fix setpriority(PRIO_PGRP) thread iterator breakage
[linux-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
8a9f3ccd 51#include <linux/memcontrol.h>
cddb8a5c 52#include <linux/mmu_notifier.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55
fcc234f8 56struct kmem_cache *anon_vma_cachep;
1da177e4 57
1da177e4
LT
58/* This must be called under the mmap_sem. */
59int anon_vma_prepare(struct vm_area_struct *vma)
60{
61 struct anon_vma *anon_vma = vma->anon_vma;
62
63 might_sleep();
64 if (unlikely(!anon_vma)) {
65 struct mm_struct *mm = vma->vm_mm;
66 struct anon_vma *allocated, *locked;
67
68 anon_vma = find_mergeable_anon_vma(vma);
69 if (anon_vma) {
70 allocated = NULL;
71 locked = anon_vma;
72 spin_lock(&locked->lock);
73 } else {
74 anon_vma = anon_vma_alloc();
75 if (unlikely(!anon_vma))
76 return -ENOMEM;
77 allocated = anon_vma;
78 locked = NULL;
79 }
80
81 /* page_table_lock to protect against threads */
82 spin_lock(&mm->page_table_lock);
83 if (likely(!vma->anon_vma)) {
84 vma->anon_vma = anon_vma;
0697212a 85 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
86 allocated = NULL;
87 }
88 spin_unlock(&mm->page_table_lock);
89
90 if (locked)
91 spin_unlock(&locked->lock);
92 if (unlikely(allocated))
93 anon_vma_free(allocated);
94 }
95 return 0;
96}
97
98void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
99{
100 BUG_ON(vma->anon_vma != next->anon_vma);
101 list_del(&next->anon_vma_node);
102}
103
104void __anon_vma_link(struct vm_area_struct *vma)
105{
106 struct anon_vma *anon_vma = vma->anon_vma;
107
30acbaba 108 if (anon_vma)
0697212a 109 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
110}
111
112void anon_vma_link(struct vm_area_struct *vma)
113{
114 struct anon_vma *anon_vma = vma->anon_vma;
115
116 if (anon_vma) {
117 spin_lock(&anon_vma->lock);
0697212a 118 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
119 spin_unlock(&anon_vma->lock);
120 }
121}
122
123void anon_vma_unlink(struct vm_area_struct *vma)
124{
125 struct anon_vma *anon_vma = vma->anon_vma;
126 int empty;
127
128 if (!anon_vma)
129 return;
130
131 spin_lock(&anon_vma->lock);
1da177e4
LT
132 list_del(&vma->anon_vma_node);
133
134 /* We must garbage collect the anon_vma if it's empty */
135 empty = list_empty(&anon_vma->head);
136 spin_unlock(&anon_vma->lock);
137
138 if (empty)
139 anon_vma_free(anon_vma);
140}
141
51cc5068 142static void anon_vma_ctor(void *data)
1da177e4 143{
a35afb83 144 struct anon_vma *anon_vma = data;
1da177e4 145
a35afb83
CL
146 spin_lock_init(&anon_vma->lock);
147 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
148}
149
150void __init anon_vma_init(void)
151{
152 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 153 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
154}
155
156/*
157 * Getting a lock on a stable anon_vma from a page off the LRU is
158 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 */
160static struct anon_vma *page_lock_anon_vma(struct page *page)
161{
34bbd704 162 struct anon_vma *anon_vma;
1da177e4
LT
163 unsigned long anon_mapping;
164
165 rcu_read_lock();
166 anon_mapping = (unsigned long) page->mapping;
167 if (!(anon_mapping & PAGE_MAPPING_ANON))
168 goto out;
169 if (!page_mapped(page))
170 goto out;
171
172 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
173 spin_lock(&anon_vma->lock);
34bbd704 174 return anon_vma;
1da177e4
LT
175out:
176 rcu_read_unlock();
34bbd704
ON
177 return NULL;
178}
179
180static void page_unlock_anon_vma(struct anon_vma *anon_vma)
181{
182 spin_unlock(&anon_vma->lock);
183 rcu_read_unlock();
1da177e4
LT
184}
185
186/*
3ad33b24
LS
187 * At what user virtual address is page expected in @vma?
188 * Returns virtual address or -EFAULT if page's index/offset is not
189 * within the range mapped the @vma.
1da177e4
LT
190 */
191static inline unsigned long
192vma_address(struct page *page, struct vm_area_struct *vma)
193{
194 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
195 unsigned long address;
196
197 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
198 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 199 /* page should be within @vma mapping range */
1da177e4
LT
200 return -EFAULT;
201 }
202 return address;
203}
204
205/*
206 * At what user virtual address is page expected in vma? checking that the
ee498ed7 207 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
208 */
209unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
210{
211 if (PageAnon(page)) {
212 if ((void *)vma->anon_vma !=
213 (void *)page->mapping - PAGE_MAPPING_ANON)
214 return -EFAULT;
215 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
216 if (!vma->vm_file ||
217 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
218 return -EFAULT;
219 } else
220 return -EFAULT;
221 return vma_address(page, vma);
222}
223
81b4082d
ND
224/*
225 * Check that @page is mapped at @address into @mm.
226 *
b8072f09 227 * On success returns with pte mapped and locked.
81b4082d 228 */
ceffc078 229pte_t *page_check_address(struct page *page, struct mm_struct *mm,
c0718806 230 unsigned long address, spinlock_t **ptlp)
81b4082d
ND
231{
232 pgd_t *pgd;
233 pud_t *pud;
234 pmd_t *pmd;
235 pte_t *pte;
c0718806 236 spinlock_t *ptl;
81b4082d 237
81b4082d 238 pgd = pgd_offset(mm, address);
c0718806
HD
239 if (!pgd_present(*pgd))
240 return NULL;
241
242 pud = pud_offset(pgd, address);
243 if (!pud_present(*pud))
244 return NULL;
245
246 pmd = pmd_offset(pud, address);
247 if (!pmd_present(*pmd))
248 return NULL;
249
250 pte = pte_offset_map(pmd, address);
251 /* Make a quick check before getting the lock */
252 if (!pte_present(*pte)) {
253 pte_unmap(pte);
254 return NULL;
255 }
256
4c21e2f2 257 ptl = pte_lockptr(mm, pmd);
c0718806
HD
258 spin_lock(ptl);
259 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
260 *ptlp = ptl;
261 return pte;
81b4082d 262 }
c0718806
HD
263 pte_unmap_unlock(pte, ptl);
264 return NULL;
81b4082d
ND
265}
266
1da177e4
LT
267/*
268 * Subfunctions of page_referenced: page_referenced_one called
269 * repeatedly from either page_referenced_anon or page_referenced_file.
270 */
271static int page_referenced_one(struct page *page,
f7b7fd8f 272 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
273{
274 struct mm_struct *mm = vma->vm_mm;
275 unsigned long address;
1da177e4 276 pte_t *pte;
c0718806 277 spinlock_t *ptl;
1da177e4
LT
278 int referenced = 0;
279
1da177e4
LT
280 address = vma_address(page, vma);
281 if (address == -EFAULT)
282 goto out;
283
c0718806
HD
284 pte = page_check_address(page, mm, address, &ptl);
285 if (!pte)
286 goto out;
1da177e4 287
5a9bbdcd
HD
288 if (vma->vm_flags & VM_LOCKED) {
289 referenced++;
290 *mapcount = 1; /* break early from loop */
cddb8a5c 291 } else if (ptep_clear_flush_young_notify(vma, address, pte))
c0718806 292 referenced++;
1da177e4 293
c0718806
HD
294 /* Pretend the page is referenced if the task has the
295 swap token and is in the middle of a page fault. */
f7b7fd8f 296 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
297 rwsem_is_locked(&mm->mmap_sem))
298 referenced++;
299
300 (*mapcount)--;
301 pte_unmap_unlock(pte, ptl);
1da177e4
LT
302out:
303 return referenced;
304}
305
bed7161a
BS
306static int page_referenced_anon(struct page *page,
307 struct mem_cgroup *mem_cont)
1da177e4
LT
308{
309 unsigned int mapcount;
310 struct anon_vma *anon_vma;
311 struct vm_area_struct *vma;
312 int referenced = 0;
313
314 anon_vma = page_lock_anon_vma(page);
315 if (!anon_vma)
316 return referenced;
317
318 mapcount = page_mapcount(page);
319 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
bed7161a
BS
320 /*
321 * If we are reclaiming on behalf of a cgroup, skip
322 * counting on behalf of references from different
323 * cgroups
324 */
bd845e38 325 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 326 continue;
f7b7fd8f 327 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
328 if (!mapcount)
329 break;
330 }
34bbd704
ON
331
332 page_unlock_anon_vma(anon_vma);
1da177e4
LT
333 return referenced;
334}
335
336/**
337 * page_referenced_file - referenced check for object-based rmap
338 * @page: the page we're checking references on.
43d8eac4 339 * @mem_cont: target memory controller
1da177e4
LT
340 *
341 * For an object-based mapped page, find all the places it is mapped and
342 * check/clear the referenced flag. This is done by following the page->mapping
343 * pointer, then walking the chain of vmas it holds. It returns the number
344 * of references it found.
345 *
346 * This function is only called from page_referenced for object-based pages.
347 */
bed7161a
BS
348static int page_referenced_file(struct page *page,
349 struct mem_cgroup *mem_cont)
1da177e4
LT
350{
351 unsigned int mapcount;
352 struct address_space *mapping = page->mapping;
353 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
354 struct vm_area_struct *vma;
355 struct prio_tree_iter iter;
356 int referenced = 0;
357
358 /*
359 * The caller's checks on page->mapping and !PageAnon have made
360 * sure that this is a file page: the check for page->mapping
361 * excludes the case just before it gets set on an anon page.
362 */
363 BUG_ON(PageAnon(page));
364
365 /*
366 * The page lock not only makes sure that page->mapping cannot
367 * suddenly be NULLified by truncation, it makes sure that the
368 * structure at mapping cannot be freed and reused yet,
369 * so we can safely take mapping->i_mmap_lock.
370 */
371 BUG_ON(!PageLocked(page));
372
373 spin_lock(&mapping->i_mmap_lock);
374
375 /*
376 * i_mmap_lock does not stabilize mapcount at all, but mapcount
377 * is more likely to be accurate if we note it after spinning.
378 */
379 mapcount = page_mapcount(page);
380
381 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
bed7161a
BS
382 /*
383 * If we are reclaiming on behalf of a cgroup, skip
384 * counting on behalf of references from different
385 * cgroups
386 */
bd845e38 387 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 388 continue;
1da177e4
LT
389 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 == (VM_LOCKED|VM_MAYSHARE)) {
391 referenced++;
392 break;
393 }
f7b7fd8f 394 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
395 if (!mapcount)
396 break;
397 }
398
399 spin_unlock(&mapping->i_mmap_lock);
400 return referenced;
401}
402
403/**
404 * page_referenced - test if the page was referenced
405 * @page: the page to test
406 * @is_locked: caller holds lock on the page
43d8eac4 407 * @mem_cont: target memory controller
1da177e4
LT
408 *
409 * Quick test_and_clear_referenced for all mappings to a page,
410 * returns the number of ptes which referenced the page.
411 */
bed7161a
BS
412int page_referenced(struct page *page, int is_locked,
413 struct mem_cgroup *mem_cont)
1da177e4
LT
414{
415 int referenced = 0;
416
1da177e4
LT
417 if (TestClearPageReferenced(page))
418 referenced++;
419
420 if (page_mapped(page) && page->mapping) {
421 if (PageAnon(page))
bed7161a 422 referenced += page_referenced_anon(page, mem_cont);
1da177e4 423 else if (is_locked)
bed7161a 424 referenced += page_referenced_file(page, mem_cont);
529ae9aa 425 else if (!trylock_page(page))
1da177e4
LT
426 referenced++;
427 else {
428 if (page->mapping)
bed7161a
BS
429 referenced +=
430 page_referenced_file(page, mem_cont);
1da177e4
LT
431 unlock_page(page);
432 }
433 }
5b7baf05
CB
434
435 if (page_test_and_clear_young(page))
436 referenced++;
437
1da177e4
LT
438 return referenced;
439}
440
d08b3851
PZ
441static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
442{
443 struct mm_struct *mm = vma->vm_mm;
444 unsigned long address;
c2fda5fe 445 pte_t *pte;
d08b3851
PZ
446 spinlock_t *ptl;
447 int ret = 0;
448
449 address = vma_address(page, vma);
450 if (address == -EFAULT)
451 goto out;
452
453 pte = page_check_address(page, mm, address, &ptl);
454 if (!pte)
455 goto out;
456
c2fda5fe
PZ
457 if (pte_dirty(*pte) || pte_write(*pte)) {
458 pte_t entry;
d08b3851 459
c2fda5fe 460 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 461 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
462 entry = pte_wrprotect(entry);
463 entry = pte_mkclean(entry);
d6e88e67 464 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
465 ret = 1;
466 }
d08b3851 467
d08b3851
PZ
468 pte_unmap_unlock(pte, ptl);
469out:
470 return ret;
471}
472
473static int page_mkclean_file(struct address_space *mapping, struct page *page)
474{
475 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476 struct vm_area_struct *vma;
477 struct prio_tree_iter iter;
478 int ret = 0;
479
480 BUG_ON(PageAnon(page));
481
482 spin_lock(&mapping->i_mmap_lock);
483 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484 if (vma->vm_flags & VM_SHARED)
485 ret += page_mkclean_one(page, vma);
486 }
487 spin_unlock(&mapping->i_mmap_lock);
488 return ret;
489}
490
491int page_mkclean(struct page *page)
492{
493 int ret = 0;
494
495 BUG_ON(!PageLocked(page));
496
497 if (page_mapped(page)) {
498 struct address_space *mapping = page_mapping(page);
ce7e9fae 499 if (mapping) {
d08b3851 500 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
501 if (page_test_dirty(page)) {
502 page_clear_dirty(page);
503 ret = 1;
504 }
6c210482 505 }
d08b3851
PZ
506 }
507
508 return ret;
509}
60b59bea 510EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 511
9617d95e 512/**
43d8eac4 513 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
514 * @page: the page to add the mapping to
515 * @vma: the vm area in which the mapping is added
516 * @address: the user virtual address mapped
517 */
518static void __page_set_anon_rmap(struct page *page,
519 struct vm_area_struct *vma, unsigned long address)
520{
521 struct anon_vma *anon_vma = vma->anon_vma;
522
523 BUG_ON(!anon_vma);
524 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
525 page->mapping = (struct address_space *) anon_vma;
526
527 page->index = linear_page_index(vma, address);
528
a74609fa
NP
529 /*
530 * nr_mapped state can be updated without turning off
531 * interrupts because it is not modified via interrupt.
532 */
f3dbd344 533 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
534}
535
c97a9e10 536/**
43d8eac4 537 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
538 * @page: the page to add the mapping to
539 * @vma: the vm area in which the mapping is added
540 * @address: the user virtual address mapped
541 */
542static void __page_check_anon_rmap(struct page *page,
543 struct vm_area_struct *vma, unsigned long address)
544{
545#ifdef CONFIG_DEBUG_VM
546 /*
547 * The page's anon-rmap details (mapping and index) are guaranteed to
548 * be set up correctly at this point.
549 *
550 * We have exclusion against page_add_anon_rmap because the caller
551 * always holds the page locked, except if called from page_dup_rmap,
552 * in which case the page is already known to be setup.
553 *
554 * We have exclusion against page_add_new_anon_rmap because those pages
555 * are initially only visible via the pagetables, and the pte is locked
556 * over the call to page_add_new_anon_rmap.
557 */
558 struct anon_vma *anon_vma = vma->anon_vma;
559 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
560 BUG_ON(page->mapping != (struct address_space *)anon_vma);
561 BUG_ON(page->index != linear_page_index(vma, address));
562#endif
563}
564
1da177e4
LT
565/**
566 * page_add_anon_rmap - add pte mapping to an anonymous page
567 * @page: the page to add the mapping to
568 * @vma: the vm area in which the mapping is added
569 * @address: the user virtual address mapped
570 *
c97a9e10 571 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
572 */
573void page_add_anon_rmap(struct page *page,
574 struct vm_area_struct *vma, unsigned long address)
575{
c97a9e10
NP
576 VM_BUG_ON(!PageLocked(page));
577 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
578 if (atomic_inc_and_test(&page->_mapcount))
579 __page_set_anon_rmap(page, vma, address);
69029cd5 580 else
c97a9e10 581 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
582}
583
43d8eac4 584/**
9617d95e
NP
585 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
586 * @page: the page to add the mapping to
587 * @vma: the vm area in which the mapping is added
588 * @address: the user virtual address mapped
589 *
590 * Same as page_add_anon_rmap but must only be called on *new* pages.
591 * This means the inc-and-test can be bypassed.
c97a9e10 592 * Page does not have to be locked.
9617d95e
NP
593 */
594void page_add_new_anon_rmap(struct page *page,
595 struct vm_area_struct *vma, unsigned long address)
596{
c97a9e10 597 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
598 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
599 __page_set_anon_rmap(page, vma, address);
600}
601
1da177e4
LT
602/**
603 * page_add_file_rmap - add pte mapping to a file page
604 * @page: the page to add the mapping to
605 *
b8072f09 606 * The caller needs to hold the pte lock.
1da177e4
LT
607 */
608void page_add_file_rmap(struct page *page)
609{
1da177e4 610 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 611 __inc_zone_page_state(page, NR_FILE_MAPPED);
1da177e4
LT
612}
613
c97a9e10
NP
614#ifdef CONFIG_DEBUG_VM
615/**
616 * page_dup_rmap - duplicate pte mapping to a page
617 * @page: the page to add the mapping to
43d8eac4
RD
618 * @vma: the vm area being duplicated
619 * @address: the user virtual address mapped
c97a9e10
NP
620 *
621 * For copy_page_range only: minimal extract from page_add_file_rmap /
622 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
623 * quicker.
624 *
625 * The caller needs to hold the pte lock.
626 */
627void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
628{
629 BUG_ON(page_mapcount(page) == 0);
630 if (PageAnon(page))
631 __page_check_anon_rmap(page, vma, address);
632 atomic_inc(&page->_mapcount);
633}
634#endif
635
1da177e4
LT
636/**
637 * page_remove_rmap - take down pte mapping from a page
638 * @page: page to remove mapping from
43d8eac4 639 * @vma: the vm area in which the mapping is removed
1da177e4 640 *
b8072f09 641 * The caller needs to hold the pte lock.
1da177e4 642 */
7de6b805 643void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 644{
1da177e4 645 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 646 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 647 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 648 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
649 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
650 printk (KERN_EMERG " page->count = %x\n", page_count(page));
651 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805 652 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
54cb8821 653 if (vma->vm_ops) {
54cb8821
NP
654 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
655 }
7de6b805
NP
656 if (vma->vm_file && vma->vm_file->f_op)
657 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 658 BUG();
ef2bf0dc 659 }
b16bc64d 660
1da177e4 661 /*
16f8c5b2
HD
662 * Now that the last pte has gone, s390 must transfer dirty
663 * flag from storage key to struct page. We can usually skip
664 * this if the page is anon, so about to be freed; but perhaps
665 * not if it's in swapcache - there might be another pte slot
666 * containing the swap entry, but page not yet written to swap.
1da177e4 667 */
a4b526b3
MS
668 if ((!PageAnon(page) || PageSwapCache(page)) &&
669 page_test_dirty(page)) {
6c210482 670 page_clear_dirty(page);
1da177e4 671 set_page_dirty(page);
6c210482 672 }
8a9f3ccd 673
16f8c5b2 674 mem_cgroup_uncharge_page(page);
f3dbd344 675 __dec_zone_page_state(page,
16f8c5b2
HD
676 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
677 /*
678 * It would be tidy to reset the PageAnon mapping here,
679 * but that might overwrite a racing page_add_anon_rmap
680 * which increments mapcount after us but sets mapping
681 * before us: so leave the reset to free_hot_cold_page,
682 * and remember that it's only reliable while mapped.
683 * Leaving it set also helps swapoff to reinstate ptes
684 * faster for those pages still in swapcache.
685 */
1da177e4
LT
686 }
687}
688
689/*
690 * Subfunctions of try_to_unmap: try_to_unmap_one called
691 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
692 */
a48d07af 693static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 694 int migration)
1da177e4
LT
695{
696 struct mm_struct *mm = vma->vm_mm;
697 unsigned long address;
1da177e4
LT
698 pte_t *pte;
699 pte_t pteval;
c0718806 700 spinlock_t *ptl;
1da177e4
LT
701 int ret = SWAP_AGAIN;
702
1da177e4
LT
703 address = vma_address(page, vma);
704 if (address == -EFAULT)
705 goto out;
706
c0718806
HD
707 pte = page_check_address(page, mm, address, &ptl);
708 if (!pte)
81b4082d 709 goto out;
1da177e4
LT
710
711 /*
712 * If the page is mlock()d, we cannot swap it out.
713 * If it's recently referenced (perhaps page_referenced
714 * skipped over this mm) then we should reactivate it.
715 */
e6a1530d 716 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
cddb8a5c 717 (ptep_clear_flush_young_notify(vma, address, pte)))) {
1da177e4
LT
718 ret = SWAP_FAIL;
719 goto out_unmap;
720 }
721
1da177e4
LT
722 /* Nuke the page table entry. */
723 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 724 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
725
726 /* Move the dirty bit to the physical page now the pte is gone. */
727 if (pte_dirty(pteval))
728 set_page_dirty(page);
729
365e9c87
HD
730 /* Update high watermark before we lower rss */
731 update_hiwater_rss(mm);
732
1da177e4 733 if (PageAnon(page)) {
4c21e2f2 734 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
735
736 if (PageSwapCache(page)) {
737 /*
738 * Store the swap location in the pte.
739 * See handle_pte_fault() ...
740 */
741 swap_duplicate(entry);
742 if (list_empty(&mm->mmlist)) {
743 spin_lock(&mmlist_lock);
744 if (list_empty(&mm->mmlist))
745 list_add(&mm->mmlist, &init_mm.mmlist);
746 spin_unlock(&mmlist_lock);
747 }
442c9137 748 dec_mm_counter(mm, anon_rss);
04e62a29 749#ifdef CONFIG_MIGRATION
0697212a
CL
750 } else {
751 /*
752 * Store the pfn of the page in a special migration
753 * pte. do_swap_page() will wait until the migration
754 * pte is removed and then restart fault handling.
755 */
756 BUG_ON(!migration);
757 entry = make_migration_entry(page, pte_write(pteval));
04e62a29 758#endif
1da177e4
LT
759 }
760 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
761 BUG_ON(pte_file(*pte));
4294621f 762 } else
04e62a29
CL
763#ifdef CONFIG_MIGRATION
764 if (migration) {
765 /* Establish migration entry for a file page */
766 swp_entry_t entry;
767 entry = make_migration_entry(page, pte_write(pteval));
768 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
769 } else
770#endif
4294621f 771 dec_mm_counter(mm, file_rss);
1da177e4 772
04e62a29 773
7de6b805 774 page_remove_rmap(page, vma);
1da177e4
LT
775 page_cache_release(page);
776
777out_unmap:
c0718806 778 pte_unmap_unlock(pte, ptl);
1da177e4
LT
779out:
780 return ret;
781}
782
783/*
784 * objrmap doesn't work for nonlinear VMAs because the assumption that
785 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
786 * Consequently, given a particular page and its ->index, we cannot locate the
787 * ptes which are mapping that page without an exhaustive linear search.
788 *
789 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
790 * maps the file to which the target page belongs. The ->vm_private_data field
791 * holds the current cursor into that scan. Successive searches will circulate
792 * around the vma's virtual address space.
793 *
794 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
795 * more scanning pressure is placed against them as well. Eventually pages
796 * will become fully unmapped and are eligible for eviction.
797 *
798 * For very sparsely populated VMAs this is a little inefficient - chances are
799 * there there won't be many ptes located within the scan cluster. In this case
800 * maybe we could scan further - to the end of the pte page, perhaps.
801 */
802#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
803#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
804
805static void try_to_unmap_cluster(unsigned long cursor,
806 unsigned int *mapcount, struct vm_area_struct *vma)
807{
808 struct mm_struct *mm = vma->vm_mm;
809 pgd_t *pgd;
810 pud_t *pud;
811 pmd_t *pmd;
c0718806 812 pte_t *pte;
1da177e4 813 pte_t pteval;
c0718806 814 spinlock_t *ptl;
1da177e4
LT
815 struct page *page;
816 unsigned long address;
817 unsigned long end;
1da177e4 818
1da177e4
LT
819 address = (vma->vm_start + cursor) & CLUSTER_MASK;
820 end = address + CLUSTER_SIZE;
821 if (address < vma->vm_start)
822 address = vma->vm_start;
823 if (end > vma->vm_end)
824 end = vma->vm_end;
825
826 pgd = pgd_offset(mm, address);
827 if (!pgd_present(*pgd))
c0718806 828 return;
1da177e4
LT
829
830 pud = pud_offset(pgd, address);
831 if (!pud_present(*pud))
c0718806 832 return;
1da177e4
LT
833
834 pmd = pmd_offset(pud, address);
835 if (!pmd_present(*pmd))
c0718806
HD
836 return;
837
838 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 839
365e9c87
HD
840 /* Update high watermark before we lower rss */
841 update_hiwater_rss(mm);
842
c0718806 843 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
844 if (!pte_present(*pte))
845 continue;
6aab341e
LT
846 page = vm_normal_page(vma, address, *pte);
847 BUG_ON(!page || PageAnon(page));
1da177e4 848
cddb8a5c 849 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
850 continue;
851
852 /* Nuke the page table entry. */
eca35133 853 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 854 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
855
856 /* If nonlinear, store the file page offset in the pte. */
857 if (page->index != linear_page_index(vma, address))
858 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
859
860 /* Move the dirty bit to the physical page now the pte is gone. */
861 if (pte_dirty(pteval))
862 set_page_dirty(page);
863
7de6b805 864 page_remove_rmap(page, vma);
1da177e4 865 page_cache_release(page);
4294621f 866 dec_mm_counter(mm, file_rss);
1da177e4
LT
867 (*mapcount)--;
868 }
c0718806 869 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
870}
871
7352349a 872static int try_to_unmap_anon(struct page *page, int migration)
1da177e4
LT
873{
874 struct anon_vma *anon_vma;
875 struct vm_area_struct *vma;
876 int ret = SWAP_AGAIN;
877
878 anon_vma = page_lock_anon_vma(page);
879 if (!anon_vma)
880 return ret;
881
882 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
7352349a 883 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
884 if (ret == SWAP_FAIL || !page_mapped(page))
885 break;
886 }
34bbd704
ON
887
888 page_unlock_anon_vma(anon_vma);
1da177e4
LT
889 return ret;
890}
891
892/**
893 * try_to_unmap_file - unmap file page using the object-based rmap method
894 * @page: the page to unmap
43d8eac4 895 * @migration: migration flag
1da177e4
LT
896 *
897 * Find all the mappings of a page using the mapping pointer and the vma chains
898 * contained in the address_space struct it points to.
899 *
900 * This function is only called from try_to_unmap for object-based pages.
901 */
7352349a 902static int try_to_unmap_file(struct page *page, int migration)
1da177e4
LT
903{
904 struct address_space *mapping = page->mapping;
905 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
906 struct vm_area_struct *vma;
907 struct prio_tree_iter iter;
908 int ret = SWAP_AGAIN;
909 unsigned long cursor;
910 unsigned long max_nl_cursor = 0;
911 unsigned long max_nl_size = 0;
912 unsigned int mapcount;
913
914 spin_lock(&mapping->i_mmap_lock);
915 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
7352349a 916 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
917 if (ret == SWAP_FAIL || !page_mapped(page))
918 goto out;
919 }
920
921 if (list_empty(&mapping->i_mmap_nonlinear))
922 goto out;
923
924 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
925 shared.vm_set.list) {
e6a1530d 926 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
927 continue;
928 cursor = (unsigned long) vma->vm_private_data;
929 if (cursor > max_nl_cursor)
930 max_nl_cursor = cursor;
931 cursor = vma->vm_end - vma->vm_start;
932 if (cursor > max_nl_size)
933 max_nl_size = cursor;
934 }
935
936 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
937 ret = SWAP_FAIL;
938 goto out;
939 }
940
941 /*
942 * We don't try to search for this page in the nonlinear vmas,
943 * and page_referenced wouldn't have found it anyway. Instead
944 * just walk the nonlinear vmas trying to age and unmap some.
945 * The mapcount of the page we came in with is irrelevant,
946 * but even so use it as a guide to how hard we should try?
947 */
948 mapcount = page_mapcount(page);
949 if (!mapcount)
950 goto out;
951 cond_resched_lock(&mapping->i_mmap_lock);
952
953 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
954 if (max_nl_cursor == 0)
955 max_nl_cursor = CLUSTER_SIZE;
956
957 do {
958 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
959 shared.vm_set.list) {
e6a1530d 960 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
961 continue;
962 cursor = (unsigned long) vma->vm_private_data;
839b9685 963 while ( cursor < max_nl_cursor &&
1da177e4
LT
964 cursor < vma->vm_end - vma->vm_start) {
965 try_to_unmap_cluster(cursor, &mapcount, vma);
966 cursor += CLUSTER_SIZE;
967 vma->vm_private_data = (void *) cursor;
968 if ((int)mapcount <= 0)
969 goto out;
970 }
971 vma->vm_private_data = (void *) max_nl_cursor;
972 }
973 cond_resched_lock(&mapping->i_mmap_lock);
974 max_nl_cursor += CLUSTER_SIZE;
975 } while (max_nl_cursor <= max_nl_size);
976
977 /*
978 * Don't loop forever (perhaps all the remaining pages are
979 * in locked vmas). Reset cursor on all unreserved nonlinear
980 * vmas, now forgetting on which ones it had fallen behind.
981 */
101d2be7
HD
982 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
983 vma->vm_private_data = NULL;
1da177e4
LT
984out:
985 spin_unlock(&mapping->i_mmap_lock);
986 return ret;
987}
988
989/**
990 * try_to_unmap - try to remove all page table mappings to a page
991 * @page: the page to get unmapped
43d8eac4 992 * @migration: migration flag
1da177e4
LT
993 *
994 * Tries to remove all the page table entries which are mapping this
995 * page, used in the pageout path. Caller must hold the page lock.
996 * Return values are:
997 *
998 * SWAP_SUCCESS - we succeeded in removing all mappings
999 * SWAP_AGAIN - we missed a mapping, try again later
1000 * SWAP_FAIL - the page is unswappable
1001 */
7352349a 1002int try_to_unmap(struct page *page, int migration)
1da177e4
LT
1003{
1004 int ret;
1005
1da177e4
LT
1006 BUG_ON(!PageLocked(page));
1007
1008 if (PageAnon(page))
7352349a 1009 ret = try_to_unmap_anon(page, migration);
1da177e4 1010 else
7352349a 1011 ret = try_to_unmap_file(page, migration);
1da177e4
LT
1012
1013 if (!page_mapped(page))
1014 ret = SWAP_SUCCESS;
1015 return ret;
1016}
81b4082d 1017