mm: avoid repeated anon_vma lock/unlock sequences in unlink_anon_vmas()
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
3d48ae45 27 * mapping->i_mmap_mutex
2b575eb6 28 * anon_vma->mutex
82591e6e
NP
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
a66979ab 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
a66979ab 39 * within inode_wb_list_lock in __sync_single_inode)
6a46079c
AK
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
2b575eb6 43 * anon_vma->mutex (memory_failure, collect_procs_anon)
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
a48d07af 56#include <linux/module.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
63
b291f000
NP
64#include "internal.h"
65
fdd2e5f8 66static struct kmem_cache *anon_vma_cachep;
5beb4930 67static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
68
69static inline struct anon_vma *anon_vma_alloc(void)
70{
01d8b20d
PZ
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
fdd2e5f8
AB
84}
85
01d8b20d 86static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 87{
01d8b20d 88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
89
90 /*
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
93 * freed.
94 *
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 *
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
101 * LOCK MB
102 * atomic_read() mutex_is_locked()
103 *
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
106 */
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
110 }
111
fdd2e5f8
AB
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113}
1da177e4 114
5beb4930
RR
115static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116{
117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118}
119
e574b5fd 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
121{
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
d9d332e0
LT
125/**
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
128 *
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
132 *
133 * The common case will be that we already have one, but if
23a0790a 134 * not we either need to find an adjacent mapping that we
d9d332e0
LT
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
138 *
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
144 *
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
149 *
150 * This must be called with the mmap_sem held for reading.
151 */
1da177e4
LT
152int anon_vma_prepare(struct vm_area_struct *vma)
153{
154 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 155 struct anon_vma_chain *avc;
1da177e4
LT
156
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
d9d332e0 160 struct anon_vma *allocated;
1da177e4 161
5beb4930
RR
162 avc = anon_vma_chain_alloc();
163 if (!avc)
164 goto out_enomem;
165
1da177e4 166 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
167 allocated = NULL;
168 if (!anon_vma) {
1da177e4
LT
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
5beb4930 171 goto out_enomem_free_avc;
1da177e4 172 allocated = anon_vma;
1da177e4
LT
173 }
174
cba48b98 175 anon_vma_lock(anon_vma);
1da177e4
LT
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
5beb4930
RR
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 184 allocated = NULL;
31f2b0eb 185 avc = NULL;
1da177e4
LT
186 }
187 spin_unlock(&mm->page_table_lock);
cba48b98 188 anon_vma_unlock(anon_vma);
31f2b0eb
ON
189
190 if (unlikely(allocated))
01d8b20d 191 put_anon_vma(allocated);
31f2b0eb 192 if (unlikely(avc))
5beb4930 193 anon_vma_chain_free(avc);
1da177e4
LT
194 }
195 return 0;
5beb4930
RR
196
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
1da177e4
LT
201}
202
bb4aa396
LT
203/*
204 * This is a useful helper function for locking the anon_vma root as
205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
206 * have the same vma.
207 *
208 * Such anon_vma's should have the same root, so you'd expect to see
209 * just a single mutex_lock for the whole traversal.
210 */
211static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
212{
213 struct anon_vma *new_root = anon_vma->root;
214 if (new_root != root) {
215 if (WARN_ON_ONCE(root))
216 mutex_unlock(&root->mutex);
217 root = new_root;
218 mutex_lock(&root->mutex);
219 }
220 return root;
221}
222
223static inline void unlock_anon_vma_root(struct anon_vma *root)
224{
225 if (root)
226 mutex_unlock(&root->mutex);
227}
228
5beb4930
RR
229static void anon_vma_chain_link(struct vm_area_struct *vma,
230 struct anon_vma_chain *avc,
231 struct anon_vma *anon_vma)
1da177e4 232{
5beb4930
RR
233 avc->vma = vma;
234 avc->anon_vma = anon_vma;
235 list_add(&avc->same_vma, &vma->anon_vma_chain);
236
05759d38
AA
237 /*
238 * It's critical to add new vmas to the tail of the anon_vma,
239 * see comment in huge_memory.c:__split_huge_page().
240 */
5beb4930 241 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4
LT
242}
243
5beb4930
RR
244/*
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
247 */
248int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 249{
5beb4930 250 struct anon_vma_chain *avc, *pavc;
bb4aa396 251 struct anon_vma *root = NULL;
5beb4930 252
646d87b4 253 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
254 struct anon_vma *anon_vma;
255
5beb4930
RR
256 avc = anon_vma_chain_alloc();
257 if (!avc)
258 goto enomem_failure;
bb4aa396
LT
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 262 }
bb4aa396 263 unlock_anon_vma_root(root);
5beb4930 264 return 0;
1da177e4 265
5beb4930 266 enomem_failure:
bb4aa396 267 unlock_anon_vma_root(root);
5beb4930
RR
268 unlink_anon_vmas(dst);
269 return -ENOMEM;
1da177e4
LT
270}
271
5beb4930
RR
272/*
273 * Attach vma to its own anon_vma, as well as to the anon_vmas that
274 * the corresponding VMA in the parent process is attached to.
275 * Returns 0 on success, non-zero on failure.
276 */
277int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 278{
5beb4930
RR
279 struct anon_vma_chain *avc;
280 struct anon_vma *anon_vma;
1da177e4 281
5beb4930
RR
282 /* Don't bother if the parent process has no anon_vma here. */
283 if (!pvma->anon_vma)
284 return 0;
285
286 /*
287 * First, attach the new VMA to the parent VMA's anon_vmas,
288 * so rmap can find non-COWed pages in child processes.
289 */
290 if (anon_vma_clone(vma, pvma))
291 return -ENOMEM;
292
293 /* Then add our own anon_vma. */
294 anon_vma = anon_vma_alloc();
295 if (!anon_vma)
296 goto out_error;
297 avc = anon_vma_chain_alloc();
298 if (!avc)
299 goto out_error_free_anon_vma;
5c341ee1
RR
300
301 /*
302 * The root anon_vma's spinlock is the lock actually used when we
303 * lock any of the anon_vmas in this anon_vma tree.
304 */
305 anon_vma->root = pvma->anon_vma->root;
76545066 306 /*
01d8b20d
PZ
307 * With refcounts, an anon_vma can stay around longer than the
308 * process it belongs to. The root anon_vma needs to be pinned until
309 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
310 */
311 get_anon_vma(anon_vma->root);
5beb4930
RR
312 /* Mark this anon_vma as the one where our new (COWed) pages go. */
313 vma->anon_vma = anon_vma;
bb4aa396 314 anon_vma_lock(anon_vma);
5c341ee1 315 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 316 anon_vma_unlock(anon_vma);
5beb4930
RR
317
318 return 0;
319
320 out_error_free_anon_vma:
01d8b20d 321 put_anon_vma(anon_vma);
5beb4930 322 out_error:
4946d54c 323 unlink_anon_vmas(vma);
5beb4930 324 return -ENOMEM;
1da177e4
LT
325}
326
5beb4930
RR
327void unlink_anon_vmas(struct vm_area_struct *vma)
328{
329 struct anon_vma_chain *avc, *next;
eee2acba 330 struct anon_vma *root = NULL;
5beb4930 331
5c341ee1
RR
332 /*
333 * Unlink each anon_vma chained to the VMA. This list is ordered
334 * from newest to oldest, ensuring the root anon_vma gets freed last.
335 */
5beb4930 336 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
337 struct anon_vma *anon_vma = avc->anon_vma;
338
339 root = lock_anon_vma_root(root, anon_vma);
340 list_del(&avc->same_anon_vma);
341
342 /*
343 * Leave empty anon_vmas on the list - we'll need
344 * to free them outside the lock.
345 */
346 if (list_empty(&anon_vma->head))
347 continue;
348
349 list_del(&avc->same_vma);
350 anon_vma_chain_free(avc);
351 }
352 unlock_anon_vma_root(root);
353
354 /*
355 * Iterate the list once more, it now only contains empty and unlinked
356 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
357 * needing to acquire the anon_vma->root->mutex.
358 */
359 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
360 struct anon_vma *anon_vma = avc->anon_vma;
361
362 put_anon_vma(anon_vma);
363
5beb4930
RR
364 list_del(&avc->same_vma);
365 anon_vma_chain_free(avc);
366 }
367}
368
51cc5068 369static void anon_vma_ctor(void *data)
1da177e4 370{
a35afb83 371 struct anon_vma *anon_vma = data;
1da177e4 372
2b575eb6 373 mutex_init(&anon_vma->mutex);
83813267 374 atomic_set(&anon_vma->refcount, 0);
a35afb83 375 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
376}
377
378void __init anon_vma_init(void)
379{
380 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 381 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 382 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
383}
384
385/*
6111e4ca
PZ
386 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
387 *
388 * Since there is no serialization what so ever against page_remove_rmap()
389 * the best this function can do is return a locked anon_vma that might
390 * have been relevant to this page.
391 *
392 * The page might have been remapped to a different anon_vma or the anon_vma
393 * returned may already be freed (and even reused).
394 *
bc658c96
PZ
395 * In case it was remapped to a different anon_vma, the new anon_vma will be a
396 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
397 * ensure that any anon_vma obtained from the page will still be valid for as
398 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
399 *
6111e4ca
PZ
400 * All users of this function must be very careful when walking the anon_vma
401 * chain and verify that the page in question is indeed mapped in it
402 * [ something equivalent to page_mapped_in_vma() ].
403 *
404 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
405 * that the anon_vma pointer from page->mapping is valid if there is a
406 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 407 */
746b18d4 408struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 409{
746b18d4 410 struct anon_vma *anon_vma = NULL;
1da177e4
LT
411 unsigned long anon_mapping;
412
413 rcu_read_lock();
80e14822 414 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 415 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
416 goto out;
417 if (!page_mapped(page))
418 goto out;
419
420 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
421 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
422 anon_vma = NULL;
423 goto out;
424 }
f1819427
HD
425
426 /*
427 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
428 * freed. But if it has been unmapped, we have no security against the
429 * anon_vma structure being freed and reused (for another anon_vma:
430 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
431 * above cannot corrupt).
f1819427 432 */
746b18d4
PZ
433 if (!page_mapped(page)) {
434 put_anon_vma(anon_vma);
435 anon_vma = NULL;
436 }
1da177e4
LT
437out:
438 rcu_read_unlock();
746b18d4
PZ
439
440 return anon_vma;
441}
442
88c22088
PZ
443/*
444 * Similar to page_get_anon_vma() except it locks the anon_vma.
445 *
446 * Its a little more complex as it tries to keep the fast path to a single
447 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
448 * reference like with page_get_anon_vma() and then block on the mutex.
449 */
746b18d4
PZ
450struct anon_vma *page_lock_anon_vma(struct page *page)
451{
88c22088 452 struct anon_vma *anon_vma = NULL;
eee0f252 453 struct anon_vma *root_anon_vma;
88c22088 454 unsigned long anon_mapping;
746b18d4 455
88c22088
PZ
456 rcu_read_lock();
457 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
458 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
459 goto out;
460 if (!page_mapped(page))
461 goto out;
462
463 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
464 root_anon_vma = ACCESS_ONCE(anon_vma->root);
465 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 466 /*
eee0f252
HD
467 * If the page is still mapped, then this anon_vma is still
468 * its anon_vma, and holding the mutex ensures that it will
bc658c96 469 * not go away, see anon_vma_free().
88c22088 470 */
eee0f252
HD
471 if (!page_mapped(page)) {
472 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
473 anon_vma = NULL;
474 }
475 goto out;
476 }
746b18d4 477
88c22088
PZ
478 /* trylock failed, we got to sleep */
479 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
480 anon_vma = NULL;
481 goto out;
482 }
483
484 if (!page_mapped(page)) {
485 put_anon_vma(anon_vma);
486 anon_vma = NULL;
487 goto out;
488 }
489
490 /* we pinned the anon_vma, its safe to sleep */
491 rcu_read_unlock();
492 anon_vma_lock(anon_vma);
493
494 if (atomic_dec_and_test(&anon_vma->refcount)) {
495 /*
496 * Oops, we held the last refcount, release the lock
497 * and bail -- can't simply use put_anon_vma() because
498 * we'll deadlock on the anon_vma_lock() recursion.
499 */
500 anon_vma_unlock(anon_vma);
501 __put_anon_vma(anon_vma);
502 anon_vma = NULL;
503 }
504
505 return anon_vma;
506
507out:
508 rcu_read_unlock();
746b18d4 509 return anon_vma;
34bbd704
ON
510}
511
10be22df 512void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 513{
cba48b98 514 anon_vma_unlock(anon_vma);
1da177e4
LT
515}
516
517/*
3ad33b24
LS
518 * At what user virtual address is page expected in @vma?
519 * Returns virtual address or -EFAULT if page's index/offset is not
520 * within the range mapped the @vma.
1da177e4 521 */
71e3aac0 522inline unsigned long
1da177e4
LT
523vma_address(struct page *page, struct vm_area_struct *vma)
524{
525 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
526 unsigned long address;
527
0fe6e20b
NH
528 if (unlikely(is_vm_hugetlb_page(vma)))
529 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
530 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
531 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 532 /* page should be within @vma mapping range */
1da177e4
LT
533 return -EFAULT;
534 }
535 return address;
536}
537
538/*
bf89c8c8 539 * At what user virtual address is page expected in vma?
ab941e0f 540 * Caller should check the page is actually part of the vma.
1da177e4
LT
541 */
542unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
543{
21d0d443 544 if (PageAnon(page)) {
4829b906
HD
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 return vma_address(page, vma);
560}
561
81b4082d
ND
562/*
563 * Check that @page is mapped at @address into @mm.
564 *
479db0bf
NP
565 * If @sync is false, page_check_address may perform a racy check to avoid
566 * the page table lock when the pte is not present (helpful when reclaiming
567 * highly shared pages).
568 *
b8072f09 569 * On success returns with pte mapped and locked.
81b4082d 570 */
e9a81a82 571pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 572 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
573{
574 pgd_t *pgd;
575 pud_t *pud;
576 pmd_t *pmd;
577 pte_t *pte;
c0718806 578 spinlock_t *ptl;
81b4082d 579
0fe6e20b
NH
580 if (unlikely(PageHuge(page))) {
581 pte = huge_pte_offset(mm, address);
582 ptl = &mm->page_table_lock;
583 goto check;
584 }
585
81b4082d 586 pgd = pgd_offset(mm, address);
c0718806
HD
587 if (!pgd_present(*pgd))
588 return NULL;
589
590 pud = pud_offset(pgd, address);
591 if (!pud_present(*pud))
592 return NULL;
593
594 pmd = pmd_offset(pud, address);
595 if (!pmd_present(*pmd))
596 return NULL;
71e3aac0
AA
597 if (pmd_trans_huge(*pmd))
598 return NULL;
c0718806
HD
599
600 pte = pte_offset_map(pmd, address);
601 /* Make a quick check before getting the lock */
479db0bf 602 if (!sync && !pte_present(*pte)) {
c0718806
HD
603 pte_unmap(pte);
604 return NULL;
605 }
606
4c21e2f2 607 ptl = pte_lockptr(mm, pmd);
0fe6e20b 608check:
c0718806
HD
609 spin_lock(ptl);
610 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
611 *ptlp = ptl;
612 return pte;
81b4082d 613 }
c0718806
HD
614 pte_unmap_unlock(pte, ptl);
615 return NULL;
81b4082d
ND
616}
617
b291f000
NP
618/**
619 * page_mapped_in_vma - check whether a page is really mapped in a VMA
620 * @page: the page to test
621 * @vma: the VMA to test
622 *
623 * Returns 1 if the page is mapped into the page tables of the VMA, 0
624 * if the page is not mapped into the page tables of this VMA. Only
625 * valid for normal file or anonymous VMAs.
626 */
6a46079c 627int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
628{
629 unsigned long address;
630 pte_t *pte;
631 spinlock_t *ptl;
632
633 address = vma_address(page, vma);
634 if (address == -EFAULT) /* out of vma range */
635 return 0;
636 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
637 if (!pte) /* the page is not in this mm */
638 return 0;
639 pte_unmap_unlock(pte, ptl);
640
641 return 1;
642}
643
1da177e4
LT
644/*
645 * Subfunctions of page_referenced: page_referenced_one called
646 * repeatedly from either page_referenced_anon or page_referenced_file.
647 */
5ad64688
HD
648int page_referenced_one(struct page *page, struct vm_area_struct *vma,
649 unsigned long address, unsigned int *mapcount,
650 unsigned long *vm_flags)
1da177e4
LT
651{
652 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
653 int referenced = 0;
654
71e3aac0
AA
655 if (unlikely(PageTransHuge(page))) {
656 pmd_t *pmd;
657
658 spin_lock(&mm->page_table_lock);
2da28bfd
AA
659 /*
660 * rmap might return false positives; we must filter
661 * these out using page_check_address_pmd().
662 */
71e3aac0
AA
663 pmd = page_check_address_pmd(page, mm, address,
664 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
665 if (!pmd) {
666 spin_unlock(&mm->page_table_lock);
667 goto out;
668 }
669
670 if (vma->vm_flags & VM_LOCKED) {
671 spin_unlock(&mm->page_table_lock);
672 *mapcount = 0; /* break early from loop */
673 *vm_flags |= VM_LOCKED;
674 goto out;
675 }
676
677 /* go ahead even if the pmd is pmd_trans_splitting() */
678 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
679 referenced++;
680 spin_unlock(&mm->page_table_lock);
681 } else {
682 pte_t *pte;
683 spinlock_t *ptl;
684
2da28bfd
AA
685 /*
686 * rmap might return false positives; we must filter
687 * these out using page_check_address().
688 */
71e3aac0
AA
689 pte = page_check_address(page, mm, address, &ptl, 0);
690 if (!pte)
691 goto out;
692
2da28bfd
AA
693 if (vma->vm_flags & VM_LOCKED) {
694 pte_unmap_unlock(pte, ptl);
695 *mapcount = 0; /* break early from loop */
696 *vm_flags |= VM_LOCKED;
697 goto out;
698 }
699
71e3aac0
AA
700 if (ptep_clear_flush_young_notify(vma, address, pte)) {
701 /*
702 * Don't treat a reference through a sequentially read
703 * mapping as such. If the page has been used in
704 * another mapping, we will catch it; if this other
705 * mapping is already gone, the unmap path will have
706 * set PG_referenced or activated the page.
707 */
708 if (likely(!VM_SequentialReadHint(vma)))
709 referenced++;
710 }
711 pte_unmap_unlock(pte, ptl);
712 }
713
2da28bfd
AA
714 /* Pretend the page is referenced if the task has the
715 swap token and is in the middle of a page fault. */
716 if (mm != current->mm && has_swap_token(mm) &&
717 rwsem_is_locked(&mm->mmap_sem))
718 referenced++;
719
c0718806 720 (*mapcount)--;
273f047e 721
6fe6b7e3
WF
722 if (referenced)
723 *vm_flags |= vma->vm_flags;
273f047e 724out:
1da177e4
LT
725 return referenced;
726}
727
bed7161a 728static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
729 struct mem_cgroup *mem_cont,
730 unsigned long *vm_flags)
1da177e4
LT
731{
732 unsigned int mapcount;
733 struct anon_vma *anon_vma;
5beb4930 734 struct anon_vma_chain *avc;
1da177e4
LT
735 int referenced = 0;
736
737 anon_vma = page_lock_anon_vma(page);
738 if (!anon_vma)
739 return referenced;
740
741 mapcount = page_mapcount(page);
5beb4930
RR
742 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
743 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
744 unsigned long address = vma_address(page, vma);
745 if (address == -EFAULT)
746 continue;
bed7161a
BS
747 /*
748 * If we are reclaiming on behalf of a cgroup, skip
749 * counting on behalf of references from different
750 * cgroups
751 */
bd845e38 752 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 753 continue;
1cb1729b 754 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 755 &mapcount, vm_flags);
1da177e4
LT
756 if (!mapcount)
757 break;
758 }
34bbd704
ON
759
760 page_unlock_anon_vma(anon_vma);
1da177e4
LT
761 return referenced;
762}
763
764/**
765 * page_referenced_file - referenced check for object-based rmap
766 * @page: the page we're checking references on.
43d8eac4 767 * @mem_cont: target memory controller
6fe6b7e3 768 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
769 *
770 * For an object-based mapped page, find all the places it is mapped and
771 * check/clear the referenced flag. This is done by following the page->mapping
772 * pointer, then walking the chain of vmas it holds. It returns the number
773 * of references it found.
774 *
775 * This function is only called from page_referenced for object-based pages.
776 */
bed7161a 777static int page_referenced_file(struct page *page,
6fe6b7e3
WF
778 struct mem_cgroup *mem_cont,
779 unsigned long *vm_flags)
1da177e4
LT
780{
781 unsigned int mapcount;
782 struct address_space *mapping = page->mapping;
783 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
784 struct vm_area_struct *vma;
785 struct prio_tree_iter iter;
786 int referenced = 0;
787
788 /*
789 * The caller's checks on page->mapping and !PageAnon have made
790 * sure that this is a file page: the check for page->mapping
791 * excludes the case just before it gets set on an anon page.
792 */
793 BUG_ON(PageAnon(page));
794
795 /*
796 * The page lock not only makes sure that page->mapping cannot
797 * suddenly be NULLified by truncation, it makes sure that the
798 * structure at mapping cannot be freed and reused yet,
3d48ae45 799 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
800 */
801 BUG_ON(!PageLocked(page));
802
3d48ae45 803 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
804
805 /*
3d48ae45 806 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
807 * is more likely to be accurate if we note it after spinning.
808 */
809 mapcount = page_mapcount(page);
810
811 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
812 unsigned long address = vma_address(page, vma);
813 if (address == -EFAULT)
814 continue;
bed7161a
BS
815 /*
816 * If we are reclaiming on behalf of a cgroup, skip
817 * counting on behalf of references from different
818 * cgroups
819 */
bd845e38 820 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 821 continue;
1cb1729b 822 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 823 &mapcount, vm_flags);
1da177e4
LT
824 if (!mapcount)
825 break;
826 }
827
3d48ae45 828 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
829 return referenced;
830}
831
832/**
833 * page_referenced - test if the page was referenced
834 * @page: the page to test
835 * @is_locked: caller holds lock on the page
43d8eac4 836 * @mem_cont: target memory controller
6fe6b7e3 837 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
838 *
839 * Quick test_and_clear_referenced for all mappings to a page,
840 * returns the number of ptes which referenced the page.
841 */
6fe6b7e3
WF
842int page_referenced(struct page *page,
843 int is_locked,
844 struct mem_cgroup *mem_cont,
845 unsigned long *vm_flags)
1da177e4
LT
846{
847 int referenced = 0;
5ad64688 848 int we_locked = 0;
1da177e4 849
6fe6b7e3 850 *vm_flags = 0;
3ca7b3c5 851 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
852 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
853 we_locked = trylock_page(page);
854 if (!we_locked) {
855 referenced++;
856 goto out;
857 }
858 }
859 if (unlikely(PageKsm(page)))
860 referenced += page_referenced_ksm(page, mem_cont,
861 vm_flags);
862 else if (PageAnon(page))
6fe6b7e3
WF
863 referenced += page_referenced_anon(page, mem_cont,
864 vm_flags);
5ad64688 865 else if (page->mapping)
6fe6b7e3
WF
866 referenced += page_referenced_file(page, mem_cont,
867 vm_flags);
5ad64688 868 if (we_locked)
1da177e4 869 unlock_page(page);
1da177e4 870 }
5ad64688 871out:
2d42552d 872 if (page_test_and_clear_young(page_to_pfn(page)))
5b7baf05
CB
873 referenced++;
874
1da177e4
LT
875 return referenced;
876}
877
1cb1729b
HD
878static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
879 unsigned long address)
d08b3851
PZ
880{
881 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 882 pte_t *pte;
d08b3851
PZ
883 spinlock_t *ptl;
884 int ret = 0;
885
479db0bf 886 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
887 if (!pte)
888 goto out;
889
c2fda5fe
PZ
890 if (pte_dirty(*pte) || pte_write(*pte)) {
891 pte_t entry;
d08b3851 892
c2fda5fe 893 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 894 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
895 entry = pte_wrprotect(entry);
896 entry = pte_mkclean(entry);
d6e88e67 897 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
898 ret = 1;
899 }
d08b3851 900
d08b3851
PZ
901 pte_unmap_unlock(pte, ptl);
902out:
903 return ret;
904}
905
906static int page_mkclean_file(struct address_space *mapping, struct page *page)
907{
908 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
909 struct vm_area_struct *vma;
910 struct prio_tree_iter iter;
911 int ret = 0;
912
913 BUG_ON(PageAnon(page));
914
3d48ae45 915 mutex_lock(&mapping->i_mmap_mutex);
d08b3851 916 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
917 if (vma->vm_flags & VM_SHARED) {
918 unsigned long address = vma_address(page, vma);
919 if (address == -EFAULT)
920 continue;
921 ret += page_mkclean_one(page, vma, address);
922 }
d08b3851 923 }
3d48ae45 924 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
925 return ret;
926}
927
928int page_mkclean(struct page *page)
929{
930 int ret = 0;
931
932 BUG_ON(!PageLocked(page));
933
934 if (page_mapped(page)) {
935 struct address_space *mapping = page_mapping(page);
ce7e9fae 936 if (mapping) {
d08b3851 937 ret = page_mkclean_file(mapping, page);
2d42552d 938 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 939 ret = 1;
6c210482 940 }
d08b3851
PZ
941 }
942
943 return ret;
944}
60b59bea 945EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 946
c44b6743
RR
947/**
948 * page_move_anon_rmap - move a page to our anon_vma
949 * @page: the page to move to our anon_vma
950 * @vma: the vma the page belongs to
951 * @address: the user virtual address mapped
952 *
953 * When a page belongs exclusively to one process after a COW event,
954 * that page can be moved into the anon_vma that belongs to just that
955 * process, so the rmap code will not search the parent or sibling
956 * processes.
957 */
958void page_move_anon_rmap(struct page *page,
959 struct vm_area_struct *vma, unsigned long address)
960{
961 struct anon_vma *anon_vma = vma->anon_vma;
962
963 VM_BUG_ON(!PageLocked(page));
964 VM_BUG_ON(!anon_vma);
965 VM_BUG_ON(page->index != linear_page_index(vma, address));
966
967 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
968 page->mapping = (struct address_space *) anon_vma;
969}
970
9617d95e 971/**
4e1c1975
AK
972 * __page_set_anon_rmap - set up new anonymous rmap
973 * @page: Page to add to rmap
974 * @vma: VM area to add page to.
975 * @address: User virtual address of the mapping
e8a03feb 976 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
977 */
978static void __page_set_anon_rmap(struct page *page,
e8a03feb 979 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 980{
e8a03feb 981 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 982
e8a03feb 983 BUG_ON(!anon_vma);
ea90002b 984
4e1c1975
AK
985 if (PageAnon(page))
986 return;
987
ea90002b 988 /*
e8a03feb
RR
989 * If the page isn't exclusively mapped into this vma,
990 * we must use the _oldest_ possible anon_vma for the
991 * page mapping!
ea90002b 992 */
4e1c1975 993 if (!exclusive)
288468c3 994 anon_vma = anon_vma->root;
9617d95e 995
9617d95e
NP
996 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
997 page->mapping = (struct address_space *) anon_vma;
9617d95e 998 page->index = linear_page_index(vma, address);
9617d95e
NP
999}
1000
c97a9e10 1001/**
43d8eac4 1002 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1003 * @page: the page to add the mapping to
1004 * @vma: the vm area in which the mapping is added
1005 * @address: the user virtual address mapped
1006 */
1007static void __page_check_anon_rmap(struct page *page,
1008 struct vm_area_struct *vma, unsigned long address)
1009{
1010#ifdef CONFIG_DEBUG_VM
1011 /*
1012 * The page's anon-rmap details (mapping and index) are guaranteed to
1013 * be set up correctly at this point.
1014 *
1015 * We have exclusion against page_add_anon_rmap because the caller
1016 * always holds the page locked, except if called from page_dup_rmap,
1017 * in which case the page is already known to be setup.
1018 *
1019 * We have exclusion against page_add_new_anon_rmap because those pages
1020 * are initially only visible via the pagetables, and the pte is locked
1021 * over the call to page_add_new_anon_rmap.
1022 */
44ab57a0 1023 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1024 BUG_ON(page->index != linear_page_index(vma, address));
1025#endif
1026}
1027
1da177e4
LT
1028/**
1029 * page_add_anon_rmap - add pte mapping to an anonymous page
1030 * @page: the page to add the mapping to
1031 * @vma: the vm area in which the mapping is added
1032 * @address: the user virtual address mapped
1033 *
5ad64688 1034 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1035 * the anon_vma case: to serialize mapping,index checking after setting,
1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1037 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1038 */
1039void page_add_anon_rmap(struct page *page,
1040 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1041{
1042 do_page_add_anon_rmap(page, vma, address, 0);
1043}
1044
1045/*
1046 * Special version of the above for do_swap_page, which often runs
1047 * into pages that are exclusively owned by the current process.
1048 * Everybody else should continue to use page_add_anon_rmap above.
1049 */
1050void do_page_add_anon_rmap(struct page *page,
1051 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1052{
5ad64688 1053 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1054 if (first) {
1055 if (!PageTransHuge(page))
1056 __inc_zone_page_state(page, NR_ANON_PAGES);
1057 else
1058 __inc_zone_page_state(page,
1059 NR_ANON_TRANSPARENT_HUGEPAGES);
1060 }
5ad64688
HD
1061 if (unlikely(PageKsm(page)))
1062 return;
1063
c97a9e10 1064 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1065 /* address might be in next vma when migration races vma_adjust */
5ad64688 1066 if (first)
ad8c2ee8 1067 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1068 else
c97a9e10 1069 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1070}
1071
43d8eac4 1072/**
9617d95e
NP
1073 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 *
1078 * Same as page_add_anon_rmap but must only be called on *new* pages.
1079 * This means the inc-and-test can be bypassed.
c97a9e10 1080 * Page does not have to be locked.
9617d95e
NP
1081 */
1082void page_add_new_anon_rmap(struct page *page,
1083 struct vm_area_struct *vma, unsigned long address)
1084{
b5934c53 1085 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1086 SetPageSwapBacked(page);
1087 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1088 if (!PageTransHuge(page))
1089 __inc_zone_page_state(page, NR_ANON_PAGES);
1090 else
1091 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1092 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 1093 if (page_evictable(page, vma))
cbf84b7a 1094 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1095 else
1096 add_page_to_unevictable_list(page);
9617d95e
NP
1097}
1098
1da177e4
LT
1099/**
1100 * page_add_file_rmap - add pte mapping to a file page
1101 * @page: the page to add the mapping to
1102 *
b8072f09 1103 * The caller needs to hold the pte lock.
1da177e4
LT
1104 */
1105void page_add_file_rmap(struct page *page)
1106{
d69b042f 1107 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1108 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1109 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1110 }
1da177e4
LT
1111}
1112
1113/**
1114 * page_remove_rmap - take down pte mapping from a page
1115 * @page: page to remove mapping from
1116 *
b8072f09 1117 * The caller needs to hold the pte lock.
1da177e4 1118 */
edc315fd 1119void page_remove_rmap(struct page *page)
1da177e4 1120{
b904dcfe
KM
1121 /* page still mapped by someone else? */
1122 if (!atomic_add_negative(-1, &page->_mapcount))
1123 return;
1124
1125 /*
1126 * Now that the last pte has gone, s390 must transfer dirty
1127 * flag from storage key to struct page. We can usually skip
1128 * this if the page is anon, so about to be freed; but perhaps
1129 * not if it's in swapcache - there might be another pte slot
1130 * containing the swap entry, but page not yet written to swap.
1131 */
2d42552d
MS
1132 if ((!PageAnon(page) || PageSwapCache(page)) &&
1133 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1134 set_page_dirty(page);
0fe6e20b
NH
1135 /*
1136 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1137 * and not charged by memcg for now.
1138 */
1139 if (unlikely(PageHuge(page)))
1140 return;
b904dcfe
KM
1141 if (PageAnon(page)) {
1142 mem_cgroup_uncharge_page(page);
79134171
AA
1143 if (!PageTransHuge(page))
1144 __dec_zone_page_state(page, NR_ANON_PAGES);
1145 else
1146 __dec_zone_page_state(page,
1147 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1148 } else {
1149 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1150 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1151 }
b904dcfe
KM
1152 /*
1153 * It would be tidy to reset the PageAnon mapping here,
1154 * but that might overwrite a racing page_add_anon_rmap
1155 * which increments mapcount after us but sets mapping
1156 * before us: so leave the reset to free_hot_cold_page,
1157 * and remember that it's only reliable while mapped.
1158 * Leaving it set also helps swapoff to reinstate ptes
1159 * faster for those pages still in swapcache.
1160 */
1da177e4
LT
1161}
1162
1163/*
1164 * Subfunctions of try_to_unmap: try_to_unmap_one called
1165 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1166 */
5ad64688
HD
1167int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1168 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1169{
1170 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1171 pte_t *pte;
1172 pte_t pteval;
c0718806 1173 spinlock_t *ptl;
1da177e4
LT
1174 int ret = SWAP_AGAIN;
1175
479db0bf 1176 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1177 if (!pte)
81b4082d 1178 goto out;
1da177e4
LT
1179
1180 /*
1181 * If the page is mlock()d, we cannot swap it out.
1182 * If it's recently referenced (perhaps page_referenced
1183 * skipped over this mm) then we should reactivate it.
1184 */
14fa31b8 1185 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1186 if (vma->vm_flags & VM_LOCKED)
1187 goto out_mlock;
1188
af8e3354 1189 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1190 goto out_unmap;
14fa31b8
AK
1191 }
1192 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1193 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1194 ret = SWAP_FAIL;
1195 goto out_unmap;
1196 }
1197 }
1da177e4 1198
1da177e4
LT
1199 /* Nuke the page table entry. */
1200 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1201 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1202
1203 /* Move the dirty bit to the physical page now the pte is gone. */
1204 if (pte_dirty(pteval))
1205 set_page_dirty(page);
1206
365e9c87
HD
1207 /* Update high watermark before we lower rss */
1208 update_hiwater_rss(mm);
1209
888b9f7c
AK
1210 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1211 if (PageAnon(page))
d559db08 1212 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1213 else
d559db08 1214 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1215 set_pte_at(mm, address, pte,
1216 swp_entry_to_pte(make_hwpoison_entry(page)));
1217 } else if (PageAnon(page)) {
4c21e2f2 1218 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1219
1220 if (PageSwapCache(page)) {
1221 /*
1222 * Store the swap location in the pte.
1223 * See handle_pte_fault() ...
1224 */
570a335b
HD
1225 if (swap_duplicate(entry) < 0) {
1226 set_pte_at(mm, address, pte, pteval);
1227 ret = SWAP_FAIL;
1228 goto out_unmap;
1229 }
0697212a
CL
1230 if (list_empty(&mm->mmlist)) {
1231 spin_lock(&mmlist_lock);
1232 if (list_empty(&mm->mmlist))
1233 list_add(&mm->mmlist, &init_mm.mmlist);
1234 spin_unlock(&mmlist_lock);
1235 }
d559db08 1236 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1237 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1238 } else if (PAGE_MIGRATION) {
0697212a
CL
1239 /*
1240 * Store the pfn of the page in a special migration
1241 * pte. do_swap_page() will wait until the migration
1242 * pte is removed and then restart fault handling.
1243 */
14fa31b8 1244 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1245 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1246 }
1247 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1248 BUG_ON(pte_file(*pte));
14fa31b8 1249 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1250 /* Establish migration entry for a file page */
1251 swp_entry_t entry;
1252 entry = make_migration_entry(page, pte_write(pteval));
1253 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1254 } else
d559db08 1255 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1256
edc315fd 1257 page_remove_rmap(page);
1da177e4
LT
1258 page_cache_release(page);
1259
1260out_unmap:
c0718806 1261 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1262out:
1263 return ret;
53f79acb 1264
caed0f48
KM
1265out_mlock:
1266 pte_unmap_unlock(pte, ptl);
1267
1268
1269 /*
1270 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1271 * unstable result and race. Plus, We can't wait here because
2b575eb6 1272 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1273 * if trylock failed, the page remain in evictable lru and later
1274 * vmscan could retry to move the page to unevictable lru if the
1275 * page is actually mlocked.
1276 */
1277 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1278 if (vma->vm_flags & VM_LOCKED) {
1279 mlock_vma_page(page);
1280 ret = SWAP_MLOCK;
53f79acb 1281 }
caed0f48 1282 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1283 }
1da177e4
LT
1284 return ret;
1285}
1286
1287/*
1288 * objrmap doesn't work for nonlinear VMAs because the assumption that
1289 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1290 * Consequently, given a particular page and its ->index, we cannot locate the
1291 * ptes which are mapping that page without an exhaustive linear search.
1292 *
1293 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1294 * maps the file to which the target page belongs. The ->vm_private_data field
1295 * holds the current cursor into that scan. Successive searches will circulate
1296 * around the vma's virtual address space.
1297 *
1298 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1299 * more scanning pressure is placed against them as well. Eventually pages
1300 * will become fully unmapped and are eligible for eviction.
1301 *
1302 * For very sparsely populated VMAs this is a little inefficient - chances are
1303 * there there won't be many ptes located within the scan cluster. In this case
1304 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1305 *
1306 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1307 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1308 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1309 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1310 */
1311#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1312#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1313
b291f000
NP
1314static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1315 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1316{
1317 struct mm_struct *mm = vma->vm_mm;
1318 pgd_t *pgd;
1319 pud_t *pud;
1320 pmd_t *pmd;
c0718806 1321 pte_t *pte;
1da177e4 1322 pte_t pteval;
c0718806 1323 spinlock_t *ptl;
1da177e4
LT
1324 struct page *page;
1325 unsigned long address;
1326 unsigned long end;
b291f000
NP
1327 int ret = SWAP_AGAIN;
1328 int locked_vma = 0;
1da177e4 1329
1da177e4
LT
1330 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1331 end = address + CLUSTER_SIZE;
1332 if (address < vma->vm_start)
1333 address = vma->vm_start;
1334 if (end > vma->vm_end)
1335 end = vma->vm_end;
1336
1337 pgd = pgd_offset(mm, address);
1338 if (!pgd_present(*pgd))
b291f000 1339 return ret;
1da177e4
LT
1340
1341 pud = pud_offset(pgd, address);
1342 if (!pud_present(*pud))
b291f000 1343 return ret;
1da177e4
LT
1344
1345 pmd = pmd_offset(pud, address);
1346 if (!pmd_present(*pmd))
b291f000
NP
1347 return ret;
1348
1349 /*
af8e3354 1350 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1351 * keep the sem while scanning the cluster for mlocking pages.
1352 */
af8e3354 1353 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1354 locked_vma = (vma->vm_flags & VM_LOCKED);
1355 if (!locked_vma)
1356 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1357 }
c0718806
HD
1358
1359 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1360
365e9c87
HD
1361 /* Update high watermark before we lower rss */
1362 update_hiwater_rss(mm);
1363
c0718806 1364 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1365 if (!pte_present(*pte))
1366 continue;
6aab341e
LT
1367 page = vm_normal_page(vma, address, *pte);
1368 BUG_ON(!page || PageAnon(page));
1da177e4 1369
b291f000
NP
1370 if (locked_vma) {
1371 mlock_vma_page(page); /* no-op if already mlocked */
1372 if (page == check_page)
1373 ret = SWAP_MLOCK;
1374 continue; /* don't unmap */
1375 }
1376
cddb8a5c 1377 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1378 continue;
1379
1380 /* Nuke the page table entry. */
eca35133 1381 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1382 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1383
1384 /* If nonlinear, store the file page offset in the pte. */
1385 if (page->index != linear_page_index(vma, address))
1386 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1387
1388 /* Move the dirty bit to the physical page now the pte is gone. */
1389 if (pte_dirty(pteval))
1390 set_page_dirty(page);
1391
edc315fd 1392 page_remove_rmap(page);
1da177e4 1393 page_cache_release(page);
d559db08 1394 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1395 (*mapcount)--;
1396 }
c0718806 1397 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1398 if (locked_vma)
1399 up_read(&vma->vm_mm->mmap_sem);
1400 return ret;
1da177e4
LT
1401}
1402
71e3aac0 1403bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1404{
1405 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1406
1407 if (!maybe_stack)
1408 return false;
1409
1410 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1411 VM_STACK_INCOMPLETE_SETUP)
1412 return true;
1413
1414 return false;
1415}
1416
b291f000
NP
1417/**
1418 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1419 * rmap method
1420 * @page: the page to unmap/unlock
8051be5e 1421 * @flags: action and flags
b291f000
NP
1422 *
1423 * Find all the mappings of a page using the mapping pointer and the vma chains
1424 * contained in the anon_vma struct it points to.
1425 *
1426 * This function is only called from try_to_unmap/try_to_munlock for
1427 * anonymous pages.
1428 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1429 * where the page was found will be held for write. So, we won't recheck
1430 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1431 * 'LOCKED.
1432 */
14fa31b8 1433static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1434{
1435 struct anon_vma *anon_vma;
5beb4930 1436 struct anon_vma_chain *avc;
1da177e4 1437 int ret = SWAP_AGAIN;
b291f000 1438
1da177e4
LT
1439 anon_vma = page_lock_anon_vma(page);
1440 if (!anon_vma)
1441 return ret;
1442
5beb4930
RR
1443 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1444 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1445 unsigned long address;
1446
1447 /*
1448 * During exec, a temporary VMA is setup and later moved.
1449 * The VMA is moved under the anon_vma lock but not the
1450 * page tables leading to a race where migration cannot
1451 * find the migration ptes. Rather than increasing the
1452 * locking requirements of exec(), migration skips
1453 * temporary VMAs until after exec() completes.
1454 */
1455 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1456 is_vma_temporary_stack(vma))
1457 continue;
1458
1459 address = vma_address(page, vma);
1cb1729b
HD
1460 if (address == -EFAULT)
1461 continue;
1462 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1463 if (ret != SWAP_AGAIN || !page_mapped(page))
1464 break;
1da177e4 1465 }
34bbd704
ON
1466
1467 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1468 return ret;
1469}
1470
1471/**
b291f000
NP
1472 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1473 * @page: the page to unmap/unlock
14fa31b8 1474 * @flags: action and flags
1da177e4
LT
1475 *
1476 * Find all the mappings of a page using the mapping pointer and the vma chains
1477 * contained in the address_space struct it points to.
1478 *
b291f000
NP
1479 * This function is only called from try_to_unmap/try_to_munlock for
1480 * object-based pages.
1481 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1482 * where the page was found will be held for write. So, we won't recheck
1483 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1484 * 'LOCKED.
1da177e4 1485 */
14fa31b8 1486static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1487{
1488 struct address_space *mapping = page->mapping;
1489 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1490 struct vm_area_struct *vma;
1491 struct prio_tree_iter iter;
1492 int ret = SWAP_AGAIN;
1493 unsigned long cursor;
1494 unsigned long max_nl_cursor = 0;
1495 unsigned long max_nl_size = 0;
1496 unsigned int mapcount;
1497
3d48ae45 1498 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 1499 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1500 unsigned long address = vma_address(page, vma);
1501 if (address == -EFAULT)
1502 continue;
1503 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1504 if (ret != SWAP_AGAIN || !page_mapped(page))
1505 goto out;
1da177e4
LT
1506 }
1507
1508 if (list_empty(&mapping->i_mmap_nonlinear))
1509 goto out;
1510
53f79acb
HD
1511 /*
1512 * We don't bother to try to find the munlocked page in nonlinears.
1513 * It's costly. Instead, later, page reclaim logic may call
1514 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1515 */
1516 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1517 goto out;
1518
1da177e4
LT
1519 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1520 shared.vm_set.list) {
1da177e4
LT
1521 cursor = (unsigned long) vma->vm_private_data;
1522 if (cursor > max_nl_cursor)
1523 max_nl_cursor = cursor;
1524 cursor = vma->vm_end - vma->vm_start;
1525 if (cursor > max_nl_size)
1526 max_nl_size = cursor;
1527 }
1528
b291f000 1529 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1530 ret = SWAP_FAIL;
1531 goto out;
1532 }
1533
1534 /*
1535 * We don't try to search for this page in the nonlinear vmas,
1536 * and page_referenced wouldn't have found it anyway. Instead
1537 * just walk the nonlinear vmas trying to age and unmap some.
1538 * The mapcount of the page we came in with is irrelevant,
1539 * but even so use it as a guide to how hard we should try?
1540 */
1541 mapcount = page_mapcount(page);
1542 if (!mapcount)
1543 goto out;
3d48ae45 1544 cond_resched();
1da177e4
LT
1545
1546 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1547 if (max_nl_cursor == 0)
1548 max_nl_cursor = CLUSTER_SIZE;
1549
1550 do {
1551 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1552 shared.vm_set.list) {
1da177e4 1553 cursor = (unsigned long) vma->vm_private_data;
839b9685 1554 while ( cursor < max_nl_cursor &&
1da177e4 1555 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1556 if (try_to_unmap_cluster(cursor, &mapcount,
1557 vma, page) == SWAP_MLOCK)
1558 ret = SWAP_MLOCK;
1da177e4
LT
1559 cursor += CLUSTER_SIZE;
1560 vma->vm_private_data = (void *) cursor;
1561 if ((int)mapcount <= 0)
1562 goto out;
1563 }
1564 vma->vm_private_data = (void *) max_nl_cursor;
1565 }
3d48ae45 1566 cond_resched();
1da177e4
LT
1567 max_nl_cursor += CLUSTER_SIZE;
1568 } while (max_nl_cursor <= max_nl_size);
1569
1570 /*
1571 * Don't loop forever (perhaps all the remaining pages are
1572 * in locked vmas). Reset cursor on all unreserved nonlinear
1573 * vmas, now forgetting on which ones it had fallen behind.
1574 */
101d2be7
HD
1575 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1576 vma->vm_private_data = NULL;
1da177e4 1577out:
3d48ae45 1578 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1579 return ret;
1580}
1581
1582/**
1583 * try_to_unmap - try to remove all page table mappings to a page
1584 * @page: the page to get unmapped
14fa31b8 1585 * @flags: action and flags
1da177e4
LT
1586 *
1587 * Tries to remove all the page table entries which are mapping this
1588 * page, used in the pageout path. Caller must hold the page lock.
1589 * Return values are:
1590 *
1591 * SWAP_SUCCESS - we succeeded in removing all mappings
1592 * SWAP_AGAIN - we missed a mapping, try again later
1593 * SWAP_FAIL - the page is unswappable
b291f000 1594 * SWAP_MLOCK - page is mlocked.
1da177e4 1595 */
14fa31b8 1596int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1597{
1598 int ret;
1599
1da177e4 1600 BUG_ON(!PageLocked(page));
91600e9e 1601 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1602
5ad64688
HD
1603 if (unlikely(PageKsm(page)))
1604 ret = try_to_unmap_ksm(page, flags);
1605 else if (PageAnon(page))
14fa31b8 1606 ret = try_to_unmap_anon(page, flags);
1da177e4 1607 else
14fa31b8 1608 ret = try_to_unmap_file(page, flags);
b291f000 1609 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1610 ret = SWAP_SUCCESS;
1611 return ret;
1612}
81b4082d 1613
b291f000
NP
1614/**
1615 * try_to_munlock - try to munlock a page
1616 * @page: the page to be munlocked
1617 *
1618 * Called from munlock code. Checks all of the VMAs mapping the page
1619 * to make sure nobody else has this page mlocked. The page will be
1620 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1621 *
1622 * Return values are:
1623 *
53f79acb 1624 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1625 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1626 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1627 * SWAP_MLOCK - page is now mlocked.
1628 */
1629int try_to_munlock(struct page *page)
1630{
1631 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1632
5ad64688
HD
1633 if (unlikely(PageKsm(page)))
1634 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1635 else if (PageAnon(page))
14fa31b8 1636 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1637 else
14fa31b8 1638 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1639}
e9995ef9 1640
01d8b20d 1641void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1642{
01d8b20d 1643 struct anon_vma *root = anon_vma->root;
76545066 1644
01d8b20d
PZ
1645 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1646 anon_vma_free(root);
76545066 1647
01d8b20d 1648 anon_vma_free(anon_vma);
76545066 1649}
76545066 1650
e9995ef9
HD
1651#ifdef CONFIG_MIGRATION
1652/*
1653 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1654 * Called by migrate.c to remove migration ptes, but might be used more later.
1655 */
1656static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1657 struct vm_area_struct *, unsigned long, void *), void *arg)
1658{
1659 struct anon_vma *anon_vma;
5beb4930 1660 struct anon_vma_chain *avc;
e9995ef9
HD
1661 int ret = SWAP_AGAIN;
1662
1663 /*
1664 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1665 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1666 * are holding mmap_sem. Users without mmap_sem are required to
1667 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1668 */
1669 anon_vma = page_anon_vma(page);
1670 if (!anon_vma)
1671 return ret;
cba48b98 1672 anon_vma_lock(anon_vma);
5beb4930
RR
1673 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1674 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1675 unsigned long address = vma_address(page, vma);
1676 if (address == -EFAULT)
1677 continue;
1678 ret = rmap_one(page, vma, address, arg);
1679 if (ret != SWAP_AGAIN)
1680 break;
1681 }
cba48b98 1682 anon_vma_unlock(anon_vma);
e9995ef9
HD
1683 return ret;
1684}
1685
1686static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1687 struct vm_area_struct *, unsigned long, void *), void *arg)
1688{
1689 struct address_space *mapping = page->mapping;
1690 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1691 struct vm_area_struct *vma;
1692 struct prio_tree_iter iter;
1693 int ret = SWAP_AGAIN;
1694
1695 if (!mapping)
1696 return ret;
3d48ae45 1697 mutex_lock(&mapping->i_mmap_mutex);
e9995ef9
HD
1698 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1699 unsigned long address = vma_address(page, vma);
1700 if (address == -EFAULT)
1701 continue;
1702 ret = rmap_one(page, vma, address, arg);
1703 if (ret != SWAP_AGAIN)
1704 break;
1705 }
1706 /*
1707 * No nonlinear handling: being always shared, nonlinear vmas
1708 * never contain migration ptes. Decide what to do about this
1709 * limitation to linear when we need rmap_walk() on nonlinear.
1710 */
3d48ae45 1711 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1712 return ret;
1713}
1714
1715int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1716 struct vm_area_struct *, unsigned long, void *), void *arg)
1717{
1718 VM_BUG_ON(!PageLocked(page));
1719
1720 if (unlikely(PageKsm(page)))
1721 return rmap_walk_ksm(page, rmap_one, arg);
1722 else if (PageAnon(page))
1723 return rmap_walk_anon(page, rmap_one, arg);
1724 else
1725 return rmap_walk_file(page, rmap_one, arg);
1726}
1727#endif /* CONFIG_MIGRATION */
0fe6e20b 1728
e3390f67 1729#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1730/*
1731 * The following three functions are for anonymous (private mapped) hugepages.
1732 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1733 * and no lru code, because we handle hugepages differently from common pages.
1734 */
1735static void __hugepage_set_anon_rmap(struct page *page,
1736 struct vm_area_struct *vma, unsigned long address, int exclusive)
1737{
1738 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1739
0fe6e20b 1740 BUG_ON(!anon_vma);
433abed6
NH
1741
1742 if (PageAnon(page))
1743 return;
1744 if (!exclusive)
1745 anon_vma = anon_vma->root;
1746
0fe6e20b
NH
1747 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1748 page->mapping = (struct address_space *) anon_vma;
1749 page->index = linear_page_index(vma, address);
1750}
1751
1752void hugepage_add_anon_rmap(struct page *page,
1753 struct vm_area_struct *vma, unsigned long address)
1754{
1755 struct anon_vma *anon_vma = vma->anon_vma;
1756 int first;
a850ea30
NH
1757
1758 BUG_ON(!PageLocked(page));
0fe6e20b 1759 BUG_ON(!anon_vma);
5dbe0af4 1760 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1761 first = atomic_inc_and_test(&page->_mapcount);
1762 if (first)
1763 __hugepage_set_anon_rmap(page, vma, address, 0);
1764}
1765
1766void hugepage_add_new_anon_rmap(struct page *page,
1767 struct vm_area_struct *vma, unsigned long address)
1768{
1769 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1770 atomic_set(&page->_mapcount, 0);
1771 __hugepage_set_anon_rmap(page, vma, address, 1);
1772}
e3390f67 1773#endif /* CONFIG_HUGETLB_PAGE */