powerpc: permanently include 8xx registers in reg.h
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
f4b7e272 30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
b93b0163 35 * i_pages lock (widely used)
88f306b6
KS
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 39 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 42 *
5a505085 43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 44 * ->tasklist_lock
6a46079c 45 * pte map lock
1da177e4
LT
46 */
47
48#include <linux/mm.h>
6e84f315 49#include <linux/sched/mm.h>
29930025 50#include <linux/sched/task.h>
1da177e4
LT
51#include <linux/pagemap.h>
52#include <linux/swap.h>
53#include <linux/swapops.h>
54#include <linux/slab.h>
55#include <linux/init.h>
5ad64688 56#include <linux/ksm.h>
1da177e4
LT
57#include <linux/rmap.h>
58#include <linux/rcupdate.h>
b95f1b31 59#include <linux/export.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
64cdd548 62#include <linux/migrate.h>
0fe6e20b 63#include <linux/hugetlb.h>
ef5d437f 64#include <linux/backing-dev.h>
33c3fc71 65#include <linux/page_idle.h>
a5430dda 66#include <linux/memremap.h>
bce73e48 67#include <linux/userfaultfd_k.h>
1da177e4
LT
68
69#include <asm/tlbflush.h>
70
72b252ae
MG
71#include <trace/events/tlb.h>
72
b291f000
NP
73#include "internal.h"
74
fdd2e5f8 75static struct kmem_cache *anon_vma_cachep;
5beb4930 76static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
77
78static inline struct anon_vma *anon_vma_alloc(void)
79{
01d8b20d
PZ
80 struct anon_vma *anon_vma;
81
82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
83 if (anon_vma) {
84 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
85 anon_vma->degree = 1; /* Reference for first vma */
86 anon_vma->parent = anon_vma;
01d8b20d
PZ
87 /*
88 * Initialise the anon_vma root to point to itself. If called
89 * from fork, the root will be reset to the parents anon_vma.
90 */
91 anon_vma->root = anon_vma;
92 }
93
94 return anon_vma;
fdd2e5f8
AB
95}
96
01d8b20d 97static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 98{
01d8b20d 99 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
100
101 /*
4fc3f1d6 102 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
103 * we can safely hold the lock without the anon_vma getting
104 * freed.
105 *
106 * Relies on the full mb implied by the atomic_dec_and_test() from
107 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 108 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 109 *
4fc3f1d6
IM
110 * page_lock_anon_vma_read() VS put_anon_vma()
111 * down_read_trylock() atomic_dec_and_test()
88c22088 112 * LOCK MB
4fc3f1d6 113 * atomic_read() rwsem_is_locked()
88c22088
PZ
114 *
115 * LOCK should suffice since the actual taking of the lock must
116 * happen _before_ what follows.
117 */
7f39dda9 118 might_sleep();
5a505085 119 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 120 anon_vma_lock_write(anon_vma);
08b52706 121 anon_vma_unlock_write(anon_vma);
88c22088
PZ
122 }
123
fdd2e5f8
AB
124 kmem_cache_free(anon_vma_cachep, anon_vma);
125}
1da177e4 126
dd34739c 127static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 128{
dd34739c 129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
130}
131
e574b5fd 132static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
133{
134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
135}
136
6583a843
KC
137static void anon_vma_chain_link(struct vm_area_struct *vma,
138 struct anon_vma_chain *avc,
139 struct anon_vma *anon_vma)
140{
141 avc->vma = vma;
142 avc->anon_vma = anon_vma;
143 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
145}
146
d9d332e0 147/**
d5a187da 148 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
149 * @vma: the memory region in question
150 *
151 * This makes sure the memory mapping described by 'vma' has
152 * an 'anon_vma' attached to it, so that we can associate the
153 * anonymous pages mapped into it with that anon_vma.
154 *
d5a187da
VB
155 * The common case will be that we already have one, which
156 * is handled inline by anon_vma_prepare(). But if
23a0790a 157 * not we either need to find an adjacent mapping that we
d9d332e0
LT
158 * can re-use the anon_vma from (very common when the only
159 * reason for splitting a vma has been mprotect()), or we
160 * allocate a new one.
161 *
162 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
164 * and that may actually touch the spinlock even in the newly
165 * allocated vma (it depends on RCU to make sure that the
166 * anon_vma isn't actually destroyed).
167 *
168 * As a result, we need to do proper anon_vma locking even
169 * for the new allocation. At the same time, we do not want
170 * to do any locking for the common case of already having
171 * an anon_vma.
172 *
173 * This must be called with the mmap_sem held for reading.
174 */
d5a187da 175int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 176{
d5a187da
VB
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *anon_vma, *allocated;
5beb4930 179 struct anon_vma_chain *avc;
1da177e4
LT
180
181 might_sleep();
1da177e4 182
d5a187da
VB
183 avc = anon_vma_chain_alloc(GFP_KERNEL);
184 if (!avc)
185 goto out_enomem;
186
187 anon_vma = find_mergeable_anon_vma(vma);
188 allocated = NULL;
189 if (!anon_vma) {
190 anon_vma = anon_vma_alloc();
191 if (unlikely(!anon_vma))
192 goto out_enomem_free_avc;
193 allocated = anon_vma;
194 }
5beb4930 195
d5a187da
VB
196 anon_vma_lock_write(anon_vma);
197 /* page_table_lock to protect against threads */
198 spin_lock(&mm->page_table_lock);
199 if (likely(!vma->anon_vma)) {
200 vma->anon_vma = anon_vma;
201 anon_vma_chain_link(vma, avc, anon_vma);
202 /* vma reference or self-parent link for new root */
203 anon_vma->degree++;
d9d332e0 204 allocated = NULL;
d5a187da
VB
205 avc = NULL;
206 }
207 spin_unlock(&mm->page_table_lock);
208 anon_vma_unlock_write(anon_vma);
1da177e4 209
d5a187da
VB
210 if (unlikely(allocated))
211 put_anon_vma(allocated);
212 if (unlikely(avc))
213 anon_vma_chain_free(avc);
31f2b0eb 214
1da177e4 215 return 0;
5beb4930
RR
216
217 out_enomem_free_avc:
218 anon_vma_chain_free(avc);
219 out_enomem:
220 return -ENOMEM;
1da177e4
LT
221}
222
bb4aa396
LT
223/*
224 * This is a useful helper function for locking the anon_vma root as
225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
226 * have the same vma.
227 *
228 * Such anon_vma's should have the same root, so you'd expect to see
229 * just a single mutex_lock for the whole traversal.
230 */
231static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232{
233 struct anon_vma *new_root = anon_vma->root;
234 if (new_root != root) {
235 if (WARN_ON_ONCE(root))
5a505085 236 up_write(&root->rwsem);
bb4aa396 237 root = new_root;
5a505085 238 down_write(&root->rwsem);
bb4aa396
LT
239 }
240 return root;
241}
242
243static inline void unlock_anon_vma_root(struct anon_vma *root)
244{
245 if (root)
5a505085 246 up_write(&root->rwsem);
bb4aa396
LT
247}
248
5beb4930
RR
249/*
250 * Attach the anon_vmas from src to dst.
251 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
252 *
253 * If dst->anon_vma is NULL this function tries to find and reuse existing
254 * anon_vma which has no vmas and only one child anon_vma. This prevents
255 * degradation of anon_vma hierarchy to endless linear chain in case of
256 * constantly forking task. On the other hand, an anon_vma with more than one
257 * child isn't reused even if there was no alive vma, thus rmap walker has a
258 * good chance of avoiding scanning the whole hierarchy when it searches where
259 * page is mapped.
5beb4930
RR
260 */
261int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 262{
5beb4930 263 struct anon_vma_chain *avc, *pavc;
bb4aa396 264 struct anon_vma *root = NULL;
5beb4930 265
646d87b4 266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
267 struct anon_vma *anon_vma;
268
dd34739c
LT
269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
270 if (unlikely(!avc)) {
271 unlock_anon_vma_root(root);
272 root = NULL;
273 avc = anon_vma_chain_alloc(GFP_KERNEL);
274 if (!avc)
275 goto enomem_failure;
276 }
bb4aa396
LT
277 anon_vma = pavc->anon_vma;
278 root = lock_anon_vma_root(root, anon_vma);
279 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
280
281 /*
282 * Reuse existing anon_vma if its degree lower than two,
283 * that means it has no vma and only one anon_vma child.
284 *
285 * Do not chose parent anon_vma, otherwise first child
286 * will always reuse it. Root anon_vma is never reused:
287 * it has self-parent reference and at least one child.
288 */
289 if (!dst->anon_vma && anon_vma != src->anon_vma &&
290 anon_vma->degree < 2)
291 dst->anon_vma = anon_vma;
5beb4930 292 }
7a3ef208
KK
293 if (dst->anon_vma)
294 dst->anon_vma->degree++;
bb4aa396 295 unlock_anon_vma_root(root);
5beb4930 296 return 0;
1da177e4 297
5beb4930 298 enomem_failure:
3fe89b3e
LY
299 /*
300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 * decremented in unlink_anon_vmas().
302 * We can safely do this because callers of anon_vma_clone() don't care
303 * about dst->anon_vma if anon_vma_clone() failed.
304 */
305 dst->anon_vma = NULL;
5beb4930
RR
306 unlink_anon_vmas(dst);
307 return -ENOMEM;
1da177e4
LT
308}
309
5beb4930
RR
310/*
311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
312 * the corresponding VMA in the parent process is attached to.
313 * Returns 0 on success, non-zero on failure.
314 */
315int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 316{
5beb4930
RR
317 struct anon_vma_chain *avc;
318 struct anon_vma *anon_vma;
c4ea95d7 319 int error;
1da177e4 320
5beb4930
RR
321 /* Don't bother if the parent process has no anon_vma here. */
322 if (!pvma->anon_vma)
323 return 0;
324
7a3ef208
KK
325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 vma->anon_vma = NULL;
327
5beb4930
RR
328 /*
329 * First, attach the new VMA to the parent VMA's anon_vmas,
330 * so rmap can find non-COWed pages in child processes.
331 */
c4ea95d7
DF
332 error = anon_vma_clone(vma, pvma);
333 if (error)
334 return error;
5beb4930 335
7a3ef208
KK
336 /* An existing anon_vma has been reused, all done then. */
337 if (vma->anon_vma)
338 return 0;
339
5beb4930
RR
340 /* Then add our own anon_vma. */
341 anon_vma = anon_vma_alloc();
342 if (!anon_vma)
343 goto out_error;
dd34739c 344 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
345 if (!avc)
346 goto out_error_free_anon_vma;
5c341ee1
RR
347
348 /*
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
351 */
352 anon_vma->root = pvma->anon_vma->root;
7a3ef208 353 anon_vma->parent = pvma->anon_vma;
76545066 354 /*
01d8b20d
PZ
355 * With refcounts, an anon_vma can stay around longer than the
356 * process it belongs to. The root anon_vma needs to be pinned until
357 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
358 */
359 get_anon_vma(anon_vma->root);
5beb4930
RR
360 /* Mark this anon_vma as the one where our new (COWed) pages go. */
361 vma->anon_vma = anon_vma;
4fc3f1d6 362 anon_vma_lock_write(anon_vma);
5c341ee1 363 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 364 anon_vma->parent->degree++;
08b52706 365 anon_vma_unlock_write(anon_vma);
5beb4930
RR
366
367 return 0;
368
369 out_error_free_anon_vma:
01d8b20d 370 put_anon_vma(anon_vma);
5beb4930 371 out_error:
4946d54c 372 unlink_anon_vmas(vma);
5beb4930 373 return -ENOMEM;
1da177e4
LT
374}
375
5beb4930
RR
376void unlink_anon_vmas(struct vm_area_struct *vma)
377{
378 struct anon_vma_chain *avc, *next;
eee2acba 379 struct anon_vma *root = NULL;
5beb4930 380
5c341ee1
RR
381 /*
382 * Unlink each anon_vma chained to the VMA. This list is ordered
383 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 */
5beb4930 385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
386 struct anon_vma *anon_vma = avc->anon_vma;
387
388 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
390
391 /*
392 * Leave empty anon_vmas on the list - we'll need
393 * to free them outside the lock.
394 */
f808c13f 395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 396 anon_vma->parent->degree--;
eee2acba 397 continue;
7a3ef208 398 }
eee2acba
PZ
399
400 list_del(&avc->same_vma);
401 anon_vma_chain_free(avc);
402 }
7a3ef208
KK
403 if (vma->anon_vma)
404 vma->anon_vma->degree--;
eee2acba
PZ
405 unlock_anon_vma_root(root);
406
407 /*
408 * Iterate the list once more, it now only contains empty and unlinked
409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 410 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
411 */
412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
413 struct anon_vma *anon_vma = avc->anon_vma;
414
e4c5800a 415 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
416 put_anon_vma(anon_vma);
417
5beb4930
RR
418 list_del(&avc->same_vma);
419 anon_vma_chain_free(avc);
420 }
421}
422
51cc5068 423static void anon_vma_ctor(void *data)
1da177e4 424{
a35afb83 425 struct anon_vma *anon_vma = data;
1da177e4 426
5a505085 427 init_rwsem(&anon_vma->rwsem);
83813267 428 atomic_set(&anon_vma->refcount, 0);
f808c13f 429 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
430}
431
432void __init anon_vma_init(void)
433{
434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
436 anon_vma_ctor);
437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
438 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
439}
440
441/*
6111e4ca
PZ
442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 *
444 * Since there is no serialization what so ever against page_remove_rmap()
445 * the best this function can do is return a locked anon_vma that might
446 * have been relevant to this page.
447 *
448 * The page might have been remapped to a different anon_vma or the anon_vma
449 * returned may already be freed (and even reused).
450 *
bc658c96
PZ
451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453 * ensure that any anon_vma obtained from the page will still be valid for as
454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 *
6111e4ca
PZ
456 * All users of this function must be very careful when walking the anon_vma
457 * chain and verify that the page in question is indeed mapped in it
458 * [ something equivalent to page_mapped_in_vma() ].
459 *
460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461 * that the anon_vma pointer from page->mapping is valid if there is a
462 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 463 */
746b18d4 464struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 465{
746b18d4 466 struct anon_vma *anon_vma = NULL;
1da177e4
LT
467 unsigned long anon_mapping;
468
469 rcu_read_lock();
4db0c3c2 470 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
472 goto out;
473 if (!page_mapped(page))
474 goto out;
475
476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
477 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
478 anon_vma = NULL;
479 goto out;
480 }
f1819427
HD
481
482 /*
483 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
484 * freed. But if it has been unmapped, we have no security against the
485 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 487 * above cannot corrupt).
f1819427 488 */
746b18d4 489 if (!page_mapped(page)) {
7f39dda9 490 rcu_read_unlock();
746b18d4 491 put_anon_vma(anon_vma);
7f39dda9 492 return NULL;
746b18d4 493 }
1da177e4
LT
494out:
495 rcu_read_unlock();
746b18d4
PZ
496
497 return anon_vma;
498}
499
88c22088
PZ
500/*
501 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 *
503 * Its a little more complex as it tries to keep the fast path to a single
504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505 * reference like with page_get_anon_vma() and then block on the mutex.
506 */
4fc3f1d6 507struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 508{
88c22088 509 struct anon_vma *anon_vma = NULL;
eee0f252 510 struct anon_vma *root_anon_vma;
88c22088 511 unsigned long anon_mapping;
746b18d4 512
88c22088 513 rcu_read_lock();
4db0c3c2 514 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
516 goto out;
517 if (!page_mapped(page))
518 goto out;
519
520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 521 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 522 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 523 /*
eee0f252
HD
524 * If the page is still mapped, then this anon_vma is still
525 * its anon_vma, and holding the mutex ensures that it will
bc658c96 526 * not go away, see anon_vma_free().
88c22088 527 */
eee0f252 528 if (!page_mapped(page)) {
4fc3f1d6 529 up_read(&root_anon_vma->rwsem);
88c22088
PZ
530 anon_vma = NULL;
531 }
532 goto out;
533 }
746b18d4 534
88c22088
PZ
535 /* trylock failed, we got to sleep */
536 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
537 anon_vma = NULL;
538 goto out;
539 }
540
541 if (!page_mapped(page)) {
7f39dda9 542 rcu_read_unlock();
88c22088 543 put_anon_vma(anon_vma);
7f39dda9 544 return NULL;
88c22088
PZ
545 }
546
547 /* we pinned the anon_vma, its safe to sleep */
548 rcu_read_unlock();
4fc3f1d6 549 anon_vma_lock_read(anon_vma);
88c22088
PZ
550
551 if (atomic_dec_and_test(&anon_vma->refcount)) {
552 /*
553 * Oops, we held the last refcount, release the lock
554 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 555 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 556 */
4fc3f1d6 557 anon_vma_unlock_read(anon_vma);
88c22088
PZ
558 __put_anon_vma(anon_vma);
559 anon_vma = NULL;
560 }
561
562 return anon_vma;
563
564out:
565 rcu_read_unlock();
746b18d4 566 return anon_vma;
34bbd704
ON
567}
568
4fc3f1d6 569void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 570{
4fc3f1d6 571 anon_vma_unlock_read(anon_vma);
1da177e4
LT
572}
573
72b252ae 574#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
575/*
576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577 * important if a PTE was dirty when it was unmapped that it's flushed
578 * before any IO is initiated on the page to prevent lost writes. Similarly,
579 * it must be flushed before freeing to prevent data leakage.
580 */
581void try_to_unmap_flush(void)
582{
583 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
584
585 if (!tlb_ubc->flush_required)
586 return;
587
e73ad5ff 588 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 589 tlb_ubc->flush_required = false;
d950c947 590 tlb_ubc->writable = false;
72b252ae
MG
591}
592
d950c947
MG
593/* Flush iff there are potentially writable TLB entries that can race with IO */
594void try_to_unmap_flush_dirty(void)
595{
596 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
597
598 if (tlb_ubc->writable)
599 try_to_unmap_flush();
600}
601
c7ab0d2f 602static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
603{
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
e73ad5ff 606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 607 tlb_ubc->flush_required = true;
d950c947 608
3ea27719
MG
609 /*
610 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 * before the PTE is cleared.
612 */
613 barrier();
614 mm->tlb_flush_batched = true;
615
d950c947
MG
616 /*
617 * If the PTE was dirty then it's best to assume it's writable. The
618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 * before the page is queued for IO.
620 */
621 if (writable)
622 tlb_ubc->writable = true;
72b252ae
MG
623}
624
625/*
626 * Returns true if the TLB flush should be deferred to the end of a batch of
627 * unmap operations to reduce IPIs.
628 */
629static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630{
631 bool should_defer = false;
632
633 if (!(flags & TTU_BATCH_FLUSH))
634 return false;
635
636 /* If remote CPUs need to be flushed then defer batch the flush */
637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
638 should_defer = true;
639 put_cpu();
640
641 return should_defer;
642}
3ea27719
MG
643
644/*
645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647 * operation such as mprotect or munmap to race between reclaim unmapping
648 * the page and flushing the page. If this race occurs, it potentially allows
649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
650 * batching in flight would be expensive during reclaim so instead track
651 * whether TLB batching occurred in the past and if so then do a flush here
652 * if required. This will cost one additional flush per reclaim cycle paid
653 * by the first operation at risk such as mprotect and mumap.
654 *
655 * This must be called under the PTL so that an access to tlb_flush_batched
656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
657 * via the PTL.
658 */
659void flush_tlb_batched_pending(struct mm_struct *mm)
660{
661 if (mm->tlb_flush_batched) {
662 flush_tlb_mm(mm);
663
664 /*
665 * Do not allow the compiler to re-order the clearing of
666 * tlb_flush_batched before the tlb is flushed.
667 */
668 barrier();
669 mm->tlb_flush_batched = false;
670 }
671}
72b252ae 672#else
c7ab0d2f 673static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
674{
675}
676
677static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678{
679 return false;
680}
681#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
682
1da177e4 683/*
bf89c8c8 684 * At what user virtual address is page expected in vma?
ab941e0f 685 * Caller should check the page is actually part of the vma.
1da177e4
LT
686 */
687unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688{
86c2ad19 689 unsigned long address;
21d0d443 690 if (PageAnon(page)) {
4829b906
HD
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
21d0d443 698 return -EFAULT;
27ba0644
KS
699 } else if (page->mapping) {
700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
701 return -EFAULT;
702 } else
703 return -EFAULT;
86c2ad19
ML
704 address = __vma_address(page, vma);
705 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
706 return -EFAULT;
707 return address;
1da177e4
LT
708}
709
6219049a
BL
710pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711{
712 pgd_t *pgd;
c2febafc 713 p4d_t *p4d;
6219049a
BL
714 pud_t *pud;
715 pmd_t *pmd = NULL;
f72e7dcd 716 pmd_t pmde;
6219049a
BL
717
718 pgd = pgd_offset(mm, address);
719 if (!pgd_present(*pgd))
720 goto out;
721
c2febafc
KS
722 p4d = p4d_offset(pgd, address);
723 if (!p4d_present(*p4d))
724 goto out;
725
726 pud = pud_offset(p4d, address);
6219049a
BL
727 if (!pud_present(*pud))
728 goto out;
729
730 pmd = pmd_offset(pud, address);
f72e7dcd 731 /*
8809aa2d 732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
733 * without holding anon_vma lock for write. So when looking for a
734 * genuine pmde (in which to find pte), test present and !THP together.
735 */
e37c6982
CB
736 pmde = *pmd;
737 barrier();
f72e7dcd 738 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
739 pmd = NULL;
740out:
741 return pmd;
742}
743
8749cfea
VD
744struct page_referenced_arg {
745 int mapcount;
746 int referenced;
747 unsigned long vm_flags;
748 struct mem_cgroup *memcg;
749};
750/*
751 * arg: page_referenced_arg will be passed
752 */
e4b82222 753static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
754 unsigned long address, void *arg)
755{
8749cfea 756 struct page_referenced_arg *pra = arg;
8eaedede
KS
757 struct page_vma_mapped_walk pvmw = {
758 .page = page,
759 .vma = vma,
760 .address = address,
761 };
8749cfea
VD
762 int referenced = 0;
763
8eaedede
KS
764 while (page_vma_mapped_walk(&pvmw)) {
765 address = pvmw.address;
b20ce5e0 766
8eaedede
KS
767 if (vma->vm_flags & VM_LOCKED) {
768 page_vma_mapped_walk_done(&pvmw);
769 pra->vm_flags |= VM_LOCKED;
e4b82222 770 return false; /* To break the loop */
8eaedede 771 }
71e3aac0 772
8eaedede
KS
773 if (pvmw.pte) {
774 if (ptep_clear_flush_young_notify(vma, address,
775 pvmw.pte)) {
776 /*
777 * Don't treat a reference through
778 * a sequentially read mapping as such.
779 * If the page has been used in another mapping,
780 * we will catch it; if this other mapping is
781 * already gone, the unmap path will have set
782 * PG_referenced or activated the page.
783 */
784 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
785 referenced++;
786 }
787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
788 if (pmdp_clear_flush_young_notify(vma, address,
789 pvmw.pmd))
8749cfea 790 referenced++;
8eaedede
KS
791 } else {
792 /* unexpected pmd-mapped page? */
793 WARN_ON_ONCE(1);
8749cfea 794 }
8eaedede
KS
795
796 pra->mapcount--;
b20ce5e0 797 }
b20ce5e0 798
33c3fc71
VD
799 if (referenced)
800 clear_page_idle(page);
801 if (test_and_clear_page_young(page))
802 referenced++;
803
9f32624b
JK
804 if (referenced) {
805 pra->referenced++;
806 pra->vm_flags |= vma->vm_flags;
1da177e4 807 }
34bbd704 808
9f32624b 809 if (!pra->mapcount)
e4b82222 810 return false; /* To break the loop */
9f32624b 811
e4b82222 812 return true;
1da177e4
LT
813}
814
9f32624b 815static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 816{
9f32624b
JK
817 struct page_referenced_arg *pra = arg;
818 struct mem_cgroup *memcg = pra->memcg;
1da177e4 819
9f32624b
JK
820 if (!mm_match_cgroup(vma->vm_mm, memcg))
821 return true;
1da177e4 822
9f32624b 823 return false;
1da177e4
LT
824}
825
826/**
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
72835c86 830 * @memcg: target memory cgroup
6fe6b7e3 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
832 *
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
835 */
6fe6b7e3
WF
836int page_referenced(struct page *page,
837 int is_locked,
72835c86 838 struct mem_cgroup *memcg,
6fe6b7e3 839 unsigned long *vm_flags)
1da177e4 840{
5ad64688 841 int we_locked = 0;
9f32624b 842 struct page_referenced_arg pra = {
b20ce5e0 843 .mapcount = total_mapcount(page),
9f32624b
JK
844 .memcg = memcg,
845 };
846 struct rmap_walk_control rwc = {
847 .rmap_one = page_referenced_one,
848 .arg = (void *)&pra,
849 .anon_lock = page_lock_anon_vma_read,
850 };
1da177e4 851
6fe6b7e3 852 *vm_flags = 0;
059d8442 853 if (!pra.mapcount)
9f32624b
JK
854 return 0;
855
856 if (!page_rmapping(page))
857 return 0;
858
859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 we_locked = trylock_page(page);
861 if (!we_locked)
862 return 1;
1da177e4 863 }
9f32624b
JK
864
865 /*
866 * If we are reclaiming on behalf of a cgroup, skip
867 * counting on behalf of references from different
868 * cgroups
869 */
870 if (memcg) {
871 rwc.invalid_vma = invalid_page_referenced_vma;
872 }
873
c24f386c 874 rmap_walk(page, &rwc);
9f32624b
JK
875 *vm_flags = pra.vm_flags;
876
877 if (we_locked)
878 unlock_page(page);
879
880 return pra.referenced;
1da177e4
LT
881}
882
e4b82222 883static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 884 unsigned long address, void *arg)
d08b3851 885{
f27176cf
KS
886 struct page_vma_mapped_walk pvmw = {
887 .page = page,
888 .vma = vma,
889 .address = address,
890 .flags = PVMW_SYNC,
891 };
ac46d4f3 892 struct mmu_notifier_range range;
9853a407 893 int *cleaned = arg;
d08b3851 894
369ea824
JG
895 /*
896 * We have to assume the worse case ie pmd for invalidation. Note that
897 * the page can not be free from this function.
898 */
7269f999
JG
899 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
900 0, vma, vma->vm_mm, address,
a50b854e 901 min(vma->vm_end, address + page_size(page)));
ac46d4f3 902 mmu_notifier_invalidate_range_start(&range);
369ea824 903
f27176cf
KS
904 while (page_vma_mapped_walk(&pvmw)) {
905 int ret = 0;
369ea824 906
1f18b296 907 address = pvmw.address;
f27176cf
KS
908 if (pvmw.pte) {
909 pte_t entry;
910 pte_t *pte = pvmw.pte;
911
912 if (!pte_dirty(*pte) && !pte_write(*pte))
913 continue;
914
785373b4
LT
915 flush_cache_page(vma, address, pte_pfn(*pte));
916 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
917 entry = pte_wrprotect(entry);
918 entry = pte_mkclean(entry);
785373b4 919 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
920 ret = 1;
921 } else {
922#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
923 pmd_t *pmd = pvmw.pmd;
924 pmd_t entry;
925
926 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
927 continue;
928
785373b4 929 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 930 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
931 entry = pmd_wrprotect(entry);
932 entry = pmd_mkclean(entry);
785373b4 933 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
934 ret = 1;
935#else
936 /* unexpected pmd-mapped page? */
937 WARN_ON_ONCE(1);
938#endif
939 }
d08b3851 940
0f10851e
JG
941 /*
942 * No need to call mmu_notifier_invalidate_range() as we are
943 * downgrading page table protection not changing it to point
944 * to a new page.
945 *
ad56b738 946 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
947 */
948 if (ret)
f27176cf 949 (*cleaned)++;
c2fda5fe 950 }
d08b3851 951
ac46d4f3 952 mmu_notifier_invalidate_range_end(&range);
369ea824 953
e4b82222 954 return true;
d08b3851
PZ
955}
956
9853a407 957static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 958{
9853a407 959 if (vma->vm_flags & VM_SHARED)
871beb8c 960 return false;
d08b3851 961
871beb8c 962 return true;
d08b3851
PZ
963}
964
965int page_mkclean(struct page *page)
966{
9853a407
JK
967 int cleaned = 0;
968 struct address_space *mapping;
969 struct rmap_walk_control rwc = {
970 .arg = (void *)&cleaned,
971 .rmap_one = page_mkclean_one,
972 .invalid_vma = invalid_mkclean_vma,
973 };
d08b3851
PZ
974
975 BUG_ON(!PageLocked(page));
976
9853a407
JK
977 if (!page_mapped(page))
978 return 0;
979
980 mapping = page_mapping(page);
981 if (!mapping)
982 return 0;
983
984 rmap_walk(page, &rwc);
d08b3851 985
9853a407 986 return cleaned;
d08b3851 987}
60b59bea 988EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 989
c44b6743
RR
990/**
991 * page_move_anon_rmap - move a page to our anon_vma
992 * @page: the page to move to our anon_vma
993 * @vma: the vma the page belongs to
c44b6743
RR
994 *
995 * When a page belongs exclusively to one process after a COW event,
996 * that page can be moved into the anon_vma that belongs to just that
997 * process, so the rmap code will not search the parent or sibling
998 * processes.
999 */
5a49973d 1000void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1001{
1002 struct anon_vma *anon_vma = vma->anon_vma;
1003
5a49973d
HD
1004 page = compound_head(page);
1005
309381fe 1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1007 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1008
1009 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1010 /*
1011 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1012 * simultaneously, so a concurrent reader (eg page_referenced()'s
1013 * PageAnon()) will not see one without the other.
1014 */
1015 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1016}
1017
9617d95e 1018/**
4e1c1975 1019 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1020 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1021 * @vma: VM area to add page to.
1022 * @address: User virtual address of the mapping
e8a03feb 1023 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1024 */
1025static void __page_set_anon_rmap(struct page *page,
e8a03feb 1026 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1027{
e8a03feb 1028 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1029
e8a03feb 1030 BUG_ON(!anon_vma);
ea90002b 1031
4e1c1975
AK
1032 if (PageAnon(page))
1033 return;
1034
ea90002b 1035 /*
e8a03feb
RR
1036 * If the page isn't exclusively mapped into this vma,
1037 * we must use the _oldest_ possible anon_vma for the
1038 * page mapping!
ea90002b 1039 */
4e1c1975 1040 if (!exclusive)
288468c3 1041 anon_vma = anon_vma->root;
9617d95e 1042
9617d95e
NP
1043 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044 page->mapping = (struct address_space *) anon_vma;
9617d95e 1045 page->index = linear_page_index(vma, address);
9617d95e
NP
1046}
1047
c97a9e10 1048/**
43d8eac4 1049 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1050 * @page: the page to add the mapping to
1051 * @vma: the vm area in which the mapping is added
1052 * @address: the user virtual address mapped
1053 */
1054static void __page_check_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address)
1056{
1057#ifdef CONFIG_DEBUG_VM
1058 /*
1059 * The page's anon-rmap details (mapping and index) are guaranteed to
1060 * be set up correctly at this point.
1061 *
1062 * We have exclusion against page_add_anon_rmap because the caller
1063 * always holds the page locked, except if called from page_dup_rmap,
1064 * in which case the page is already known to be setup.
1065 *
1066 * We have exclusion against page_add_new_anon_rmap because those pages
1067 * are initially only visible via the pagetables, and the pte is locked
1068 * over the call to page_add_new_anon_rmap.
1069 */
44ab57a0 1070 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1071 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1072#endif
1073}
1074
1da177e4
LT
1075/**
1076 * page_add_anon_rmap - add pte mapping to an anonymous page
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
d281ee61 1080 * @compound: charge the page as compound or small page
1da177e4 1081 *
5ad64688 1082 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1083 * the anon_vma case: to serialize mapping,index checking after setting,
1084 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1085 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1086 */
1087void page_add_anon_rmap(struct page *page,
d281ee61 1088 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1089{
d281ee61 1090 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1091}
1092
1093/*
1094 * Special version of the above for do_swap_page, which often runs
1095 * into pages that are exclusively owned by the current process.
1096 * Everybody else should continue to use page_add_anon_rmap above.
1097 */
1098void do_page_add_anon_rmap(struct page *page,
d281ee61 1099 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1100{
53f9263b
KS
1101 bool compound = flags & RMAP_COMPOUND;
1102 bool first;
1103
e9b61f19
KS
1104 if (compound) {
1105 atomic_t *mapcount;
53f9263b 1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1107 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1108 mapcount = compound_mapcount_ptr(page);
1109 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1110 } else {
1111 first = atomic_inc_and_test(&page->_mapcount);
1112 }
1113
79134171 1114 if (first) {
d281ee61 1115 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1116 /*
1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 * these counters are not modified in interrupt context, and
1119 * pte lock(a spinlock) is held, which implies preemption
1120 * disabled.
1121 */
65c45377 1122 if (compound)
11fb9989 1123 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1124 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1125 }
5ad64688
HD
1126 if (unlikely(PageKsm(page)))
1127 return;
1128
309381fe 1129 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1130
5dbe0af4 1131 /* address might be in next vma when migration races vma_adjust */
5ad64688 1132 if (first)
d281ee61
KS
1133 __page_set_anon_rmap(page, vma, address,
1134 flags & RMAP_EXCLUSIVE);
69029cd5 1135 else
c97a9e10 1136 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1137}
1138
43d8eac4 1139/**
9617d95e
NP
1140 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1141 * @page: the page to add the mapping to
1142 * @vma: the vm area in which the mapping is added
1143 * @address: the user virtual address mapped
d281ee61 1144 * @compound: charge the page as compound or small page
9617d95e
NP
1145 *
1146 * Same as page_add_anon_rmap but must only be called on *new* pages.
1147 * This means the inc-and-test can be bypassed.
c97a9e10 1148 * Page does not have to be locked.
9617d95e
NP
1149 */
1150void page_add_new_anon_rmap(struct page *page,
d281ee61 1151 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1152{
d281ee61
KS
1153 int nr = compound ? hpage_nr_pages(page) : 1;
1154
81d1b09c 1155 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1156 __SetPageSwapBacked(page);
d281ee61
KS
1157 if (compound) {
1158 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1159 /* increment count (starts at -1) */
1160 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1161 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1162 } else {
1163 /* Anon THP always mapped first with PMD */
1164 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1165 /* increment count (starts at -1) */
1166 atomic_set(&page->_mapcount, 0);
d281ee61 1167 }
4b9d0fab 1168 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1169 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1170}
1171
1da177e4
LT
1172/**
1173 * page_add_file_rmap - add pte mapping to a file page
1174 * @page: the page to add the mapping to
e8b098fc 1175 * @compound: charge the page as compound or small page
1da177e4 1176 *
b8072f09 1177 * The caller needs to hold the pte lock.
1da177e4 1178 */
dd78fedd 1179void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1180{
dd78fedd
KS
1181 int i, nr = 1;
1182
1183 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1184 lock_page_memcg(page);
dd78fedd
KS
1185 if (compound && PageTransHuge(page)) {
1186 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1187 if (atomic_inc_and_test(&page[i]._mapcount))
1188 nr++;
1189 }
1190 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1191 goto out;
99cb0dbd
SL
1192 if (PageSwapBacked(page))
1193 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1194 else
1195 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
dd78fedd 1196 } else {
c8efc390
KS
1197 if (PageTransCompound(page) && page_mapping(page)) {
1198 VM_WARN_ON_ONCE(!PageLocked(page));
1199
9a73f61b
KS
1200 SetPageDoubleMap(compound_head(page));
1201 if (PageMlocked(page))
1202 clear_page_mlock(compound_head(page));
1203 }
dd78fedd
KS
1204 if (!atomic_inc_and_test(&page->_mapcount))
1205 goto out;
d69b042f 1206 }
00f3ca2c 1207 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1208out:
62cccb8c 1209 unlock_page_memcg(page);
1da177e4
LT
1210}
1211
dd78fedd 1212static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1213{
dd78fedd
KS
1214 int i, nr = 1;
1215
57dea93a 1216 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1217 lock_page_memcg(page);
8186eb6a 1218
53f9263b
KS
1219 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1220 if (unlikely(PageHuge(page))) {
1221 /* hugetlb pages are always mapped with pmds */
1222 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1223 goto out;
53f9263b 1224 }
8186eb6a 1225
53f9263b 1226 /* page still mapped by someone else? */
dd78fedd
KS
1227 if (compound && PageTransHuge(page)) {
1228 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1229 if (atomic_add_negative(-1, &page[i]._mapcount))
1230 nr++;
1231 }
1232 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1233 goto out;
99cb0dbd
SL
1234 if (PageSwapBacked(page))
1235 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1236 else
1237 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
dd78fedd
KS
1238 } else {
1239 if (!atomic_add_negative(-1, &page->_mapcount))
1240 goto out;
1241 }
8186eb6a
JW
1242
1243 /*
00f3ca2c 1244 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1245 * these counters are not modified in interrupt context, and
1246 * pte lock(a spinlock) is held, which implies preemption disabled.
1247 */
00f3ca2c 1248 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1249
1250 if (unlikely(PageMlocked(page)))
1251 clear_page_mlock(page);
1252out:
62cccb8c 1253 unlock_page_memcg(page);
8186eb6a
JW
1254}
1255
53f9263b
KS
1256static void page_remove_anon_compound_rmap(struct page *page)
1257{
1258 int i, nr;
1259
1260 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1261 return;
1262
1263 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1264 if (unlikely(PageHuge(page)))
1265 return;
1266
1267 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1268 return;
1269
11fb9989 1270 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1271
1272 if (TestClearPageDoubleMap(page)) {
1273 /*
1274 * Subpages can be mapped with PTEs too. Check how many of
1275 * themi are still mapped.
1276 */
1277 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1278 if (atomic_add_negative(-1, &page[i]._mapcount))
1279 nr++;
1280 }
1281 } else {
1282 nr = HPAGE_PMD_NR;
1283 }
1284
e90309c9
KS
1285 if (unlikely(PageMlocked(page)))
1286 clear_page_mlock(page);
1287
9a982250 1288 if (nr) {
4b9d0fab 1289 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
9a982250
KS
1290 deferred_split_huge_page(page);
1291 }
53f9263b
KS
1292}
1293
1da177e4
LT
1294/**
1295 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1296 * @page: page to remove mapping from
1297 * @compound: uncharge the page as compound or small page
1da177e4 1298 *
b8072f09 1299 * The caller needs to hold the pte lock.
1da177e4 1300 */
d281ee61 1301void page_remove_rmap(struct page *page, bool compound)
1da177e4 1302{
dd78fedd
KS
1303 if (!PageAnon(page))
1304 return page_remove_file_rmap(page, compound);
89c06bd5 1305
53f9263b
KS
1306 if (compound)
1307 return page_remove_anon_compound_rmap(page);
1308
b904dcfe
KM
1309 /* page still mapped by someone else? */
1310 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1311 return;
1312
0fe6e20b 1313 /*
bea04b07
JZ
1314 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1315 * these counters are not modified in interrupt context, and
bea04b07 1316 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1317 */
4b9d0fab 1318 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1319
e6c509f8
HD
1320 if (unlikely(PageMlocked(page)))
1321 clear_page_mlock(page);
8186eb6a 1322
9a982250
KS
1323 if (PageTransCompound(page))
1324 deferred_split_huge_page(compound_head(page));
1325
b904dcfe
KM
1326 /*
1327 * It would be tidy to reset the PageAnon mapping here,
1328 * but that might overwrite a racing page_add_anon_rmap
1329 * which increments mapcount after us but sets mapping
2d4894b5 1330 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1331 * and remember that it's only reliable while mapped.
1332 * Leaving it set also helps swapoff to reinstate ptes
1333 * faster for those pages still in swapcache.
1334 */
1da177e4
LT
1335}
1336
1337/*
52629506 1338 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1339 */
e4b82222 1340static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1341 unsigned long address, void *arg)
1da177e4
LT
1342{
1343 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1344 struct page_vma_mapped_walk pvmw = {
1345 .page = page,
1346 .vma = vma,
1347 .address = address,
1348 };
1da177e4 1349 pte_t pteval;
c7ab0d2f 1350 struct page *subpage;
785373b4 1351 bool ret = true;
ac46d4f3 1352 struct mmu_notifier_range range;
802a3a92 1353 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1354
b87537d9
HD
1355 /* munlock has nothing to gain from examining un-locked vmas */
1356 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1357 return true;
b87537d9 1358
a5430dda
JG
1359 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1360 is_zone_device_page(page) && !is_device_private_page(page))
1361 return true;
1362
fec89c10
KS
1363 if (flags & TTU_SPLIT_HUGE_PMD) {
1364 split_huge_pmd_address(vma, address,
b5ff8161 1365 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1366 }
1367
369ea824 1368 /*
017b1660
MK
1369 * For THP, we have to assume the worse case ie pmd for invalidation.
1370 * For hugetlb, it could be much worse if we need to do pud
1371 * invalidation in the case of pmd sharing.
1372 *
1373 * Note that the page can not be free in this function as call of
1374 * try_to_unmap() must hold a reference on the page.
369ea824 1375 */
7269f999 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1377 address,
a50b854e 1378 min(vma->vm_end, address + page_size(page)));
017b1660
MK
1379 if (PageHuge(page)) {
1380 /*
1381 * If sharing is possible, start and end will be adjusted
1382 * accordingly.
1383 */
ac46d4f3
JG
1384 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1385 &range.end);
017b1660 1386 }
ac46d4f3 1387 mmu_notifier_invalidate_range_start(&range);
369ea824 1388
c7ab0d2f 1389 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1390#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1391 /* PMD-mapped THP migration entry */
1392 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1393 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1394
616b8371
ZY
1395 set_pmd_migration_entry(&pvmw, page);
1396 continue;
1397 }
1398#endif
1399
c7ab0d2f
KS
1400 /*
1401 * If the page is mlock()d, we cannot swap it out.
1402 * If it's recently referenced (perhaps page_referenced
1403 * skipped over this mm) then we should reactivate it.
1404 */
1405 if (!(flags & TTU_IGNORE_MLOCK)) {
1406 if (vma->vm_flags & VM_LOCKED) {
1407 /* PTE-mapped THP are never mlocked */
1408 if (!PageTransCompound(page)) {
1409 /*
1410 * Holding pte lock, we do *not* need
1411 * mmap_sem here
1412 */
1413 mlock_vma_page(page);
1414 }
e4b82222 1415 ret = false;
c7ab0d2f
KS
1416 page_vma_mapped_walk_done(&pvmw);
1417 break;
9a73f61b 1418 }
c7ab0d2f
KS
1419 if (flags & TTU_MUNLOCK)
1420 continue;
b87537d9 1421 }
c7ab0d2f 1422
8346242a
KS
1423 /* Unexpected PMD-mapped THP? */
1424 VM_BUG_ON_PAGE(!pvmw.pte, page);
1425
1426 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1427 address = pvmw.address;
1428
017b1660
MK
1429 if (PageHuge(page)) {
1430 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1431 /*
1432 * huge_pmd_unshare unmapped an entire PMD
1433 * page. There is no way of knowing exactly
1434 * which PMDs may be cached for this mm, so
1435 * we must flush them all. start/end were
1436 * already adjusted above to cover this range.
1437 */
ac46d4f3
JG
1438 flush_cache_range(vma, range.start, range.end);
1439 flush_tlb_range(vma, range.start, range.end);
1440 mmu_notifier_invalidate_range(mm, range.start,
1441 range.end);
017b1660
MK
1442
1443 /*
1444 * The ref count of the PMD page was dropped
1445 * which is part of the way map counting
1446 * is done for shared PMDs. Return 'true'
1447 * here. When there is no other sharing,
1448 * huge_pmd_unshare returns false and we will
1449 * unmap the actual page and drop map count
1450 * to zero.
1451 */
1452 page_vma_mapped_walk_done(&pvmw);
1453 break;
1454 }
1455 }
8346242a 1456
a5430dda
JG
1457 if (IS_ENABLED(CONFIG_MIGRATION) &&
1458 (flags & TTU_MIGRATION) &&
1459 is_zone_device_page(page)) {
1460 swp_entry_t entry;
1461 pte_t swp_pte;
1462
1463 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1464
1465 /*
1466 * Store the pfn of the page in a special migration
1467 * pte. do_swap_page() will wait until the migration
1468 * pte is removed and then restart fault handling.
1469 */
1470 entry = make_migration_entry(page, 0);
1471 swp_pte = swp_entry_to_pte(entry);
1472 if (pte_soft_dirty(pteval))
1473 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1474 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1475 /*
1476 * No need to invalidate here it will synchronize on
1477 * against the special swap migration pte.
1de13ee5
RC
1478 *
1479 * The assignment to subpage above was computed from a
1480 * swap PTE which results in an invalid pointer.
1481 * Since only PAGE_SIZE pages can currently be
1482 * migrated, just set it to page. This will need to be
1483 * changed when hugepage migrations to device private
1484 * memory are supported.
0f10851e 1485 */
1de13ee5 1486 subpage = page;
a5430dda
JG
1487 goto discard;
1488 }
1489
c7ab0d2f 1490 if (!(flags & TTU_IGNORE_ACCESS)) {
785373b4 1491 if (ptep_clear_flush_young_notify(vma, address,
c7ab0d2f 1492 pvmw.pte)) {
e4b82222 1493 ret = false;
c7ab0d2f
KS
1494 page_vma_mapped_walk_done(&pvmw);
1495 break;
1496 }
b291f000 1497 }
1da177e4 1498
c7ab0d2f 1499 /* Nuke the page table entry. */
785373b4 1500 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1501 if (should_defer_flush(mm, flags)) {
1502 /*
1503 * We clear the PTE but do not flush so potentially
1504 * a remote CPU could still be writing to the page.
1505 * If the entry was previously clean then the
1506 * architecture must guarantee that a clear->dirty
1507 * transition on a cached TLB entry is written through
1508 * and traps if the PTE is unmapped.
1509 */
785373b4 1510 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1511
1512 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1513 } else {
785373b4 1514 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1515 }
72b252ae 1516
c7ab0d2f
KS
1517 /* Move the dirty bit to the page. Now the pte is gone. */
1518 if (pte_dirty(pteval))
1519 set_page_dirty(page);
1da177e4 1520
c7ab0d2f
KS
1521 /* Update high watermark before we lower rss */
1522 update_hiwater_rss(mm);
1da177e4 1523
c7ab0d2f 1524 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1525 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1526 if (PageHuge(page)) {
d8c6546b 1527 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1528 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1529 pvmw.pte, pteval,
1530 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1531 } else {
1532 dec_mm_counter(mm, mm_counter(page));
785373b4 1533 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1534 }
365e9c87 1535
bce73e48 1536 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1537 /*
1538 * The guest indicated that the page content is of no
1539 * interest anymore. Simply discard the pte, vmscan
1540 * will take care of the rest.
bce73e48
CB
1541 * A future reference will then fault in a new zero
1542 * page. When userfaultfd is active, we must not drop
1543 * this page though, as its main user (postcopy
1544 * migration) will not expect userfaults on already
1545 * copied pages.
c7ab0d2f 1546 */
eca56ff9 1547 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1548 /* We have to invalidate as we cleared the pte */
1549 mmu_notifier_invalidate_range(mm, address,
1550 address + PAGE_SIZE);
c7ab0d2f 1551 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1552 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1553 swp_entry_t entry;
1554 pte_t swp_pte;
ca827d55
KA
1555
1556 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1557 set_pte_at(mm, address, pvmw.pte, pteval);
1558 ret = false;
1559 page_vma_mapped_walk_done(&pvmw);
1560 break;
1561 }
1562
c7ab0d2f
KS
1563 /*
1564 * Store the pfn of the page in a special migration
1565 * pte. do_swap_page() will wait until the migration
1566 * pte is removed and then restart fault handling.
1567 */
1568 entry = make_migration_entry(subpage,
1569 pte_write(pteval));
1570 swp_pte = swp_entry_to_pte(entry);
1571 if (pte_soft_dirty(pteval))
1572 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1573 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1574 /*
1575 * No need to invalidate here it will synchronize on
1576 * against the special swap migration pte.
1577 */
c7ab0d2f
KS
1578 } else if (PageAnon(page)) {
1579 swp_entry_t entry = { .val = page_private(subpage) };
1580 pte_t swp_pte;
1581 /*
1582 * Store the swap location in the pte.
1583 * See handle_pte_fault() ...
1584 */
eb94a878
MK
1585 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1586 WARN_ON_ONCE(1);
83612a94 1587 ret = false;
369ea824 1588 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1589 mmu_notifier_invalidate_range(mm, address,
1590 address + PAGE_SIZE);
eb94a878
MK
1591 page_vma_mapped_walk_done(&pvmw);
1592 break;
1593 }
c7ab0d2f 1594
802a3a92
SL
1595 /* MADV_FREE page check */
1596 if (!PageSwapBacked(page)) {
1597 if (!PageDirty(page)) {
0f10851e
JG
1598 /* Invalidate as we cleared the pte */
1599 mmu_notifier_invalidate_range(mm,
1600 address, address + PAGE_SIZE);
802a3a92
SL
1601 dec_mm_counter(mm, MM_ANONPAGES);
1602 goto discard;
1603 }
1604
1605 /*
1606 * If the page was redirtied, it cannot be
1607 * discarded. Remap the page to page table.
1608 */
785373b4 1609 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1610 SetPageSwapBacked(page);
e4b82222 1611 ret = false;
802a3a92
SL
1612 page_vma_mapped_walk_done(&pvmw);
1613 break;
c7ab0d2f 1614 }
854e9ed0 1615
c7ab0d2f 1616 if (swap_duplicate(entry) < 0) {
785373b4 1617 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1618 ret = false;
c7ab0d2f
KS
1619 page_vma_mapped_walk_done(&pvmw);
1620 break;
1621 }
ca827d55
KA
1622 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1623 set_pte_at(mm, address, pvmw.pte, pteval);
1624 ret = false;
1625 page_vma_mapped_walk_done(&pvmw);
1626 break;
1627 }
c7ab0d2f
KS
1628 if (list_empty(&mm->mmlist)) {
1629 spin_lock(&mmlist_lock);
1630 if (list_empty(&mm->mmlist))
1631 list_add(&mm->mmlist, &init_mm.mmlist);
1632 spin_unlock(&mmlist_lock);
1633 }
854e9ed0 1634 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1635 inc_mm_counter(mm, MM_SWAPENTS);
1636 swp_pte = swp_entry_to_pte(entry);
1637 if (pte_soft_dirty(pteval))
1638 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1639 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1640 /* Invalidate as we cleared the pte */
1641 mmu_notifier_invalidate_range(mm, address,
1642 address + PAGE_SIZE);
1643 } else {
1644 /*
906f9cdf
HD
1645 * This is a locked file-backed page, thus it cannot
1646 * be removed from the page cache and replaced by a new
1647 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1648 * concurrent thread might update its page table to
1649 * point at new page while a device still is using this
1650 * page.
1651 *
ad56b738 1652 * See Documentation/vm/mmu_notifier.rst
0f10851e 1653 */
c7ab0d2f 1654 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1655 }
854e9ed0 1656discard:
0f10851e
JG
1657 /*
1658 * No need to call mmu_notifier_invalidate_range() it has be
1659 * done above for all cases requiring it to happen under page
1660 * table lock before mmu_notifier_invalidate_range_end()
1661 *
ad56b738 1662 * See Documentation/vm/mmu_notifier.rst
0f10851e 1663 */
c7ab0d2f
KS
1664 page_remove_rmap(subpage, PageHuge(page));
1665 put_page(page);
c7ab0d2f 1666 }
369ea824 1667
ac46d4f3 1668 mmu_notifier_invalidate_range_end(&range);
369ea824 1669
caed0f48 1670 return ret;
1da177e4
LT
1671}
1672
71e3aac0 1673bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1674{
1675 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1676
1677 if (!maybe_stack)
1678 return false;
1679
1680 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1681 VM_STACK_INCOMPLETE_SETUP)
1682 return true;
1683
1684 return false;
1685}
1686
52629506
JK
1687static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1688{
1689 return is_vma_temporary_stack(vma);
1690}
1691
2a52bcbc 1692static int page_mapcount_is_zero(struct page *page)
52629506 1693{
c7ab0d2f 1694 return !total_mapcount(page);
2a52bcbc 1695}
52629506 1696
1da177e4
LT
1697/**
1698 * try_to_unmap - try to remove all page table mappings to a page
1699 * @page: the page to get unmapped
14fa31b8 1700 * @flags: action and flags
1da177e4
LT
1701 *
1702 * Tries to remove all the page table entries which are mapping this
1703 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1704 *
666e5a40 1705 * If unmap is successful, return true. Otherwise, false.
1da177e4 1706 */
666e5a40 1707bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1708{
52629506
JK
1709 struct rmap_walk_control rwc = {
1710 .rmap_one = try_to_unmap_one,
802a3a92 1711 .arg = (void *)flags,
2a52bcbc 1712 .done = page_mapcount_is_zero,
52629506
JK
1713 .anon_lock = page_lock_anon_vma_read,
1714 };
1da177e4 1715
52629506
JK
1716 /*
1717 * During exec, a temporary VMA is setup and later moved.
1718 * The VMA is moved under the anon_vma lock but not the
1719 * page tables leading to a race where migration cannot
1720 * find the migration ptes. Rather than increasing the
1721 * locking requirements of exec(), migration skips
1722 * temporary VMAs until after exec() completes.
1723 */
b5ff8161
NH
1724 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1725 && !PageKsm(page) && PageAnon(page))
52629506
JK
1726 rwc.invalid_vma = invalid_migration_vma;
1727
2a52bcbc 1728 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1729 rmap_walk_locked(page, &rwc);
2a52bcbc 1730 else
33fc80e2 1731 rmap_walk(page, &rwc);
52629506 1732
666e5a40 1733 return !page_mapcount(page) ? true : false;
1da177e4 1734}
81b4082d 1735
2a52bcbc
KS
1736static int page_not_mapped(struct page *page)
1737{
1738 return !page_mapped(page);
1739};
1740
b291f000
NP
1741/**
1742 * try_to_munlock - try to munlock a page
1743 * @page: the page to be munlocked
1744 *
1745 * Called from munlock code. Checks all of the VMAs mapping the page
1746 * to make sure nobody else has this page mlocked. The page will be
1747 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1748 */
854e9ed0 1749
192d7232
MK
1750void try_to_munlock(struct page *page)
1751{
e8351ac9
JK
1752 struct rmap_walk_control rwc = {
1753 .rmap_one = try_to_unmap_one,
802a3a92 1754 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1755 .done = page_not_mapped,
e8351ac9
JK
1756 .anon_lock = page_lock_anon_vma_read,
1757
1758 };
1759
309381fe 1760 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1761 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1762
192d7232 1763 rmap_walk(page, &rwc);
b291f000 1764}
e9995ef9 1765
01d8b20d 1766void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1767{
01d8b20d 1768 struct anon_vma *root = anon_vma->root;
76545066 1769
624483f3 1770 anon_vma_free(anon_vma);
01d8b20d
PZ
1771 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1772 anon_vma_free(root);
76545066 1773}
76545066 1774
0dd1c7bb
JK
1775static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1776 struct rmap_walk_control *rwc)
faecd8dd
JK
1777{
1778 struct anon_vma *anon_vma;
1779
0dd1c7bb
JK
1780 if (rwc->anon_lock)
1781 return rwc->anon_lock(page);
1782
faecd8dd
JK
1783 /*
1784 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1785 * because that depends on page_mapped(); but not all its usages
1786 * are holding mmap_sem. Users without mmap_sem are required to
1787 * take a reference count to prevent the anon_vma disappearing
1788 */
1789 anon_vma = page_anon_vma(page);
1790 if (!anon_vma)
1791 return NULL;
1792
1793 anon_vma_lock_read(anon_vma);
1794 return anon_vma;
1795}
1796
e9995ef9 1797/*
e8351ac9
JK
1798 * rmap_walk_anon - do something to anonymous page using the object-based
1799 * rmap method
1800 * @page: the page to be handled
1801 * @rwc: control variable according to each walk type
1802 *
1803 * Find all the mappings of a page using the mapping pointer and the vma chains
1804 * contained in the anon_vma struct it points to.
1805 *
1806 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1807 * where the page was found will be held for write. So, we won't recheck
1808 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1809 * LOCKED.
e9995ef9 1810 */
1df631ae 1811static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1812 bool locked)
e9995ef9
HD
1813{
1814 struct anon_vma *anon_vma;
a8fa41ad 1815 pgoff_t pgoff_start, pgoff_end;
5beb4930 1816 struct anon_vma_chain *avc;
e9995ef9 1817
b9773199
KS
1818 if (locked) {
1819 anon_vma = page_anon_vma(page);
1820 /* anon_vma disappear under us? */
1821 VM_BUG_ON_PAGE(!anon_vma, page);
1822 } else {
1823 anon_vma = rmap_walk_anon_lock(page, rwc);
1824 }
e9995ef9 1825 if (!anon_vma)
1df631ae 1826 return;
faecd8dd 1827
a8fa41ad
KS
1828 pgoff_start = page_to_pgoff(page);
1829 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1830 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1831 pgoff_start, pgoff_end) {
5beb4930 1832 struct vm_area_struct *vma = avc->vma;
e9995ef9 1833 unsigned long address = vma_address(page, vma);
0dd1c7bb 1834
ad12695f
AA
1835 cond_resched();
1836
0dd1c7bb
JK
1837 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1838 continue;
1839
e4b82222 1840 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1841 break;
0dd1c7bb
JK
1842 if (rwc->done && rwc->done(page))
1843 break;
e9995ef9 1844 }
b9773199
KS
1845
1846 if (!locked)
1847 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1848}
1849
e8351ac9
JK
1850/*
1851 * rmap_walk_file - do something to file page using the object-based rmap method
1852 * @page: the page to be handled
1853 * @rwc: control variable according to each walk type
1854 *
1855 * Find all the mappings of a page using the mapping pointer and the vma chains
1856 * contained in the address_space struct it points to.
1857 *
1858 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1859 * where the page was found will be held for write. So, we won't recheck
1860 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1861 * LOCKED.
1862 */
1df631ae 1863static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1864 bool locked)
e9995ef9 1865{
b9773199 1866 struct address_space *mapping = page_mapping(page);
a8fa41ad 1867 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1868 struct vm_area_struct *vma;
e9995ef9 1869
9f32624b
JK
1870 /*
1871 * The page lock not only makes sure that page->mapping cannot
1872 * suddenly be NULLified by truncation, it makes sure that the
1873 * structure at mapping cannot be freed and reused yet,
c8c06efa 1874 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1875 */
81d1b09c 1876 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1877
e9995ef9 1878 if (!mapping)
1df631ae 1879 return;
3dec0ba0 1880
a8fa41ad
KS
1881 pgoff_start = page_to_pgoff(page);
1882 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1883 if (!locked)
1884 i_mmap_lock_read(mapping);
a8fa41ad
KS
1885 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1886 pgoff_start, pgoff_end) {
e9995ef9 1887 unsigned long address = vma_address(page, vma);
0dd1c7bb 1888
ad12695f
AA
1889 cond_resched();
1890
0dd1c7bb
JK
1891 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1892 continue;
1893
e4b82222 1894 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1895 goto done;
1896 if (rwc->done && rwc->done(page))
1897 goto done;
e9995ef9 1898 }
0dd1c7bb 1899
0dd1c7bb 1900done:
b9773199
KS
1901 if (!locked)
1902 i_mmap_unlock_read(mapping);
e9995ef9
HD
1903}
1904
1df631ae 1905void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1906{
e9995ef9 1907 if (unlikely(PageKsm(page)))
1df631ae 1908 rmap_walk_ksm(page, rwc);
e9995ef9 1909 else if (PageAnon(page))
1df631ae 1910 rmap_walk_anon(page, rwc, false);
b9773199 1911 else
1df631ae 1912 rmap_walk_file(page, rwc, false);
b9773199
KS
1913}
1914
1915/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1916void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1917{
1918 /* no ksm support for now */
1919 VM_BUG_ON_PAGE(PageKsm(page), page);
1920 if (PageAnon(page))
1df631ae 1921 rmap_walk_anon(page, rwc, true);
e9995ef9 1922 else
1df631ae 1923 rmap_walk_file(page, rwc, true);
e9995ef9 1924}
0fe6e20b 1925
e3390f67 1926#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 1927/*
451b9514 1928 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
1929 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1930 * and no lru code, because we handle hugepages differently from common pages.
1931 */
0fe6e20b
NH
1932void hugepage_add_anon_rmap(struct page *page,
1933 struct vm_area_struct *vma, unsigned long address)
1934{
1935 struct anon_vma *anon_vma = vma->anon_vma;
1936 int first;
a850ea30
NH
1937
1938 BUG_ON(!PageLocked(page));
0fe6e20b 1939 BUG_ON(!anon_vma);
5dbe0af4 1940 /* address might be in next vma when migration races vma_adjust */
53f9263b 1941 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 1942 if (first)
451b9514 1943 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
1944}
1945
1946void hugepage_add_new_anon_rmap(struct page *page,
1947 struct vm_area_struct *vma, unsigned long address)
1948{
1949 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1950 atomic_set(compound_mapcount_ptr(page), 0);
451b9514 1951 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 1952}
e3390f67 1953#endif /* CONFIG_HUGETLB_PAGE */