mm: mempolicy: skip non-migratable VMAs when setting MPOL_MF_LAZY
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
c8c06efa 26 * mapping->i_mmap_rwsem
5a505085 27 * anon_vma->rwsem
82591e6e
NP
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
c4843a75
GT
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
250df6ed 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
f758eeab 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
f758eeab 40 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 41 *
5a505085 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 43 * ->tasklist_lock
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
b95f1b31 56#include <linux/export.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
ef5d437f 61#include <linux/backing-dev.h>
33c3fc71 62#include <linux/page_idle.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
65
72b252ae
MG
66#include <trace/events/tlb.h>
67
b291f000
NP
68#include "internal.h"
69
fdd2e5f8 70static struct kmem_cache *anon_vma_cachep;
5beb4930 71static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
72
73static inline struct anon_vma *anon_vma_alloc(void)
74{
01d8b20d
PZ
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
01d8b20d
PZ
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
fdd2e5f8
AB
90}
91
01d8b20d 92static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 93{
01d8b20d 94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
95
96 /*
4fc3f1d6 97 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 104 *
4fc3f1d6
IM
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
88c22088 107 * LOCK MB
4fc3f1d6 108 * atomic_read() rwsem_is_locked()
88c22088
PZ
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
7f39dda9 113 might_sleep();
5a505085 114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 115 anon_vma_lock_write(anon_vma);
08b52706 116 anon_vma_unlock_write(anon_vma);
88c22088
PZ
117 }
118
fdd2e5f8
AB
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120}
1da177e4 121
dd34739c 122static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 123{
dd34739c 124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
125}
126
e574b5fd 127static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
128{
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130}
131
6583a843
KC
132static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135{
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
140}
141
d9d332e0
LT
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
23a0790a 151 * not we either need to find an adjacent mapping that we
d9d332e0
LT
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
1da177e4
LT
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 172 struct anon_vma_chain *avc;
1da177e4
LT
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
d9d332e0 177 struct anon_vma *allocated;
1da177e4 178
dd34739c 179 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
180 if (!avc)
181 goto out_enomem;
182
1da177e4 183 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
184 allocated = NULL;
185 if (!anon_vma) {
1da177e4
LT
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
5beb4930 188 goto out_enomem_free_avc;
1da177e4 189 allocated = anon_vma;
1da177e4
LT
190 }
191
4fc3f1d6 192 anon_vma_lock_write(anon_vma);
1da177e4
LT
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
6583a843 197 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208
KK
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
1da177e4 200 allocated = NULL;
31f2b0eb 201 avc = NULL;
1da177e4
LT
202 }
203 spin_unlock(&mm->page_table_lock);
08b52706 204 anon_vma_unlock_write(anon_vma);
31f2b0eb
ON
205
206 if (unlikely(allocated))
01d8b20d 207 put_anon_vma(allocated);
31f2b0eb 208 if (unlikely(avc))
5beb4930 209 anon_vma_chain_free(avc);
1da177e4
LT
210 }
211 return 0;
5beb4930
RR
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
1da177e4
LT
217}
218
bb4aa396
LT
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
5a505085 232 up_write(&root->rwsem);
bb4aa396 233 root = new_root;
5a505085 234 down_write(&root->rwsem);
bb4aa396
LT
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
5a505085 242 up_write(&root->rwsem);
bb4aa396
LT
243}
244
5beb4930
RR
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
5beb4930
RR
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 258{
5beb4930 259 struct anon_vma_chain *avc, *pavc;
bb4aa396 260 struct anon_vma *root = NULL;
5beb4930 261
646d87b4 262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
263 struct anon_vma *anon_vma;
264
dd34739c
LT
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
bb4aa396
LT
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
5beb4930 288 }
7a3ef208
KK
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
bb4aa396 291 unlock_anon_vma_root(root);
5beb4930 292 return 0;
1da177e4 293
5beb4930 294 enomem_failure:
3fe89b3e
LY
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
5beb4930
RR
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
1da177e4
LT
304}
305
5beb4930
RR
306/*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 312{
5beb4930
RR
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
c4ea95d7 315 int error;
1da177e4 316
5beb4930
RR
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
7a3ef208
KK
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
5beb4930
RR
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
c4ea95d7
DF
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
5beb4930 331
7a3ef208
KK
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
5beb4930
RR
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
dd34739c 340 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
341 if (!avc)
342 goto out_error_free_anon_vma;
5c341ee1
RR
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
7a3ef208 349 anon_vma->parent = pvma->anon_vma;
76545066 350 /*
01d8b20d
PZ
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
354 */
355 get_anon_vma(anon_vma->root);
5beb4930
RR
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
4fc3f1d6 358 anon_vma_lock_write(anon_vma);
5c341ee1 359 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 360 anon_vma->parent->degree++;
08b52706 361 anon_vma_unlock_write(anon_vma);
5beb4930
RR
362
363 return 0;
364
365 out_error_free_anon_vma:
01d8b20d 366 put_anon_vma(anon_vma);
5beb4930 367 out_error:
4946d54c 368 unlink_anon_vmas(vma);
5beb4930 369 return -ENOMEM;
1da177e4
LT
370}
371
5beb4930
RR
372void unlink_anon_vmas(struct vm_area_struct *vma)
373{
374 struct anon_vma_chain *avc, *next;
eee2acba 375 struct anon_vma *root = NULL;
5beb4930 376
5c341ee1
RR
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
5beb4930 381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
7a3ef208
KK
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
eee2acba 393 continue;
7a3ef208 394 }
eee2acba
PZ
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
7a3ef208
KK
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
eee2acba
PZ
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 406 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
7a3ef208 411 BUG_ON(anon_vma->degree);
eee2acba
PZ
412 put_anon_vma(anon_vma);
413
5beb4930
RR
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417}
418
51cc5068 419static void anon_vma_ctor(void *data)
1da177e4 420{
a35afb83 421 struct anon_vma *anon_vma = data;
1da177e4 422
5a505085 423 init_rwsem(&anon_vma->rwsem);
83813267 424 atomic_set(&anon_vma->refcount, 0);
bf181b9f 425 anon_vma->rb_root = RB_ROOT;
1da177e4
LT
426}
427
428void __init anon_vma_init(void)
429{
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5d097056
VD
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
432 anon_vma_ctor);
433 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
434 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
435}
436
437/*
6111e4ca
PZ
438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
439 *
440 * Since there is no serialization what so ever against page_remove_rmap()
441 * the best this function can do is return a locked anon_vma that might
442 * have been relevant to this page.
443 *
444 * The page might have been remapped to a different anon_vma or the anon_vma
445 * returned may already be freed (and even reused).
446 *
bc658c96
PZ
447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
449 * ensure that any anon_vma obtained from the page will still be valid for as
450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
451 *
6111e4ca
PZ
452 * All users of this function must be very careful when walking the anon_vma
453 * chain and verify that the page in question is indeed mapped in it
454 * [ something equivalent to page_mapped_in_vma() ].
455 *
456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
457 * that the anon_vma pointer from page->mapping is valid if there is a
458 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 459 */
746b18d4 460struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 461{
746b18d4 462 struct anon_vma *anon_vma = NULL;
1da177e4
LT
463 unsigned long anon_mapping;
464
465 rcu_read_lock();
4db0c3c2 466 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 467 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
468 goto out;
469 if (!page_mapped(page))
470 goto out;
471
472 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
473 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
474 anon_vma = NULL;
475 goto out;
476 }
f1819427
HD
477
478 /*
479 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
480 * freed. But if it has been unmapped, we have no security against the
481 * anon_vma structure being freed and reused (for another anon_vma:
482 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
483 * above cannot corrupt).
f1819427 484 */
746b18d4 485 if (!page_mapped(page)) {
7f39dda9 486 rcu_read_unlock();
746b18d4 487 put_anon_vma(anon_vma);
7f39dda9 488 return NULL;
746b18d4 489 }
1da177e4
LT
490out:
491 rcu_read_unlock();
746b18d4
PZ
492
493 return anon_vma;
494}
495
88c22088
PZ
496/*
497 * Similar to page_get_anon_vma() except it locks the anon_vma.
498 *
499 * Its a little more complex as it tries to keep the fast path to a single
500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
501 * reference like with page_get_anon_vma() and then block on the mutex.
502 */
4fc3f1d6 503struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 504{
88c22088 505 struct anon_vma *anon_vma = NULL;
eee0f252 506 struct anon_vma *root_anon_vma;
88c22088 507 unsigned long anon_mapping;
746b18d4 508
88c22088 509 rcu_read_lock();
4db0c3c2 510 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
511 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
512 goto out;
513 if (!page_mapped(page))
514 goto out;
515
516 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 517 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 518 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 519 /*
eee0f252
HD
520 * If the page is still mapped, then this anon_vma is still
521 * its anon_vma, and holding the mutex ensures that it will
bc658c96 522 * not go away, see anon_vma_free().
88c22088 523 */
eee0f252 524 if (!page_mapped(page)) {
4fc3f1d6 525 up_read(&root_anon_vma->rwsem);
88c22088
PZ
526 anon_vma = NULL;
527 }
528 goto out;
529 }
746b18d4 530
88c22088
PZ
531 /* trylock failed, we got to sleep */
532 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
533 anon_vma = NULL;
534 goto out;
535 }
536
537 if (!page_mapped(page)) {
7f39dda9 538 rcu_read_unlock();
88c22088 539 put_anon_vma(anon_vma);
7f39dda9 540 return NULL;
88c22088
PZ
541 }
542
543 /* we pinned the anon_vma, its safe to sleep */
544 rcu_read_unlock();
4fc3f1d6 545 anon_vma_lock_read(anon_vma);
88c22088
PZ
546
547 if (atomic_dec_and_test(&anon_vma->refcount)) {
548 /*
549 * Oops, we held the last refcount, release the lock
550 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 551 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 552 */
4fc3f1d6 553 anon_vma_unlock_read(anon_vma);
88c22088
PZ
554 __put_anon_vma(anon_vma);
555 anon_vma = NULL;
556 }
557
558 return anon_vma;
559
560out:
561 rcu_read_unlock();
746b18d4 562 return anon_vma;
34bbd704
ON
563}
564
4fc3f1d6 565void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 566{
4fc3f1d6 567 anon_vma_unlock_read(anon_vma);
1da177e4
LT
568}
569
72b252ae
MG
570#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
571static void percpu_flush_tlb_batch_pages(void *data)
572{
573 /*
574 * All TLB entries are flushed on the assumption that it is
575 * cheaper to flush all TLBs and let them be refilled than
576 * flushing individual PFNs. Note that we do not track mm's
577 * to flush as that might simply be multiple full TLB flushes
578 * for no gain.
579 */
580 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
581 flush_tlb_local();
582}
583
584/*
585 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
586 * important if a PTE was dirty when it was unmapped that it's flushed
587 * before any IO is initiated on the page to prevent lost writes. Similarly,
588 * it must be flushed before freeing to prevent data leakage.
589 */
590void try_to_unmap_flush(void)
591{
592 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
593 int cpu;
594
595 if (!tlb_ubc->flush_required)
596 return;
597
598 cpu = get_cpu();
599
600 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
601
602 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
603 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
604
605 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
606 smp_call_function_many(&tlb_ubc->cpumask,
607 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
608 }
609 cpumask_clear(&tlb_ubc->cpumask);
610 tlb_ubc->flush_required = false;
d950c947 611 tlb_ubc->writable = false;
72b252ae
MG
612 put_cpu();
613}
614
d950c947
MG
615/* Flush iff there are potentially writable TLB entries that can race with IO */
616void try_to_unmap_flush_dirty(void)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622}
623
72b252ae 624static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 625 struct page *page, bool writable)
72b252ae
MG
626{
627 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
628
629 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
630 tlb_ubc->flush_required = true;
d950c947
MG
631
632 /*
633 * If the PTE was dirty then it's best to assume it's writable. The
634 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
635 * before the page is queued for IO.
636 */
637 if (writable)
638 tlb_ubc->writable = true;
72b252ae
MG
639}
640
641/*
642 * Returns true if the TLB flush should be deferred to the end of a batch of
643 * unmap operations to reduce IPIs.
644 */
645static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
646{
647 bool should_defer = false;
648
649 if (!(flags & TTU_BATCH_FLUSH))
650 return false;
651
652 /* If remote CPUs need to be flushed then defer batch the flush */
653 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
654 should_defer = true;
655 put_cpu();
656
657 return should_defer;
658}
659#else
660static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
d950c947 661 struct page *page, bool writable)
72b252ae
MG
662{
663}
664
665static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
666{
667 return false;
668}
669#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
670
1da177e4 671/*
bf89c8c8 672 * At what user virtual address is page expected in vma?
ab941e0f 673 * Caller should check the page is actually part of the vma.
1da177e4
LT
674 */
675unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
676{
86c2ad19 677 unsigned long address;
21d0d443 678 if (PageAnon(page)) {
4829b906
HD
679 struct anon_vma *page__anon_vma = page_anon_vma(page);
680 /*
681 * Note: swapoff's unuse_vma() is more efficient with this
682 * check, and needs it to match anon_vma when KSM is active.
683 */
684 if (!vma->anon_vma || !page__anon_vma ||
685 vma->anon_vma->root != page__anon_vma->root)
21d0d443 686 return -EFAULT;
27ba0644
KS
687 } else if (page->mapping) {
688 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
689 return -EFAULT;
690 } else
691 return -EFAULT;
86c2ad19
ML
692 address = __vma_address(page, vma);
693 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
694 return -EFAULT;
695 return address;
1da177e4
LT
696}
697
6219049a
BL
698pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
699{
700 pgd_t *pgd;
701 pud_t *pud;
702 pmd_t *pmd = NULL;
f72e7dcd 703 pmd_t pmde;
6219049a
BL
704
705 pgd = pgd_offset(mm, address);
706 if (!pgd_present(*pgd))
707 goto out;
708
709 pud = pud_offset(pgd, address);
710 if (!pud_present(*pud))
711 goto out;
712
713 pmd = pmd_offset(pud, address);
f72e7dcd 714 /*
8809aa2d 715 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
716 * without holding anon_vma lock for write. So when looking for a
717 * genuine pmde (in which to find pte), test present and !THP together.
718 */
e37c6982
CB
719 pmde = *pmd;
720 barrier();
f72e7dcd 721 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
722 pmd = NULL;
723out:
724 return pmd;
725}
726
81b4082d
ND
727/*
728 * Check that @page is mapped at @address into @mm.
729 *
479db0bf
NP
730 * If @sync is false, page_check_address may perform a racy check to avoid
731 * the page table lock when the pte is not present (helpful when reclaiming
732 * highly shared pages).
733 *
b8072f09 734 * On success returns with pte mapped and locked.
81b4082d 735 */
e9a81a82 736pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 737 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d 738{
81b4082d
ND
739 pmd_t *pmd;
740 pte_t *pte;
c0718806 741 spinlock_t *ptl;
81b4082d 742
0fe6e20b 743 if (unlikely(PageHuge(page))) {
98398c32 744 /* when pud is not present, pte will be NULL */
0fe6e20b 745 pte = huge_pte_offset(mm, address);
98398c32
JW
746 if (!pte)
747 return NULL;
748
cb900f41 749 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
0fe6e20b
NH
750 goto check;
751 }
752
6219049a
BL
753 pmd = mm_find_pmd(mm, address);
754 if (!pmd)
c0718806
HD
755 return NULL;
756
c0718806
HD
757 pte = pte_offset_map(pmd, address);
758 /* Make a quick check before getting the lock */
479db0bf 759 if (!sync && !pte_present(*pte)) {
c0718806
HD
760 pte_unmap(pte);
761 return NULL;
762 }
763
4c21e2f2 764 ptl = pte_lockptr(mm, pmd);
0fe6e20b 765check:
c0718806
HD
766 spin_lock(ptl);
767 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
768 *ptlp = ptl;
769 return pte;
81b4082d 770 }
c0718806
HD
771 pte_unmap_unlock(pte, ptl);
772 return NULL;
81b4082d
ND
773}
774
b291f000
NP
775/**
776 * page_mapped_in_vma - check whether a page is really mapped in a VMA
777 * @page: the page to test
778 * @vma: the VMA to test
779 *
780 * Returns 1 if the page is mapped into the page tables of the VMA, 0
781 * if the page is not mapped into the page tables of this VMA. Only
782 * valid for normal file or anonymous VMAs.
783 */
6a46079c 784int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
785{
786 unsigned long address;
787 pte_t *pte;
788 spinlock_t *ptl;
789
86c2ad19
ML
790 address = __vma_address(page, vma);
791 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
b291f000
NP
792 return 0;
793 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
794 if (!pte) /* the page is not in this mm */
795 return 0;
796 pte_unmap_unlock(pte, ptl);
797
798 return 1;
799}
800
8749cfea 801#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 802/*
8749cfea
VD
803 * Check that @page is mapped at @address into @mm. In contrast to
804 * page_check_address(), this function can handle transparent huge pages.
805 *
806 * On success returns true with pte mapped and locked. For PMD-mapped
807 * transparent huge pages *@ptep is set to NULL.
1da177e4 808 */
8749cfea
VD
809bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
810 unsigned long address, pmd_t **pmdp,
811 pte_t **ptep, spinlock_t **ptlp)
1da177e4 812{
b20ce5e0
KS
813 pgd_t *pgd;
814 pud_t *pud;
815 pmd_t *pmd;
816 pte_t *pte;
8749cfea 817 spinlock_t *ptl;
1da177e4 818
b20ce5e0
KS
819 if (unlikely(PageHuge(page))) {
820 /* when pud is not present, pte will be NULL */
821 pte = huge_pte_offset(mm, address);
822 if (!pte)
8749cfea 823 return false;
2da28bfd 824
b20ce5e0 825 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
8749cfea 826 pmd = NULL;
b20ce5e0
KS
827 goto check_pte;
828 }
829
830 pgd = pgd_offset(mm, address);
831 if (!pgd_present(*pgd))
8749cfea 832 return false;
b20ce5e0
KS
833 pud = pud_offset(pgd, address);
834 if (!pud_present(*pud))
8749cfea 835 return false;
b20ce5e0
KS
836 pmd = pmd_offset(pud, address);
837
838 if (pmd_trans_huge(*pmd)) {
b20ce5e0
KS
839 ptl = pmd_lock(mm, pmd);
840 if (!pmd_present(*pmd))
841 goto unlock_pmd;
842 if (unlikely(!pmd_trans_huge(*pmd))) {
117b0791 843 spin_unlock(ptl);
b20ce5e0
KS
844 goto map_pte;
845 }
846
847 if (pmd_page(*pmd) != page)
848 goto unlock_pmd;
849
8749cfea 850 pte = NULL;
b20ce5e0
KS
851 goto found;
852unlock_pmd:
853 spin_unlock(ptl);
8749cfea 854 return false;
71e3aac0 855 } else {
b20ce5e0 856 pmd_t pmde = *pmd;
71e3aac0 857
b20ce5e0
KS
858 barrier();
859 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
8749cfea 860 return false;
b20ce5e0
KS
861 }
862map_pte:
863 pte = pte_offset_map(pmd, address);
864 if (!pte_present(*pte)) {
865 pte_unmap(pte);
8749cfea 866 return false;
b20ce5e0 867 }
71e3aac0 868
b20ce5e0
KS
869 ptl = pte_lockptr(mm, pmd);
870check_pte:
871 spin_lock(ptl);
2da28bfd 872
b20ce5e0
KS
873 if (!pte_present(*pte)) {
874 pte_unmap_unlock(pte, ptl);
8749cfea 875 return false;
b20ce5e0
KS
876 }
877
878 /* THP can be referenced by any subpage */
879 if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
880 pte_unmap_unlock(pte, ptl);
8749cfea 881 return false;
b20ce5e0 882 }
8749cfea
VD
883found:
884 *ptep = pte;
885 *pmdp = pmd;
886 *ptlp = ptl;
887 return true;
888}
889#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
890
891struct page_referenced_arg {
892 int mapcount;
893 int referenced;
894 unsigned long vm_flags;
895 struct mem_cgroup *memcg;
896};
897/*
898 * arg: page_referenced_arg will be passed
899 */
900static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
901 unsigned long address, void *arg)
902{
903 struct mm_struct *mm = vma->vm_mm;
904 struct page_referenced_arg *pra = arg;
905 pmd_t *pmd;
906 pte_t *pte;
907 spinlock_t *ptl;
908 int referenced = 0;
909
910 if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
911 return SWAP_AGAIN;
b20ce5e0
KS
912
913 if (vma->vm_flags & VM_LOCKED) {
8749cfea
VD
914 if (pte)
915 pte_unmap(pte);
916 spin_unlock(ptl);
b20ce5e0
KS
917 pra->vm_flags |= VM_LOCKED;
918 return SWAP_FAIL; /* To break the loop */
71e3aac0
AA
919 }
920
8749cfea
VD
921 if (pte) {
922 if (ptep_clear_flush_young_notify(vma, address, pte)) {
923 /*
924 * Don't treat a reference through a sequentially read
925 * mapping as such. If the page has been used in
926 * another mapping, we will catch it; if this other
927 * mapping is already gone, the unmap path will have
928 * set PG_referenced or activated the page.
929 */
930 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
931 referenced++;
932 }
933 pte_unmap(pte);
934 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
935 if (pmdp_clear_flush_young_notify(vma, address, pmd))
b20ce5e0 936 referenced++;
8749cfea
VD
937 } else {
938 /* unexpected pmd-mapped page? */
939 WARN_ON_ONCE(1);
b20ce5e0 940 }
8749cfea 941 spin_unlock(ptl);
b20ce5e0 942
33c3fc71
VD
943 if (referenced)
944 clear_page_idle(page);
945 if (test_and_clear_page_young(page))
946 referenced++;
947
9f32624b
JK
948 if (referenced) {
949 pra->referenced++;
950 pra->vm_flags |= vma->vm_flags;
1da177e4 951 }
34bbd704 952
9f32624b
JK
953 pra->mapcount--;
954 if (!pra->mapcount)
955 return SWAP_SUCCESS; /* To break the loop */
956
957 return SWAP_AGAIN;
1da177e4
LT
958}
959
9f32624b 960static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 961{
9f32624b
JK
962 struct page_referenced_arg *pra = arg;
963 struct mem_cgroup *memcg = pra->memcg;
1da177e4 964
9f32624b
JK
965 if (!mm_match_cgroup(vma->vm_mm, memcg))
966 return true;
1da177e4 967
9f32624b 968 return false;
1da177e4
LT
969}
970
971/**
972 * page_referenced - test if the page was referenced
973 * @page: the page to test
974 * @is_locked: caller holds lock on the page
72835c86 975 * @memcg: target memory cgroup
6fe6b7e3 976 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
977 *
978 * Quick test_and_clear_referenced for all mappings to a page,
979 * returns the number of ptes which referenced the page.
980 */
6fe6b7e3
WF
981int page_referenced(struct page *page,
982 int is_locked,
72835c86 983 struct mem_cgroup *memcg,
6fe6b7e3 984 unsigned long *vm_flags)
1da177e4 985{
9f32624b 986 int ret;
5ad64688 987 int we_locked = 0;
9f32624b 988 struct page_referenced_arg pra = {
b20ce5e0 989 .mapcount = total_mapcount(page),
9f32624b
JK
990 .memcg = memcg,
991 };
992 struct rmap_walk_control rwc = {
993 .rmap_one = page_referenced_one,
994 .arg = (void *)&pra,
995 .anon_lock = page_lock_anon_vma_read,
996 };
1da177e4 997
6fe6b7e3 998 *vm_flags = 0;
9f32624b
JK
999 if (!page_mapped(page))
1000 return 0;
1001
1002 if (!page_rmapping(page))
1003 return 0;
1004
1005 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1006 we_locked = trylock_page(page);
1007 if (!we_locked)
1008 return 1;
1da177e4 1009 }
9f32624b
JK
1010
1011 /*
1012 * If we are reclaiming on behalf of a cgroup, skip
1013 * counting on behalf of references from different
1014 * cgroups
1015 */
1016 if (memcg) {
1017 rwc.invalid_vma = invalid_page_referenced_vma;
1018 }
1019
1020 ret = rmap_walk(page, &rwc);
1021 *vm_flags = pra.vm_flags;
1022
1023 if (we_locked)
1024 unlock_page(page);
1025
1026 return pra.referenced;
1da177e4
LT
1027}
1028
1cb1729b 1029static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 1030 unsigned long address, void *arg)
d08b3851
PZ
1031{
1032 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 1033 pte_t *pte;
d08b3851
PZ
1034 spinlock_t *ptl;
1035 int ret = 0;
9853a407 1036 int *cleaned = arg;
d08b3851 1037
479db0bf 1038 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
1039 if (!pte)
1040 goto out;
1041
c2fda5fe
PZ
1042 if (pte_dirty(*pte) || pte_write(*pte)) {
1043 pte_t entry;
d08b3851 1044
c2fda5fe 1045 flush_cache_page(vma, address, pte_pfn(*pte));
2ec74c3e 1046 entry = ptep_clear_flush(vma, address, pte);
c2fda5fe
PZ
1047 entry = pte_wrprotect(entry);
1048 entry = pte_mkclean(entry);
d6e88e67 1049 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
1050 ret = 1;
1051 }
d08b3851 1052
d08b3851 1053 pte_unmap_unlock(pte, ptl);
2ec74c3e 1054
9853a407 1055 if (ret) {
2ec74c3e 1056 mmu_notifier_invalidate_page(mm, address);
9853a407
JK
1057 (*cleaned)++;
1058 }
d08b3851 1059out:
9853a407 1060 return SWAP_AGAIN;
d08b3851
PZ
1061}
1062
9853a407 1063static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1064{
9853a407 1065 if (vma->vm_flags & VM_SHARED)
871beb8c 1066 return false;
d08b3851 1067
871beb8c 1068 return true;
d08b3851
PZ
1069}
1070
1071int page_mkclean(struct page *page)
1072{
9853a407
JK
1073 int cleaned = 0;
1074 struct address_space *mapping;
1075 struct rmap_walk_control rwc = {
1076 .arg = (void *)&cleaned,
1077 .rmap_one = page_mkclean_one,
1078 .invalid_vma = invalid_mkclean_vma,
1079 };
d08b3851
PZ
1080
1081 BUG_ON(!PageLocked(page));
1082
9853a407
JK
1083 if (!page_mapped(page))
1084 return 0;
1085
1086 mapping = page_mapping(page);
1087 if (!mapping)
1088 return 0;
1089
1090 rmap_walk(page, &rwc);
d08b3851 1091
9853a407 1092 return cleaned;
d08b3851 1093}
60b59bea 1094EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1095
c44b6743
RR
1096/**
1097 * page_move_anon_rmap - move a page to our anon_vma
1098 * @page: the page to move to our anon_vma
1099 * @vma: the vma the page belongs to
1100 * @address: the user virtual address mapped
1101 *
1102 * When a page belongs exclusively to one process after a COW event,
1103 * that page can be moved into the anon_vma that belongs to just that
1104 * process, so the rmap code will not search the parent or sibling
1105 * processes.
1106 */
1107void page_move_anon_rmap(struct page *page,
1108 struct vm_area_struct *vma, unsigned long address)
1109{
1110 struct anon_vma *anon_vma = vma->anon_vma;
1111
309381fe 1112 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1113 VM_BUG_ON_VMA(!anon_vma, vma);
309381fe 1114 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
c44b6743
RR
1115
1116 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1117 /*
1118 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1119 * simultaneously, so a concurrent reader (eg page_referenced()'s
1120 * PageAnon()) will not see one without the other.
1121 */
1122 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1123}
1124
9617d95e 1125/**
4e1c1975
AK
1126 * __page_set_anon_rmap - set up new anonymous rmap
1127 * @page: Page to add to rmap
1128 * @vma: VM area to add page to.
1129 * @address: User virtual address of the mapping
e8a03feb 1130 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1131 */
1132static void __page_set_anon_rmap(struct page *page,
e8a03feb 1133 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1134{
e8a03feb 1135 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1136
e8a03feb 1137 BUG_ON(!anon_vma);
ea90002b 1138
4e1c1975
AK
1139 if (PageAnon(page))
1140 return;
1141
ea90002b 1142 /*
e8a03feb
RR
1143 * If the page isn't exclusively mapped into this vma,
1144 * we must use the _oldest_ possible anon_vma for the
1145 * page mapping!
ea90002b 1146 */
4e1c1975 1147 if (!exclusive)
288468c3 1148 anon_vma = anon_vma->root;
9617d95e 1149
9617d95e
NP
1150 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1151 page->mapping = (struct address_space *) anon_vma;
9617d95e 1152 page->index = linear_page_index(vma, address);
9617d95e
NP
1153}
1154
c97a9e10 1155/**
43d8eac4 1156 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1157 * @page: the page to add the mapping to
1158 * @vma: the vm area in which the mapping is added
1159 * @address: the user virtual address mapped
1160 */
1161static void __page_check_anon_rmap(struct page *page,
1162 struct vm_area_struct *vma, unsigned long address)
1163{
1164#ifdef CONFIG_DEBUG_VM
1165 /*
1166 * The page's anon-rmap details (mapping and index) are guaranteed to
1167 * be set up correctly at this point.
1168 *
1169 * We have exclusion against page_add_anon_rmap because the caller
1170 * always holds the page locked, except if called from page_dup_rmap,
1171 * in which case the page is already known to be setup.
1172 *
1173 * We have exclusion against page_add_new_anon_rmap because those pages
1174 * are initially only visible via the pagetables, and the pte is locked
1175 * over the call to page_add_new_anon_rmap.
1176 */
44ab57a0 1177 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1178 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1179#endif
1180}
1181
1da177e4
LT
1182/**
1183 * page_add_anon_rmap - add pte mapping to an anonymous page
1184 * @page: the page to add the mapping to
1185 * @vma: the vm area in which the mapping is added
1186 * @address: the user virtual address mapped
d281ee61 1187 * @compound: charge the page as compound or small page
1da177e4 1188 *
5ad64688 1189 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1190 * the anon_vma case: to serialize mapping,index checking after setting,
1191 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1192 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1193 */
1194void page_add_anon_rmap(struct page *page,
d281ee61 1195 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1196{
d281ee61 1197 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1198}
1199
1200/*
1201 * Special version of the above for do_swap_page, which often runs
1202 * into pages that are exclusively owned by the current process.
1203 * Everybody else should continue to use page_add_anon_rmap above.
1204 */
1205void do_page_add_anon_rmap(struct page *page,
d281ee61 1206 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1207{
53f9263b
KS
1208 bool compound = flags & RMAP_COMPOUND;
1209 bool first;
1210
e9b61f19
KS
1211 if (compound) {
1212 atomic_t *mapcount;
53f9263b 1213 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1214 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1215 mapcount = compound_mapcount_ptr(page);
1216 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1217 } else {
1218 first = atomic_inc_and_test(&page->_mapcount);
1219 }
1220
79134171 1221 if (first) {
d281ee61 1222 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1223 /*
1224 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1225 * these counters are not modified in interrupt context, and
1226 * pte lock(a spinlock) is held, which implies preemption
1227 * disabled.
1228 */
d281ee61 1229 if (compound) {
79134171
AA
1230 __inc_zone_page_state(page,
1231 NR_ANON_TRANSPARENT_HUGEPAGES);
d281ee61
KS
1232 }
1233 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
79134171 1234 }
5ad64688
HD
1235 if (unlikely(PageKsm(page)))
1236 return;
1237
309381fe 1238 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1239
5dbe0af4 1240 /* address might be in next vma when migration races vma_adjust */
5ad64688 1241 if (first)
d281ee61
KS
1242 __page_set_anon_rmap(page, vma, address,
1243 flags & RMAP_EXCLUSIVE);
69029cd5 1244 else
c97a9e10 1245 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1246}
1247
43d8eac4 1248/**
9617d95e
NP
1249 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1250 * @page: the page to add the mapping to
1251 * @vma: the vm area in which the mapping is added
1252 * @address: the user virtual address mapped
d281ee61 1253 * @compound: charge the page as compound or small page
9617d95e
NP
1254 *
1255 * Same as page_add_anon_rmap but must only be called on *new* pages.
1256 * This means the inc-and-test can be bypassed.
c97a9e10 1257 * Page does not have to be locked.
9617d95e
NP
1258 */
1259void page_add_new_anon_rmap(struct page *page,
d281ee61 1260 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1261{
d281ee61
KS
1262 int nr = compound ? hpage_nr_pages(page) : 1;
1263
81d1b09c 1264 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
cbf84b7a 1265 SetPageSwapBacked(page);
d281ee61
KS
1266 if (compound) {
1267 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1268 /* increment count (starts at -1) */
1269 atomic_set(compound_mapcount_ptr(page), 0);
79134171 1270 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
53f9263b
KS
1271 } else {
1272 /* Anon THP always mapped first with PMD */
1273 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1274 /* increment count (starts at -1) */
1275 atomic_set(&page->_mapcount, 0);
d281ee61
KS
1276 }
1277 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
e8a03feb 1278 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1279}
1280
1da177e4
LT
1281/**
1282 * page_add_file_rmap - add pte mapping to a file page
1283 * @page: the page to add the mapping to
1284 *
b8072f09 1285 * The caller needs to hold the pte lock.
1da177e4
LT
1286 */
1287void page_add_file_rmap(struct page *page)
1288{
d7365e78 1289 struct mem_cgroup *memcg;
89c06bd5 1290
6de22619 1291 memcg = mem_cgroup_begin_page_stat(page);
d69b042f 1292 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1293 __inc_zone_page_state(page, NR_FILE_MAPPED);
d7365e78 1294 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d69b042f 1295 }
6de22619 1296 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
1297}
1298
8186eb6a
JW
1299static void page_remove_file_rmap(struct page *page)
1300{
1301 struct mem_cgroup *memcg;
8186eb6a 1302
6de22619 1303 memcg = mem_cgroup_begin_page_stat(page);
8186eb6a 1304
53f9263b
KS
1305 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1306 if (unlikely(PageHuge(page))) {
1307 /* hugetlb pages are always mapped with pmds */
1308 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1309 goto out;
53f9263b 1310 }
8186eb6a 1311
53f9263b
KS
1312 /* page still mapped by someone else? */
1313 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1314 goto out;
1315
1316 /*
1317 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1318 * these counters are not modified in interrupt context, and
1319 * pte lock(a spinlock) is held, which implies preemption disabled.
1320 */
1321 __dec_zone_page_state(page, NR_FILE_MAPPED);
1322 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1323
1324 if (unlikely(PageMlocked(page)))
1325 clear_page_mlock(page);
1326out:
6de22619 1327 mem_cgroup_end_page_stat(memcg);
8186eb6a
JW
1328}
1329
53f9263b
KS
1330static void page_remove_anon_compound_rmap(struct page *page)
1331{
1332 int i, nr;
1333
1334 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1335 return;
1336
1337 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1338 if (unlikely(PageHuge(page)))
1339 return;
1340
1341 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1342 return;
1343
1344 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1345
1346 if (TestClearPageDoubleMap(page)) {
1347 /*
1348 * Subpages can be mapped with PTEs too. Check how many of
1349 * themi are still mapped.
1350 */
1351 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1352 if (atomic_add_negative(-1, &page[i]._mapcount))
1353 nr++;
1354 }
1355 } else {
1356 nr = HPAGE_PMD_NR;
1357 }
1358
e90309c9
KS
1359 if (unlikely(PageMlocked(page)))
1360 clear_page_mlock(page);
1361
9a982250 1362 if (nr) {
53f9263b 1363 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
9a982250
KS
1364 deferred_split_huge_page(page);
1365 }
53f9263b
KS
1366}
1367
1da177e4
LT
1368/**
1369 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1370 * @page: page to remove mapping from
1371 * @compound: uncharge the page as compound or small page
1da177e4 1372 *
b8072f09 1373 * The caller needs to hold the pte lock.
1da177e4 1374 */
d281ee61 1375void page_remove_rmap(struct page *page, bool compound)
1da177e4 1376{
8186eb6a 1377 if (!PageAnon(page)) {
d281ee61 1378 VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
8186eb6a
JW
1379 page_remove_file_rmap(page);
1380 return;
1381 }
89c06bd5 1382
53f9263b
KS
1383 if (compound)
1384 return page_remove_anon_compound_rmap(page);
1385
b904dcfe
KM
1386 /* page still mapped by someone else? */
1387 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1388 return;
1389
0fe6e20b 1390 /*
bea04b07
JZ
1391 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1392 * these counters are not modified in interrupt context, and
bea04b07 1393 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1394 */
53f9263b 1395 __dec_zone_page_state(page, NR_ANON_PAGES);
8186eb6a 1396
e6c509f8
HD
1397 if (unlikely(PageMlocked(page)))
1398 clear_page_mlock(page);
8186eb6a 1399
9a982250
KS
1400 if (PageTransCompound(page))
1401 deferred_split_huge_page(compound_head(page));
1402
b904dcfe
KM
1403 /*
1404 * It would be tidy to reset the PageAnon mapping here,
1405 * but that might overwrite a racing page_add_anon_rmap
1406 * which increments mapcount after us but sets mapping
1407 * before us: so leave the reset to free_hot_cold_page,
1408 * and remember that it's only reliable while mapped.
1409 * Leaving it set also helps swapoff to reinstate ptes
1410 * faster for those pages still in swapcache.
1411 */
1da177e4
LT
1412}
1413
854e9ed0
MK
1414struct rmap_private {
1415 enum ttu_flags flags;
1416 int lazyfreed;
1417};
1418
1da177e4 1419/*
52629506 1420 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1421 */
ac769501 1422static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1423 unsigned long address, void *arg)
1da177e4
LT
1424{
1425 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1426 pte_t *pte;
1427 pte_t pteval;
c0718806 1428 spinlock_t *ptl;
1da177e4 1429 int ret = SWAP_AGAIN;
854e9ed0
MK
1430 struct rmap_private *rp = arg;
1431 enum ttu_flags flags = rp->flags;
1da177e4 1432
b87537d9
HD
1433 /* munlock has nothing to gain from examining un-locked vmas */
1434 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1435 goto out;
1436
479db0bf 1437 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1438 if (!pte)
81b4082d 1439 goto out;
1da177e4
LT
1440
1441 /*
1442 * If the page is mlock()d, we cannot swap it out.
1443 * If it's recently referenced (perhaps page_referenced
1444 * skipped over this mm) then we should reactivate it.
1445 */
14fa31b8 1446 if (!(flags & TTU_IGNORE_MLOCK)) {
b87537d9
HD
1447 if (vma->vm_flags & VM_LOCKED) {
1448 /* Holding pte lock, we do *not* need mmap_sem here */
1449 mlock_vma_page(page);
1450 ret = SWAP_MLOCK;
1451 goto out_unmap;
1452 }
daa5ba76 1453 if (flags & TTU_MUNLOCK)
53f79acb 1454 goto out_unmap;
14fa31b8
AK
1455 }
1456 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1457 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1458 ret = SWAP_FAIL;
1459 goto out_unmap;
1460 }
1461 }
1da177e4 1462
1da177e4
LT
1463 /* Nuke the page table entry. */
1464 flush_cache_page(vma, address, page_to_pfn(page));
72b252ae
MG
1465 if (should_defer_flush(mm, flags)) {
1466 /*
1467 * We clear the PTE but do not flush so potentially a remote
1468 * CPU could still be writing to the page. If the entry was
1469 * previously clean then the architecture must guarantee that
1470 * a clear->dirty transition on a cached TLB entry is written
1471 * through and traps if the PTE is unmapped.
1472 */
1473 pteval = ptep_get_and_clear(mm, address, pte);
1474
d950c947 1475 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
72b252ae
MG
1476 } else {
1477 pteval = ptep_clear_flush(vma, address, pte);
1478 }
1da177e4
LT
1479
1480 /* Move the dirty bit to the physical page now the pte is gone. */
1481 if (pte_dirty(pteval))
1482 set_page_dirty(page);
1483
365e9c87
HD
1484 /* Update high watermark before we lower rss */
1485 update_hiwater_rss(mm);
1486
888b9f7c 1487 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5d317b2b
NH
1488 if (PageHuge(page)) {
1489 hugetlb_count_sub(1 << compound_order(page), mm);
1490 } else {
eca56ff9 1491 dec_mm_counter(mm, mm_counter(page));
5f24ae58 1492 }
888b9f7c 1493 set_pte_at(mm, address, pte,
5f24ae58 1494 swp_entry_to_pte(make_hwpoison_entry(page)));
45961722
KW
1495 } else if (pte_unused(pteval)) {
1496 /*
1497 * The guest indicated that the page content is of no
1498 * interest anymore. Simply discard the pte, vmscan
1499 * will take care of the rest.
1500 */
eca56ff9 1501 dec_mm_counter(mm, mm_counter(page));
470f119f
HD
1502 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1503 swp_entry_t entry;
1504 pte_t swp_pte;
1505 /*
1506 * Store the pfn of the page in a special migration
1507 * pte. do_swap_page() will wait until the migration
1508 * pte is removed and then restart fault handling.
1509 */
1510 entry = make_migration_entry(page, pte_write(pteval));
1511 swp_pte = swp_entry_to_pte(entry);
1512 if (pte_soft_dirty(pteval))
1513 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1514 set_pte_at(mm, address, pte, swp_pte);
888b9f7c 1515 } else if (PageAnon(page)) {
4c21e2f2 1516 swp_entry_t entry = { .val = page_private(page) };
179ef71c 1517 pte_t swp_pte;
470f119f
HD
1518 /*
1519 * Store the swap location in the pte.
1520 * See handle_pte_fault() ...
1521 */
1522 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
854e9ed0
MK
1523
1524 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1525 /* It's a freeable page by MADV_FREE */
1526 dec_mm_counter(mm, MM_ANONPAGES);
1527 rp->lazyfreed++;
1528 goto discard;
1529 }
1530
470f119f
HD
1531 if (swap_duplicate(entry) < 0) {
1532 set_pte_at(mm, address, pte, pteval);
1533 ret = SWAP_FAIL;
1534 goto out_unmap;
1535 }
1536 if (list_empty(&mm->mmlist)) {
1537 spin_lock(&mmlist_lock);
1538 if (list_empty(&mm->mmlist))
1539 list_add(&mm->mmlist, &init_mm.mmlist);
1540 spin_unlock(&mmlist_lock);
1da177e4 1541 }
470f119f
HD
1542 dec_mm_counter(mm, MM_ANONPAGES);
1543 inc_mm_counter(mm, MM_SWAPENTS);
179ef71c
CG
1544 swp_pte = swp_entry_to_pte(entry);
1545 if (pte_soft_dirty(pteval))
1546 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1547 set_pte_at(mm, address, pte, swp_pte);
04e62a29 1548 } else
eca56ff9 1549 dec_mm_counter(mm, mm_counter_file(page));
1da177e4 1550
854e9ed0 1551discard:
d281ee61 1552 page_remove_rmap(page, PageHuge(page));
1da177e4
LT
1553 page_cache_release(page);
1554
1555out_unmap:
c0718806 1556 pte_unmap_unlock(pte, ptl);
b87537d9 1557 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
2ec74c3e 1558 mmu_notifier_invalidate_page(mm, address);
caed0f48
KM
1559out:
1560 return ret;
1da177e4
LT
1561}
1562
71e3aac0 1563bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1564{
1565 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1566
1567 if (!maybe_stack)
1568 return false;
1569
1570 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1571 VM_STACK_INCOMPLETE_SETUP)
1572 return true;
1573
1574 return false;
1575}
1576
52629506
JK
1577static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1578{
1579 return is_vma_temporary_stack(vma);
1580}
1581
52629506
JK
1582static int page_not_mapped(struct page *page)
1583{
1584 return !page_mapped(page);
1585};
1586
1da177e4
LT
1587/**
1588 * try_to_unmap - try to remove all page table mappings to a page
1589 * @page: the page to get unmapped
14fa31b8 1590 * @flags: action and flags
1da177e4
LT
1591 *
1592 * Tries to remove all the page table entries which are mapping this
1593 * page, used in the pageout path. Caller must hold the page lock.
1594 * Return values are:
1595 *
1596 * SWAP_SUCCESS - we succeeded in removing all mappings
1597 * SWAP_AGAIN - we missed a mapping, try again later
1598 * SWAP_FAIL - the page is unswappable
b291f000 1599 * SWAP_MLOCK - page is mlocked.
1da177e4 1600 */
14fa31b8 1601int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1602{
1603 int ret;
854e9ed0
MK
1604 struct rmap_private rp = {
1605 .flags = flags,
1606 .lazyfreed = 0,
1607 };
1608
52629506
JK
1609 struct rmap_walk_control rwc = {
1610 .rmap_one = try_to_unmap_one,
854e9ed0 1611 .arg = &rp,
52629506 1612 .done = page_not_mapped,
52629506
JK
1613 .anon_lock = page_lock_anon_vma_read,
1614 };
1da177e4 1615
309381fe 1616 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1da177e4 1617
52629506
JK
1618 /*
1619 * During exec, a temporary VMA is setup and later moved.
1620 * The VMA is moved under the anon_vma lock but not the
1621 * page tables leading to a race where migration cannot
1622 * find the migration ptes. Rather than increasing the
1623 * locking requirements of exec(), migration skips
1624 * temporary VMAs until after exec() completes.
1625 */
daa5ba76 1626 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
52629506
JK
1627 rwc.invalid_vma = invalid_migration_vma;
1628
1629 ret = rmap_walk(page, &rwc);
1630
854e9ed0 1631 if (ret != SWAP_MLOCK && !page_mapped(page)) {
1da177e4 1632 ret = SWAP_SUCCESS;
854e9ed0
MK
1633 if (rp.lazyfreed && !PageDirty(page))
1634 ret = SWAP_LZFREE;
1635 }
1da177e4
LT
1636 return ret;
1637}
81b4082d 1638
b291f000
NP
1639/**
1640 * try_to_munlock - try to munlock a page
1641 * @page: the page to be munlocked
1642 *
1643 * Called from munlock code. Checks all of the VMAs mapping the page
1644 * to make sure nobody else has this page mlocked. The page will be
1645 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1646 *
1647 * Return values are:
1648 *
53f79acb 1649 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1650 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1651 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1652 * SWAP_MLOCK - page is now mlocked.
1653 */
1654int try_to_munlock(struct page *page)
1655{
e8351ac9 1656 int ret;
854e9ed0
MK
1657 struct rmap_private rp = {
1658 .flags = TTU_MUNLOCK,
1659 .lazyfreed = 0,
1660 };
1661
e8351ac9
JK
1662 struct rmap_walk_control rwc = {
1663 .rmap_one = try_to_unmap_one,
854e9ed0 1664 .arg = &rp,
e8351ac9 1665 .done = page_not_mapped,
e8351ac9
JK
1666 .anon_lock = page_lock_anon_vma_read,
1667
1668 };
1669
309381fe 1670 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
b291f000 1671
e8351ac9
JK
1672 ret = rmap_walk(page, &rwc);
1673 return ret;
b291f000 1674}
e9995ef9 1675
01d8b20d 1676void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1677{
01d8b20d 1678 struct anon_vma *root = anon_vma->root;
76545066 1679
624483f3 1680 anon_vma_free(anon_vma);
01d8b20d
PZ
1681 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1682 anon_vma_free(root);
76545066 1683}
76545066 1684
0dd1c7bb
JK
1685static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1686 struct rmap_walk_control *rwc)
faecd8dd
JK
1687{
1688 struct anon_vma *anon_vma;
1689
0dd1c7bb
JK
1690 if (rwc->anon_lock)
1691 return rwc->anon_lock(page);
1692
faecd8dd
JK
1693 /*
1694 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1695 * because that depends on page_mapped(); but not all its usages
1696 * are holding mmap_sem. Users without mmap_sem are required to
1697 * take a reference count to prevent the anon_vma disappearing
1698 */
1699 anon_vma = page_anon_vma(page);
1700 if (!anon_vma)
1701 return NULL;
1702
1703 anon_vma_lock_read(anon_vma);
1704 return anon_vma;
1705}
1706
e9995ef9 1707/*
e8351ac9
JK
1708 * rmap_walk_anon - do something to anonymous page using the object-based
1709 * rmap method
1710 * @page: the page to be handled
1711 * @rwc: control variable according to each walk type
1712 *
1713 * Find all the mappings of a page using the mapping pointer and the vma chains
1714 * contained in the anon_vma struct it points to.
1715 *
1716 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1717 * where the page was found will be held for write. So, we won't recheck
1718 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1719 * LOCKED.
e9995ef9 1720 */
051ac83a 1721static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1722{
1723 struct anon_vma *anon_vma;
b258d860 1724 pgoff_t pgoff;
5beb4930 1725 struct anon_vma_chain *avc;
e9995ef9
HD
1726 int ret = SWAP_AGAIN;
1727
0dd1c7bb 1728 anon_vma = rmap_walk_anon_lock(page, rwc);
e9995ef9
HD
1729 if (!anon_vma)
1730 return ret;
faecd8dd 1731
b258d860 1732 pgoff = page_to_pgoff(page);
bf181b9f 1733 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
5beb4930 1734 struct vm_area_struct *vma = avc->vma;
e9995ef9 1735 unsigned long address = vma_address(page, vma);
0dd1c7bb 1736
ad12695f
AA
1737 cond_resched();
1738
0dd1c7bb
JK
1739 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1740 continue;
1741
051ac83a 1742 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9
HD
1743 if (ret != SWAP_AGAIN)
1744 break;
0dd1c7bb
JK
1745 if (rwc->done && rwc->done(page))
1746 break;
e9995ef9 1747 }
4fc3f1d6 1748 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1749 return ret;
1750}
1751
e8351ac9
JK
1752/*
1753 * rmap_walk_file - do something to file page using the object-based rmap method
1754 * @page: the page to be handled
1755 * @rwc: control variable according to each walk type
1756 *
1757 * Find all the mappings of a page using the mapping pointer and the vma chains
1758 * contained in the address_space struct it points to.
1759 *
1760 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1761 * where the page was found will be held for write. So, we won't recheck
1762 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1763 * LOCKED.
1764 */
051ac83a 1765static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1766{
1767 struct address_space *mapping = page->mapping;
b258d860 1768 pgoff_t pgoff;
e9995ef9 1769 struct vm_area_struct *vma;
e9995ef9
HD
1770 int ret = SWAP_AGAIN;
1771
9f32624b
JK
1772 /*
1773 * The page lock not only makes sure that page->mapping cannot
1774 * suddenly be NULLified by truncation, it makes sure that the
1775 * structure at mapping cannot be freed and reused yet,
c8c06efa 1776 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1777 */
81d1b09c 1778 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1779
e9995ef9
HD
1780 if (!mapping)
1781 return ret;
3dec0ba0 1782
b258d860 1783 pgoff = page_to_pgoff(page);
3dec0ba0 1784 i_mmap_lock_read(mapping);
6b2dbba8 1785 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
e9995ef9 1786 unsigned long address = vma_address(page, vma);
0dd1c7bb 1787
ad12695f
AA
1788 cond_resched();
1789
0dd1c7bb
JK
1790 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1791 continue;
1792
051ac83a 1793 ret = rwc->rmap_one(page, vma, address, rwc->arg);
e9995ef9 1794 if (ret != SWAP_AGAIN)
0dd1c7bb
JK
1795 goto done;
1796 if (rwc->done && rwc->done(page))
1797 goto done;
e9995ef9 1798 }
0dd1c7bb 1799
0dd1c7bb 1800done:
3dec0ba0 1801 i_mmap_unlock_read(mapping);
e9995ef9
HD
1802 return ret;
1803}
1804
051ac83a 1805int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1806{
e9995ef9 1807 if (unlikely(PageKsm(page)))
051ac83a 1808 return rmap_walk_ksm(page, rwc);
e9995ef9 1809 else if (PageAnon(page))
051ac83a 1810 return rmap_walk_anon(page, rwc);
e9995ef9 1811 else
051ac83a 1812 return rmap_walk_file(page, rwc);
e9995ef9 1813}
0fe6e20b 1814
e3390f67 1815#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1816/*
1817 * The following three functions are for anonymous (private mapped) hugepages.
1818 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1819 * and no lru code, because we handle hugepages differently from common pages.
1820 */
1821static void __hugepage_set_anon_rmap(struct page *page,
1822 struct vm_area_struct *vma, unsigned long address, int exclusive)
1823{
1824 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1825
0fe6e20b 1826 BUG_ON(!anon_vma);
433abed6
NH
1827
1828 if (PageAnon(page))
1829 return;
1830 if (!exclusive)
1831 anon_vma = anon_vma->root;
1832
0fe6e20b
NH
1833 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1834 page->mapping = (struct address_space *) anon_vma;
1835 page->index = linear_page_index(vma, address);
1836}
1837
1838void hugepage_add_anon_rmap(struct page *page,
1839 struct vm_area_struct *vma, unsigned long address)
1840{
1841 struct anon_vma *anon_vma = vma->anon_vma;
1842 int first;
a850ea30
NH
1843
1844 BUG_ON(!PageLocked(page));
0fe6e20b 1845 BUG_ON(!anon_vma);
5dbe0af4 1846 /* address might be in next vma when migration races vma_adjust */
53f9263b 1847 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b
NH
1848 if (first)
1849 __hugepage_set_anon_rmap(page, vma, address, 0);
1850}
1851
1852void hugepage_add_new_anon_rmap(struct page *page,
1853 struct vm_area_struct *vma, unsigned long address)
1854{
1855 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1856 atomic_set(compound_mapcount_ptr(page), 0);
0fe6e20b
NH
1857 __hugepage_set_anon_rmap(page, vma, address, 1);
1858}
e3390f67 1859#endif /* CONFIG_HUGETLB_PAGE */