mm: replace some BUG_ONs by VM_BUG_ONs
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
8a9f3ccd 51#include <linux/memcontrol.h>
cddb8a5c 52#include <linux/mmu_notifier.h>
64cdd548 53#include <linux/migrate.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56
b291f000
NP
57#include "internal.h"
58
fdd2e5f8
AB
59static struct kmem_cache *anon_vma_cachep;
60
61static inline struct anon_vma *anon_vma_alloc(void)
62{
63 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
64}
65
66static inline void anon_vma_free(struct anon_vma *anon_vma)
67{
68 kmem_cache_free(anon_vma_cachep, anon_vma);
69}
1da177e4 70
d9d332e0
LT
71/**
72 * anon_vma_prepare - attach an anon_vma to a memory region
73 * @vma: the memory region in question
74 *
75 * This makes sure the memory mapping described by 'vma' has
76 * an 'anon_vma' attached to it, so that we can associate the
77 * anonymous pages mapped into it with that anon_vma.
78 *
79 * The common case will be that we already have one, but if
80 * if not we either need to find an adjacent mapping that we
81 * can re-use the anon_vma from (very common when the only
82 * reason for splitting a vma has been mprotect()), or we
83 * allocate a new one.
84 *
85 * Anon-vma allocations are very subtle, because we may have
86 * optimistically looked up an anon_vma in page_lock_anon_vma()
87 * and that may actually touch the spinlock even in the newly
88 * allocated vma (it depends on RCU to make sure that the
89 * anon_vma isn't actually destroyed).
90 *
91 * As a result, we need to do proper anon_vma locking even
92 * for the new allocation. At the same time, we do not want
93 * to do any locking for the common case of already having
94 * an anon_vma.
95 *
96 * This must be called with the mmap_sem held for reading.
97 */
1da177e4
LT
98int anon_vma_prepare(struct vm_area_struct *vma)
99{
100 struct anon_vma *anon_vma = vma->anon_vma;
101
102 might_sleep();
103 if (unlikely(!anon_vma)) {
104 struct mm_struct *mm = vma->vm_mm;
d9d332e0 105 struct anon_vma *allocated;
1da177e4
LT
106
107 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
108 allocated = NULL;
109 if (!anon_vma) {
1da177e4
LT
110 anon_vma = anon_vma_alloc();
111 if (unlikely(!anon_vma))
112 return -ENOMEM;
113 allocated = anon_vma;
1da177e4 114 }
d9d332e0 115 spin_lock(&anon_vma->lock);
1da177e4
LT
116
117 /* page_table_lock to protect against threads */
118 spin_lock(&mm->page_table_lock);
119 if (likely(!vma->anon_vma)) {
120 vma->anon_vma = anon_vma;
0697212a 121 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
122 allocated = NULL;
123 }
124 spin_unlock(&mm->page_table_lock);
125
d9d332e0 126 spin_unlock(&anon_vma->lock);
1da177e4
LT
127 if (unlikely(allocated))
128 anon_vma_free(allocated);
129 }
130 return 0;
131}
132
133void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
134{
135 BUG_ON(vma->anon_vma != next->anon_vma);
136 list_del(&next->anon_vma_node);
137}
138
139void __anon_vma_link(struct vm_area_struct *vma)
140{
141 struct anon_vma *anon_vma = vma->anon_vma;
142
30acbaba 143 if (anon_vma)
0697212a 144 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
145}
146
147void anon_vma_link(struct vm_area_struct *vma)
148{
149 struct anon_vma *anon_vma = vma->anon_vma;
150
151 if (anon_vma) {
152 spin_lock(&anon_vma->lock);
0697212a 153 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
154 spin_unlock(&anon_vma->lock);
155 }
156}
157
158void anon_vma_unlink(struct vm_area_struct *vma)
159{
160 struct anon_vma *anon_vma = vma->anon_vma;
161 int empty;
162
163 if (!anon_vma)
164 return;
165
166 spin_lock(&anon_vma->lock);
1da177e4
LT
167 list_del(&vma->anon_vma_node);
168
169 /* We must garbage collect the anon_vma if it's empty */
170 empty = list_empty(&anon_vma->head);
171 spin_unlock(&anon_vma->lock);
172
173 if (empty)
174 anon_vma_free(anon_vma);
175}
176
51cc5068 177static void anon_vma_ctor(void *data)
1da177e4 178{
a35afb83 179 struct anon_vma *anon_vma = data;
1da177e4 180
a35afb83
CL
181 spin_lock_init(&anon_vma->lock);
182 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
183}
184
185void __init anon_vma_init(void)
186{
187 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 188 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
189}
190
191/*
192 * Getting a lock on a stable anon_vma from a page off the LRU is
193 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
194 */
af936a16 195struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 196{
34bbd704 197 struct anon_vma *anon_vma;
1da177e4
LT
198 unsigned long anon_mapping;
199
200 rcu_read_lock();
201 anon_mapping = (unsigned long) page->mapping;
202 if (!(anon_mapping & PAGE_MAPPING_ANON))
203 goto out;
204 if (!page_mapped(page))
205 goto out;
206
207 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
208 spin_lock(&anon_vma->lock);
34bbd704 209 return anon_vma;
1da177e4
LT
210out:
211 rcu_read_unlock();
34bbd704
ON
212 return NULL;
213}
214
af936a16 215void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
216{
217 spin_unlock(&anon_vma->lock);
218 rcu_read_unlock();
1da177e4
LT
219}
220
221/*
3ad33b24
LS
222 * At what user virtual address is page expected in @vma?
223 * Returns virtual address or -EFAULT if page's index/offset is not
224 * within the range mapped the @vma.
1da177e4
LT
225 */
226static inline unsigned long
227vma_address(struct page *page, struct vm_area_struct *vma)
228{
229 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
230 unsigned long address;
231
232 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
233 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 234 /* page should be within @vma mapping range */
1da177e4
LT
235 return -EFAULT;
236 }
237 return address;
238}
239
240/*
241 * At what user virtual address is page expected in vma? checking that the
ee498ed7 242 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
243 */
244unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
245{
246 if (PageAnon(page)) {
247 if ((void *)vma->anon_vma !=
248 (void *)page->mapping - PAGE_MAPPING_ANON)
249 return -EFAULT;
250 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
251 if (!vma->vm_file ||
252 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
253 return -EFAULT;
254 } else
255 return -EFAULT;
256 return vma_address(page, vma);
257}
258
81b4082d
ND
259/*
260 * Check that @page is mapped at @address into @mm.
261 *
479db0bf
NP
262 * If @sync is false, page_check_address may perform a racy check to avoid
263 * the page table lock when the pte is not present (helpful when reclaiming
264 * highly shared pages).
265 *
b8072f09 266 * On success returns with pte mapped and locked.
81b4082d 267 */
ceffc078 268pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 269 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
270{
271 pgd_t *pgd;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *pte;
c0718806 275 spinlock_t *ptl;
81b4082d 276
81b4082d 277 pgd = pgd_offset(mm, address);
c0718806
HD
278 if (!pgd_present(*pgd))
279 return NULL;
280
281 pud = pud_offset(pgd, address);
282 if (!pud_present(*pud))
283 return NULL;
284
285 pmd = pmd_offset(pud, address);
286 if (!pmd_present(*pmd))
287 return NULL;
288
289 pte = pte_offset_map(pmd, address);
290 /* Make a quick check before getting the lock */
479db0bf 291 if (!sync && !pte_present(*pte)) {
c0718806
HD
292 pte_unmap(pte);
293 return NULL;
294 }
295
4c21e2f2 296 ptl = pte_lockptr(mm, pmd);
c0718806
HD
297 spin_lock(ptl);
298 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
299 *ptlp = ptl;
300 return pte;
81b4082d 301 }
c0718806
HD
302 pte_unmap_unlock(pte, ptl);
303 return NULL;
81b4082d
ND
304}
305
b291f000
NP
306/**
307 * page_mapped_in_vma - check whether a page is really mapped in a VMA
308 * @page: the page to test
309 * @vma: the VMA to test
310 *
311 * Returns 1 if the page is mapped into the page tables of the VMA, 0
312 * if the page is not mapped into the page tables of this VMA. Only
313 * valid for normal file or anonymous VMAs.
314 */
315static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
316{
317 unsigned long address;
318 pte_t *pte;
319 spinlock_t *ptl;
320
321 address = vma_address(page, vma);
322 if (address == -EFAULT) /* out of vma range */
323 return 0;
324 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
325 if (!pte) /* the page is not in this mm */
326 return 0;
327 pte_unmap_unlock(pte, ptl);
328
329 return 1;
330}
331
1da177e4
LT
332/*
333 * Subfunctions of page_referenced: page_referenced_one called
334 * repeatedly from either page_referenced_anon or page_referenced_file.
335 */
336static int page_referenced_one(struct page *page,
f7b7fd8f 337 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
338{
339 struct mm_struct *mm = vma->vm_mm;
340 unsigned long address;
1da177e4 341 pte_t *pte;
c0718806 342 spinlock_t *ptl;
1da177e4
LT
343 int referenced = 0;
344
1da177e4
LT
345 address = vma_address(page, vma);
346 if (address == -EFAULT)
347 goto out;
348
479db0bf 349 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
350 if (!pte)
351 goto out;
1da177e4 352
b291f000
NP
353 /*
354 * Don't want to elevate referenced for mlocked page that gets this far,
355 * in order that it progresses to try_to_unmap and is moved to the
356 * unevictable list.
357 */
5a9bbdcd 358 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 359 *mapcount = 1; /* break early from loop */
b291f000
NP
360 goto out_unmap;
361 }
362
4917e5d0
JW
363 if (ptep_clear_flush_young_notify(vma, address, pte)) {
364 /*
365 * Don't treat a reference through a sequentially read
366 * mapping as such. If the page has been used in
367 * another mapping, we will catch it; if this other
368 * mapping is already gone, the unmap path will have
369 * set PG_referenced or activated the page.
370 */
371 if (likely(!VM_SequentialReadHint(vma)))
372 referenced++;
373 }
1da177e4 374
c0718806
HD
375 /* Pretend the page is referenced if the task has the
376 swap token and is in the middle of a page fault. */
f7b7fd8f 377 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
378 rwsem_is_locked(&mm->mmap_sem))
379 referenced++;
380
b291f000 381out_unmap:
c0718806
HD
382 (*mapcount)--;
383 pte_unmap_unlock(pte, ptl);
1da177e4
LT
384out:
385 return referenced;
386}
387
bed7161a
BS
388static int page_referenced_anon(struct page *page,
389 struct mem_cgroup *mem_cont)
1da177e4
LT
390{
391 unsigned int mapcount;
392 struct anon_vma *anon_vma;
393 struct vm_area_struct *vma;
394 int referenced = 0;
395
396 anon_vma = page_lock_anon_vma(page);
397 if (!anon_vma)
398 return referenced;
399
400 mapcount = page_mapcount(page);
401 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
bed7161a
BS
402 /*
403 * If we are reclaiming on behalf of a cgroup, skip
404 * counting on behalf of references from different
405 * cgroups
406 */
bd845e38 407 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 408 continue;
f7b7fd8f 409 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
410 if (!mapcount)
411 break;
412 }
34bbd704
ON
413
414 page_unlock_anon_vma(anon_vma);
1da177e4
LT
415 return referenced;
416}
417
418/**
419 * page_referenced_file - referenced check for object-based rmap
420 * @page: the page we're checking references on.
43d8eac4 421 * @mem_cont: target memory controller
1da177e4
LT
422 *
423 * For an object-based mapped page, find all the places it is mapped and
424 * check/clear the referenced flag. This is done by following the page->mapping
425 * pointer, then walking the chain of vmas it holds. It returns the number
426 * of references it found.
427 *
428 * This function is only called from page_referenced for object-based pages.
429 */
bed7161a
BS
430static int page_referenced_file(struct page *page,
431 struct mem_cgroup *mem_cont)
1da177e4
LT
432{
433 unsigned int mapcount;
434 struct address_space *mapping = page->mapping;
435 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
436 struct vm_area_struct *vma;
437 struct prio_tree_iter iter;
438 int referenced = 0;
439
440 /*
441 * The caller's checks on page->mapping and !PageAnon have made
442 * sure that this is a file page: the check for page->mapping
443 * excludes the case just before it gets set on an anon page.
444 */
445 BUG_ON(PageAnon(page));
446
447 /*
448 * The page lock not only makes sure that page->mapping cannot
449 * suddenly be NULLified by truncation, it makes sure that the
450 * structure at mapping cannot be freed and reused yet,
451 * so we can safely take mapping->i_mmap_lock.
452 */
453 BUG_ON(!PageLocked(page));
454
455 spin_lock(&mapping->i_mmap_lock);
456
457 /*
458 * i_mmap_lock does not stabilize mapcount at all, but mapcount
459 * is more likely to be accurate if we note it after spinning.
460 */
461 mapcount = page_mapcount(page);
462
463 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
bed7161a
BS
464 /*
465 * If we are reclaiming on behalf of a cgroup, skip
466 * counting on behalf of references from different
467 * cgroups
468 */
bd845e38 469 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 470 continue;
f7b7fd8f 471 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
472 if (!mapcount)
473 break;
474 }
475
476 spin_unlock(&mapping->i_mmap_lock);
477 return referenced;
478}
479
480/**
481 * page_referenced - test if the page was referenced
482 * @page: the page to test
483 * @is_locked: caller holds lock on the page
43d8eac4 484 * @mem_cont: target memory controller
1da177e4
LT
485 *
486 * Quick test_and_clear_referenced for all mappings to a page,
487 * returns the number of ptes which referenced the page.
488 */
bed7161a
BS
489int page_referenced(struct page *page, int is_locked,
490 struct mem_cgroup *mem_cont)
1da177e4
LT
491{
492 int referenced = 0;
493
1da177e4
LT
494 if (TestClearPageReferenced(page))
495 referenced++;
496
497 if (page_mapped(page) && page->mapping) {
498 if (PageAnon(page))
bed7161a 499 referenced += page_referenced_anon(page, mem_cont);
1da177e4 500 else if (is_locked)
bed7161a 501 referenced += page_referenced_file(page, mem_cont);
529ae9aa 502 else if (!trylock_page(page))
1da177e4
LT
503 referenced++;
504 else {
505 if (page->mapping)
bed7161a
BS
506 referenced +=
507 page_referenced_file(page, mem_cont);
1da177e4
LT
508 unlock_page(page);
509 }
510 }
5b7baf05
CB
511
512 if (page_test_and_clear_young(page))
513 referenced++;
514
1da177e4
LT
515 return referenced;
516}
517
d08b3851
PZ
518static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
519{
520 struct mm_struct *mm = vma->vm_mm;
521 unsigned long address;
c2fda5fe 522 pte_t *pte;
d08b3851
PZ
523 spinlock_t *ptl;
524 int ret = 0;
525
526 address = vma_address(page, vma);
527 if (address == -EFAULT)
528 goto out;
529
479db0bf 530 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
531 if (!pte)
532 goto out;
533
c2fda5fe
PZ
534 if (pte_dirty(*pte) || pte_write(*pte)) {
535 pte_t entry;
d08b3851 536
c2fda5fe 537 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 538 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
539 entry = pte_wrprotect(entry);
540 entry = pte_mkclean(entry);
d6e88e67 541 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
542 ret = 1;
543 }
d08b3851 544
d08b3851
PZ
545 pte_unmap_unlock(pte, ptl);
546out:
547 return ret;
548}
549
550static int page_mkclean_file(struct address_space *mapping, struct page *page)
551{
552 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
553 struct vm_area_struct *vma;
554 struct prio_tree_iter iter;
555 int ret = 0;
556
557 BUG_ON(PageAnon(page));
558
559 spin_lock(&mapping->i_mmap_lock);
560 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
561 if (vma->vm_flags & VM_SHARED)
562 ret += page_mkclean_one(page, vma);
563 }
564 spin_unlock(&mapping->i_mmap_lock);
565 return ret;
566}
567
568int page_mkclean(struct page *page)
569{
570 int ret = 0;
571
572 BUG_ON(!PageLocked(page));
573
574 if (page_mapped(page)) {
575 struct address_space *mapping = page_mapping(page);
ce7e9fae 576 if (mapping) {
d08b3851 577 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
578 if (page_test_dirty(page)) {
579 page_clear_dirty(page);
580 ret = 1;
581 }
6c210482 582 }
d08b3851
PZ
583 }
584
585 return ret;
586}
60b59bea 587EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 588
9617d95e 589/**
43d8eac4 590 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
591 * @page: the page to add the mapping to
592 * @vma: the vm area in which the mapping is added
593 * @address: the user virtual address mapped
594 */
595static void __page_set_anon_rmap(struct page *page,
596 struct vm_area_struct *vma, unsigned long address)
597{
598 struct anon_vma *anon_vma = vma->anon_vma;
599
600 BUG_ON(!anon_vma);
601 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
602 page->mapping = (struct address_space *) anon_vma;
603
604 page->index = linear_page_index(vma, address);
605
a74609fa
NP
606 /*
607 * nr_mapped state can be updated without turning off
608 * interrupts because it is not modified via interrupt.
609 */
f3dbd344 610 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
611}
612
c97a9e10 613/**
43d8eac4 614 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
615 * @page: the page to add the mapping to
616 * @vma: the vm area in which the mapping is added
617 * @address: the user virtual address mapped
618 */
619static void __page_check_anon_rmap(struct page *page,
620 struct vm_area_struct *vma, unsigned long address)
621{
622#ifdef CONFIG_DEBUG_VM
623 /*
624 * The page's anon-rmap details (mapping and index) are guaranteed to
625 * be set up correctly at this point.
626 *
627 * We have exclusion against page_add_anon_rmap because the caller
628 * always holds the page locked, except if called from page_dup_rmap,
629 * in which case the page is already known to be setup.
630 *
631 * We have exclusion against page_add_new_anon_rmap because those pages
632 * are initially only visible via the pagetables, and the pte is locked
633 * over the call to page_add_new_anon_rmap.
634 */
635 struct anon_vma *anon_vma = vma->anon_vma;
636 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
637 BUG_ON(page->mapping != (struct address_space *)anon_vma);
638 BUG_ON(page->index != linear_page_index(vma, address));
639#endif
640}
641
1da177e4
LT
642/**
643 * page_add_anon_rmap - add pte mapping to an anonymous page
644 * @page: the page to add the mapping to
645 * @vma: the vm area in which the mapping is added
646 * @address: the user virtual address mapped
647 *
c97a9e10 648 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
649 */
650void page_add_anon_rmap(struct page *page,
651 struct vm_area_struct *vma, unsigned long address)
652{
c97a9e10
NP
653 VM_BUG_ON(!PageLocked(page));
654 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
655 if (atomic_inc_and_test(&page->_mapcount))
656 __page_set_anon_rmap(page, vma, address);
69029cd5 657 else
c97a9e10 658 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
659}
660
43d8eac4 661/**
9617d95e
NP
662 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
663 * @page: the page to add the mapping to
664 * @vma: the vm area in which the mapping is added
665 * @address: the user virtual address mapped
666 *
667 * Same as page_add_anon_rmap but must only be called on *new* pages.
668 * This means the inc-and-test can be bypassed.
c97a9e10 669 * Page does not have to be locked.
9617d95e
NP
670 */
671void page_add_new_anon_rmap(struct page *page,
672 struct vm_area_struct *vma, unsigned long address)
673{
c97a9e10 674 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
675 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
676 __page_set_anon_rmap(page, vma, address);
677}
678
1da177e4
LT
679/**
680 * page_add_file_rmap - add pte mapping to a file page
681 * @page: the page to add the mapping to
682 *
b8072f09 683 * The caller needs to hold the pte lock.
1da177e4
LT
684 */
685void page_add_file_rmap(struct page *page)
686{
1da177e4 687 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 688 __inc_zone_page_state(page, NR_FILE_MAPPED);
1da177e4
LT
689}
690
c97a9e10
NP
691#ifdef CONFIG_DEBUG_VM
692/**
693 * page_dup_rmap - duplicate pte mapping to a page
694 * @page: the page to add the mapping to
43d8eac4
RD
695 * @vma: the vm area being duplicated
696 * @address: the user virtual address mapped
c97a9e10
NP
697 *
698 * For copy_page_range only: minimal extract from page_add_file_rmap /
699 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
700 * quicker.
701 *
702 * The caller needs to hold the pte lock.
703 */
704void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
705{
706 BUG_ON(page_mapcount(page) == 0);
707 if (PageAnon(page))
708 __page_check_anon_rmap(page, vma, address);
709 atomic_inc(&page->_mapcount);
710}
711#endif
712
1da177e4
LT
713/**
714 * page_remove_rmap - take down pte mapping from a page
715 * @page: page to remove mapping from
43d8eac4 716 * @vma: the vm area in which the mapping is removed
1da177e4 717 *
b8072f09 718 * The caller needs to hold the pte lock.
1da177e4 719 */
7de6b805 720void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 721{
1da177e4 722 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 723 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 724 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 725 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
726 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
727 printk (KERN_EMERG " page->count = %x\n", page_count(page));
728 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805 729 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
54cb8821 730 if (vma->vm_ops) {
54cb8821
NP
731 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
732 }
7de6b805
NP
733 if (vma->vm_file && vma->vm_file->f_op)
734 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 735 BUG();
ef2bf0dc 736 }
b16bc64d 737
1da177e4 738 /*
16f8c5b2
HD
739 * Now that the last pte has gone, s390 must transfer dirty
740 * flag from storage key to struct page. We can usually skip
741 * this if the page is anon, so about to be freed; but perhaps
742 * not if it's in swapcache - there might be another pte slot
743 * containing the swap entry, but page not yet written to swap.
1da177e4 744 */
a4b526b3
MS
745 if ((!PageAnon(page) || PageSwapCache(page)) &&
746 page_test_dirty(page)) {
6c210482 747 page_clear_dirty(page);
1da177e4 748 set_page_dirty(page);
6c210482 749 }
5b4e655e
KH
750 if (PageAnon(page))
751 mem_cgroup_uncharge_page(page);
f3dbd344 752 __dec_zone_page_state(page,
16f8c5b2
HD
753 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
754 /*
755 * It would be tidy to reset the PageAnon mapping here,
756 * but that might overwrite a racing page_add_anon_rmap
757 * which increments mapcount after us but sets mapping
758 * before us: so leave the reset to free_hot_cold_page,
759 * and remember that it's only reliable while mapped.
760 * Leaving it set also helps swapoff to reinstate ptes
761 * faster for those pages still in swapcache.
762 */
1da177e4
LT
763 }
764}
765
766/*
767 * Subfunctions of try_to_unmap: try_to_unmap_one called
768 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
769 */
a48d07af 770static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 771 int migration)
1da177e4
LT
772{
773 struct mm_struct *mm = vma->vm_mm;
774 unsigned long address;
1da177e4
LT
775 pte_t *pte;
776 pte_t pteval;
c0718806 777 spinlock_t *ptl;
1da177e4
LT
778 int ret = SWAP_AGAIN;
779
1da177e4
LT
780 address = vma_address(page, vma);
781 if (address == -EFAULT)
782 goto out;
783
479db0bf 784 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 785 if (!pte)
81b4082d 786 goto out;
1da177e4
LT
787
788 /*
789 * If the page is mlock()d, we cannot swap it out.
790 * If it's recently referenced (perhaps page_referenced
791 * skipped over this mm) then we should reactivate it.
792 */
b291f000
NP
793 if (!migration) {
794 if (vma->vm_flags & VM_LOCKED) {
795 ret = SWAP_MLOCK;
796 goto out_unmap;
797 }
798 if (ptep_clear_flush_young_notify(vma, address, pte)) {
799 ret = SWAP_FAIL;
800 goto out_unmap;
801 }
802 }
1da177e4 803
1da177e4
LT
804 /* Nuke the page table entry. */
805 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 806 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
807
808 /* Move the dirty bit to the physical page now the pte is gone. */
809 if (pte_dirty(pteval))
810 set_page_dirty(page);
811
365e9c87
HD
812 /* Update high watermark before we lower rss */
813 update_hiwater_rss(mm);
814
1da177e4 815 if (PageAnon(page)) {
4c21e2f2 816 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
817
818 if (PageSwapCache(page)) {
819 /*
820 * Store the swap location in the pte.
821 * See handle_pte_fault() ...
822 */
823 swap_duplicate(entry);
824 if (list_empty(&mm->mmlist)) {
825 spin_lock(&mmlist_lock);
826 if (list_empty(&mm->mmlist))
827 list_add(&mm->mmlist, &init_mm.mmlist);
828 spin_unlock(&mmlist_lock);
829 }
442c9137 830 dec_mm_counter(mm, anon_rss);
64cdd548 831 } else if (PAGE_MIGRATION) {
0697212a
CL
832 /*
833 * Store the pfn of the page in a special migration
834 * pte. do_swap_page() will wait until the migration
835 * pte is removed and then restart fault handling.
836 */
837 BUG_ON(!migration);
838 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
839 }
840 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
841 BUG_ON(pte_file(*pte));
64cdd548 842 } else if (PAGE_MIGRATION && migration) {
04e62a29
CL
843 /* Establish migration entry for a file page */
844 swp_entry_t entry;
845 entry = make_migration_entry(page, pte_write(pteval));
846 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
847 } else
4294621f 848 dec_mm_counter(mm, file_rss);
1da177e4 849
04e62a29 850
7de6b805 851 page_remove_rmap(page, vma);
1da177e4
LT
852 page_cache_release(page);
853
854out_unmap:
c0718806 855 pte_unmap_unlock(pte, ptl);
1da177e4
LT
856out:
857 return ret;
858}
859
860/*
861 * objrmap doesn't work for nonlinear VMAs because the assumption that
862 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
863 * Consequently, given a particular page and its ->index, we cannot locate the
864 * ptes which are mapping that page without an exhaustive linear search.
865 *
866 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
867 * maps the file to which the target page belongs. The ->vm_private_data field
868 * holds the current cursor into that scan. Successive searches will circulate
869 * around the vma's virtual address space.
870 *
871 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
872 * more scanning pressure is placed against them as well. Eventually pages
873 * will become fully unmapped and are eligible for eviction.
874 *
875 * For very sparsely populated VMAs this is a little inefficient - chances are
876 * there there won't be many ptes located within the scan cluster. In this case
877 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
878 *
879 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
880 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
881 * rather than unmapping them. If we encounter the "check_page" that vmscan is
882 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
883 */
884#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
885#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
886
b291f000
NP
887static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
888 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
889{
890 struct mm_struct *mm = vma->vm_mm;
891 pgd_t *pgd;
892 pud_t *pud;
893 pmd_t *pmd;
c0718806 894 pte_t *pte;
1da177e4 895 pte_t pteval;
c0718806 896 spinlock_t *ptl;
1da177e4
LT
897 struct page *page;
898 unsigned long address;
899 unsigned long end;
b291f000
NP
900 int ret = SWAP_AGAIN;
901 int locked_vma = 0;
1da177e4 902
1da177e4
LT
903 address = (vma->vm_start + cursor) & CLUSTER_MASK;
904 end = address + CLUSTER_SIZE;
905 if (address < vma->vm_start)
906 address = vma->vm_start;
907 if (end > vma->vm_end)
908 end = vma->vm_end;
909
910 pgd = pgd_offset(mm, address);
911 if (!pgd_present(*pgd))
b291f000 912 return ret;
1da177e4
LT
913
914 pud = pud_offset(pgd, address);
915 if (!pud_present(*pud))
b291f000 916 return ret;
1da177e4
LT
917
918 pmd = pmd_offset(pud, address);
919 if (!pmd_present(*pmd))
b291f000
NP
920 return ret;
921
922 /*
923 * MLOCK_PAGES => feature is configured.
924 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
925 * keep the sem while scanning the cluster for mlocking pages.
926 */
927 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
928 locked_vma = (vma->vm_flags & VM_LOCKED);
929 if (!locked_vma)
930 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
931 }
c0718806
HD
932
933 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 934
365e9c87
HD
935 /* Update high watermark before we lower rss */
936 update_hiwater_rss(mm);
937
c0718806 938 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
939 if (!pte_present(*pte))
940 continue;
6aab341e
LT
941 page = vm_normal_page(vma, address, *pte);
942 BUG_ON(!page || PageAnon(page));
1da177e4 943
b291f000
NP
944 if (locked_vma) {
945 mlock_vma_page(page); /* no-op if already mlocked */
946 if (page == check_page)
947 ret = SWAP_MLOCK;
948 continue; /* don't unmap */
949 }
950
cddb8a5c 951 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
952 continue;
953
954 /* Nuke the page table entry. */
eca35133 955 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 956 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
957
958 /* If nonlinear, store the file page offset in the pte. */
959 if (page->index != linear_page_index(vma, address))
960 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
961
962 /* Move the dirty bit to the physical page now the pte is gone. */
963 if (pte_dirty(pteval))
964 set_page_dirty(page);
965
7de6b805 966 page_remove_rmap(page, vma);
1da177e4 967 page_cache_release(page);
4294621f 968 dec_mm_counter(mm, file_rss);
1da177e4
LT
969 (*mapcount)--;
970 }
c0718806 971 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
972 if (locked_vma)
973 up_read(&vma->vm_mm->mmap_sem);
974 return ret;
1da177e4
LT
975}
976
b291f000
NP
977/*
978 * common handling for pages mapped in VM_LOCKED vmas
979 */
980static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
981{
982 int mlocked = 0;
983
984 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
985 if (vma->vm_flags & VM_LOCKED) {
986 mlock_vma_page(page);
987 mlocked++; /* really mlocked the page */
988 }
989 up_read(&vma->vm_mm->mmap_sem);
990 }
991 return mlocked;
992}
993
994/**
995 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
996 * rmap method
997 * @page: the page to unmap/unlock
998 * @unlock: request for unlock rather than unmap [unlikely]
999 * @migration: unmapping for migration - ignored if @unlock
1000 *
1001 * Find all the mappings of a page using the mapping pointer and the vma chains
1002 * contained in the anon_vma struct it points to.
1003 *
1004 * This function is only called from try_to_unmap/try_to_munlock for
1005 * anonymous pages.
1006 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1007 * where the page was found will be held for write. So, we won't recheck
1008 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1009 * 'LOCKED.
1010 */
1011static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1da177e4
LT
1012{
1013 struct anon_vma *anon_vma;
1014 struct vm_area_struct *vma;
b291f000 1015 unsigned int mlocked = 0;
1da177e4
LT
1016 int ret = SWAP_AGAIN;
1017
b291f000
NP
1018 if (MLOCK_PAGES && unlikely(unlock))
1019 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1020
1da177e4
LT
1021 anon_vma = page_lock_anon_vma(page);
1022 if (!anon_vma)
1023 return ret;
1024
1025 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
b291f000
NP
1026 if (MLOCK_PAGES && unlikely(unlock)) {
1027 if (!((vma->vm_flags & VM_LOCKED) &&
1028 page_mapped_in_vma(page, vma)))
1029 continue; /* must visit all unlocked vmas */
1030 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1031 } else {
1032 ret = try_to_unmap_one(page, vma, migration);
1033 if (ret == SWAP_FAIL || !page_mapped(page))
1034 break;
1035 }
1036 if (ret == SWAP_MLOCK) {
1037 mlocked = try_to_mlock_page(page, vma);
1038 if (mlocked)
1039 break; /* stop if actually mlocked page */
1040 }
1da177e4 1041 }
34bbd704
ON
1042
1043 page_unlock_anon_vma(anon_vma);
b291f000
NP
1044
1045 if (mlocked)
1046 ret = SWAP_MLOCK; /* actually mlocked the page */
1047 else if (ret == SWAP_MLOCK)
1048 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1049
1da177e4
LT
1050 return ret;
1051}
1052
1053/**
b291f000
NP
1054 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1055 * @page: the page to unmap/unlock
1056 * @unlock: request for unlock rather than unmap [unlikely]
1057 * @migration: unmapping for migration - ignored if @unlock
1da177e4
LT
1058 *
1059 * Find all the mappings of a page using the mapping pointer and the vma chains
1060 * contained in the address_space struct it points to.
1061 *
b291f000
NP
1062 * This function is only called from try_to_unmap/try_to_munlock for
1063 * object-based pages.
1064 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1065 * where the page was found will be held for write. So, we won't recheck
1066 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1067 * 'LOCKED.
1da177e4 1068 */
b291f000 1069static int try_to_unmap_file(struct page *page, int unlock, int migration)
1da177e4
LT
1070{
1071 struct address_space *mapping = page->mapping;
1072 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1073 struct vm_area_struct *vma;
1074 struct prio_tree_iter iter;
1075 int ret = SWAP_AGAIN;
1076 unsigned long cursor;
1077 unsigned long max_nl_cursor = 0;
1078 unsigned long max_nl_size = 0;
1079 unsigned int mapcount;
b291f000
NP
1080 unsigned int mlocked = 0;
1081
1082 if (MLOCK_PAGES && unlikely(unlock))
1083 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1da177e4
LT
1084
1085 spin_lock(&mapping->i_mmap_lock);
1086 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
b291f000
NP
1087 if (MLOCK_PAGES && unlikely(unlock)) {
1088 if (!(vma->vm_flags & VM_LOCKED))
1089 continue; /* must visit all vmas */
1090 ret = SWAP_MLOCK;
1091 } else {
1092 ret = try_to_unmap_one(page, vma, migration);
1093 if (ret == SWAP_FAIL || !page_mapped(page))
1094 goto out;
1095 }
1096 if (ret == SWAP_MLOCK) {
1097 mlocked = try_to_mlock_page(page, vma);
1098 if (mlocked)
1099 break; /* stop if actually mlocked page */
1100 }
1da177e4
LT
1101 }
1102
b291f000
NP
1103 if (mlocked)
1104 goto out;
1105
1da177e4
LT
1106 if (list_empty(&mapping->i_mmap_nonlinear))
1107 goto out;
1108
1109 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1110 shared.vm_set.list) {
b291f000
NP
1111 if (MLOCK_PAGES && unlikely(unlock)) {
1112 if (!(vma->vm_flags & VM_LOCKED))
1113 continue; /* must visit all vmas */
1114 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1115 goto out; /* no need to look further */
1116 }
1117 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1118 continue;
1119 cursor = (unsigned long) vma->vm_private_data;
1120 if (cursor > max_nl_cursor)
1121 max_nl_cursor = cursor;
1122 cursor = vma->vm_end - vma->vm_start;
1123 if (cursor > max_nl_size)
1124 max_nl_size = cursor;
1125 }
1126
b291f000 1127 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1128 ret = SWAP_FAIL;
1129 goto out;
1130 }
1131
1132 /*
1133 * We don't try to search for this page in the nonlinear vmas,
1134 * and page_referenced wouldn't have found it anyway. Instead
1135 * just walk the nonlinear vmas trying to age and unmap some.
1136 * The mapcount of the page we came in with is irrelevant,
1137 * but even so use it as a guide to how hard we should try?
1138 */
1139 mapcount = page_mapcount(page);
1140 if (!mapcount)
1141 goto out;
1142 cond_resched_lock(&mapping->i_mmap_lock);
1143
1144 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1145 if (max_nl_cursor == 0)
1146 max_nl_cursor = CLUSTER_SIZE;
1147
1148 do {
1149 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1150 shared.vm_set.list) {
b291f000
NP
1151 if (!MLOCK_PAGES && !migration &&
1152 (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1153 continue;
1154 cursor = (unsigned long) vma->vm_private_data;
839b9685 1155 while ( cursor < max_nl_cursor &&
1da177e4 1156 cursor < vma->vm_end - vma->vm_start) {
b291f000
NP
1157 ret = try_to_unmap_cluster(cursor, &mapcount,
1158 vma, page);
1159 if (ret == SWAP_MLOCK)
1160 mlocked = 2; /* to return below */
1da177e4
LT
1161 cursor += CLUSTER_SIZE;
1162 vma->vm_private_data = (void *) cursor;
1163 if ((int)mapcount <= 0)
1164 goto out;
1165 }
1166 vma->vm_private_data = (void *) max_nl_cursor;
1167 }
1168 cond_resched_lock(&mapping->i_mmap_lock);
1169 max_nl_cursor += CLUSTER_SIZE;
1170 } while (max_nl_cursor <= max_nl_size);
1171
1172 /*
1173 * Don't loop forever (perhaps all the remaining pages are
1174 * in locked vmas). Reset cursor on all unreserved nonlinear
1175 * vmas, now forgetting on which ones it had fallen behind.
1176 */
101d2be7
HD
1177 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1178 vma->vm_private_data = NULL;
1da177e4
LT
1179out:
1180 spin_unlock(&mapping->i_mmap_lock);
b291f000
NP
1181 if (mlocked)
1182 ret = SWAP_MLOCK; /* actually mlocked the page */
1183 else if (ret == SWAP_MLOCK)
1184 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1da177e4
LT
1185 return ret;
1186}
1187
1188/**
1189 * try_to_unmap - try to remove all page table mappings to a page
1190 * @page: the page to get unmapped
43d8eac4 1191 * @migration: migration flag
1da177e4
LT
1192 *
1193 * Tries to remove all the page table entries which are mapping this
1194 * page, used in the pageout path. Caller must hold the page lock.
1195 * Return values are:
1196 *
1197 * SWAP_SUCCESS - we succeeded in removing all mappings
1198 * SWAP_AGAIN - we missed a mapping, try again later
1199 * SWAP_FAIL - the page is unswappable
b291f000 1200 * SWAP_MLOCK - page is mlocked.
1da177e4 1201 */
7352349a 1202int try_to_unmap(struct page *page, int migration)
1da177e4
LT
1203{
1204 int ret;
1205
1da177e4
LT
1206 BUG_ON(!PageLocked(page));
1207
1208 if (PageAnon(page))
b291f000 1209 ret = try_to_unmap_anon(page, 0, migration);
1da177e4 1210 else
b291f000
NP
1211 ret = try_to_unmap_file(page, 0, migration);
1212 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1213 ret = SWAP_SUCCESS;
1214 return ret;
1215}
81b4082d 1216
b291f000
NP
1217#ifdef CONFIG_UNEVICTABLE_LRU
1218/**
1219 * try_to_munlock - try to munlock a page
1220 * @page: the page to be munlocked
1221 *
1222 * Called from munlock code. Checks all of the VMAs mapping the page
1223 * to make sure nobody else has this page mlocked. The page will be
1224 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1225 *
1226 * Return values are:
1227 *
1228 * SWAP_SUCCESS - no vma's holding page mlocked.
1229 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1230 * SWAP_MLOCK - page is now mlocked.
1231 */
1232int try_to_munlock(struct page *page)
1233{
1234 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1235
1236 if (PageAnon(page))
1237 return try_to_unmap_anon(page, 1, 0);
1238 else
1239 return try_to_unmap_file(page, 1, 0);
1240}
1241#endif