ARC: rename Zebu platform support to HAPS
[linux-2.6-block.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
f3f0e1d2 35#include <linux/khugepaged.h>
853ac43a
MM
36
37static struct vfsmount *shm_mnt;
38
39#ifdef CONFIG_SHMEM
1da177e4
LT
40/*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
39f0247d 46#include <linux/xattr.h>
a5694255 47#include <linux/exportfs.h>
1c7c474c 48#include <linux/posix_acl.h>
feda821e 49#include <linux/posix_acl_xattr.h>
1da177e4 50#include <linux/mman.h>
1da177e4
LT
51#include <linux/string.h>
52#include <linux/slab.h>
53#include <linux/backing-dev.h>
54#include <linux/shmem_fs.h>
1da177e4 55#include <linux/writeback.h>
1da177e4 56#include <linux/blkdev.h>
bda97eab 57#include <linux/pagevec.h>
41ffe5d5 58#include <linux/percpu_counter.h>
83e4fa9c 59#include <linux/falloc.h>
708e3508 60#include <linux/splice.h>
1da177e4
LT
61#include <linux/security.h>
62#include <linux/swapops.h>
63#include <linux/mempolicy.h>
64#include <linux/namei.h>
b00dc3ad 65#include <linux/ctype.h>
304dbdb7 66#include <linux/migrate.h>
c1f60a5a 67#include <linux/highmem.h>
680d794b 68#include <linux/seq_file.h>
92562927 69#include <linux/magic.h>
9183df25 70#include <linux/syscalls.h>
40e041a2 71#include <linux/fcntl.h>
9183df25 72#include <uapi/linux/memfd.h>
304dbdb7 73
1da177e4 74#include <asm/uaccess.h>
1da177e4
LT
75#include <asm/pgtable.h>
76
dd56b046
MG
77#include "internal.h"
78
09cbfeaf
KS
79#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
1da177e4 81
1da177e4
LT
82/* Pretend that each entry is of this size in directory's i_size */
83#define BOGO_DIRENT_SIZE 20
84
69f07ec9
HD
85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86#define SHORT_SYMLINK_LEN 128
87
1aac1400 88/*
f00cdc6d
HD
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
92 */
93struct shmem_falloc {
8e205f77 94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99};
100
b76db735 101#ifdef CONFIG_TMPFS
680d794b 102static unsigned long shmem_default_max_blocks(void)
103{
104 return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
b76db735 111#endif
680d794b 112
bde05d1c
HD
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
68da9f05 116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
68da9f05 119
f3f0e1d2 120int shmem_getpage(struct inode *inode, pgoff_t index,
9e18eb29 121 struct page **pagep, enum sgp_type sgp)
68da9f05
HD
122{
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
9e18eb29 124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
68da9f05 125}
1da177e4 126
1da177e4
LT
127static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128{
129 return sb->s_fs_info;
130}
131
132/*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138static inline int shmem_acct_size(unsigned long flags, loff_t size)
139{
0b0a0806 140 return (flags & VM_NORESERVE) ?
191c5424 141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
142}
143
144static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145{
0b0a0806 146 if (!(flags & VM_NORESERVE))
1da177e4
LT
147 vm_unacct_memory(VM_ACCT(size));
148}
149
77142517
KK
150static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152{
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161}
162
1da177e4
LT
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
75edd345 165 * pages are allocated, in order to allow large sparse files.
1da177e4
LT
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
800d8c63 169static inline int shmem_acct_block(unsigned long flags, long pages)
1da177e4 170{
800d8c63
KS
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
176}
177
178static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179{
0b0a0806 180 if (flags & VM_NORESERVE)
09cbfeaf 181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
1da177e4
LT
182}
183
759b9775 184static const struct super_operations shmem_ops;
f5e54d6e 185static const struct address_space_operations shmem_aops;
15ad7cdc 186static const struct file_operations shmem_file_operations;
92e1d5be
AV
187static const struct inode_operations shmem_inode_operations;
188static const struct inode_operations shmem_dir_inode_operations;
189static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 190static const struct vm_operations_struct shmem_vm_ops;
779750d2 191static struct file_system_type shmem_fs_type;
1da177e4 192
1da177e4 193static LIST_HEAD(shmem_swaplist);
cb5f7b9a 194static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 195
5b04c689
PE
196static int shmem_reserve_inode(struct super_block *sb)
197{
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209}
210
211static void shmem_free_inode(struct super_block *sb)
212{
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219}
220
46711810 221/**
41ffe5d5 222 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233static void shmem_recalc_inode(struct inode *inode)
234{
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
54af6042
HD
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 243 info->alloced -= freed;
54af6042 244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 245 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
246 }
247}
248
800d8c63
KS
249bool shmem_charge(struct inode *inode, long pages)
250{
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 253 unsigned long flags;
800d8c63
KS
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
4595ef88 257 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
4595ef88 261 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
4595ef88 269 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
4595ef88 272 spin_unlock_irqrestore(&info->lock, flags);
71664665 273 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278}
279
280void shmem_uncharge(struct inode *inode, long pages)
281{
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4595ef88 284 unsigned long flags;
800d8c63 285
4595ef88 286 spin_lock_irqsave(&info->lock, flags);
800d8c63
KS
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
4595ef88 290 spin_unlock_irqrestore(&info->lock, flags);
800d8c63
KS
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
71664665 294 shmem_unacct_blocks(info->flags, pages);
800d8c63
KS
295}
296
7a5d0fbb
HD
297/*
298 * Replace item expected in radix tree by a new item, while holding tree lock.
299 */
300static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
302{
303 void **pslot;
6dbaf22c 304 void *item;
7a5d0fbb
HD
305
306 VM_BUG_ON(!expected);
6dbaf22c 307 VM_BUG_ON(!replacement);
7a5d0fbb 308 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
309 if (!pslot)
310 return -ENOENT;
311 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
312 if (item != expected)
313 return -ENOENT;
6dbaf22c 314 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
315 return 0;
316}
317
d1899228
HD
318/*
319 * Sometimes, before we decide whether to proceed or to fail, we must check
320 * that an entry was not already brought back from swap by a racing thread.
321 *
322 * Checking page is not enough: by the time a SwapCache page is locked, it
323 * might be reused, and again be SwapCache, using the same swap as before.
324 */
325static bool shmem_confirm_swap(struct address_space *mapping,
326 pgoff_t index, swp_entry_t swap)
327{
328 void *item;
329
330 rcu_read_lock();
331 item = radix_tree_lookup(&mapping->page_tree, index);
332 rcu_read_unlock();
333 return item == swp_to_radix_entry(swap);
334}
335
5a6e75f8
KS
336/*
337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
338 *
339 * SHMEM_HUGE_NEVER:
340 * disables huge pages for the mount;
341 * SHMEM_HUGE_ALWAYS:
342 * enables huge pages for the mount;
343 * SHMEM_HUGE_WITHIN_SIZE:
344 * only allocate huge pages if the page will be fully within i_size,
345 * also respect fadvise()/madvise() hints;
346 * SHMEM_HUGE_ADVISE:
347 * only allocate huge pages if requested with fadvise()/madvise();
348 */
349
350#define SHMEM_HUGE_NEVER 0
351#define SHMEM_HUGE_ALWAYS 1
352#define SHMEM_HUGE_WITHIN_SIZE 2
353#define SHMEM_HUGE_ADVISE 3
354
355/*
356 * Special values.
357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
358 *
359 * SHMEM_HUGE_DENY:
360 * disables huge on shm_mnt and all mounts, for emergency use;
361 * SHMEM_HUGE_FORCE:
362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
363 *
364 */
365#define SHMEM_HUGE_DENY (-1)
366#define SHMEM_HUGE_FORCE (-2)
367
e496cf3d 368#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
369/* ifdef here to avoid bloating shmem.o when not necessary */
370
371int shmem_huge __read_mostly;
372
373static int shmem_parse_huge(const char *str)
374{
375 if (!strcmp(str, "never"))
376 return SHMEM_HUGE_NEVER;
377 if (!strcmp(str, "always"))
378 return SHMEM_HUGE_ALWAYS;
379 if (!strcmp(str, "within_size"))
380 return SHMEM_HUGE_WITHIN_SIZE;
381 if (!strcmp(str, "advise"))
382 return SHMEM_HUGE_ADVISE;
383 if (!strcmp(str, "deny"))
384 return SHMEM_HUGE_DENY;
385 if (!strcmp(str, "force"))
386 return SHMEM_HUGE_FORCE;
387 return -EINVAL;
388}
389
390static const char *shmem_format_huge(int huge)
391{
392 switch (huge) {
393 case SHMEM_HUGE_NEVER:
394 return "never";
395 case SHMEM_HUGE_ALWAYS:
396 return "always";
397 case SHMEM_HUGE_WITHIN_SIZE:
398 return "within_size";
399 case SHMEM_HUGE_ADVISE:
400 return "advise";
401 case SHMEM_HUGE_DENY:
402 return "deny";
403 case SHMEM_HUGE_FORCE:
404 return "force";
405 default:
406 VM_BUG_ON(1);
407 return "bad_val";
408 }
409}
410
779750d2
KS
411static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
412 struct shrink_control *sc, unsigned long nr_to_split)
413{
414 LIST_HEAD(list), *pos, *next;
415 struct inode *inode;
416 struct shmem_inode_info *info;
417 struct page *page;
418 unsigned long batch = sc ? sc->nr_to_scan : 128;
419 int removed = 0, split = 0;
420
421 if (list_empty(&sbinfo->shrinklist))
422 return SHRINK_STOP;
423
424 spin_lock(&sbinfo->shrinklist_lock);
425 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
426 info = list_entry(pos, struct shmem_inode_info, shrinklist);
427
428 /* pin the inode */
429 inode = igrab(&info->vfs_inode);
430
431 /* inode is about to be evicted */
432 if (!inode) {
433 list_del_init(&info->shrinklist);
434 removed++;
435 goto next;
436 }
437
438 /* Check if there's anything to gain */
439 if (round_up(inode->i_size, PAGE_SIZE) ==
440 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
441 list_del_init(&info->shrinklist);
442 removed++;
443 iput(inode);
444 goto next;
445 }
446
447 list_move(&info->shrinklist, &list);
448next:
449 if (!--batch)
450 break;
451 }
452 spin_unlock(&sbinfo->shrinklist_lock);
453
454 list_for_each_safe(pos, next, &list) {
455 int ret;
456
457 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 inode = &info->vfs_inode;
459
460 if (nr_to_split && split >= nr_to_split) {
461 iput(inode);
462 continue;
463 }
464
465 page = find_lock_page(inode->i_mapping,
466 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
467 if (!page)
468 goto drop;
469
470 if (!PageTransHuge(page)) {
471 unlock_page(page);
472 put_page(page);
473 goto drop;
474 }
475
476 ret = split_huge_page(page);
477 unlock_page(page);
478 put_page(page);
479
480 if (ret) {
481 /* split failed: leave it on the list */
482 iput(inode);
483 continue;
484 }
485
486 split++;
487drop:
488 list_del_init(&info->shrinklist);
489 removed++;
490 iput(inode);
491 }
492
493 spin_lock(&sbinfo->shrinklist_lock);
494 list_splice_tail(&list, &sbinfo->shrinklist);
495 sbinfo->shrinklist_len -= removed;
496 spin_unlock(&sbinfo->shrinklist_lock);
497
498 return split;
499}
500
501static long shmem_unused_huge_scan(struct super_block *sb,
502 struct shrink_control *sc)
503{
504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
505
506 if (!READ_ONCE(sbinfo->shrinklist_len))
507 return SHRINK_STOP;
508
509 return shmem_unused_huge_shrink(sbinfo, sc, 0);
510}
511
512static long shmem_unused_huge_count(struct super_block *sb,
513 struct shrink_control *sc)
514{
515 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
516 return READ_ONCE(sbinfo->shrinklist_len);
517}
e496cf3d 518#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8
KS
519
520#define shmem_huge SHMEM_HUGE_DENY
521
779750d2
KS
522static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523 struct shrink_control *sc, unsigned long nr_to_split)
524{
525 return 0;
526}
e496cf3d 527#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 528
46f65ec1
HD
529/*
530 * Like add_to_page_cache_locked, but error if expected item has gone.
531 */
532static int shmem_add_to_page_cache(struct page *page,
533 struct address_space *mapping,
fed400a1 534 pgoff_t index, void *expected)
46f65ec1 535{
800d8c63 536 int error, nr = hpage_nr_pages(page);
46f65ec1 537
800d8c63
KS
538 VM_BUG_ON_PAGE(PageTail(page), page);
539 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
309381fe
SL
540 VM_BUG_ON_PAGE(!PageLocked(page), page);
541 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
800d8c63 542 VM_BUG_ON(expected && PageTransHuge(page));
46f65ec1 543
800d8c63 544 page_ref_add(page, nr);
b065b432
HD
545 page->mapping = mapping;
546 page->index = index;
547
548 spin_lock_irq(&mapping->tree_lock);
800d8c63
KS
549 if (PageTransHuge(page)) {
550 void __rcu **results;
551 pgoff_t idx;
552 int i;
553
554 error = 0;
555 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
556 &results, &idx, index, 1) &&
557 idx < index + HPAGE_PMD_NR) {
558 error = -EEXIST;
559 }
560
561 if (!error) {
562 for (i = 0; i < HPAGE_PMD_NR; i++) {
563 error = radix_tree_insert(&mapping->page_tree,
564 index + i, page + i);
565 VM_BUG_ON(error);
566 }
567 count_vm_event(THP_FILE_ALLOC);
568 }
569 } else if (!expected) {
b065b432 570 error = radix_tree_insert(&mapping->page_tree, index, page);
800d8c63 571 } else {
b065b432
HD
572 error = shmem_radix_tree_replace(mapping, index, expected,
573 page);
800d8c63
KS
574 }
575
46f65ec1 576 if (!error) {
800d8c63
KS
577 mapping->nrpages += nr;
578 if (PageTransHuge(page))
11fb9989
MG
579 __inc_node_page_state(page, NR_SHMEM_THPS);
580 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
581 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
b065b432
HD
582 spin_unlock_irq(&mapping->tree_lock);
583 } else {
584 page->mapping = NULL;
585 spin_unlock_irq(&mapping->tree_lock);
800d8c63 586 page_ref_sub(page, nr);
46f65ec1 587 }
46f65ec1
HD
588 return error;
589}
590
6922c0c7
HD
591/*
592 * Like delete_from_page_cache, but substitutes swap for page.
593 */
594static void shmem_delete_from_page_cache(struct page *page, void *radswap)
595{
596 struct address_space *mapping = page->mapping;
597 int error;
598
800d8c63
KS
599 VM_BUG_ON_PAGE(PageCompound(page), page);
600
6922c0c7
HD
601 spin_lock_irq(&mapping->tree_lock);
602 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
603 page->mapping = NULL;
604 mapping->nrpages--;
11fb9989
MG
605 __dec_node_page_state(page, NR_FILE_PAGES);
606 __dec_node_page_state(page, NR_SHMEM);
6922c0c7 607 spin_unlock_irq(&mapping->tree_lock);
09cbfeaf 608 put_page(page);
6922c0c7
HD
609 BUG_ON(error);
610}
611
7a5d0fbb
HD
612/*
613 * Remove swap entry from radix tree, free the swap and its page cache.
614 */
615static int shmem_free_swap(struct address_space *mapping,
616 pgoff_t index, void *radswap)
617{
6dbaf22c 618 void *old;
7a5d0fbb
HD
619
620 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 621 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 622 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
623 if (old != radswap)
624 return -ENOENT;
625 free_swap_and_cache(radix_to_swp_entry(radswap));
626 return 0;
7a5d0fbb
HD
627}
628
6a15a370
VB
629/*
630 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 631 * given offsets are swapped out.
6a15a370
VB
632 *
633 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
634 * as long as the inode doesn't go away and racy results are not a problem.
635 */
48131e03
VB
636unsigned long shmem_partial_swap_usage(struct address_space *mapping,
637 pgoff_t start, pgoff_t end)
6a15a370 638{
6a15a370
VB
639 struct radix_tree_iter iter;
640 void **slot;
641 struct page *page;
48131e03 642 unsigned long swapped = 0;
6a15a370
VB
643
644 rcu_read_lock();
645
6a15a370
VB
646 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
647 if (iter.index >= end)
648 break;
649
650 page = radix_tree_deref_slot(slot);
651
2cf938aa
MW
652 if (radix_tree_deref_retry(page)) {
653 slot = radix_tree_iter_retry(&iter);
654 continue;
655 }
6a15a370
VB
656
657 if (radix_tree_exceptional_entry(page))
658 swapped++;
659
660 if (need_resched()) {
661 cond_resched_rcu();
7165092f 662 slot = radix_tree_iter_next(&iter);
6a15a370
VB
663 }
664 }
665
666 rcu_read_unlock();
667
668 return swapped << PAGE_SHIFT;
669}
670
48131e03
VB
671/*
672 * Determine (in bytes) how many of the shmem object's pages mapped by the
673 * given vma is swapped out.
674 *
675 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
676 * as long as the inode doesn't go away and racy results are not a problem.
677 */
678unsigned long shmem_swap_usage(struct vm_area_struct *vma)
679{
680 struct inode *inode = file_inode(vma->vm_file);
681 struct shmem_inode_info *info = SHMEM_I(inode);
682 struct address_space *mapping = inode->i_mapping;
683 unsigned long swapped;
684
685 /* Be careful as we don't hold info->lock */
686 swapped = READ_ONCE(info->swapped);
687
688 /*
689 * The easier cases are when the shmem object has nothing in swap, or
690 * the vma maps it whole. Then we can simply use the stats that we
691 * already track.
692 */
693 if (!swapped)
694 return 0;
695
696 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
697 return swapped << PAGE_SHIFT;
698
699 /* Here comes the more involved part */
700 return shmem_partial_swap_usage(mapping,
701 linear_page_index(vma, vma->vm_start),
702 linear_page_index(vma, vma->vm_end));
703}
704
24513264
HD
705/*
706 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
707 */
708void shmem_unlock_mapping(struct address_space *mapping)
709{
710 struct pagevec pvec;
711 pgoff_t indices[PAGEVEC_SIZE];
712 pgoff_t index = 0;
713
714 pagevec_init(&pvec, 0);
715 /*
716 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
717 */
718 while (!mapping_unevictable(mapping)) {
719 /*
720 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
721 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
722 */
0cd6144a
JW
723 pvec.nr = find_get_entries(mapping, index,
724 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
725 if (!pvec.nr)
726 break;
727 index = indices[pvec.nr - 1] + 1;
0cd6144a 728 pagevec_remove_exceptionals(&pvec);
24513264
HD
729 check_move_unevictable_pages(pvec.pages, pvec.nr);
730 pagevec_release(&pvec);
731 cond_resched();
732 }
7a5d0fbb
HD
733}
734
735/*
736 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 737 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 738 */
1635f6a7
HD
739static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
740 bool unfalloc)
1da177e4 741{
285b2c4f 742 struct address_space *mapping = inode->i_mapping;
1da177e4 743 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf
KS
744 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
745 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
746 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
747 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
bda97eab 748 struct pagevec pvec;
7a5d0fbb
HD
749 pgoff_t indices[PAGEVEC_SIZE];
750 long nr_swaps_freed = 0;
285b2c4f 751 pgoff_t index;
bda97eab
HD
752 int i;
753
83e4fa9c
HD
754 if (lend == -1)
755 end = -1; /* unsigned, so actually very big */
bda97eab
HD
756
757 pagevec_init(&pvec, 0);
758 index = start;
83e4fa9c 759 while (index < end) {
0cd6144a
JW
760 pvec.nr = find_get_entries(mapping, index,
761 min(end - index, (pgoff_t)PAGEVEC_SIZE),
762 pvec.pages, indices);
7a5d0fbb
HD
763 if (!pvec.nr)
764 break;
bda97eab
HD
765 for (i = 0; i < pagevec_count(&pvec); i++) {
766 struct page *page = pvec.pages[i];
767
7a5d0fbb 768 index = indices[i];
83e4fa9c 769 if (index >= end)
bda97eab
HD
770 break;
771
7a5d0fbb 772 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
773 if (unfalloc)
774 continue;
7a5d0fbb
HD
775 nr_swaps_freed += !shmem_free_swap(mapping,
776 index, page);
bda97eab 777 continue;
7a5d0fbb
HD
778 }
779
800d8c63
KS
780 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
781
7a5d0fbb 782 if (!trylock_page(page))
bda97eab 783 continue;
800d8c63
KS
784
785 if (PageTransTail(page)) {
786 /* Middle of THP: zero out the page */
787 clear_highpage(page);
788 unlock_page(page);
789 continue;
790 } else if (PageTransHuge(page)) {
791 if (index == round_down(end, HPAGE_PMD_NR)) {
792 /*
793 * Range ends in the middle of THP:
794 * zero out the page
795 */
796 clear_highpage(page);
797 unlock_page(page);
798 continue;
799 }
800 index += HPAGE_PMD_NR - 1;
801 i += HPAGE_PMD_NR - 1;
802 }
803
1635f6a7 804 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
805 VM_BUG_ON_PAGE(PageTail(page), page);
806 if (page_mapping(page) == mapping) {
309381fe 807 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
808 truncate_inode_page(mapping, page);
809 }
bda97eab 810 }
bda97eab
HD
811 unlock_page(page);
812 }
0cd6144a 813 pagevec_remove_exceptionals(&pvec);
24513264 814 pagevec_release(&pvec);
bda97eab
HD
815 cond_resched();
816 index++;
817 }
1da177e4 818
83e4fa9c 819 if (partial_start) {
bda97eab 820 struct page *page = NULL;
9e18eb29 821 shmem_getpage(inode, start - 1, &page, SGP_READ);
bda97eab 822 if (page) {
09cbfeaf 823 unsigned int top = PAGE_SIZE;
83e4fa9c
HD
824 if (start > end) {
825 top = partial_end;
826 partial_end = 0;
827 }
828 zero_user_segment(page, partial_start, top);
829 set_page_dirty(page);
830 unlock_page(page);
09cbfeaf 831 put_page(page);
83e4fa9c
HD
832 }
833 }
834 if (partial_end) {
835 struct page *page = NULL;
9e18eb29 836 shmem_getpage(inode, end, &page, SGP_READ);
83e4fa9c
HD
837 if (page) {
838 zero_user_segment(page, 0, partial_end);
bda97eab
HD
839 set_page_dirty(page);
840 unlock_page(page);
09cbfeaf 841 put_page(page);
bda97eab
HD
842 }
843 }
83e4fa9c
HD
844 if (start >= end)
845 return;
bda97eab
HD
846
847 index = start;
b1a36650 848 while (index < end) {
bda97eab 849 cond_resched();
0cd6144a
JW
850
851 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 852 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 853 pvec.pages, indices);
7a5d0fbb 854 if (!pvec.nr) {
b1a36650
HD
855 /* If all gone or hole-punch or unfalloc, we're done */
856 if (index == start || end != -1)
bda97eab 857 break;
b1a36650 858 /* But if truncating, restart to make sure all gone */
bda97eab
HD
859 index = start;
860 continue;
861 }
bda97eab
HD
862 for (i = 0; i < pagevec_count(&pvec); i++) {
863 struct page *page = pvec.pages[i];
864
7a5d0fbb 865 index = indices[i];
83e4fa9c 866 if (index >= end)
bda97eab
HD
867 break;
868
7a5d0fbb 869 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
870 if (unfalloc)
871 continue;
b1a36650
HD
872 if (shmem_free_swap(mapping, index, page)) {
873 /* Swap was replaced by page: retry */
874 index--;
875 break;
876 }
877 nr_swaps_freed++;
7a5d0fbb
HD
878 continue;
879 }
880
bda97eab 881 lock_page(page);
800d8c63
KS
882
883 if (PageTransTail(page)) {
884 /* Middle of THP: zero out the page */
885 clear_highpage(page);
886 unlock_page(page);
887 /*
888 * Partial thp truncate due 'start' in middle
889 * of THP: don't need to look on these pages
890 * again on !pvec.nr restart.
891 */
892 if (index != round_down(end, HPAGE_PMD_NR))
893 start++;
894 continue;
895 } else if (PageTransHuge(page)) {
896 if (index == round_down(end, HPAGE_PMD_NR)) {
897 /*
898 * Range ends in the middle of THP:
899 * zero out the page
900 */
901 clear_highpage(page);
902 unlock_page(page);
903 continue;
904 }
905 index += HPAGE_PMD_NR - 1;
906 i += HPAGE_PMD_NR - 1;
907 }
908
1635f6a7 909 if (!unfalloc || !PageUptodate(page)) {
800d8c63
KS
910 VM_BUG_ON_PAGE(PageTail(page), page);
911 if (page_mapping(page) == mapping) {
309381fe 912 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 913 truncate_inode_page(mapping, page);
b1a36650
HD
914 } else {
915 /* Page was replaced by swap: retry */
916 unlock_page(page);
917 index--;
918 break;
1635f6a7 919 }
7a5d0fbb 920 }
bda97eab
HD
921 unlock_page(page);
922 }
0cd6144a 923 pagevec_remove_exceptionals(&pvec);
24513264 924 pagevec_release(&pvec);
bda97eab
HD
925 index++;
926 }
94c1e62d 927
4595ef88 928 spin_lock_irq(&info->lock);
7a5d0fbb 929 info->swapped -= nr_swaps_freed;
1da177e4 930 shmem_recalc_inode(inode);
4595ef88 931 spin_unlock_irq(&info->lock);
1635f6a7 932}
1da177e4 933
1635f6a7
HD
934void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
935{
936 shmem_undo_range(inode, lstart, lend, false);
078cd827 937 inode->i_ctime = inode->i_mtime = current_time(inode);
1da177e4 938}
94c1e62d 939EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 940
44a30220
YZ
941static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
942 struct kstat *stat)
943{
944 struct inode *inode = dentry->d_inode;
945 struct shmem_inode_info *info = SHMEM_I(inode);
946
d0424c42 947 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
4595ef88 948 spin_lock_irq(&info->lock);
d0424c42 949 shmem_recalc_inode(inode);
4595ef88 950 spin_unlock_irq(&info->lock);
d0424c42 951 }
44a30220 952 generic_fillattr(inode, stat);
44a30220
YZ
953 return 0;
954}
955
94c1e62d 956static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 957{
75c3cfa8 958 struct inode *inode = d_inode(dentry);
40e041a2 959 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 960 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4
LT
961 int error;
962
31051c85 963 error = setattr_prepare(dentry, attr);
db78b877
CH
964 if (error)
965 return error;
966
94c1e62d
HD
967 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
968 loff_t oldsize = inode->i_size;
969 loff_t newsize = attr->ia_size;
3889e6e7 970
40e041a2
DH
971 /* protected by i_mutex */
972 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
973 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
974 return -EPERM;
975
94c1e62d 976 if (newsize != oldsize) {
77142517
KK
977 error = shmem_reacct_size(SHMEM_I(inode)->flags,
978 oldsize, newsize);
979 if (error)
980 return error;
94c1e62d 981 i_size_write(inode, newsize);
078cd827 982 inode->i_ctime = inode->i_mtime = current_time(inode);
94c1e62d 983 }
afa2db2f 984 if (newsize <= oldsize) {
94c1e62d 985 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
986 if (oldsize > holebegin)
987 unmap_mapping_range(inode->i_mapping,
988 holebegin, 0, 1);
989 if (info->alloced)
990 shmem_truncate_range(inode,
991 newsize, (loff_t)-1);
94c1e62d 992 /* unmap again to remove racily COWed private pages */
d0424c42
HD
993 if (oldsize > holebegin)
994 unmap_mapping_range(inode->i_mapping,
995 holebegin, 0, 1);
779750d2
KS
996
997 /*
998 * Part of the huge page can be beyond i_size: subject
999 * to shrink under memory pressure.
1000 */
1001 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1002 spin_lock(&sbinfo->shrinklist_lock);
1003 if (list_empty(&info->shrinklist)) {
1004 list_add_tail(&info->shrinklist,
1005 &sbinfo->shrinklist);
1006 sbinfo->shrinklist_len++;
1007 }
1008 spin_unlock(&sbinfo->shrinklist_lock);
1009 }
94c1e62d 1010 }
1da177e4
LT
1011 }
1012
db78b877 1013 setattr_copy(inode, attr);
db78b877 1014 if (attr->ia_valid & ATTR_MODE)
feda821e 1015 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
1016 return error;
1017}
1018
1f895f75 1019static void shmem_evict_inode(struct inode *inode)
1da177e4 1020{
1da177e4 1021 struct shmem_inode_info *info = SHMEM_I(inode);
779750d2 1022 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1023
3889e6e7 1024 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
1025 shmem_unacct_size(info->flags, inode->i_size);
1026 inode->i_size = 0;
3889e6e7 1027 shmem_truncate_range(inode, 0, (loff_t)-1);
779750d2
KS
1028 if (!list_empty(&info->shrinklist)) {
1029 spin_lock(&sbinfo->shrinklist_lock);
1030 if (!list_empty(&info->shrinklist)) {
1031 list_del_init(&info->shrinklist);
1032 sbinfo->shrinklist_len--;
1033 }
1034 spin_unlock(&sbinfo->shrinklist_lock);
1035 }
1da177e4 1036 if (!list_empty(&info->swaplist)) {
cb5f7b9a 1037 mutex_lock(&shmem_swaplist_mutex);
1da177e4 1038 list_del_init(&info->swaplist);
cb5f7b9a 1039 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 1040 }
3ed47db3 1041 }
b09e0fa4 1042
38f38657 1043 simple_xattrs_free(&info->xattrs);
0f3c42f5 1044 WARN_ON(inode->i_blocks);
5b04c689 1045 shmem_free_inode(inode->i_sb);
dbd5768f 1046 clear_inode(inode);
1da177e4
LT
1047}
1048
46f65ec1
HD
1049/*
1050 * If swap found in inode, free it and move page from swapcache to filecache.
1051 */
41ffe5d5 1052static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 1053 swp_entry_t swap, struct page **pagep)
1da177e4 1054{
285b2c4f 1055 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 1056 void *radswap;
41ffe5d5 1057 pgoff_t index;
bde05d1c
HD
1058 gfp_t gfp;
1059 int error = 0;
1da177e4 1060
46f65ec1 1061 radswap = swp_to_radix_entry(swap);
e504f3fd 1062 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 1063 if (index == -1)
00501b53 1064 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 1065
1b1b32f2
HD
1066 /*
1067 * Move _head_ to start search for next from here.
1f895f75 1068 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 1069 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 1070 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
1071 */
1072 if (shmem_swaplist.next != &info->swaplist)
1073 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 1074
bde05d1c
HD
1075 gfp = mapping_gfp_mask(mapping);
1076 if (shmem_should_replace_page(*pagep, gfp)) {
1077 mutex_unlock(&shmem_swaplist_mutex);
1078 error = shmem_replace_page(pagep, gfp, info, index);
1079 mutex_lock(&shmem_swaplist_mutex);
1080 /*
1081 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
1082 * allocation, but the inode might have been freed while we
1083 * dropped it: although a racing shmem_evict_inode() cannot
1084 * complete without emptying the radix_tree, our page lock
1085 * on this swapcache page is not enough to prevent that -
1086 * free_swap_and_cache() of our swap entry will only
1087 * trylock_page(), removing swap from radix_tree whatever.
1088 *
1089 * We must not proceed to shmem_add_to_page_cache() if the
1090 * inode has been freed, but of course we cannot rely on
1091 * inode or mapping or info to check that. However, we can
1092 * safely check if our swap entry is still in use (and here
1093 * it can't have got reused for another page): if it's still
1094 * in use, then the inode cannot have been freed yet, and we
1095 * can safely proceed (if it's no longer in use, that tells
1096 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
1097 */
1098 if (!page_swapcount(*pagep))
1099 error = -ENOENT;
1100 }
1101
d13d1443 1102 /*
778dd893
HD
1103 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1104 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1105 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 1106 */
bde05d1c
HD
1107 if (!error)
1108 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 1109 radswap);
48f170fb 1110 if (error != -ENOMEM) {
46f65ec1
HD
1111 /*
1112 * Truncation and eviction use free_swap_and_cache(), which
1113 * only does trylock page: if we raced, best clean up here.
1114 */
bde05d1c
HD
1115 delete_from_swap_cache(*pagep);
1116 set_page_dirty(*pagep);
46f65ec1 1117 if (!error) {
4595ef88 1118 spin_lock_irq(&info->lock);
46f65ec1 1119 info->swapped--;
4595ef88 1120 spin_unlock_irq(&info->lock);
46f65ec1
HD
1121 swap_free(swap);
1122 }
1da177e4 1123 }
2e0e26c7 1124 return error;
1da177e4
LT
1125}
1126
1127/*
46f65ec1 1128 * Search through swapped inodes to find and replace swap by page.
1da177e4 1129 */
41ffe5d5 1130int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 1131{
41ffe5d5 1132 struct list_head *this, *next;
1da177e4 1133 struct shmem_inode_info *info;
00501b53 1134 struct mem_cgroup *memcg;
bde05d1c
HD
1135 int error = 0;
1136
1137 /*
1138 * There's a faint possibility that swap page was replaced before
0142ef6c 1139 * caller locked it: caller will come back later with the right page.
bde05d1c 1140 */
0142ef6c 1141 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 1142 goto out;
778dd893
HD
1143
1144 /*
1145 * Charge page using GFP_KERNEL while we can wait, before taking
1146 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1147 * Charged back to the user (not to caller) when swap account is used.
778dd893 1148 */
f627c2f5
KS
1149 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1150 false);
778dd893
HD
1151 if (error)
1152 goto out;
46f65ec1 1153 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 1154 error = -EAGAIN;
1da177e4 1155
cb5f7b9a 1156 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
1157 list_for_each_safe(this, next, &shmem_swaplist) {
1158 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 1159 if (info->swapped)
00501b53 1160 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
1161 else
1162 list_del_init(&info->swaplist);
cb5f7b9a 1163 cond_resched();
00501b53 1164 if (error != -EAGAIN)
778dd893 1165 break;
00501b53 1166 /* found nothing in this: move on to search the next */
1da177e4 1167 }
cb5f7b9a 1168 mutex_unlock(&shmem_swaplist_mutex);
778dd893 1169
00501b53
JW
1170 if (error) {
1171 if (error != -ENOMEM)
1172 error = 0;
f627c2f5 1173 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 1174 } else
f627c2f5 1175 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 1176out:
aaa46865 1177 unlock_page(page);
09cbfeaf 1178 put_page(page);
778dd893 1179 return error;
1da177e4
LT
1180}
1181
1182/*
1183 * Move the page from the page cache to the swap cache.
1184 */
1185static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1186{
1187 struct shmem_inode_info *info;
1da177e4 1188 struct address_space *mapping;
1da177e4 1189 struct inode *inode;
6922c0c7
HD
1190 swp_entry_t swap;
1191 pgoff_t index;
1da177e4 1192
800d8c63 1193 VM_BUG_ON_PAGE(PageCompound(page), page);
1da177e4 1194 BUG_ON(!PageLocked(page));
1da177e4
LT
1195 mapping = page->mapping;
1196 index = page->index;
1197 inode = mapping->host;
1198 info = SHMEM_I(inode);
1199 if (info->flags & VM_LOCKED)
1200 goto redirty;
d9fe526a 1201 if (!total_swap_pages)
1da177e4
LT
1202 goto redirty;
1203
d9fe526a 1204 /*
97b713ba
CH
1205 * Our capabilities prevent regular writeback or sync from ever calling
1206 * shmem_writepage; but a stacking filesystem might use ->writepage of
1207 * its underlying filesystem, in which case tmpfs should write out to
1208 * swap only in response to memory pressure, and not for the writeback
1209 * threads or sync.
d9fe526a 1210 */
48f170fb
HD
1211 if (!wbc->for_reclaim) {
1212 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1213 goto redirty;
1214 }
1635f6a7
HD
1215
1216 /*
1217 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1218 * value into swapfile.c, the only way we can correctly account for a
1219 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
1220 *
1221 * That's okay for a page already fallocated earlier, but if we have
1222 * not yet completed the fallocation, then (a) we want to keep track
1223 * of this page in case we have to undo it, and (b) it may not be a
1224 * good idea to continue anyway, once we're pushing into swap. So
1225 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
1226 */
1227 if (!PageUptodate(page)) {
1aac1400
HD
1228 if (inode->i_private) {
1229 struct shmem_falloc *shmem_falloc;
1230 spin_lock(&inode->i_lock);
1231 shmem_falloc = inode->i_private;
1232 if (shmem_falloc &&
8e205f77 1233 !shmem_falloc->waitq &&
1aac1400
HD
1234 index >= shmem_falloc->start &&
1235 index < shmem_falloc->next)
1236 shmem_falloc->nr_unswapped++;
1237 else
1238 shmem_falloc = NULL;
1239 spin_unlock(&inode->i_lock);
1240 if (shmem_falloc)
1241 goto redirty;
1242 }
1635f6a7
HD
1243 clear_highpage(page);
1244 flush_dcache_page(page);
1245 SetPageUptodate(page);
1246 }
1247
48f170fb
HD
1248 swap = get_swap_page();
1249 if (!swap.val)
1250 goto redirty;
d9fe526a 1251
37e84351
VD
1252 if (mem_cgroup_try_charge_swap(page, swap))
1253 goto free_swap;
1254
b1dea800
HD
1255 /*
1256 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
1257 * if it's not already there. Do it now before the page is
1258 * moved to swap cache, when its pagelock no longer protects
b1dea800 1259 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
1260 * we've incremented swapped, because shmem_unuse_inode() will
1261 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 1262 */
48f170fb
HD
1263 mutex_lock(&shmem_swaplist_mutex);
1264 if (list_empty(&info->swaplist))
1265 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 1266
48f170fb 1267 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4595ef88 1268 spin_lock_irq(&info->lock);
6922c0c7 1269 shmem_recalc_inode(inode);
267a4c76 1270 info->swapped++;
4595ef88 1271 spin_unlock_irq(&info->lock);
6922c0c7 1272
267a4c76
HD
1273 swap_shmem_alloc(swap);
1274 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1275
6922c0c7 1276 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 1277 BUG_ON(page_mapped(page));
9fab5619 1278 swap_writepage(page, wbc);
1da177e4
LT
1279 return 0;
1280 }
1281
6922c0c7 1282 mutex_unlock(&shmem_swaplist_mutex);
37e84351 1283free_swap:
0a31bc97 1284 swapcache_free(swap);
1da177e4
LT
1285redirty:
1286 set_page_dirty(page);
d9fe526a
HD
1287 if (wbc->for_reclaim)
1288 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1289 unlock_page(page);
1290 return 0;
1da177e4
LT
1291}
1292
75edd345 1293#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
71fe804b 1294static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1295{
095f1fc4 1296 char buffer[64];
680d794b 1297
71fe804b 1298 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1299 return; /* show nothing */
680d794b 1300
a7a88b23 1301 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
1302
1303 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1304}
71fe804b
LS
1305
1306static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1307{
1308 struct mempolicy *mpol = NULL;
1309 if (sbinfo->mpol) {
1310 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1311 mpol = sbinfo->mpol;
1312 mpol_get(mpol);
1313 spin_unlock(&sbinfo->stat_lock);
1314 }
1315 return mpol;
1316}
75edd345
HD
1317#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1318static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1319{
1320}
1321static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1322{
1323 return NULL;
1324}
1325#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1326#ifndef CONFIG_NUMA
1327#define vm_policy vm_private_data
1328#endif
680d794b 1329
800d8c63
KS
1330static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1331 struct shmem_inode_info *info, pgoff_t index)
1332{
1333 /* Create a pseudo vma that just contains the policy */
1334 vma->vm_start = 0;
1335 /* Bias interleave by inode number to distribute better across nodes */
1336 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1337 vma->vm_ops = NULL;
1338 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1339}
1340
1341static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1342{
1343 /* Drop reference taken by mpol_shared_policy_lookup() */
1344 mpol_cond_put(vma->vm_policy);
1345}
1346
41ffe5d5
HD
1347static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1348 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1349{
1da177e4 1350 struct vm_area_struct pvma;
18a2f371 1351 struct page *page;
52cd3b07 1352
800d8c63 1353 shmem_pseudo_vma_init(&pvma, info, index);
18a2f371 1354 page = swapin_readahead(swap, gfp, &pvma, 0);
800d8c63 1355 shmem_pseudo_vma_destroy(&pvma);
18a2f371 1356
800d8c63
KS
1357 return page;
1358}
1359
1360static struct page *shmem_alloc_hugepage(gfp_t gfp,
1361 struct shmem_inode_info *info, pgoff_t index)
1362{
1363 struct vm_area_struct pvma;
1364 struct inode *inode = &info->vfs_inode;
1365 struct address_space *mapping = inode->i_mapping;
4620a06e 1366 pgoff_t idx, hindex;
800d8c63
KS
1367 void __rcu **results;
1368 struct page *page;
1369
e496cf3d 1370 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1371 return NULL;
1372
4620a06e 1373 hindex = round_down(index, HPAGE_PMD_NR);
800d8c63
KS
1374 rcu_read_lock();
1375 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1376 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1377 rcu_read_unlock();
1378 return NULL;
1379 }
1380 rcu_read_unlock();
18a2f371 1381
800d8c63
KS
1382 shmem_pseudo_vma_init(&pvma, info, hindex);
1383 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1384 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1385 shmem_pseudo_vma_destroy(&pvma);
1386 if (page)
1387 prep_transhuge_page(page);
18a2f371 1388 return page;
1da177e4
LT
1389}
1390
02098fea 1391static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1392 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1393{
1394 struct vm_area_struct pvma;
18a2f371 1395 struct page *page;
1da177e4 1396
800d8c63
KS
1397 shmem_pseudo_vma_init(&pvma, info, index);
1398 page = alloc_page_vma(gfp, &pvma, 0);
1399 shmem_pseudo_vma_destroy(&pvma);
1400
1401 return page;
1402}
1403
1404static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1405 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1406 pgoff_t index, bool huge)
1407{
1408 struct page *page;
1409 int nr;
1410 int err = -ENOSPC;
52cd3b07 1411
e496cf3d 1412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
800d8c63
KS
1413 huge = false;
1414 nr = huge ? HPAGE_PMD_NR : 1;
1415
1416 if (shmem_acct_block(info->flags, nr))
1417 goto failed;
1418 if (sbinfo->max_blocks) {
1419 if (percpu_counter_compare(&sbinfo->used_blocks,
1420 sbinfo->max_blocks - nr) > 0)
1421 goto unacct;
1422 percpu_counter_add(&sbinfo->used_blocks, nr);
1423 }
1424
1425 if (huge)
1426 page = shmem_alloc_hugepage(gfp, info, index);
1427 else
1428 page = shmem_alloc_page(gfp, info, index);
75edd345
HD
1429 if (page) {
1430 __SetPageLocked(page);
1431 __SetPageSwapBacked(page);
800d8c63 1432 return page;
75edd345 1433 }
18a2f371 1434
800d8c63
KS
1435 err = -ENOMEM;
1436 if (sbinfo->max_blocks)
1437 percpu_counter_add(&sbinfo->used_blocks, -nr);
1438unacct:
1439 shmem_unacct_blocks(info->flags, nr);
1440failed:
1441 return ERR_PTR(err);
1da177e4 1442}
71fe804b 1443
bde05d1c
HD
1444/*
1445 * When a page is moved from swapcache to shmem filecache (either by the
1446 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1447 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1448 * ignorance of the mapping it belongs to. If that mapping has special
1449 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1450 * we may need to copy to a suitable page before moving to filecache.
1451 *
1452 * In a future release, this may well be extended to respect cpuset and
1453 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1454 * but for now it is a simple matter of zone.
1455 */
1456static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1457{
1458 return page_zonenum(page) > gfp_zone(gfp);
1459}
1460
1461static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1462 struct shmem_inode_info *info, pgoff_t index)
1463{
1464 struct page *oldpage, *newpage;
1465 struct address_space *swap_mapping;
1466 pgoff_t swap_index;
1467 int error;
1468
1469 oldpage = *pagep;
1470 swap_index = page_private(oldpage);
1471 swap_mapping = page_mapping(oldpage);
1472
1473 /*
1474 * We have arrived here because our zones are constrained, so don't
1475 * limit chance of success by further cpuset and node constraints.
1476 */
1477 gfp &= ~GFP_CONSTRAINT_MASK;
1478 newpage = shmem_alloc_page(gfp, info, index);
1479 if (!newpage)
1480 return -ENOMEM;
bde05d1c 1481
09cbfeaf 1482 get_page(newpage);
bde05d1c 1483 copy_highpage(newpage, oldpage);
0142ef6c 1484 flush_dcache_page(newpage);
bde05d1c 1485
9956edf3
HD
1486 __SetPageLocked(newpage);
1487 __SetPageSwapBacked(newpage);
bde05d1c 1488 SetPageUptodate(newpage);
bde05d1c 1489 set_page_private(newpage, swap_index);
bde05d1c
HD
1490 SetPageSwapCache(newpage);
1491
1492 /*
1493 * Our caller will very soon move newpage out of swapcache, but it's
1494 * a nice clean interface for us to replace oldpage by newpage there.
1495 */
1496 spin_lock_irq(&swap_mapping->tree_lock);
1497 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1498 newpage);
0142ef6c 1499 if (!error) {
11fb9989
MG
1500 __inc_node_page_state(newpage, NR_FILE_PAGES);
1501 __dec_node_page_state(oldpage, NR_FILE_PAGES);
0142ef6c 1502 }
bde05d1c 1503 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1504
0142ef6c
HD
1505 if (unlikely(error)) {
1506 /*
1507 * Is this possible? I think not, now that our callers check
1508 * both PageSwapCache and page_private after getting page lock;
1509 * but be defensive. Reverse old to newpage for clear and free.
1510 */
1511 oldpage = newpage;
1512 } else {
6a93ca8f 1513 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1514 lru_cache_add_anon(newpage);
1515 *pagep = newpage;
1516 }
bde05d1c
HD
1517
1518 ClearPageSwapCache(oldpage);
1519 set_page_private(oldpage, 0);
1520
1521 unlock_page(oldpage);
09cbfeaf
KS
1522 put_page(oldpage);
1523 put_page(oldpage);
0142ef6c 1524 return error;
bde05d1c
HD
1525}
1526
1da177e4 1527/*
68da9f05 1528 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1529 *
1530 * If we allocate a new one we do not mark it dirty. That's up to the
1531 * vm. If we swap it in we mark it dirty since we also free the swap
9e18eb29
ALC
1532 * entry since a page cannot live in both the swap and page cache.
1533 *
1534 * fault_mm and fault_type are only supplied by shmem_fault:
1535 * otherwise they are NULL.
1da177e4 1536 */
41ffe5d5 1537static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
9e18eb29
ALC
1538 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1539 struct mm_struct *fault_mm, int *fault_type)
1da177e4
LT
1540{
1541 struct address_space *mapping = inode->i_mapping;
54af6042 1542 struct shmem_inode_info *info;
1da177e4 1543 struct shmem_sb_info *sbinfo;
9e18eb29 1544 struct mm_struct *charge_mm;
00501b53 1545 struct mem_cgroup *memcg;
27ab7006 1546 struct page *page;
1da177e4 1547 swp_entry_t swap;
657e3038 1548 enum sgp_type sgp_huge = sgp;
800d8c63 1549 pgoff_t hindex = index;
1da177e4 1550 int error;
54af6042 1551 int once = 0;
1635f6a7 1552 int alloced = 0;
1da177e4 1553
09cbfeaf 1554 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1da177e4 1555 return -EFBIG;
657e3038
KS
1556 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1557 sgp = SGP_CACHE;
1da177e4 1558repeat:
54af6042 1559 swap.val = 0;
0cd6144a 1560 page = find_lock_entry(mapping, index);
54af6042
HD
1561 if (radix_tree_exceptional_entry(page)) {
1562 swap = radix_to_swp_entry(page);
1563 page = NULL;
1564 }
1565
75edd345 1566 if (sgp <= SGP_CACHE &&
09cbfeaf 1567 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
54af6042 1568 error = -EINVAL;
267a4c76 1569 goto unlock;
54af6042
HD
1570 }
1571
66d2f4d2
HD
1572 if (page && sgp == SGP_WRITE)
1573 mark_page_accessed(page);
1574
1635f6a7
HD
1575 /* fallocated page? */
1576 if (page && !PageUptodate(page)) {
1577 if (sgp != SGP_READ)
1578 goto clear;
1579 unlock_page(page);
09cbfeaf 1580 put_page(page);
1635f6a7
HD
1581 page = NULL;
1582 }
54af6042 1583 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1584 *pagep = page;
1585 return 0;
27ab7006
HD
1586 }
1587
1588 /*
54af6042
HD
1589 * Fast cache lookup did not find it:
1590 * bring it back from swap or allocate.
27ab7006 1591 */
54af6042
HD
1592 info = SHMEM_I(inode);
1593 sbinfo = SHMEM_SB(inode->i_sb);
9e18eb29 1594 charge_mm = fault_mm ? : current->mm;
1da177e4 1595
1da177e4
LT
1596 if (swap.val) {
1597 /* Look it up and read it in.. */
27ab7006
HD
1598 page = lookup_swap_cache(swap);
1599 if (!page) {
9e18eb29
ALC
1600 /* Or update major stats only when swapin succeeds?? */
1601 if (fault_type) {
68da9f05 1602 *fault_type |= VM_FAULT_MAJOR;
9e18eb29
ALC
1603 count_vm_event(PGMAJFAULT);
1604 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1605 }
1606 /* Here we actually start the io */
41ffe5d5 1607 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1608 if (!page) {
54af6042
HD
1609 error = -ENOMEM;
1610 goto failed;
1da177e4 1611 }
1da177e4
LT
1612 }
1613
1614 /* We have to do this with page locked to prevent races */
54af6042 1615 lock_page(page);
0142ef6c 1616 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1617 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1618 error = -EEXIST; /* try again */
d1899228 1619 goto unlock;
bde05d1c 1620 }
27ab7006 1621 if (!PageUptodate(page)) {
1da177e4 1622 error = -EIO;
54af6042 1623 goto failed;
1da177e4 1624 }
54af6042
HD
1625 wait_on_page_writeback(page);
1626
bde05d1c
HD
1627 if (shmem_should_replace_page(page, gfp)) {
1628 error = shmem_replace_page(&page, gfp, info, index);
1629 if (error)
1630 goto failed;
1da177e4 1631 }
27ab7006 1632
9e18eb29 1633 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
f627c2f5 1634 false);
d1899228 1635 if (!error) {
aa3b1895 1636 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1637 swp_to_radix_entry(swap));
215c02bc
HD
1638 /*
1639 * We already confirmed swap under page lock, and make
1640 * no memory allocation here, so usually no possibility
1641 * of error; but free_swap_and_cache() only trylocks a
1642 * page, so it is just possible that the entry has been
1643 * truncated or holepunched since swap was confirmed.
1644 * shmem_undo_range() will have done some of the
1645 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1646 * the rest.
215c02bc
HD
1647 * Reset swap.val? No, leave it so "failed" goes back to
1648 * "repeat": reading a hole and writing should succeed.
1649 */
00501b53 1650 if (error) {
f627c2f5 1651 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1652 delete_from_swap_cache(page);
00501b53 1653 }
d1899228 1654 }
54af6042
HD
1655 if (error)
1656 goto failed;
1657
f627c2f5 1658 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1659
4595ef88 1660 spin_lock_irq(&info->lock);
285b2c4f 1661 info->swapped--;
54af6042 1662 shmem_recalc_inode(inode);
4595ef88 1663 spin_unlock_irq(&info->lock);
54af6042 1664
66d2f4d2
HD
1665 if (sgp == SGP_WRITE)
1666 mark_page_accessed(page);
1667
54af6042 1668 delete_from_swap_cache(page);
27ab7006
HD
1669 set_page_dirty(page);
1670 swap_free(swap);
1671
54af6042 1672 } else {
800d8c63
KS
1673 /* shmem_symlink() */
1674 if (mapping->a_ops != &shmem_aops)
1675 goto alloc_nohuge;
657e3038 1676 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
800d8c63
KS
1677 goto alloc_nohuge;
1678 if (shmem_huge == SHMEM_HUGE_FORCE)
1679 goto alloc_huge;
1680 switch (sbinfo->huge) {
1681 loff_t i_size;
1682 pgoff_t off;
1683 case SHMEM_HUGE_NEVER:
1684 goto alloc_nohuge;
1685 case SHMEM_HUGE_WITHIN_SIZE:
1686 off = round_up(index, HPAGE_PMD_NR);
1687 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1688 if (i_size >= HPAGE_PMD_SIZE &&
1689 i_size >> PAGE_SHIFT >= off)
1690 goto alloc_huge;
1691 /* fallthrough */
1692 case SHMEM_HUGE_ADVISE:
657e3038
KS
1693 if (sgp_huge == SGP_HUGE)
1694 goto alloc_huge;
1695 /* TODO: implement fadvise() hints */
800d8c63 1696 goto alloc_nohuge;
54af6042 1697 }
1da177e4 1698
800d8c63
KS
1699alloc_huge:
1700 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1701 index, true);
1702 if (IS_ERR(page)) {
1703alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1704 index, false);
1da177e4 1705 }
800d8c63 1706 if (IS_ERR(page)) {
779750d2 1707 int retry = 5;
800d8c63
KS
1708 error = PTR_ERR(page);
1709 page = NULL;
779750d2
KS
1710 if (error != -ENOSPC)
1711 goto failed;
1712 /*
1713 * Try to reclaim some spece by splitting a huge page
1714 * beyond i_size on the filesystem.
1715 */
1716 while (retry--) {
1717 int ret;
1718 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1719 if (ret == SHRINK_STOP)
1720 break;
1721 if (ret)
1722 goto alloc_nohuge;
1723 }
800d8c63
KS
1724 goto failed;
1725 }
1726
1727 if (PageTransHuge(page))
1728 hindex = round_down(index, HPAGE_PMD_NR);
1729 else
1730 hindex = index;
1731
66d2f4d2 1732 if (sgp == SGP_WRITE)
eb39d618 1733 __SetPageReferenced(page);
66d2f4d2 1734
9e18eb29 1735 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
800d8c63 1736 PageTransHuge(page));
54af6042 1737 if (error)
800d8c63
KS
1738 goto unacct;
1739 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1740 compound_order(page));
b065b432 1741 if (!error) {
800d8c63 1742 error = shmem_add_to_page_cache(page, mapping, hindex,
fed400a1 1743 NULL);
b065b432
HD
1744 radix_tree_preload_end();
1745 }
1746 if (error) {
800d8c63
KS
1747 mem_cgroup_cancel_charge(page, memcg,
1748 PageTransHuge(page));
1749 goto unacct;
b065b432 1750 }
800d8c63
KS
1751 mem_cgroup_commit_charge(page, memcg, false,
1752 PageTransHuge(page));
54af6042
HD
1753 lru_cache_add_anon(page);
1754
4595ef88 1755 spin_lock_irq(&info->lock);
800d8c63
KS
1756 info->alloced += 1 << compound_order(page);
1757 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
54af6042 1758 shmem_recalc_inode(inode);
4595ef88 1759 spin_unlock_irq(&info->lock);
1635f6a7 1760 alloced = true;
54af6042 1761
779750d2
KS
1762 if (PageTransHuge(page) &&
1763 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1764 hindex + HPAGE_PMD_NR - 1) {
1765 /*
1766 * Part of the huge page is beyond i_size: subject
1767 * to shrink under memory pressure.
1768 */
1769 spin_lock(&sbinfo->shrinklist_lock);
1770 if (list_empty(&info->shrinklist)) {
1771 list_add_tail(&info->shrinklist,
1772 &sbinfo->shrinklist);
1773 sbinfo->shrinklist_len++;
1774 }
1775 spin_unlock(&sbinfo->shrinklist_lock);
1776 }
1777
ec9516fb 1778 /*
1635f6a7
HD
1779 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1780 */
1781 if (sgp == SGP_FALLOC)
1782 sgp = SGP_WRITE;
1783clear:
1784 /*
1785 * Let SGP_WRITE caller clear ends if write does not fill page;
1786 * but SGP_FALLOC on a page fallocated earlier must initialize
1787 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb 1788 */
800d8c63
KS
1789 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1790 struct page *head = compound_head(page);
1791 int i;
1792
1793 for (i = 0; i < (1 << compound_order(head)); i++) {
1794 clear_highpage(head + i);
1795 flush_dcache_page(head + i);
1796 }
1797 SetPageUptodate(head);
ec9516fb 1798 }
1da177e4 1799 }
bde05d1c 1800
54af6042 1801 /* Perhaps the file has been truncated since we checked */
75edd345 1802 if (sgp <= SGP_CACHE &&
09cbfeaf 1803 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1804 if (alloced) {
1805 ClearPageDirty(page);
1806 delete_from_page_cache(page);
4595ef88 1807 spin_lock_irq(&info->lock);
267a4c76 1808 shmem_recalc_inode(inode);
4595ef88 1809 spin_unlock_irq(&info->lock);
267a4c76 1810 }
54af6042 1811 error = -EINVAL;
267a4c76 1812 goto unlock;
e83c32e8 1813 }
800d8c63 1814 *pagep = page + index - hindex;
54af6042 1815 return 0;
1da177e4 1816
59a16ead 1817 /*
54af6042 1818 * Error recovery.
59a16ead 1819 */
54af6042 1820unacct:
800d8c63
KS
1821 if (sbinfo->max_blocks)
1822 percpu_counter_sub(&sbinfo->used_blocks,
1823 1 << compound_order(page));
1824 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1825
1826 if (PageTransHuge(page)) {
1827 unlock_page(page);
1828 put_page(page);
1829 goto alloc_nohuge;
1830 }
54af6042 1831failed:
267a4c76 1832 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1833 error = -EEXIST;
1834unlock:
27ab7006 1835 if (page) {
54af6042 1836 unlock_page(page);
09cbfeaf 1837 put_page(page);
54af6042
HD
1838 }
1839 if (error == -ENOSPC && !once++) {
1840 info = SHMEM_I(inode);
4595ef88 1841 spin_lock_irq(&info->lock);
54af6042 1842 shmem_recalc_inode(inode);
4595ef88 1843 spin_unlock_irq(&info->lock);
27ab7006 1844 goto repeat;
ff36b801 1845 }
d1899228 1846 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1847 goto repeat;
1848 return error;
1da177e4
LT
1849}
1850
d0217ac0 1851static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1852{
496ad9aa 1853 struct inode *inode = file_inode(vma->vm_file);
9e18eb29 1854 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
657e3038 1855 enum sgp_type sgp;
1da177e4 1856 int error;
68da9f05 1857 int ret = VM_FAULT_LOCKED;
1da177e4 1858
f00cdc6d
HD
1859 /*
1860 * Trinity finds that probing a hole which tmpfs is punching can
1861 * prevent the hole-punch from ever completing: which in turn
1862 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1863 * faulting pages into the hole while it's being punched. Although
1864 * shmem_undo_range() does remove the additions, it may be unable to
1865 * keep up, as each new page needs its own unmap_mapping_range() call,
1866 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1867 *
1868 * It does not matter if we sometimes reach this check just before the
1869 * hole-punch begins, so that one fault then races with the punch:
1870 * we just need to make racing faults a rare case.
1871 *
1872 * The implementation below would be much simpler if we just used a
1873 * standard mutex or completion: but we cannot take i_mutex in fault,
1874 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1875 */
1876 if (unlikely(inode->i_private)) {
1877 struct shmem_falloc *shmem_falloc;
1878
1879 spin_lock(&inode->i_lock);
1880 shmem_falloc = inode->i_private;
8e205f77
HD
1881 if (shmem_falloc &&
1882 shmem_falloc->waitq &&
1883 vmf->pgoff >= shmem_falloc->start &&
1884 vmf->pgoff < shmem_falloc->next) {
1885 wait_queue_head_t *shmem_falloc_waitq;
1886 DEFINE_WAIT(shmem_fault_wait);
1887
1888 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1889 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1890 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1891 /* It's polite to up mmap_sem if we can */
f00cdc6d 1892 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1893 ret = VM_FAULT_RETRY;
f00cdc6d 1894 }
8e205f77
HD
1895
1896 shmem_falloc_waitq = shmem_falloc->waitq;
1897 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1898 TASK_UNINTERRUPTIBLE);
1899 spin_unlock(&inode->i_lock);
1900 schedule();
1901
1902 /*
1903 * shmem_falloc_waitq points into the shmem_fallocate()
1904 * stack of the hole-punching task: shmem_falloc_waitq
1905 * is usually invalid by the time we reach here, but
1906 * finish_wait() does not dereference it in that case;
1907 * though i_lock needed lest racing with wake_up_all().
1908 */
1909 spin_lock(&inode->i_lock);
1910 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1911 spin_unlock(&inode->i_lock);
1912 return ret;
f00cdc6d 1913 }
8e205f77 1914 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1915 }
1916
657e3038
KS
1917 sgp = SGP_CACHE;
1918 if (vma->vm_flags & VM_HUGEPAGE)
1919 sgp = SGP_HUGE;
1920 else if (vma->vm_flags & VM_NOHUGEPAGE)
1921 sgp = SGP_NOHUGE;
1922
1923 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
9e18eb29 1924 gfp, vma->vm_mm, &ret);
d0217ac0
NP
1925 if (error)
1926 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1927 return ret;
1da177e4
LT
1928}
1929
c01d5b30
HD
1930unsigned long shmem_get_unmapped_area(struct file *file,
1931 unsigned long uaddr, unsigned long len,
1932 unsigned long pgoff, unsigned long flags)
1933{
1934 unsigned long (*get_area)(struct file *,
1935 unsigned long, unsigned long, unsigned long, unsigned long);
1936 unsigned long addr;
1937 unsigned long offset;
1938 unsigned long inflated_len;
1939 unsigned long inflated_addr;
1940 unsigned long inflated_offset;
1941
1942 if (len > TASK_SIZE)
1943 return -ENOMEM;
1944
1945 get_area = current->mm->get_unmapped_area;
1946 addr = get_area(file, uaddr, len, pgoff, flags);
1947
e496cf3d 1948 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
c01d5b30
HD
1949 return addr;
1950 if (IS_ERR_VALUE(addr))
1951 return addr;
1952 if (addr & ~PAGE_MASK)
1953 return addr;
1954 if (addr > TASK_SIZE - len)
1955 return addr;
1956
1957 if (shmem_huge == SHMEM_HUGE_DENY)
1958 return addr;
1959 if (len < HPAGE_PMD_SIZE)
1960 return addr;
1961 if (flags & MAP_FIXED)
1962 return addr;
1963 /*
1964 * Our priority is to support MAP_SHARED mapped hugely;
1965 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1966 * But if caller specified an address hint, respect that as before.
1967 */
1968 if (uaddr)
1969 return addr;
1970
1971 if (shmem_huge != SHMEM_HUGE_FORCE) {
1972 struct super_block *sb;
1973
1974 if (file) {
1975 VM_BUG_ON(file->f_op != &shmem_file_operations);
1976 sb = file_inode(file)->i_sb;
1977 } else {
1978 /*
1979 * Called directly from mm/mmap.c, or drivers/char/mem.c
1980 * for "/dev/zero", to create a shared anonymous object.
1981 */
1982 if (IS_ERR(shm_mnt))
1983 return addr;
1984 sb = shm_mnt->mnt_sb;
1985 }
3089bf61 1986 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
c01d5b30
HD
1987 return addr;
1988 }
1989
1990 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1991 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1992 return addr;
1993 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1994 return addr;
1995
1996 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1997 if (inflated_len > TASK_SIZE)
1998 return addr;
1999 if (inflated_len < len)
2000 return addr;
2001
2002 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2003 if (IS_ERR_VALUE(inflated_addr))
2004 return addr;
2005 if (inflated_addr & ~PAGE_MASK)
2006 return addr;
2007
2008 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2009 inflated_addr += offset - inflated_offset;
2010 if (inflated_offset > offset)
2011 inflated_addr += HPAGE_PMD_SIZE;
2012
2013 if (inflated_addr > TASK_SIZE - len)
2014 return addr;
2015 return inflated_addr;
2016}
2017
1da177e4 2018#ifdef CONFIG_NUMA
41ffe5d5 2019static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 2020{
496ad9aa 2021 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2022 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
2023}
2024
d8dc74f2
AB
2025static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2026 unsigned long addr)
1da177e4 2027{
496ad9aa 2028 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 2029 pgoff_t index;
1da177e4 2030
41ffe5d5
HD
2031 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2032 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
2033}
2034#endif
2035
2036int shmem_lock(struct file *file, int lock, struct user_struct *user)
2037{
496ad9aa 2038 struct inode *inode = file_inode(file);
1da177e4
LT
2039 struct shmem_inode_info *info = SHMEM_I(inode);
2040 int retval = -ENOMEM;
2041
4595ef88 2042 spin_lock_irq(&info->lock);
1da177e4
LT
2043 if (lock && !(info->flags & VM_LOCKED)) {
2044 if (!user_shm_lock(inode->i_size, user))
2045 goto out_nomem;
2046 info->flags |= VM_LOCKED;
89e004ea 2047 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
2048 }
2049 if (!lock && (info->flags & VM_LOCKED) && user) {
2050 user_shm_unlock(inode->i_size, user);
2051 info->flags &= ~VM_LOCKED;
89e004ea 2052 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
2053 }
2054 retval = 0;
89e004ea 2055
1da177e4 2056out_nomem:
4595ef88 2057 spin_unlock_irq(&info->lock);
1da177e4
LT
2058 return retval;
2059}
2060
9b83a6a8 2061static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
2062{
2063 file_accessed(file);
2064 vma->vm_ops = &shmem_vm_ops;
e496cf3d 2065 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
2066 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2067 (vma->vm_end & HPAGE_PMD_MASK)) {
2068 khugepaged_enter(vma, vma->vm_flags);
2069 }
1da177e4
LT
2070 return 0;
2071}
2072
454abafe 2073static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 2074 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
2075{
2076 struct inode *inode;
2077 struct shmem_inode_info *info;
2078 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2079
5b04c689
PE
2080 if (shmem_reserve_inode(sb))
2081 return NULL;
1da177e4
LT
2082
2083 inode = new_inode(sb);
2084 if (inode) {
85fe4025 2085 inode->i_ino = get_next_ino();
454abafe 2086 inode_init_owner(inode, dir, mode);
1da177e4 2087 inode->i_blocks = 0;
078cd827 2088 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
91828a40 2089 inode->i_generation = get_seconds();
1da177e4
LT
2090 info = SHMEM_I(inode);
2091 memset(info, 0, (char *)inode - (char *)info);
2092 spin_lock_init(&info->lock);
40e041a2 2093 info->seals = F_SEAL_SEAL;
0b0a0806 2094 info->flags = flags & VM_NORESERVE;
779750d2 2095 INIT_LIST_HEAD(&info->shrinklist);
1da177e4 2096 INIT_LIST_HEAD(&info->swaplist);
38f38657 2097 simple_xattrs_init(&info->xattrs);
72c04902 2098 cache_no_acl(inode);
1da177e4
LT
2099
2100 switch (mode & S_IFMT) {
2101 default:
39f0247d 2102 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
2103 init_special_inode(inode, mode, dev);
2104 break;
2105 case S_IFREG:
14fcc23f 2106 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2107 inode->i_op = &shmem_inode_operations;
2108 inode->i_fop = &shmem_file_operations;
71fe804b
LS
2109 mpol_shared_policy_init(&info->policy,
2110 shmem_get_sbmpol(sbinfo));
1da177e4
LT
2111 break;
2112 case S_IFDIR:
d8c76e6f 2113 inc_nlink(inode);
1da177e4
LT
2114 /* Some things misbehave if size == 0 on a directory */
2115 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2116 inode->i_op = &shmem_dir_inode_operations;
2117 inode->i_fop = &simple_dir_operations;
2118 break;
2119 case S_IFLNK:
2120 /*
2121 * Must not load anything in the rbtree,
2122 * mpol_free_shared_policy will not be called.
2123 */
71fe804b 2124 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
2125 break;
2126 }
5b04c689
PE
2127 } else
2128 shmem_free_inode(sb);
1da177e4
LT
2129 return inode;
2130}
2131
0cd6144a
JW
2132bool shmem_mapping(struct address_space *mapping)
2133{
f0774d88
SL
2134 if (!mapping->host)
2135 return false;
2136
97b713ba 2137 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
2138}
2139
1da177e4 2140#ifdef CONFIG_TMPFS
92e1d5be 2141static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 2142static const struct inode_operations shmem_short_symlink_operations;
1da177e4 2143
6d9d88d0
JS
2144#ifdef CONFIG_TMPFS_XATTR
2145static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2146#else
2147#define shmem_initxattrs NULL
2148#endif
2149
1da177e4 2150static int
800d15a5
NP
2151shmem_write_begin(struct file *file, struct address_space *mapping,
2152 loff_t pos, unsigned len, unsigned flags,
2153 struct page **pagep, void **fsdata)
1da177e4 2154{
800d15a5 2155 struct inode *inode = mapping->host;
40e041a2 2156 struct shmem_inode_info *info = SHMEM_I(inode);
09cbfeaf 2157 pgoff_t index = pos >> PAGE_SHIFT;
40e041a2
DH
2158
2159 /* i_mutex is held by caller */
2160 if (unlikely(info->seals)) {
2161 if (info->seals & F_SEAL_WRITE)
2162 return -EPERM;
2163 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2164 return -EPERM;
2165 }
2166
9e18eb29 2167 return shmem_getpage(inode, index, pagep, SGP_WRITE);
800d15a5
NP
2168}
2169
2170static int
2171shmem_write_end(struct file *file, struct address_space *mapping,
2172 loff_t pos, unsigned len, unsigned copied,
2173 struct page *page, void *fsdata)
2174{
2175 struct inode *inode = mapping->host;
2176
d3602444
HD
2177 if (pos + copied > inode->i_size)
2178 i_size_write(inode, pos + copied);
2179
ec9516fb 2180 if (!PageUptodate(page)) {
800d8c63
KS
2181 struct page *head = compound_head(page);
2182 if (PageTransCompound(page)) {
2183 int i;
2184
2185 for (i = 0; i < HPAGE_PMD_NR; i++) {
2186 if (head + i == page)
2187 continue;
2188 clear_highpage(head + i);
2189 flush_dcache_page(head + i);
2190 }
2191 }
09cbfeaf
KS
2192 if (copied < PAGE_SIZE) {
2193 unsigned from = pos & (PAGE_SIZE - 1);
ec9516fb 2194 zero_user_segments(page, 0, from,
09cbfeaf 2195 from + copied, PAGE_SIZE);
ec9516fb 2196 }
800d8c63 2197 SetPageUptodate(head);
ec9516fb 2198 }
800d15a5 2199 set_page_dirty(page);
6746aff7 2200 unlock_page(page);
09cbfeaf 2201 put_page(page);
800d15a5 2202
800d15a5 2203 return copied;
1da177e4
LT
2204}
2205
2ba5bbed 2206static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 2207{
6e58e79d
AV
2208 struct file *file = iocb->ki_filp;
2209 struct inode *inode = file_inode(file);
1da177e4 2210 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
2211 pgoff_t index;
2212 unsigned long offset;
a0ee5ec5 2213 enum sgp_type sgp = SGP_READ;
f7c1d074 2214 int error = 0;
cb66a7a1 2215 ssize_t retval = 0;
6e58e79d 2216 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
2217
2218 /*
2219 * Might this read be for a stacking filesystem? Then when reading
2220 * holes of a sparse file, we actually need to allocate those pages,
2221 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2222 */
777eda2c 2223 if (!iter_is_iovec(to))
75edd345 2224 sgp = SGP_CACHE;
1da177e4 2225
09cbfeaf
KS
2226 index = *ppos >> PAGE_SHIFT;
2227 offset = *ppos & ~PAGE_MASK;
1da177e4
LT
2228
2229 for (;;) {
2230 struct page *page = NULL;
41ffe5d5
HD
2231 pgoff_t end_index;
2232 unsigned long nr, ret;
1da177e4
LT
2233 loff_t i_size = i_size_read(inode);
2234
09cbfeaf 2235 end_index = i_size >> PAGE_SHIFT;
1da177e4
LT
2236 if (index > end_index)
2237 break;
2238 if (index == end_index) {
09cbfeaf 2239 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2240 if (nr <= offset)
2241 break;
2242 }
2243
9e18eb29 2244 error = shmem_getpage(inode, index, &page, sgp);
6e58e79d
AV
2245 if (error) {
2246 if (error == -EINVAL)
2247 error = 0;
1da177e4
LT
2248 break;
2249 }
75edd345
HD
2250 if (page) {
2251 if (sgp == SGP_CACHE)
2252 set_page_dirty(page);
d3602444 2253 unlock_page(page);
75edd345 2254 }
1da177e4
LT
2255
2256 /*
2257 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 2258 * are called without i_mutex protection against truncate
1da177e4 2259 */
09cbfeaf 2260 nr = PAGE_SIZE;
1da177e4 2261 i_size = i_size_read(inode);
09cbfeaf 2262 end_index = i_size >> PAGE_SHIFT;
1da177e4 2263 if (index == end_index) {
09cbfeaf 2264 nr = i_size & ~PAGE_MASK;
1da177e4
LT
2265 if (nr <= offset) {
2266 if (page)
09cbfeaf 2267 put_page(page);
1da177e4
LT
2268 break;
2269 }
2270 }
2271 nr -= offset;
2272
2273 if (page) {
2274 /*
2275 * If users can be writing to this page using arbitrary
2276 * virtual addresses, take care about potential aliasing
2277 * before reading the page on the kernel side.
2278 */
2279 if (mapping_writably_mapped(mapping))
2280 flush_dcache_page(page);
2281 /*
2282 * Mark the page accessed if we read the beginning.
2283 */
2284 if (!offset)
2285 mark_page_accessed(page);
b5810039 2286 } else {
1da177e4 2287 page = ZERO_PAGE(0);
09cbfeaf 2288 get_page(page);
b5810039 2289 }
1da177e4
LT
2290
2291 /*
2292 * Ok, we have the page, and it's up-to-date, so
2293 * now we can copy it to user space...
1da177e4 2294 */
2ba5bbed 2295 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 2296 retval += ret;
1da177e4 2297 offset += ret;
09cbfeaf
KS
2298 index += offset >> PAGE_SHIFT;
2299 offset &= ~PAGE_MASK;
1da177e4 2300
09cbfeaf 2301 put_page(page);
2ba5bbed 2302 if (!iov_iter_count(to))
1da177e4 2303 break;
6e58e79d
AV
2304 if (ret < nr) {
2305 error = -EFAULT;
2306 break;
2307 }
1da177e4
LT
2308 cond_resched();
2309 }
2310
09cbfeaf 2311 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
6e58e79d
AV
2312 file_accessed(file);
2313 return retval ? retval : error;
1da177e4
LT
2314}
2315
220f2ac9
HD
2316/*
2317 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2318 */
2319static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 2320 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
2321{
2322 struct page *page;
2323 struct pagevec pvec;
2324 pgoff_t indices[PAGEVEC_SIZE];
2325 bool done = false;
2326 int i;
2327
2328 pagevec_init(&pvec, 0);
2329 pvec.nr = 1; /* start small: we may be there already */
2330 while (!done) {
0cd6144a 2331 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
2332 pvec.nr, pvec.pages, indices);
2333 if (!pvec.nr) {
965c8e59 2334 if (whence == SEEK_DATA)
220f2ac9
HD
2335 index = end;
2336 break;
2337 }
2338 for (i = 0; i < pvec.nr; i++, index++) {
2339 if (index < indices[i]) {
965c8e59 2340 if (whence == SEEK_HOLE) {
220f2ac9
HD
2341 done = true;
2342 break;
2343 }
2344 index = indices[i];
2345 }
2346 page = pvec.pages[i];
2347 if (page && !radix_tree_exceptional_entry(page)) {
2348 if (!PageUptodate(page))
2349 page = NULL;
2350 }
2351 if (index >= end ||
965c8e59
AM
2352 (page && whence == SEEK_DATA) ||
2353 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
2354 done = true;
2355 break;
2356 }
2357 }
0cd6144a 2358 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
2359 pagevec_release(&pvec);
2360 pvec.nr = PAGEVEC_SIZE;
2361 cond_resched();
2362 }
2363 return index;
2364}
2365
965c8e59 2366static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
2367{
2368 struct address_space *mapping = file->f_mapping;
2369 struct inode *inode = mapping->host;
2370 pgoff_t start, end;
2371 loff_t new_offset;
2372
965c8e59
AM
2373 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2374 return generic_file_llseek_size(file, offset, whence,
220f2ac9 2375 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 2376 inode_lock(inode);
220f2ac9
HD
2377 /* We're holding i_mutex so we can access i_size directly */
2378
2379 if (offset < 0)
2380 offset = -EINVAL;
2381 else if (offset >= inode->i_size)
2382 offset = -ENXIO;
2383 else {
09cbfeaf
KS
2384 start = offset >> PAGE_SHIFT;
2385 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
965c8e59 2386 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
09cbfeaf 2387 new_offset <<= PAGE_SHIFT;
220f2ac9
HD
2388 if (new_offset > offset) {
2389 if (new_offset < inode->i_size)
2390 offset = new_offset;
965c8e59 2391 else if (whence == SEEK_DATA)
220f2ac9
HD
2392 offset = -ENXIO;
2393 else
2394 offset = inode->i_size;
2395 }
2396 }
2397
387aae6f
HD
2398 if (offset >= 0)
2399 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 2400 inode_unlock(inode);
220f2ac9
HD
2401 return offset;
2402}
2403
05f65b5c
DH
2404/*
2405 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2406 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2407 */
2408#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2409#define LAST_SCAN 4 /* about 150ms max */
2410
2411static void shmem_tag_pins(struct address_space *mapping)
2412{
2413 struct radix_tree_iter iter;
2414 void **slot;
2415 pgoff_t start;
2416 struct page *page;
2417
2418 lru_add_drain();
2419 start = 0;
2420 rcu_read_lock();
2421
05f65b5c
DH
2422 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2423 page = radix_tree_deref_slot(slot);
2424 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
2425 if (radix_tree_deref_retry(page)) {
2426 slot = radix_tree_iter_retry(&iter);
2427 continue;
2428 }
05f65b5c
DH
2429 } else if (page_count(page) - page_mapcount(page) > 1) {
2430 spin_lock_irq(&mapping->tree_lock);
2431 radix_tree_tag_set(&mapping->page_tree, iter.index,
2432 SHMEM_TAG_PINNED);
2433 spin_unlock_irq(&mapping->tree_lock);
2434 }
2435
2436 if (need_resched()) {
2437 cond_resched_rcu();
7165092f 2438 slot = radix_tree_iter_next(&iter);
05f65b5c
DH
2439 }
2440 }
2441 rcu_read_unlock();
2442}
2443
2444/*
2445 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2446 * via get_user_pages(), drivers might have some pending I/O without any active
2447 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2448 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2449 * them to be dropped.
2450 * The caller must guarantee that no new user will acquire writable references
2451 * to those pages to avoid races.
2452 */
40e041a2
DH
2453static int shmem_wait_for_pins(struct address_space *mapping)
2454{
05f65b5c
DH
2455 struct radix_tree_iter iter;
2456 void **slot;
2457 pgoff_t start;
2458 struct page *page;
2459 int error, scan;
2460
2461 shmem_tag_pins(mapping);
2462
2463 error = 0;
2464 for (scan = 0; scan <= LAST_SCAN; scan++) {
2465 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2466 break;
2467
2468 if (!scan)
2469 lru_add_drain_all();
2470 else if (schedule_timeout_killable((HZ << scan) / 200))
2471 scan = LAST_SCAN;
2472
2473 start = 0;
2474 rcu_read_lock();
05f65b5c
DH
2475 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2476 start, SHMEM_TAG_PINNED) {
2477
2478 page = radix_tree_deref_slot(slot);
2479 if (radix_tree_exception(page)) {
2cf938aa
MW
2480 if (radix_tree_deref_retry(page)) {
2481 slot = radix_tree_iter_retry(&iter);
2482 continue;
2483 }
05f65b5c
DH
2484
2485 page = NULL;
2486 }
2487
2488 if (page &&
2489 page_count(page) - page_mapcount(page) != 1) {
2490 if (scan < LAST_SCAN)
2491 goto continue_resched;
2492
2493 /*
2494 * On the last scan, we clean up all those tags
2495 * we inserted; but make a note that we still
2496 * found pages pinned.
2497 */
2498 error = -EBUSY;
2499 }
2500
2501 spin_lock_irq(&mapping->tree_lock);
2502 radix_tree_tag_clear(&mapping->page_tree,
2503 iter.index, SHMEM_TAG_PINNED);
2504 spin_unlock_irq(&mapping->tree_lock);
2505continue_resched:
2506 if (need_resched()) {
2507 cond_resched_rcu();
7165092f 2508 slot = radix_tree_iter_next(&iter);
05f65b5c
DH
2509 }
2510 }
2511 rcu_read_unlock();
2512 }
2513
2514 return error;
40e041a2
DH
2515}
2516
2517#define F_ALL_SEALS (F_SEAL_SEAL | \
2518 F_SEAL_SHRINK | \
2519 F_SEAL_GROW | \
2520 F_SEAL_WRITE)
2521
2522int shmem_add_seals(struct file *file, unsigned int seals)
2523{
2524 struct inode *inode = file_inode(file);
2525 struct shmem_inode_info *info = SHMEM_I(inode);
2526 int error;
2527
2528 /*
2529 * SEALING
2530 * Sealing allows multiple parties to share a shmem-file but restrict
2531 * access to a specific subset of file operations. Seals can only be
2532 * added, but never removed. This way, mutually untrusted parties can
2533 * share common memory regions with a well-defined policy. A malicious
2534 * peer can thus never perform unwanted operations on a shared object.
2535 *
2536 * Seals are only supported on special shmem-files and always affect
2537 * the whole underlying inode. Once a seal is set, it may prevent some
2538 * kinds of access to the file. Currently, the following seals are
2539 * defined:
2540 * SEAL_SEAL: Prevent further seals from being set on this file
2541 * SEAL_SHRINK: Prevent the file from shrinking
2542 * SEAL_GROW: Prevent the file from growing
2543 * SEAL_WRITE: Prevent write access to the file
2544 *
2545 * As we don't require any trust relationship between two parties, we
2546 * must prevent seals from being removed. Therefore, sealing a file
2547 * only adds a given set of seals to the file, it never touches
2548 * existing seals. Furthermore, the "setting seals"-operation can be
2549 * sealed itself, which basically prevents any further seal from being
2550 * added.
2551 *
2552 * Semantics of sealing are only defined on volatile files. Only
2553 * anonymous shmem files support sealing. More importantly, seals are
2554 * never written to disk. Therefore, there's no plan to support it on
2555 * other file types.
2556 */
2557
2558 if (file->f_op != &shmem_file_operations)
2559 return -EINVAL;
2560 if (!(file->f_mode & FMODE_WRITE))
2561 return -EPERM;
2562 if (seals & ~(unsigned int)F_ALL_SEALS)
2563 return -EINVAL;
2564
5955102c 2565 inode_lock(inode);
40e041a2
DH
2566
2567 if (info->seals & F_SEAL_SEAL) {
2568 error = -EPERM;
2569 goto unlock;
2570 }
2571
2572 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2573 error = mapping_deny_writable(file->f_mapping);
2574 if (error)
2575 goto unlock;
2576
2577 error = shmem_wait_for_pins(file->f_mapping);
2578 if (error) {
2579 mapping_allow_writable(file->f_mapping);
2580 goto unlock;
2581 }
2582 }
2583
2584 info->seals |= seals;
2585 error = 0;
2586
2587unlock:
5955102c 2588 inode_unlock(inode);
40e041a2
DH
2589 return error;
2590}
2591EXPORT_SYMBOL_GPL(shmem_add_seals);
2592
2593int shmem_get_seals(struct file *file)
2594{
2595 if (file->f_op != &shmem_file_operations)
2596 return -EINVAL;
2597
2598 return SHMEM_I(file_inode(file))->seals;
2599}
2600EXPORT_SYMBOL_GPL(shmem_get_seals);
2601
2602long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2603{
2604 long error;
2605
2606 switch (cmd) {
2607 case F_ADD_SEALS:
2608 /* disallow upper 32bit */
2609 if (arg > UINT_MAX)
2610 return -EINVAL;
2611
2612 error = shmem_add_seals(file, arg);
2613 break;
2614 case F_GET_SEALS:
2615 error = shmem_get_seals(file);
2616 break;
2617 default:
2618 error = -EINVAL;
2619 break;
2620 }
2621
2622 return error;
2623}
2624
83e4fa9c
HD
2625static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2626 loff_t len)
2627{
496ad9aa 2628 struct inode *inode = file_inode(file);
e2d12e22 2629 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2630 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2631 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2632 pgoff_t start, index, end;
2633 int error;
83e4fa9c 2634
13ace4d0
HD
2635 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2636 return -EOPNOTSUPP;
2637
5955102c 2638 inode_lock(inode);
83e4fa9c
HD
2639
2640 if (mode & FALLOC_FL_PUNCH_HOLE) {
2641 struct address_space *mapping = file->f_mapping;
2642 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2643 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2645
40e041a2
DH
2646 /* protected by i_mutex */
2647 if (info->seals & F_SEAL_WRITE) {
2648 error = -EPERM;
2649 goto out;
2650 }
2651
8e205f77 2652 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2653 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2654 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2655 spin_lock(&inode->i_lock);
2656 inode->i_private = &shmem_falloc;
2657 spin_unlock(&inode->i_lock);
2658
83e4fa9c
HD
2659 if ((u64)unmap_end > (u64)unmap_start)
2660 unmap_mapping_range(mapping, unmap_start,
2661 1 + unmap_end - unmap_start, 0);
2662 shmem_truncate_range(inode, offset, offset + len - 1);
2663 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2664
2665 spin_lock(&inode->i_lock);
2666 inode->i_private = NULL;
2667 wake_up_all(&shmem_falloc_waitq);
2668 spin_unlock(&inode->i_lock);
83e4fa9c 2669 error = 0;
8e205f77 2670 goto out;
e2d12e22
HD
2671 }
2672
2673 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2674 error = inode_newsize_ok(inode, offset + len);
2675 if (error)
2676 goto out;
2677
40e041a2
DH
2678 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2679 error = -EPERM;
2680 goto out;
2681 }
2682
09cbfeaf
KS
2683 start = offset >> PAGE_SHIFT;
2684 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
e2d12e22
HD
2685 /* Try to avoid a swapstorm if len is impossible to satisfy */
2686 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2687 error = -ENOSPC;
2688 goto out;
83e4fa9c
HD
2689 }
2690
8e205f77 2691 shmem_falloc.waitq = NULL;
1aac1400
HD
2692 shmem_falloc.start = start;
2693 shmem_falloc.next = start;
2694 shmem_falloc.nr_falloced = 0;
2695 shmem_falloc.nr_unswapped = 0;
2696 spin_lock(&inode->i_lock);
2697 inode->i_private = &shmem_falloc;
2698 spin_unlock(&inode->i_lock);
2699
e2d12e22
HD
2700 for (index = start; index < end; index++) {
2701 struct page *page;
2702
2703 /*
2704 * Good, the fallocate(2) manpage permits EINTR: we may have
2705 * been interrupted because we are using up too much memory.
2706 */
2707 if (signal_pending(current))
2708 error = -EINTR;
1aac1400
HD
2709 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2710 error = -ENOMEM;
e2d12e22 2711 else
9e18eb29 2712 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
e2d12e22 2713 if (error) {
1635f6a7 2714 /* Remove the !PageUptodate pages we added */
7f556567
HD
2715 if (index > start) {
2716 shmem_undo_range(inode,
2717 (loff_t)start << PAGE_SHIFT,
2718 ((loff_t)index << PAGE_SHIFT) - 1, true);
2719 }
1aac1400 2720 goto undone;
e2d12e22
HD
2721 }
2722
1aac1400
HD
2723 /*
2724 * Inform shmem_writepage() how far we have reached.
2725 * No need for lock or barrier: we have the page lock.
2726 */
2727 shmem_falloc.next++;
2728 if (!PageUptodate(page))
2729 shmem_falloc.nr_falloced++;
2730
e2d12e22 2731 /*
1635f6a7
HD
2732 * If !PageUptodate, leave it that way so that freeable pages
2733 * can be recognized if we need to rollback on error later.
2734 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2735 * than free the pages we are allocating (and SGP_CACHE pages
2736 * might still be clean: we now need to mark those dirty too).
2737 */
2738 set_page_dirty(page);
2739 unlock_page(page);
09cbfeaf 2740 put_page(page);
e2d12e22
HD
2741 cond_resched();
2742 }
2743
2744 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2745 i_size_write(inode, offset + len);
078cd827 2746 inode->i_ctime = current_time(inode);
1aac1400
HD
2747undone:
2748 spin_lock(&inode->i_lock);
2749 inode->i_private = NULL;
2750 spin_unlock(&inode->i_lock);
e2d12e22 2751out:
5955102c 2752 inode_unlock(inode);
83e4fa9c
HD
2753 return error;
2754}
2755
726c3342 2756static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2757{
726c3342 2758 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2759
2760 buf->f_type = TMPFS_MAGIC;
09cbfeaf 2761 buf->f_bsize = PAGE_SIZE;
1da177e4 2762 buf->f_namelen = NAME_MAX;
0edd73b3 2763 if (sbinfo->max_blocks) {
1da177e4 2764 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2765 buf->f_bavail =
2766 buf->f_bfree = sbinfo->max_blocks -
2767 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2768 }
2769 if (sbinfo->max_inodes) {
1da177e4
LT
2770 buf->f_files = sbinfo->max_inodes;
2771 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2772 }
2773 /* else leave those fields 0 like simple_statfs */
2774 return 0;
2775}
2776
2777/*
2778 * File creation. Allocate an inode, and we're done..
2779 */
2780static int
1a67aafb 2781shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2782{
0b0a0806 2783 struct inode *inode;
1da177e4
LT
2784 int error = -ENOSPC;
2785
454abafe 2786 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2787 if (inode) {
feda821e
CH
2788 error = simple_acl_create(dir, inode);
2789 if (error)
2790 goto out_iput;
2a7dba39 2791 error = security_inode_init_security(inode, dir,
9d8f13ba 2792 &dentry->d_name,
6d9d88d0 2793 shmem_initxattrs, NULL);
feda821e
CH
2794 if (error && error != -EOPNOTSUPP)
2795 goto out_iput;
37ec43cd 2796
718deb6b 2797 error = 0;
1da177e4 2798 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2799 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
2800 d_instantiate(dentry, inode);
2801 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2802 }
2803 return error;
feda821e
CH
2804out_iput:
2805 iput(inode);
2806 return error;
1da177e4
LT
2807}
2808
60545d0d
AV
2809static int
2810shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2811{
2812 struct inode *inode;
2813 int error = -ENOSPC;
2814
2815 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2816 if (inode) {
2817 error = security_inode_init_security(inode, dir,
2818 NULL,
2819 shmem_initxattrs, NULL);
feda821e
CH
2820 if (error && error != -EOPNOTSUPP)
2821 goto out_iput;
2822 error = simple_acl_create(dir, inode);
2823 if (error)
2824 goto out_iput;
60545d0d
AV
2825 d_tmpfile(dentry, inode);
2826 }
2827 return error;
feda821e
CH
2828out_iput:
2829 iput(inode);
2830 return error;
60545d0d
AV
2831}
2832
18bb1db3 2833static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2834{
2835 int error;
2836
2837 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2838 return error;
d8c76e6f 2839 inc_nlink(dir);
1da177e4
LT
2840 return 0;
2841}
2842
4acdaf27 2843static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2844 bool excl)
1da177e4
LT
2845{
2846 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2847}
2848
2849/*
2850 * Link a file..
2851 */
2852static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2853{
75c3cfa8 2854 struct inode *inode = d_inode(old_dentry);
5b04c689 2855 int ret;
1da177e4
LT
2856
2857 /*
2858 * No ordinary (disk based) filesystem counts links as inodes;
2859 * but each new link needs a new dentry, pinning lowmem, and
2860 * tmpfs dentries cannot be pruned until they are unlinked.
2861 */
5b04c689
PE
2862 ret = shmem_reserve_inode(inode->i_sb);
2863 if (ret)
2864 goto out;
1da177e4
LT
2865
2866 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 2867 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
d8c76e6f 2868 inc_nlink(inode);
7de9c6ee 2869 ihold(inode); /* New dentry reference */
1da177e4
LT
2870 dget(dentry); /* Extra pinning count for the created dentry */
2871 d_instantiate(dentry, inode);
5b04c689
PE
2872out:
2873 return ret;
1da177e4
LT
2874}
2875
2876static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2877{
75c3cfa8 2878 struct inode *inode = d_inode(dentry);
1da177e4 2879
5b04c689
PE
2880 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2881 shmem_free_inode(inode->i_sb);
1da177e4
LT
2882
2883 dir->i_size -= BOGO_DIRENT_SIZE;
078cd827 2884 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
9a53c3a7 2885 drop_nlink(inode);
1da177e4
LT
2886 dput(dentry); /* Undo the count from "create" - this does all the work */
2887 return 0;
2888}
2889
2890static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2891{
2892 if (!simple_empty(dentry))
2893 return -ENOTEMPTY;
2894
75c3cfa8 2895 drop_nlink(d_inode(dentry));
9a53c3a7 2896 drop_nlink(dir);
1da177e4
LT
2897 return shmem_unlink(dir, dentry);
2898}
2899
37456771
MS
2900static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2901{
e36cb0b8
DH
2902 bool old_is_dir = d_is_dir(old_dentry);
2903 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2904
2905 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2906 if (old_is_dir) {
2907 drop_nlink(old_dir);
2908 inc_nlink(new_dir);
2909 } else {
2910 drop_nlink(new_dir);
2911 inc_nlink(old_dir);
2912 }
2913 }
2914 old_dir->i_ctime = old_dir->i_mtime =
2915 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8 2916 d_inode(old_dentry)->i_ctime =
078cd827 2917 d_inode(new_dentry)->i_ctime = current_time(old_dir);
37456771
MS
2918
2919 return 0;
2920}
2921
46fdb794
MS
2922static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2923{
2924 struct dentry *whiteout;
2925 int error;
2926
2927 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2928 if (!whiteout)
2929 return -ENOMEM;
2930
2931 error = shmem_mknod(old_dir, whiteout,
2932 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2933 dput(whiteout);
2934 if (error)
2935 return error;
2936
2937 /*
2938 * Cheat and hash the whiteout while the old dentry is still in
2939 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2940 *
2941 * d_lookup() will consistently find one of them at this point,
2942 * not sure which one, but that isn't even important.
2943 */
2944 d_rehash(whiteout);
2945 return 0;
2946}
2947
1da177e4
LT
2948/*
2949 * The VFS layer already does all the dentry stuff for rename,
2950 * we just have to decrement the usage count for the target if
2951 * it exists so that the VFS layer correctly free's it when it
2952 * gets overwritten.
2953 */
3b69ff51 2954static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2955{
75c3cfa8 2956 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2957 int they_are_dirs = S_ISDIR(inode->i_mode);
2958
46fdb794 2959 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2960 return -EINVAL;
2961
37456771
MS
2962 if (flags & RENAME_EXCHANGE)
2963 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2964
1da177e4
LT
2965 if (!simple_empty(new_dentry))
2966 return -ENOTEMPTY;
2967
46fdb794
MS
2968 if (flags & RENAME_WHITEOUT) {
2969 int error;
2970
2971 error = shmem_whiteout(old_dir, old_dentry);
2972 if (error)
2973 return error;
2974 }
2975
75c3cfa8 2976 if (d_really_is_positive(new_dentry)) {
1da177e4 2977 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2978 if (they_are_dirs) {
75c3cfa8 2979 drop_nlink(d_inode(new_dentry));
9a53c3a7 2980 drop_nlink(old_dir);
b928095b 2981 }
1da177e4 2982 } else if (they_are_dirs) {
9a53c3a7 2983 drop_nlink(old_dir);
d8c76e6f 2984 inc_nlink(new_dir);
1da177e4
LT
2985 }
2986
2987 old_dir->i_size -= BOGO_DIRENT_SIZE;
2988 new_dir->i_size += BOGO_DIRENT_SIZE;
2989 old_dir->i_ctime = old_dir->i_mtime =
2990 new_dir->i_ctime = new_dir->i_mtime =
078cd827 2991 inode->i_ctime = current_time(old_dir);
1da177e4
LT
2992 return 0;
2993}
2994
2995static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2996{
2997 int error;
2998 int len;
2999 struct inode *inode;
9276aad6 3000 struct page *page;
1da177e4
LT
3001 struct shmem_inode_info *info;
3002
3003 len = strlen(symname) + 1;
09cbfeaf 3004 if (len > PAGE_SIZE)
1da177e4
LT
3005 return -ENAMETOOLONG;
3006
454abafe 3007 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
3008 if (!inode)
3009 return -ENOSPC;
3010
9d8f13ba 3011 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 3012 shmem_initxattrs, NULL);
570bc1c2
SS
3013 if (error) {
3014 if (error != -EOPNOTSUPP) {
3015 iput(inode);
3016 return error;
3017 }
3018 error = 0;
3019 }
3020
1da177e4
LT
3021 info = SHMEM_I(inode);
3022 inode->i_size = len-1;
69f07ec9 3023 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
3024 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3025 if (!inode->i_link) {
69f07ec9
HD
3026 iput(inode);
3027 return -ENOMEM;
3028 }
3029 inode->i_op = &shmem_short_symlink_operations;
1da177e4 3030 } else {
e8ecde25 3031 inode_nohighmem(inode);
9e18eb29 3032 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1da177e4
LT
3033 if (error) {
3034 iput(inode);
3035 return error;
3036 }
14fcc23f 3037 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 3038 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 3039 memcpy(page_address(page), symname, len);
ec9516fb 3040 SetPageUptodate(page);
1da177e4 3041 set_page_dirty(page);
6746aff7 3042 unlock_page(page);
09cbfeaf 3043 put_page(page);
1da177e4 3044 }
1da177e4 3045 dir->i_size += BOGO_DIRENT_SIZE;
078cd827 3046 dir->i_ctime = dir->i_mtime = current_time(dir);
1da177e4
LT
3047 d_instantiate(dentry, inode);
3048 dget(dentry);
3049 return 0;
3050}
3051
fceef393 3052static void shmem_put_link(void *arg)
1da177e4 3053{
fceef393
AV
3054 mark_page_accessed(arg);
3055 put_page(arg);
1da177e4
LT
3056}
3057
6b255391 3058static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
3059 struct inode *inode,
3060 struct delayed_call *done)
1da177e4 3061{
1da177e4 3062 struct page *page = NULL;
6b255391 3063 int error;
6a6c9904
AV
3064 if (!dentry) {
3065 page = find_get_page(inode->i_mapping, 0);
3066 if (!page)
3067 return ERR_PTR(-ECHILD);
3068 if (!PageUptodate(page)) {
3069 put_page(page);
3070 return ERR_PTR(-ECHILD);
3071 }
3072 } else {
9e18eb29 3073 error = shmem_getpage(inode, 0, &page, SGP_READ);
6a6c9904
AV
3074 if (error)
3075 return ERR_PTR(error);
3076 unlock_page(page);
3077 }
fceef393 3078 set_delayed_call(done, shmem_put_link, page);
21fc61c7 3079 return page_address(page);
1da177e4
LT
3080}
3081
b09e0fa4 3082#ifdef CONFIG_TMPFS_XATTR
46711810 3083/*
b09e0fa4
EP
3084 * Superblocks without xattr inode operations may get some security.* xattr
3085 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
3086 * like ACLs, we also need to implement the security.* handlers at
3087 * filesystem level, though.
3088 */
3089
6d9d88d0
JS
3090/*
3091 * Callback for security_inode_init_security() for acquiring xattrs.
3092 */
3093static int shmem_initxattrs(struct inode *inode,
3094 const struct xattr *xattr_array,
3095 void *fs_info)
3096{
3097 struct shmem_inode_info *info = SHMEM_I(inode);
3098 const struct xattr *xattr;
38f38657 3099 struct simple_xattr *new_xattr;
6d9d88d0
JS
3100 size_t len;
3101
3102 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 3103 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
3104 if (!new_xattr)
3105 return -ENOMEM;
3106
3107 len = strlen(xattr->name) + 1;
3108 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3109 GFP_KERNEL);
3110 if (!new_xattr->name) {
3111 kfree(new_xattr);
3112 return -ENOMEM;
3113 }
3114
3115 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3116 XATTR_SECURITY_PREFIX_LEN);
3117 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3118 xattr->name, len);
3119
38f38657 3120 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
3121 }
3122
3123 return 0;
3124}
3125
aa7c5241 3126static int shmem_xattr_handler_get(const struct xattr_handler *handler,
b296821a
AV
3127 struct dentry *unused, struct inode *inode,
3128 const char *name, void *buffer, size_t size)
b09e0fa4 3129{
b296821a 3130 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3131
aa7c5241 3132 name = xattr_full_name(handler, name);
38f38657 3133 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
3134}
3135
aa7c5241 3136static int shmem_xattr_handler_set(const struct xattr_handler *handler,
59301226
AV
3137 struct dentry *unused, struct inode *inode,
3138 const char *name, const void *value,
3139 size_t size, int flags)
b09e0fa4 3140{
59301226 3141 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 3142
aa7c5241 3143 name = xattr_full_name(handler, name);
38f38657 3144 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
3145}
3146
aa7c5241
AG
3147static const struct xattr_handler shmem_security_xattr_handler = {
3148 .prefix = XATTR_SECURITY_PREFIX,
3149 .get = shmem_xattr_handler_get,
3150 .set = shmem_xattr_handler_set,
3151};
b09e0fa4 3152
aa7c5241
AG
3153static const struct xattr_handler shmem_trusted_xattr_handler = {
3154 .prefix = XATTR_TRUSTED_PREFIX,
3155 .get = shmem_xattr_handler_get,
3156 .set = shmem_xattr_handler_set,
3157};
b09e0fa4 3158
aa7c5241
AG
3159static const struct xattr_handler *shmem_xattr_handlers[] = {
3160#ifdef CONFIG_TMPFS_POSIX_ACL
3161 &posix_acl_access_xattr_handler,
3162 &posix_acl_default_xattr_handler,
3163#endif
3164 &shmem_security_xattr_handler,
3165 &shmem_trusted_xattr_handler,
3166 NULL
3167};
b09e0fa4
EP
3168
3169static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3170{
75c3cfa8 3171 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 3172 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
3173}
3174#endif /* CONFIG_TMPFS_XATTR */
3175
69f07ec9 3176static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 3177 .readlink = generic_readlink,
6b255391 3178 .get_link = simple_get_link,
b09e0fa4 3179#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3180 .listxattr = shmem_listxattr,
b09e0fa4
EP
3181#endif
3182};
3183
3184static const struct inode_operations shmem_symlink_inode_operations = {
3185 .readlink = generic_readlink,
6b255391 3186 .get_link = shmem_get_link,
b09e0fa4 3187#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3188 .listxattr = shmem_listxattr,
39f0247d 3189#endif
b09e0fa4 3190};
39f0247d 3191
91828a40
DG
3192static struct dentry *shmem_get_parent(struct dentry *child)
3193{
3194 return ERR_PTR(-ESTALE);
3195}
3196
3197static int shmem_match(struct inode *ino, void *vfh)
3198{
3199 __u32 *fh = vfh;
3200 __u64 inum = fh[2];
3201 inum = (inum << 32) | fh[1];
3202 return ino->i_ino == inum && fh[0] == ino->i_generation;
3203}
3204
480b116c
CH
3205static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3206 struct fid *fid, int fh_len, int fh_type)
91828a40 3207{
91828a40 3208 struct inode *inode;
480b116c 3209 struct dentry *dentry = NULL;
35c2a7f4 3210 u64 inum;
480b116c
CH
3211
3212 if (fh_len < 3)
3213 return NULL;
91828a40 3214
35c2a7f4
HD
3215 inum = fid->raw[2];
3216 inum = (inum << 32) | fid->raw[1];
3217
480b116c
CH
3218 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3219 shmem_match, fid->raw);
91828a40 3220 if (inode) {
480b116c 3221 dentry = d_find_alias(inode);
91828a40
DG
3222 iput(inode);
3223 }
3224
480b116c 3225 return dentry;
91828a40
DG
3226}
3227
b0b0382b
AV
3228static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3229 struct inode *parent)
91828a40 3230{
5fe0c237
AK
3231 if (*len < 3) {
3232 *len = 3;
94e07a75 3233 return FILEID_INVALID;
5fe0c237 3234 }
91828a40 3235
1d3382cb 3236 if (inode_unhashed(inode)) {
91828a40
DG
3237 /* Unfortunately insert_inode_hash is not idempotent,
3238 * so as we hash inodes here rather than at creation
3239 * time, we need a lock to ensure we only try
3240 * to do it once
3241 */
3242 static DEFINE_SPINLOCK(lock);
3243 spin_lock(&lock);
1d3382cb 3244 if (inode_unhashed(inode))
91828a40
DG
3245 __insert_inode_hash(inode,
3246 inode->i_ino + inode->i_generation);
3247 spin_unlock(&lock);
3248 }
3249
3250 fh[0] = inode->i_generation;
3251 fh[1] = inode->i_ino;
3252 fh[2] = ((__u64)inode->i_ino) >> 32;
3253
3254 *len = 3;
3255 return 1;
3256}
3257
39655164 3258static const struct export_operations shmem_export_ops = {
91828a40 3259 .get_parent = shmem_get_parent,
91828a40 3260 .encode_fh = shmem_encode_fh,
480b116c 3261 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
3262};
3263
680d794b 3264static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3265 bool remount)
1da177e4
LT
3266{
3267 char *this_char, *value, *rest;
49cd0a5c 3268 struct mempolicy *mpol = NULL;
8751e039
EB
3269 uid_t uid;
3270 gid_t gid;
1da177e4 3271
b00dc3ad
HD
3272 while (options != NULL) {
3273 this_char = options;
3274 for (;;) {
3275 /*
3276 * NUL-terminate this option: unfortunately,
3277 * mount options form a comma-separated list,
3278 * but mpol's nodelist may also contain commas.
3279 */
3280 options = strchr(options, ',');
3281 if (options == NULL)
3282 break;
3283 options++;
3284 if (!isdigit(*options)) {
3285 options[-1] = '\0';
3286 break;
3287 }
3288 }
1da177e4
LT
3289 if (!*this_char)
3290 continue;
3291 if ((value = strchr(this_char,'=')) != NULL) {
3292 *value++ = 0;
3293 } else {
1170532b
JP
3294 pr_err("tmpfs: No value for mount option '%s'\n",
3295 this_char);
49cd0a5c 3296 goto error;
1da177e4
LT
3297 }
3298
3299 if (!strcmp(this_char,"size")) {
3300 unsigned long long size;
3301 size = memparse(value,&rest);
3302 if (*rest == '%') {
3303 size <<= PAGE_SHIFT;
3304 size *= totalram_pages;
3305 do_div(size, 100);
3306 rest++;
3307 }
3308 if (*rest)
3309 goto bad_val;
680d794b 3310 sbinfo->max_blocks =
09cbfeaf 3311 DIV_ROUND_UP(size, PAGE_SIZE);
1da177e4 3312 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 3313 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
3314 if (*rest)
3315 goto bad_val;
3316 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 3317 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
3318 if (*rest)
3319 goto bad_val;
3320 } else if (!strcmp(this_char,"mode")) {
680d794b 3321 if (remount)
1da177e4 3322 continue;
680d794b 3323 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
3324 if (*rest)
3325 goto bad_val;
3326 } else if (!strcmp(this_char,"uid")) {
680d794b 3327 if (remount)
1da177e4 3328 continue;
8751e039 3329 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3330 if (*rest)
3331 goto bad_val;
8751e039
EB
3332 sbinfo->uid = make_kuid(current_user_ns(), uid);
3333 if (!uid_valid(sbinfo->uid))
3334 goto bad_val;
1da177e4 3335 } else if (!strcmp(this_char,"gid")) {
680d794b 3336 if (remount)
1da177e4 3337 continue;
8751e039 3338 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
3339 if (*rest)
3340 goto bad_val;
8751e039
EB
3341 sbinfo->gid = make_kgid(current_user_ns(), gid);
3342 if (!gid_valid(sbinfo->gid))
3343 goto bad_val;
e496cf3d 3344#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3345 } else if (!strcmp(this_char, "huge")) {
3346 int huge;
3347 huge = shmem_parse_huge(value);
3348 if (huge < 0)
3349 goto bad_val;
3350 if (!has_transparent_hugepage() &&
3351 huge != SHMEM_HUGE_NEVER)
3352 goto bad_val;
3353 sbinfo->huge = huge;
3354#endif
3355#ifdef CONFIG_NUMA
7339ff83 3356 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
3357 mpol_put(mpol);
3358 mpol = NULL;
3359 if (mpol_parse_str(value, &mpol))
7339ff83 3360 goto bad_val;
5a6e75f8 3361#endif
1da177e4 3362 } else {
1170532b 3363 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 3364 goto error;
1da177e4
LT
3365 }
3366 }
49cd0a5c 3367 sbinfo->mpol = mpol;
1da177e4
LT
3368 return 0;
3369
3370bad_val:
1170532b 3371 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 3372 value, this_char);
49cd0a5c
GT
3373error:
3374 mpol_put(mpol);
1da177e4
LT
3375 return 1;
3376
3377}
3378
3379static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3380{
3381 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 3382 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
3383 unsigned long inodes;
3384 int error = -EINVAL;
3385
5f00110f 3386 config.mpol = NULL;
680d794b 3387 if (shmem_parse_options(data, &config, true))
0edd73b3 3388 return error;
1da177e4 3389
0edd73b3 3390 spin_lock(&sbinfo->stat_lock);
0edd73b3 3391 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 3392 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 3393 goto out;
680d794b 3394 if (config.max_inodes < inodes)
0edd73b3
HD
3395 goto out;
3396 /*
54af6042 3397 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
3398 * but we must separately disallow unlimited->limited, because
3399 * in that case we have no record of how much is already in use.
3400 */
680d794b 3401 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 3402 goto out;
680d794b 3403 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
3404 goto out;
3405
3406 error = 0;
5a6e75f8 3407 sbinfo->huge = config.huge;
680d794b 3408 sbinfo->max_blocks = config.max_blocks;
680d794b 3409 sbinfo->max_inodes = config.max_inodes;
3410 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 3411
5f00110f
GT
3412 /*
3413 * Preserve previous mempolicy unless mpol remount option was specified.
3414 */
3415 if (config.mpol) {
3416 mpol_put(sbinfo->mpol);
3417 sbinfo->mpol = config.mpol; /* transfers initial ref */
3418 }
0edd73b3
HD
3419out:
3420 spin_unlock(&sbinfo->stat_lock);
3421 return error;
1da177e4 3422}
680d794b 3423
34c80b1d 3424static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 3425{
34c80b1d 3426 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 3427
3428 if (sbinfo->max_blocks != shmem_default_max_blocks())
3429 seq_printf(seq, ",size=%luk",
09cbfeaf 3430 sbinfo->max_blocks << (PAGE_SHIFT - 10));
680d794b 3431 if (sbinfo->max_inodes != shmem_default_max_inodes())
3432 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3433 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 3434 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
3435 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3436 seq_printf(seq, ",uid=%u",
3437 from_kuid_munged(&init_user_ns, sbinfo->uid));
3438 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3439 seq_printf(seq, ",gid=%u",
3440 from_kgid_munged(&init_user_ns, sbinfo->gid));
e496cf3d 3441#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3442 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3443 if (sbinfo->huge)
3444 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3445#endif
71fe804b 3446 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 3447 return 0;
3448}
9183df25
DH
3449
3450#define MFD_NAME_PREFIX "memfd:"
3451#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3452#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3453
3454#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3455
3456SYSCALL_DEFINE2(memfd_create,
3457 const char __user *, uname,
3458 unsigned int, flags)
3459{
3460 struct shmem_inode_info *info;
3461 struct file *file;
3462 int fd, error;
3463 char *name;
3464 long len;
3465
3466 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3467 return -EINVAL;
3468
3469 /* length includes terminating zero */
3470 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3471 if (len <= 0)
3472 return -EFAULT;
3473 if (len > MFD_NAME_MAX_LEN + 1)
3474 return -EINVAL;
3475
3476 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3477 if (!name)
3478 return -ENOMEM;
3479
3480 strcpy(name, MFD_NAME_PREFIX);
3481 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3482 error = -EFAULT;
3483 goto err_name;
3484 }
3485
3486 /* terminating-zero may have changed after strnlen_user() returned */
3487 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3488 error = -EFAULT;
3489 goto err_name;
3490 }
3491
3492 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3493 if (fd < 0) {
3494 error = fd;
3495 goto err_name;
3496 }
3497
3498 file = shmem_file_setup(name, 0, VM_NORESERVE);
3499 if (IS_ERR(file)) {
3500 error = PTR_ERR(file);
3501 goto err_fd;
3502 }
3503 info = SHMEM_I(file_inode(file));
3504 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3505 file->f_flags |= O_RDWR | O_LARGEFILE;
3506 if (flags & MFD_ALLOW_SEALING)
3507 info->seals &= ~F_SEAL_SEAL;
3508
3509 fd_install(fd, file);
3510 kfree(name);
3511 return fd;
3512
3513err_fd:
3514 put_unused_fd(fd);
3515err_name:
3516 kfree(name);
3517 return error;
3518}
3519
680d794b 3520#endif /* CONFIG_TMPFS */
1da177e4
LT
3521
3522static void shmem_put_super(struct super_block *sb)
3523{
602586a8
HD
3524 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3525
3526 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3527 mpol_put(sbinfo->mpol);
602586a8 3528 kfree(sbinfo);
1da177e4
LT
3529 sb->s_fs_info = NULL;
3530}
3531
2b2af54a 3532int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3533{
3534 struct inode *inode;
0edd73b3 3535 struct shmem_sb_info *sbinfo;
680d794b 3536 int err = -ENOMEM;
3537
3538 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3539 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3540 L1_CACHE_BYTES), GFP_KERNEL);
3541 if (!sbinfo)
3542 return -ENOMEM;
3543
680d794b 3544 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3545 sbinfo->uid = current_fsuid();
3546 sbinfo->gid = current_fsgid();
680d794b 3547 sb->s_fs_info = sbinfo;
1da177e4 3548
0edd73b3 3549#ifdef CONFIG_TMPFS
1da177e4
LT
3550 /*
3551 * Per default we only allow half of the physical ram per
3552 * tmpfs instance, limiting inodes to one per page of lowmem;
3553 * but the internal instance is left unlimited.
3554 */
ca4e0519 3555 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 3556 sbinfo->max_blocks = shmem_default_max_blocks();
3557 sbinfo->max_inodes = shmem_default_max_inodes();
3558 if (shmem_parse_options(data, sbinfo, false)) {
3559 err = -EINVAL;
3560 goto failed;
3561 }
ca4e0519
AV
3562 } else {
3563 sb->s_flags |= MS_NOUSER;
1da177e4 3564 }
91828a40 3565 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3566 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3567#else
3568 sb->s_flags |= MS_NOUSER;
3569#endif
3570
0edd73b3 3571 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3572 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3573 goto failed;
680d794b 3574 sbinfo->free_inodes = sbinfo->max_inodes;
779750d2
KS
3575 spin_lock_init(&sbinfo->shrinklist_lock);
3576 INIT_LIST_HEAD(&sbinfo->shrinklist);
0edd73b3 3577
285b2c4f 3578 sb->s_maxbytes = MAX_LFS_FILESIZE;
09cbfeaf
KS
3579 sb->s_blocksize = PAGE_SIZE;
3580 sb->s_blocksize_bits = PAGE_SHIFT;
1da177e4
LT
3581 sb->s_magic = TMPFS_MAGIC;
3582 sb->s_op = &shmem_ops;
cfd95a9c 3583 sb->s_time_gran = 1;
b09e0fa4 3584#ifdef CONFIG_TMPFS_XATTR
39f0247d 3585 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3586#endif
3587#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3588 sb->s_flags |= MS_POSIXACL;
3589#endif
0edd73b3 3590
454abafe 3591 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3592 if (!inode)
3593 goto failed;
680d794b 3594 inode->i_uid = sbinfo->uid;
3595 inode->i_gid = sbinfo->gid;
318ceed0
AV
3596 sb->s_root = d_make_root(inode);
3597 if (!sb->s_root)
48fde701 3598 goto failed;
1da177e4
LT
3599 return 0;
3600
1da177e4
LT
3601failed:
3602 shmem_put_super(sb);
3603 return err;
3604}
3605
fcc234f8 3606static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3607
3608static struct inode *shmem_alloc_inode(struct super_block *sb)
3609{
41ffe5d5
HD
3610 struct shmem_inode_info *info;
3611 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3612 if (!info)
1da177e4 3613 return NULL;
41ffe5d5 3614 return &info->vfs_inode;
1da177e4
LT
3615}
3616
41ffe5d5 3617static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3618{
3619 struct inode *inode = container_of(head, struct inode, i_rcu);
84e710da
AV
3620 if (S_ISLNK(inode->i_mode))
3621 kfree(inode->i_link);
fa0d7e3d
NP
3622 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3623}
3624
1da177e4
LT
3625static void shmem_destroy_inode(struct inode *inode)
3626{
09208d15 3627 if (S_ISREG(inode->i_mode))
1da177e4 3628 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3629 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3630}
3631
41ffe5d5 3632static void shmem_init_inode(void *foo)
1da177e4 3633{
41ffe5d5
HD
3634 struct shmem_inode_info *info = foo;
3635 inode_init_once(&info->vfs_inode);
1da177e4
LT
3636}
3637
41ffe5d5 3638static int shmem_init_inodecache(void)
1da177e4
LT
3639{
3640 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3641 sizeof(struct shmem_inode_info),
5d097056 3642 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3643 return 0;
3644}
3645
41ffe5d5 3646static void shmem_destroy_inodecache(void)
1da177e4 3647{
1a1d92c1 3648 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3649}
3650
f5e54d6e 3651static const struct address_space_operations shmem_aops = {
1da177e4 3652 .writepage = shmem_writepage,
76719325 3653 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3654#ifdef CONFIG_TMPFS
800d15a5
NP
3655 .write_begin = shmem_write_begin,
3656 .write_end = shmem_write_end,
1da177e4 3657#endif
1c93923c 3658#ifdef CONFIG_MIGRATION
304dbdb7 3659 .migratepage = migrate_page,
1c93923c 3660#endif
aa261f54 3661 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3662};
3663
15ad7cdc 3664static const struct file_operations shmem_file_operations = {
1da177e4 3665 .mmap = shmem_mmap,
c01d5b30 3666 .get_unmapped_area = shmem_get_unmapped_area,
1da177e4 3667#ifdef CONFIG_TMPFS
220f2ac9 3668 .llseek = shmem_file_llseek,
2ba5bbed 3669 .read_iter = shmem_file_read_iter,
8174202b 3670 .write_iter = generic_file_write_iter,
1b061d92 3671 .fsync = noop_fsync,
82c156f8 3672 .splice_read = generic_file_splice_read,
f6cb85d0 3673 .splice_write = iter_file_splice_write,
83e4fa9c 3674 .fallocate = shmem_fallocate,
1da177e4
LT
3675#endif
3676};
3677
92e1d5be 3678static const struct inode_operations shmem_inode_operations = {
44a30220 3679 .getattr = shmem_getattr,
94c1e62d 3680 .setattr = shmem_setattr,
b09e0fa4 3681#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3682 .listxattr = shmem_listxattr,
feda821e 3683 .set_acl = simple_set_acl,
b09e0fa4 3684#endif
1da177e4
LT
3685};
3686
92e1d5be 3687static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3688#ifdef CONFIG_TMPFS
3689 .create = shmem_create,
3690 .lookup = simple_lookup,
3691 .link = shmem_link,
3692 .unlink = shmem_unlink,
3693 .symlink = shmem_symlink,
3694 .mkdir = shmem_mkdir,
3695 .rmdir = shmem_rmdir,
3696 .mknod = shmem_mknod,
2773bf00 3697 .rename = shmem_rename2,
60545d0d 3698 .tmpfile = shmem_tmpfile,
1da177e4 3699#endif
b09e0fa4 3700#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3701 .listxattr = shmem_listxattr,
b09e0fa4 3702#endif
39f0247d 3703#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3704 .setattr = shmem_setattr,
feda821e 3705 .set_acl = simple_set_acl,
39f0247d
AG
3706#endif
3707};
3708
92e1d5be 3709static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3710#ifdef CONFIG_TMPFS_XATTR
b09e0fa4 3711 .listxattr = shmem_listxattr,
b09e0fa4 3712#endif
39f0247d 3713#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3714 .setattr = shmem_setattr,
feda821e 3715 .set_acl = simple_set_acl,
39f0247d 3716#endif
1da177e4
LT
3717};
3718
759b9775 3719static const struct super_operations shmem_ops = {
1da177e4
LT
3720 .alloc_inode = shmem_alloc_inode,
3721 .destroy_inode = shmem_destroy_inode,
3722#ifdef CONFIG_TMPFS
3723 .statfs = shmem_statfs,
3724 .remount_fs = shmem_remount_fs,
680d794b 3725 .show_options = shmem_show_options,
1da177e4 3726#endif
1f895f75 3727 .evict_inode = shmem_evict_inode,
1da177e4
LT
3728 .drop_inode = generic_delete_inode,
3729 .put_super = shmem_put_super,
779750d2
KS
3730#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3731 .nr_cached_objects = shmem_unused_huge_count,
3732 .free_cached_objects = shmem_unused_huge_scan,
3733#endif
1da177e4
LT
3734};
3735
f0f37e2f 3736static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3737 .fault = shmem_fault,
d7c17551 3738 .map_pages = filemap_map_pages,
1da177e4
LT
3739#ifdef CONFIG_NUMA
3740 .set_policy = shmem_set_policy,
3741 .get_policy = shmem_get_policy,
3742#endif
3743};
3744
3c26ff6e
AV
3745static struct dentry *shmem_mount(struct file_system_type *fs_type,
3746 int flags, const char *dev_name, void *data)
1da177e4 3747{
3c26ff6e 3748 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3749}
3750
41ffe5d5 3751static struct file_system_type shmem_fs_type = {
1da177e4
LT
3752 .owner = THIS_MODULE,
3753 .name = "tmpfs",
3c26ff6e 3754 .mount = shmem_mount,
1da177e4 3755 .kill_sb = kill_litter_super,
2b8576cb 3756 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3757};
1da177e4 3758
41ffe5d5 3759int __init shmem_init(void)
1da177e4
LT
3760{
3761 int error;
3762
16203a7a
RL
3763 /* If rootfs called this, don't re-init */
3764 if (shmem_inode_cachep)
3765 return 0;
3766
41ffe5d5 3767 error = shmem_init_inodecache();
1da177e4
LT
3768 if (error)
3769 goto out3;
3770
41ffe5d5 3771 error = register_filesystem(&shmem_fs_type);
1da177e4 3772 if (error) {
1170532b 3773 pr_err("Could not register tmpfs\n");
1da177e4
LT
3774 goto out2;
3775 }
95dc112a 3776
ca4e0519 3777 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3778 if (IS_ERR(shm_mnt)) {
3779 error = PTR_ERR(shm_mnt);
1170532b 3780 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3781 goto out1;
3782 }
5a6e75f8 3783
e496cf3d 3784#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
5a6e75f8
KS
3785 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3786 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3787 else
3788 shmem_huge = 0; /* just in case it was patched */
3789#endif
1da177e4
LT
3790 return 0;
3791
3792out1:
41ffe5d5 3793 unregister_filesystem(&shmem_fs_type);
1da177e4 3794out2:
41ffe5d5 3795 shmem_destroy_inodecache();
1da177e4
LT
3796out3:
3797 shm_mnt = ERR_PTR(error);
3798 return error;
3799}
853ac43a 3800
e496cf3d 3801#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
5a6e75f8
KS
3802static ssize_t shmem_enabled_show(struct kobject *kobj,
3803 struct kobj_attribute *attr, char *buf)
3804{
3805 int values[] = {
3806 SHMEM_HUGE_ALWAYS,
3807 SHMEM_HUGE_WITHIN_SIZE,
3808 SHMEM_HUGE_ADVISE,
3809 SHMEM_HUGE_NEVER,
3810 SHMEM_HUGE_DENY,
3811 SHMEM_HUGE_FORCE,
3812 };
3813 int i, count;
3814
3815 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3816 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3817
3818 count += sprintf(buf + count, fmt,
3819 shmem_format_huge(values[i]));
3820 }
3821 buf[count - 1] = '\n';
3822 return count;
3823}
3824
3825static ssize_t shmem_enabled_store(struct kobject *kobj,
3826 struct kobj_attribute *attr, const char *buf, size_t count)
3827{
3828 char tmp[16];
3829 int huge;
3830
3831 if (count + 1 > sizeof(tmp))
3832 return -EINVAL;
3833 memcpy(tmp, buf, count);
3834 tmp[count] = '\0';
3835 if (count && tmp[count - 1] == '\n')
3836 tmp[count - 1] = '\0';
3837
3838 huge = shmem_parse_huge(tmp);
3839 if (huge == -EINVAL)
3840 return -EINVAL;
3841 if (!has_transparent_hugepage() &&
3842 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3843 return -EINVAL;
3844
3845 shmem_huge = huge;
3846 if (shmem_huge < SHMEM_HUGE_DENY)
3847 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3848 return count;
3849}
3850
3851struct kobj_attribute shmem_enabled_attr =
3852 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3b33719c 3853#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
f3f0e1d2 3854
3b33719c 3855#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
f3f0e1d2
KS
3856bool shmem_huge_enabled(struct vm_area_struct *vma)
3857{
3858 struct inode *inode = file_inode(vma->vm_file);
3859 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3860 loff_t i_size;
3861 pgoff_t off;
3862
3863 if (shmem_huge == SHMEM_HUGE_FORCE)
3864 return true;
3865 if (shmem_huge == SHMEM_HUGE_DENY)
3866 return false;
3867 switch (sbinfo->huge) {
3868 case SHMEM_HUGE_NEVER:
3869 return false;
3870 case SHMEM_HUGE_ALWAYS:
3871 return true;
3872 case SHMEM_HUGE_WITHIN_SIZE:
3873 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3874 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3875 if (i_size >= HPAGE_PMD_SIZE &&
3876 i_size >> PAGE_SHIFT >= off)
3877 return true;
3878 case SHMEM_HUGE_ADVISE:
3879 /* TODO: implement fadvise() hints */
3880 return (vma->vm_flags & VM_HUGEPAGE);
3881 default:
3882 VM_BUG_ON(1);
3883 return false;
3884 }
3885}
3b33719c 3886#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
5a6e75f8 3887
853ac43a
MM
3888#else /* !CONFIG_SHMEM */
3889
3890/*
3891 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3892 *
3893 * This is intended for small system where the benefits of the full
3894 * shmem code (swap-backed and resource-limited) are outweighed by
3895 * their complexity. On systems without swap this code should be
3896 * effectively equivalent, but much lighter weight.
3897 */
3898
41ffe5d5 3899static struct file_system_type shmem_fs_type = {
853ac43a 3900 .name = "tmpfs",
3c26ff6e 3901 .mount = ramfs_mount,
853ac43a 3902 .kill_sb = kill_litter_super,
2b8576cb 3903 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3904};
3905
41ffe5d5 3906int __init shmem_init(void)
853ac43a 3907{
41ffe5d5 3908 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3909
41ffe5d5 3910 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3911 BUG_ON(IS_ERR(shm_mnt));
3912
3913 return 0;
3914}
3915
41ffe5d5 3916int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3917{
3918 return 0;
3919}
3920
3f96b79a
HD
3921int shmem_lock(struct file *file, int lock, struct user_struct *user)
3922{
3923 return 0;
3924}
3925
24513264
HD
3926void shmem_unlock_mapping(struct address_space *mapping)
3927{
3928}
3929
c01d5b30
HD
3930#ifdef CONFIG_MMU
3931unsigned long shmem_get_unmapped_area(struct file *file,
3932 unsigned long addr, unsigned long len,
3933 unsigned long pgoff, unsigned long flags)
3934{
3935 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3936}
3937#endif
3938
41ffe5d5 3939void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3940{
41ffe5d5 3941 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3942}
3943EXPORT_SYMBOL_GPL(shmem_truncate_range);
3944
0b0a0806
HD
3945#define shmem_vm_ops generic_file_vm_ops
3946#define shmem_file_operations ramfs_file_operations
454abafe 3947#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3948#define shmem_acct_size(flags, size) 0
3949#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3950
3951#endif /* CONFIG_SHMEM */
3952
3953/* common code */
1da177e4 3954
19938e35 3955static const struct dentry_operations anon_ops = {
118b2302 3956 .d_dname = simple_dname
3451538a
AV
3957};
3958
c7277090
EP
3959static struct file *__shmem_file_setup(const char *name, loff_t size,
3960 unsigned long flags, unsigned int i_flags)
1da177e4 3961{
6b4d0b27 3962 struct file *res;
1da177e4 3963 struct inode *inode;
2c48b9c4 3964 struct path path;
3451538a 3965 struct super_block *sb;
1da177e4
LT
3966 struct qstr this;
3967
3968 if (IS_ERR(shm_mnt))
6b4d0b27 3969 return ERR_CAST(shm_mnt);
1da177e4 3970
285b2c4f 3971 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3972 return ERR_PTR(-EINVAL);
3973
3974 if (shmem_acct_size(flags, size))
3975 return ERR_PTR(-ENOMEM);
3976
6b4d0b27 3977 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3978 this.name = name;
3979 this.len = strlen(name);
3980 this.hash = 0; /* will go */
3451538a 3981 sb = shm_mnt->mnt_sb;
66ee4b88 3982 path.mnt = mntget(shm_mnt);
3451538a 3983 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3984 if (!path.dentry)
1da177e4 3985 goto put_memory;
3451538a 3986 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3987
6b4d0b27 3988 res = ERR_PTR(-ENOSPC);
3451538a 3989 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3990 if (!inode)
66ee4b88 3991 goto put_memory;
1da177e4 3992
c7277090 3993 inode->i_flags |= i_flags;
2c48b9c4 3994 d_instantiate(path.dentry, inode);
1da177e4 3995 inode->i_size = size;
6d6b77f1 3996 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3997 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3998 if (IS_ERR(res))
66ee4b88 3999 goto put_path;
4b42af81 4000
6b4d0b27 4001 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 4002 &shmem_file_operations);
6b4d0b27 4003 if (IS_ERR(res))
66ee4b88 4004 goto put_path;
4b42af81 4005
6b4d0b27 4006 return res;
1da177e4 4007
1da177e4
LT
4008put_memory:
4009 shmem_unacct_size(flags, size);
66ee4b88
KK
4010put_path:
4011 path_put(&path);
6b4d0b27 4012 return res;
1da177e4 4013}
c7277090
EP
4014
4015/**
4016 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4017 * kernel internal. There will be NO LSM permission checks against the
4018 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
4019 * higher layer. The users are the big_key and shm implementations. LSM
4020 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
4021 * @name: name for dentry (to be seen in /proc/<pid>/maps
4022 * @size: size to be set for the file
4023 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4024 */
4025struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4026{
4027 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4028}
4029
4030/**
4031 * shmem_file_setup - get an unlinked file living in tmpfs
4032 * @name: name for dentry (to be seen in /proc/<pid>/maps
4033 * @size: size to be set for the file
4034 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4035 */
4036struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4037{
4038 return __shmem_file_setup(name, size, flags, 0);
4039}
395e0ddc 4040EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 4041
46711810 4042/**
1da177e4 4043 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
4044 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4045 */
4046int shmem_zero_setup(struct vm_area_struct *vma)
4047{
4048 struct file *file;
4049 loff_t size = vma->vm_end - vma->vm_start;
4050
66fc1303
HD
4051 /*
4052 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4053 * between XFS directory reading and selinux: since this file is only
4054 * accessible to the user through its mapping, use S_PRIVATE flag to
4055 * bypass file security, in the same way as shmem_kernel_file_setup().
4056 */
4057 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
4058 if (IS_ERR(file))
4059 return PTR_ERR(file);
4060
4061 if (vma->vm_file)
4062 fput(vma->vm_file);
4063 vma->vm_file = file;
4064 vma->vm_ops = &shmem_vm_ops;
f3f0e1d2 4065
e496cf3d 4066 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
f3f0e1d2
KS
4067 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4068 (vma->vm_end & HPAGE_PMD_MASK)) {
4069 khugepaged_enter(vma, vma->vm_flags);
4070 }
4071
1da177e4
LT
4072 return 0;
4073}
d9d90e5e
HD
4074
4075/**
4076 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4077 * @mapping: the page's address_space
4078 * @index: the page index
4079 * @gfp: the page allocator flags to use if allocating
4080 *
4081 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4082 * with any new page allocations done using the specified allocation flags.
4083 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4084 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4085 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4086 *
68da9f05
HD
4087 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4088 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
4089 */
4090struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4091 pgoff_t index, gfp_t gfp)
4092{
68da9f05
HD
4093#ifdef CONFIG_SHMEM
4094 struct inode *inode = mapping->host;
9276aad6 4095 struct page *page;
68da9f05
HD
4096 int error;
4097
4098 BUG_ON(mapping->a_ops != &shmem_aops);
9e18eb29
ALC
4099 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4100 gfp, NULL, NULL);
68da9f05
HD
4101 if (error)
4102 page = ERR_PTR(error);
4103 else
4104 unlock_page(page);
4105 return page;
4106#else
4107 /*
4108 * The tiny !SHMEM case uses ramfs without swap
4109 */
d9d90e5e 4110 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 4111#endif
d9d90e5e
HD
4112}
4113EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);