Fix page allocation flags in grow_dev_page()
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
53
fcc234f8 54struct kmem_cache *anon_vma_cachep;
1da177e4
LT
55
56static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57{
b7ab795b 58#ifdef CONFIG_DEBUG_VM
1da177e4
LT
59 struct anon_vma *anon_vma = find_vma->anon_vma;
60 struct vm_area_struct *vma;
61 unsigned int mapcount = 0;
62 int found = 0;
63
64 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 mapcount++;
66 BUG_ON(mapcount > 100000);
67 if (vma == find_vma)
68 found = 1;
69 }
70 BUG_ON(!found);
71#endif
72}
73
74/* This must be called under the mmap_sem. */
75int anon_vma_prepare(struct vm_area_struct *vma)
76{
77 struct anon_vma *anon_vma = vma->anon_vma;
78
79 might_sleep();
80 if (unlikely(!anon_vma)) {
81 struct mm_struct *mm = vma->vm_mm;
82 struct anon_vma *allocated, *locked;
83
84 anon_vma = find_mergeable_anon_vma(vma);
85 if (anon_vma) {
86 allocated = NULL;
87 locked = anon_vma;
88 spin_lock(&locked->lock);
89 } else {
90 anon_vma = anon_vma_alloc();
91 if (unlikely(!anon_vma))
92 return -ENOMEM;
93 allocated = anon_vma;
94 locked = NULL;
95 }
96
97 /* page_table_lock to protect against threads */
98 spin_lock(&mm->page_table_lock);
99 if (likely(!vma->anon_vma)) {
100 vma->anon_vma = anon_vma;
0697212a 101 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
102 allocated = NULL;
103 }
104 spin_unlock(&mm->page_table_lock);
105
106 if (locked)
107 spin_unlock(&locked->lock);
108 if (unlikely(allocated))
109 anon_vma_free(allocated);
110 }
111 return 0;
112}
113
114void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115{
116 BUG_ON(vma->anon_vma != next->anon_vma);
117 list_del(&next->anon_vma_node);
118}
119
120void __anon_vma_link(struct vm_area_struct *vma)
121{
122 struct anon_vma *anon_vma = vma->anon_vma;
123
124 if (anon_vma) {
0697212a 125 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
126 validate_anon_vma(vma);
127 }
128}
129
130void anon_vma_link(struct vm_area_struct *vma)
131{
132 struct anon_vma *anon_vma = vma->anon_vma;
133
134 if (anon_vma) {
135 spin_lock(&anon_vma->lock);
0697212a 136 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
137 validate_anon_vma(vma);
138 spin_unlock(&anon_vma->lock);
139 }
140}
141
142void anon_vma_unlink(struct vm_area_struct *vma)
143{
144 struct anon_vma *anon_vma = vma->anon_vma;
145 int empty;
146
147 if (!anon_vma)
148 return;
149
150 spin_lock(&anon_vma->lock);
151 validate_anon_vma(vma);
152 list_del(&vma->anon_vma_node);
153
154 /* We must garbage collect the anon_vma if it's empty */
155 empty = list_empty(&anon_vma->head);
156 spin_unlock(&anon_vma->lock);
157
158 if (empty)
159 anon_vma_free(anon_vma);
160}
161
fcc234f8
PE
162static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 unsigned long flags)
1da177e4 164{
a35afb83 165 struct anon_vma *anon_vma = data;
1da177e4 166
a35afb83
CL
167 spin_lock_init(&anon_vma->lock);
168 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
169}
170
171void __init anon_vma_init(void)
172{
173 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
174 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
175}
176
177/*
178 * Getting a lock on a stable anon_vma from a page off the LRU is
179 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
180 */
181static struct anon_vma *page_lock_anon_vma(struct page *page)
182{
34bbd704 183 struct anon_vma *anon_vma;
1da177e4
LT
184 unsigned long anon_mapping;
185
186 rcu_read_lock();
187 anon_mapping = (unsigned long) page->mapping;
188 if (!(anon_mapping & PAGE_MAPPING_ANON))
189 goto out;
190 if (!page_mapped(page))
191 goto out;
192
193 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
194 spin_lock(&anon_vma->lock);
34bbd704 195 return anon_vma;
1da177e4
LT
196out:
197 rcu_read_unlock();
34bbd704
ON
198 return NULL;
199}
200
201static void page_unlock_anon_vma(struct anon_vma *anon_vma)
202{
203 spin_unlock(&anon_vma->lock);
204 rcu_read_unlock();
1da177e4
LT
205}
206
207/*
208 * At what user virtual address is page expected in vma?
209 */
210static inline unsigned long
211vma_address(struct page *page, struct vm_area_struct *vma)
212{
213 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
214 unsigned long address;
215
216 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
217 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
218 /* page should be within any vma from prio_tree_next */
219 BUG_ON(!PageAnon(page));
220 return -EFAULT;
221 }
222 return address;
223}
224
225/*
226 * At what user virtual address is page expected in vma? checking that the
ee498ed7 227 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
228 */
229unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
230{
231 if (PageAnon(page)) {
232 if ((void *)vma->anon_vma !=
233 (void *)page->mapping - PAGE_MAPPING_ANON)
234 return -EFAULT;
235 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
236 if (!vma->vm_file ||
237 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
238 return -EFAULT;
239 } else
240 return -EFAULT;
241 return vma_address(page, vma);
242}
243
81b4082d
ND
244/*
245 * Check that @page is mapped at @address into @mm.
246 *
b8072f09 247 * On success returns with pte mapped and locked.
81b4082d 248 */
ceffc078 249pte_t *page_check_address(struct page *page, struct mm_struct *mm,
c0718806 250 unsigned long address, spinlock_t **ptlp)
81b4082d
ND
251{
252 pgd_t *pgd;
253 pud_t *pud;
254 pmd_t *pmd;
255 pte_t *pte;
c0718806 256 spinlock_t *ptl;
81b4082d 257
81b4082d 258 pgd = pgd_offset(mm, address);
c0718806
HD
259 if (!pgd_present(*pgd))
260 return NULL;
261
262 pud = pud_offset(pgd, address);
263 if (!pud_present(*pud))
264 return NULL;
265
266 pmd = pmd_offset(pud, address);
267 if (!pmd_present(*pmd))
268 return NULL;
269
270 pte = pte_offset_map(pmd, address);
271 /* Make a quick check before getting the lock */
272 if (!pte_present(*pte)) {
273 pte_unmap(pte);
274 return NULL;
275 }
276
4c21e2f2 277 ptl = pte_lockptr(mm, pmd);
c0718806
HD
278 spin_lock(ptl);
279 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
280 *ptlp = ptl;
281 return pte;
81b4082d 282 }
c0718806
HD
283 pte_unmap_unlock(pte, ptl);
284 return NULL;
81b4082d
ND
285}
286
1da177e4
LT
287/*
288 * Subfunctions of page_referenced: page_referenced_one called
289 * repeatedly from either page_referenced_anon or page_referenced_file.
290 */
291static int page_referenced_one(struct page *page,
f7b7fd8f 292 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
293{
294 struct mm_struct *mm = vma->vm_mm;
295 unsigned long address;
1da177e4 296 pte_t *pte;
c0718806 297 spinlock_t *ptl;
1da177e4
LT
298 int referenced = 0;
299
1da177e4
LT
300 address = vma_address(page, vma);
301 if (address == -EFAULT)
302 goto out;
303
c0718806
HD
304 pte = page_check_address(page, mm, address, &ptl);
305 if (!pte)
306 goto out;
1da177e4 307
c0718806
HD
308 if (ptep_clear_flush_young(vma, address, pte))
309 referenced++;
1da177e4 310
c0718806
HD
311 /* Pretend the page is referenced if the task has the
312 swap token and is in the middle of a page fault. */
f7b7fd8f 313 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
314 rwsem_is_locked(&mm->mmap_sem))
315 referenced++;
316
317 (*mapcount)--;
318 pte_unmap_unlock(pte, ptl);
1da177e4
LT
319out:
320 return referenced;
321}
322
f7b7fd8f 323static int page_referenced_anon(struct page *page)
1da177e4
LT
324{
325 unsigned int mapcount;
326 struct anon_vma *anon_vma;
327 struct vm_area_struct *vma;
328 int referenced = 0;
329
330 anon_vma = page_lock_anon_vma(page);
331 if (!anon_vma)
332 return referenced;
333
334 mapcount = page_mapcount(page);
335 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
f7b7fd8f 336 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
337 if (!mapcount)
338 break;
339 }
34bbd704
ON
340
341 page_unlock_anon_vma(anon_vma);
1da177e4
LT
342 return referenced;
343}
344
345/**
346 * page_referenced_file - referenced check for object-based rmap
347 * @page: the page we're checking references on.
348 *
349 * For an object-based mapped page, find all the places it is mapped and
350 * check/clear the referenced flag. This is done by following the page->mapping
351 * pointer, then walking the chain of vmas it holds. It returns the number
352 * of references it found.
353 *
354 * This function is only called from page_referenced for object-based pages.
355 */
f7b7fd8f 356static int page_referenced_file(struct page *page)
1da177e4
LT
357{
358 unsigned int mapcount;
359 struct address_space *mapping = page->mapping;
360 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
361 struct vm_area_struct *vma;
362 struct prio_tree_iter iter;
363 int referenced = 0;
364
365 /*
366 * The caller's checks on page->mapping and !PageAnon have made
367 * sure that this is a file page: the check for page->mapping
368 * excludes the case just before it gets set on an anon page.
369 */
370 BUG_ON(PageAnon(page));
371
372 /*
373 * The page lock not only makes sure that page->mapping cannot
374 * suddenly be NULLified by truncation, it makes sure that the
375 * structure at mapping cannot be freed and reused yet,
376 * so we can safely take mapping->i_mmap_lock.
377 */
378 BUG_ON(!PageLocked(page));
379
380 spin_lock(&mapping->i_mmap_lock);
381
382 /*
383 * i_mmap_lock does not stabilize mapcount at all, but mapcount
384 * is more likely to be accurate if we note it after spinning.
385 */
386 mapcount = page_mapcount(page);
387
388 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
389 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 == (VM_LOCKED|VM_MAYSHARE)) {
391 referenced++;
392 break;
393 }
f7b7fd8f 394 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
395 if (!mapcount)
396 break;
397 }
398
399 spin_unlock(&mapping->i_mmap_lock);
400 return referenced;
401}
402
403/**
404 * page_referenced - test if the page was referenced
405 * @page: the page to test
406 * @is_locked: caller holds lock on the page
407 *
408 * Quick test_and_clear_referenced for all mappings to a page,
409 * returns the number of ptes which referenced the page.
410 */
f7b7fd8f 411int page_referenced(struct page *page, int is_locked)
1da177e4
LT
412{
413 int referenced = 0;
414
1da177e4
LT
415 if (page_test_and_clear_young(page))
416 referenced++;
417
418 if (TestClearPageReferenced(page))
419 referenced++;
420
421 if (page_mapped(page) && page->mapping) {
422 if (PageAnon(page))
f7b7fd8f 423 referenced += page_referenced_anon(page);
1da177e4 424 else if (is_locked)
f7b7fd8f 425 referenced += page_referenced_file(page);
1da177e4
LT
426 else if (TestSetPageLocked(page))
427 referenced++;
428 else {
429 if (page->mapping)
f7b7fd8f 430 referenced += page_referenced_file(page);
1da177e4
LT
431 unlock_page(page);
432 }
433 }
434 return referenced;
435}
436
d08b3851
PZ
437static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
438{
439 struct mm_struct *mm = vma->vm_mm;
440 unsigned long address;
c2fda5fe 441 pte_t *pte;
d08b3851
PZ
442 spinlock_t *ptl;
443 int ret = 0;
444
445 address = vma_address(page, vma);
446 if (address == -EFAULT)
447 goto out;
448
449 pte = page_check_address(page, mm, address, &ptl);
450 if (!pte)
451 goto out;
452
c2fda5fe
PZ
453 if (pte_dirty(*pte) || pte_write(*pte)) {
454 pte_t entry;
d08b3851 455
c2fda5fe
PZ
456 flush_cache_page(vma, address, pte_pfn(*pte));
457 entry = ptep_clear_flush(vma, address, pte);
458 entry = pte_wrprotect(entry);
459 entry = pte_mkclean(entry);
d6e88e67 460 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
461 lazy_mmu_prot_update(entry);
462 ret = 1;
463 }
d08b3851 464
d08b3851
PZ
465 pte_unmap_unlock(pte, ptl);
466out:
467 return ret;
468}
469
470static int page_mkclean_file(struct address_space *mapping, struct page *page)
471{
472 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
473 struct vm_area_struct *vma;
474 struct prio_tree_iter iter;
475 int ret = 0;
476
477 BUG_ON(PageAnon(page));
478
479 spin_lock(&mapping->i_mmap_lock);
480 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
481 if (vma->vm_flags & VM_SHARED)
482 ret += page_mkclean_one(page, vma);
483 }
484 spin_unlock(&mapping->i_mmap_lock);
485 return ret;
486}
487
488int page_mkclean(struct page *page)
489{
490 int ret = 0;
491
492 BUG_ON(!PageLocked(page));
493
494 if (page_mapped(page)) {
495 struct address_space *mapping = page_mapping(page);
496 if (mapping)
497 ret = page_mkclean_file(mapping, page);
6c210482
MS
498 if (page_test_dirty(page)) {
499 page_clear_dirty(page);
6e1beb3c 500 ret = 1;
6c210482 501 }
d08b3851
PZ
502 }
503
504 return ret;
505}
60b59bea 506EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 507
9617d95e
NP
508/**
509 * page_set_anon_rmap - setup new anonymous rmap
510 * @page: the page to add the mapping to
511 * @vma: the vm area in which the mapping is added
512 * @address: the user virtual address mapped
513 */
514static void __page_set_anon_rmap(struct page *page,
515 struct vm_area_struct *vma, unsigned long address)
516{
517 struct anon_vma *anon_vma = vma->anon_vma;
518
519 BUG_ON(!anon_vma);
520 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
521 page->mapping = (struct address_space *) anon_vma;
522
523 page->index = linear_page_index(vma, address);
524
a74609fa
NP
525 /*
526 * nr_mapped state can be updated without turning off
527 * interrupts because it is not modified via interrupt.
528 */
f3dbd344 529 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
530}
531
1da177e4
LT
532/**
533 * page_add_anon_rmap - add pte mapping to an anonymous page
534 * @page: the page to add the mapping to
535 * @vma: the vm area in which the mapping is added
536 * @address: the user virtual address mapped
537 *
b8072f09 538 * The caller needs to hold the pte lock.
1da177e4
LT
539 */
540void page_add_anon_rmap(struct page *page,
541 struct vm_area_struct *vma, unsigned long address)
542{
9617d95e
NP
543 if (atomic_inc_and_test(&page->_mapcount))
544 __page_set_anon_rmap(page, vma, address);
1da177e4
LT
545 /* else checking page index and mapping is racy */
546}
547
9617d95e
NP
548/*
549 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
550 * @page: the page to add the mapping to
551 * @vma: the vm area in which the mapping is added
552 * @address: the user virtual address mapped
553 *
554 * Same as page_add_anon_rmap but must only be called on *new* pages.
555 * This means the inc-and-test can be bypassed.
556 */
557void page_add_new_anon_rmap(struct page *page,
558 struct vm_area_struct *vma, unsigned long address)
559{
560 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
561 __page_set_anon_rmap(page, vma, address);
562}
563
1da177e4
LT
564/**
565 * page_add_file_rmap - add pte mapping to a file page
566 * @page: the page to add the mapping to
567 *
b8072f09 568 * The caller needs to hold the pte lock.
1da177e4
LT
569 */
570void page_add_file_rmap(struct page *page)
571{
1da177e4 572 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 573 __inc_zone_page_state(page, NR_FILE_MAPPED);
1da177e4
LT
574}
575
576/**
577 * page_remove_rmap - take down pte mapping from a page
578 * @page: page to remove mapping from
579 *
b8072f09 580 * The caller needs to hold the pte lock.
1da177e4 581 */
7de6b805 582void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 583{
1da177e4 584 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 585 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 586 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 587 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
588 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
589 printk (KERN_EMERG " page->count = %x\n", page_count(page));
590 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805
NP
591 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
592 if (vma->vm_ops)
593 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
594 if (vma->vm_file && vma->vm_file->f_op)
595 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 596 BUG();
ef2bf0dc 597 }
b16bc64d 598
1da177e4
LT
599 /*
600 * It would be tidy to reset the PageAnon mapping here,
601 * but that might overwrite a racing page_add_anon_rmap
602 * which increments mapcount after us but sets mapping
603 * before us: so leave the reset to free_hot_cold_page,
604 * and remember that it's only reliable while mapped.
605 * Leaving it set also helps swapoff to reinstate ptes
606 * faster for those pages still in swapcache.
607 */
6c210482
MS
608 if (page_test_dirty(page)) {
609 page_clear_dirty(page);
1da177e4 610 set_page_dirty(page);
6c210482 611 }
f3dbd344
CL
612 __dec_zone_page_state(page,
613 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
1da177e4
LT
614 }
615}
616
617/*
618 * Subfunctions of try_to_unmap: try_to_unmap_one called
619 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
620 */
a48d07af 621static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 622 int migration)
1da177e4
LT
623{
624 struct mm_struct *mm = vma->vm_mm;
625 unsigned long address;
1da177e4
LT
626 pte_t *pte;
627 pte_t pteval;
c0718806 628 spinlock_t *ptl;
1da177e4
LT
629 int ret = SWAP_AGAIN;
630
1da177e4
LT
631 address = vma_address(page, vma);
632 if (address == -EFAULT)
633 goto out;
634
c0718806
HD
635 pte = page_check_address(page, mm, address, &ptl);
636 if (!pte)
81b4082d 637 goto out;
1da177e4
LT
638
639 /*
640 * If the page is mlock()d, we cannot swap it out.
641 * If it's recently referenced (perhaps page_referenced
642 * skipped over this mm) then we should reactivate it.
643 */
e6a1530d
CL
644 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
645 (ptep_clear_flush_young(vma, address, pte)))) {
1da177e4
LT
646 ret = SWAP_FAIL;
647 goto out_unmap;
648 }
649
1da177e4
LT
650 /* Nuke the page table entry. */
651 flush_cache_page(vma, address, page_to_pfn(page));
652 pteval = ptep_clear_flush(vma, address, pte);
653
654 /* Move the dirty bit to the physical page now the pte is gone. */
655 if (pte_dirty(pteval))
656 set_page_dirty(page);
657
365e9c87
HD
658 /* Update high watermark before we lower rss */
659 update_hiwater_rss(mm);
660
1da177e4 661 if (PageAnon(page)) {
4c21e2f2 662 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
663
664 if (PageSwapCache(page)) {
665 /*
666 * Store the swap location in the pte.
667 * See handle_pte_fault() ...
668 */
669 swap_duplicate(entry);
670 if (list_empty(&mm->mmlist)) {
671 spin_lock(&mmlist_lock);
672 if (list_empty(&mm->mmlist))
673 list_add(&mm->mmlist, &init_mm.mmlist);
674 spin_unlock(&mmlist_lock);
675 }
442c9137 676 dec_mm_counter(mm, anon_rss);
04e62a29 677#ifdef CONFIG_MIGRATION
0697212a
CL
678 } else {
679 /*
680 * Store the pfn of the page in a special migration
681 * pte. do_swap_page() will wait until the migration
682 * pte is removed and then restart fault handling.
683 */
684 BUG_ON(!migration);
685 entry = make_migration_entry(page, pte_write(pteval));
04e62a29 686#endif
1da177e4
LT
687 }
688 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
689 BUG_ON(pte_file(*pte));
4294621f 690 } else
04e62a29
CL
691#ifdef CONFIG_MIGRATION
692 if (migration) {
693 /* Establish migration entry for a file page */
694 swp_entry_t entry;
695 entry = make_migration_entry(page, pte_write(pteval));
696 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
697 } else
698#endif
4294621f 699 dec_mm_counter(mm, file_rss);
1da177e4 700
04e62a29 701
7de6b805 702 page_remove_rmap(page, vma);
1da177e4
LT
703 page_cache_release(page);
704
705out_unmap:
c0718806 706 pte_unmap_unlock(pte, ptl);
1da177e4
LT
707out:
708 return ret;
709}
710
711/*
712 * objrmap doesn't work for nonlinear VMAs because the assumption that
713 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
714 * Consequently, given a particular page and its ->index, we cannot locate the
715 * ptes which are mapping that page without an exhaustive linear search.
716 *
717 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
718 * maps the file to which the target page belongs. The ->vm_private_data field
719 * holds the current cursor into that scan. Successive searches will circulate
720 * around the vma's virtual address space.
721 *
722 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
723 * more scanning pressure is placed against them as well. Eventually pages
724 * will become fully unmapped and are eligible for eviction.
725 *
726 * For very sparsely populated VMAs this is a little inefficient - chances are
727 * there there won't be many ptes located within the scan cluster. In this case
728 * maybe we could scan further - to the end of the pte page, perhaps.
729 */
730#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
731#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
732
733static void try_to_unmap_cluster(unsigned long cursor,
734 unsigned int *mapcount, struct vm_area_struct *vma)
735{
736 struct mm_struct *mm = vma->vm_mm;
737 pgd_t *pgd;
738 pud_t *pud;
739 pmd_t *pmd;
c0718806 740 pte_t *pte;
1da177e4 741 pte_t pteval;
c0718806 742 spinlock_t *ptl;
1da177e4
LT
743 struct page *page;
744 unsigned long address;
745 unsigned long end;
1da177e4 746
1da177e4
LT
747 address = (vma->vm_start + cursor) & CLUSTER_MASK;
748 end = address + CLUSTER_SIZE;
749 if (address < vma->vm_start)
750 address = vma->vm_start;
751 if (end > vma->vm_end)
752 end = vma->vm_end;
753
754 pgd = pgd_offset(mm, address);
755 if (!pgd_present(*pgd))
c0718806 756 return;
1da177e4
LT
757
758 pud = pud_offset(pgd, address);
759 if (!pud_present(*pud))
c0718806 760 return;
1da177e4
LT
761
762 pmd = pmd_offset(pud, address);
763 if (!pmd_present(*pmd))
c0718806
HD
764 return;
765
766 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 767
365e9c87
HD
768 /* Update high watermark before we lower rss */
769 update_hiwater_rss(mm);
770
c0718806 771 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
772 if (!pte_present(*pte))
773 continue;
6aab341e
LT
774 page = vm_normal_page(vma, address, *pte);
775 BUG_ON(!page || PageAnon(page));
1da177e4
LT
776
777 if (ptep_clear_flush_young(vma, address, pte))
778 continue;
779
780 /* Nuke the page table entry. */
eca35133 781 flush_cache_page(vma, address, pte_pfn(*pte));
1da177e4
LT
782 pteval = ptep_clear_flush(vma, address, pte);
783
784 /* If nonlinear, store the file page offset in the pte. */
785 if (page->index != linear_page_index(vma, address))
786 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
787
788 /* Move the dirty bit to the physical page now the pte is gone. */
789 if (pte_dirty(pteval))
790 set_page_dirty(page);
791
7de6b805 792 page_remove_rmap(page, vma);
1da177e4 793 page_cache_release(page);
4294621f 794 dec_mm_counter(mm, file_rss);
1da177e4
LT
795 (*mapcount)--;
796 }
c0718806 797 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
798}
799
7352349a 800static int try_to_unmap_anon(struct page *page, int migration)
1da177e4
LT
801{
802 struct anon_vma *anon_vma;
803 struct vm_area_struct *vma;
804 int ret = SWAP_AGAIN;
805
806 anon_vma = page_lock_anon_vma(page);
807 if (!anon_vma)
808 return ret;
809
810 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
7352349a 811 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
812 if (ret == SWAP_FAIL || !page_mapped(page))
813 break;
814 }
34bbd704
ON
815
816 page_unlock_anon_vma(anon_vma);
1da177e4
LT
817 return ret;
818}
819
820/**
821 * try_to_unmap_file - unmap file page using the object-based rmap method
822 * @page: the page to unmap
823 *
824 * Find all the mappings of a page using the mapping pointer and the vma chains
825 * contained in the address_space struct it points to.
826 *
827 * This function is only called from try_to_unmap for object-based pages.
828 */
7352349a 829static int try_to_unmap_file(struct page *page, int migration)
1da177e4
LT
830{
831 struct address_space *mapping = page->mapping;
832 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
833 struct vm_area_struct *vma;
834 struct prio_tree_iter iter;
835 int ret = SWAP_AGAIN;
836 unsigned long cursor;
837 unsigned long max_nl_cursor = 0;
838 unsigned long max_nl_size = 0;
839 unsigned int mapcount;
840
841 spin_lock(&mapping->i_mmap_lock);
842 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
7352349a 843 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
844 if (ret == SWAP_FAIL || !page_mapped(page))
845 goto out;
846 }
847
848 if (list_empty(&mapping->i_mmap_nonlinear))
849 goto out;
850
851 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
852 shared.vm_set.list) {
e6a1530d 853 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
854 continue;
855 cursor = (unsigned long) vma->vm_private_data;
856 if (cursor > max_nl_cursor)
857 max_nl_cursor = cursor;
858 cursor = vma->vm_end - vma->vm_start;
859 if (cursor > max_nl_size)
860 max_nl_size = cursor;
861 }
862
863 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
864 ret = SWAP_FAIL;
865 goto out;
866 }
867
868 /*
869 * We don't try to search for this page in the nonlinear vmas,
870 * and page_referenced wouldn't have found it anyway. Instead
871 * just walk the nonlinear vmas trying to age and unmap some.
872 * The mapcount of the page we came in with is irrelevant,
873 * but even so use it as a guide to how hard we should try?
874 */
875 mapcount = page_mapcount(page);
876 if (!mapcount)
877 goto out;
878 cond_resched_lock(&mapping->i_mmap_lock);
879
880 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
881 if (max_nl_cursor == 0)
882 max_nl_cursor = CLUSTER_SIZE;
883
884 do {
885 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
886 shared.vm_set.list) {
e6a1530d 887 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
888 continue;
889 cursor = (unsigned long) vma->vm_private_data;
839b9685 890 while ( cursor < max_nl_cursor &&
1da177e4
LT
891 cursor < vma->vm_end - vma->vm_start) {
892 try_to_unmap_cluster(cursor, &mapcount, vma);
893 cursor += CLUSTER_SIZE;
894 vma->vm_private_data = (void *) cursor;
895 if ((int)mapcount <= 0)
896 goto out;
897 }
898 vma->vm_private_data = (void *) max_nl_cursor;
899 }
900 cond_resched_lock(&mapping->i_mmap_lock);
901 max_nl_cursor += CLUSTER_SIZE;
902 } while (max_nl_cursor <= max_nl_size);
903
904 /*
905 * Don't loop forever (perhaps all the remaining pages are
906 * in locked vmas). Reset cursor on all unreserved nonlinear
907 * vmas, now forgetting on which ones it had fallen behind.
908 */
101d2be7
HD
909 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
910 vma->vm_private_data = NULL;
1da177e4
LT
911out:
912 spin_unlock(&mapping->i_mmap_lock);
913 return ret;
914}
915
916/**
917 * try_to_unmap - try to remove all page table mappings to a page
918 * @page: the page to get unmapped
919 *
920 * Tries to remove all the page table entries which are mapping this
921 * page, used in the pageout path. Caller must hold the page lock.
922 * Return values are:
923 *
924 * SWAP_SUCCESS - we succeeded in removing all mappings
925 * SWAP_AGAIN - we missed a mapping, try again later
926 * SWAP_FAIL - the page is unswappable
927 */
7352349a 928int try_to_unmap(struct page *page, int migration)
1da177e4
LT
929{
930 int ret;
931
1da177e4
LT
932 BUG_ON(!PageLocked(page));
933
934 if (PageAnon(page))
7352349a 935 ret = try_to_unmap_anon(page, migration);
1da177e4 936 else
7352349a 937 ret = try_to_unmap_file(page, migration);
1da177e4
LT
938
939 if (!page_mapped(page))
940 ret = SWAP_SUCCESS;
941 return ret;
942}
81b4082d 943