flex_array: convert element_nr formals to unsigned
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
8a9f3ccd 50#include <linux/memcontrol.h>
cddb8a5c 51#include <linux/mmu_notifier.h>
64cdd548 52#include <linux/migrate.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55
b291f000
NP
56#include "internal.h"
57
fdd2e5f8
AB
58static struct kmem_cache *anon_vma_cachep;
59
60static inline struct anon_vma *anon_vma_alloc(void)
61{
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63}
64
65static inline void anon_vma_free(struct anon_vma *anon_vma)
66{
67 kmem_cache_free(anon_vma_cachep, anon_vma);
68}
1da177e4 69
d9d332e0
LT
70/**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
73 *
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
77 *
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
83 *
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
89 *
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
94 *
95 * This must be called with the mmap_sem held for reading.
96 */
1da177e4
LT
97int anon_vma_prepare(struct vm_area_struct *vma)
98{
99 struct anon_vma *anon_vma = vma->anon_vma;
100
101 might_sleep();
102 if (unlikely(!anon_vma)) {
103 struct mm_struct *mm = vma->vm_mm;
d9d332e0 104 struct anon_vma *allocated;
1da177e4
LT
105
106 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
107 allocated = NULL;
108 if (!anon_vma) {
1da177e4
LT
109 anon_vma = anon_vma_alloc();
110 if (unlikely(!anon_vma))
111 return -ENOMEM;
112 allocated = anon_vma;
1da177e4 113 }
d9d332e0 114 spin_lock(&anon_vma->lock);
1da177e4
LT
115
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm->page_table_lock);
118 if (likely(!vma->anon_vma)) {
119 vma->anon_vma = anon_vma;
0697212a 120 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
121 allocated = NULL;
122 }
123 spin_unlock(&mm->page_table_lock);
124
d9d332e0 125 spin_unlock(&anon_vma->lock);
1da177e4
LT
126 if (unlikely(allocated))
127 anon_vma_free(allocated);
128 }
129 return 0;
130}
131
132void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133{
134 BUG_ON(vma->anon_vma != next->anon_vma);
135 list_del(&next->anon_vma_node);
136}
137
138void __anon_vma_link(struct vm_area_struct *vma)
139{
140 struct anon_vma *anon_vma = vma->anon_vma;
141
30acbaba 142 if (anon_vma)
0697212a 143 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
144}
145
146void anon_vma_link(struct vm_area_struct *vma)
147{
148 struct anon_vma *anon_vma = vma->anon_vma;
149
150 if (anon_vma) {
151 spin_lock(&anon_vma->lock);
0697212a 152 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
153 spin_unlock(&anon_vma->lock);
154 }
155}
156
157void anon_vma_unlink(struct vm_area_struct *vma)
158{
159 struct anon_vma *anon_vma = vma->anon_vma;
160 int empty;
161
162 if (!anon_vma)
163 return;
164
165 spin_lock(&anon_vma->lock);
1da177e4
LT
166 list_del(&vma->anon_vma_node);
167
168 /* We must garbage collect the anon_vma if it's empty */
169 empty = list_empty(&anon_vma->head);
170 spin_unlock(&anon_vma->lock);
171
172 if (empty)
173 anon_vma_free(anon_vma);
174}
175
51cc5068 176static void anon_vma_ctor(void *data)
1da177e4 177{
a35afb83 178 struct anon_vma *anon_vma = data;
1da177e4 179
a35afb83
CL
180 spin_lock_init(&anon_vma->lock);
181 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
182}
183
184void __init anon_vma_init(void)
185{
186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
188}
189
190/*
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193 */
2afd1c92 194static struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 195{
34bbd704 196 struct anon_vma *anon_vma;
1da177e4
LT
197 unsigned long anon_mapping;
198
199 rcu_read_lock();
200 anon_mapping = (unsigned long) page->mapping;
201 if (!(anon_mapping & PAGE_MAPPING_ANON))
202 goto out;
203 if (!page_mapped(page))
204 goto out;
205
206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 spin_lock(&anon_vma->lock);
34bbd704 208 return anon_vma;
1da177e4
LT
209out:
210 rcu_read_unlock();
34bbd704
ON
211 return NULL;
212}
213
2afd1c92 214static void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
215{
216 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock();
1da177e4
LT
218}
219
220/*
3ad33b24
LS
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
1da177e4
LT
224 */
225static inline unsigned long
226vma_address(struct page *page, struct vm_area_struct *vma)
227{
228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 unsigned long address;
230
231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 233 /* page should be within @vma mapping range */
1da177e4
LT
234 return -EFAULT;
235 }
236 return address;
237}
238
239/*
240 * At what user virtual address is page expected in vma? checking that the
ee498ed7 241 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
242 */
243unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244{
245 if (PageAnon(page)) {
246 if ((void *)vma->anon_vma !=
247 (void *)page->mapping - PAGE_MAPPING_ANON)
248 return -EFAULT;
249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
250 if (!vma->vm_file ||
251 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
252 return -EFAULT;
253 } else
254 return -EFAULT;
255 return vma_address(page, vma);
256}
257
81b4082d
ND
258/*
259 * Check that @page is mapped at @address into @mm.
260 *
479db0bf
NP
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
264 *
b8072f09 265 * On success returns with pte mapped and locked.
81b4082d 266 */
ceffc078 267pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 268 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
269{
270 pgd_t *pgd;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
c0718806 274 spinlock_t *ptl;
81b4082d 275
81b4082d 276 pgd = pgd_offset(mm, address);
c0718806
HD
277 if (!pgd_present(*pgd))
278 return NULL;
279
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 return NULL;
283
284 pmd = pmd_offset(pud, address);
285 if (!pmd_present(*pmd))
286 return NULL;
287
288 pte = pte_offset_map(pmd, address);
289 /* Make a quick check before getting the lock */
479db0bf 290 if (!sync && !pte_present(*pte)) {
c0718806
HD
291 pte_unmap(pte);
292 return NULL;
293 }
294
4c21e2f2 295 ptl = pte_lockptr(mm, pmd);
c0718806
HD
296 spin_lock(ptl);
297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 *ptlp = ptl;
299 return pte;
81b4082d 300 }
c0718806
HD
301 pte_unmap_unlock(pte, ptl);
302 return NULL;
81b4082d
ND
303}
304
b291f000
NP
305/**
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
309 *
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
313 */
314static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315{
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
319
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
327
328 return 1;
329}
330
1da177e4
LT
331/*
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
334 */
335static int page_referenced_one(struct page *page,
6fe6b7e3
WF
336 struct vm_area_struct *vma,
337 unsigned int *mapcount,
338 unsigned long *vm_flags)
1da177e4
LT
339{
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
1da177e4 342 pte_t *pte;
c0718806 343 spinlock_t *ptl;
1da177e4
LT
344 int referenced = 0;
345
1da177e4
LT
346 address = vma_address(page, vma);
347 if (address == -EFAULT)
348 goto out;
349
479db0bf 350 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
351 if (!pte)
352 goto out;
1da177e4 353
b291f000
NP
354 /*
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
358 */
5a9bbdcd 359 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 360 *mapcount = 1; /* break early from loop */
b291f000
NP
361 goto out_unmap;
362 }
363
4917e5d0
JW
364 if (ptep_clear_flush_young_notify(vma, address, pte)) {
365 /*
366 * Don't treat a reference through a sequentially read
367 * mapping as such. If the page has been used in
368 * another mapping, we will catch it; if this other
369 * mapping is already gone, the unmap path will have
370 * set PG_referenced or activated the page.
371 */
372 if (likely(!VM_SequentialReadHint(vma)))
373 referenced++;
374 }
1da177e4 375
c0718806
HD
376 /* Pretend the page is referenced if the task has the
377 swap token and is in the middle of a page fault. */
f7b7fd8f 378 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
379 rwsem_is_locked(&mm->mmap_sem))
380 referenced++;
381
b291f000 382out_unmap:
c0718806
HD
383 (*mapcount)--;
384 pte_unmap_unlock(pte, ptl);
1da177e4 385out:
6fe6b7e3
WF
386 if (referenced)
387 *vm_flags |= vma->vm_flags;
1da177e4
LT
388 return referenced;
389}
390
bed7161a 391static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
392 struct mem_cgroup *mem_cont,
393 unsigned long *vm_flags)
1da177e4
LT
394{
395 unsigned int mapcount;
396 struct anon_vma *anon_vma;
397 struct vm_area_struct *vma;
398 int referenced = 0;
399
400 anon_vma = page_lock_anon_vma(page);
401 if (!anon_vma)
402 return referenced;
403
404 mapcount = page_mapcount(page);
405 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
bed7161a
BS
406 /*
407 * If we are reclaiming on behalf of a cgroup, skip
408 * counting on behalf of references from different
409 * cgroups
410 */
bd845e38 411 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 412 continue;
6fe6b7e3
WF
413 referenced += page_referenced_one(page, vma,
414 &mapcount, vm_flags);
1da177e4
LT
415 if (!mapcount)
416 break;
417 }
34bbd704
ON
418
419 page_unlock_anon_vma(anon_vma);
1da177e4
LT
420 return referenced;
421}
422
423/**
424 * page_referenced_file - referenced check for object-based rmap
425 * @page: the page we're checking references on.
43d8eac4 426 * @mem_cont: target memory controller
6fe6b7e3 427 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
428 *
429 * For an object-based mapped page, find all the places it is mapped and
430 * check/clear the referenced flag. This is done by following the page->mapping
431 * pointer, then walking the chain of vmas it holds. It returns the number
432 * of references it found.
433 *
434 * This function is only called from page_referenced for object-based pages.
435 */
bed7161a 436static int page_referenced_file(struct page *page,
6fe6b7e3
WF
437 struct mem_cgroup *mem_cont,
438 unsigned long *vm_flags)
1da177e4
LT
439{
440 unsigned int mapcount;
441 struct address_space *mapping = page->mapping;
442 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443 struct vm_area_struct *vma;
444 struct prio_tree_iter iter;
445 int referenced = 0;
446
447 /*
448 * The caller's checks on page->mapping and !PageAnon have made
449 * sure that this is a file page: the check for page->mapping
450 * excludes the case just before it gets set on an anon page.
451 */
452 BUG_ON(PageAnon(page));
453
454 /*
455 * The page lock not only makes sure that page->mapping cannot
456 * suddenly be NULLified by truncation, it makes sure that the
457 * structure at mapping cannot be freed and reused yet,
458 * so we can safely take mapping->i_mmap_lock.
459 */
460 BUG_ON(!PageLocked(page));
461
462 spin_lock(&mapping->i_mmap_lock);
463
464 /*
465 * i_mmap_lock does not stabilize mapcount at all, but mapcount
466 * is more likely to be accurate if we note it after spinning.
467 */
468 mapcount = page_mapcount(page);
469
470 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
bed7161a
BS
471 /*
472 * If we are reclaiming on behalf of a cgroup, skip
473 * counting on behalf of references from different
474 * cgroups
475 */
bd845e38 476 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 477 continue;
6fe6b7e3
WF
478 referenced += page_referenced_one(page, vma,
479 &mapcount, vm_flags);
1da177e4
LT
480 if (!mapcount)
481 break;
482 }
483
484 spin_unlock(&mapping->i_mmap_lock);
485 return referenced;
486}
487
488/**
489 * page_referenced - test if the page was referenced
490 * @page: the page to test
491 * @is_locked: caller holds lock on the page
43d8eac4 492 * @mem_cont: target memory controller
6fe6b7e3 493 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
494 *
495 * Quick test_and_clear_referenced for all mappings to a page,
496 * returns the number of ptes which referenced the page.
497 */
6fe6b7e3
WF
498int page_referenced(struct page *page,
499 int is_locked,
500 struct mem_cgroup *mem_cont,
501 unsigned long *vm_flags)
1da177e4
LT
502{
503 int referenced = 0;
504
1da177e4
LT
505 if (TestClearPageReferenced(page))
506 referenced++;
507
6fe6b7e3 508 *vm_flags = 0;
1da177e4
LT
509 if (page_mapped(page) && page->mapping) {
510 if (PageAnon(page))
6fe6b7e3
WF
511 referenced += page_referenced_anon(page, mem_cont,
512 vm_flags);
1da177e4 513 else if (is_locked)
6fe6b7e3
WF
514 referenced += page_referenced_file(page, mem_cont,
515 vm_flags);
529ae9aa 516 else if (!trylock_page(page))
1da177e4
LT
517 referenced++;
518 else {
519 if (page->mapping)
6fe6b7e3
WF
520 referenced += page_referenced_file(page,
521 mem_cont, vm_flags);
1da177e4
LT
522 unlock_page(page);
523 }
524 }
5b7baf05
CB
525
526 if (page_test_and_clear_young(page))
527 referenced++;
528
1da177e4
LT
529 return referenced;
530}
531
d08b3851
PZ
532static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
533{
534 struct mm_struct *mm = vma->vm_mm;
535 unsigned long address;
c2fda5fe 536 pte_t *pte;
d08b3851
PZ
537 spinlock_t *ptl;
538 int ret = 0;
539
540 address = vma_address(page, vma);
541 if (address == -EFAULT)
542 goto out;
543
479db0bf 544 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
545 if (!pte)
546 goto out;
547
c2fda5fe
PZ
548 if (pte_dirty(*pte) || pte_write(*pte)) {
549 pte_t entry;
d08b3851 550
c2fda5fe 551 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 552 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
553 entry = pte_wrprotect(entry);
554 entry = pte_mkclean(entry);
d6e88e67 555 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
556 ret = 1;
557 }
d08b3851 558
d08b3851
PZ
559 pte_unmap_unlock(pte, ptl);
560out:
561 return ret;
562}
563
564static int page_mkclean_file(struct address_space *mapping, struct page *page)
565{
566 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
567 struct vm_area_struct *vma;
568 struct prio_tree_iter iter;
569 int ret = 0;
570
571 BUG_ON(PageAnon(page));
572
573 spin_lock(&mapping->i_mmap_lock);
574 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
575 if (vma->vm_flags & VM_SHARED)
576 ret += page_mkclean_one(page, vma);
577 }
578 spin_unlock(&mapping->i_mmap_lock);
579 return ret;
580}
581
582int page_mkclean(struct page *page)
583{
584 int ret = 0;
585
586 BUG_ON(!PageLocked(page));
587
588 if (page_mapped(page)) {
589 struct address_space *mapping = page_mapping(page);
ce7e9fae 590 if (mapping) {
d08b3851 591 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
592 if (page_test_dirty(page)) {
593 page_clear_dirty(page);
594 ret = 1;
595 }
6c210482 596 }
d08b3851
PZ
597 }
598
599 return ret;
600}
60b59bea 601EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 602
9617d95e 603/**
43d8eac4 604 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
605 * @page: the page to add the mapping to
606 * @vma: the vm area in which the mapping is added
607 * @address: the user virtual address mapped
608 */
609static void __page_set_anon_rmap(struct page *page,
610 struct vm_area_struct *vma, unsigned long address)
611{
612 struct anon_vma *anon_vma = vma->anon_vma;
613
614 BUG_ON(!anon_vma);
615 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
616 page->mapping = (struct address_space *) anon_vma;
617
618 page->index = linear_page_index(vma, address);
619
a74609fa
NP
620 /*
621 * nr_mapped state can be updated without turning off
622 * interrupts because it is not modified via interrupt.
623 */
f3dbd344 624 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
625}
626
c97a9e10 627/**
43d8eac4 628 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
629 * @page: the page to add the mapping to
630 * @vma: the vm area in which the mapping is added
631 * @address: the user virtual address mapped
632 */
633static void __page_check_anon_rmap(struct page *page,
634 struct vm_area_struct *vma, unsigned long address)
635{
636#ifdef CONFIG_DEBUG_VM
637 /*
638 * The page's anon-rmap details (mapping and index) are guaranteed to
639 * be set up correctly at this point.
640 *
641 * We have exclusion against page_add_anon_rmap because the caller
642 * always holds the page locked, except if called from page_dup_rmap,
643 * in which case the page is already known to be setup.
644 *
645 * We have exclusion against page_add_new_anon_rmap because those pages
646 * are initially only visible via the pagetables, and the pte is locked
647 * over the call to page_add_new_anon_rmap.
648 */
649 struct anon_vma *anon_vma = vma->anon_vma;
650 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
651 BUG_ON(page->mapping != (struct address_space *)anon_vma);
652 BUG_ON(page->index != linear_page_index(vma, address));
653#endif
654}
655
1da177e4
LT
656/**
657 * page_add_anon_rmap - add pte mapping to an anonymous page
658 * @page: the page to add the mapping to
659 * @vma: the vm area in which the mapping is added
660 * @address: the user virtual address mapped
661 *
c97a9e10 662 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
663 */
664void page_add_anon_rmap(struct page *page,
665 struct vm_area_struct *vma, unsigned long address)
666{
c97a9e10
NP
667 VM_BUG_ON(!PageLocked(page));
668 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
669 if (atomic_inc_and_test(&page->_mapcount))
670 __page_set_anon_rmap(page, vma, address);
69029cd5 671 else
c97a9e10 672 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
673}
674
43d8eac4 675/**
9617d95e
NP
676 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
677 * @page: the page to add the mapping to
678 * @vma: the vm area in which the mapping is added
679 * @address: the user virtual address mapped
680 *
681 * Same as page_add_anon_rmap but must only be called on *new* pages.
682 * This means the inc-and-test can be bypassed.
c97a9e10 683 * Page does not have to be locked.
9617d95e
NP
684 */
685void page_add_new_anon_rmap(struct page *page,
686 struct vm_area_struct *vma, unsigned long address)
687{
b5934c53 688 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
689 SetPageSwapBacked(page);
690 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
9617d95e 691 __page_set_anon_rmap(page, vma, address);
b5934c53 692 if (page_evictable(page, vma))
cbf84b7a 693 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
694 else
695 add_page_to_unevictable_list(page);
9617d95e
NP
696}
697
1da177e4
LT
698/**
699 * page_add_file_rmap - add pte mapping to a file page
700 * @page: the page to add the mapping to
701 *
b8072f09 702 * The caller needs to hold the pte lock.
1da177e4
LT
703 */
704void page_add_file_rmap(struct page *page)
705{
d69b042f 706 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 707 __inc_zone_page_state(page, NR_FILE_MAPPED);
d69b042f
BS
708 mem_cgroup_update_mapped_file_stat(page, 1);
709 }
1da177e4
LT
710}
711
c97a9e10
NP
712#ifdef CONFIG_DEBUG_VM
713/**
714 * page_dup_rmap - duplicate pte mapping to a page
715 * @page: the page to add the mapping to
43d8eac4
RD
716 * @vma: the vm area being duplicated
717 * @address: the user virtual address mapped
c97a9e10
NP
718 *
719 * For copy_page_range only: minimal extract from page_add_file_rmap /
720 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
721 * quicker.
722 *
723 * The caller needs to hold the pte lock.
724 */
725void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
726{
c97a9e10
NP
727 if (PageAnon(page))
728 __page_check_anon_rmap(page, vma, address);
729 atomic_inc(&page->_mapcount);
730}
731#endif
732
1da177e4
LT
733/**
734 * page_remove_rmap - take down pte mapping from a page
735 * @page: page to remove mapping from
736 *
b8072f09 737 * The caller needs to hold the pte lock.
1da177e4 738 */
edc315fd 739void page_remove_rmap(struct page *page)
1da177e4 740{
1da177e4 741 if (atomic_add_negative(-1, &page->_mapcount)) {
1da177e4 742 /*
16f8c5b2
HD
743 * Now that the last pte has gone, s390 must transfer dirty
744 * flag from storage key to struct page. We can usually skip
745 * this if the page is anon, so about to be freed; but perhaps
746 * not if it's in swapcache - there might be another pte slot
747 * containing the swap entry, but page not yet written to swap.
1da177e4 748 */
a4b526b3
MS
749 if ((!PageAnon(page) || PageSwapCache(page)) &&
750 page_test_dirty(page)) {
6c210482 751 page_clear_dirty(page);
1da177e4 752 set_page_dirty(page);
6c210482 753 }
5b4e655e
KH
754 if (PageAnon(page))
755 mem_cgroup_uncharge_page(page);
f3dbd344 756 __dec_zone_page_state(page,
16f8c5b2 757 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
d69b042f 758 mem_cgroup_update_mapped_file_stat(page, -1);
16f8c5b2
HD
759 /*
760 * It would be tidy to reset the PageAnon mapping here,
761 * but that might overwrite a racing page_add_anon_rmap
762 * which increments mapcount after us but sets mapping
763 * before us: so leave the reset to free_hot_cold_page,
764 * and remember that it's only reliable while mapped.
765 * Leaving it set also helps swapoff to reinstate ptes
766 * faster for those pages still in swapcache.
767 */
1da177e4
LT
768 }
769}
770
771/*
772 * Subfunctions of try_to_unmap: try_to_unmap_one called
773 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
774 */
a48d07af 775static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 776 int migration)
1da177e4
LT
777{
778 struct mm_struct *mm = vma->vm_mm;
779 unsigned long address;
1da177e4
LT
780 pte_t *pte;
781 pte_t pteval;
c0718806 782 spinlock_t *ptl;
1da177e4
LT
783 int ret = SWAP_AGAIN;
784
1da177e4
LT
785 address = vma_address(page, vma);
786 if (address == -EFAULT)
787 goto out;
788
479db0bf 789 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 790 if (!pte)
81b4082d 791 goto out;
1da177e4
LT
792
793 /*
794 * If the page is mlock()d, we cannot swap it out.
795 * If it's recently referenced (perhaps page_referenced
796 * skipped over this mm) then we should reactivate it.
797 */
b291f000
NP
798 if (!migration) {
799 if (vma->vm_flags & VM_LOCKED) {
800 ret = SWAP_MLOCK;
801 goto out_unmap;
802 }
803 if (ptep_clear_flush_young_notify(vma, address, pte)) {
804 ret = SWAP_FAIL;
805 goto out_unmap;
806 }
807 }
1da177e4 808
1da177e4
LT
809 /* Nuke the page table entry. */
810 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 811 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
812
813 /* Move the dirty bit to the physical page now the pte is gone. */
814 if (pte_dirty(pteval))
815 set_page_dirty(page);
816
365e9c87
HD
817 /* Update high watermark before we lower rss */
818 update_hiwater_rss(mm);
819
1da177e4 820 if (PageAnon(page)) {
4c21e2f2 821 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
822
823 if (PageSwapCache(page)) {
824 /*
825 * Store the swap location in the pte.
826 * See handle_pte_fault() ...
827 */
828 swap_duplicate(entry);
829 if (list_empty(&mm->mmlist)) {
830 spin_lock(&mmlist_lock);
831 if (list_empty(&mm->mmlist))
832 list_add(&mm->mmlist, &init_mm.mmlist);
833 spin_unlock(&mmlist_lock);
834 }
442c9137 835 dec_mm_counter(mm, anon_rss);
64cdd548 836 } else if (PAGE_MIGRATION) {
0697212a
CL
837 /*
838 * Store the pfn of the page in a special migration
839 * pte. do_swap_page() will wait until the migration
840 * pte is removed and then restart fault handling.
841 */
842 BUG_ON(!migration);
843 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
844 }
845 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
846 BUG_ON(pte_file(*pte));
64cdd548 847 } else if (PAGE_MIGRATION && migration) {
04e62a29
CL
848 /* Establish migration entry for a file page */
849 swp_entry_t entry;
850 entry = make_migration_entry(page, pte_write(pteval));
851 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
852 } else
4294621f 853 dec_mm_counter(mm, file_rss);
1da177e4 854
04e62a29 855
edc315fd 856 page_remove_rmap(page);
1da177e4
LT
857 page_cache_release(page);
858
859out_unmap:
c0718806 860 pte_unmap_unlock(pte, ptl);
1da177e4
LT
861out:
862 return ret;
863}
864
865/*
866 * objrmap doesn't work for nonlinear VMAs because the assumption that
867 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
868 * Consequently, given a particular page and its ->index, we cannot locate the
869 * ptes which are mapping that page without an exhaustive linear search.
870 *
871 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
872 * maps the file to which the target page belongs. The ->vm_private_data field
873 * holds the current cursor into that scan. Successive searches will circulate
874 * around the vma's virtual address space.
875 *
876 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
877 * more scanning pressure is placed against them as well. Eventually pages
878 * will become fully unmapped and are eligible for eviction.
879 *
880 * For very sparsely populated VMAs this is a little inefficient - chances are
881 * there there won't be many ptes located within the scan cluster. In this case
882 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
883 *
884 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
885 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
886 * rather than unmapping them. If we encounter the "check_page" that vmscan is
887 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
888 */
889#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
890#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
891
b291f000
NP
892static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
893 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
894{
895 struct mm_struct *mm = vma->vm_mm;
896 pgd_t *pgd;
897 pud_t *pud;
898 pmd_t *pmd;
c0718806 899 pte_t *pte;
1da177e4 900 pte_t pteval;
c0718806 901 spinlock_t *ptl;
1da177e4
LT
902 struct page *page;
903 unsigned long address;
904 unsigned long end;
b291f000
NP
905 int ret = SWAP_AGAIN;
906 int locked_vma = 0;
1da177e4 907
1da177e4
LT
908 address = (vma->vm_start + cursor) & CLUSTER_MASK;
909 end = address + CLUSTER_SIZE;
910 if (address < vma->vm_start)
911 address = vma->vm_start;
912 if (end > vma->vm_end)
913 end = vma->vm_end;
914
915 pgd = pgd_offset(mm, address);
916 if (!pgd_present(*pgd))
b291f000 917 return ret;
1da177e4
LT
918
919 pud = pud_offset(pgd, address);
920 if (!pud_present(*pud))
b291f000 921 return ret;
1da177e4
LT
922
923 pmd = pmd_offset(pud, address);
924 if (!pmd_present(*pmd))
b291f000
NP
925 return ret;
926
927 /*
928 * MLOCK_PAGES => feature is configured.
929 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
930 * keep the sem while scanning the cluster for mlocking pages.
931 */
932 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
933 locked_vma = (vma->vm_flags & VM_LOCKED);
934 if (!locked_vma)
935 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
936 }
c0718806
HD
937
938 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 939
365e9c87
HD
940 /* Update high watermark before we lower rss */
941 update_hiwater_rss(mm);
942
c0718806 943 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
944 if (!pte_present(*pte))
945 continue;
6aab341e
LT
946 page = vm_normal_page(vma, address, *pte);
947 BUG_ON(!page || PageAnon(page));
1da177e4 948
b291f000
NP
949 if (locked_vma) {
950 mlock_vma_page(page); /* no-op if already mlocked */
951 if (page == check_page)
952 ret = SWAP_MLOCK;
953 continue; /* don't unmap */
954 }
955
cddb8a5c 956 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
957 continue;
958
959 /* Nuke the page table entry. */
eca35133 960 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 961 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
962
963 /* If nonlinear, store the file page offset in the pte. */
964 if (page->index != linear_page_index(vma, address))
965 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
966
967 /* Move the dirty bit to the physical page now the pte is gone. */
968 if (pte_dirty(pteval))
969 set_page_dirty(page);
970
edc315fd 971 page_remove_rmap(page);
1da177e4 972 page_cache_release(page);
4294621f 973 dec_mm_counter(mm, file_rss);
1da177e4
LT
974 (*mapcount)--;
975 }
c0718806 976 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
977 if (locked_vma)
978 up_read(&vma->vm_mm->mmap_sem);
979 return ret;
1da177e4
LT
980}
981
b291f000
NP
982/*
983 * common handling for pages mapped in VM_LOCKED vmas
984 */
985static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
986{
987 int mlocked = 0;
988
989 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
990 if (vma->vm_flags & VM_LOCKED) {
991 mlock_vma_page(page);
992 mlocked++; /* really mlocked the page */
993 }
994 up_read(&vma->vm_mm->mmap_sem);
995 }
996 return mlocked;
997}
998
999/**
1000 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1001 * rmap method
1002 * @page: the page to unmap/unlock
1003 * @unlock: request for unlock rather than unmap [unlikely]
1004 * @migration: unmapping for migration - ignored if @unlock
1005 *
1006 * Find all the mappings of a page using the mapping pointer and the vma chains
1007 * contained in the anon_vma struct it points to.
1008 *
1009 * This function is only called from try_to_unmap/try_to_munlock for
1010 * anonymous pages.
1011 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1012 * where the page was found will be held for write. So, we won't recheck
1013 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1014 * 'LOCKED.
1015 */
1016static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1da177e4
LT
1017{
1018 struct anon_vma *anon_vma;
1019 struct vm_area_struct *vma;
b291f000 1020 unsigned int mlocked = 0;
1da177e4
LT
1021 int ret = SWAP_AGAIN;
1022
b291f000
NP
1023 if (MLOCK_PAGES && unlikely(unlock))
1024 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1025
1da177e4
LT
1026 anon_vma = page_lock_anon_vma(page);
1027 if (!anon_vma)
1028 return ret;
1029
1030 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
b291f000
NP
1031 if (MLOCK_PAGES && unlikely(unlock)) {
1032 if (!((vma->vm_flags & VM_LOCKED) &&
1033 page_mapped_in_vma(page, vma)))
1034 continue; /* must visit all unlocked vmas */
1035 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1036 } else {
1037 ret = try_to_unmap_one(page, vma, migration);
1038 if (ret == SWAP_FAIL || !page_mapped(page))
1039 break;
1040 }
1041 if (ret == SWAP_MLOCK) {
1042 mlocked = try_to_mlock_page(page, vma);
1043 if (mlocked)
1044 break; /* stop if actually mlocked page */
1045 }
1da177e4 1046 }
34bbd704
ON
1047
1048 page_unlock_anon_vma(anon_vma);
b291f000
NP
1049
1050 if (mlocked)
1051 ret = SWAP_MLOCK; /* actually mlocked the page */
1052 else if (ret == SWAP_MLOCK)
1053 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1054
1da177e4
LT
1055 return ret;
1056}
1057
1058/**
b291f000
NP
1059 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1060 * @page: the page to unmap/unlock
1061 * @unlock: request for unlock rather than unmap [unlikely]
1062 * @migration: unmapping for migration - ignored if @unlock
1da177e4
LT
1063 *
1064 * Find all the mappings of a page using the mapping pointer and the vma chains
1065 * contained in the address_space struct it points to.
1066 *
b291f000
NP
1067 * This function is only called from try_to_unmap/try_to_munlock for
1068 * object-based pages.
1069 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1070 * where the page was found will be held for write. So, we won't recheck
1071 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1072 * 'LOCKED.
1da177e4 1073 */
b291f000 1074static int try_to_unmap_file(struct page *page, int unlock, int migration)
1da177e4
LT
1075{
1076 struct address_space *mapping = page->mapping;
1077 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1078 struct vm_area_struct *vma;
1079 struct prio_tree_iter iter;
1080 int ret = SWAP_AGAIN;
1081 unsigned long cursor;
1082 unsigned long max_nl_cursor = 0;
1083 unsigned long max_nl_size = 0;
1084 unsigned int mapcount;
b291f000
NP
1085 unsigned int mlocked = 0;
1086
1087 if (MLOCK_PAGES && unlikely(unlock))
1088 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1da177e4
LT
1089
1090 spin_lock(&mapping->i_mmap_lock);
1091 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
b291f000 1092 if (MLOCK_PAGES && unlikely(unlock)) {
508b9f8e
MK
1093 if (!((vma->vm_flags & VM_LOCKED) &&
1094 page_mapped_in_vma(page, vma)))
b291f000
NP
1095 continue; /* must visit all vmas */
1096 ret = SWAP_MLOCK;
1097 } else {
1098 ret = try_to_unmap_one(page, vma, migration);
1099 if (ret == SWAP_FAIL || !page_mapped(page))
1100 goto out;
1101 }
1102 if (ret == SWAP_MLOCK) {
1103 mlocked = try_to_mlock_page(page, vma);
1104 if (mlocked)
1105 break; /* stop if actually mlocked page */
1106 }
1da177e4
LT
1107 }
1108
b291f000
NP
1109 if (mlocked)
1110 goto out;
1111
1da177e4
LT
1112 if (list_empty(&mapping->i_mmap_nonlinear))
1113 goto out;
1114
1115 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1116 shared.vm_set.list) {
b291f000
NP
1117 if (MLOCK_PAGES && unlikely(unlock)) {
1118 if (!(vma->vm_flags & VM_LOCKED))
1119 continue; /* must visit all vmas */
1120 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1121 goto out; /* no need to look further */
1122 }
1123 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1124 continue;
1125 cursor = (unsigned long) vma->vm_private_data;
1126 if (cursor > max_nl_cursor)
1127 max_nl_cursor = cursor;
1128 cursor = vma->vm_end - vma->vm_start;
1129 if (cursor > max_nl_size)
1130 max_nl_size = cursor;
1131 }
1132
b291f000 1133 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1134 ret = SWAP_FAIL;
1135 goto out;
1136 }
1137
1138 /*
1139 * We don't try to search for this page in the nonlinear vmas,
1140 * and page_referenced wouldn't have found it anyway. Instead
1141 * just walk the nonlinear vmas trying to age and unmap some.
1142 * The mapcount of the page we came in with is irrelevant,
1143 * but even so use it as a guide to how hard we should try?
1144 */
1145 mapcount = page_mapcount(page);
1146 if (!mapcount)
1147 goto out;
1148 cond_resched_lock(&mapping->i_mmap_lock);
1149
1150 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1151 if (max_nl_cursor == 0)
1152 max_nl_cursor = CLUSTER_SIZE;
1153
1154 do {
1155 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1156 shared.vm_set.list) {
b291f000
NP
1157 if (!MLOCK_PAGES && !migration &&
1158 (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1159 continue;
1160 cursor = (unsigned long) vma->vm_private_data;
839b9685 1161 while ( cursor < max_nl_cursor &&
1da177e4 1162 cursor < vma->vm_end - vma->vm_start) {
b291f000
NP
1163 ret = try_to_unmap_cluster(cursor, &mapcount,
1164 vma, page);
1165 if (ret == SWAP_MLOCK)
1166 mlocked = 2; /* to return below */
1da177e4
LT
1167 cursor += CLUSTER_SIZE;
1168 vma->vm_private_data = (void *) cursor;
1169 if ((int)mapcount <= 0)
1170 goto out;
1171 }
1172 vma->vm_private_data = (void *) max_nl_cursor;
1173 }
1174 cond_resched_lock(&mapping->i_mmap_lock);
1175 max_nl_cursor += CLUSTER_SIZE;
1176 } while (max_nl_cursor <= max_nl_size);
1177
1178 /*
1179 * Don't loop forever (perhaps all the remaining pages are
1180 * in locked vmas). Reset cursor on all unreserved nonlinear
1181 * vmas, now forgetting on which ones it had fallen behind.
1182 */
101d2be7
HD
1183 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1184 vma->vm_private_data = NULL;
1da177e4
LT
1185out:
1186 spin_unlock(&mapping->i_mmap_lock);
b291f000
NP
1187 if (mlocked)
1188 ret = SWAP_MLOCK; /* actually mlocked the page */
1189 else if (ret == SWAP_MLOCK)
1190 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1da177e4
LT
1191 return ret;
1192}
1193
1194/**
1195 * try_to_unmap - try to remove all page table mappings to a page
1196 * @page: the page to get unmapped
43d8eac4 1197 * @migration: migration flag
1da177e4
LT
1198 *
1199 * Tries to remove all the page table entries which are mapping this
1200 * page, used in the pageout path. Caller must hold the page lock.
1201 * Return values are:
1202 *
1203 * SWAP_SUCCESS - we succeeded in removing all mappings
1204 * SWAP_AGAIN - we missed a mapping, try again later
1205 * SWAP_FAIL - the page is unswappable
b291f000 1206 * SWAP_MLOCK - page is mlocked.
1da177e4 1207 */
7352349a 1208int try_to_unmap(struct page *page, int migration)
1da177e4
LT
1209{
1210 int ret;
1211
1da177e4
LT
1212 BUG_ON(!PageLocked(page));
1213
1214 if (PageAnon(page))
b291f000 1215 ret = try_to_unmap_anon(page, 0, migration);
1da177e4 1216 else
b291f000
NP
1217 ret = try_to_unmap_file(page, 0, migration);
1218 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1219 ret = SWAP_SUCCESS;
1220 return ret;
1221}
81b4082d 1222
b291f000
NP
1223/**
1224 * try_to_munlock - try to munlock a page
1225 * @page: the page to be munlocked
1226 *
1227 * Called from munlock code. Checks all of the VMAs mapping the page
1228 * to make sure nobody else has this page mlocked. The page will be
1229 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1230 *
1231 * Return values are:
1232 *
1233 * SWAP_SUCCESS - no vma's holding page mlocked.
1234 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1235 * SWAP_MLOCK - page is now mlocked.
1236 */
1237int try_to_munlock(struct page *page)
1238{
1239 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1240
1241 if (PageAnon(page))
1242 return try_to_unmap_anon(page, 1, 0);
1243 else
1244 return try_to_unmap_file(page, 1, 0);
1245}
68377659 1246