net_sched: add TCA_STATS_PKT64 attribute
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
46c9a946 32#include <linux/random.h>
174cd4b1 33#include <linux/sched/signal.h>
b95f1b31 34#include <linux/export.h>
853ac43a 35#include <linux/swap.h>
e2e40f2c 36#include <linux/uio.h>
f3f0e1d2 37#include <linux/khugepaged.h>
749df87b 38#include <linux/hugetlb.h>
b56a2d8a 39#include <linux/frontswap.h>
626c3920 40#include <linux/fs_parser.h>
853ac43a 41
95cc09d6
AA
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
853ac43a
MM
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
1da177e4
LT
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
39f0247d 53#include <linux/xattr.h>
a5694255 54#include <linux/exportfs.h>
1c7c474c 55#include <linux/posix_acl.h>
feda821e 56#include <linux/posix_acl_xattr.h>
1da177e4 57#include <linux/mman.h>
1da177e4
LT
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
1da177e4 62#include <linux/writeback.h>
1da177e4 63#include <linux/blkdev.h>
bda97eab 64#include <linux/pagevec.h>
41ffe5d5 65#include <linux/percpu_counter.h>
83e4fa9c 66#include <linux/falloc.h>
708e3508 67#include <linux/splice.h>
1da177e4
LT
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
b00dc3ad 72#include <linux/ctype.h>
304dbdb7 73#include <linux/migrate.h>
c1f60a5a 74#include <linux/highmem.h>
680d794b 75#include <linux/seq_file.h>
92562927 76#include <linux/magic.h>
9183df25 77#include <linux/syscalls.h>
40e041a2 78#include <linux/fcntl.h>
9183df25 79#include <uapi/linux/memfd.h>
cfda0526 80#include <linux/userfaultfd_k.h>
4c27fe4c 81#include <linux/rmap.h>
2b4db796 82#include <linux/uuid.h>
304dbdb7 83
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4
LT
85#include <asm/pgtable.h>
86
dd56b046
MG
87#include "internal.h"
88
09cbfeaf
KS
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 91
1da177e4
LT
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
69f07ec9
HD
95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96#define SHORT_SYMLINK_LEN 128
97
1aac1400 98/*
f00cdc6d
HD
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
102 */
103struct shmem_falloc {
8e205f77 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109};
110
0b5071dd
AV
111struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
123};
124
b76db735 125#ifdef CONFIG_TMPFS
680d794b 126static unsigned long shmem_default_max_blocks(void)
127{
ca79b0c2 128 return totalram_pages() / 2;
680d794b 129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
ca79b0c2
AK
133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
680d794b 136}
b76db735 137#endif
680d794b 138
bde05d1c
HD
139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
c5bf121e
VRP
142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
68da9f05 146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 147 struct page **pagep, enum sgp_type sgp,
cfda0526 148 gfp_t gfp, struct vm_area_struct *vma,
2b740303 149 struct vm_fault *vmf, vm_fault_t *fault_type);
68da9f05 150
f3f0e1d2 151int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 152 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
153{
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
cfda0526 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
68da9f05 156}
1da177e4 157
1da177e4
LT
158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159{
160 return sb->s_fs_info;
161}
162
163/*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169static inline int shmem_acct_size(unsigned long flags, loff_t size)
170{
0b0a0806 171 return (flags & VM_NORESERVE) ?
191c5424 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
173}
174
175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176{
0b0a0806 177 if (!(flags & VM_NORESERVE))
1da177e4
LT
178 vm_unacct_memory(VM_ACCT(size));
179}
180
77142517
KK
181static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183{
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192}
193
1da177e4
LT
194/*
195 * ... whereas tmpfs objects are accounted incrementally as
75edd345 196 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
800d8c63 200static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 201{
800d8c63
KS
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
0b0a0806 211 if (flags & VM_NORESERVE)
09cbfeaf 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
213}
214
0f079694
MR
215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235}
236
237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238{
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245}
246
759b9775 247static const struct super_operations shmem_ops;
f5e54d6e 248static const struct address_space_operations shmem_aops;
15ad7cdc 249static const struct file_operations shmem_file_operations;
92e1d5be
AV
250static const struct inode_operations shmem_inode_operations;
251static const struct inode_operations shmem_dir_inode_operations;
252static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 253static const struct vm_operations_struct shmem_vm_ops;
779750d2 254static struct file_system_type shmem_fs_type;
1da177e4 255
b0506e48
MR
256bool vma_is_shmem(struct vm_area_struct *vma)
257{
258 return vma->vm_ops == &shmem_vm_ops;
259}
260
1da177e4 261static LIST_HEAD(shmem_swaplist);
cb5f7b9a 262static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 263
5b04c689
PE
264static int shmem_reserve_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277}
278
279static void shmem_free_inode(struct super_block *sb)
280{
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287}
288
46711810 289/**
41ffe5d5 290 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301static void shmem_recalc_inode(struct inode *inode)
302{
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
54af6042 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
0f079694 310 shmem_inode_unacct_blocks(inode, freed);
1da177e4
LT
311 }
312}
313
800d8c63
KS
314bool shmem_charge(struct inode *inode, long pages)
315{
316 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 317 unsigned long flags;
800d8c63 318
0f079694 319 if (!shmem_inode_acct_block(inode, pages))
800d8c63 320 return false;
b1cc94ab 321
aaa52e34
HD
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
4595ef88 325 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
4595ef88 329 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 330
800d8c63
KS
331 return true;
332}
333
334void shmem_uncharge(struct inode *inode, long pages)
335{
336 struct shmem_inode_info *info = SHMEM_I(inode);
4595ef88 337 unsigned long flags;
800d8c63 338
aaa52e34
HD
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
4595ef88 341 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
4595ef88 345 spin_unlock_irqrestore(&info->lock, flags);
800d8c63 346
0f079694 347 shmem_inode_unacct_blocks(inode, pages);
800d8c63
KS
348}
349
7a5d0fbb 350/*
62f945b6 351 * Replace item expected in xarray by a new item, while holding xa_lock.
7a5d0fbb 352 */
62f945b6 353static int shmem_replace_entry(struct address_space *mapping,
7a5d0fbb
HD
354 pgoff_t index, void *expected, void *replacement)
355{
62f945b6 356 XA_STATE(xas, &mapping->i_pages, index);
6dbaf22c 357 void *item;
7a5d0fbb
HD
358
359 VM_BUG_ON(!expected);
6dbaf22c 360 VM_BUG_ON(!replacement);
62f945b6 361 item = xas_load(&xas);
7a5d0fbb
HD
362 if (item != expected)
363 return -ENOENT;
62f945b6 364 xas_store(&xas, replacement);
7a5d0fbb
HD
365 return 0;
366}
367
d1899228
HD
368/*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377{
a12831bf 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
d1899228
HD
379}
380
5a6e75f8
KS
381/*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395#define SHMEM_HUGE_NEVER 0
396#define SHMEM_HUGE_ALWAYS 1
397#define SHMEM_HUGE_WITHIN_SIZE 2
398#define SHMEM_HUGE_ADVISE 3
399
400/*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410#define SHMEM_HUGE_DENY (-1)
411#define SHMEM_HUGE_FORCE (-2)
412
e496cf3d 413#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
414/* ifdef here to avoid bloating shmem.o when not necessary */
415
5b9c98f3 416static int shmem_huge __read_mostly;
5a6e75f8 417
e5f2249a 418#if defined(CONFIG_SYSFS)
5a6e75f8
KS
419static int shmem_parse_huge(const char *str)
420{
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434}
e5f2249a 435#endif
5a6e75f8 436
e5f2249a 437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
5a6e75f8
KS
438static const char *shmem_format_huge(int huge)
439{
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457}
f1f5929c 458#endif
5a6e75f8 459
779750d2
KS
460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462{
463 LIST_HEAD(list), *pos, *next;
253fd0f0 464 LIST_HEAD(to_remove);
779750d2
KS
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
253fd0f0 491 list_move(&info->shrinklist, &to_remove);
779750d2 492 removed++;
779750d2
KS
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
253fd0f0
KS
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
779750d2
KS
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
b3cd54b2
KS
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
779750d2 518
b3cd54b2 519 page = find_get_page(inode->i_mapping,
779750d2
KS
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
b3cd54b2 524 /* No huge page at the end of the file: nothing to split */
779750d2 525 if (!PageTransHuge(page)) {
779750d2
KS
526 put_page(page);
527 goto drop;
528 }
529
b3cd54b2
KS
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
779750d2
KS
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
b3cd54b2
KS
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
779750d2
KS
549
550 split++;
551drop:
552 list_del_init(&info->shrinklist);
553 removed++;
b3cd54b2 554leave:
779750d2
KS
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564}
565
566static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568{
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575}
576
577static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579{
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582}
e496cf3d 583#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
584
585#define shmem_huge SHMEM_HUGE_DENY
586
779750d2
KS
587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589{
590 return 0;
591}
e496cf3d 592#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 593
89fdcd26
YS
594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595{
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601}
602
46f65ec1
HD
603/*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
552446a4 608 pgoff_t index, void *expected, gfp_t gfp)
46f65ec1 609{
552446a4
MW
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
d8c6546b 612 unsigned long nr = compound_nr(page);
46f65ec1 613
800d8c63
KS
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 618 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 619
800d8c63 620 page_ref_add(page, nr);
b065b432
HD
621 page->mapping = mapping;
622 page->index = index;
623
552446a4
MW
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633next:
4101196b 634 xas_store(&xas, page);
552446a4
MW
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
800d8c63 638 }
552446a4 639 if (PageTransHuge(page)) {
800d8c63 640 count_vm_event(THP_FILE_ALLOC);
552446a4 641 __inc_node_page_state(page, NR_SHMEM_THPS);
800d8c63 642 }
800d8c63 643 mapping->nrpages += nr;
11fb9989
MG
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
552446a4
MW
646unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
b065b432 651 page->mapping = NULL;
800d8c63 652 page_ref_sub(page, nr);
552446a4 653 return xas_error(&xas);
46f65ec1 654 }
552446a4
MW
655
656 return 0;
46f65ec1
HD
657}
658
6922c0c7
HD
659/*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663{
664 struct address_space *mapping = page->mapping;
665 int error;
666
800d8c63
KS
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
b93b0163 669 xa_lock_irq(&mapping->i_pages);
62f945b6 670 error = shmem_replace_entry(mapping, page->index, page, radswap);
6922c0c7
HD
671 page->mapping = NULL;
672 mapping->nrpages--;
11fb9989
MG
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
b93b0163 675 xa_unlock_irq(&mapping->i_pages);
09cbfeaf 676 put_page(page);
6922c0c7
HD
677 BUG_ON(error);
678}
679
7a5d0fbb 680/*
c121d3bb 681 * Remove swap entry from page cache, free the swap and its page cache.
7a5d0fbb
HD
682 */
683static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685{
6dbaf22c 686 void *old;
7a5d0fbb 687
55f3f7ea 688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
6dbaf22c
JW
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
7a5d0fbb
HD
693}
694
6a15a370
VB
695/*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 697 * given offsets are swapped out.
6a15a370 698 *
b93b0163 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
6a15a370
VB
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
48131e03
VB
702unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
6a15a370 704{
7ae3424f 705 XA_STATE(xas, &mapping->i_pages, start);
6a15a370 706 struct page *page;
48131e03 707 unsigned long swapped = 0;
6a15a370
VB
708
709 rcu_read_lock();
7ae3424f
MW
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
2cf938aa 712 continue;
3159f943 713 if (xa_is_value(page))
6a15a370
VB
714 swapped++;
715
716 if (need_resched()) {
7ae3424f 717 xas_pause(&xas);
6a15a370 718 cond_resched_rcu();
6a15a370
VB
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725}
726
48131e03
VB
727/*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
b93b0163 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
48131e03
VB
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735{
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759}
760
24513264
HD
761/*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764void shmem_unlock_mapping(struct address_space *mapping)
765{
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
86679820 770 pagevec_init(&pvec);
24513264
HD
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
0cd6144a
JW
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
0cd6144a 784 pagevec_remove_exceptionals(&pvec);
64e3d12f 785 check_move_unevictable_pages(&pvec);
24513264
HD
786 pagevec_release(&pvec);
787 cond_resched();
788 }
7a5d0fbb
HD
789}
790
791/*
7f4446ee 792 * Remove range of pages and swap entries from page cache, and free them.
1635f6a7 793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 794 */
1635f6a7
HD
795static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
1da177e4 797{
285b2c4f 798 struct address_space *mapping = inode->i_mapping;
1da177e4 799 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 804 struct pagevec pvec;
7a5d0fbb
HD
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
285b2c4f 807 pgoff_t index;
bda97eab
HD
808 int i;
809
83e4fa9c
HD
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
bda97eab 812
86679820 813 pagevec_init(&pvec);
bda97eab 814 index = start;
83e4fa9c 815 while (index < end) {
0cd6144a
JW
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
7a5d0fbb
HD
819 if (!pvec.nr)
820 break;
bda97eab
HD
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
823
7a5d0fbb 824 index = indices[i];
83e4fa9c 825 if (index >= end)
bda97eab
HD
826 break;
827
3159f943 828 if (xa_is_value(page)) {
1635f6a7
HD
829 if (unfalloc)
830 continue;
7a5d0fbb
HD
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
bda97eab 833 continue;
7a5d0fbb
HD
834 }
835
800d8c63
KS
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
7a5d0fbb 838 if (!trylock_page(page))
bda97eab 839 continue;
800d8c63
KS
840
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
848 /*
849 * Range ends in the middle of THP:
850 * zero out the page
851 */
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
855 }
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
858 }
859
1635f6a7 860 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
309381fe 863 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
864 truncate_inode_page(mapping, page);
865 }
bda97eab 866 }
bda97eab
HD
867 unlock_page(page);
868 }
0cd6144a 869 pagevec_remove_exceptionals(&pvec);
24513264 870 pagevec_release(&pvec);
bda97eab
HD
871 cond_resched();
872 index++;
873 }
1da177e4 874
83e4fa9c 875 if (partial_start) {
bda97eab 876 struct page *page = NULL;
9e18eb29 877 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 878 if (page) {
09cbfeaf 879 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
883 }
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
09cbfeaf 887 put_page(page);
83e4fa9c
HD
888 }
889 }
890 if (partial_end) {
891 struct page *page = NULL;
9e18eb29 892 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
bda97eab
HD
895 set_page_dirty(page);
896 unlock_page(page);
09cbfeaf 897 put_page(page);
bda97eab
HD
898 }
899 }
83e4fa9c
HD
900 if (start >= end)
901 return;
bda97eab
HD
902
903 index = start;
b1a36650 904 while (index < end) {
bda97eab 905 cond_resched();
0cd6144a
JW
906
907 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 909 pvec.pages, indices);
7a5d0fbb 910 if (!pvec.nr) {
b1a36650
HD
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
bda97eab 913 break;
b1a36650 914 /* But if truncating, restart to make sure all gone */
bda97eab
HD
915 index = start;
916 continue;
917 }
bda97eab
HD
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
920
7a5d0fbb 921 index = indices[i];
83e4fa9c 922 if (index >= end)
bda97eab
HD
923 break;
924
3159f943 925 if (xa_is_value(page)) {
1635f6a7
HD
926 if (unfalloc)
927 continue;
b1a36650
HD
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
932 }
933 nr_swaps_freed++;
7a5d0fbb
HD
934 continue;
935 }
936
bda97eab 937 lock_page(page);
800d8c63
KS
938
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
943 /*
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
947 */
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
953 /*
954 * Range ends in the middle of THP:
955 * zero out the page
956 */
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
960 }
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
963 }
964
1635f6a7 965 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
309381fe 968 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 969 truncate_inode_page(mapping, page);
b1a36650
HD
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
1635f6a7 975 }
7a5d0fbb 976 }
bda97eab
HD
977 unlock_page(page);
978 }
0cd6144a 979 pagevec_remove_exceptionals(&pvec);
24513264 980 pagevec_release(&pvec);
bda97eab
HD
981 index++;
982 }
94c1e62d 983
4595ef88 984 spin_lock_irq(&info->lock);
7a5d0fbb 985 info->swapped -= nr_swaps_freed;
1da177e4 986 shmem_recalc_inode(inode);
4595ef88 987 spin_unlock_irq(&info->lock);
1635f6a7 988}
1da177e4 989
1635f6a7
HD
990void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991{
992 shmem_undo_range(inode, lstart, lend, false);
078cd827 993 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 994}
94c1e62d 995EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 996
a528d35e
DH
997static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
44a30220 999{
a528d35e 1000 struct inode *inode = path->dentry->d_inode;
44a30220 1001 struct shmem_inode_info *info = SHMEM_I(inode);
89fdcd26 1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
44a30220 1003
d0424c42 1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 1005 spin_lock_irq(&info->lock);
d0424c42 1006 shmem_recalc_inode(inode);
4595ef88 1007 spin_unlock_irq(&info->lock);
d0424c42 1008 }
44a30220 1009 generic_fillattr(inode, stat);
89fdcd26
YS
1010
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1013
44a30220
YZ
1014 return 0;
1015}
1016
94c1e62d 1017static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 1018{
75c3cfa8 1019 struct inode *inode = d_inode(dentry);
40e041a2 1020 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
1022 int error;
1023
31051c85 1024 error = setattr_prepare(dentry, attr);
db78b877
CH
1025 if (error)
1026 return error;
1027
94c1e62d
HD
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
3889e6e7 1031
40e041a2
DH
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1036
94c1e62d 1037 if (newsize != oldsize) {
77142517
KK
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
94c1e62d 1042 i_size_write(inode, newsize);
078cd827 1043 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 1044 }
afa2db2f 1045 if (newsize <= oldsize) {
94c1e62d 1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
94c1e62d 1053 /* unmap again to remove racily COWed private pages */
d0424c42
HD
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
779750d2
KS
1057
1058 /*
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1061 */
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
d041353d
CW
1064 /*
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1067 */
1068 if (list_empty_careful(&info->shrinklist)) {
779750d2
KS
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
94c1e62d 1075 }
1da177e4
LT
1076 }
1077
db78b877 1078 setattr_copy(inode, attr);
db78b877 1079 if (attr->ia_valid & ATTR_MODE)
feda821e 1080 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1081 return error;
1082}
1083
1f895f75 1084static void shmem_evict_inode(struct inode *inode)
1da177e4 1085{
1da177e4 1086 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1088
3889e6e7 1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
3889e6e7 1092 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1098 }
1099 spin_unlock(&sbinfo->shrinklist_lock);
1100 }
af53d3e9
HD
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
cb5f7b9a 1105 mutex_lock(&shmem_swaplist_mutex);
af53d3e9
HD
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
cb5f7b9a 1109 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1110 }
3ed47db3 1111 }
b09e0fa4 1112
38f38657 1113 simple_xattrs_free(&info->xattrs);
0f3c42f5 1114 WARN_ON(inode->i_blocks);
5b04c689 1115 shmem_free_inode(inode->i_sb);
dbd5768f 1116 clear_inode(inode);
1da177e4
LT
1117}
1118
b56a2d8a
VRP
1119extern struct swap_info_struct *swap_info[];
1120
1121static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
87039546 1124 unsigned int type, bool frontswap)
478922e2 1125{
b56a2d8a
VRP
1126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
87039546 1128 swp_entry_t entry;
b56a2d8a
VRP
1129 unsigned int ret = 0;
1130
1131 if (!nr_entries)
1132 return 0;
478922e2
MW
1133
1134 rcu_read_lock();
b56a2d8a
VRP
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
5b9c98f3 1137 continue;
b56a2d8a
VRP
1138
1139 if (!xa_is_value(page))
478922e2 1140 continue;
b56a2d8a 1141
87039546
HD
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
b56a2d8a
VRP
1148
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1151
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
1155 }
1156 if (++ret == nr_entries)
1157 break;
478922e2 1158 }
478922e2 1159 rcu_read_unlock();
e21a2955 1160
b56a2d8a 1161 return ret;
478922e2
MW
1162}
1163
46f65ec1 1164/*
b56a2d8a
VRP
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
46f65ec1 1167 */
b56a2d8a
VRP
1168static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1da177e4 1170{
b56a2d8a
VRP
1171 int i = 0;
1172 int ret = 0;
bde05d1c 1173 int error = 0;
b56a2d8a 1174 struct address_space *mapping = inode->i_mapping;
1da177e4 1175
b56a2d8a
VRP
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
2e0e26c7 1178
b56a2d8a
VRP
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1189 }
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
bde05d1c 1193 }
b56a2d8a
VRP
1194 return error ? error : ret;
1195}
bde05d1c 1196
b56a2d8a
VRP
1197/*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
1200static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1202{
1203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
1209
1210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1213
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1216
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
87039546 1219 type, frontswap);
b56a2d8a
VRP
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
46f65ec1 1223 }
b56a2d8a
VRP
1224
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1228
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1234 }
1235 }
1236
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1239
1240 return ret;
1da177e4
LT
1241}
1242
1243/*
b56a2d8a
VRP
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1da177e4 1247 */
b56a2d8a
VRP
1248int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1da177e4 1250{
b56a2d8a 1251 struct shmem_inode_info *info, *next;
bde05d1c
HD
1252 int error = 0;
1253
b56a2d8a
VRP
1254 if (list_empty(&shmem_swaplist))
1255 return 0;
1256
1257 mutex_lock(&shmem_swaplist_mutex);
b56a2d8a
VRP
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
6922c0c7 1260 list_del_init(&info->swaplist);
b56a2d8a
VRP
1261 continue;
1262 }
af53d3e9
HD
1263 /*
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1268 */
1269 atomic_inc(&info->stop_eviction);
b56a2d8a 1270 mutex_unlock(&shmem_swaplist_mutex);
b56a2d8a 1271
af53d3e9 1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
b56a2d8a 1273 fs_pages_to_unuse);
cb5f7b9a 1274 cond_resched();
b56a2d8a
VRP
1275
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
af53d3e9
HD
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
b56a2d8a 1282 if (error)
778dd893 1283 break;
1da177e4 1284 }
cb5f7b9a 1285 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1286
778dd893 1287 return error;
1da177e4
LT
1288}
1289
1290/*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294{
1295 struct shmem_inode_info *info;
1da177e4 1296 struct address_space *mapping;
1da177e4 1297 struct inode *inode;
6922c0c7
HD
1298 swp_entry_t swap;
1299 pgoff_t index;
1da177e4 1300
800d8c63 1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1302 BUG_ON(!PageLocked(page));
1da177e4
LT
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
d9fe526a 1309 if (!total_swap_pages)
1da177e4
LT
1310 goto redirty;
1311
d9fe526a 1312 /*
97b713ba
CH
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
d9fe526a 1318 */
48f170fb
HD
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1322 }
1635f6a7
HD
1323
1324 /*
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1328 *
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1334 */
1335 if (!PageUptodate(page)) {
1aac1400
HD
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
8e205f77 1341 !shmem_falloc->waitq &&
1aac1400
HD
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1350 }
1635f6a7
HD
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1354 }
1355
38d8b4e6 1356 swap = get_swap_page(page);
48f170fb
HD
1357 if (!swap.val)
1358 goto redirty;
d9fe526a 1359
b1dea800
HD
1360 /*
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
b1dea800 1364 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1367 */
48f170fb
HD
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
b56a2d8a 1370 list_add(&info->swaplist, &shmem_swaplist);
b1dea800 1371
48f170fb 1372 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1373 spin_lock_irq(&info->lock);
6922c0c7 1374 shmem_recalc_inode(inode);
267a4c76 1375 info->swapped++;
4595ef88 1376 spin_unlock_irq(&info->lock);
6922c0c7 1377
267a4c76
HD
1378 swap_shmem_alloc(swap);
1379 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1380
6922c0c7 1381 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1382 BUG_ON(page_mapped(page));
9fab5619 1383 swap_writepage(page, wbc);
1da177e4
LT
1384 return 0;
1385 }
1386
6922c0c7 1387 mutex_unlock(&shmem_swaplist_mutex);
75f6d6d2 1388 put_swap_page(page, swap);
1da177e4
LT
1389redirty:
1390 set_page_dirty(page);
d9fe526a
HD
1391 if (wbc->for_reclaim)
1392 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1393 unlock_page(page);
1394 return 0;
1da177e4
LT
1395}
1396
75edd345 1397#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1398static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1399{
095f1fc4 1400 char buffer[64];
680d794b 1401
71fe804b 1402 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1403 return; /* show nothing */
680d794b 1404
a7a88b23 1405 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1406
1407 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1408}
71fe804b
LS
1409
1410static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412 struct mempolicy *mpol = NULL;
1413 if (sbinfo->mpol) {
1414 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1415 mpol = sbinfo->mpol;
1416 mpol_get(mpol);
1417 spin_unlock(&sbinfo->stat_lock);
1418 }
1419 return mpol;
1420}
75edd345
HD
1421#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1422static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1423{
1424}
1425static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1426{
1427 return NULL;
1428}
1429#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430#ifndef CONFIG_NUMA
1431#define vm_policy vm_private_data
1432#endif
680d794b 1433
800d8c63
KS
1434static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435 struct shmem_inode_info *info, pgoff_t index)
1436{
1437 /* Create a pseudo vma that just contains the policy */
2c4541e2 1438 vma_init(vma, NULL);
800d8c63
KS
1439 /* Bias interleave by inode number to distribute better across nodes */
1440 vma->vm_pgoff = index + info->vfs_inode.i_ino;
800d8c63
KS
1441 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1442}
1443
1444static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1445{
1446 /* Drop reference taken by mpol_shared_policy_lookup() */
1447 mpol_cond_put(vma->vm_policy);
1448}
1449
41ffe5d5
HD
1450static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1452{
1da177e4 1453 struct vm_area_struct pvma;
18a2f371 1454 struct page *page;
e9e9b7ec 1455 struct vm_fault vmf;
52cd3b07 1456
800d8c63 1457 shmem_pseudo_vma_init(&pvma, info, index);
e9e9b7ec
MK
1458 vmf.vma = &pvma;
1459 vmf.address = 0;
1460 page = swap_cluster_readahead(swap, gfp, &vmf);
800d8c63 1461 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1462
800d8c63
KS
1463 return page;
1464}
1465
1466static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467 struct shmem_inode_info *info, pgoff_t index)
1468{
1469 struct vm_area_struct pvma;
7b8d046f
MW
1470 struct address_space *mapping = info->vfs_inode.i_mapping;
1471 pgoff_t hindex;
800d8c63
KS
1472 struct page *page;
1473
e496cf3d 1474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1475 return NULL;
1476
4620a06e 1477 hindex = round_down(index, HPAGE_PMD_NR);
7b8d046f
MW
1478 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479 XA_PRESENT))
800d8c63 1480 return NULL;
18a2f371 1481
800d8c63
KS
1482 shmem_pseudo_vma_init(&pvma, info, hindex);
1483 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
19deb769 1484 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
800d8c63
KS
1485 shmem_pseudo_vma_destroy(&pvma);
1486 if (page)
1487 prep_transhuge_page(page);
18a2f371 1488 return page;
1da177e4
LT
1489}
1490
02098fea 1491static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1492 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1493{
1494 struct vm_area_struct pvma;
18a2f371 1495 struct page *page;
1da177e4 1496
800d8c63
KS
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1500
1501 return page;
1502}
1503
1504static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
0f079694 1505 struct inode *inode,
800d8c63
KS
1506 pgoff_t index, bool huge)
1507{
0f079694 1508 struct shmem_inode_info *info = SHMEM_I(inode);
800d8c63
KS
1509 struct page *page;
1510 int nr;
1511 int err = -ENOSPC;
52cd3b07 1512
e496cf3d 1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1514 huge = false;
1515 nr = huge ? HPAGE_PMD_NR : 1;
1516
0f079694 1517 if (!shmem_inode_acct_block(inode, nr))
800d8c63 1518 goto failed;
800d8c63
KS
1519
1520 if (huge)
1521 page = shmem_alloc_hugepage(gfp, info, index);
1522 else
1523 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1524 if (page) {
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
800d8c63 1527 return page;
75edd345 1528 }
18a2f371 1529
800d8c63 1530 err = -ENOMEM;
0f079694 1531 shmem_inode_unacct_blocks(inode, nr);
800d8c63
KS
1532failed:
1533 return ERR_PTR(err);
1da177e4 1534}
71fe804b 1535
bde05d1c
HD
1536/*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
1548static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549{
1550 return page_zonenum(page) > gfp_zone(gfp);
1551}
1552
1553static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1555{
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
c1cb20d4 1558 swp_entry_t entry;
bde05d1c
HD
1559 pgoff_t swap_index;
1560 int error;
1561
1562 oldpage = *pagep;
c1cb20d4
YZ
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
bde05d1c
HD
1565 swap_mapping = page_mapping(oldpage);
1566
1567 /*
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1570 */
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1573 if (!newpage)
1574 return -ENOMEM;
bde05d1c 1575
09cbfeaf 1576 get_page(newpage);
bde05d1c 1577 copy_highpage(newpage, oldpage);
0142ef6c 1578 flush_dcache_page(newpage);
bde05d1c 1579
9956edf3
HD
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
bde05d1c 1582 SetPageUptodate(newpage);
c1cb20d4 1583 set_page_private(newpage, entry.val);
bde05d1c
HD
1584 SetPageSwapCache(newpage);
1585
1586 /*
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1589 */
b93b0163 1590 xa_lock_irq(&swap_mapping->i_pages);
62f945b6 1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
0142ef6c 1592 if (!error) {
11fb9989
MG
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1595 }
b93b0163 1596 xa_unlock_irq(&swap_mapping->i_pages);
bde05d1c 1597
0142ef6c
HD
1598 if (unlikely(error)) {
1599 /*
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1603 */
1604 oldpage = newpage;
1605 } else {
6a93ca8f 1606 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1607 lru_cache_add_anon(newpage);
1608 *pagep = newpage;
1609 }
bde05d1c
HD
1610
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1613
1614 unlock_page(oldpage);
09cbfeaf
KS
1615 put_page(oldpage);
1616 put_page(oldpage);
0142ef6c 1617 return error;
bde05d1c
HD
1618}
1619
c5bf121e
VRP
1620/*
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
1626static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1630{
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1635 struct page *page;
1636 swp_entry_t swap;
1637 int error;
1638
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1641 *pagep = NULL;
1642
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1645 if (!page) {
1646 /* Or update major stats only when swapin succeeds?? */
1647 if (fault_type) {
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651 }
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1654 if (!page) {
1655 error = -ENOMEM;
1656 goto failed;
1657 }
1658 }
1659
1660 /* We have to do this with page locked to prevent races */
1661 lock_page(page);
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST;
1665 goto unlock;
1666 }
1667 if (!PageUptodate(page)) {
1668 error = -EIO;
1669 goto failed;
1670 }
1671 wait_on_page_writeback(page);
1672
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1675 if (error)
1676 goto failed;
1677 }
1678
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680 false);
1681 if (!error) {
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1684 /*
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1692 * the rest.
1693 */
1694 if (error) {
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1697 }
1698 }
1699 if (error)
1700 goto failed;
1701
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704 spin_lock_irq(&info->lock);
1705 info->swapped--;
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1708
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1711
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1714 swap_free(swap);
1715
1716 *pagep = page;
1717 return 0;
1718failed:
1719 if (!shmem_confirm_swap(mapping, index, swap))
1720 error = -EEXIST;
1721unlock:
1722 if (page) {
1723 unlock_page(page);
1724 put_page(page);
1725 }
1726
1727 return error;
1728}
1729
1da177e4 1730/*
68da9f05 1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
28eb3c80 1737 * vmf and fault_type are only supplied by shmem_fault:
9e18eb29 1738 * otherwise they are NULL.
1da177e4 1739 */
41ffe5d5 1740static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29 1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
2b740303
SJ
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1da177e4
LT
1744{
1745 struct address_space *mapping = inode->i_mapping;
23f919d4 1746 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4 1747 struct shmem_sb_info *sbinfo;
9e18eb29 1748 struct mm_struct *charge_mm;
00501b53 1749 struct mem_cgroup *memcg;
27ab7006 1750 struct page *page;
657e3038 1751 enum sgp_type sgp_huge = sgp;
800d8c63 1752 pgoff_t hindex = index;
1da177e4 1753 int error;
54af6042 1754 int once = 0;
1635f6a7 1755 int alloced = 0;
1da177e4 1756
09cbfeaf 1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1758 return -EFBIG;
657e3038
KS
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760 sgp = SGP_CACHE;
1da177e4 1761repeat:
c5bf121e
VRP
1762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764 return -EINVAL;
1765 }
1766
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1769
0cd6144a 1770 page = find_lock_entry(mapping, index);
3159f943 1771 if (xa_is_value(page)) {
c5bf121e
VRP
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1775 goto repeat;
54af6042 1776
c5bf121e
VRP
1777 *pagep = page;
1778 return error;
54af6042
HD
1779 }
1780
66d2f4d2
HD
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1783
1635f6a7
HD
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1787 goto clear;
1788 unlock_page(page);
09cbfeaf 1789 put_page(page);
1635f6a7
HD
1790 page = NULL;
1791 }
c5bf121e 1792 if (page || sgp == SGP_READ) {
54af6042
HD
1793 *pagep = page;
1794 return 0;
27ab7006
HD
1795 }
1796
1797 /*
54af6042
HD
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
27ab7006 1800 */
54af6042 1801
c5bf121e
VRP
1802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804 return 0;
1805 }
cfda0526 1806
c5bf121e
VRP
1807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1809 goto alloc_nohuge;
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811 goto alloc_nohuge;
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1813 goto alloc_huge;
1814 switch (sbinfo->huge) {
1815 loff_t i_size;
1816 pgoff_t off;
1817 case SHMEM_HUGE_NEVER:
1818 goto alloc_nohuge;
1819 case SHMEM_HUGE_WITHIN_SIZE:
1820 off = round_up(index, HPAGE_PMD_NR);
1821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822 if (i_size >= HPAGE_PMD_SIZE &&
1823 i_size >> PAGE_SHIFT >= off)
800d8c63 1824 goto alloc_huge;
c5bf121e
VRP
1825 /* fallthrough */
1826 case SHMEM_HUGE_ADVISE:
1827 if (sgp_huge == SGP_HUGE)
1828 goto alloc_huge;
1829 /* TODO: implement fadvise() hints */
1830 goto alloc_nohuge;
1831 }
1da177e4 1832
800d8c63 1833alloc_huge:
c5bf121e
VRP
1834 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835 if (IS_ERR(page)) {
1836alloc_nohuge:
1837 page = shmem_alloc_and_acct_page(gfp, inode,
1838 index, false);
1839 }
1840 if (IS_ERR(page)) {
1841 int retry = 5;
800d8c63 1842
c5bf121e
VRP
1843 error = PTR_ERR(page);
1844 page = NULL;
1845 if (error != -ENOSPC)
1846 goto unlock;
1847 /*
1848 * Try to reclaim some space by splitting a huge page
1849 * beyond i_size on the filesystem.
1850 */
1851 while (retry--) {
1852 int ret;
66d2f4d2 1853
c5bf121e
VRP
1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855 if (ret == SHRINK_STOP)
1856 break;
1857 if (ret)
1858 goto alloc_nohuge;
b065b432 1859 }
c5bf121e
VRP
1860 goto unlock;
1861 }
54af6042 1862
c5bf121e
VRP
1863 if (PageTransHuge(page))
1864 hindex = round_down(index, HPAGE_PMD_NR);
1865 else
1866 hindex = index;
54af6042 1867
c5bf121e
VRP
1868 if (sgp == SGP_WRITE)
1869 __SetPageReferenced(page);
1870
1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872 PageTransHuge(page));
1873 if (error)
1874 goto unacct;
1875 error = shmem_add_to_page_cache(page, mapping, hindex,
1876 NULL, gfp & GFP_RECLAIM_MASK);
1877 if (error) {
1878 mem_cgroup_cancel_charge(page, memcg,
1879 PageTransHuge(page));
1880 goto unacct;
1881 }
1882 mem_cgroup_commit_charge(page, memcg, false,
1883 PageTransHuge(page));
1884 lru_cache_add_anon(page);
779750d2 1885
c5bf121e 1886 spin_lock_irq(&info->lock);
d8c6546b 1887 info->alloced += compound_nr(page);
c5bf121e
VRP
1888 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 alloced = true;
1892
1893 if (PageTransHuge(page) &&
1894 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895 hindex + HPAGE_PMD_NR - 1) {
ec9516fb 1896 /*
c5bf121e
VRP
1897 * Part of the huge page is beyond i_size: subject
1898 * to shrink under memory pressure.
1635f6a7 1899 */
c5bf121e 1900 spin_lock(&sbinfo->shrinklist_lock);
1635f6a7 1901 /*
c5bf121e
VRP
1902 * _careful to defend against unlocked access to
1903 * ->shrink_list in shmem_unused_huge_shrink()
ec9516fb 1904 */
c5bf121e
VRP
1905 if (list_empty_careful(&info->shrinklist)) {
1906 list_add_tail(&info->shrinklist,
1907 &sbinfo->shrinklist);
1908 sbinfo->shrinklist_len++;
1909 }
1910 spin_unlock(&sbinfo->shrinklist_lock);
1911 }
800d8c63 1912
c5bf121e
VRP
1913 /*
1914 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1915 */
1916 if (sgp == SGP_FALLOC)
1917 sgp = SGP_WRITE;
1918clear:
1919 /*
1920 * Let SGP_WRITE caller clear ends if write does not fill page;
1921 * but SGP_FALLOC on a page fallocated earlier must initialize
1922 * it now, lest undo on failure cancel our earlier guarantee.
1923 */
1924 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925 struct page *head = compound_head(page);
1926 int i;
1927
d8c6546b 1928 for (i = 0; i < compound_nr(head); i++) {
c5bf121e
VRP
1929 clear_highpage(head + i);
1930 flush_dcache_page(head + i);
ec9516fb 1931 }
c5bf121e 1932 SetPageUptodate(head);
1da177e4 1933 }
bde05d1c 1934
54af6042 1935 /* Perhaps the file has been truncated since we checked */
75edd345 1936 if (sgp <= SGP_CACHE &&
09cbfeaf 1937 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1938 if (alloced) {
1939 ClearPageDirty(page);
1940 delete_from_page_cache(page);
4595ef88 1941 spin_lock_irq(&info->lock);
267a4c76 1942 shmem_recalc_inode(inode);
4595ef88 1943 spin_unlock_irq(&info->lock);
267a4c76 1944 }
54af6042 1945 error = -EINVAL;
267a4c76 1946 goto unlock;
e83c32e8 1947 }
800d8c63 1948 *pagep = page + index - hindex;
54af6042 1949 return 0;
1da177e4 1950
59a16ead 1951 /*
54af6042 1952 * Error recovery.
59a16ead 1953 */
54af6042 1954unacct:
d8c6546b 1955 shmem_inode_unacct_blocks(inode, compound_nr(page));
800d8c63
KS
1956
1957 if (PageTransHuge(page)) {
1958 unlock_page(page);
1959 put_page(page);
1960 goto alloc_nohuge;
1961 }
d1899228 1962unlock:
27ab7006 1963 if (page) {
54af6042 1964 unlock_page(page);
09cbfeaf 1965 put_page(page);
54af6042
HD
1966 }
1967 if (error == -ENOSPC && !once++) {
4595ef88 1968 spin_lock_irq(&info->lock);
54af6042 1969 shmem_recalc_inode(inode);
4595ef88 1970 spin_unlock_irq(&info->lock);
27ab7006 1971 goto repeat;
ff36b801 1972 }
7f4446ee 1973 if (error == -EEXIST)
54af6042
HD
1974 goto repeat;
1975 return error;
1da177e4
LT
1976}
1977
10d20bd2
LT
1978/*
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1982 */
ac6424b9 1983static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
10d20bd2
LT
1984{
1985 int ret = default_wake_function(wait, mode, sync, key);
2055da97 1986 list_del_init(&wait->entry);
10d20bd2
LT
1987 return ret;
1988}
1989
20acce67 1990static vm_fault_t shmem_fault(struct vm_fault *vmf)
1da177e4 1991{
11bac800 1992 struct vm_area_struct *vma = vmf->vma;
496ad9aa 1993 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1994 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1995 enum sgp_type sgp;
20acce67
SJ
1996 int err;
1997 vm_fault_t ret = VM_FAULT_LOCKED;
1da177e4 1998
f00cdc6d
HD
1999 /*
2000 * Trinity finds that probing a hole which tmpfs is punching can
2001 * prevent the hole-punch from ever completing: which in turn
2002 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
2003 * faulting pages into the hole while it's being punched. Although
2004 * shmem_undo_range() does remove the additions, it may be unable to
2005 * keep up, as each new page needs its own unmap_mapping_range() call,
2006 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2007 *
2008 * It does not matter if we sometimes reach this check just before the
2009 * hole-punch begins, so that one fault then races with the punch:
2010 * we just need to make racing faults a rare case.
2011 *
2012 * The implementation below would be much simpler if we just used a
2013 * standard mutex or completion: but we cannot take i_mutex in fault,
2014 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
2015 */
2016 if (unlikely(inode->i_private)) {
2017 struct shmem_falloc *shmem_falloc;
2018
2019 spin_lock(&inode->i_lock);
2020 shmem_falloc = inode->i_private;
8e205f77
HD
2021 if (shmem_falloc &&
2022 shmem_falloc->waitq &&
2023 vmf->pgoff >= shmem_falloc->start &&
2024 vmf->pgoff < shmem_falloc->next) {
2025 wait_queue_head_t *shmem_falloc_waitq;
10d20bd2 2026 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
8e205f77
HD
2027
2028 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
2029 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2030 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 2031 /* It's polite to up mmap_sem if we can */
f00cdc6d 2032 up_read(&vma->vm_mm->mmap_sem);
8e205f77 2033 ret = VM_FAULT_RETRY;
f00cdc6d 2034 }
8e205f77
HD
2035
2036 shmem_falloc_waitq = shmem_falloc->waitq;
2037 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2038 TASK_UNINTERRUPTIBLE);
2039 spin_unlock(&inode->i_lock);
2040 schedule();
2041
2042 /*
2043 * shmem_falloc_waitq points into the shmem_fallocate()
2044 * stack of the hole-punching task: shmem_falloc_waitq
2045 * is usually invalid by the time we reach here, but
2046 * finish_wait() does not dereference it in that case;
2047 * though i_lock needed lest racing with wake_up_all().
2048 */
2049 spin_lock(&inode->i_lock);
2050 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2051 spin_unlock(&inode->i_lock);
2052 return ret;
f00cdc6d 2053 }
8e205f77 2054 spin_unlock(&inode->i_lock);
f00cdc6d
HD
2055 }
2056
657e3038 2057 sgp = SGP_CACHE;
18600332
MH
2058
2059 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2060 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
657e3038 2061 sgp = SGP_NOHUGE;
18600332
MH
2062 else if (vma->vm_flags & VM_HUGEPAGE)
2063 sgp = SGP_HUGE;
657e3038 2064
20acce67 2065 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
cfda0526 2066 gfp, vma, vmf, &ret);
20acce67
SJ
2067 if (err)
2068 return vmf_error(err);
68da9f05 2069 return ret;
1da177e4
LT
2070}
2071
c01d5b30
HD
2072unsigned long shmem_get_unmapped_area(struct file *file,
2073 unsigned long uaddr, unsigned long len,
2074 unsigned long pgoff, unsigned long flags)
2075{
2076 unsigned long (*get_area)(struct file *,
2077 unsigned long, unsigned long, unsigned long, unsigned long);
2078 unsigned long addr;
2079 unsigned long offset;
2080 unsigned long inflated_len;
2081 unsigned long inflated_addr;
2082 unsigned long inflated_offset;
2083
2084 if (len > TASK_SIZE)
2085 return -ENOMEM;
2086
2087 get_area = current->mm->get_unmapped_area;
2088 addr = get_area(file, uaddr, len, pgoff, flags);
2089
e496cf3d 2090 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
2091 return addr;
2092 if (IS_ERR_VALUE(addr))
2093 return addr;
2094 if (addr & ~PAGE_MASK)
2095 return addr;
2096 if (addr > TASK_SIZE - len)
2097 return addr;
2098
2099 if (shmem_huge == SHMEM_HUGE_DENY)
2100 return addr;
2101 if (len < HPAGE_PMD_SIZE)
2102 return addr;
2103 if (flags & MAP_FIXED)
2104 return addr;
2105 /*
2106 * Our priority is to support MAP_SHARED mapped hugely;
2107 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2108 * But if caller specified an address hint, respect that as before.
2109 */
2110 if (uaddr)
2111 return addr;
2112
2113 if (shmem_huge != SHMEM_HUGE_FORCE) {
2114 struct super_block *sb;
2115
2116 if (file) {
2117 VM_BUG_ON(file->f_op != &shmem_file_operations);
2118 sb = file_inode(file)->i_sb;
2119 } else {
2120 /*
2121 * Called directly from mm/mmap.c, or drivers/char/mem.c
2122 * for "/dev/zero", to create a shared anonymous object.
2123 */
2124 if (IS_ERR(shm_mnt))
2125 return addr;
2126 sb = shm_mnt->mnt_sb;
2127 }
3089bf61 2128 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
2129 return addr;
2130 }
2131
2132 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2133 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2134 return addr;
2135 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2136 return addr;
2137
2138 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2139 if (inflated_len > TASK_SIZE)
2140 return addr;
2141 if (inflated_len < len)
2142 return addr;
2143
2144 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2145 if (IS_ERR_VALUE(inflated_addr))
2146 return addr;
2147 if (inflated_addr & ~PAGE_MASK)
2148 return addr;
2149
2150 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2151 inflated_addr += offset - inflated_offset;
2152 if (inflated_offset > offset)
2153 inflated_addr += HPAGE_PMD_SIZE;
2154
2155 if (inflated_addr > TASK_SIZE - len)
2156 return addr;
2157 return inflated_addr;
2158}
2159
1da177e4 2160#ifdef CONFIG_NUMA
41ffe5d5 2161static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2162{
496ad9aa 2163 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2164 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2165}
2166
d8dc74f2
AB
2167static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2168 unsigned long addr)
1da177e4 2169{
496ad9aa 2170 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2171 pgoff_t index;
1da177e4 2172
41ffe5d5
HD
2173 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2174 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2175}
2176#endif
2177
2178int shmem_lock(struct file *file, int lock, struct user_struct *user)
2179{
496ad9aa 2180 struct inode *inode = file_inode(file);
1da177e4
LT
2181 struct shmem_inode_info *info = SHMEM_I(inode);
2182 int retval = -ENOMEM;
2183
4595ef88 2184 spin_lock_irq(&info->lock);
1da177e4
LT
2185 if (lock && !(info->flags & VM_LOCKED)) {
2186 if (!user_shm_lock(inode->i_size, user))
2187 goto out_nomem;
2188 info->flags |= VM_LOCKED;
89e004ea 2189 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2190 }
2191 if (!lock && (info->flags & VM_LOCKED) && user) {
2192 user_shm_unlock(inode->i_size, user);
2193 info->flags &= ~VM_LOCKED;
89e004ea 2194 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2195 }
2196 retval = 0;
89e004ea 2197
1da177e4 2198out_nomem:
4595ef88 2199 spin_unlock_irq(&info->lock);
1da177e4
LT
2200 return retval;
2201}
2202
9b83a6a8 2203static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4 2204{
ab3948f5
JFG
2205 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2206
2207 if (info->seals & F_SEAL_FUTURE_WRITE) {
2208 /*
2209 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2210 * "future write" seal active.
2211 */
2212 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2213 return -EPERM;
2214
2215 /*
2216 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2217 * read-only mapping, take care to not allow mprotect to revert
2218 * protections.
2219 */
2220 vma->vm_flags &= ~(VM_MAYWRITE);
2221 }
2222
1da177e4
LT
2223 file_accessed(file);
2224 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2225 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2226 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2227 (vma->vm_end & HPAGE_PMD_MASK)) {
2228 khugepaged_enter(vma, vma->vm_flags);
2229 }
1da177e4
LT
2230 return 0;
2231}
2232
454abafe 2233static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2234 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2235{
2236 struct inode *inode;
2237 struct shmem_inode_info *info;
2238 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2239
5b04c689
PE
2240 if (shmem_reserve_inode(sb))
2241 return NULL;
1da177e4
LT
2242
2243 inode = new_inode(sb);
2244 if (inode) {
85fe4025 2245 inode->i_ino = get_next_ino();
454abafe 2246 inode_init_owner(inode, dir, mode);
1da177e4 2247 inode->i_blocks = 0;
078cd827 2248 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
46c9a946 2249 inode->i_generation = prandom_u32();
1da177e4
LT
2250 info = SHMEM_I(inode);
2251 memset(info, 0, (char *)inode - (char *)info);
2252 spin_lock_init(&info->lock);
af53d3e9 2253 atomic_set(&info->stop_eviction, 0);
40e041a2 2254 info->seals = F_SEAL_SEAL;
0b0a0806 2255 info->flags = flags & VM_NORESERVE;
779750d2 2256 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2257 INIT_LIST_HEAD(&info->swaplist);
38f38657 2258 simple_xattrs_init(&info->xattrs);
72c04902 2259 cache_no_acl(inode);
1da177e4
LT
2260
2261 switch (mode & S_IFMT) {
2262 default:
39f0247d 2263 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2264 init_special_inode(inode, mode, dev);
2265 break;
2266 case S_IFREG:
14fcc23f 2267 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2268 inode->i_op = &shmem_inode_operations;
2269 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2270 mpol_shared_policy_init(&info->policy,
2271 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2272 break;
2273 case S_IFDIR:
d8c76e6f 2274 inc_nlink(inode);
1da177e4
LT
2275 /* Some things misbehave if size == 0 on a directory */
2276 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2277 inode->i_op = &shmem_dir_inode_operations;
2278 inode->i_fop = &simple_dir_operations;
2279 break;
2280 case S_IFLNK:
2281 /*
2282 * Must not load anything in the rbtree,
2283 * mpol_free_shared_policy will not be called.
2284 */
71fe804b 2285 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2286 break;
2287 }
b45d71fb
JFG
2288
2289 lockdep_annotate_inode_mutex_key(inode);
5b04c689
PE
2290 } else
2291 shmem_free_inode(sb);
1da177e4
LT
2292 return inode;
2293}
2294
0cd6144a
JW
2295bool shmem_mapping(struct address_space *mapping)
2296{
f8005451 2297 return mapping->a_ops == &shmem_aops;
0cd6144a
JW
2298}
2299
8d103963
MR
2300static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2301 pmd_t *dst_pmd,
2302 struct vm_area_struct *dst_vma,
2303 unsigned long dst_addr,
2304 unsigned long src_addr,
2305 bool zeropage,
2306 struct page **pagep)
4c27fe4c
MR
2307{
2308 struct inode *inode = file_inode(dst_vma->vm_file);
2309 struct shmem_inode_info *info = SHMEM_I(inode);
4c27fe4c
MR
2310 struct address_space *mapping = inode->i_mapping;
2311 gfp_t gfp = mapping_gfp_mask(mapping);
2312 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2313 struct mem_cgroup *memcg;
2314 spinlock_t *ptl;
2315 void *page_kaddr;
2316 struct page *page;
2317 pte_t _dst_pte, *dst_pte;
2318 int ret;
e2a50c1f 2319 pgoff_t offset, max_off;
4c27fe4c 2320
cb658a45 2321 ret = -ENOMEM;
0f079694 2322 if (!shmem_inode_acct_block(inode, 1))
cb658a45 2323 goto out;
4c27fe4c 2324
cb658a45 2325 if (!*pagep) {
4c27fe4c
MR
2326 page = shmem_alloc_page(gfp, info, pgoff);
2327 if (!page)
0f079694 2328 goto out_unacct_blocks;
4c27fe4c 2329
8d103963
MR
2330 if (!zeropage) { /* mcopy_atomic */
2331 page_kaddr = kmap_atomic(page);
2332 ret = copy_from_user(page_kaddr,
2333 (const void __user *)src_addr,
2334 PAGE_SIZE);
2335 kunmap_atomic(page_kaddr);
2336
2337 /* fallback to copy_from_user outside mmap_sem */
2338 if (unlikely(ret)) {
2339 *pagep = page;
2340 shmem_inode_unacct_blocks(inode, 1);
2341 /* don't free the page */
9e368259 2342 return -ENOENT;
8d103963
MR
2343 }
2344 } else { /* mfill_zeropage_atomic */
2345 clear_highpage(page);
4c27fe4c
MR
2346 }
2347 } else {
2348 page = *pagep;
2349 *pagep = NULL;
2350 }
2351
9cc90c66
AA
2352 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2353 __SetPageLocked(page);
2354 __SetPageSwapBacked(page);
a425d358 2355 __SetPageUptodate(page);
9cc90c66 2356
e2a50c1f
AA
2357 ret = -EFAULT;
2358 offset = linear_page_index(dst_vma, dst_addr);
2359 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2360 if (unlikely(offset >= max_off))
2361 goto out_release;
2362
2cf85583 2363 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
4c27fe4c
MR
2364 if (ret)
2365 goto out_release;
2366
552446a4
MW
2367 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2368 gfp & GFP_RECLAIM_MASK);
4c27fe4c
MR
2369 if (ret)
2370 goto out_release_uncharge;
2371
2372 mem_cgroup_commit_charge(page, memcg, false, false);
2373
2374 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2375 if (dst_vma->vm_flags & VM_WRITE)
2376 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
dcf7fe9d
AA
2377 else {
2378 /*
2379 * We don't set the pte dirty if the vma has no
2380 * VM_WRITE permission, so mark the page dirty or it
2381 * could be freed from under us. We could do it
2382 * unconditionally before unlock_page(), but doing it
2383 * only if VM_WRITE is not set is faster.
2384 */
2385 set_page_dirty(page);
2386 }
4c27fe4c 2387
4c27fe4c 2388 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
e2a50c1f
AA
2389
2390 ret = -EFAULT;
2391 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2392 if (unlikely(offset >= max_off))
2393 goto out_release_uncharge_unlock;
2394
2395 ret = -EEXIST;
4c27fe4c
MR
2396 if (!pte_none(*dst_pte))
2397 goto out_release_uncharge_unlock;
2398
4c27fe4c
MR
2399 lru_cache_add_anon(page);
2400
2401 spin_lock(&info->lock);
2402 info->alloced++;
2403 inode->i_blocks += BLOCKS_PER_PAGE;
2404 shmem_recalc_inode(inode);
2405 spin_unlock(&info->lock);
2406
2407 inc_mm_counter(dst_mm, mm_counter_file(page));
2408 page_add_file_rmap(page, false);
2409 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2410
2411 /* No need to invalidate - it was non-present before */
2412 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4c27fe4c 2413 pte_unmap_unlock(dst_pte, ptl);
e2a50c1f 2414 unlock_page(page);
4c27fe4c
MR
2415 ret = 0;
2416out:
2417 return ret;
2418out_release_uncharge_unlock:
2419 pte_unmap_unlock(dst_pte, ptl);
dcf7fe9d 2420 ClearPageDirty(page);
e2a50c1f 2421 delete_from_page_cache(page);
4c27fe4c
MR
2422out_release_uncharge:
2423 mem_cgroup_cancel_charge(page, memcg, false);
2424out_release:
9cc90c66 2425 unlock_page(page);
4c27fe4c 2426 put_page(page);
4c27fe4c 2427out_unacct_blocks:
0f079694 2428 shmem_inode_unacct_blocks(inode, 1);
4c27fe4c
MR
2429 goto out;
2430}
2431
8d103963
MR
2432int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2433 pmd_t *dst_pmd,
2434 struct vm_area_struct *dst_vma,
2435 unsigned long dst_addr,
2436 unsigned long src_addr,
2437 struct page **pagep)
2438{
2439 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2440 dst_addr, src_addr, false, pagep);
2441}
2442
2443int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2444 pmd_t *dst_pmd,
2445 struct vm_area_struct *dst_vma,
2446 unsigned long dst_addr)
2447{
2448 struct page *page = NULL;
2449
2450 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2451 dst_addr, 0, true, &page);
2452}
2453
1da177e4 2454#ifdef CONFIG_TMPFS
92e1d5be 2455static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2456static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2457
6d9d88d0
JS
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
1da177e4 2464static int
800d15a5
NP
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned flags,
2467 struct page **pagep, void **fsdata)
1da177e4 2468{
800d15a5 2469 struct inode *inode = mapping->host;
40e041a2 2470 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2471 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2472
2473 /* i_mutex is held by caller */
ab3948f5
JFG
2474 if (unlikely(info->seals & (F_SEAL_GROW |
2475 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
40e041a2
DH
2477 return -EPERM;
2478 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479 return -EPERM;
2480 }
2481
9e18eb29 2482 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487 loff_t pos, unsigned len, unsigned copied,
2488 struct page *page, void *fsdata)
2489{
2490 struct inode *inode = mapping->host;
2491
d3602444
HD
2492 if (pos + copied > inode->i_size)
2493 i_size_write(inode, pos + copied);
2494
ec9516fb 2495 if (!PageUptodate(page)) {
800d8c63
KS
2496 struct page *head = compound_head(page);
2497 if (PageTransCompound(page)) {
2498 int i;
2499
2500 for (i = 0; i < HPAGE_PMD_NR; i++) {
2501 if (head + i == page)
2502 continue;
2503 clear_highpage(head + i);
2504 flush_dcache_page(head + i);
2505 }
2506 }
09cbfeaf
KS
2507 if (copied < PAGE_SIZE) {
2508 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2509 zero_user_segments(page, 0, from,
09cbfeaf 2510 from + copied, PAGE_SIZE);
ec9516fb 2511 }
800d8c63 2512 SetPageUptodate(head);
ec9516fb 2513 }
800d15a5 2514 set_page_dirty(page);
6746aff7 2515 unlock_page(page);
09cbfeaf 2516 put_page(page);
800d15a5 2517
800d15a5 2518 return copied;
1da177e4
LT
2519}
2520
2ba5bbed 2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2522{
6e58e79d
AV
2523 struct file *file = iocb->ki_filp;
2524 struct inode *inode = file_inode(file);
1da177e4 2525 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2526 pgoff_t index;
2527 unsigned long offset;
a0ee5ec5 2528 enum sgp_type sgp = SGP_READ;
f7c1d074 2529 int error = 0;
cb66a7a1 2530 ssize_t retval = 0;
6e58e79d 2531 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2532
2533 /*
2534 * Might this read be for a stacking filesystem? Then when reading
2535 * holes of a sparse file, we actually need to allocate those pages,
2536 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537 */
777eda2c 2538 if (!iter_is_iovec(to))
75edd345 2539 sgp = SGP_CACHE;
1da177e4 2540
09cbfeaf
KS
2541 index = *ppos >> PAGE_SHIFT;
2542 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2543
2544 for (;;) {
2545 struct page *page = NULL;
41ffe5d5
HD
2546 pgoff_t end_index;
2547 unsigned long nr, ret;
1da177e4
LT
2548 loff_t i_size = i_size_read(inode);
2549
09cbfeaf 2550 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2551 if (index > end_index)
2552 break;
2553 if (index == end_index) {
09cbfeaf 2554 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2555 if (nr <= offset)
2556 break;
2557 }
2558
9e18eb29 2559 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2560 if (error) {
2561 if (error == -EINVAL)
2562 error = 0;
1da177e4
LT
2563 break;
2564 }
75edd345
HD
2565 if (page) {
2566 if (sgp == SGP_CACHE)
2567 set_page_dirty(page);
d3602444 2568 unlock_page(page);
75edd345 2569 }
1da177e4
LT
2570
2571 /*
2572 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2573 * are called without i_mutex protection against truncate
1da177e4 2574 */
09cbfeaf 2575 nr = PAGE_SIZE;
1da177e4 2576 i_size = i_size_read(inode);
09cbfeaf 2577 end_index = i_size >> PAGE_SHIFT;
1da177e4 2578 if (index == end_index) {
09cbfeaf 2579 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2580 if (nr <= offset) {
2581 if (page)
09cbfeaf 2582 put_page(page);
1da177e4
LT
2583 break;
2584 }
2585 }
2586 nr -= offset;
2587
2588 if (page) {
2589 /*
2590 * If users can be writing to this page using arbitrary
2591 * virtual addresses, take care about potential aliasing
2592 * before reading the page on the kernel side.
2593 */
2594 if (mapping_writably_mapped(mapping))
2595 flush_dcache_page(page);
2596 /*
2597 * Mark the page accessed if we read the beginning.
2598 */
2599 if (!offset)
2600 mark_page_accessed(page);
b5810039 2601 } else {
1da177e4 2602 page = ZERO_PAGE(0);
09cbfeaf 2603 get_page(page);
b5810039 2604 }
1da177e4
LT
2605
2606 /*
2607 * Ok, we have the page, and it's up-to-date, so
2608 * now we can copy it to user space...
1da177e4 2609 */
2ba5bbed 2610 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2611 retval += ret;
1da177e4 2612 offset += ret;
09cbfeaf
KS
2613 index += offset >> PAGE_SHIFT;
2614 offset &= ~PAGE_MASK;
1da177e4 2615
09cbfeaf 2616 put_page(page);
2ba5bbed 2617 if (!iov_iter_count(to))
1da177e4 2618 break;
6e58e79d
AV
2619 if (ret < nr) {
2620 error = -EFAULT;
2621 break;
2622 }
1da177e4
LT
2623 cond_resched();
2624 }
2625
09cbfeaf 2626 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2627 file_accessed(file);
2628 return retval ? retval : error;
1da177e4
LT
2629}
2630
220f2ac9 2631/*
7f4446ee 2632 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
220f2ac9
HD
2633 */
2634static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2635 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2636{
2637 struct page *page;
2638 struct pagevec pvec;
2639 pgoff_t indices[PAGEVEC_SIZE];
2640 bool done = false;
2641 int i;
2642
86679820 2643 pagevec_init(&pvec);
220f2ac9
HD
2644 pvec.nr = 1; /* start small: we may be there already */
2645 while (!done) {
0cd6144a 2646 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2647 pvec.nr, pvec.pages, indices);
2648 if (!pvec.nr) {
965c8e59 2649 if (whence == SEEK_DATA)
220f2ac9
HD
2650 index = end;
2651 break;
2652 }
2653 for (i = 0; i < pvec.nr; i++, index++) {
2654 if (index < indices[i]) {
965c8e59 2655 if (whence == SEEK_HOLE) {
220f2ac9
HD
2656 done = true;
2657 break;
2658 }
2659 index = indices[i];
2660 }
2661 page = pvec.pages[i];
3159f943 2662 if (page && !xa_is_value(page)) {
220f2ac9
HD
2663 if (!PageUptodate(page))
2664 page = NULL;
2665 }
2666 if (index >= end ||
965c8e59
AM
2667 (page && whence == SEEK_DATA) ||
2668 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2669 done = true;
2670 break;
2671 }
2672 }
0cd6144a 2673 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2674 pagevec_release(&pvec);
2675 pvec.nr = PAGEVEC_SIZE;
2676 cond_resched();
2677 }
2678 return index;
2679}
2680
965c8e59 2681static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2682{
2683 struct address_space *mapping = file->f_mapping;
2684 struct inode *inode = mapping->host;
2685 pgoff_t start, end;
2686 loff_t new_offset;
2687
965c8e59
AM
2688 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2689 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2690 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2691 inode_lock(inode);
220f2ac9
HD
2692 /* We're holding i_mutex so we can access i_size directly */
2693
1a413646 2694 if (offset < 0 || offset >= inode->i_size)
220f2ac9
HD
2695 offset = -ENXIO;
2696 else {
09cbfeaf
KS
2697 start = offset >> PAGE_SHIFT;
2698 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2699 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2700 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2701 if (new_offset > offset) {
2702 if (new_offset < inode->i_size)
2703 offset = new_offset;
965c8e59 2704 else if (whence == SEEK_DATA)
220f2ac9
HD
2705 offset = -ENXIO;
2706 else
2707 offset = inode->i_size;
2708 }
2709 }
2710
387aae6f
HD
2711 if (offset >= 0)
2712 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2713 inode_unlock(inode);
220f2ac9
HD
2714 return offset;
2715}
2716
83e4fa9c
HD
2717static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2718 loff_t len)
2719{
496ad9aa 2720 struct inode *inode = file_inode(file);
e2d12e22 2721 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2722 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2723 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2724 pgoff_t start, index, end;
2725 int error;
83e4fa9c 2726
13ace4d0
HD
2727 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2728 return -EOPNOTSUPP;
2729
5955102c 2730 inode_lock(inode);
83e4fa9c
HD
2731
2732 if (mode & FALLOC_FL_PUNCH_HOLE) {
2733 struct address_space *mapping = file->f_mapping;
2734 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2735 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2736 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2737
40e041a2 2738 /* protected by i_mutex */
ab3948f5 2739 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
40e041a2
DH
2740 error = -EPERM;
2741 goto out;
2742 }
2743
8e205f77 2744 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2745 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2746 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2747 spin_lock(&inode->i_lock);
2748 inode->i_private = &shmem_falloc;
2749 spin_unlock(&inode->i_lock);
2750
83e4fa9c
HD
2751 if ((u64)unmap_end > (u64)unmap_start)
2752 unmap_mapping_range(mapping, unmap_start,
2753 1 + unmap_end - unmap_start, 0);
2754 shmem_truncate_range(inode, offset, offset + len - 1);
2755 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2756
2757 spin_lock(&inode->i_lock);
2758 inode->i_private = NULL;
2759 wake_up_all(&shmem_falloc_waitq);
2055da97 2760 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
8e205f77 2761 spin_unlock(&inode->i_lock);
83e4fa9c 2762 error = 0;
8e205f77 2763 goto out;
e2d12e22
HD
2764 }
2765
2766 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2767 error = inode_newsize_ok(inode, offset + len);
2768 if (error)
2769 goto out;
2770
40e041a2
DH
2771 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2772 error = -EPERM;
2773 goto out;
2774 }
2775
09cbfeaf
KS
2776 start = offset >> PAGE_SHIFT;
2777 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2778 /* Try to avoid a swapstorm if len is impossible to satisfy */
2779 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2780 error = -ENOSPC;
2781 goto out;
83e4fa9c
HD
2782 }
2783
8e205f77 2784 shmem_falloc.waitq = NULL;
1aac1400
HD
2785 shmem_falloc.start = start;
2786 shmem_falloc.next = start;
2787 shmem_falloc.nr_falloced = 0;
2788 shmem_falloc.nr_unswapped = 0;
2789 spin_lock(&inode->i_lock);
2790 inode->i_private = &shmem_falloc;
2791 spin_unlock(&inode->i_lock);
2792
e2d12e22
HD
2793 for (index = start; index < end; index++) {
2794 struct page *page;
2795
2796 /*
2797 * Good, the fallocate(2) manpage permits EINTR: we may have
2798 * been interrupted because we are using up too much memory.
2799 */
2800 if (signal_pending(current))
2801 error = -EINTR;
1aac1400
HD
2802 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2803 error = -ENOMEM;
e2d12e22 2804 else
9e18eb29 2805 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2806 if (error) {
1635f6a7 2807 /* Remove the !PageUptodate pages we added */
7f556567
HD
2808 if (index > start) {
2809 shmem_undo_range(inode,
2810 (loff_t)start << PAGE_SHIFT,
2811 ((loff_t)index << PAGE_SHIFT) - 1, true);
2812 }
1aac1400 2813 goto undone;
e2d12e22
HD
2814 }
2815
1aac1400
HD
2816 /*
2817 * Inform shmem_writepage() how far we have reached.
2818 * No need for lock or barrier: we have the page lock.
2819 */
2820 shmem_falloc.next++;
2821 if (!PageUptodate(page))
2822 shmem_falloc.nr_falloced++;
2823
e2d12e22 2824 /*
1635f6a7
HD
2825 * If !PageUptodate, leave it that way so that freeable pages
2826 * can be recognized if we need to rollback on error later.
2827 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2828 * than free the pages we are allocating (and SGP_CACHE pages
2829 * might still be clean: we now need to mark those dirty too).
2830 */
2831 set_page_dirty(page);
2832 unlock_page(page);
09cbfeaf 2833 put_page(page);
e2d12e22
HD
2834 cond_resched();
2835 }
2836
2837 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2838 i_size_write(inode, offset + len);
078cd827 2839 inode->i_ctime = current_time(inode);
1aac1400
HD
2840undone:
2841 spin_lock(&inode->i_lock);
2842 inode->i_private = NULL;
2843 spin_unlock(&inode->i_lock);
e2d12e22 2844out:
5955102c 2845 inode_unlock(inode);
83e4fa9c
HD
2846 return error;
2847}
2848
726c3342 2849static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2850{
726c3342 2851 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2852
2853 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2854 buf->f_bsize = PAGE_SIZE;
1da177e4 2855 buf->f_namelen = NAME_MAX;
0edd73b3 2856 if (sbinfo->max_blocks) {
1da177e4 2857 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2858 buf->f_bavail =
2859 buf->f_bfree = sbinfo->max_blocks -
2860 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2861 }
2862 if (sbinfo->max_inodes) {
1da177e4
LT
2863 buf->f_files = sbinfo->max_inodes;
2864 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2865 }
2866 /* else leave those fields 0 like simple_statfs */
2867 return 0;
2868}
2869
2870/*
2871 * File creation. Allocate an inode, and we're done..
2872 */
2873static int
1a67aafb 2874shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2875{
0b0a0806 2876 struct inode *inode;
1da177e4
LT
2877 int error = -ENOSPC;
2878
454abafe 2879 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2880 if (inode) {
feda821e
CH
2881 error = simple_acl_create(dir, inode);
2882 if (error)
2883 goto out_iput;
2a7dba39 2884 error = security_inode_init_security(inode, dir,
9d8f13ba 2885 &dentry->d_name,
6d9d88d0 2886 shmem_initxattrs, NULL);
feda821e
CH
2887 if (error && error != -EOPNOTSUPP)
2888 goto out_iput;
37ec43cd 2889
718deb6b 2890 error = 0;
1da177e4 2891 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2892 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2893 d_instantiate(dentry, inode);
2894 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2895 }
2896 return error;
feda821e
CH
2897out_iput:
2898 iput(inode);
2899 return error;
1da177e4
LT
2900}
2901
60545d0d
AV
2902static int
2903shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2904{
2905 struct inode *inode;
2906 int error = -ENOSPC;
2907
2908 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2909 if (inode) {
2910 error = security_inode_init_security(inode, dir,
2911 NULL,
2912 shmem_initxattrs, NULL);
feda821e
CH
2913 if (error && error != -EOPNOTSUPP)
2914 goto out_iput;
2915 error = simple_acl_create(dir, inode);
2916 if (error)
2917 goto out_iput;
60545d0d
AV
2918 d_tmpfile(dentry, inode);
2919 }
2920 return error;
feda821e
CH
2921out_iput:
2922 iput(inode);
2923 return error;
60545d0d
AV
2924}
2925
18bb1db3 2926static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2927{
2928 int error;
2929
2930 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2931 return error;
d8c76e6f 2932 inc_nlink(dir);
1da177e4
LT
2933 return 0;
2934}
2935
4acdaf27 2936static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2937 bool excl)
1da177e4
LT
2938{
2939 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2940}
2941
2942/*
2943 * Link a file..
2944 */
2945static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2946{
75c3cfa8 2947 struct inode *inode = d_inode(old_dentry);
29b00e60 2948 int ret = 0;
1da177e4
LT
2949
2950 /*
2951 * No ordinary (disk based) filesystem counts links as inodes;
2952 * but each new link needs a new dentry, pinning lowmem, and
2953 * tmpfs dentries cannot be pruned until they are unlinked.
1062af92
DW
2954 * But if an O_TMPFILE file is linked into the tmpfs, the
2955 * first link must skip that, to get the accounting right.
1da177e4 2956 */
1062af92
DW
2957 if (inode->i_nlink) {
2958 ret = shmem_reserve_inode(inode->i_sb);
2959 if (ret)
2960 goto out;
2961 }
1da177e4
LT
2962
2963 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2964 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2965 inc_nlink(inode);
7de9c6ee 2966 ihold(inode); /* New dentry reference */
1da177e4
LT
2967 dget(dentry); /* Extra pinning count for the created dentry */
2968 d_instantiate(dentry, inode);
5b04c689
PE
2969out:
2970 return ret;
1da177e4
LT
2971}
2972
2973static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2974{
75c3cfa8 2975 struct inode *inode = d_inode(dentry);
1da177e4 2976
5b04c689
PE
2977 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2978 shmem_free_inode(inode->i_sb);
1da177e4
LT
2979
2980 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2981 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2982 drop_nlink(inode);
1da177e4
LT
2983 dput(dentry); /* Undo the count from "create" - this does all the work */
2984 return 0;
2985}
2986
2987static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2988{
2989 if (!simple_empty(dentry))
2990 return -ENOTEMPTY;
2991
75c3cfa8 2992 drop_nlink(d_inode(dentry));
9a53c3a7 2993 drop_nlink(dir);
1da177e4
LT
2994 return shmem_unlink(dir, dentry);
2995}
2996
37456771
MS
2997static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2998{
e36cb0b8
DH
2999 bool old_is_dir = d_is_dir(old_dentry);
3000 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
3001
3002 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3003 if (old_is_dir) {
3004 drop_nlink(old_dir);
3005 inc_nlink(new_dir);
3006 } else {
3007 drop_nlink(new_dir);
3008 inc_nlink(old_dir);
3009 }
3010 }
3011 old_dir->i_ctime = old_dir->i_mtime =
3012 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 3013 d_inode(old_dentry)->i_ctime =
078cd827 3014 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
3015
3016 return 0;
3017}
3018
46fdb794
MS
3019static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3020{
3021 struct dentry *whiteout;
3022 int error;
3023
3024 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3025 if (!whiteout)
3026 return -ENOMEM;
3027
3028 error = shmem_mknod(old_dir, whiteout,
3029 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3030 dput(whiteout);
3031 if (error)
3032 return error;
3033
3034 /*
3035 * Cheat and hash the whiteout while the old dentry is still in
3036 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3037 *
3038 * d_lookup() will consistently find one of them at this point,
3039 * not sure which one, but that isn't even important.
3040 */
3041 d_rehash(whiteout);
3042 return 0;
3043}
3044
1da177e4
LT
3045/*
3046 * The VFS layer already does all the dentry stuff for rename,
3047 * we just have to decrement the usage count for the target if
3048 * it exists so that the VFS layer correctly free's it when it
3049 * gets overwritten.
3050 */
3b69ff51 3051static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 3052{
75c3cfa8 3053 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
3054 int they_are_dirs = S_ISDIR(inode->i_mode);
3055
46fdb794 3056 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
3057 return -EINVAL;
3058
37456771
MS
3059 if (flags & RENAME_EXCHANGE)
3060 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3061
1da177e4
LT
3062 if (!simple_empty(new_dentry))
3063 return -ENOTEMPTY;
3064
46fdb794
MS
3065 if (flags & RENAME_WHITEOUT) {
3066 int error;
3067
3068 error = shmem_whiteout(old_dir, old_dentry);
3069 if (error)
3070 return error;
3071 }
3072
75c3cfa8 3073 if (d_really_is_positive(new_dentry)) {
1da177e4 3074 (void) shmem_unlink(new_dir, new_dentry);
b928095b 3075 if (they_are_dirs) {
75c3cfa8 3076 drop_nlink(d_inode(new_dentry));
9a53c3a7 3077 drop_nlink(old_dir);
b928095b 3078 }
1da177e4 3079 } else if (they_are_dirs) {
9a53c3a7 3080 drop_nlink(old_dir);
d8c76e6f 3081 inc_nlink(new_dir);
1da177e4
LT
3082 }
3083
3084 old_dir->i_size -= BOGO_DIRENT_SIZE;
3085 new_dir->i_size += BOGO_DIRENT_SIZE;
3086 old_dir->i_ctime = old_dir->i_mtime =
3087 new_dir->i_ctime = new_dir->i_mtime =
078cd827 3088 inode->i_ctime = current_time(old_dir);
1da177e4
LT
3089 return 0;
3090}
3091
3092static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3093{
3094 int error;
3095 int len;
3096 struct inode *inode;
9276aad6 3097 struct page *page;
1da177e4
LT
3098
3099 len = strlen(symname) + 1;
09cbfeaf 3100 if (len > PAGE_SIZE)
1da177e4
LT
3101 return -ENAMETOOLONG;
3102
0825a6f9
JP
3103 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3104 VM_NORESERVE);
1da177e4
LT
3105 if (!inode)
3106 return -ENOSPC;
3107
9d8f13ba 3108 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3109 shmem_initxattrs, NULL);
570bc1c2
SS
3110 if (error) {
3111 if (error != -EOPNOTSUPP) {
3112 iput(inode);
3113 return error;
3114 }
3115 error = 0;
3116 }
3117
1da177e4 3118 inode->i_size = len-1;
69f07ec9 3119 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3120 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3121 if (!inode->i_link) {
69f07ec9
HD
3122 iput(inode);
3123 return -ENOMEM;
3124 }
3125 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3126 } else {
e8ecde25 3127 inode_nohighmem(inode);
9e18eb29 3128 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3129 if (error) {
3130 iput(inode);
3131 return error;
3132 }
14fcc23f 3133 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3134 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3135 memcpy(page_address(page), symname, len);
ec9516fb 3136 SetPageUptodate(page);
1da177e4 3137 set_page_dirty(page);
6746aff7 3138 unlock_page(page);
09cbfeaf 3139 put_page(page);
1da177e4 3140 }
1da177e4 3141 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3142 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3143 d_instantiate(dentry, inode);
3144 dget(dentry);
3145 return 0;
3146}
3147
fceef393 3148static void shmem_put_link(void *arg)
1da177e4 3149{
fceef393
AV
3150 mark_page_accessed(arg);
3151 put_page(arg);
1da177e4
LT
3152}
3153
6b255391 3154static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3155 struct inode *inode,
3156 struct delayed_call *done)
1da177e4 3157{
1da177e4 3158 struct page *page = NULL;
6b255391 3159 int error;
6a6c9904
AV
3160 if (!dentry) {
3161 page = find_get_page(inode->i_mapping, 0);
3162 if (!page)
3163 return ERR_PTR(-ECHILD);
3164 if (!PageUptodate(page)) {
3165 put_page(page);
3166 return ERR_PTR(-ECHILD);
3167 }
3168 } else {
9e18eb29 3169 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3170 if (error)
3171 return ERR_PTR(error);
3172 unlock_page(page);
3173 }
fceef393 3174 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3175 return page_address(page);
1da177e4
LT
3176}
3177
b09e0fa4 3178#ifdef CONFIG_TMPFS_XATTR
46711810 3179/*
b09e0fa4
EP
3180 * Superblocks without xattr inode operations may get some security.* xattr
3181 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3182 * like ACLs, we also need to implement the security.* handlers at
3183 * filesystem level, though.
3184 */
3185
6d9d88d0
JS
3186/*
3187 * Callback for security_inode_init_security() for acquiring xattrs.
3188 */
3189static int shmem_initxattrs(struct inode *inode,
3190 const struct xattr *xattr_array,
3191 void *fs_info)
3192{
3193 struct shmem_inode_info *info = SHMEM_I(inode);
3194 const struct xattr *xattr;
38f38657 3195 struct simple_xattr *new_xattr;
6d9d88d0
JS
3196 size_t len;
3197
3198 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3199 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3200 if (!new_xattr)
3201 return -ENOMEM;
3202
3203 len = strlen(xattr->name) + 1;
3204 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3205 GFP_KERNEL);
3206 if (!new_xattr->name) {
3207 kfree(new_xattr);
3208 return -ENOMEM;
3209 }
3210
3211 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3212 XATTR_SECURITY_PREFIX_LEN);
3213 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3214 xattr->name, len);
3215
38f38657 3216 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3217 }
3218
3219 return 0;
3220}
3221
aa7c5241 3222static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3223 struct dentry *unused, struct inode *inode,
3224 const char *name, void *buffer, size_t size)
b09e0fa4 3225{
b296821a 3226 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3227
aa7c5241 3228 name = xattr_full_name(handler, name);
38f38657 3229 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3230}
3231
aa7c5241 3232static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3233 struct dentry *unused, struct inode *inode,
3234 const char *name, const void *value,
3235 size_t size, int flags)
b09e0fa4 3236{
59301226 3237 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3238
aa7c5241 3239 name = xattr_full_name(handler, name);
38f38657 3240 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3241}
3242
aa7c5241
AG
3243static const struct xattr_handler shmem_security_xattr_handler = {
3244 .prefix = XATTR_SECURITY_PREFIX,
3245 .get = shmem_xattr_handler_get,
3246 .set = shmem_xattr_handler_set,
3247};
b09e0fa4 3248
aa7c5241
AG
3249static const struct xattr_handler shmem_trusted_xattr_handler = {
3250 .prefix = XATTR_TRUSTED_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3253};
b09e0fa4 3254
aa7c5241
AG
3255static const struct xattr_handler *shmem_xattr_handlers[] = {
3256#ifdef CONFIG_TMPFS_POSIX_ACL
3257 &posix_acl_access_xattr_handler,
3258 &posix_acl_default_xattr_handler,
3259#endif
3260 &shmem_security_xattr_handler,
3261 &shmem_trusted_xattr_handler,
3262 NULL
3263};
b09e0fa4
EP
3264
3265static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3266{
75c3cfa8 3267 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3268 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3269}
3270#endif /* CONFIG_TMPFS_XATTR */
3271
69f07ec9 3272static const struct inode_operations shmem_short_symlink_operations = {
6b255391 3273 .get_link = simple_get_link,
b09e0fa4 3274#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3275 .listxattr = shmem_listxattr,
b09e0fa4
EP
3276#endif
3277};
3278
3279static const struct inode_operations shmem_symlink_inode_operations = {
6b255391 3280 .get_link = shmem_get_link,
b09e0fa4 3281#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3282 .listxattr = shmem_listxattr,
39f0247d 3283#endif
b09e0fa4 3284};
39f0247d 3285
91828a40
DG
3286static struct dentry *shmem_get_parent(struct dentry *child)
3287{
3288 return ERR_PTR(-ESTALE);
3289}
3290
3291static int shmem_match(struct inode *ino, void *vfh)
3292{
3293 __u32 *fh = vfh;
3294 __u64 inum = fh[2];
3295 inum = (inum << 32) | fh[1];
3296 return ino->i_ino == inum && fh[0] == ino->i_generation;
3297}
3298
12ba780d
AG
3299/* Find any alias of inode, but prefer a hashed alias */
3300static struct dentry *shmem_find_alias(struct inode *inode)
3301{
3302 struct dentry *alias = d_find_alias(inode);
3303
3304 return alias ?: d_find_any_alias(inode);
3305}
3306
3307
480b116c
CH
3308static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309 struct fid *fid, int fh_len, int fh_type)
91828a40 3310{
91828a40 3311 struct inode *inode;
480b116c 3312 struct dentry *dentry = NULL;
35c2a7f4 3313 u64 inum;
480b116c
CH
3314
3315 if (fh_len < 3)
3316 return NULL;
91828a40 3317
35c2a7f4
HD
3318 inum = fid->raw[2];
3319 inum = (inum << 32) | fid->raw[1];
3320
480b116c
CH
3321 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322 shmem_match, fid->raw);
91828a40 3323 if (inode) {
12ba780d 3324 dentry = shmem_find_alias(inode);
91828a40
DG
3325 iput(inode);
3326 }
3327
480b116c 3328 return dentry;
91828a40
DG
3329}
3330
b0b0382b
AV
3331static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332 struct inode *parent)
91828a40 3333{
5fe0c237
AK
3334 if (*len < 3) {
3335 *len = 3;
94e07a75 3336 return FILEID_INVALID;
5fe0c237 3337 }
91828a40 3338
1d3382cb 3339 if (inode_unhashed(inode)) {
91828a40
DG
3340 /* Unfortunately insert_inode_hash is not idempotent,
3341 * so as we hash inodes here rather than at creation
3342 * time, we need a lock to ensure we only try
3343 * to do it once
3344 */
3345 static DEFINE_SPINLOCK(lock);
3346 spin_lock(&lock);
1d3382cb 3347 if (inode_unhashed(inode))
91828a40
DG
3348 __insert_inode_hash(inode,
3349 inode->i_ino + inode->i_generation);
3350 spin_unlock(&lock);
3351 }
3352
3353 fh[0] = inode->i_generation;
3354 fh[1] = inode->i_ino;
3355 fh[2] = ((__u64)inode->i_ino) >> 32;
3356
3357 *len = 3;
3358 return 1;
3359}
3360
39655164 3361static const struct export_operations shmem_export_ops = {
91828a40 3362 .get_parent = shmem_get_parent,
91828a40 3363 .encode_fh = shmem_encode_fh,
480b116c 3364 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3365};
3366
626c3920
AV
3367enum shmem_param {
3368 Opt_gid,
3369 Opt_huge,
3370 Opt_mode,
3371 Opt_mpol,
3372 Opt_nr_blocks,
3373 Opt_nr_inodes,
3374 Opt_size,
3375 Opt_uid,
3376};
3377
3378static const struct fs_parameter_spec shmem_param_specs[] = {
3379 fsparam_u32 ("gid", Opt_gid),
3380 fsparam_enum ("huge", Opt_huge),
3381 fsparam_u32oct("mode", Opt_mode),
3382 fsparam_string("mpol", Opt_mpol),
3383 fsparam_string("nr_blocks", Opt_nr_blocks),
3384 fsparam_string("nr_inodes", Opt_nr_inodes),
3385 fsparam_string("size", Opt_size),
3386 fsparam_u32 ("uid", Opt_uid),
3387 {}
3388};
3389
3390static const struct fs_parameter_enum shmem_param_enums[] = {
3391 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3392 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3393 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3394 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3395 {}
3396};
3397
3398const struct fs_parameter_description shmem_fs_parameters = {
3399 .name = "tmpfs",
3400 .specs = shmem_param_specs,
3401 .enums = shmem_param_enums,
3402};
3403
f3235626 3404static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
1da177e4 3405{
f3235626 3406 struct shmem_options *ctx = fc->fs_private;
626c3920
AV
3407 struct fs_parse_result result;
3408 unsigned long long size;
e04dc423 3409 char *rest;
626c3920
AV
3410 int opt;
3411
3412 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
f3235626 3413 if (opt < 0)
626c3920 3414 return opt;
1da177e4 3415
626c3920
AV
3416 switch (opt) {
3417 case Opt_size:
3418 size = memparse(param->string, &rest);
e04dc423
AV
3419 if (*rest == '%') {
3420 size <<= PAGE_SHIFT;
3421 size *= totalram_pages();
3422 do_div(size, 100);
3423 rest++;
3424 }
3425 if (*rest)
626c3920 3426 goto bad_value;
e04dc423
AV
3427 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3429 break;
3430 case Opt_nr_blocks:
3431 ctx->blocks = memparse(param->string, &rest);
e04dc423 3432 if (*rest)
626c3920 3433 goto bad_value;
e04dc423 3434 ctx->seen |= SHMEM_SEEN_BLOCKS;
626c3920
AV
3435 break;
3436 case Opt_nr_inodes:
3437 ctx->inodes = memparse(param->string, &rest);
e04dc423 3438 if (*rest)
626c3920 3439 goto bad_value;
e04dc423 3440 ctx->seen |= SHMEM_SEEN_INODES;
626c3920
AV
3441 break;
3442 case Opt_mode:
3443 ctx->mode = result.uint_32 & 07777;
3444 break;
3445 case Opt_uid:
3446 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
e04dc423 3447 if (!uid_valid(ctx->uid))
626c3920
AV
3448 goto bad_value;
3449 break;
3450 case Opt_gid:
3451 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
e04dc423 3452 if (!gid_valid(ctx->gid))
626c3920
AV
3453 goto bad_value;
3454 break;
3455 case Opt_huge:
3456 ctx->huge = result.uint_32;
3457 if (ctx->huge != SHMEM_HUGE_NEVER &&
3458 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459 has_transparent_hugepage()))
3460 goto unsupported_parameter;
e04dc423 3461 ctx->seen |= SHMEM_SEEN_HUGE;
626c3920
AV
3462 break;
3463 case Opt_mpol:
3464 if (IS_ENABLED(CONFIG_NUMA)) {
3465 mpol_put(ctx->mpol);
3466 ctx->mpol = NULL;
3467 if (mpol_parse_str(param->string, &ctx->mpol))
3468 goto bad_value;
3469 break;
3470 }
3471 goto unsupported_parameter;
e04dc423
AV
3472 }
3473 return 0;
3474
626c3920
AV
3475unsupported_parameter:
3476 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3477bad_value:
3478 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
e04dc423
AV
3479}
3480
f3235626 3481static int shmem_parse_options(struct fs_context *fc, void *data)
e04dc423 3482{
f3235626
DH
3483 char *options = data;
3484
33f37c64
AV
3485 if (options) {
3486 int err = security_sb_eat_lsm_opts(options, &fc->security);
3487 if (err)
3488 return err;
3489 }
3490
b00dc3ad 3491 while (options != NULL) {
626c3920 3492 char *this_char = options;
b00dc3ad
HD
3493 for (;;) {
3494 /*
3495 * NUL-terminate this option: unfortunately,
3496 * mount options form a comma-separated list,
3497 * but mpol's nodelist may also contain commas.
3498 */
3499 options = strchr(options, ',');
3500 if (options == NULL)
3501 break;
3502 options++;
3503 if (!isdigit(*options)) {
3504 options[-1] = '\0';
3505 break;
3506 }
3507 }
626c3920
AV
3508 if (*this_char) {
3509 char *value = strchr(this_char,'=');
f3235626 3510 size_t len = 0;
626c3920
AV
3511 int err;
3512
3513 if (value) {
3514 *value++ = '\0';
f3235626 3515 len = strlen(value);
626c3920 3516 }
f3235626
DH
3517 err = vfs_parse_fs_string(fc, this_char, value, len);
3518 if (err < 0)
3519 return err;
1da177e4 3520 }
1da177e4
LT
3521 }
3522 return 0;
1da177e4
LT
3523}
3524
f3235626
DH
3525/*
3526 * Reconfigure a shmem filesystem.
3527 *
3528 * Note that we disallow change from limited->unlimited blocks/inodes while any
3529 * are in use; but we must separately disallow unlimited->limited, because in
3530 * that case we have no record of how much is already in use.
3531 */
3532static int shmem_reconfigure(struct fs_context *fc)
1da177e4 3533{
f3235626
DH
3534 struct shmem_options *ctx = fc->fs_private;
3535 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
0edd73b3 3536 unsigned long inodes;
f3235626 3537 const char *err;
1da177e4 3538
0edd73b3 3539 spin_lock(&sbinfo->stat_lock);
0edd73b3 3540 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
f3235626
DH
3541 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3542 if (!sbinfo->max_blocks) {
3543 err = "Cannot retroactively limit size";
0b5071dd 3544 goto out;
f3235626 3545 }
0b5071dd 3546 if (percpu_counter_compare(&sbinfo->used_blocks,
f3235626
DH
3547 ctx->blocks) > 0) {
3548 err = "Too small a size for current use";
0b5071dd 3549 goto out;
f3235626 3550 }
0b5071dd 3551 }
f3235626
DH
3552 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3553 if (!sbinfo->max_inodes) {
3554 err = "Cannot retroactively limit inodes";
0b5071dd 3555 goto out;
f3235626
DH
3556 }
3557 if (ctx->inodes < inodes) {
3558 err = "Too few inodes for current use";
0b5071dd 3559 goto out;
f3235626 3560 }
0b5071dd 3561 }
0edd73b3 3562
f3235626
DH
3563 if (ctx->seen & SHMEM_SEEN_HUGE)
3564 sbinfo->huge = ctx->huge;
3565 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3566 sbinfo->max_blocks = ctx->blocks;
3567 if (ctx->seen & SHMEM_SEEN_INODES) {
3568 sbinfo->max_inodes = ctx->inodes;
3569 sbinfo->free_inodes = ctx->inodes - inodes;
0b5071dd 3570 }
71fe804b 3571
5f00110f
GT
3572 /*
3573 * Preserve previous mempolicy unless mpol remount option was specified.
3574 */
f3235626 3575 if (ctx->mpol) {
5f00110f 3576 mpol_put(sbinfo->mpol);
f3235626
DH
3577 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3578 ctx->mpol = NULL;
5f00110f 3579 }
f3235626
DH
3580 spin_unlock(&sbinfo->stat_lock);
3581 return 0;
0edd73b3
HD
3582out:
3583 spin_unlock(&sbinfo->stat_lock);
f3235626 3584 return invalf(fc, "tmpfs: %s", err);
1da177e4 3585}
680d794b 3586
34c80b1d 3587static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3588{
34c80b1d 3589 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3590
3591 if (sbinfo->max_blocks != shmem_default_max_blocks())
3592 seq_printf(seq, ",size=%luk",
09cbfeaf 3593 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3594 if (sbinfo->max_inodes != shmem_default_max_inodes())
3595 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
0825a6f9 3596 if (sbinfo->mode != (0777 | S_ISVTX))
09208d15 3597 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3598 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3599 seq_printf(seq, ",uid=%u",
3600 from_kuid_munged(&init_user_ns, sbinfo->uid));
3601 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3602 seq_printf(seq, ",gid=%u",
3603 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3604#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3605 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3606 if (sbinfo->huge)
3607 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3608#endif
71fe804b 3609 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3610 return 0;
3611}
9183df25 3612
680d794b 3613#endif /* CONFIG_TMPFS */
1da177e4
LT
3614
3615static void shmem_put_super(struct super_block *sb)
3616{
602586a8
HD
3617 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3618
3619 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3620 mpol_put(sbinfo->mpol);
602586a8 3621 kfree(sbinfo);
1da177e4
LT
3622 sb->s_fs_info = NULL;
3623}
3624
f3235626 3625static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
1da177e4 3626{
f3235626 3627 struct shmem_options *ctx = fc->fs_private;
1da177e4 3628 struct inode *inode;
0edd73b3 3629 struct shmem_sb_info *sbinfo;
680d794b 3630 int err = -ENOMEM;
3631
3632 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3633 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3634 L1_CACHE_BYTES), GFP_KERNEL);
3635 if (!sbinfo)
3636 return -ENOMEM;
3637
680d794b 3638 sb->s_fs_info = sbinfo;
1da177e4 3639
0edd73b3 3640#ifdef CONFIG_TMPFS
1da177e4
LT
3641 /*
3642 * Per default we only allow half of the physical ram per
3643 * tmpfs instance, limiting inodes to one per page of lowmem;
3644 * but the internal instance is left unlimited.
3645 */
1751e8a6 3646 if (!(sb->s_flags & SB_KERNMOUNT)) {
f3235626
DH
3647 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3648 ctx->blocks = shmem_default_max_blocks();
3649 if (!(ctx->seen & SHMEM_SEEN_INODES))
3650 ctx->inodes = shmem_default_max_inodes();
ca4e0519 3651 } else {
1751e8a6 3652 sb->s_flags |= SB_NOUSER;
1da177e4 3653 }
91828a40 3654 sb->s_export_op = &shmem_export_ops;
1751e8a6 3655 sb->s_flags |= SB_NOSEC;
1da177e4 3656#else
1751e8a6 3657 sb->s_flags |= SB_NOUSER;
1da177e4 3658#endif
f3235626
DH
3659 sbinfo->max_blocks = ctx->blocks;
3660 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3661 sbinfo->uid = ctx->uid;
3662 sbinfo->gid = ctx->gid;
3663 sbinfo->mode = ctx->mode;
3664 sbinfo->huge = ctx->huge;
3665 sbinfo->mpol = ctx->mpol;
3666 ctx->mpol = NULL;
1da177e4 3667
0edd73b3 3668 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3669 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3670 goto failed;
779750d2
KS
3671 spin_lock_init(&sbinfo->shrinklist_lock);
3672 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3673
285b2c4f 3674 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3675 sb->s_blocksize = PAGE_SIZE;
3676 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3677 sb->s_magic = TMPFS_MAGIC;
3678 sb->s_op = &shmem_ops;
cfd95a9c 3679 sb->s_time_gran = 1;
b09e0fa4 3680#ifdef CONFIG_TMPFS_XATTR
39f0247d 3681 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3682#endif
3683#ifdef CONFIG_TMPFS_POSIX_ACL
1751e8a6 3684 sb->s_flags |= SB_POSIXACL;
39f0247d 3685#endif
2b4db796 3686 uuid_gen(&sb->s_uuid);
0edd73b3 3687
454abafe 3688 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3689 if (!inode)
3690 goto failed;
680d794b 3691 inode->i_uid = sbinfo->uid;
3692 inode->i_gid = sbinfo->gid;
318ceed0
AV
3693 sb->s_root = d_make_root(inode);
3694 if (!sb->s_root)
48fde701 3695 goto failed;
1da177e4
LT
3696 return 0;
3697
1da177e4
LT
3698failed:
3699 shmem_put_super(sb);
3700 return err;
3701}
3702
f3235626
DH
3703static int shmem_get_tree(struct fs_context *fc)
3704{
3705 return get_tree_nodev(fc, shmem_fill_super);
3706}
3707
3708static void shmem_free_fc(struct fs_context *fc)
3709{
3710 struct shmem_options *ctx = fc->fs_private;
3711
3712 if (ctx) {
3713 mpol_put(ctx->mpol);
3714 kfree(ctx);
3715 }
3716}
3717
3718static const struct fs_context_operations shmem_fs_context_ops = {
3719 .free = shmem_free_fc,
3720 .get_tree = shmem_get_tree,
3721#ifdef CONFIG_TMPFS
3722 .parse_monolithic = shmem_parse_options,
3723 .parse_param = shmem_parse_one,
3724 .reconfigure = shmem_reconfigure,
3725#endif
3726};
3727
fcc234f8 3728static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3729
3730static struct inode *shmem_alloc_inode(struct super_block *sb)
3731{
41ffe5d5
HD
3732 struct shmem_inode_info *info;
3733 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3734 if (!info)
1da177e4 3735 return NULL;
41ffe5d5 3736 return &info->vfs_inode;
1da177e4
LT
3737}
3738
74b1da56 3739static void shmem_free_in_core_inode(struct inode *inode)
fa0d7e3d 3740{
84e710da
AV
3741 if (S_ISLNK(inode->i_mode))
3742 kfree(inode->i_link);
fa0d7e3d
NP
3743 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3744}
3745
1da177e4
LT
3746static void shmem_destroy_inode(struct inode *inode)
3747{
09208d15 3748 if (S_ISREG(inode->i_mode))
1da177e4 3749 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
1da177e4
LT
3750}
3751
41ffe5d5 3752static void shmem_init_inode(void *foo)
1da177e4 3753{
41ffe5d5
HD
3754 struct shmem_inode_info *info = foo;
3755 inode_init_once(&info->vfs_inode);
1da177e4
LT
3756}
3757
9a8ec03e 3758static void shmem_init_inodecache(void)
1da177e4
LT
3759{
3760 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3761 sizeof(struct shmem_inode_info),
5d097056 3762 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3763}
3764
41ffe5d5 3765static void shmem_destroy_inodecache(void)
1da177e4 3766{
1a1d92c1 3767 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3768}
3769
f5e54d6e 3770static const struct address_space_operations shmem_aops = {
1da177e4 3771 .writepage = shmem_writepage,
76719325 3772 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3773#ifdef CONFIG_TMPFS
800d15a5
NP
3774 .write_begin = shmem_write_begin,
3775 .write_end = shmem_write_end,
1da177e4 3776#endif
1c93923c 3777#ifdef CONFIG_MIGRATION
304dbdb7 3778 .migratepage = migrate_page,
1c93923c 3779#endif
aa261f54 3780 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3781};
3782
15ad7cdc 3783static const struct file_operations shmem_file_operations = {
1da177e4 3784 .mmap = shmem_mmap,
c01d5b30 3785 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3786#ifdef CONFIG_TMPFS
220f2ac9 3787 .llseek = shmem_file_llseek,
2ba5bbed 3788 .read_iter = shmem_file_read_iter,
8174202b 3789 .write_iter = generic_file_write_iter,
1b061d92 3790 .fsync = noop_fsync,
82c156f8 3791 .splice_read = generic_file_splice_read,
f6cb85d0 3792 .splice_write = iter_file_splice_write,
83e4fa9c 3793 .fallocate = shmem_fallocate,
1da177e4
LT
3794#endif
3795};
3796
92e1d5be 3797static const struct inode_operations shmem_inode_operations = {
44a30220 3798 .getattr = shmem_getattr,
94c1e62d 3799 .setattr = shmem_setattr,
b09e0fa4 3800#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3801 .listxattr = shmem_listxattr,
feda821e 3802 .set_acl = simple_set_acl,
b09e0fa4 3803#endif
1da177e4
LT
3804};
3805
92e1d5be 3806static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3807#ifdef CONFIG_TMPFS
3808 .create = shmem_create,
3809 .lookup = simple_lookup,
3810 .link = shmem_link,
3811 .unlink = shmem_unlink,
3812 .symlink = shmem_symlink,
3813 .mkdir = shmem_mkdir,
3814 .rmdir = shmem_rmdir,
3815 .mknod = shmem_mknod,
2773bf00 3816 .rename = shmem_rename2,
60545d0d 3817 .tmpfile = shmem_tmpfile,
1da177e4 3818#endif
b09e0fa4 3819#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3820 .listxattr = shmem_listxattr,
b09e0fa4 3821#endif
39f0247d 3822#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3823 .setattr = shmem_setattr,
feda821e 3824 .set_acl = simple_set_acl,
39f0247d
AG
3825#endif
3826};
3827
92e1d5be 3828static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3829#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3830 .listxattr = shmem_listxattr,
b09e0fa4 3831#endif
39f0247d 3832#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3833 .setattr = shmem_setattr,
feda821e 3834 .set_acl = simple_set_acl,
39f0247d 3835#endif
1da177e4
LT
3836};
3837
759b9775 3838static const struct super_operations shmem_ops = {
1da177e4 3839 .alloc_inode = shmem_alloc_inode,
74b1da56 3840 .free_inode = shmem_free_in_core_inode,
1da177e4
LT
3841 .destroy_inode = shmem_destroy_inode,
3842#ifdef CONFIG_TMPFS
3843 .statfs = shmem_statfs,
680d794b 3844 .show_options = shmem_show_options,
1da177e4 3845#endif
1f895f75 3846 .evict_inode = shmem_evict_inode,
1da177e4
LT
3847 .drop_inode = generic_delete_inode,
3848 .put_super = shmem_put_super,
779750d2
KS
3849#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3850 .nr_cached_objects = shmem_unused_huge_count,
3851 .free_cached_objects = shmem_unused_huge_scan,
3852#endif
1da177e4
LT
3853};
3854
f0f37e2f 3855static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3856 .fault = shmem_fault,
d7c17551 3857 .map_pages = filemap_map_pages,
1da177e4
LT
3858#ifdef CONFIG_NUMA
3859 .set_policy = shmem_set_policy,
3860 .get_policy = shmem_get_policy,
3861#endif
3862};
3863
f3235626 3864int shmem_init_fs_context(struct fs_context *fc)
1da177e4 3865{
f3235626
DH
3866 struct shmem_options *ctx;
3867
3868 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3869 if (!ctx)
3870 return -ENOMEM;
3871
3872 ctx->mode = 0777 | S_ISVTX;
3873 ctx->uid = current_fsuid();
3874 ctx->gid = current_fsgid();
3875
3876 fc->fs_private = ctx;
3877 fc->ops = &shmem_fs_context_ops;
3878 return 0;
1da177e4
LT
3879}
3880
41ffe5d5 3881static struct file_system_type shmem_fs_type = {
1da177e4
LT
3882 .owner = THIS_MODULE,
3883 .name = "tmpfs",
f3235626
DH
3884 .init_fs_context = shmem_init_fs_context,
3885#ifdef CONFIG_TMPFS
3886 .parameters = &shmem_fs_parameters,
3887#endif
1da177e4 3888 .kill_sb = kill_litter_super,
2b8576cb 3889 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3890};
1da177e4 3891
41ffe5d5 3892int __init shmem_init(void)
1da177e4
LT
3893{
3894 int error;
3895
9a8ec03e 3896 shmem_init_inodecache();
1da177e4 3897
41ffe5d5 3898 error = register_filesystem(&shmem_fs_type);
1da177e4 3899 if (error) {
1170532b 3900 pr_err("Could not register tmpfs\n");
1da177e4
LT
3901 goto out2;
3902 }
95dc112a 3903
ca4e0519 3904 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3905 if (IS_ERR(shm_mnt)) {
3906 error = PTR_ERR(shm_mnt);
1170532b 3907 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3908 goto out1;
3909 }
5a6e75f8 3910
e496cf3d 3911#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
435c0b87 3912 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3913 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3914 else
3915 shmem_huge = 0; /* just in case it was patched */
3916#endif
1da177e4
LT
3917 return 0;
3918
3919out1:
41ffe5d5 3920 unregister_filesystem(&shmem_fs_type);
1da177e4 3921out2:
41ffe5d5 3922 shmem_destroy_inodecache();
1da177e4
LT
3923 shm_mnt = ERR_PTR(error);
3924 return error;
3925}
853ac43a 3926
e496cf3d 3927#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3928static ssize_t shmem_enabled_show(struct kobject *kobj,
3929 struct kobj_attribute *attr, char *buf)
3930{
3931 int values[] = {
3932 SHMEM_HUGE_ALWAYS,
3933 SHMEM_HUGE_WITHIN_SIZE,
3934 SHMEM_HUGE_ADVISE,
3935 SHMEM_HUGE_NEVER,
3936 SHMEM_HUGE_DENY,
3937 SHMEM_HUGE_FORCE,
3938 };
3939 int i, count;
3940
3941 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943
3944 count += sprintf(buf + count, fmt,
3945 shmem_format_huge(values[i]));
3946 }
3947 buf[count - 1] = '\n';
3948 return count;
3949}
3950
3951static ssize_t shmem_enabled_store(struct kobject *kobj,
3952 struct kobj_attribute *attr, const char *buf, size_t count)
3953{
3954 char tmp[16];
3955 int huge;
3956
3957 if (count + 1 > sizeof(tmp))
3958 return -EINVAL;
3959 memcpy(tmp, buf, count);
3960 tmp[count] = '\0';
3961 if (count && tmp[count - 1] == '\n')
3962 tmp[count - 1] = '\0';
3963
3964 huge = shmem_parse_huge(tmp);
3965 if (huge == -EINVAL)
3966 return -EINVAL;
3967 if (!has_transparent_hugepage() &&
3968 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969 return -EINVAL;
3970
3971 shmem_huge = huge;
435c0b87 3972 if (shmem_huge > SHMEM_HUGE_DENY)
5a6e75f8
KS
3973 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974 return count;
3975}
3976
3977struct kobj_attribute shmem_enabled_attr =
3978 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3979#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3980
3b33719c 3981#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3982bool shmem_huge_enabled(struct vm_area_struct *vma)
3983{
3984 struct inode *inode = file_inode(vma->vm_file);
3985 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986 loff_t i_size;
3987 pgoff_t off;
3988
c0630669
YS
3989 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3990 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3991 return false;
f3f0e1d2
KS
3992 if (shmem_huge == SHMEM_HUGE_FORCE)
3993 return true;
3994 if (shmem_huge == SHMEM_HUGE_DENY)
3995 return false;
3996 switch (sbinfo->huge) {
3997 case SHMEM_HUGE_NEVER:
3998 return false;
3999 case SHMEM_HUGE_ALWAYS:
4000 return true;
4001 case SHMEM_HUGE_WITHIN_SIZE:
4002 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4003 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4004 if (i_size >= HPAGE_PMD_SIZE &&
4005 i_size >> PAGE_SHIFT >= off)
4006 return true;
c8402871 4007 /* fall through */
f3f0e1d2
KS
4008 case SHMEM_HUGE_ADVISE:
4009 /* TODO: implement fadvise() hints */
4010 return (vma->vm_flags & VM_HUGEPAGE);
4011 default:
4012 VM_BUG_ON(1);
4013 return false;
4014 }
4015}
3b33719c 4016#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 4017
853ac43a
MM
4018#else /* !CONFIG_SHMEM */
4019
4020/*
4021 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4022 *
4023 * This is intended for small system where the benefits of the full
4024 * shmem code (swap-backed and resource-limited) are outweighed by
4025 * their complexity. On systems without swap this code should be
4026 * effectively equivalent, but much lighter weight.
4027 */
4028
41ffe5d5 4029static struct file_system_type shmem_fs_type = {
853ac43a 4030 .name = "tmpfs",
f3235626
DH
4031 .init_fs_context = ramfs_init_fs_context,
4032 .parameters = &ramfs_fs_parameters,
853ac43a 4033 .kill_sb = kill_litter_super,
2b8576cb 4034 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
4035};
4036
41ffe5d5 4037int __init shmem_init(void)
853ac43a 4038{
41ffe5d5 4039 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 4040
41ffe5d5 4041 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
4042 BUG_ON(IS_ERR(shm_mnt));
4043
4044 return 0;
4045}
4046
b56a2d8a
VRP
4047int shmem_unuse(unsigned int type, bool frontswap,
4048 unsigned long *fs_pages_to_unuse)
853ac43a
MM
4049{
4050 return 0;
4051}
4052
3f96b79a
HD
4053int shmem_lock(struct file *file, int lock, struct user_struct *user)
4054{
4055 return 0;
4056}
4057
24513264
HD
4058void shmem_unlock_mapping(struct address_space *mapping)
4059{
4060}
4061
c01d5b30
HD
4062#ifdef CONFIG_MMU
4063unsigned long shmem_get_unmapped_area(struct file *file,
4064 unsigned long addr, unsigned long len,
4065 unsigned long pgoff, unsigned long flags)
4066{
4067 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4068}
4069#endif
4070
41ffe5d5 4071void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 4072{
41ffe5d5 4073 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
4074}
4075EXPORT_SYMBOL_GPL(shmem_truncate_range);
4076
0b0a0806
HD
4077#define shmem_vm_ops generic_file_vm_ops
4078#define shmem_file_operations ramfs_file_operations
454abafe 4079#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
4080#define shmem_acct_size(flags, size) 0
4081#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
4082
4083#endif /* CONFIG_SHMEM */
4084
4085/* common code */
1da177e4 4086
703321b6 4087static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
c7277090 4088 unsigned long flags, unsigned int i_flags)
1da177e4 4089{
1da177e4 4090 struct inode *inode;
93dec2da 4091 struct file *res;
1da177e4 4092
703321b6
MA
4093 if (IS_ERR(mnt))
4094 return ERR_CAST(mnt);
1da177e4 4095
285b2c4f 4096 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
4097 return ERR_PTR(-EINVAL);
4098
4099 if (shmem_acct_size(flags, size))
4100 return ERR_PTR(-ENOMEM);
4101
93dec2da
AV
4102 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4103 flags);
dac2d1f6
AV
4104 if (unlikely(!inode)) {
4105 shmem_unacct_size(flags, size);
4106 return ERR_PTR(-ENOSPC);
4107 }
c7277090 4108 inode->i_flags |= i_flags;
1da177e4 4109 inode->i_size = size;
6d6b77f1 4110 clear_nlink(inode); /* It is unlinked */
26567cdb 4111 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
93dec2da
AV
4112 if (!IS_ERR(res))
4113 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4114 &shmem_file_operations);
26567cdb 4115 if (IS_ERR(res))
93dec2da 4116 iput(inode);
6b4d0b27 4117 return res;
1da177e4 4118}
c7277090
EP
4119
4120/**
4121 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4122 * kernel internal. There will be NO LSM permission checks against the
4123 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4124 * higher layer. The users are the big_key and shm implementations. LSM
4125 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4126 * @name: name for dentry (to be seen in /proc/<pid>/maps
4127 * @size: size to be set for the file
4128 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4129 */
4130struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4131{
703321b6 4132 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
c7277090
EP
4133}
4134
4135/**
4136 * shmem_file_setup - get an unlinked file living in tmpfs
4137 * @name: name for dentry (to be seen in /proc/<pid>/maps
4138 * @size: size to be set for the file
4139 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4140 */
4141struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4142{
703321b6 4143 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
c7277090 4144}
395e0ddc 4145EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4146
703321b6
MA
4147/**
4148 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4149 * @mnt: the tmpfs mount where the file will be created
4150 * @name: name for dentry (to be seen in /proc/<pid>/maps
4151 * @size: size to be set for the file
4152 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4153 */
4154struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4155 loff_t size, unsigned long flags)
4156{
4157 return __shmem_file_setup(mnt, name, size, flags, 0);
4158}
4159EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4160
46711810 4161/**
1da177e4 4162 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4163 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4164 */
4165int shmem_zero_setup(struct vm_area_struct *vma)
4166{
4167 struct file *file;
4168 loff_t size = vma->vm_end - vma->vm_start;
4169
66fc1303
HD
4170 /*
4171 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4172 * between XFS directory reading and selinux: since this file is only
4173 * accessible to the user through its mapping, use S_PRIVATE flag to
4174 * bypass file security, in the same way as shmem_kernel_file_setup().
4175 */
703321b6 4176 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
1da177e4
LT
4177 if (IS_ERR(file))
4178 return PTR_ERR(file);
4179
4180 if (vma->vm_file)
4181 fput(vma->vm_file);
4182 vma->vm_file = file;
4183 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4184
e496cf3d 4185 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4186 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4187 (vma->vm_end & HPAGE_PMD_MASK)) {
4188 khugepaged_enter(vma, vma->vm_flags);
4189 }
4190
1da177e4
LT
4191 return 0;
4192}
d9d90e5e
HD
4193
4194/**
4195 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4196 * @mapping: the page's address_space
4197 * @index: the page index
4198 * @gfp: the page allocator flags to use if allocating
4199 *
4200 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4201 * with any new page allocations done using the specified allocation flags.
4202 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4203 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4204 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4205 *
68da9f05
HD
4206 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4207 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4208 */
4209struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4210 pgoff_t index, gfp_t gfp)
4211{
68da9f05
HD
4212#ifdef CONFIG_SHMEM
4213 struct inode *inode = mapping->host;
9276aad6 4214 struct page *page;
68da9f05
HD
4215 int error;
4216
4217 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29 4218 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
cfda0526 4219 gfp, NULL, NULL, NULL);
68da9f05
HD
4220 if (error)
4221 page = ERR_PTR(error);
4222 else
4223 unlock_page(page);
4224 return page;
4225#else
4226 /*
4227 * The tiny !SHMEM case uses ramfs without swap
4228 */
d9d90e5e 4229 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4230#endif
d9d90e5e
HD
4231}
4232EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);