nlink(old_dir);
b928095b 2991 }
1da177e4 2992 } else if (they_are_dirs) {
9a53c3a7 2993 drop_nlink(old_dir);
d8c76e6f 2994 inc_nlink(new_dir);
1da177e4
LT
2995 }
2996
2997 old_dir->i_size -= BOGO_DIRENT_SIZE;
2998 new_dir->i_size += BOGO_DIRENT_SIZE;
2999 old_dir->i_ctime = old_dir->i_mtime =
3000 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3001 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3002 return 0;
3003}
3004
3005static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3006{
3007 int error;
3008 int len;
3009 struct inode *inode;
9276aad6 3010 struct page *page;
1da177e4
LT
3011
3012 len = strlen(symname) + 1;
09cbfeaf 3013 if (len > PAGE_SIZE)
1da177e4
LT
3014 return -ENAMETOOLONG;
3015
0825a6f9
JP
3016 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3017 VM_NORESERVE);
1da177e4
LT
3018 if (!inode)
3019 return -ENOSPC;
3020
9d8f13ba 3021 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3022 shmem_initxattrs, NULL);
570bc1c2
SS
3023 if (error) {
3024 if (error != -EOPNOTSUPP) {
3025 iput(inode);
3026 return error;
3027 }
3028 error = 0;
3029 }
3030
1da177e4 3031 inode->i_size = len-1;
69f07ec9 3032 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3033 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3034 if (!inode->i_link) {
69f07ec9
HD
3035 iput(inode);
3036 return -ENOMEM;
3037 }
3038 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3039 } else {
e8ecde25 3040 inode_nohighmem(inode);
9e18eb29 3041 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3042 if (error) {
3043 iput(inode);
3044 return error;
3045 }
14fcc23f 3046 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3047 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3048 memcpy(page_address(page), symname, len);
ec9516fb 3049 SetPageUptodate(page);
1da177e4 3050 set_page_dirty(page);
6746aff7 3051 unlock_page(page);
09cbfeaf 3052 put_page(page);
1da177e4 3053 }
1da177e4 3054 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3055 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3056 d_instantiate(dentry, inode);
3057 dget(dentry);
3058 return 0;
3059}
3060
fceef393 3061static void shmem_put_link(void *arg)
1da177e4 3062{
fceef393
AV
3063 mark_page_accessed(arg);
3064 put_page(arg);
1da177e4
LT
3065}
3066
6b255391 3067static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3068 struct inode *inode,
3069 struct delayed_call *done)
1da177e4 3070{
1da177e4 3071 struct page *page = NULL;
6b255391 3072 int error;
6a6c9904
AV
3073 if (!dentry) {
3074 page = find_get_page(inode->i_mapping, 0);
3075 if (!page)
3076 return ERR_PTR(-ECHILD);
3077 if (!PageUptodate(page)) {
3078 put_page(page);
3079 return ERR_PTR(-ECHILD);
3080 }
3081 } else {
9e18eb29 3082 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3083 if (error)
3084 return ERR_PTR(error);
3085 unlock_page(page);
3086 }
fceef393 3087 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3088 return page_address(page);
1da177e4
LT
3089}
3090
b09e0fa4 3091#ifdef CONFIG_TMPFS_XATTR
46711810 3092/*
b09e0fa4
EP
3093 * Superblocks without xattr inode operations may get some security.* xattr
3094 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3095 * like ACLs, we also need to implement the security.* handlers at
3096 * filesystem level, though.
3097 */
3098
6d9d88d0
JS
3099/*
3100 * Callback for security_inode_init_security() for acquiring xattrs.
3101 */
3102static int shmem_initxattrs(struct inode *inode,
3103 const struct xattr *xattr_array,
3104 void *fs_info)
3105{
3106 struct shmem_inode_info *info = SHMEM_I(inode);
3107 const struct xattr *xattr;
38f38657 3108 struct simple_xattr *new_xattr;
6d9d88d0
JS
3109 size_t len;
3110
3111 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3112 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3113 if (!new_xattr)
3114 return -ENOMEM;
3115
3116 len = strlen(xattr->name) + 1;
3117 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3118 GFP_KERNEL);
3119 if (!new_xattr->name) {
3120 kfree(new_xattr);
3121 return -ENOMEM;
3122 }
3123
3124 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3125 XATTR_SECURITY_PREFIX_LEN);
3126 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3127 xattr->name, len);
3128
38f38657 3129 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3130 }
3131
3132 return 0;
3133}
3134
aa7c5241 3135static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3136 struct dentry *unused, struct inode *inode,
3137 const char *name, void *buffer, size_t size)
b09e0fa4 3138{
b296821a 3139 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3140
aa7c5241 3141 name = xattr_full_name(handler, name);
38f38657 3142 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3143}
3144
aa7c5241 3145static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3146 struct dentry *unused, struct inode *inode,
3147 const char *name, const void *value,
3148 size_t size, int flags)
b09e0fa4 3149{
59301226 3150 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3151
aa7c5241 3152 name = xattr_full_name(handler, name);
38f38657 3153 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3154}
3155
aa7c5241
AG
3156static const struct xattr_handler shmem_security_xattr_handler = {
3157 .prefix = XATTR_SECURITY_PREFIX,
3158 .get = shmem_xattr_handler_get,
3159 .set = shmem_xattr_handler_set,
3160};
b09e0fa4 3161
aa7c5241
AG
3162static const struct xattr_handler shmem_trusted_xattr_handler = {
3163 .prefix = XATTR_TRUSTED_PREFIX,
3164 .get = shmem_xattr_handler_get,
3165 .set = shmem_xattr_handler_set,
3166};
b09e0fa4 3167
aa7c5241
AG
3168static const struct xattr_handler *shmem_xattr_handlers[] = {
3169#ifdef CONFIG_TMPFS_POSIX_ACL
3170 &posix_acl_access_xattr_handler,
3171 &posix_acl_default_xattr_handler,
3172#endif
3173 &shmem_security_xattr_handler,
3174 &shmem_trusted_xattr_handler,
3175 NULL
3176};
b09e0fa4
EP
3177
3178static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3179{
75c3cfa8 3180 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3181 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3182}
3183#endif /* CONFIG_TMPFS_XATTR */
3184
69f07ec9 3185static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3186 .get_link = simple_get_link,
b09e0fa4 3187#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3188 .listxattr = shmem_listxattr,
b09e0fa4
EP
3189#endif
3190};
3191
3192static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3193 .get_link = shmem_get_link,
b09e0fa4 3194#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3195 .listxattr = shmem_listxattr,
39f0247d 3196#endif
b09e0fa4 3197};
39f0247d 3198
91828a40
DG
3199static struct dentry *shmem_get_parent(struct dentry *child)
3200{
3201 return ERR_PTR(-ESTALE);
3202}
3203
3204static int shmem_match(struct inode *ino, void *vfh)
3205{
3206 __u32 *fh = vfh;
3207 __u64 inum = fh[2];
3208 inum = (inum << 32) | fh[1];
3209 return ino->i_ino == inum && fh[0] == ino->i_generation;
3210}
3211
12ba780d
AG
3212/* Find any alias of inode, but prefer a hashed alias */
3213static struct dentry *shmem_find_alias(struct inode *inode)
3214{
3215 struct dentry *alias = d_find_alias(inode);
3216
3217 return alias ?: d_find_any_alias(inode);
3218}
3219
3220
480b116c
CH
3221static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3222 struct fid *fid, int fh_len, int fh_type)
91828a40 3223{
91828a40 3224 struct inode *inode;
480b116c 3225 struct dentry *dentry = NULL;
35c2a7f4 3226 u64 inum;
480b116c
CH
3227
3228 if (fh_len < 3)
3229 return NULL;
91828a40 3230
35c2a7f4
HD
3231 inum = fid->raw[2];
3232 inum = (inum << 32) | fid->raw[1];
3233
480b116c
CH
3234 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3235 shmem_match, fid->raw);
91828a40 3236 if (inode) {
12ba780d 3237 dentry = shmem_find_alias(inode);
91828a40
DG
3238 iput(inode);
3239 }
3240
480b116c 3241 return dentry;
91828a40
DG
3242}
3243
b0b0382b
AV
3244static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3245 struct inode *parent)
91828a40 3246{
5fe0c237
AK
3247 if (*len < 3) {
3248 *len = 3;
94e07a75 3249 return FILEID_INVALID;
5fe0c237 3250 }
91828a40 3251
1d3382cb 3252 if (inode_unhashed(inode)) {
91828a40
DG
3253 /* Unfortunately insert_inode_hash is not idempotent,
3254 * so as we hash inodes here rather than at creation
3255 * time, we need a lock to ensure we only try
3256 * to do it once
3257 */
3258 static DEFINE_SPINLOCK(lock);
3259 spin_lock(&lock);
1d3382cb 3260 if (inode_unhashed(inode))
91828a40
DG
3261 __insert_inode_hash(inode,
3262 inode->i_ino + inode->i_generation);
3263 spin_unlock(&lock);
3264 }
3265
3266 fh[0] = inode->i_generation;
3267 fh[1] = inode->i_ino;
3268 fh[2] = ((__u64)inode->i_ino) >> 32;
3269
3270 *len = 3;
3271 return 1;
3272}
3273
39655164 3274static const struct export_operations shmem_export_ops = {
91828a40 3275 .get_parent = shmem_get_parent,
91828a40 3276 .encode_fh = shmem_encode_fh,
480b116c 3277 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3278};
3279
680d794b 3280static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3281 bool remount)
1da177e4
LT
3282{
3283 char *this_char, *value, *rest;
49cd0a5c 3284 struct mempolicy *mpol = NULL;
8751e039
EB
3285 uid_t uid;
3286 gid_t gid;
1da177e4 3287
b00dc3ad
HD
3288 while (options != NULL) {
3289 this_char = options;
3290 for (;;) {
3291 /*
3292 * NUL-terminate this option: unfortunately,
3293 * mount options form a comma-separated list,
3294 * but mpol's nodelist may also contain commas.
3295 */
3296 options = strchr(options, ',');
3297 if (options == NULL)
3298 break;
3299 options++;
3300 if (!isdigit(*options)) {
3301 options[-1] = '\0';
3302 break;
3303 }
3304 }
1da177e4
LT
3305 if (!*this_char)
3306 continue;
3307 if ((value = strchr(this_char,'=')) != NULL) {
3308 *value++ = 0;
3309 } else {
1170532b
JP
3310 pr_err("tmpfs: No value for mount option '%s'\n",
3311 this_char);
49cd0a5c 3312 goto error;
1da177e4
LT
3313 }
3314
3315 if (!strcmp(this_char,"size")) {
3316 unsigned long long size;
3317 size = memparse(value,&rest);
3318 if (*rest == '%') {
3319 size <<= PAGE_SHIFT;
3320 size *= totalram_pages;
3321 do_div(size, 100);
3322 rest++;
3323 }
3324 if (*rest)
3325 goto bad_val;
680d794b 3326 sbinfo->max_blocks =
09cbfeaf 3327 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3328 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3329 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3330 if (*rest)
3331 goto bad_val;
3332 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3333 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3334 if (*rest)
3335 goto bad_val;
3336 } else if (!strcmp(this_char,"mode")) {
680d794b 3337 if (remount)
1da177e4 3338 continue;
680d794b 3339 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3340 if (*rest)
3341 goto bad_val;
3342 } else if (!strcmp(this_char,"uid")) {
680d794b 3343 if (remount)
1da177e4 3344 continue;
8751e039 3345 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3346 if (*rest)
3347 goto bad_val;
8751e039
EB
3348 sbinfo->uid = make_kuid(current_user_ns(), uid);
3349 if (!uid_valid(sbinfo->uid))
3350 goto bad_val;
1da177e4 3351 } else if (!strcmp(this_char,"gid")) {
680d794b 3352 if (remount)
1da177e4 3353 continue;
8751e039 3354 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3355 if (*rest)
3356 goto bad_val;
8751e039
EB
3357 sbinfo->gid = make_kgid(current_user_ns(), gid);
3358 if (!gid_valid(sbinfo->gid))
3359 goto bad_val;
e496cf3d 3360#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3361 } else if (!strcmp(this_char, "huge")) {
3362 int huge;
3363 huge = shmem_parse_huge(value);
3364 if (huge < 0)
3365 goto bad_val;
3366 if (!has_transparent_hugepage() &&
3367 huge != SHMEM_HUGE_NEVER)
3368 goto bad_val;
3369 sbinfo->huge = huge;
3370#endif
3371#ifdef CONFIG_NUMA
7339ff83 3372 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3373 mpol_put(mpol);
3374 mpol = NULL;
3375 if (mpol_parse_str(value, &mpol))
7339ff83 3376 goto bad_val;
5a6e75f8 3377#endif
1da177e4 3378 } else {
1170532b 3379 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3380 goto error;
1da177e4
LT
3381 }
3382 }
49cd0a5c 3383 sbinfo->mpol = mpol;
1da177e4
LT
3384 return 0;
3385
3386bad_val:
1170532b 3387 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3388 value, this_char);
49cd0a5c
GT
3389error:
3390 mpol_put(mpol);
1da177e4
LT
3391 return 1;
3392
3393}
3394
3395static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3396{
3397 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3398 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3399 unsigned long inodes;
3400 int error = -EINVAL;
3401
5f00110f 3402 config.mpol = NULL;
680d794b 3403 if (shmem_parse_options(data, &config, true))
0edd73b3 3404 return error;
1da177e4 3405
0edd73b3 3406 spin_lock(&sbinfo->stat_lock);
0edd73b3 3407 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3408 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3409 goto out;
680d794b 3410 if (config.max_inodes < inodes)
0edd73b3
HD
3411 goto out;
3412 /*
54af6042 3413 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3414 * but we must separately disallow unlimited->limited, because
3415 * in that case we have no record of how much is already in use.
3416 */
680d794b 3417 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3418 goto out;
680d794b 3419 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3420 goto out;
3421
3422 error = 0;
5a6e75f8 3423 sbinfo->huge = config.huge;
680d794b 3424 sbinfo->max_blocks = config.max_blocks;
680d794b 3425 sbinfo->max_inodes = config.max_inodes;
3426 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3427
5f00110f
GT
3428 /*
3429 * Preserve previous mempolicy unless mpol remount option was specified.
3430 */
3431 if (config.mpol) {
3432 mpol_put(sbinfo->mpol);
3433 sbinfo->mpol = config.mpol; /* transfers initial ref */
3434 }
0edd73b3
HD
3435out:
3436 spin_unlock(&sbinfo->stat_lock);
3437 return error;
1da177e4 3438}
680d794b 3439
34c80b1d 3440static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3441{
34c80b1d 3442 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3443
3444 if (sbinfo->max_blocks != shmem_default_max_blocks())
3445 seq_printf(seq, ",size=%luk",
09cbfeaf 3446 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3447 if (sbinfo->max_inodes != shmem_default_max_inodes())
3448 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3449 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3450 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3451 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3452 seq_printf(seq, ",uid=%u",
3453 from_kuid_munged(&init_user_ns, sbinfo->uid));
3454 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3455 seq_printf(seq, ",gid=%u",
3456 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3457#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3458 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3459 if (sbinfo->huge)
3460 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3461#endif
71fe804b 3462 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3463 return 0;
3464}
9183df25 3465
680d794b 3466#endif /* CONFIG_TMPFS */
1da177e4
LT
3467
3468static void shmem_put_super(struct super_block *sb)
3469{
602586a8
HD
3470 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3471
3472 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3473 mpol_put(sbinfo->mpol);
602586a8 3474 kfree(sbinfo);
1da177e4
LT
3475 sb->s_fs_info = NULL;
3476}
3477
2b2af54a 3478int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3479{
3480 struct inode *inode;
0edd73b3 3481 struct shmem_sb_info *sbinfo;
680d794b 3482 int err = -ENOMEM;
3483
3484 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3485 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3486 L1_CACHE_BYTES), GFP_KERNEL);
3487 if (!sbinfo)
3488 return -ENOMEM;
3489
0825a6f9 3490 sbinfo->mode = 0777 | S_ISVTX;
76aac0e9
DH
3491 sbinfo->uid = current_fsuid();
3492 sbinfo->gid = current_fsgid();
680d794b 3493 sb->s_fs_info = sbinfo;
1da177e4 3494
0edd73b3 3495#ifdef CONFIG_TMPFS
1da177e4
LT
3496 /*
3497 * Per default we only allow half of the physical ram per
3498 * tmpfs instance, limiting inodes to one per page of lowmem;
3499 * but the internal instance is left unlimited.
3500 */
1751e8a6 3501 if (!(sb->s_flags & SB_KERNMOUNT)) {
680d794b 3502 sbinfo->max_blocks = shmem_default_max_blocks();
3503 sbinfo->max_inodes = shmem_default_max_inodes();
3504 if (shmem_parse_options(data, sbinfo, false)) {
3505 err = -EINVAL;
3506 goto failed;
3507 }
ca4e0519 3508 } else {
1751e8a6 3509 sb->s_flags |= SB_NOUSER;
1da177e4 3510 }
91828a40 3511 sb->s_export_op = &shmem_export_ops;
1751e8a6 3512 sb->s_flags |= SB_NOSEC;
1da177e4 3513#else
1751e8a6 3514 sb->s_flags |= SB_NOUSER;
1da177e4
LT
3515#endif
3516
0edd73b3 3517 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3518 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3519 goto failed;
680d794b 3520 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3521 spin_lock_init(&sbinfo->shrinklist_lock);
3522 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3523
285b2c4f 3524 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3525 sb->s_blocksize = PAGE_SIZE;
3526 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3527 sb->s_magic = TMPFS_MAGIC;
3528 sb->s_op = &shmem_ops;
cfd95a9c 3529 sb->s_time_gran = 1;
b09e0fa4 3530#ifdef CONFIG_TMPFS_XATTR
39f0247d 3531 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3532#endif
3533#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3534 sb->s_flags |= SB_POSIXACL;
39f0247d 3535#endif
2b4db796 3536 uuid_gen(&sb->s_uuid);
0edd73b3 3537
454abafe 3538 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3539 if (!inode)
3540 goto failed;
680d794b 3541 inode->i_uid = sbinfo->uid;
3542 inode->i_gid = sbinfo->gid;
318ceed0
AV
3543 sb->s_root = d_make_root(inode);
3544 if (!sb->s_root)
48fde701 3545 goto failed;
1da177e4
LT
3546 return 0;
3547
1da177e4
LT
3548failed:
3549 shmem_put_super(sb);
3550 return err;
3551}
3552
fcc234f8 3553static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3554
3555static struct inode *shmem_alloc_inode(struct super_block *sb)
3556{
41ffe5d5
HD
3557 struct shmem_inode_info *info;
3558 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3559 if (!info)
1da177e4 3560 return NULL;
41ffe5d5 3561 return &info->vfs_inode;
1da177e4
LT
3562}
3563
41ffe5d5 3564static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3565{
3566 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3567 if (S_ISLNK(inode->i_mode))
3568 kfree(inode->i_link);
fa0d7e3d
NP
3569 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3570}
3571
1da177e4
LT
3572static void shmem_destroy_inode(struct inode *inode)
3573{
09208d15 3574 if (S_ISREG(inode->i_mode))
1da177e4 3575 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3576 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3577}
3578
41ffe5d5 3579static void shmem_init_inode(void *foo)
1da177e4 3580{
41ffe5d5
HD
3581 struct shmem_inode_info *info = foo;
3582 inode_init_once(&info->vfs_inode);
1da177e4
LT
3583}
3584
9a8ec03e 3585static void shmem_init_inodecache(void)
1da177e4
LT
3586{
3587 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3588 sizeof(struct shmem_inode_info),
5d097056 3589 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3590}
3591
41ffe5d5 3592static void shmem_destroy_inodecache(void)
1da177e4 3593{
1a1d92c1 3594 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3595}
3596
f5e54d6e 3597static const struct address_space_operations shmem_aops = {
1da177e4 3598 .writepage = shmem_writepage,
76719325 3599 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3600#ifdef CONFIG_TMPFS
800d15a5
NP
3601 .write_begin = shmem_write_begin,
3602 .write_end = shmem_write_end,
1da177e4 3603#endif
1c93923c 3604#ifdef CONFIG_MIGRATION
304dbdb7 3605 .migratepage = migrate_page,
1c93923c 3606#endif
aa261f54 3607 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3608};
3609
15ad7cdc 3610static const struct file_operations shmem_file_operations = {
1da177e4 3611 .mmap = shmem_mmap,
c01d5b30 3612 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3613#ifdef CONFIG_TMPFS
220f2ac9 3614 .llseek = shmem_file_llseek,
2ba5bbed 3615 .read_iter = shmem_file_read_iter,
8174202b 3616 .write_iter = generic_file_write_iter,
1b061d92 3617 .fsync = noop_fsync,
82c156f8 3618 .splice_read = generic_file_splice_read,
f6cb85d0 3619 .splice_write = iter_file_splice_write,
83e4fa9c 3620 .fallocate = shmem_fallocate,
1da177e4
LT
3621#endif
3622};
3623
92e1d5be 3624static const struct inode_operations shmem_inode_operations = {
44a30220 3625 .getattr = shmem_getattr,
94c1e62d 3626 .setattr = shmem_setattr,
b09e0fa4 3627#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3628 .listxattr = shmem_listxattr,
feda821e 3629 .set_acl = simple_set_acl,
b09e0fa4 3630#endif
1da177e4
LT
3631};
3632
92e1d5be 3633static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3634#ifdef CONFIG_TMPFS
3635 .create = shmem_create,
3636 .lookup = simple_lookup,
3637 .link = shmem_link,
3638 .unlink = shmem_unlink,
3639 .symlink = shmem_symlink,
3640 .mkdir = shmem_mkdir,
3641 .rmdir = shmem_rmdir,
3642 .mknod = shmem_mknod,
2773bf00 3643 .rename = shmem_rename2,
60545d0d 3644 .tmpfile = shmem_tmpfile,
1da177e4 3645#endif
b09e0fa4 3646#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3647 .listxattr = shmem_listxattr,
b09e0fa4 3648#endif
39f0247d 3649#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3650 .setattr = shmem_setattr,
feda821e 3651 .set_acl = simple_set_acl,
39f0247d
AG
3652#endif
3653};
3654
92e1d5be 3655static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3656#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3657 .listxattr = shmem_listxattr,
b09e0fa4 3658#endif
39f0247d 3659#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3660 .setattr = shmem_setattr,
feda821e 3661 .set_acl = simple_set_acl,
39f0247d 3662#endif
1da177e4
LT
3663};
3664
759b9775 3665static const struct super_operations shmem_ops = {
1da177e4
LT
3666 .alloc_inode = shmem_alloc_inode,
3667 .destroy_inode = shmem_destroy_inode,
3668#ifdef CONFIG_TMPFS
3669 .statfs = shmem_statfs,
3670 .remount_fs = shmem_remount_fs,
680d794b 3671 .show_options = shmem_show_options,
1da177e4 3672#endif
1f895f75 3673 .evict_inode = shmem_evict_inode,
1da177e4
LT
3674 .drop_inode = generic_delete_inode,
3675 .put_super = shmem_put_super,
779750d2
KS
3676#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3677 .nr_cached_objects = shmem_unused_huge_count,
3678 .free_cached_objects = shmem_unused_huge_scan,
3679#endif
1da177e4
LT
3680};
3681
f0f37e2f 3682static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3683 .fault = shmem_fault,
d7c17551 3684 .map_pages = filemap_map_pages,
1da177e4
LT
3685#ifdef CONFIG_NUMA
3686 .set_policy = shmem_set_policy,
3687 .get_policy = shmem_get_policy,
3688#endif
3689};
3690
3c26ff6e
AV
3691static struct dentry *shmem_mount(struct file_system_type *fs_type,
3692 int flags, const char *dev_name, void *data)
1da177e4 3693{
3c26ff6e 3694 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3695}
3696
41ffe5d5 3697static struct file_system_type shmem_fs_type = {
1da177e4
LT
3698 .owner = THIS_MODULE,
3699 .name = "tmpfs",
3c26ff6e 3700 .mount = shmem_mount,
1da177e4 3701 .kill_sb = kill_litter_super,
2b8576cb 3702 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3703};
1da177e4 3704
41ffe5d5 3705int __init shmem_init(void)
1da177e4
LT
3706{
3707 int error;
3708
16203a7a
RL
3709 /* If rootfs called this, don't re-init */
3710 if (shmem_inode_cachep)
3711 return 0;
3712
9a8ec03e 3713 shmem_init_inodecache();
1da177e4 3714
41ffe5d5 3715 error = register_filesystem(&shmem_fs_type);
1da177e4 3716 if (error) {
1170532b 3717 pr_err("Could not register tmpfs\n");
1da177e4
LT
3718 goto out2;
3719 }
95dc112a 3720
ca4e0519 3721 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3722 if (IS_ERR(shm_mnt)) {
3723 error = PTR_ERR(shm_mnt);
1170532b 3724 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3725 goto out1;
3726 }
5a6e75f8 3727
e496cf3d 3728#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 3729 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3730 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3731 else
3732 shmem_huge = 0; /* just in case it was patched */
3733#endif
1da177e4
LT
3734 return 0;
3735
3736out1:
41ffe5d5 3737 unregister_filesystem(&shmem_fs_type);
1da177e4 3738out2:
41ffe5d5 3739 shmem_destroy_inodecache();
1da177e4
LT
3740 shm_mnt = ERR_PTR(error);
3741 return error;
3742}
853ac43a 3743
e496cf3d 3744#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3745static ssize_t shmem_enabled_show(struct kobject *kobj,
3746 struct kobj_attribute *attr, char *buf)
3747{
3748 int values[] = {
3749 SHMEM_HUGE_ALWAYS,
3750 SHMEM_HUGE_WITHIN_SIZE,
3751 SHMEM_HUGE_ADVISE,
3752 SHMEM_HUGE_NEVER,
3753 SHMEM_HUGE_DENY,
3754 SHMEM_HUGE_FORCE,
3755 };
3756 int i, count;
3757
3758 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3759 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3760
3761 count += sprintf(buf + count, fmt,
3762 shmem_format_huge(values[i]));
3763 }
3764 buf[count - 1] = '\n';
3765 return count;
3766}
3767
3768static ssize_t shmem_enabled_store(struct kobject *kobj,
3769 struct kobj_attribute *attr, const char *buf, size_t count)
3770{
3771 char tmp[16];
3772 int huge;
3773
3774 if (count + 1 > sizeof(tmp))
3775 return -EINVAL;
3776 memcpy(tmp, buf, count);
3777 tmp[count] = '\0';
3778 if (count && tmp[count - 1] == '\n')
3779 tmp[count - 1] = '\0';
3780
3781 huge = shmem_parse_huge(tmp);
3782 if (huge == -EINVAL)
3783 return -EINVAL;
3784 if (!has_transparent_hugepage() &&
3785 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3786 return -EINVAL;
3787
3788 shmem_huge = huge;
435c0b87 3789 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3790 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3791 return count;
3792}
3793
3794struct kobj_attribute shmem_enabled_attr =
3795 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3796#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3797
3b33719c 3798#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3799bool shmem_huge_enabled(struct vm_area_struct *vma)
3800{
3801 struct inode *inode = file_inode(vma->vm_file);
3802 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3803 loff_t i_size;
3804 pgoff_t off;
3805
3806 if (shmem_huge == SHMEM_HUGE_FORCE)
3807 return true;
3808 if (shmem_huge == SHMEM_HUGE_DENY)
3809 return false;
3810 switch (sbinfo->huge) {
3811 case SHMEM_HUGE_NEVER:
3812 return false;
3813 case SHMEM_HUGE_ALWAYS:
3814 return true;
3815 case SHMEM_HUGE_WITHIN_SIZE:
3816 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3817 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3818 if (i_size >= HPAGE_PMD_SIZE &&
3819 i_size >> PAGE_SHIFT >= off)
3820 return true;
c8402871 3821 /* fall through */
f3f0e1d2
KS
3822 case SHMEM_HUGE_ADVISE:
3823 /* TODO: implement fadvise() hints */
3824 return (vma->vm_flags & VM_HUGEPAGE);
3825 default:
3826 VM_BUG_ON(1);
3827 return false;
3828 }
3829}
3b33719c 3830#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 3831
853ac43a
MM
3832#else /* !CONFIG_SHMEM */
3833
3834/*
3835 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3836 *
3837 * This is intended for small system where the benefits of the full
3838 * shmem code (swap-backed and resource-limited) are outweighed by
3839 * their complexity. On systems without swap this code should be
3840 * effectively equivalent, but much lighter weight.
3841 */
3842
41ffe5d5 3843static struct file_system_type shmem_fs_type = {
853ac43a 3844 .name = "tmpfs",
3c26ff6e 3845 .mount = ramfs_mount,
853ac43a 3846 .kill_sb = kill_litter_super,
2b8576cb 3847 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3848};
3849
41ffe5d5 3850int __init shmem_init(void)
853ac43a 3851{
41ffe5d5 3852 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3853
41ffe5d5 3854 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3855 BUG_ON(IS_ERR(shm_mnt));
3856
3857 return 0;
3858}
3859
41ffe5d5 3860int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3861{
3862 return 0;
3863}
3864
3f96b79a
HD
3865int shmem_lock(struct file *file, int lock, struct user_struct *user)
3866{
3867 return 0;
3868}
3869
24513264
HD
3870void shmem_unlock_mapping(struct address_space *mapping)
3871{
3872}
3873
c01d5b30
HD
3874#ifdef CONFIG_MMU
3875unsigned long shmem_get_unmapped_area(struct file *file,
3876 unsigned long addr, unsigned long len,
3877 unsigned long pgoff, unsigned long flags)
3878{
3879 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3880}
3881#endif
3882
41ffe5d5 3883void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3884{
41ffe5d5 3885 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3886}
3887EXPORT_SYMBOL_GPL(shmem_truncate_range);
3888
0b0a0806
HD
3889#define shmem_vm_ops generic_file_vm_ops
3890#define shmem_file_operations ramfs_file_operations
454abafe 3891#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3892#define shmem_acct_size(flags, size) 0
3893#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3894
3895#endif /* CONFIG_SHMEM */
3896
3897/* common code */
1da177e4 3898
19938e35 3899static const struct dentry_operations anon_ops = {
118b2302 3900 .d_dname = simple_dname
3451538a
AV
3901};
3902
703321b6 3903static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 3904 unsigned long flags, unsigned int i_flags)
1da177e4 3905{
6b4d0b27 3906 struct file *res;
1da177e4 3907 struct inode *inode;
2c48b9c4 3908 struct path path;
3451538a 3909 struct super_block *sb;
1da177e4
LT
3910 struct qstr this;
3911
703321b6
MA
3912 if (IS_ERR(mnt))
3913 return ERR_CAST(mnt);
1da177e4 3914
285b2c4f 3915 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3916 return ERR_PTR(-EINVAL);
3917
3918 if (shmem_acct_size(flags, size))
3919 return ERR_PTR(-ENOMEM);
3920
6b4d0b27 3921 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3922 this.name = name;
3923 this.len = strlen(name);
3924 this.hash = 0; /* will go */
703321b6
MA
3925 sb = mnt->mnt_sb;
3926 path.mnt = mntget(mnt);
3451538a 3927 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3928 if (!path.dentry)
1da177e4 3929 goto put_memory;
3451538a 3930 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3931
6b4d0b27 3932 res = ERR_PTR(-ENOSPC);
0825a6f9 3933 inode = shmem_get_inode(sb, NULL, S_IFREG | 0777, 0, flags);
1da177e4 3934 if (!inode)
66ee4b88 3935 goto put_memory;
1da177e4 3936
c7277090 3937 inode->i_flags |= i_flags;
2c48b9c4 3938 d_instantiate(path.dentry, inode);
1da177e4 3939 inode->i_size = size;
6d6b77f1 3940 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3941 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3942 if (IS_ERR(res))
66ee4b88 3943 goto put_path;
4b42af81 3944
6b4d0b27 3945 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3946 &shmem_file_operations);
6b4d0b27 3947 if (IS_ERR(res))
66ee4b88 3948 goto put_path;
4b42af81 3949
6b4d0b27 3950 return res;
1da177e4 3951
1da177e4
LT
3952put_memory:
3953 shmem_unacct_size(flags, size);
66ee4b88
KK
3954put_path:
3955 path_put(&path);
6b4d0b27 3956 return res;
1da177e4 3957}
c7277090
EP
3958
3959/**
3960 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3961 * kernel internal. There will be NO LSM permission checks against the
3962 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3963 * higher layer. The users are the big_key and shm implementations. LSM
3964 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3965 * @name: name for dentry (to be seen in /proc/<pid>/maps
3966 * @size: size to be set for the file
3967 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3968 */
3969struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3970{
703321b6 3971 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
3972}
3973
3974/**
3975 * shmem_file_setup - get an unlinked file living in tmpfs
3976 * @name: name for dentry (to be seen in /proc/<pid>/maps
3977 * @size: size to be set for the file
3978 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3979 */
3980struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3981{
703321b6 3982 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 3983}
395e0ddc 3984EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3985
703321b6
MA
3986/**
3987 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3988 * @mnt: the tmpfs mount where the file will be created
3989 * @name: name for dentry (to be seen in /proc/<pid>/maps
3990 * @size: size to be set for the file
3991 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3992 */
3993struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3994 loff_t size, unsigned long flags)
3995{
3996 return __shmem_file_setup(mnt, name, size, flags, 0);
3997}
3998EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3999
46711810 4000/**
1da177e4 4001 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4002 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4003 */
4004int shmem_zero_setup(struct vm_area_struct *vma)
4005{
4006 struct file *file;
4007 loff_t size = vma->vm_end - vma->vm_start;
4008
66fc1303
HD
4009 /*
4010 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4011 * between XFS directory reading and selinux: since this file is only
4012 * accessible to the user through its mapping, use S_PRIVATE flag to
4013 * bypass file security, in the same way as shmem_kernel_file_setup().
4014 */
703321b6 4015 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4016 if (IS_ERR(file))
4017 return PTR_ERR(file);
4018
4019 if (vma->vm_file)
4020 fput(vma->vm_file);
4021 vma->vm_file = file;
4022 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4023
e496cf3d 4024 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4025 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4026 (vma->vm_end & HPAGE_PMD_MASK)) {
4027 khugepaged_enter(vma, vma->vm_flags);
4028 }
4029
1da177e4
LT
4030 return 0;
4031}
d9d90e5e
HD
4032
4033/**
4034 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4035 * @mapping: the page's address_space
4036 * @index: the page index
4037 * @gfp: the page allocator flags to use if allocating
4038 *
4039 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4040 * with any new page allocations done using the specified allocation flags.
4041 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4042 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4043 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4044 *
68da9f05
HD
4045 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4046 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4047 */
4048struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4049 pgoff_t index, gfp_t gfp)
4050{
68da9f05
HD
4051#ifdef CONFIG_SHMEM
4052 struct inode *inode = mapping->host;
9276aad6 4053 struct page *page;
68da9f05
HD
4054 int error;
4055
4056 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4057 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4058 gfp, NULL, NULL, NULL);
68da9f05
HD
4059 if (error)
4060 page = ERR_PTR(error);
4061 else
4062 unlock_page(page);
4063 return page;
4064#else
4065 /*
4066 * The tiny !SHMEM case uses ramfs without swap
4067 */
d9d90e5e 4068 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4069#endif
d9d90e5e
HD
4070}
4071EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);