s390: KVM preparation: provide hook to enable pgstes in user pagetable
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
8a9f3ccd 51#include <linux/memcontrol.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54
fcc234f8 55struct kmem_cache *anon_vma_cachep;
1da177e4 56
1da177e4
LT
57/* This must be called under the mmap_sem. */
58int anon_vma_prepare(struct vm_area_struct *vma)
59{
60 struct anon_vma *anon_vma = vma->anon_vma;
61
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
66
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
78 }
79
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
0697212a 84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
85 allocated = NULL;
86 }
87 spin_unlock(&mm->page_table_lock);
88
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
93 }
94 return 0;
95}
96
97void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98{
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
101}
102
103void __anon_vma_link(struct vm_area_struct *vma)
104{
105 struct anon_vma *anon_vma = vma->anon_vma;
106
30acbaba 107 if (anon_vma)
0697212a 108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
109}
110
111void anon_vma_link(struct vm_area_struct *vma)
112{
113 struct anon_vma *anon_vma = vma->anon_vma;
114
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
0697212a 117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
118 spin_unlock(&anon_vma->lock);
119 }
120}
121
122void anon_vma_unlink(struct vm_area_struct *vma)
123{
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
126
127 if (!anon_vma)
128 return;
129
130 spin_lock(&anon_vma->lock);
1da177e4
LT
131 list_del(&vma->anon_vma_node);
132
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
136
137 if (empty)
138 anon_vma_free(anon_vma);
139}
140
4ba9b9d0 141static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
1da177e4 142{
a35afb83 143 struct anon_vma *anon_vma = data;
1da177e4 144
a35afb83
CL
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
147}
148
149void __init anon_vma_init(void)
150{
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
153}
154
155/*
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158 */
159static struct anon_vma *page_lock_anon_vma(struct page *page)
160{
34bbd704 161 struct anon_vma *anon_vma;
1da177e4
LT
162 unsigned long anon_mapping;
163
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
170
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
34bbd704 173 return anon_vma;
1da177e4
LT
174out:
175 rcu_read_unlock();
34bbd704
ON
176 return NULL;
177}
178
179static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180{
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
1da177e4
LT
183}
184
185/*
3ad33b24
LS
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
1da177e4
LT
189 */
190static inline unsigned long
191vma_address(struct page *page, struct vm_area_struct *vma)
192{
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
195
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 198 /* page should be within @vma mapping range */
1da177e4
LT
199 return -EFAULT;
200 }
201 return address;
202}
203
204/*
205 * At what user virtual address is page expected in vma? checking that the
ee498ed7 206 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
207 */
208unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209{
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
221}
222
81b4082d
ND
223/*
224 * Check that @page is mapped at @address into @mm.
225 *
b8072f09 226 * On success returns with pte mapped and locked.
81b4082d 227 */
ceffc078 228pte_t *page_check_address(struct page *page, struct mm_struct *mm,
c0718806 229 unsigned long address, spinlock_t **ptlp)
81b4082d
ND
230{
231 pgd_t *pgd;
232 pud_t *pud;
233 pmd_t *pmd;
234 pte_t *pte;
c0718806 235 spinlock_t *ptl;
81b4082d 236
81b4082d 237 pgd = pgd_offset(mm, address);
c0718806
HD
238 if (!pgd_present(*pgd))
239 return NULL;
240
241 pud = pud_offset(pgd, address);
242 if (!pud_present(*pud))
243 return NULL;
244
245 pmd = pmd_offset(pud, address);
246 if (!pmd_present(*pmd))
247 return NULL;
248
249 pte = pte_offset_map(pmd, address);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte)) {
252 pte_unmap(pte);
253 return NULL;
254 }
255
4c21e2f2 256 ptl = pte_lockptr(mm, pmd);
c0718806
HD
257 spin_lock(ptl);
258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 *ptlp = ptl;
260 return pte;
81b4082d 261 }
c0718806
HD
262 pte_unmap_unlock(pte, ptl);
263 return NULL;
81b4082d
ND
264}
265
1da177e4
LT
266/*
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
269 */
270static int page_referenced_one(struct page *page,
f7b7fd8f 271 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
272{
273 struct mm_struct *mm = vma->vm_mm;
274 unsigned long address;
1da177e4 275 pte_t *pte;
c0718806 276 spinlock_t *ptl;
1da177e4
LT
277 int referenced = 0;
278
1da177e4
LT
279 address = vma_address(page, vma);
280 if (address == -EFAULT)
281 goto out;
282
c0718806
HD
283 pte = page_check_address(page, mm, address, &ptl);
284 if (!pte)
285 goto out;
1da177e4 286
5a9bbdcd
HD
287 if (vma->vm_flags & VM_LOCKED) {
288 referenced++;
289 *mapcount = 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma, address, pte))
c0718806 291 referenced++;
1da177e4 292
c0718806
HD
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
f7b7fd8f 295 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
296 rwsem_is_locked(&mm->mmap_sem))
297 referenced++;
298
299 (*mapcount)--;
300 pte_unmap_unlock(pte, ptl);
1da177e4
LT
301out:
302 return referenced;
303}
304
bed7161a
BS
305static int page_referenced_anon(struct page *page,
306 struct mem_cgroup *mem_cont)
1da177e4
LT
307{
308 unsigned int mapcount;
309 struct anon_vma *anon_vma;
310 struct vm_area_struct *vma;
311 int referenced = 0;
312
313 anon_vma = page_lock_anon_vma(page);
314 if (!anon_vma)
315 return referenced;
316
317 mapcount = page_mapcount(page);
318 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
bed7161a
BS
319 /*
320 * If we are reclaiming on behalf of a cgroup, skip
321 * counting on behalf of references from different
322 * cgroups
323 */
bd845e38 324 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 325 continue;
f7b7fd8f 326 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
327 if (!mapcount)
328 break;
329 }
34bbd704
ON
330
331 page_unlock_anon_vma(anon_vma);
1da177e4
LT
332 return referenced;
333}
334
335/**
336 * page_referenced_file - referenced check for object-based rmap
337 * @page: the page we're checking references on.
43d8eac4 338 * @mem_cont: target memory controller
1da177e4
LT
339 *
340 * For an object-based mapped page, find all the places it is mapped and
341 * check/clear the referenced flag. This is done by following the page->mapping
342 * pointer, then walking the chain of vmas it holds. It returns the number
343 * of references it found.
344 *
345 * This function is only called from page_referenced for object-based pages.
346 */
bed7161a
BS
347static int page_referenced_file(struct page *page,
348 struct mem_cgroup *mem_cont)
1da177e4
LT
349{
350 unsigned int mapcount;
351 struct address_space *mapping = page->mapping;
352 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 struct vm_area_struct *vma;
354 struct prio_tree_iter iter;
355 int referenced = 0;
356
357 /*
358 * The caller's checks on page->mapping and !PageAnon have made
359 * sure that this is a file page: the check for page->mapping
360 * excludes the case just before it gets set on an anon page.
361 */
362 BUG_ON(PageAnon(page));
363
364 /*
365 * The page lock not only makes sure that page->mapping cannot
366 * suddenly be NULLified by truncation, it makes sure that the
367 * structure at mapping cannot be freed and reused yet,
368 * so we can safely take mapping->i_mmap_lock.
369 */
370 BUG_ON(!PageLocked(page));
371
372 spin_lock(&mapping->i_mmap_lock);
373
374 /*
375 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 * is more likely to be accurate if we note it after spinning.
377 */
378 mapcount = page_mapcount(page);
379
380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
bed7161a
BS
381 /*
382 * If we are reclaiming on behalf of a cgroup, skip
383 * counting on behalf of references from different
384 * cgroups
385 */
bd845e38 386 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 387 continue;
1da177e4
LT
388 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
389 == (VM_LOCKED|VM_MAYSHARE)) {
390 referenced++;
391 break;
392 }
f7b7fd8f 393 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
394 if (!mapcount)
395 break;
396 }
397
398 spin_unlock(&mapping->i_mmap_lock);
399 return referenced;
400}
401
402/**
403 * page_referenced - test if the page was referenced
404 * @page: the page to test
405 * @is_locked: caller holds lock on the page
43d8eac4 406 * @mem_cont: target memory controller
1da177e4
LT
407 *
408 * Quick test_and_clear_referenced for all mappings to a page,
409 * returns the number of ptes which referenced the page.
410 */
bed7161a
BS
411int page_referenced(struct page *page, int is_locked,
412 struct mem_cgroup *mem_cont)
1da177e4
LT
413{
414 int referenced = 0;
415
1da177e4
LT
416 if (page_test_and_clear_young(page))
417 referenced++;
418
419 if (TestClearPageReferenced(page))
420 referenced++;
421
422 if (page_mapped(page) && page->mapping) {
423 if (PageAnon(page))
bed7161a 424 referenced += page_referenced_anon(page, mem_cont);
1da177e4 425 else if (is_locked)
bed7161a 426 referenced += page_referenced_file(page, mem_cont);
1da177e4
LT
427 else if (TestSetPageLocked(page))
428 referenced++;
429 else {
430 if (page->mapping)
bed7161a
BS
431 referenced +=
432 page_referenced_file(page, mem_cont);
1da177e4
LT
433 unlock_page(page);
434 }
435 }
436 return referenced;
437}
438
d08b3851
PZ
439static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
440{
441 struct mm_struct *mm = vma->vm_mm;
442 unsigned long address;
c2fda5fe 443 pte_t *pte;
d08b3851
PZ
444 spinlock_t *ptl;
445 int ret = 0;
446
447 address = vma_address(page, vma);
448 if (address == -EFAULT)
449 goto out;
450
451 pte = page_check_address(page, mm, address, &ptl);
452 if (!pte)
453 goto out;
454
c2fda5fe
PZ
455 if (pte_dirty(*pte) || pte_write(*pte)) {
456 pte_t entry;
d08b3851 457
c2fda5fe
PZ
458 flush_cache_page(vma, address, pte_pfn(*pte));
459 entry = ptep_clear_flush(vma, address, pte);
460 entry = pte_wrprotect(entry);
461 entry = pte_mkclean(entry);
d6e88e67 462 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
463 ret = 1;
464 }
d08b3851 465
d08b3851
PZ
466 pte_unmap_unlock(pte, ptl);
467out:
468 return ret;
469}
470
471static int page_mkclean_file(struct address_space *mapping, struct page *page)
472{
473 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
474 struct vm_area_struct *vma;
475 struct prio_tree_iter iter;
476 int ret = 0;
477
478 BUG_ON(PageAnon(page));
479
480 spin_lock(&mapping->i_mmap_lock);
481 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
482 if (vma->vm_flags & VM_SHARED)
483 ret += page_mkclean_one(page, vma);
484 }
485 spin_unlock(&mapping->i_mmap_lock);
486 return ret;
487}
488
489int page_mkclean(struct page *page)
490{
491 int ret = 0;
492
493 BUG_ON(!PageLocked(page));
494
495 if (page_mapped(page)) {
496 struct address_space *mapping = page_mapping(page);
ce7e9fae 497 if (mapping) {
d08b3851 498 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
499 if (page_test_dirty(page)) {
500 page_clear_dirty(page);
501 ret = 1;
502 }
6c210482 503 }
d08b3851
PZ
504 }
505
506 return ret;
507}
60b59bea 508EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 509
9617d95e 510/**
43d8eac4 511 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
512 * @page: the page to add the mapping to
513 * @vma: the vm area in which the mapping is added
514 * @address: the user virtual address mapped
515 */
516static void __page_set_anon_rmap(struct page *page,
517 struct vm_area_struct *vma, unsigned long address)
518{
519 struct anon_vma *anon_vma = vma->anon_vma;
520
521 BUG_ON(!anon_vma);
522 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
523 page->mapping = (struct address_space *) anon_vma;
524
525 page->index = linear_page_index(vma, address);
526
a74609fa
NP
527 /*
528 * nr_mapped state can be updated without turning off
529 * interrupts because it is not modified via interrupt.
530 */
f3dbd344 531 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
532}
533
c97a9e10 534/**
43d8eac4 535 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
536 * @page: the page to add the mapping to
537 * @vma: the vm area in which the mapping is added
538 * @address: the user virtual address mapped
539 */
540static void __page_check_anon_rmap(struct page *page,
541 struct vm_area_struct *vma, unsigned long address)
542{
543#ifdef CONFIG_DEBUG_VM
544 /*
545 * The page's anon-rmap details (mapping and index) are guaranteed to
546 * be set up correctly at this point.
547 *
548 * We have exclusion against page_add_anon_rmap because the caller
549 * always holds the page locked, except if called from page_dup_rmap,
550 * in which case the page is already known to be setup.
551 *
552 * We have exclusion against page_add_new_anon_rmap because those pages
553 * are initially only visible via the pagetables, and the pte is locked
554 * over the call to page_add_new_anon_rmap.
555 */
556 struct anon_vma *anon_vma = vma->anon_vma;
557 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
558 BUG_ON(page->mapping != (struct address_space *)anon_vma);
559 BUG_ON(page->index != linear_page_index(vma, address));
560#endif
561}
562
1da177e4
LT
563/**
564 * page_add_anon_rmap - add pte mapping to an anonymous page
565 * @page: the page to add the mapping to
566 * @vma: the vm area in which the mapping is added
567 * @address: the user virtual address mapped
568 *
c97a9e10 569 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
570 */
571void page_add_anon_rmap(struct page *page,
572 struct vm_area_struct *vma, unsigned long address)
573{
c97a9e10
NP
574 VM_BUG_ON(!PageLocked(page));
575 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
576 if (atomic_inc_and_test(&page->_mapcount))
577 __page_set_anon_rmap(page, vma, address);
8a9f3ccd 578 else {
c97a9e10 579 __page_check_anon_rmap(page, vma, address);
8a9f3ccd
BS
580 /*
581 * We unconditionally charged during prepare, we uncharge here
582 * This takes care of balancing the reference counts
583 */
584 mem_cgroup_uncharge_page(page);
585 }
1da177e4
LT
586}
587
43d8eac4 588/**
9617d95e
NP
589 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
590 * @page: the page to add the mapping to
591 * @vma: the vm area in which the mapping is added
592 * @address: the user virtual address mapped
593 *
594 * Same as page_add_anon_rmap but must only be called on *new* pages.
595 * This means the inc-and-test can be bypassed.
c97a9e10 596 * Page does not have to be locked.
9617d95e
NP
597 */
598void page_add_new_anon_rmap(struct page *page,
599 struct vm_area_struct *vma, unsigned long address)
600{
c97a9e10 601 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
602 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
603 __page_set_anon_rmap(page, vma, address);
604}
605
1da177e4
LT
606/**
607 * page_add_file_rmap - add pte mapping to a file page
608 * @page: the page to add the mapping to
609 *
b8072f09 610 * The caller needs to hold the pte lock.
1da177e4
LT
611 */
612void page_add_file_rmap(struct page *page)
613{
1da177e4 614 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 615 __inc_zone_page_state(page, NR_FILE_MAPPED);
8a9f3ccd
BS
616 else
617 /*
618 * We unconditionally charged during prepare, we uncharge here
619 * This takes care of balancing the reference counts
620 */
621 mem_cgroup_uncharge_page(page);
1da177e4
LT
622}
623
c97a9e10
NP
624#ifdef CONFIG_DEBUG_VM
625/**
626 * page_dup_rmap - duplicate pte mapping to a page
627 * @page: the page to add the mapping to
43d8eac4
RD
628 * @vma: the vm area being duplicated
629 * @address: the user virtual address mapped
c97a9e10
NP
630 *
631 * For copy_page_range only: minimal extract from page_add_file_rmap /
632 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
633 * quicker.
634 *
635 * The caller needs to hold the pte lock.
636 */
637void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
638{
639 BUG_ON(page_mapcount(page) == 0);
640 if (PageAnon(page))
641 __page_check_anon_rmap(page, vma, address);
642 atomic_inc(&page->_mapcount);
643}
644#endif
645
1da177e4
LT
646/**
647 * page_remove_rmap - take down pte mapping from a page
648 * @page: page to remove mapping from
43d8eac4 649 * @vma: the vm area in which the mapping is removed
1da177e4 650 *
b8072f09 651 * The caller needs to hold the pte lock.
1da177e4 652 */
7de6b805 653void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 654{
1da177e4 655 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 656 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 657 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 658 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
659 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
660 printk (KERN_EMERG " page->count = %x\n", page_count(page));
661 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805 662 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
54cb8821 663 if (vma->vm_ops) {
7de6b805 664 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
54cb8821
NP
665 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
666 }
7de6b805
NP
667 if (vma->vm_file && vma->vm_file->f_op)
668 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 669 BUG();
ef2bf0dc 670 }
b16bc64d 671
1da177e4
LT
672 /*
673 * It would be tidy to reset the PageAnon mapping here,
674 * but that might overwrite a racing page_add_anon_rmap
675 * which increments mapcount after us but sets mapping
676 * before us: so leave the reset to free_hot_cold_page,
677 * and remember that it's only reliable while mapped.
678 * Leaving it set also helps swapoff to reinstate ptes
679 * faster for those pages still in swapcache.
680 */
6c210482
MS
681 if (page_test_dirty(page)) {
682 page_clear_dirty(page);
1da177e4 683 set_page_dirty(page);
6c210482 684 }
8a9f3ccd
BS
685 mem_cgroup_uncharge_page(page);
686
f3dbd344
CL
687 __dec_zone_page_state(page,
688 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
1da177e4
LT
689 }
690}
691
692/*
693 * Subfunctions of try_to_unmap: try_to_unmap_one called
694 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
695 */
a48d07af 696static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 697 int migration)
1da177e4
LT
698{
699 struct mm_struct *mm = vma->vm_mm;
700 unsigned long address;
1da177e4
LT
701 pte_t *pte;
702 pte_t pteval;
c0718806 703 spinlock_t *ptl;
1da177e4
LT
704 int ret = SWAP_AGAIN;
705
1da177e4
LT
706 address = vma_address(page, vma);
707 if (address == -EFAULT)
708 goto out;
709
c0718806
HD
710 pte = page_check_address(page, mm, address, &ptl);
711 if (!pte)
81b4082d 712 goto out;
1da177e4
LT
713
714 /*
715 * If the page is mlock()d, we cannot swap it out.
716 * If it's recently referenced (perhaps page_referenced
717 * skipped over this mm) then we should reactivate it.
718 */
e6a1530d
CL
719 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
720 (ptep_clear_flush_young(vma, address, pte)))) {
1da177e4
LT
721 ret = SWAP_FAIL;
722 goto out_unmap;
723 }
724
1da177e4
LT
725 /* Nuke the page table entry. */
726 flush_cache_page(vma, address, page_to_pfn(page));
727 pteval = ptep_clear_flush(vma, address, pte);
728
729 /* Move the dirty bit to the physical page now the pte is gone. */
730 if (pte_dirty(pteval))
731 set_page_dirty(page);
732
365e9c87
HD
733 /* Update high watermark before we lower rss */
734 update_hiwater_rss(mm);
735
1da177e4 736 if (PageAnon(page)) {
4c21e2f2 737 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
738
739 if (PageSwapCache(page)) {
740 /*
741 * Store the swap location in the pte.
742 * See handle_pte_fault() ...
743 */
744 swap_duplicate(entry);
745 if (list_empty(&mm->mmlist)) {
746 spin_lock(&mmlist_lock);
747 if (list_empty(&mm->mmlist))
748 list_add(&mm->mmlist, &init_mm.mmlist);
749 spin_unlock(&mmlist_lock);
750 }
442c9137 751 dec_mm_counter(mm, anon_rss);
04e62a29 752#ifdef CONFIG_MIGRATION
0697212a
CL
753 } else {
754 /*
755 * Store the pfn of the page in a special migration
756 * pte. do_swap_page() will wait until the migration
757 * pte is removed and then restart fault handling.
758 */
759 BUG_ON(!migration);
760 entry = make_migration_entry(page, pte_write(pteval));
04e62a29 761#endif
1da177e4
LT
762 }
763 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
764 BUG_ON(pte_file(*pte));
4294621f 765 } else
04e62a29
CL
766#ifdef CONFIG_MIGRATION
767 if (migration) {
768 /* Establish migration entry for a file page */
769 swp_entry_t entry;
770 entry = make_migration_entry(page, pte_write(pteval));
771 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
772 } else
773#endif
4294621f 774 dec_mm_counter(mm, file_rss);
1da177e4 775
04e62a29 776
7de6b805 777 page_remove_rmap(page, vma);
1da177e4
LT
778 page_cache_release(page);
779
780out_unmap:
c0718806 781 pte_unmap_unlock(pte, ptl);
1da177e4
LT
782out:
783 return ret;
784}
785
786/*
787 * objrmap doesn't work for nonlinear VMAs because the assumption that
788 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
789 * Consequently, given a particular page and its ->index, we cannot locate the
790 * ptes which are mapping that page without an exhaustive linear search.
791 *
792 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
793 * maps the file to which the target page belongs. The ->vm_private_data field
794 * holds the current cursor into that scan. Successive searches will circulate
795 * around the vma's virtual address space.
796 *
797 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
798 * more scanning pressure is placed against them as well. Eventually pages
799 * will become fully unmapped and are eligible for eviction.
800 *
801 * For very sparsely populated VMAs this is a little inefficient - chances are
802 * there there won't be many ptes located within the scan cluster. In this case
803 * maybe we could scan further - to the end of the pte page, perhaps.
804 */
805#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
806#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
807
808static void try_to_unmap_cluster(unsigned long cursor,
809 unsigned int *mapcount, struct vm_area_struct *vma)
810{
811 struct mm_struct *mm = vma->vm_mm;
812 pgd_t *pgd;
813 pud_t *pud;
814 pmd_t *pmd;
c0718806 815 pte_t *pte;
1da177e4 816 pte_t pteval;
c0718806 817 spinlock_t *ptl;
1da177e4
LT
818 struct page *page;
819 unsigned long address;
820 unsigned long end;
1da177e4 821
1da177e4
LT
822 address = (vma->vm_start + cursor) & CLUSTER_MASK;
823 end = address + CLUSTER_SIZE;
824 if (address < vma->vm_start)
825 address = vma->vm_start;
826 if (end > vma->vm_end)
827 end = vma->vm_end;
828
829 pgd = pgd_offset(mm, address);
830 if (!pgd_present(*pgd))
c0718806 831 return;
1da177e4
LT
832
833 pud = pud_offset(pgd, address);
834 if (!pud_present(*pud))
c0718806 835 return;
1da177e4
LT
836
837 pmd = pmd_offset(pud, address);
838 if (!pmd_present(*pmd))
c0718806
HD
839 return;
840
841 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 842
365e9c87
HD
843 /* Update high watermark before we lower rss */
844 update_hiwater_rss(mm);
845
c0718806 846 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
847 if (!pte_present(*pte))
848 continue;
6aab341e
LT
849 page = vm_normal_page(vma, address, *pte);
850 BUG_ON(!page || PageAnon(page));
1da177e4
LT
851
852 if (ptep_clear_flush_young(vma, address, pte))
853 continue;
854
855 /* Nuke the page table entry. */
eca35133 856 flush_cache_page(vma, address, pte_pfn(*pte));
1da177e4
LT
857 pteval = ptep_clear_flush(vma, address, pte);
858
859 /* If nonlinear, store the file page offset in the pte. */
860 if (page->index != linear_page_index(vma, address))
861 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
862
863 /* Move the dirty bit to the physical page now the pte is gone. */
864 if (pte_dirty(pteval))
865 set_page_dirty(page);
866
7de6b805 867 page_remove_rmap(page, vma);
1da177e4 868 page_cache_release(page);
4294621f 869 dec_mm_counter(mm, file_rss);
1da177e4
LT
870 (*mapcount)--;
871 }
c0718806 872 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
873}
874
7352349a 875static int try_to_unmap_anon(struct page *page, int migration)
1da177e4
LT
876{
877 struct anon_vma *anon_vma;
878 struct vm_area_struct *vma;
879 int ret = SWAP_AGAIN;
880
881 anon_vma = page_lock_anon_vma(page);
882 if (!anon_vma)
883 return ret;
884
885 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
7352349a 886 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
887 if (ret == SWAP_FAIL || !page_mapped(page))
888 break;
889 }
34bbd704
ON
890
891 page_unlock_anon_vma(anon_vma);
1da177e4
LT
892 return ret;
893}
894
895/**
896 * try_to_unmap_file - unmap file page using the object-based rmap method
897 * @page: the page to unmap
43d8eac4 898 * @migration: migration flag
1da177e4
LT
899 *
900 * Find all the mappings of a page using the mapping pointer and the vma chains
901 * contained in the address_space struct it points to.
902 *
903 * This function is only called from try_to_unmap for object-based pages.
904 */
7352349a 905static int try_to_unmap_file(struct page *page, int migration)
1da177e4
LT
906{
907 struct address_space *mapping = page->mapping;
908 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
909 struct vm_area_struct *vma;
910 struct prio_tree_iter iter;
911 int ret = SWAP_AGAIN;
912 unsigned long cursor;
913 unsigned long max_nl_cursor = 0;
914 unsigned long max_nl_size = 0;
915 unsigned int mapcount;
916
917 spin_lock(&mapping->i_mmap_lock);
918 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
7352349a 919 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
920 if (ret == SWAP_FAIL || !page_mapped(page))
921 goto out;
922 }
923
924 if (list_empty(&mapping->i_mmap_nonlinear))
925 goto out;
926
927 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
928 shared.vm_set.list) {
e6a1530d 929 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
930 continue;
931 cursor = (unsigned long) vma->vm_private_data;
932 if (cursor > max_nl_cursor)
933 max_nl_cursor = cursor;
934 cursor = vma->vm_end - vma->vm_start;
935 if (cursor > max_nl_size)
936 max_nl_size = cursor;
937 }
938
939 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
940 ret = SWAP_FAIL;
941 goto out;
942 }
943
944 /*
945 * We don't try to search for this page in the nonlinear vmas,
946 * and page_referenced wouldn't have found it anyway. Instead
947 * just walk the nonlinear vmas trying to age and unmap some.
948 * The mapcount of the page we came in with is irrelevant,
949 * but even so use it as a guide to how hard we should try?
950 */
951 mapcount = page_mapcount(page);
952 if (!mapcount)
953 goto out;
954 cond_resched_lock(&mapping->i_mmap_lock);
955
956 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
957 if (max_nl_cursor == 0)
958 max_nl_cursor = CLUSTER_SIZE;
959
960 do {
961 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
962 shared.vm_set.list) {
e6a1530d 963 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
964 continue;
965 cursor = (unsigned long) vma->vm_private_data;
839b9685 966 while ( cursor < max_nl_cursor &&
1da177e4
LT
967 cursor < vma->vm_end - vma->vm_start) {
968 try_to_unmap_cluster(cursor, &mapcount, vma);
969 cursor += CLUSTER_SIZE;
970 vma->vm_private_data = (void *) cursor;
971 if ((int)mapcount <= 0)
972 goto out;
973 }
974 vma->vm_private_data = (void *) max_nl_cursor;
975 }
976 cond_resched_lock(&mapping->i_mmap_lock);
977 max_nl_cursor += CLUSTER_SIZE;
978 } while (max_nl_cursor <= max_nl_size);
979
980 /*
981 * Don't loop forever (perhaps all the remaining pages are
982 * in locked vmas). Reset cursor on all unreserved nonlinear
983 * vmas, now forgetting on which ones it had fallen behind.
984 */
101d2be7
HD
985 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
986 vma->vm_private_data = NULL;
1da177e4
LT
987out:
988 spin_unlock(&mapping->i_mmap_lock);
989 return ret;
990}
991
992/**
993 * try_to_unmap - try to remove all page table mappings to a page
994 * @page: the page to get unmapped
43d8eac4 995 * @migration: migration flag
1da177e4
LT
996 *
997 * Tries to remove all the page table entries which are mapping this
998 * page, used in the pageout path. Caller must hold the page lock.
999 * Return values are:
1000 *
1001 * SWAP_SUCCESS - we succeeded in removing all mappings
1002 * SWAP_AGAIN - we missed a mapping, try again later
1003 * SWAP_FAIL - the page is unswappable
1004 */
7352349a 1005int try_to_unmap(struct page *page, int migration)
1da177e4
LT
1006{
1007 int ret;
1008
1da177e4
LT
1009 BUG_ON(!PageLocked(page));
1010
1011 if (PageAnon(page))
7352349a 1012 ret = try_to_unmap_anon(page, migration);
1da177e4 1013 else
7352349a 1014 ret = try_to_unmap_file(page, migration);
1da177e4
LT
1015
1016 if (!page_mapped(page))
1017 ret = SWAP_SUCCESS;
1018 return ret;
1019}
81b4082d 1020