mm: avoid repeated anon_vma lock/unlock sequences in anon_vma_clone()
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
3d48ae45 27 * mapping->i_mmap_mutex
2b575eb6 28 * anon_vma->mutex
82591e6e
NP
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
a66979ab 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
a66979ab 39 * within inode_wb_list_lock in __sync_single_inode)
6a46079c
AK
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
2b575eb6 43 * anon_vma->mutex (memory_failure, collect_procs_anon)
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
a48d07af 56#include <linux/module.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
63
b291f000
NP
64#include "internal.h"
65
fdd2e5f8 66static struct kmem_cache *anon_vma_cachep;
5beb4930 67static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
68
69static inline struct anon_vma *anon_vma_alloc(void)
70{
01d8b20d
PZ
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
fdd2e5f8
AB
84}
85
01d8b20d 86static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 87{
01d8b20d 88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
89
90 /*
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
93 * freed.
94 *
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 *
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
101 * LOCK MB
102 * atomic_read() mutex_is_locked()
103 *
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
106 */
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
110 }
111
fdd2e5f8
AB
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113}
1da177e4 114
5beb4930
RR
115static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116{
117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118}
119
e574b5fd 120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
121{
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
d9d332e0
LT
125/**
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
128 *
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
132 *
133 * The common case will be that we already have one, but if
23a0790a 134 * not we either need to find an adjacent mapping that we
d9d332e0
LT
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
138 *
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
144 *
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
149 *
150 * This must be called with the mmap_sem held for reading.
151 */
1da177e4
LT
152int anon_vma_prepare(struct vm_area_struct *vma)
153{
154 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 155 struct anon_vma_chain *avc;
1da177e4
LT
156
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
d9d332e0 160 struct anon_vma *allocated;
1da177e4 161
5beb4930
RR
162 avc = anon_vma_chain_alloc();
163 if (!avc)
164 goto out_enomem;
165
1da177e4 166 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
167 allocated = NULL;
168 if (!anon_vma) {
1da177e4
LT
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
5beb4930 171 goto out_enomem_free_avc;
1da177e4 172 allocated = anon_vma;
1da177e4
LT
173 }
174
cba48b98 175 anon_vma_lock(anon_vma);
1da177e4
LT
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
5beb4930
RR
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 184 allocated = NULL;
31f2b0eb 185 avc = NULL;
1da177e4
LT
186 }
187 spin_unlock(&mm->page_table_lock);
cba48b98 188 anon_vma_unlock(anon_vma);
31f2b0eb
ON
189
190 if (unlikely(allocated))
01d8b20d 191 put_anon_vma(allocated);
31f2b0eb 192 if (unlikely(avc))
5beb4930 193 anon_vma_chain_free(avc);
1da177e4
LT
194 }
195 return 0;
5beb4930
RR
196
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
1da177e4
LT
201}
202
bb4aa396
LT
203/*
204 * This is a useful helper function for locking the anon_vma root as
205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
206 * have the same vma.
207 *
208 * Such anon_vma's should have the same root, so you'd expect to see
209 * just a single mutex_lock for the whole traversal.
210 */
211static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
212{
213 struct anon_vma *new_root = anon_vma->root;
214 if (new_root != root) {
215 if (WARN_ON_ONCE(root))
216 mutex_unlock(&root->mutex);
217 root = new_root;
218 mutex_lock(&root->mutex);
219 }
220 return root;
221}
222
223static inline void unlock_anon_vma_root(struct anon_vma *root)
224{
225 if (root)
226 mutex_unlock(&root->mutex);
227}
228
5beb4930
RR
229static void anon_vma_chain_link(struct vm_area_struct *vma,
230 struct anon_vma_chain *avc,
231 struct anon_vma *anon_vma)
1da177e4 232{
5beb4930
RR
233 avc->vma = vma;
234 avc->anon_vma = anon_vma;
235 list_add(&avc->same_vma, &vma->anon_vma_chain);
236
05759d38
AA
237 /*
238 * It's critical to add new vmas to the tail of the anon_vma,
239 * see comment in huge_memory.c:__split_huge_page().
240 */
5beb4930 241 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4
LT
242}
243
5beb4930
RR
244/*
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
247 */
248int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 249{
5beb4930 250 struct anon_vma_chain *avc, *pavc;
bb4aa396 251 struct anon_vma *root = NULL;
5beb4930 252
646d87b4 253 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
254 struct anon_vma *anon_vma;
255
5beb4930
RR
256 avc = anon_vma_chain_alloc();
257 if (!avc)
258 goto enomem_failure;
bb4aa396
LT
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
5beb4930 262 }
bb4aa396 263 unlock_anon_vma_root(root);
5beb4930 264 return 0;
1da177e4 265
5beb4930 266 enomem_failure:
bb4aa396 267 unlock_anon_vma_root(root);
5beb4930
RR
268 unlink_anon_vmas(dst);
269 return -ENOMEM;
1da177e4
LT
270}
271
5beb4930
RR
272/*
273 * Attach vma to its own anon_vma, as well as to the anon_vmas that
274 * the corresponding VMA in the parent process is attached to.
275 * Returns 0 on success, non-zero on failure.
276 */
277int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 278{
5beb4930
RR
279 struct anon_vma_chain *avc;
280 struct anon_vma *anon_vma;
1da177e4 281
5beb4930
RR
282 /* Don't bother if the parent process has no anon_vma here. */
283 if (!pvma->anon_vma)
284 return 0;
285
286 /*
287 * First, attach the new VMA to the parent VMA's anon_vmas,
288 * so rmap can find non-COWed pages in child processes.
289 */
290 if (anon_vma_clone(vma, pvma))
291 return -ENOMEM;
292
293 /* Then add our own anon_vma. */
294 anon_vma = anon_vma_alloc();
295 if (!anon_vma)
296 goto out_error;
297 avc = anon_vma_chain_alloc();
298 if (!avc)
299 goto out_error_free_anon_vma;
5c341ee1
RR
300
301 /*
302 * The root anon_vma's spinlock is the lock actually used when we
303 * lock any of the anon_vmas in this anon_vma tree.
304 */
305 anon_vma->root = pvma->anon_vma->root;
76545066 306 /*
01d8b20d
PZ
307 * With refcounts, an anon_vma can stay around longer than the
308 * process it belongs to. The root anon_vma needs to be pinned until
309 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
310 */
311 get_anon_vma(anon_vma->root);
5beb4930
RR
312 /* Mark this anon_vma as the one where our new (COWed) pages go. */
313 vma->anon_vma = anon_vma;
bb4aa396 314 anon_vma_lock(anon_vma);
5c341ee1 315 anon_vma_chain_link(vma, avc, anon_vma);
bb4aa396 316 anon_vma_unlock(anon_vma);
5beb4930
RR
317
318 return 0;
319
320 out_error_free_anon_vma:
01d8b20d 321 put_anon_vma(anon_vma);
5beb4930 322 out_error:
4946d54c 323 unlink_anon_vmas(vma);
5beb4930 324 return -ENOMEM;
1da177e4
LT
325}
326
5beb4930 327static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 328{
5beb4930 329 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
330 int empty;
331
5beb4930 332 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
333 if (!anon_vma)
334 return;
335
cba48b98 336 anon_vma_lock(anon_vma);
5beb4930 337 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
338
339 /* We must garbage collect the anon_vma if it's empty */
01d8b20d 340 empty = list_empty(&anon_vma->head);
cba48b98 341 anon_vma_unlock(anon_vma);
1da177e4 342
01d8b20d
PZ
343 if (empty)
344 put_anon_vma(anon_vma);
1da177e4
LT
345}
346
5beb4930
RR
347void unlink_anon_vmas(struct vm_area_struct *vma)
348{
349 struct anon_vma_chain *avc, *next;
350
5c341ee1
RR
351 /*
352 * Unlink each anon_vma chained to the VMA. This list is ordered
353 * from newest to oldest, ensuring the root anon_vma gets freed last.
354 */
5beb4930
RR
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 anon_vma_unlink(avc);
357 list_del(&avc->same_vma);
358 anon_vma_chain_free(avc);
359 }
360}
361
51cc5068 362static void anon_vma_ctor(void *data)
1da177e4 363{
a35afb83 364 struct anon_vma *anon_vma = data;
1da177e4 365
2b575eb6 366 mutex_init(&anon_vma->mutex);
83813267 367 atomic_set(&anon_vma->refcount, 0);
a35afb83 368 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
369}
370
371void __init anon_vma_init(void)
372{
373 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 374 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 375 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
376}
377
378/*
6111e4ca
PZ
379 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
380 *
381 * Since there is no serialization what so ever against page_remove_rmap()
382 * the best this function can do is return a locked anon_vma that might
383 * have been relevant to this page.
384 *
385 * The page might have been remapped to a different anon_vma or the anon_vma
386 * returned may already be freed (and even reused).
387 *
bc658c96
PZ
388 * In case it was remapped to a different anon_vma, the new anon_vma will be a
389 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
390 * ensure that any anon_vma obtained from the page will still be valid for as
391 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
392 *
6111e4ca
PZ
393 * All users of this function must be very careful when walking the anon_vma
394 * chain and verify that the page in question is indeed mapped in it
395 * [ something equivalent to page_mapped_in_vma() ].
396 *
397 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
398 * that the anon_vma pointer from page->mapping is valid if there is a
399 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 400 */
746b18d4 401struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 402{
746b18d4 403 struct anon_vma *anon_vma = NULL;
1da177e4
LT
404 unsigned long anon_mapping;
405
406 rcu_read_lock();
80e14822 407 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 408 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
409 goto out;
410 if (!page_mapped(page))
411 goto out;
412
413 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
414 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
415 anon_vma = NULL;
416 goto out;
417 }
f1819427
HD
418
419 /*
420 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
421 * freed. But if it has been unmapped, we have no security against the
422 * anon_vma structure being freed and reused (for another anon_vma:
423 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
424 * above cannot corrupt).
f1819427 425 */
746b18d4
PZ
426 if (!page_mapped(page)) {
427 put_anon_vma(anon_vma);
428 anon_vma = NULL;
429 }
1da177e4
LT
430out:
431 rcu_read_unlock();
746b18d4
PZ
432
433 return anon_vma;
434}
435
88c22088
PZ
436/*
437 * Similar to page_get_anon_vma() except it locks the anon_vma.
438 *
439 * Its a little more complex as it tries to keep the fast path to a single
440 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
441 * reference like with page_get_anon_vma() and then block on the mutex.
442 */
746b18d4
PZ
443struct anon_vma *page_lock_anon_vma(struct page *page)
444{
88c22088 445 struct anon_vma *anon_vma = NULL;
eee0f252 446 struct anon_vma *root_anon_vma;
88c22088 447 unsigned long anon_mapping;
746b18d4 448
88c22088
PZ
449 rcu_read_lock();
450 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
451 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
452 goto out;
453 if (!page_mapped(page))
454 goto out;
455
456 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
eee0f252
HD
457 root_anon_vma = ACCESS_ONCE(anon_vma->root);
458 if (mutex_trylock(&root_anon_vma->mutex)) {
88c22088 459 /*
eee0f252
HD
460 * If the page is still mapped, then this anon_vma is still
461 * its anon_vma, and holding the mutex ensures that it will
bc658c96 462 * not go away, see anon_vma_free().
88c22088 463 */
eee0f252
HD
464 if (!page_mapped(page)) {
465 mutex_unlock(&root_anon_vma->mutex);
88c22088
PZ
466 anon_vma = NULL;
467 }
468 goto out;
469 }
746b18d4 470
88c22088
PZ
471 /* trylock failed, we got to sleep */
472 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
473 anon_vma = NULL;
474 goto out;
475 }
476
477 if (!page_mapped(page)) {
478 put_anon_vma(anon_vma);
479 anon_vma = NULL;
480 goto out;
481 }
482
483 /* we pinned the anon_vma, its safe to sleep */
484 rcu_read_unlock();
485 anon_vma_lock(anon_vma);
486
487 if (atomic_dec_and_test(&anon_vma->refcount)) {
488 /*
489 * Oops, we held the last refcount, release the lock
490 * and bail -- can't simply use put_anon_vma() because
491 * we'll deadlock on the anon_vma_lock() recursion.
492 */
493 anon_vma_unlock(anon_vma);
494 __put_anon_vma(anon_vma);
495 anon_vma = NULL;
496 }
497
498 return anon_vma;
499
500out:
501 rcu_read_unlock();
746b18d4 502 return anon_vma;
34bbd704
ON
503}
504
10be22df 505void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 506{
cba48b98 507 anon_vma_unlock(anon_vma);
1da177e4
LT
508}
509
510/*
3ad33b24
LS
511 * At what user virtual address is page expected in @vma?
512 * Returns virtual address or -EFAULT if page's index/offset is not
513 * within the range mapped the @vma.
1da177e4 514 */
71e3aac0 515inline unsigned long
1da177e4
LT
516vma_address(struct page *page, struct vm_area_struct *vma)
517{
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 unsigned long address;
520
0fe6e20b
NH
521 if (unlikely(is_vm_hugetlb_page(vma)))
522 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
523 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 525 /* page should be within @vma mapping range */
1da177e4
LT
526 return -EFAULT;
527 }
528 return address;
529}
530
531/*
bf89c8c8 532 * At what user virtual address is page expected in vma?
ab941e0f 533 * Caller should check the page is actually part of the vma.
1da177e4
LT
534 */
535unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
536{
21d0d443 537 if (PageAnon(page)) {
4829b906
HD
538 struct anon_vma *page__anon_vma = page_anon_vma(page);
539 /*
540 * Note: swapoff's unuse_vma() is more efficient with this
541 * check, and needs it to match anon_vma when KSM is active.
542 */
543 if (!vma->anon_vma || !page__anon_vma ||
544 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
545 return -EFAULT;
546 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
547 if (!vma->vm_file ||
548 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
549 return -EFAULT;
550 } else
551 return -EFAULT;
552 return vma_address(page, vma);
553}
554
81b4082d
ND
555/*
556 * Check that @page is mapped at @address into @mm.
557 *
479db0bf
NP
558 * If @sync is false, page_check_address may perform a racy check to avoid
559 * the page table lock when the pte is not present (helpful when reclaiming
560 * highly shared pages).
561 *
b8072f09 562 * On success returns with pte mapped and locked.
81b4082d 563 */
e9a81a82 564pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 565 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
566{
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd;
570 pte_t *pte;
c0718806 571 spinlock_t *ptl;
81b4082d 572
0fe6e20b
NH
573 if (unlikely(PageHuge(page))) {
574 pte = huge_pte_offset(mm, address);
575 ptl = &mm->page_table_lock;
576 goto check;
577 }
578
81b4082d 579 pgd = pgd_offset(mm, address);
c0718806
HD
580 if (!pgd_present(*pgd))
581 return NULL;
582
583 pud = pud_offset(pgd, address);
584 if (!pud_present(*pud))
585 return NULL;
586
587 pmd = pmd_offset(pud, address);
588 if (!pmd_present(*pmd))
589 return NULL;
71e3aac0
AA
590 if (pmd_trans_huge(*pmd))
591 return NULL;
c0718806
HD
592
593 pte = pte_offset_map(pmd, address);
594 /* Make a quick check before getting the lock */
479db0bf 595 if (!sync && !pte_present(*pte)) {
c0718806
HD
596 pte_unmap(pte);
597 return NULL;
598 }
599
4c21e2f2 600 ptl = pte_lockptr(mm, pmd);
0fe6e20b 601check:
c0718806
HD
602 spin_lock(ptl);
603 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
604 *ptlp = ptl;
605 return pte;
81b4082d 606 }
c0718806
HD
607 pte_unmap_unlock(pte, ptl);
608 return NULL;
81b4082d
ND
609}
610
b291f000
NP
611/**
612 * page_mapped_in_vma - check whether a page is really mapped in a VMA
613 * @page: the page to test
614 * @vma: the VMA to test
615 *
616 * Returns 1 if the page is mapped into the page tables of the VMA, 0
617 * if the page is not mapped into the page tables of this VMA. Only
618 * valid for normal file or anonymous VMAs.
619 */
6a46079c 620int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
621{
622 unsigned long address;
623 pte_t *pte;
624 spinlock_t *ptl;
625
626 address = vma_address(page, vma);
627 if (address == -EFAULT) /* out of vma range */
628 return 0;
629 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
630 if (!pte) /* the page is not in this mm */
631 return 0;
632 pte_unmap_unlock(pte, ptl);
633
634 return 1;
635}
636
1da177e4
LT
637/*
638 * Subfunctions of page_referenced: page_referenced_one called
639 * repeatedly from either page_referenced_anon or page_referenced_file.
640 */
5ad64688
HD
641int page_referenced_one(struct page *page, struct vm_area_struct *vma,
642 unsigned long address, unsigned int *mapcount,
643 unsigned long *vm_flags)
1da177e4
LT
644{
645 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
646 int referenced = 0;
647
71e3aac0
AA
648 if (unlikely(PageTransHuge(page))) {
649 pmd_t *pmd;
650
651 spin_lock(&mm->page_table_lock);
2da28bfd
AA
652 /*
653 * rmap might return false positives; we must filter
654 * these out using page_check_address_pmd().
655 */
71e3aac0
AA
656 pmd = page_check_address_pmd(page, mm, address,
657 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
658 if (!pmd) {
659 spin_unlock(&mm->page_table_lock);
660 goto out;
661 }
662
663 if (vma->vm_flags & VM_LOCKED) {
664 spin_unlock(&mm->page_table_lock);
665 *mapcount = 0; /* break early from loop */
666 *vm_flags |= VM_LOCKED;
667 goto out;
668 }
669
670 /* go ahead even if the pmd is pmd_trans_splitting() */
671 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
672 referenced++;
673 spin_unlock(&mm->page_table_lock);
674 } else {
675 pte_t *pte;
676 spinlock_t *ptl;
677
2da28bfd
AA
678 /*
679 * rmap might return false positives; we must filter
680 * these out using page_check_address().
681 */
71e3aac0
AA
682 pte = page_check_address(page, mm, address, &ptl, 0);
683 if (!pte)
684 goto out;
685
2da28bfd
AA
686 if (vma->vm_flags & VM_LOCKED) {
687 pte_unmap_unlock(pte, ptl);
688 *mapcount = 0; /* break early from loop */
689 *vm_flags |= VM_LOCKED;
690 goto out;
691 }
692
71e3aac0
AA
693 if (ptep_clear_flush_young_notify(vma, address, pte)) {
694 /*
695 * Don't treat a reference through a sequentially read
696 * mapping as such. If the page has been used in
697 * another mapping, we will catch it; if this other
698 * mapping is already gone, the unmap path will have
699 * set PG_referenced or activated the page.
700 */
701 if (likely(!VM_SequentialReadHint(vma)))
702 referenced++;
703 }
704 pte_unmap_unlock(pte, ptl);
705 }
706
2da28bfd
AA
707 /* Pretend the page is referenced if the task has the
708 swap token and is in the middle of a page fault. */
709 if (mm != current->mm && has_swap_token(mm) &&
710 rwsem_is_locked(&mm->mmap_sem))
711 referenced++;
712
c0718806 713 (*mapcount)--;
273f047e 714
6fe6b7e3
WF
715 if (referenced)
716 *vm_flags |= vma->vm_flags;
273f047e 717out:
1da177e4
LT
718 return referenced;
719}
720
bed7161a 721static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
722 struct mem_cgroup *mem_cont,
723 unsigned long *vm_flags)
1da177e4
LT
724{
725 unsigned int mapcount;
726 struct anon_vma *anon_vma;
5beb4930 727 struct anon_vma_chain *avc;
1da177e4
LT
728 int referenced = 0;
729
730 anon_vma = page_lock_anon_vma(page);
731 if (!anon_vma)
732 return referenced;
733
734 mapcount = page_mapcount(page);
5beb4930
RR
735 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
736 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
737 unsigned long address = vma_address(page, vma);
738 if (address == -EFAULT)
739 continue;
bed7161a
BS
740 /*
741 * If we are reclaiming on behalf of a cgroup, skip
742 * counting on behalf of references from different
743 * cgroups
744 */
bd845e38 745 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 746 continue;
1cb1729b 747 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 748 &mapcount, vm_flags);
1da177e4
LT
749 if (!mapcount)
750 break;
751 }
34bbd704
ON
752
753 page_unlock_anon_vma(anon_vma);
1da177e4
LT
754 return referenced;
755}
756
757/**
758 * page_referenced_file - referenced check for object-based rmap
759 * @page: the page we're checking references on.
43d8eac4 760 * @mem_cont: target memory controller
6fe6b7e3 761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
762 *
763 * For an object-based mapped page, find all the places it is mapped and
764 * check/clear the referenced flag. This is done by following the page->mapping
765 * pointer, then walking the chain of vmas it holds. It returns the number
766 * of references it found.
767 *
768 * This function is only called from page_referenced for object-based pages.
769 */
bed7161a 770static int page_referenced_file(struct page *page,
6fe6b7e3
WF
771 struct mem_cgroup *mem_cont,
772 unsigned long *vm_flags)
1da177e4
LT
773{
774 unsigned int mapcount;
775 struct address_space *mapping = page->mapping;
776 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
777 struct vm_area_struct *vma;
778 struct prio_tree_iter iter;
779 int referenced = 0;
780
781 /*
782 * The caller's checks on page->mapping and !PageAnon have made
783 * sure that this is a file page: the check for page->mapping
784 * excludes the case just before it gets set on an anon page.
785 */
786 BUG_ON(PageAnon(page));
787
788 /*
789 * The page lock not only makes sure that page->mapping cannot
790 * suddenly be NULLified by truncation, it makes sure that the
791 * structure at mapping cannot be freed and reused yet,
3d48ae45 792 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
793 */
794 BUG_ON(!PageLocked(page));
795
3d48ae45 796 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
797
798 /*
3d48ae45 799 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
800 * is more likely to be accurate if we note it after spinning.
801 */
802 mapcount = page_mapcount(page);
803
804 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
805 unsigned long address = vma_address(page, vma);
806 if (address == -EFAULT)
807 continue;
bed7161a
BS
808 /*
809 * If we are reclaiming on behalf of a cgroup, skip
810 * counting on behalf of references from different
811 * cgroups
812 */
bd845e38 813 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 814 continue;
1cb1729b 815 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 816 &mapcount, vm_flags);
1da177e4
LT
817 if (!mapcount)
818 break;
819 }
820
3d48ae45 821 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
822 return referenced;
823}
824
825/**
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
43d8eac4 829 * @mem_cont: target memory controller
6fe6b7e3 830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
831 *
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
834 */
6fe6b7e3
WF
835int page_referenced(struct page *page,
836 int is_locked,
837 struct mem_cgroup *mem_cont,
838 unsigned long *vm_flags)
1da177e4
LT
839{
840 int referenced = 0;
5ad64688 841 int we_locked = 0;
1da177e4 842
6fe6b7e3 843 *vm_flags = 0;
3ca7b3c5 844 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
845 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
846 we_locked = trylock_page(page);
847 if (!we_locked) {
848 referenced++;
849 goto out;
850 }
851 }
852 if (unlikely(PageKsm(page)))
853 referenced += page_referenced_ksm(page, mem_cont,
854 vm_flags);
855 else if (PageAnon(page))
6fe6b7e3
WF
856 referenced += page_referenced_anon(page, mem_cont,
857 vm_flags);
5ad64688 858 else if (page->mapping)
6fe6b7e3
WF
859 referenced += page_referenced_file(page, mem_cont,
860 vm_flags);
5ad64688 861 if (we_locked)
1da177e4 862 unlock_page(page);
1da177e4 863 }
5ad64688 864out:
2d42552d 865 if (page_test_and_clear_young(page_to_pfn(page)))
5b7baf05
CB
866 referenced++;
867
1da177e4
LT
868 return referenced;
869}
870
1cb1729b
HD
871static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
872 unsigned long address)
d08b3851
PZ
873{
874 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 875 pte_t *pte;
d08b3851
PZ
876 spinlock_t *ptl;
877 int ret = 0;
878
479db0bf 879 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
880 if (!pte)
881 goto out;
882
c2fda5fe
PZ
883 if (pte_dirty(*pte) || pte_write(*pte)) {
884 pte_t entry;
d08b3851 885
c2fda5fe 886 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 887 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
888 entry = pte_wrprotect(entry);
889 entry = pte_mkclean(entry);
d6e88e67 890 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
891 ret = 1;
892 }
d08b3851 893
d08b3851
PZ
894 pte_unmap_unlock(pte, ptl);
895out:
896 return ret;
897}
898
899static int page_mkclean_file(struct address_space *mapping, struct page *page)
900{
901 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
902 struct vm_area_struct *vma;
903 struct prio_tree_iter iter;
904 int ret = 0;
905
906 BUG_ON(PageAnon(page));
907
3d48ae45 908 mutex_lock(&mapping->i_mmap_mutex);
d08b3851 909 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
910 if (vma->vm_flags & VM_SHARED) {
911 unsigned long address = vma_address(page, vma);
912 if (address == -EFAULT)
913 continue;
914 ret += page_mkclean_one(page, vma, address);
915 }
d08b3851 916 }
3d48ae45 917 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
918 return ret;
919}
920
921int page_mkclean(struct page *page)
922{
923 int ret = 0;
924
925 BUG_ON(!PageLocked(page));
926
927 if (page_mapped(page)) {
928 struct address_space *mapping = page_mapping(page);
ce7e9fae 929 if (mapping) {
d08b3851 930 ret = page_mkclean_file(mapping, page);
2d42552d 931 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 932 ret = 1;
6c210482 933 }
d08b3851
PZ
934 }
935
936 return ret;
937}
60b59bea 938EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 939
c44b6743
RR
940/**
941 * page_move_anon_rmap - move a page to our anon_vma
942 * @page: the page to move to our anon_vma
943 * @vma: the vma the page belongs to
944 * @address: the user virtual address mapped
945 *
946 * When a page belongs exclusively to one process after a COW event,
947 * that page can be moved into the anon_vma that belongs to just that
948 * process, so the rmap code will not search the parent or sibling
949 * processes.
950 */
951void page_move_anon_rmap(struct page *page,
952 struct vm_area_struct *vma, unsigned long address)
953{
954 struct anon_vma *anon_vma = vma->anon_vma;
955
956 VM_BUG_ON(!PageLocked(page));
957 VM_BUG_ON(!anon_vma);
958 VM_BUG_ON(page->index != linear_page_index(vma, address));
959
960 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
961 page->mapping = (struct address_space *) anon_vma;
962}
963
9617d95e 964/**
4e1c1975
AK
965 * __page_set_anon_rmap - set up new anonymous rmap
966 * @page: Page to add to rmap
967 * @vma: VM area to add page to.
968 * @address: User virtual address of the mapping
e8a03feb 969 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
970 */
971static void __page_set_anon_rmap(struct page *page,
e8a03feb 972 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 973{
e8a03feb 974 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 975
e8a03feb 976 BUG_ON(!anon_vma);
ea90002b 977
4e1c1975
AK
978 if (PageAnon(page))
979 return;
980
ea90002b 981 /*
e8a03feb
RR
982 * If the page isn't exclusively mapped into this vma,
983 * we must use the _oldest_ possible anon_vma for the
984 * page mapping!
ea90002b 985 */
4e1c1975 986 if (!exclusive)
288468c3 987 anon_vma = anon_vma->root;
9617d95e 988
9617d95e
NP
989 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
990 page->mapping = (struct address_space *) anon_vma;
9617d95e 991 page->index = linear_page_index(vma, address);
9617d95e
NP
992}
993
c97a9e10 994/**
43d8eac4 995 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
996 * @page: the page to add the mapping to
997 * @vma: the vm area in which the mapping is added
998 * @address: the user virtual address mapped
999 */
1000static void __page_check_anon_rmap(struct page *page,
1001 struct vm_area_struct *vma, unsigned long address)
1002{
1003#ifdef CONFIG_DEBUG_VM
1004 /*
1005 * The page's anon-rmap details (mapping and index) are guaranteed to
1006 * be set up correctly at this point.
1007 *
1008 * We have exclusion against page_add_anon_rmap because the caller
1009 * always holds the page locked, except if called from page_dup_rmap,
1010 * in which case the page is already known to be setup.
1011 *
1012 * We have exclusion against page_add_new_anon_rmap because those pages
1013 * are initially only visible via the pagetables, and the pte is locked
1014 * over the call to page_add_new_anon_rmap.
1015 */
44ab57a0 1016 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
1017 BUG_ON(page->index != linear_page_index(vma, address));
1018#endif
1019}
1020
1da177e4
LT
1021/**
1022 * page_add_anon_rmap - add pte mapping to an anonymous page
1023 * @page: the page to add the mapping to
1024 * @vma: the vm area in which the mapping is added
1025 * @address: the user virtual address mapped
1026 *
5ad64688 1027 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1028 * the anon_vma case: to serialize mapping,index checking after setting,
1029 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1030 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1031 */
1032void page_add_anon_rmap(struct page *page,
1033 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
1034{
1035 do_page_add_anon_rmap(page, vma, address, 0);
1036}
1037
1038/*
1039 * Special version of the above for do_swap_page, which often runs
1040 * into pages that are exclusively owned by the current process.
1041 * Everybody else should continue to use page_add_anon_rmap above.
1042 */
1043void do_page_add_anon_rmap(struct page *page,
1044 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 1045{
5ad64688 1046 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
1047 if (first) {
1048 if (!PageTransHuge(page))
1049 __inc_zone_page_state(page, NR_ANON_PAGES);
1050 else
1051 __inc_zone_page_state(page,
1052 NR_ANON_TRANSPARENT_HUGEPAGES);
1053 }
5ad64688
HD
1054 if (unlikely(PageKsm(page)))
1055 return;
1056
c97a9e10 1057 VM_BUG_ON(!PageLocked(page));
5dbe0af4 1058 /* address might be in next vma when migration races vma_adjust */
5ad64688 1059 if (first)
ad8c2ee8 1060 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 1061 else
c97a9e10 1062 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1063}
1064
43d8eac4 1065/**
9617d95e
NP
1066 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1067 * @page: the page to add the mapping to
1068 * @vma: the vm area in which the mapping is added
1069 * @address: the user virtual address mapped
1070 *
1071 * Same as page_add_anon_rmap but must only be called on *new* pages.
1072 * This means the inc-and-test can be bypassed.
c97a9e10 1073 * Page does not have to be locked.
9617d95e
NP
1074 */
1075void page_add_new_anon_rmap(struct page *page,
1076 struct vm_area_struct *vma, unsigned long address)
1077{
b5934c53 1078 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
1079 SetPageSwapBacked(page);
1080 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
1081 if (!PageTransHuge(page))
1082 __inc_zone_page_state(page, NR_ANON_PAGES);
1083 else
1084 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 1085 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 1086 if (page_evictable(page, vma))
cbf84b7a 1087 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
1088 else
1089 add_page_to_unevictable_list(page);
9617d95e
NP
1090}
1091
1da177e4
LT
1092/**
1093 * page_add_file_rmap - add pte mapping to a file page
1094 * @page: the page to add the mapping to
1095 *
b8072f09 1096 * The caller needs to hold the pte lock.
1da177e4
LT
1097 */
1098void page_add_file_rmap(struct page *page)
1099{
d69b042f 1100 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 1101 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1102 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 1103 }
1da177e4
LT
1104}
1105
1106/**
1107 * page_remove_rmap - take down pte mapping from a page
1108 * @page: page to remove mapping from
1109 *
b8072f09 1110 * The caller needs to hold the pte lock.
1da177e4 1111 */
edc315fd 1112void page_remove_rmap(struct page *page)
1da177e4 1113{
b904dcfe
KM
1114 /* page still mapped by someone else? */
1115 if (!atomic_add_negative(-1, &page->_mapcount))
1116 return;
1117
1118 /*
1119 * Now that the last pte has gone, s390 must transfer dirty
1120 * flag from storage key to struct page. We can usually skip
1121 * this if the page is anon, so about to be freed; but perhaps
1122 * not if it's in swapcache - there might be another pte slot
1123 * containing the swap entry, but page not yet written to swap.
1124 */
2d42552d
MS
1125 if ((!PageAnon(page) || PageSwapCache(page)) &&
1126 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1127 set_page_dirty(page);
0fe6e20b
NH
1128 /*
1129 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1130 * and not charged by memcg for now.
1131 */
1132 if (unlikely(PageHuge(page)))
1133 return;
b904dcfe
KM
1134 if (PageAnon(page)) {
1135 mem_cgroup_uncharge_page(page);
79134171
AA
1136 if (!PageTransHuge(page))
1137 __dec_zone_page_state(page, NR_ANON_PAGES);
1138 else
1139 __dec_zone_page_state(page,
1140 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1141 } else {
1142 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1143 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1144 }
b904dcfe
KM
1145 /*
1146 * It would be tidy to reset the PageAnon mapping here,
1147 * but that might overwrite a racing page_add_anon_rmap
1148 * which increments mapcount after us but sets mapping
1149 * before us: so leave the reset to free_hot_cold_page,
1150 * and remember that it's only reliable while mapped.
1151 * Leaving it set also helps swapoff to reinstate ptes
1152 * faster for those pages still in swapcache.
1153 */
1da177e4
LT
1154}
1155
1156/*
1157 * Subfunctions of try_to_unmap: try_to_unmap_one called
1158 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1159 */
5ad64688
HD
1160int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1161 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1162{
1163 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1164 pte_t *pte;
1165 pte_t pteval;
c0718806 1166 spinlock_t *ptl;
1da177e4
LT
1167 int ret = SWAP_AGAIN;
1168
479db0bf 1169 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1170 if (!pte)
81b4082d 1171 goto out;
1da177e4
LT
1172
1173 /*
1174 * If the page is mlock()d, we cannot swap it out.
1175 * If it's recently referenced (perhaps page_referenced
1176 * skipped over this mm) then we should reactivate it.
1177 */
14fa31b8 1178 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1179 if (vma->vm_flags & VM_LOCKED)
1180 goto out_mlock;
1181
af8e3354 1182 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1183 goto out_unmap;
14fa31b8
AK
1184 }
1185 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1186 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1187 ret = SWAP_FAIL;
1188 goto out_unmap;
1189 }
1190 }
1da177e4 1191
1da177e4
LT
1192 /* Nuke the page table entry. */
1193 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1194 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1195
1196 /* Move the dirty bit to the physical page now the pte is gone. */
1197 if (pte_dirty(pteval))
1198 set_page_dirty(page);
1199
365e9c87
HD
1200 /* Update high watermark before we lower rss */
1201 update_hiwater_rss(mm);
1202
888b9f7c
AK
1203 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1204 if (PageAnon(page))
d559db08 1205 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1206 else
d559db08 1207 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1208 set_pte_at(mm, address, pte,
1209 swp_entry_to_pte(make_hwpoison_entry(page)));
1210 } else if (PageAnon(page)) {
4c21e2f2 1211 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1212
1213 if (PageSwapCache(page)) {
1214 /*
1215 * Store the swap location in the pte.
1216 * See handle_pte_fault() ...
1217 */
570a335b
HD
1218 if (swap_duplicate(entry) < 0) {
1219 set_pte_at(mm, address, pte, pteval);
1220 ret = SWAP_FAIL;
1221 goto out_unmap;
1222 }
0697212a
CL
1223 if (list_empty(&mm->mmlist)) {
1224 spin_lock(&mmlist_lock);
1225 if (list_empty(&mm->mmlist))
1226 list_add(&mm->mmlist, &init_mm.mmlist);
1227 spin_unlock(&mmlist_lock);
1228 }
d559db08 1229 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1230 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1231 } else if (PAGE_MIGRATION) {
0697212a
CL
1232 /*
1233 * Store the pfn of the page in a special migration
1234 * pte. do_swap_page() will wait until the migration
1235 * pte is removed and then restart fault handling.
1236 */
14fa31b8 1237 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1238 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1239 }
1240 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1241 BUG_ON(pte_file(*pte));
14fa31b8 1242 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1243 /* Establish migration entry for a file page */
1244 swp_entry_t entry;
1245 entry = make_migration_entry(page, pte_write(pteval));
1246 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1247 } else
d559db08 1248 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1249
edc315fd 1250 page_remove_rmap(page);
1da177e4
LT
1251 page_cache_release(page);
1252
1253out_unmap:
c0718806 1254 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1255out:
1256 return ret;
53f79acb 1257
caed0f48
KM
1258out_mlock:
1259 pte_unmap_unlock(pte, ptl);
1260
1261
1262 /*
1263 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1264 * unstable result and race. Plus, We can't wait here because
2b575eb6 1265 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1266 * if trylock failed, the page remain in evictable lru and later
1267 * vmscan could retry to move the page to unevictable lru if the
1268 * page is actually mlocked.
1269 */
1270 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1271 if (vma->vm_flags & VM_LOCKED) {
1272 mlock_vma_page(page);
1273 ret = SWAP_MLOCK;
53f79acb 1274 }
caed0f48 1275 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1276 }
1da177e4
LT
1277 return ret;
1278}
1279
1280/*
1281 * objrmap doesn't work for nonlinear VMAs because the assumption that
1282 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1283 * Consequently, given a particular page and its ->index, we cannot locate the
1284 * ptes which are mapping that page without an exhaustive linear search.
1285 *
1286 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1287 * maps the file to which the target page belongs. The ->vm_private_data field
1288 * holds the current cursor into that scan. Successive searches will circulate
1289 * around the vma's virtual address space.
1290 *
1291 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1292 * more scanning pressure is placed against them as well. Eventually pages
1293 * will become fully unmapped and are eligible for eviction.
1294 *
1295 * For very sparsely populated VMAs this is a little inefficient - chances are
1296 * there there won't be many ptes located within the scan cluster. In this case
1297 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1298 *
1299 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1300 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1301 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1302 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1303 */
1304#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1305#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1306
b291f000
NP
1307static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1308 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1309{
1310 struct mm_struct *mm = vma->vm_mm;
1311 pgd_t *pgd;
1312 pud_t *pud;
1313 pmd_t *pmd;
c0718806 1314 pte_t *pte;
1da177e4 1315 pte_t pteval;
c0718806 1316 spinlock_t *ptl;
1da177e4
LT
1317 struct page *page;
1318 unsigned long address;
1319 unsigned long end;
b291f000
NP
1320 int ret = SWAP_AGAIN;
1321 int locked_vma = 0;
1da177e4 1322
1da177e4
LT
1323 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1324 end = address + CLUSTER_SIZE;
1325 if (address < vma->vm_start)
1326 address = vma->vm_start;
1327 if (end > vma->vm_end)
1328 end = vma->vm_end;
1329
1330 pgd = pgd_offset(mm, address);
1331 if (!pgd_present(*pgd))
b291f000 1332 return ret;
1da177e4
LT
1333
1334 pud = pud_offset(pgd, address);
1335 if (!pud_present(*pud))
b291f000 1336 return ret;
1da177e4
LT
1337
1338 pmd = pmd_offset(pud, address);
1339 if (!pmd_present(*pmd))
b291f000
NP
1340 return ret;
1341
1342 /*
af8e3354 1343 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1344 * keep the sem while scanning the cluster for mlocking pages.
1345 */
af8e3354 1346 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1347 locked_vma = (vma->vm_flags & VM_LOCKED);
1348 if (!locked_vma)
1349 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1350 }
c0718806
HD
1351
1352 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1353
365e9c87
HD
1354 /* Update high watermark before we lower rss */
1355 update_hiwater_rss(mm);
1356
c0718806 1357 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1358 if (!pte_present(*pte))
1359 continue;
6aab341e
LT
1360 page = vm_normal_page(vma, address, *pte);
1361 BUG_ON(!page || PageAnon(page));
1da177e4 1362
b291f000
NP
1363 if (locked_vma) {
1364 mlock_vma_page(page); /* no-op if already mlocked */
1365 if (page == check_page)
1366 ret = SWAP_MLOCK;
1367 continue; /* don't unmap */
1368 }
1369
cddb8a5c 1370 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1371 continue;
1372
1373 /* Nuke the page table entry. */
eca35133 1374 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1375 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1376
1377 /* If nonlinear, store the file page offset in the pte. */
1378 if (page->index != linear_page_index(vma, address))
1379 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1380
1381 /* Move the dirty bit to the physical page now the pte is gone. */
1382 if (pte_dirty(pteval))
1383 set_page_dirty(page);
1384
edc315fd 1385 page_remove_rmap(page);
1da177e4 1386 page_cache_release(page);
d559db08 1387 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1388 (*mapcount)--;
1389 }
c0718806 1390 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1391 if (locked_vma)
1392 up_read(&vma->vm_mm->mmap_sem);
1393 return ret;
1da177e4
LT
1394}
1395
71e3aac0 1396bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1397{
1398 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1399
1400 if (!maybe_stack)
1401 return false;
1402
1403 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1404 VM_STACK_INCOMPLETE_SETUP)
1405 return true;
1406
1407 return false;
1408}
1409
b291f000
NP
1410/**
1411 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1412 * rmap method
1413 * @page: the page to unmap/unlock
8051be5e 1414 * @flags: action and flags
b291f000
NP
1415 *
1416 * Find all the mappings of a page using the mapping pointer and the vma chains
1417 * contained in the anon_vma struct it points to.
1418 *
1419 * This function is only called from try_to_unmap/try_to_munlock for
1420 * anonymous pages.
1421 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1422 * where the page was found will be held for write. So, we won't recheck
1423 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1424 * 'LOCKED.
1425 */
14fa31b8 1426static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1427{
1428 struct anon_vma *anon_vma;
5beb4930 1429 struct anon_vma_chain *avc;
1da177e4 1430 int ret = SWAP_AGAIN;
b291f000 1431
1da177e4
LT
1432 anon_vma = page_lock_anon_vma(page);
1433 if (!anon_vma)
1434 return ret;
1435
5beb4930
RR
1436 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1437 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1438 unsigned long address;
1439
1440 /*
1441 * During exec, a temporary VMA is setup and later moved.
1442 * The VMA is moved under the anon_vma lock but not the
1443 * page tables leading to a race where migration cannot
1444 * find the migration ptes. Rather than increasing the
1445 * locking requirements of exec(), migration skips
1446 * temporary VMAs until after exec() completes.
1447 */
1448 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1449 is_vma_temporary_stack(vma))
1450 continue;
1451
1452 address = vma_address(page, vma);
1cb1729b
HD
1453 if (address == -EFAULT)
1454 continue;
1455 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1456 if (ret != SWAP_AGAIN || !page_mapped(page))
1457 break;
1da177e4 1458 }
34bbd704
ON
1459
1460 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1461 return ret;
1462}
1463
1464/**
b291f000
NP
1465 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1466 * @page: the page to unmap/unlock
14fa31b8 1467 * @flags: action and flags
1da177e4
LT
1468 *
1469 * Find all the mappings of a page using the mapping pointer and the vma chains
1470 * contained in the address_space struct it points to.
1471 *
b291f000
NP
1472 * This function is only called from try_to_unmap/try_to_munlock for
1473 * object-based pages.
1474 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1475 * where the page was found will be held for write. So, we won't recheck
1476 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1477 * 'LOCKED.
1da177e4 1478 */
14fa31b8 1479static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1480{
1481 struct address_space *mapping = page->mapping;
1482 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1483 struct vm_area_struct *vma;
1484 struct prio_tree_iter iter;
1485 int ret = SWAP_AGAIN;
1486 unsigned long cursor;
1487 unsigned long max_nl_cursor = 0;
1488 unsigned long max_nl_size = 0;
1489 unsigned int mapcount;
1490
3d48ae45 1491 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 1492 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1493 unsigned long address = vma_address(page, vma);
1494 if (address == -EFAULT)
1495 continue;
1496 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1497 if (ret != SWAP_AGAIN || !page_mapped(page))
1498 goto out;
1da177e4
LT
1499 }
1500
1501 if (list_empty(&mapping->i_mmap_nonlinear))
1502 goto out;
1503
53f79acb
HD
1504 /*
1505 * We don't bother to try to find the munlocked page in nonlinears.
1506 * It's costly. Instead, later, page reclaim logic may call
1507 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1508 */
1509 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1510 goto out;
1511
1da177e4
LT
1512 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1513 shared.vm_set.list) {
1da177e4
LT
1514 cursor = (unsigned long) vma->vm_private_data;
1515 if (cursor > max_nl_cursor)
1516 max_nl_cursor = cursor;
1517 cursor = vma->vm_end - vma->vm_start;
1518 if (cursor > max_nl_size)
1519 max_nl_size = cursor;
1520 }
1521
b291f000 1522 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1523 ret = SWAP_FAIL;
1524 goto out;
1525 }
1526
1527 /*
1528 * We don't try to search for this page in the nonlinear vmas,
1529 * and page_referenced wouldn't have found it anyway. Instead
1530 * just walk the nonlinear vmas trying to age and unmap some.
1531 * The mapcount of the page we came in with is irrelevant,
1532 * but even so use it as a guide to how hard we should try?
1533 */
1534 mapcount = page_mapcount(page);
1535 if (!mapcount)
1536 goto out;
3d48ae45 1537 cond_resched();
1da177e4
LT
1538
1539 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1540 if (max_nl_cursor == 0)
1541 max_nl_cursor = CLUSTER_SIZE;
1542
1543 do {
1544 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1545 shared.vm_set.list) {
1da177e4 1546 cursor = (unsigned long) vma->vm_private_data;
839b9685 1547 while ( cursor < max_nl_cursor &&
1da177e4 1548 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1549 if (try_to_unmap_cluster(cursor, &mapcount,
1550 vma, page) == SWAP_MLOCK)
1551 ret = SWAP_MLOCK;
1da177e4
LT
1552 cursor += CLUSTER_SIZE;
1553 vma->vm_private_data = (void *) cursor;
1554 if ((int)mapcount <= 0)
1555 goto out;
1556 }
1557 vma->vm_private_data = (void *) max_nl_cursor;
1558 }
3d48ae45 1559 cond_resched();
1da177e4
LT
1560 max_nl_cursor += CLUSTER_SIZE;
1561 } while (max_nl_cursor <= max_nl_size);
1562
1563 /*
1564 * Don't loop forever (perhaps all the remaining pages are
1565 * in locked vmas). Reset cursor on all unreserved nonlinear
1566 * vmas, now forgetting on which ones it had fallen behind.
1567 */
101d2be7
HD
1568 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1569 vma->vm_private_data = NULL;
1da177e4 1570out:
3d48ae45 1571 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1572 return ret;
1573}
1574
1575/**
1576 * try_to_unmap - try to remove all page table mappings to a page
1577 * @page: the page to get unmapped
14fa31b8 1578 * @flags: action and flags
1da177e4
LT
1579 *
1580 * Tries to remove all the page table entries which are mapping this
1581 * page, used in the pageout path. Caller must hold the page lock.
1582 * Return values are:
1583 *
1584 * SWAP_SUCCESS - we succeeded in removing all mappings
1585 * SWAP_AGAIN - we missed a mapping, try again later
1586 * SWAP_FAIL - the page is unswappable
b291f000 1587 * SWAP_MLOCK - page is mlocked.
1da177e4 1588 */
14fa31b8 1589int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1590{
1591 int ret;
1592
1da177e4 1593 BUG_ON(!PageLocked(page));
91600e9e 1594 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1595
5ad64688
HD
1596 if (unlikely(PageKsm(page)))
1597 ret = try_to_unmap_ksm(page, flags);
1598 else if (PageAnon(page))
14fa31b8 1599 ret = try_to_unmap_anon(page, flags);
1da177e4 1600 else
14fa31b8 1601 ret = try_to_unmap_file(page, flags);
b291f000 1602 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1603 ret = SWAP_SUCCESS;
1604 return ret;
1605}
81b4082d 1606
b291f000
NP
1607/**
1608 * try_to_munlock - try to munlock a page
1609 * @page: the page to be munlocked
1610 *
1611 * Called from munlock code. Checks all of the VMAs mapping the page
1612 * to make sure nobody else has this page mlocked. The page will be
1613 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1614 *
1615 * Return values are:
1616 *
53f79acb 1617 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1618 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1619 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1620 * SWAP_MLOCK - page is now mlocked.
1621 */
1622int try_to_munlock(struct page *page)
1623{
1624 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1625
5ad64688
HD
1626 if (unlikely(PageKsm(page)))
1627 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1628 else if (PageAnon(page))
14fa31b8 1629 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1630 else
14fa31b8 1631 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1632}
e9995ef9 1633
01d8b20d 1634void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1635{
01d8b20d 1636 struct anon_vma *root = anon_vma->root;
76545066 1637
01d8b20d
PZ
1638 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1639 anon_vma_free(root);
76545066 1640
01d8b20d 1641 anon_vma_free(anon_vma);
76545066 1642}
76545066 1643
e9995ef9
HD
1644#ifdef CONFIG_MIGRATION
1645/*
1646 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1647 * Called by migrate.c to remove migration ptes, but might be used more later.
1648 */
1649static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1650 struct vm_area_struct *, unsigned long, void *), void *arg)
1651{
1652 struct anon_vma *anon_vma;
5beb4930 1653 struct anon_vma_chain *avc;
e9995ef9
HD
1654 int ret = SWAP_AGAIN;
1655
1656 /*
1657 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1658 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1659 * are holding mmap_sem. Users without mmap_sem are required to
1660 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1661 */
1662 anon_vma = page_anon_vma(page);
1663 if (!anon_vma)
1664 return ret;
cba48b98 1665 anon_vma_lock(anon_vma);
5beb4930
RR
1666 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1667 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1668 unsigned long address = vma_address(page, vma);
1669 if (address == -EFAULT)
1670 continue;
1671 ret = rmap_one(page, vma, address, arg);
1672 if (ret != SWAP_AGAIN)
1673 break;
1674 }
cba48b98 1675 anon_vma_unlock(anon_vma);
e9995ef9
HD
1676 return ret;
1677}
1678
1679static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1680 struct vm_area_struct *, unsigned long, void *), void *arg)
1681{
1682 struct address_space *mapping = page->mapping;
1683 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1684 struct vm_area_struct *vma;
1685 struct prio_tree_iter iter;
1686 int ret = SWAP_AGAIN;
1687
1688 if (!mapping)
1689 return ret;
3d48ae45 1690 mutex_lock(&mapping->i_mmap_mutex);
e9995ef9
HD
1691 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1692 unsigned long address = vma_address(page, vma);
1693 if (address == -EFAULT)
1694 continue;
1695 ret = rmap_one(page, vma, address, arg);
1696 if (ret != SWAP_AGAIN)
1697 break;
1698 }
1699 /*
1700 * No nonlinear handling: being always shared, nonlinear vmas
1701 * never contain migration ptes. Decide what to do about this
1702 * limitation to linear when we need rmap_walk() on nonlinear.
1703 */
3d48ae45 1704 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1705 return ret;
1706}
1707
1708int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1709 struct vm_area_struct *, unsigned long, void *), void *arg)
1710{
1711 VM_BUG_ON(!PageLocked(page));
1712
1713 if (unlikely(PageKsm(page)))
1714 return rmap_walk_ksm(page, rmap_one, arg);
1715 else if (PageAnon(page))
1716 return rmap_walk_anon(page, rmap_one, arg);
1717 else
1718 return rmap_walk_file(page, rmap_one, arg);
1719}
1720#endif /* CONFIG_MIGRATION */
0fe6e20b 1721
e3390f67 1722#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1723/*
1724 * The following three functions are for anonymous (private mapped) hugepages.
1725 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1726 * and no lru code, because we handle hugepages differently from common pages.
1727 */
1728static void __hugepage_set_anon_rmap(struct page *page,
1729 struct vm_area_struct *vma, unsigned long address, int exclusive)
1730{
1731 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1732
0fe6e20b 1733 BUG_ON(!anon_vma);
433abed6
NH
1734
1735 if (PageAnon(page))
1736 return;
1737 if (!exclusive)
1738 anon_vma = anon_vma->root;
1739
0fe6e20b
NH
1740 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1741 page->mapping = (struct address_space *) anon_vma;
1742 page->index = linear_page_index(vma, address);
1743}
1744
1745void hugepage_add_anon_rmap(struct page *page,
1746 struct vm_area_struct *vma, unsigned long address)
1747{
1748 struct anon_vma *anon_vma = vma->anon_vma;
1749 int first;
a850ea30
NH
1750
1751 BUG_ON(!PageLocked(page));
0fe6e20b 1752 BUG_ON(!anon_vma);
5dbe0af4 1753 /* address might be in next vma when migration races vma_adjust */
0fe6e20b
NH
1754 first = atomic_inc_and_test(&page->_mapcount);
1755 if (first)
1756 __hugepage_set_anon_rmap(page, vma, address, 0);
1757}
1758
1759void hugepage_add_new_anon_rmap(struct page *page,
1760 struct vm_area_struct *vma, unsigned long address)
1761{
1762 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1763 atomic_set(&page->_mapcount, 0);
1764 __hugepage_set_anon_rmap(page, vma, address, 1);
1765}
e3390f67 1766#endif /* CONFIG_HUGETLB_PAGE */