dmaengine: at_hdmac: drop useless LIST_HEAD
[linux-2.6-block.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
88f306b6
KS
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
b43a9990 28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
88f306b6
KS
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
a52633d8 31 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
88f306b6
KS
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
b93b0163 36 * i_pages lock (widely used)
88f306b6
KS
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
b93b0163 40 * i_pages lock (widely used, in set_page_dirty,
88f306b6
KS
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 43 *
5a505085 44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
9b679320 45 * ->tasklist_lock
6a46079c 46 * pte map lock
1da177e4
LT
47 */
48
49#include <linux/mm.h>
6e84f315 50#include <linux/sched/mm.h>
29930025 51#include <linux/sched/task.h>
1da177e4
LT
52#include <linux/pagemap.h>
53#include <linux/swap.h>
54#include <linux/swapops.h>
55#include <linux/slab.h>
56#include <linux/init.h>
5ad64688 57#include <linux/ksm.h>
1da177e4
LT
58#include <linux/rmap.h>
59#include <linux/rcupdate.h>
b95f1b31 60#include <linux/export.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
64cdd548 63#include <linux/migrate.h>
0fe6e20b 64#include <linux/hugetlb.h>
ef5d437f 65#include <linux/backing-dev.h>
33c3fc71 66#include <linux/page_idle.h>
a5430dda 67#include <linux/memremap.h>
bce73e48 68#include <linux/userfaultfd_k.h>
1da177e4
LT
69
70#include <asm/tlbflush.h>
71
72b252ae
MG
72#include <trace/events/tlb.h>
73
b291f000
NP
74#include "internal.h"
75
fdd2e5f8 76static struct kmem_cache *anon_vma_cachep;
5beb4930 77static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
78
79static inline struct anon_vma *anon_vma_alloc(void)
80{
01d8b20d
PZ
81 struct anon_vma *anon_vma;
82
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
01d8b20d
PZ
88 /*
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
91 */
92 anon_vma->root = anon_vma;
93 }
94
95 return anon_vma;
fdd2e5f8
AB
96}
97
01d8b20d 98static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 99{
01d8b20d 100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
101
102 /*
4fc3f1d6 103 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
104 * we can safely hold the lock without the anon_vma getting
105 * freed.
106 *
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 110 *
4fc3f1d6
IM
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
88c22088 113 * LOCK MB
4fc3f1d6 114 * atomic_read() rwsem_is_locked()
88c22088
PZ
115 *
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
118 */
7f39dda9 119 might_sleep();
5a505085 120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 121 anon_vma_lock_write(anon_vma);
08b52706 122 anon_vma_unlock_write(anon_vma);
88c22088
PZ
123 }
124
fdd2e5f8
AB
125 kmem_cache_free(anon_vma_cachep, anon_vma);
126}
1da177e4 127
dd34739c 128static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 129{
dd34739c 130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
131}
132
e574b5fd 133static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
134{
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136}
137
6583a843
KC
138static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
141{
142 avc->vma = vma;
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
146}
147
d9d332e0 148/**
d5a187da 149 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
150 * @vma: the memory region in question
151 *
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
155 *
d5a187da
VB
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
23a0790a 158 * not we either need to find an adjacent mapping that we
d9d332e0
LT
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
162 *
163 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
d9d332e0
LT
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
168 *
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
172 * an anon_vma.
173 *
174 * This must be called with the mmap_sem held for reading.
175 */
d5a187da 176int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 177{
d5a187da
VB
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
5beb4930 180 struct anon_vma_chain *avc;
1da177e4
LT
181
182 might_sleep();
1da177e4 183
d5a187da
VB
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
185 if (!avc)
186 goto out_enomem;
187
188 anon_vma = find_mergeable_anon_vma(vma);
189 allocated = NULL;
190 if (!anon_vma) {
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
195 }
5beb4930 196
d5a187da
VB
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
204 anon_vma->degree++;
d9d332e0 205 allocated = NULL;
d5a187da
VB
206 avc = NULL;
207 }
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
1da177e4 210
d5a187da
VB
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
213 if (unlikely(avc))
214 anon_vma_chain_free(avc);
31f2b0eb 215
1da177e4 216 return 0;
5beb4930
RR
217
218 out_enomem_free_avc:
219 anon_vma_chain_free(avc);
220 out_enomem:
221 return -ENOMEM;
1da177e4
LT
222}
223
bb4aa396
LT
224/*
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * have the same vma.
228 *
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
231 */
232static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
233{
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
5a505085 237 up_write(&root->rwsem);
bb4aa396 238 root = new_root;
5a505085 239 down_write(&root->rwsem);
bb4aa396
LT
240 }
241 return root;
242}
243
244static inline void unlock_anon_vma_root(struct anon_vma *root)
245{
246 if (root)
5a505085 247 up_write(&root->rwsem);
bb4aa396
LT
248}
249
5beb4930
RR
250/*
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
7a3ef208
KK
253 *
254 * If dst->anon_vma is NULL this function tries to find and reuse existing
255 * anon_vma which has no vmas and only one child anon_vma. This prevents
256 * degradation of anon_vma hierarchy to endless linear chain in case of
257 * constantly forking task. On the other hand, an anon_vma with more than one
258 * child isn't reused even if there was no alive vma, thus rmap walker has a
259 * good chance of avoiding scanning the whole hierarchy when it searches where
260 * page is mapped.
5beb4930
RR
261 */
262int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 263{
5beb4930 264 struct anon_vma_chain *avc, *pavc;
bb4aa396 265 struct anon_vma *root = NULL;
5beb4930 266
646d87b4 267 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
268 struct anon_vma *anon_vma;
269
dd34739c
LT
270 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
271 if (unlikely(!avc)) {
272 unlock_anon_vma_root(root);
273 root = NULL;
274 avc = anon_vma_chain_alloc(GFP_KERNEL);
275 if (!avc)
276 goto enomem_failure;
277 }
bb4aa396
LT
278 anon_vma = pavc->anon_vma;
279 root = lock_anon_vma_root(root, anon_vma);
280 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
281
282 /*
283 * Reuse existing anon_vma if its degree lower than two,
284 * that means it has no vma and only one anon_vma child.
285 *
286 * Do not chose parent anon_vma, otherwise first child
287 * will always reuse it. Root anon_vma is never reused:
288 * it has self-parent reference and at least one child.
289 */
290 if (!dst->anon_vma && anon_vma != src->anon_vma &&
291 anon_vma->degree < 2)
292 dst->anon_vma = anon_vma;
5beb4930 293 }
7a3ef208
KK
294 if (dst->anon_vma)
295 dst->anon_vma->degree++;
bb4aa396 296 unlock_anon_vma_root(root);
5beb4930 297 return 0;
1da177e4 298
5beb4930 299 enomem_failure:
3fe89b3e
LY
300 /*
301 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
302 * decremented in unlink_anon_vmas().
303 * We can safely do this because callers of anon_vma_clone() don't care
304 * about dst->anon_vma if anon_vma_clone() failed.
305 */
306 dst->anon_vma = NULL;
5beb4930
RR
307 unlink_anon_vmas(dst);
308 return -ENOMEM;
1da177e4
LT
309}
310
5beb4930
RR
311/*
312 * Attach vma to its own anon_vma, as well as to the anon_vmas that
313 * the corresponding VMA in the parent process is attached to.
314 * Returns 0 on success, non-zero on failure.
315 */
316int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 317{
5beb4930
RR
318 struct anon_vma_chain *avc;
319 struct anon_vma *anon_vma;
c4ea95d7 320 int error;
1da177e4 321
5beb4930
RR
322 /* Don't bother if the parent process has no anon_vma here. */
323 if (!pvma->anon_vma)
324 return 0;
325
7a3ef208
KK
326 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
327 vma->anon_vma = NULL;
328
5beb4930
RR
329 /*
330 * First, attach the new VMA to the parent VMA's anon_vmas,
331 * so rmap can find non-COWed pages in child processes.
332 */
c4ea95d7
DF
333 error = anon_vma_clone(vma, pvma);
334 if (error)
335 return error;
5beb4930 336
7a3ef208
KK
337 /* An existing anon_vma has been reused, all done then. */
338 if (vma->anon_vma)
339 return 0;
340
5beb4930
RR
341 /* Then add our own anon_vma. */
342 anon_vma = anon_vma_alloc();
343 if (!anon_vma)
344 goto out_error;
dd34739c 345 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
346 if (!avc)
347 goto out_error_free_anon_vma;
5c341ee1
RR
348
349 /*
350 * The root anon_vma's spinlock is the lock actually used when we
351 * lock any of the anon_vmas in this anon_vma tree.
352 */
353 anon_vma->root = pvma->anon_vma->root;
7a3ef208 354 anon_vma->parent = pvma->anon_vma;
76545066 355 /*
01d8b20d
PZ
356 * With refcounts, an anon_vma can stay around longer than the
357 * process it belongs to. The root anon_vma needs to be pinned until
358 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
359 */
360 get_anon_vma(anon_vma->root);
5beb4930
RR
361 /* Mark this anon_vma as the one where our new (COWed) pages go. */
362 vma->anon_vma = anon_vma;
4fc3f1d6 363 anon_vma_lock_write(anon_vma);
5c341ee1 364 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 365 anon_vma->parent->degree++;
08b52706 366 anon_vma_unlock_write(anon_vma);
5beb4930
RR
367
368 return 0;
369
370 out_error_free_anon_vma:
01d8b20d 371 put_anon_vma(anon_vma);
5beb4930 372 out_error:
4946d54c 373 unlink_anon_vmas(vma);
5beb4930 374 return -ENOMEM;
1da177e4
LT
375}
376
5beb4930
RR
377void unlink_anon_vmas(struct vm_area_struct *vma)
378{
379 struct anon_vma_chain *avc, *next;
eee2acba 380 struct anon_vma *root = NULL;
5beb4930 381
5c341ee1
RR
382 /*
383 * Unlink each anon_vma chained to the VMA. This list is ordered
384 * from newest to oldest, ensuring the root anon_vma gets freed last.
385 */
5beb4930 386 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
387 struct anon_vma *anon_vma = avc->anon_vma;
388
389 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 390 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
391
392 /*
393 * Leave empty anon_vmas on the list - we'll need
394 * to free them outside the lock.
395 */
f808c13f 396 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 397 anon_vma->parent->degree--;
eee2acba 398 continue;
7a3ef208 399 }
eee2acba
PZ
400
401 list_del(&avc->same_vma);
402 anon_vma_chain_free(avc);
403 }
7a3ef208
KK
404 if (vma->anon_vma)
405 vma->anon_vma->degree--;
eee2acba
PZ
406 unlock_anon_vma_root(root);
407
408 /*
409 * Iterate the list once more, it now only contains empty and unlinked
410 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 411 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
412 */
413 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
414 struct anon_vma *anon_vma = avc->anon_vma;
415
e4c5800a 416 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
417 put_anon_vma(anon_vma);
418
5beb4930
RR
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422}
423
51cc5068 424static void anon_vma_ctor(void *data)
1da177e4 425{
a35afb83 426 struct anon_vma *anon_vma = data;
1da177e4 427
5a505085 428 init_rwsem(&anon_vma->rwsem);
83813267 429 atomic_set(&anon_vma->refcount, 0);
f808c13f 430 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
431}
432
433void __init anon_vma_init(void)
434{
435 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 436 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
437 anon_vma_ctor);
438 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
439 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
440}
441
442/*
6111e4ca
PZ
443 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
444 *
445 * Since there is no serialization what so ever against page_remove_rmap()
446 * the best this function can do is return a locked anon_vma that might
447 * have been relevant to this page.
448 *
449 * The page might have been remapped to a different anon_vma or the anon_vma
450 * returned may already be freed (and even reused).
451 *
bc658c96
PZ
452 * In case it was remapped to a different anon_vma, the new anon_vma will be a
453 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
454 * ensure that any anon_vma obtained from the page will still be valid for as
455 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
456 *
6111e4ca
PZ
457 * All users of this function must be very careful when walking the anon_vma
458 * chain and verify that the page in question is indeed mapped in it
459 * [ something equivalent to page_mapped_in_vma() ].
460 *
461 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
462 * that the anon_vma pointer from page->mapping is valid if there is a
463 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 464 */
746b18d4 465struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 466{
746b18d4 467 struct anon_vma *anon_vma = NULL;
1da177e4
LT
468 unsigned long anon_mapping;
469
470 rcu_read_lock();
4db0c3c2 471 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 472 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
473 goto out;
474 if (!page_mapped(page))
475 goto out;
476
477 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
f1819427
HD
482
483 /*
484 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
485 * freed. But if it has been unmapped, we have no security against the
486 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 487 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 488 * above cannot corrupt).
f1819427 489 */
746b18d4 490 if (!page_mapped(page)) {
7f39dda9 491 rcu_read_unlock();
746b18d4 492 put_anon_vma(anon_vma);
7f39dda9 493 return NULL;
746b18d4 494 }
1da177e4
LT
495out:
496 rcu_read_unlock();
746b18d4
PZ
497
498 return anon_vma;
499}
500
88c22088
PZ
501/*
502 * Similar to page_get_anon_vma() except it locks the anon_vma.
503 *
504 * Its a little more complex as it tries to keep the fast path to a single
505 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
506 * reference like with page_get_anon_vma() and then block on the mutex.
507 */
4fc3f1d6 508struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 509{
88c22088 510 struct anon_vma *anon_vma = NULL;
eee0f252 511 struct anon_vma *root_anon_vma;
88c22088 512 unsigned long anon_mapping;
746b18d4 513
88c22088 514 rcu_read_lock();
4db0c3c2 515 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
516 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
517 goto out;
518 if (!page_mapped(page))
519 goto out;
520
521 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 522 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 523 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 524 /*
eee0f252
HD
525 * If the page is still mapped, then this anon_vma is still
526 * its anon_vma, and holding the mutex ensures that it will
bc658c96 527 * not go away, see anon_vma_free().
88c22088 528 */
eee0f252 529 if (!page_mapped(page)) {
4fc3f1d6 530 up_read(&root_anon_vma->rwsem);
88c22088
PZ
531 anon_vma = NULL;
532 }
533 goto out;
534 }
746b18d4 535
88c22088
PZ
536 /* trylock failed, we got to sleep */
537 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
538 anon_vma = NULL;
539 goto out;
540 }
541
542 if (!page_mapped(page)) {
7f39dda9 543 rcu_read_unlock();
88c22088 544 put_anon_vma(anon_vma);
7f39dda9 545 return NULL;
88c22088
PZ
546 }
547
548 /* we pinned the anon_vma, its safe to sleep */
549 rcu_read_unlock();
4fc3f1d6 550 anon_vma_lock_read(anon_vma);
88c22088
PZ
551
552 if (atomic_dec_and_test(&anon_vma->refcount)) {
553 /*
554 * Oops, we held the last refcount, release the lock
555 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 556 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 557 */
4fc3f1d6 558 anon_vma_unlock_read(anon_vma);
88c22088
PZ
559 __put_anon_vma(anon_vma);
560 anon_vma = NULL;
561 }
562
563 return anon_vma;
564
565out:
566 rcu_read_unlock();
746b18d4 567 return anon_vma;
34bbd704
ON
568}
569
4fc3f1d6 570void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 571{
4fc3f1d6 572 anon_vma_unlock_read(anon_vma);
1da177e4
LT
573}
574
72b252ae 575#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
576/*
577 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
578 * important if a PTE was dirty when it was unmapped that it's flushed
579 * before any IO is initiated on the page to prevent lost writes. Similarly,
580 * it must be flushed before freeing to prevent data leakage.
581 */
582void try_to_unmap_flush(void)
583{
584 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
585
586 if (!tlb_ubc->flush_required)
587 return;
588
e73ad5ff 589 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 590 tlb_ubc->flush_required = false;
d950c947 591 tlb_ubc->writable = false;
72b252ae
MG
592}
593
d950c947
MG
594/* Flush iff there are potentially writable TLB entries that can race with IO */
595void try_to_unmap_flush_dirty(void)
596{
597 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
598
599 if (tlb_ubc->writable)
600 try_to_unmap_flush();
601}
602
c7ab0d2f 603static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
e73ad5ff 607 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 608 tlb_ubc->flush_required = true;
d950c947 609
3ea27719
MG
610 /*
611 * Ensure compiler does not re-order the setting of tlb_flush_batched
612 * before the PTE is cleared.
613 */
614 barrier();
615 mm->tlb_flush_batched = true;
616
d950c947
MG
617 /*
618 * If the PTE was dirty then it's best to assume it's writable. The
619 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 * before the page is queued for IO.
621 */
622 if (writable)
623 tlb_ubc->writable = true;
72b252ae
MG
624}
625
626/*
627 * Returns true if the TLB flush should be deferred to the end of a batch of
628 * unmap operations to reduce IPIs.
629 */
630static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
631{
632 bool should_defer = false;
633
634 if (!(flags & TTU_BATCH_FLUSH))
635 return false;
636
637 /* If remote CPUs need to be flushed then defer batch the flush */
638 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
639 should_defer = true;
640 put_cpu();
641
642 return should_defer;
643}
3ea27719
MG
644
645/*
646 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
647 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
648 * operation such as mprotect or munmap to race between reclaim unmapping
649 * the page and flushing the page. If this race occurs, it potentially allows
650 * access to data via a stale TLB entry. Tracking all mm's that have TLB
651 * batching in flight would be expensive during reclaim so instead track
652 * whether TLB batching occurred in the past and if so then do a flush here
653 * if required. This will cost one additional flush per reclaim cycle paid
654 * by the first operation at risk such as mprotect and mumap.
655 *
656 * This must be called under the PTL so that an access to tlb_flush_batched
657 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
658 * via the PTL.
659 */
660void flush_tlb_batched_pending(struct mm_struct *mm)
661{
662 if (mm->tlb_flush_batched) {
663 flush_tlb_mm(mm);
664
665 /*
666 * Do not allow the compiler to re-order the clearing of
667 * tlb_flush_batched before the tlb is flushed.
668 */
669 barrier();
670 mm->tlb_flush_batched = false;
671 }
672}
72b252ae 673#else
c7ab0d2f 674static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
675{
676}
677
678static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
679{
680 return false;
681}
682#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
683
1da177e4 684/*
bf89c8c8 685 * At what user virtual address is page expected in vma?
ab941e0f 686 * Caller should check the page is actually part of the vma.
1da177e4
LT
687 */
688unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
689{
86c2ad19 690 unsigned long address;
21d0d443 691 if (PageAnon(page)) {
4829b906
HD
692 struct anon_vma *page__anon_vma = page_anon_vma(page);
693 /*
694 * Note: swapoff's unuse_vma() is more efficient with this
695 * check, and needs it to match anon_vma when KSM is active.
696 */
697 if (!vma->anon_vma || !page__anon_vma ||
698 vma->anon_vma->root != page__anon_vma->root)
21d0d443 699 return -EFAULT;
27ba0644
KS
700 } else if (page->mapping) {
701 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
702 return -EFAULT;
703 } else
704 return -EFAULT;
86c2ad19
ML
705 address = __vma_address(page, vma);
706 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
707 return -EFAULT;
708 return address;
1da177e4
LT
709}
710
6219049a
BL
711pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
712{
713 pgd_t *pgd;
c2febafc 714 p4d_t *p4d;
6219049a
BL
715 pud_t *pud;
716 pmd_t *pmd = NULL;
f72e7dcd 717 pmd_t pmde;
6219049a
BL
718
719 pgd = pgd_offset(mm, address);
720 if (!pgd_present(*pgd))
721 goto out;
722
c2febafc
KS
723 p4d = p4d_offset(pgd, address);
724 if (!p4d_present(*p4d))
725 goto out;
726
727 pud = pud_offset(p4d, address);
6219049a
BL
728 if (!pud_present(*pud))
729 goto out;
730
731 pmd = pmd_offset(pud, address);
f72e7dcd 732 /*
8809aa2d 733 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
734 * without holding anon_vma lock for write. So when looking for a
735 * genuine pmde (in which to find pte), test present and !THP together.
736 */
e37c6982
CB
737 pmde = *pmd;
738 barrier();
f72e7dcd 739 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
740 pmd = NULL;
741out:
742 return pmd;
743}
744
8749cfea
VD
745struct page_referenced_arg {
746 int mapcount;
747 int referenced;
748 unsigned long vm_flags;
749 struct mem_cgroup *memcg;
750};
751/*
752 * arg: page_referenced_arg will be passed
753 */
e4b82222 754static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
755 unsigned long address, void *arg)
756{
8749cfea 757 struct page_referenced_arg *pra = arg;
8eaedede
KS
758 struct page_vma_mapped_walk pvmw = {
759 .page = page,
760 .vma = vma,
761 .address = address,
762 };
8749cfea
VD
763 int referenced = 0;
764
8eaedede
KS
765 while (page_vma_mapped_walk(&pvmw)) {
766 address = pvmw.address;
b20ce5e0 767
8eaedede
KS
768 if (vma->vm_flags & VM_LOCKED) {
769 page_vma_mapped_walk_done(&pvmw);
770 pra->vm_flags |= VM_LOCKED;
e4b82222 771 return false; /* To break the loop */
8eaedede 772 }
71e3aac0 773
8eaedede
KS
774 if (pvmw.pte) {
775 if (ptep_clear_flush_young_notify(vma, address,
776 pvmw.pte)) {
777 /*
778 * Don't treat a reference through
779 * a sequentially read mapping as such.
780 * If the page has been used in another mapping,
781 * we will catch it; if this other mapping is
782 * already gone, the unmap path will have set
783 * PG_referenced or activated the page.
784 */
785 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
786 referenced++;
787 }
788 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
789 if (pmdp_clear_flush_young_notify(vma, address,
790 pvmw.pmd))
8749cfea 791 referenced++;
8eaedede
KS
792 } else {
793 /* unexpected pmd-mapped page? */
794 WARN_ON_ONCE(1);
8749cfea 795 }
8eaedede
KS
796
797 pra->mapcount--;
b20ce5e0 798 }
b20ce5e0 799
33c3fc71
VD
800 if (referenced)
801 clear_page_idle(page);
802 if (test_and_clear_page_young(page))
803 referenced++;
804
9f32624b
JK
805 if (referenced) {
806 pra->referenced++;
807 pra->vm_flags |= vma->vm_flags;
1da177e4 808 }
34bbd704 809
9f32624b 810 if (!pra->mapcount)
e4b82222 811 return false; /* To break the loop */
9f32624b 812
e4b82222 813 return true;
1da177e4
LT
814}
815
9f32624b 816static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 817{
9f32624b
JK
818 struct page_referenced_arg *pra = arg;
819 struct mem_cgroup *memcg = pra->memcg;
1da177e4 820
9f32624b
JK
821 if (!mm_match_cgroup(vma->vm_mm, memcg))
822 return true;
1da177e4 823
9f32624b 824 return false;
1da177e4
LT
825}
826
827/**
828 * page_referenced - test if the page was referenced
829 * @page: the page to test
830 * @is_locked: caller holds lock on the page
72835c86 831 * @memcg: target memory cgroup
6fe6b7e3 832 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
833 *
834 * Quick test_and_clear_referenced for all mappings to a page,
835 * returns the number of ptes which referenced the page.
836 */
6fe6b7e3
WF
837int page_referenced(struct page *page,
838 int is_locked,
72835c86 839 struct mem_cgroup *memcg,
6fe6b7e3 840 unsigned long *vm_flags)
1da177e4 841{
5ad64688 842 int we_locked = 0;
9f32624b 843 struct page_referenced_arg pra = {
b20ce5e0 844 .mapcount = total_mapcount(page),
9f32624b
JK
845 .memcg = memcg,
846 };
847 struct rmap_walk_control rwc = {
848 .rmap_one = page_referenced_one,
849 .arg = (void *)&pra,
850 .anon_lock = page_lock_anon_vma_read,
851 };
1da177e4 852
6fe6b7e3 853 *vm_flags = 0;
9f32624b
JK
854 if (!page_mapped(page))
855 return 0;
856
857 if (!page_rmapping(page))
858 return 0;
859
860 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
861 we_locked = trylock_page(page);
862 if (!we_locked)
863 return 1;
1da177e4 864 }
9f32624b
JK
865
866 /*
867 * If we are reclaiming on behalf of a cgroup, skip
868 * counting on behalf of references from different
869 * cgroups
870 */
871 if (memcg) {
872 rwc.invalid_vma = invalid_page_referenced_vma;
873 }
874
c24f386c 875 rmap_walk(page, &rwc);
9f32624b
JK
876 *vm_flags = pra.vm_flags;
877
878 if (we_locked)
879 unlock_page(page);
880
881 return pra.referenced;
1da177e4
LT
882}
883
e4b82222 884static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 885 unsigned long address, void *arg)
d08b3851 886{
f27176cf
KS
887 struct page_vma_mapped_walk pvmw = {
888 .page = page,
889 .vma = vma,
890 .address = address,
891 .flags = PVMW_SYNC,
892 };
ac46d4f3 893 struct mmu_notifier_range range;
9853a407 894 int *cleaned = arg;
d08b3851 895
369ea824
JG
896 /*
897 * We have to assume the worse case ie pmd for invalidation. Note that
898 * the page can not be free from this function.
899 */
ac46d4f3
JG
900 mmu_notifier_range_init(&range, vma->vm_mm, address,
901 min(vma->vm_end, address +
902 (PAGE_SIZE << compound_order(page))));
903 mmu_notifier_invalidate_range_start(&range);
369ea824 904
f27176cf 905 while (page_vma_mapped_walk(&pvmw)) {
cdb07bde 906 unsigned long cstart;
f27176cf 907 int ret = 0;
369ea824
JG
908
909 cstart = address = pvmw.address;
f27176cf
KS
910 if (pvmw.pte) {
911 pte_t entry;
912 pte_t *pte = pvmw.pte;
913
914 if (!pte_dirty(*pte) && !pte_write(*pte))
915 continue;
916
785373b4
LT
917 flush_cache_page(vma, address, pte_pfn(*pte));
918 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
919 entry = pte_wrprotect(entry);
920 entry = pte_mkclean(entry);
785373b4 921 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
922 ret = 1;
923 } else {
924#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
925 pmd_t *pmd = pvmw.pmd;
926 pmd_t entry;
927
928 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
929 continue;
930
785373b4
LT
931 flush_cache_page(vma, address, page_to_pfn(page));
932 entry = pmdp_huge_clear_flush(vma, address, pmd);
f27176cf
KS
933 entry = pmd_wrprotect(entry);
934 entry = pmd_mkclean(entry);
785373b4 935 set_pmd_at(vma->vm_mm, address, pmd, entry);
369ea824 936 cstart &= PMD_MASK;
f27176cf
KS
937 ret = 1;
938#else
939 /* unexpected pmd-mapped page? */
940 WARN_ON_ONCE(1);
941#endif
942 }
d08b3851 943
0f10851e
JG
944 /*
945 * No need to call mmu_notifier_invalidate_range() as we are
946 * downgrading page table protection not changing it to point
947 * to a new page.
948 *
ad56b738 949 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
950 */
951 if (ret)
f27176cf 952 (*cleaned)++;
c2fda5fe 953 }
d08b3851 954
ac46d4f3 955 mmu_notifier_invalidate_range_end(&range);
369ea824 956
e4b82222 957 return true;
d08b3851
PZ
958}
959
9853a407 960static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 961{
9853a407 962 if (vma->vm_flags & VM_SHARED)
871beb8c 963 return false;
d08b3851 964
871beb8c 965 return true;
d08b3851
PZ
966}
967
968int page_mkclean(struct page *page)
969{
9853a407
JK
970 int cleaned = 0;
971 struct address_space *mapping;
972 struct rmap_walk_control rwc = {
973 .arg = (void *)&cleaned,
974 .rmap_one = page_mkclean_one,
975 .invalid_vma = invalid_mkclean_vma,
976 };
d08b3851
PZ
977
978 BUG_ON(!PageLocked(page));
979
9853a407
JK
980 if (!page_mapped(page))
981 return 0;
982
983 mapping = page_mapping(page);
984 if (!mapping)
985 return 0;
986
987 rmap_walk(page, &rwc);
d08b3851 988
9853a407 989 return cleaned;
d08b3851 990}
60b59bea 991EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 992
c44b6743
RR
993/**
994 * page_move_anon_rmap - move a page to our anon_vma
995 * @page: the page to move to our anon_vma
996 * @vma: the vma the page belongs to
c44b6743
RR
997 *
998 * When a page belongs exclusively to one process after a COW event,
999 * that page can be moved into the anon_vma that belongs to just that
1000 * process, so the rmap code will not search the parent or sibling
1001 * processes.
1002 */
5a49973d 1003void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1004{
1005 struct anon_vma *anon_vma = vma->anon_vma;
1006
5a49973d
HD
1007 page = compound_head(page);
1008
309381fe 1009 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1010 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1011
1012 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1013 /*
1014 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1015 * simultaneously, so a concurrent reader (eg page_referenced()'s
1016 * PageAnon()) will not see one without the other.
1017 */
1018 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1019}
1020
9617d95e 1021/**
4e1c1975 1022 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1023 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1024 * @vma: VM area to add page to.
1025 * @address: User virtual address of the mapping
e8a03feb 1026 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1027 */
1028static void __page_set_anon_rmap(struct page *page,
e8a03feb 1029 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1030{
e8a03feb 1031 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1032
e8a03feb 1033 BUG_ON(!anon_vma);
ea90002b 1034
4e1c1975
AK
1035 if (PageAnon(page))
1036 return;
1037
ea90002b 1038 /*
e8a03feb
RR
1039 * If the page isn't exclusively mapped into this vma,
1040 * we must use the _oldest_ possible anon_vma for the
1041 * page mapping!
ea90002b 1042 */
4e1c1975 1043 if (!exclusive)
288468c3 1044 anon_vma = anon_vma->root;
9617d95e 1045
9617d95e
NP
1046 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1047 page->mapping = (struct address_space *) anon_vma;
9617d95e 1048 page->index = linear_page_index(vma, address);
9617d95e
NP
1049}
1050
c97a9e10 1051/**
43d8eac4 1052 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1053 * @page: the page to add the mapping to
1054 * @vma: the vm area in which the mapping is added
1055 * @address: the user virtual address mapped
1056 */
1057static void __page_check_anon_rmap(struct page *page,
1058 struct vm_area_struct *vma, unsigned long address)
1059{
1060#ifdef CONFIG_DEBUG_VM
1061 /*
1062 * The page's anon-rmap details (mapping and index) are guaranteed to
1063 * be set up correctly at this point.
1064 *
1065 * We have exclusion against page_add_anon_rmap because the caller
1066 * always holds the page locked, except if called from page_dup_rmap,
1067 * in which case the page is already known to be setup.
1068 *
1069 * We have exclusion against page_add_new_anon_rmap because those pages
1070 * are initially only visible via the pagetables, and the pte is locked
1071 * over the call to page_add_new_anon_rmap.
1072 */
44ab57a0 1073 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
53f9263b 1074 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
c97a9e10
NP
1075#endif
1076}
1077
1da177e4
LT
1078/**
1079 * page_add_anon_rmap - add pte mapping to an anonymous page
1080 * @page: the page to add the mapping to
1081 * @vma: the vm area in which the mapping is added
1082 * @address: the user virtual address mapped
d281ee61 1083 * @compound: charge the page as compound or small page
1da177e4 1084 *
5ad64688 1085 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1086 * the anon_vma case: to serialize mapping,index checking after setting,
1087 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1088 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1089 */
1090void page_add_anon_rmap(struct page *page,
d281ee61 1091 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1092{
d281ee61 1093 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1094}
1095
1096/*
1097 * Special version of the above for do_swap_page, which often runs
1098 * into pages that are exclusively owned by the current process.
1099 * Everybody else should continue to use page_add_anon_rmap above.
1100 */
1101void do_page_add_anon_rmap(struct page *page,
d281ee61 1102 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1103{
53f9263b
KS
1104 bool compound = flags & RMAP_COMPOUND;
1105 bool first;
1106
e9b61f19
KS
1107 if (compound) {
1108 atomic_t *mapcount;
53f9263b 1109 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1110 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1111 mapcount = compound_mapcount_ptr(page);
1112 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1113 } else {
1114 first = atomic_inc_and_test(&page->_mapcount);
1115 }
1116
79134171 1117 if (first) {
d281ee61 1118 int nr = compound ? hpage_nr_pages(page) : 1;
bea04b07
JZ
1119 /*
1120 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1121 * these counters are not modified in interrupt context, and
1122 * pte lock(a spinlock) is held, which implies preemption
1123 * disabled.
1124 */
65c45377 1125 if (compound)
11fb9989 1126 __inc_node_page_state(page, NR_ANON_THPS);
4b9d0fab 1127 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
79134171 1128 }
5ad64688
HD
1129 if (unlikely(PageKsm(page)))
1130 return;
1131
309381fe 1132 VM_BUG_ON_PAGE(!PageLocked(page), page);
53f9263b 1133
5dbe0af4 1134 /* address might be in next vma when migration races vma_adjust */
5ad64688 1135 if (first)
d281ee61
KS
1136 __page_set_anon_rmap(page, vma, address,
1137 flags & RMAP_EXCLUSIVE);
69029cd5 1138 else
c97a9e10 1139 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1140}
1141
43d8eac4 1142/**
9617d95e
NP
1143 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1144 * @page: the page to add the mapping to
1145 * @vma: the vm area in which the mapping is added
1146 * @address: the user virtual address mapped
d281ee61 1147 * @compound: charge the page as compound or small page
9617d95e
NP
1148 *
1149 * Same as page_add_anon_rmap but must only be called on *new* pages.
1150 * This means the inc-and-test can be bypassed.
c97a9e10 1151 * Page does not have to be locked.
9617d95e
NP
1152 */
1153void page_add_new_anon_rmap(struct page *page,
d281ee61 1154 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1155{
d281ee61
KS
1156 int nr = compound ? hpage_nr_pages(page) : 1;
1157
81d1b09c 1158 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1159 __SetPageSwapBacked(page);
d281ee61
KS
1160 if (compound) {
1161 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1162 /* increment count (starts at -1) */
1163 atomic_set(compound_mapcount_ptr(page), 0);
11fb9989 1164 __inc_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1165 } else {
1166 /* Anon THP always mapped first with PMD */
1167 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1168 /* increment count (starts at -1) */
1169 atomic_set(&page->_mapcount, 0);
d281ee61 1170 }
4b9d0fab 1171 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
e8a03feb 1172 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1173}
1174
1da177e4
LT
1175/**
1176 * page_add_file_rmap - add pte mapping to a file page
1177 * @page: the page to add the mapping to
e8b098fc 1178 * @compound: charge the page as compound or small page
1da177e4 1179 *
b8072f09 1180 * The caller needs to hold the pte lock.
1da177e4 1181 */
dd78fedd 1182void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1183{
dd78fedd
KS
1184 int i, nr = 1;
1185
1186 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1187 lock_page_memcg(page);
dd78fedd
KS
1188 if (compound && PageTransHuge(page)) {
1189 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1190 if (atomic_inc_and_test(&page[i]._mapcount))
1191 nr++;
1192 }
1193 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1194 goto out;
65c45377 1195 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1196 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd 1197 } else {
c8efc390
KS
1198 if (PageTransCompound(page) && page_mapping(page)) {
1199 VM_WARN_ON_ONCE(!PageLocked(page));
1200
9a73f61b
KS
1201 SetPageDoubleMap(compound_head(page));
1202 if (PageMlocked(page))
1203 clear_page_mlock(compound_head(page));
1204 }
dd78fedd
KS
1205 if (!atomic_inc_and_test(&page->_mapcount))
1206 goto out;
d69b042f 1207 }
00f3ca2c 1208 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1209out:
62cccb8c 1210 unlock_page_memcg(page);
1da177e4
LT
1211}
1212
dd78fedd 1213static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1214{
dd78fedd
KS
1215 int i, nr = 1;
1216
57dea93a 1217 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
62cccb8c 1218 lock_page_memcg(page);
8186eb6a 1219
53f9263b
KS
1220 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221 if (unlikely(PageHuge(page))) {
1222 /* hugetlb pages are always mapped with pmds */
1223 atomic_dec(compound_mapcount_ptr(page));
8186eb6a 1224 goto out;
53f9263b 1225 }
8186eb6a 1226
53f9263b 1227 /* page still mapped by someone else? */
dd78fedd
KS
1228 if (compound && PageTransHuge(page)) {
1229 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230 if (atomic_add_negative(-1, &page[i]._mapcount))
1231 nr++;
1232 }
1233 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1234 goto out;
65c45377 1235 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
11fb9989 1236 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
dd78fedd
KS
1237 } else {
1238 if (!atomic_add_negative(-1, &page->_mapcount))
1239 goto out;
1240 }
8186eb6a
JW
1241
1242 /*
00f3ca2c 1243 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1244 * these counters are not modified in interrupt context, and
1245 * pte lock(a spinlock) is held, which implies preemption disabled.
1246 */
00f3ca2c 1247 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1248
1249 if (unlikely(PageMlocked(page)))
1250 clear_page_mlock(page);
1251out:
62cccb8c 1252 unlock_page_memcg(page);
8186eb6a
JW
1253}
1254
53f9263b
KS
1255static void page_remove_anon_compound_rmap(struct page *page)
1256{
1257 int i, nr;
1258
1259 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1260 return;
1261
1262 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1263 if (unlikely(PageHuge(page)))
1264 return;
1265
1266 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1267 return;
1268
11fb9989 1269 __dec_node_page_state(page, NR_ANON_THPS);
53f9263b
KS
1270
1271 if (TestClearPageDoubleMap(page)) {
1272 /*
1273 * Subpages can be mapped with PTEs too. Check how many of
1274 * themi are still mapped.
1275 */
1276 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1277 if (atomic_add_negative(-1, &page[i]._mapcount))
1278 nr++;
1279 }
1280 } else {
1281 nr = HPAGE_PMD_NR;
1282 }
1283
e90309c9
KS
1284 if (unlikely(PageMlocked(page)))
1285 clear_page_mlock(page);
1286
9a982250 1287 if (nr) {
4b9d0fab 1288 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
9a982250
KS
1289 deferred_split_huge_page(page);
1290 }
53f9263b
KS
1291}
1292
1da177e4
LT
1293/**
1294 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1295 * @page: page to remove mapping from
1296 * @compound: uncharge the page as compound or small page
1da177e4 1297 *
b8072f09 1298 * The caller needs to hold the pte lock.
1da177e4 1299 */
d281ee61 1300void page_remove_rmap(struct page *page, bool compound)
1da177e4 1301{
dd78fedd
KS
1302 if (!PageAnon(page))
1303 return page_remove_file_rmap(page, compound);
89c06bd5 1304
53f9263b
KS
1305 if (compound)
1306 return page_remove_anon_compound_rmap(page);
1307
b904dcfe
KM
1308 /* page still mapped by someone else? */
1309 if (!atomic_add_negative(-1, &page->_mapcount))
8186eb6a
JW
1310 return;
1311
0fe6e20b 1312 /*
bea04b07
JZ
1313 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1314 * these counters are not modified in interrupt context, and
bea04b07 1315 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1316 */
4b9d0fab 1317 __dec_node_page_state(page, NR_ANON_MAPPED);
8186eb6a 1318
e6c509f8
HD
1319 if (unlikely(PageMlocked(page)))
1320 clear_page_mlock(page);
8186eb6a 1321
9a982250
KS
1322 if (PageTransCompound(page))
1323 deferred_split_huge_page(compound_head(page));
1324
b904dcfe
KM
1325 /*
1326 * It would be tidy to reset the PageAnon mapping here,
1327 * but that might overwrite a racing page_add_anon_rmap
1328 * which increments mapcount after us but sets mapping
2d4894b5 1329 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1330 * and remember that it's only reliable while mapped.
1331 * Leaving it set also helps swapoff to reinstate ptes
1332 * faster for those pages still in swapcache.
1333 */
1da177e4
LT
1334}
1335
1336/*
52629506 1337 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1338 */
e4b82222 1339static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1340 unsigned long address, void *arg)
1da177e4
LT
1341{
1342 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1343 struct page_vma_mapped_walk pvmw = {
1344 .page = page,
1345 .vma = vma,
1346 .address = address,
1347 };
1da177e4 1348 pte_t pteval;
c7ab0d2f 1349 struct page *subpage;
785373b4 1350 bool ret = true;
ac46d4f3 1351 struct mmu_notifier_range range;
802a3a92 1352 enum ttu_flags flags = (enum ttu_flags)arg;
1da177e4 1353
b87537d9
HD
1354 /* munlock has nothing to gain from examining un-locked vmas */
1355 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
e4b82222 1356 return true;
b87537d9 1357
a5430dda
JG
1358 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1359 is_zone_device_page(page) && !is_device_private_page(page))
1360 return true;
1361
fec89c10
KS
1362 if (flags & TTU_SPLIT_HUGE_PMD) {
1363 split_huge_pmd_address(vma, address,
b5ff8161 1364 flags & TTU_SPLIT_FREEZE, page);
fec89c10
KS
1365 }
1366
369ea824 1367 /*
017b1660
MK
1368 * For THP, we have to assume the worse case ie pmd for invalidation.
1369 * For hugetlb, it could be much worse if we need to do pud
1370 * invalidation in the case of pmd sharing.
1371 *
1372 * Note that the page can not be free in this function as call of
1373 * try_to_unmap() must hold a reference on the page.
369ea824 1374 */
ac46d4f3
JG
1375 mmu_notifier_range_init(&range, vma->vm_mm, vma->vm_start,
1376 min(vma->vm_end, vma->vm_start +
1377 (PAGE_SIZE << compound_order(page))));
017b1660
MK
1378 if (PageHuge(page)) {
1379 /*
1380 * If sharing is possible, start and end will be adjusted
1381 * accordingly.
b43a9990
MK
1382 *
1383 * If called for a huge page, caller must hold i_mmap_rwsem
1384 * in write mode as it is possible to call huge_pmd_unshare.
017b1660 1385 */
ac46d4f3
JG
1386 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1387 &range.end);
017b1660 1388 }
ac46d4f3 1389 mmu_notifier_invalidate_range_start(&range);
369ea824 1390
c7ab0d2f 1391 while (page_vma_mapped_walk(&pvmw)) {
616b8371
ZY
1392#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1393 /* PMD-mapped THP migration entry */
1394 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1395 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1396
616b8371
ZY
1397 set_pmd_migration_entry(&pvmw, page);
1398 continue;
1399 }
1400#endif
1401
c7ab0d2f
KS
1402 /*
1403 * If the page is mlock()d, we cannot swap it out.
1404 * If it's recently referenced (perhaps page_referenced
1405 * skipped over this mm) then we should reactivate it.
1406 */
1407 if (!(flags & TTU_IGNORE_MLOCK)) {
1408 if (vma->vm_flags & VM_LOCKED) {
1409 /* PTE-mapped THP are never mlocked */
1410 if (!PageTransCompound(page)) {
1411 /*
1412 * Holding pte lock, we do *not* need
1413 * mmap_sem here
1414 */
1415 mlock_vma_page(page);
1416 }
e4b82222 1417 ret = false;
c7ab0d2f
KS
1418 page_vma_mapped_walk_done(&pvmw);
1419 break;
9a73f61b 1420 }
c7ab0d2f
KS
1421 if (flags & TTU_MUNLOCK)
1422 continue;
b87537d9 1423 }
c7ab0d2f 1424
8346242a
KS
1425 /* Unexpected PMD-mapped THP? */
1426 VM_BUG_ON_PAGE(!pvmw.pte, page);
1427
1428 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1429 address = pvmw.address;
1430
017b1660
MK
1431 if (PageHuge(page)) {
1432 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1433 /*
1434 * huge_pmd_unshare unmapped an entire PMD
1435 * page. There is no way of knowing exactly
1436 * which PMDs may be cached for this mm, so
1437 * we must flush them all. start/end were
1438 * already adjusted above to cover this range.
1439 */
ac46d4f3
JG
1440 flush_cache_range(vma, range.start, range.end);
1441 flush_tlb_range(vma, range.start, range.end);
1442 mmu_notifier_invalidate_range(mm, range.start,
1443 range.end);
017b1660
MK
1444
1445 /*
1446 * The ref count of the PMD page was dropped
1447 * which is part of the way map counting
1448 * is done for shared PMDs. Return 'true'
1449 * here. When there is no other sharing,
1450 * huge_pmd_unshare returns false and we will
1451 * unmap the actual page and drop map count
1452 * to zero.
1453 */
1454 page_vma_mapped_walk_done(&pvmw);
1455 break;
1456 }
1457 }
8346242a 1458
a5430dda
JG
1459 if (IS_ENABLED(CONFIG_MIGRATION) &&
1460 (flags & TTU_MIGRATION) &&
1461 is_zone_device_page(page)) {
1462 swp_entry_t entry;
1463 pte_t swp_pte;
1464
1465 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1466
1467 /*
1468 * Store the pfn of the page in a special migration
1469 * pte. do_swap_page() will wait until the migration
1470 * pte is removed and then restart fault handling.
1471 */
1472 entry = make_migration_entry(page, 0);
1473 swp_pte = swp_entry_to_pte(entry);
1474 if (pte_soft_dirty(pteval))
1475 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1476 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
0f10851e
JG
1477 /*
1478 * No need to invalidate here it will synchronize on
1479 * against the special swap migration pte.
1480 */
a5430dda
JG
1481 goto discard;
1482 }
1483
c7ab0d2f 1484 if (!(flags & TTU_IGNORE_ACCESS)) {
785373b4 1485 if (ptep_clear_flush_young_notify(vma, address,
c7ab0d2f 1486 pvmw.pte)) {
e4b82222 1487 ret = false;
c7ab0d2f
KS
1488 page_vma_mapped_walk_done(&pvmw);
1489 break;
1490 }
b291f000 1491 }
1da177e4 1492
c7ab0d2f 1493 /* Nuke the page table entry. */
785373b4 1494 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1495 if (should_defer_flush(mm, flags)) {
1496 /*
1497 * We clear the PTE but do not flush so potentially
1498 * a remote CPU could still be writing to the page.
1499 * If the entry was previously clean then the
1500 * architecture must guarantee that a clear->dirty
1501 * transition on a cached TLB entry is written through
1502 * and traps if the PTE is unmapped.
1503 */
785373b4 1504 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1505
1506 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1507 } else {
785373b4 1508 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1509 }
72b252ae 1510
c7ab0d2f
KS
1511 /* Move the dirty bit to the page. Now the pte is gone. */
1512 if (pte_dirty(pteval))
1513 set_page_dirty(page);
1da177e4 1514
c7ab0d2f
KS
1515 /* Update high watermark before we lower rss */
1516 update_hiwater_rss(mm);
1da177e4 1517
c7ab0d2f 1518 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1519 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f
KS
1520 if (PageHuge(page)) {
1521 int nr = 1 << compound_order(page);
1522 hugetlb_count_sub(nr, mm);
785373b4 1523 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1524 pvmw.pte, pteval,
1525 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1526 } else {
1527 dec_mm_counter(mm, mm_counter(page));
785373b4 1528 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1529 }
365e9c87 1530
bce73e48 1531 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1532 /*
1533 * The guest indicated that the page content is of no
1534 * interest anymore. Simply discard the pte, vmscan
1535 * will take care of the rest.
bce73e48
CB
1536 * A future reference will then fault in a new zero
1537 * page. When userfaultfd is active, we must not drop
1538 * this page though, as its main user (postcopy
1539 * migration) will not expect userfaults on already
1540 * copied pages.
c7ab0d2f 1541 */
eca56ff9 1542 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1543 /* We have to invalidate as we cleared the pte */
1544 mmu_notifier_invalidate_range(mm, address,
1545 address + PAGE_SIZE);
c7ab0d2f 1546 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
b5ff8161 1547 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
c7ab0d2f
KS
1548 swp_entry_t entry;
1549 pte_t swp_pte;
ca827d55
KA
1550
1551 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1552 set_pte_at(mm, address, pvmw.pte, pteval);
1553 ret = false;
1554 page_vma_mapped_walk_done(&pvmw);
1555 break;
1556 }
1557
c7ab0d2f
KS
1558 /*
1559 * Store the pfn of the page in a special migration
1560 * pte. do_swap_page() will wait until the migration
1561 * pte is removed and then restart fault handling.
1562 */
1563 entry = make_migration_entry(subpage,
1564 pte_write(pteval));
1565 swp_pte = swp_entry_to_pte(entry);
1566 if (pte_soft_dirty(pteval))
1567 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1568 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1569 /*
1570 * No need to invalidate here it will synchronize on
1571 * against the special swap migration pte.
1572 */
c7ab0d2f
KS
1573 } else if (PageAnon(page)) {
1574 swp_entry_t entry = { .val = page_private(subpage) };
1575 pte_t swp_pte;
1576 /*
1577 * Store the swap location in the pte.
1578 * See handle_pte_fault() ...
1579 */
eb94a878
MK
1580 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1581 WARN_ON_ONCE(1);
83612a94 1582 ret = false;
369ea824 1583 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1584 mmu_notifier_invalidate_range(mm, address,
1585 address + PAGE_SIZE);
eb94a878
MK
1586 page_vma_mapped_walk_done(&pvmw);
1587 break;
1588 }
c7ab0d2f 1589
802a3a92
SL
1590 /* MADV_FREE page check */
1591 if (!PageSwapBacked(page)) {
1592 if (!PageDirty(page)) {
0f10851e
JG
1593 /* Invalidate as we cleared the pte */
1594 mmu_notifier_invalidate_range(mm,
1595 address, address + PAGE_SIZE);
802a3a92
SL
1596 dec_mm_counter(mm, MM_ANONPAGES);
1597 goto discard;
1598 }
1599
1600 /*
1601 * If the page was redirtied, it cannot be
1602 * discarded. Remap the page to page table.
1603 */
785373b4 1604 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1605 SetPageSwapBacked(page);
e4b82222 1606 ret = false;
802a3a92
SL
1607 page_vma_mapped_walk_done(&pvmw);
1608 break;
c7ab0d2f 1609 }
854e9ed0 1610
c7ab0d2f 1611 if (swap_duplicate(entry) < 0) {
785373b4 1612 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1613 ret = false;
c7ab0d2f
KS
1614 page_vma_mapped_walk_done(&pvmw);
1615 break;
1616 }
ca827d55
KA
1617 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1618 set_pte_at(mm, address, pvmw.pte, pteval);
1619 ret = false;
1620 page_vma_mapped_walk_done(&pvmw);
1621 break;
1622 }
c7ab0d2f
KS
1623 if (list_empty(&mm->mmlist)) {
1624 spin_lock(&mmlist_lock);
1625 if (list_empty(&mm->mmlist))
1626 list_add(&mm->mmlist, &init_mm.mmlist);
1627 spin_unlock(&mmlist_lock);
1628 }
854e9ed0 1629 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1630 inc_mm_counter(mm, MM_SWAPENTS);
1631 swp_pte = swp_entry_to_pte(entry);
1632 if (pte_soft_dirty(pteval))
1633 swp_pte = pte_swp_mksoft_dirty(swp_pte);
785373b4 1634 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1635 /* Invalidate as we cleared the pte */
1636 mmu_notifier_invalidate_range(mm, address,
1637 address + PAGE_SIZE);
1638 } else {
1639 /*
906f9cdf
HD
1640 * This is a locked file-backed page, thus it cannot
1641 * be removed from the page cache and replaced by a new
1642 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1643 * concurrent thread might update its page table to
1644 * point at new page while a device still is using this
1645 * page.
1646 *
ad56b738 1647 * See Documentation/vm/mmu_notifier.rst
0f10851e 1648 */
c7ab0d2f 1649 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1650 }
854e9ed0 1651discard:
0f10851e
JG
1652 /*
1653 * No need to call mmu_notifier_invalidate_range() it has be
1654 * done above for all cases requiring it to happen under page
1655 * table lock before mmu_notifier_invalidate_range_end()
1656 *
ad56b738 1657 * See Documentation/vm/mmu_notifier.rst
0f10851e 1658 */
c7ab0d2f
KS
1659 page_remove_rmap(subpage, PageHuge(page));
1660 put_page(page);
c7ab0d2f 1661 }
369ea824 1662
ac46d4f3 1663 mmu_notifier_invalidate_range_end(&range);
369ea824 1664
caed0f48 1665 return ret;
1da177e4
LT
1666}
1667
71e3aac0 1668bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1669{
1670 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1671
1672 if (!maybe_stack)
1673 return false;
1674
1675 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1676 VM_STACK_INCOMPLETE_SETUP)
1677 return true;
1678
1679 return false;
1680}
1681
52629506
JK
1682static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1683{
1684 return is_vma_temporary_stack(vma);
1685}
1686
2a52bcbc 1687static int page_mapcount_is_zero(struct page *page)
52629506 1688{
c7ab0d2f 1689 return !total_mapcount(page);
2a52bcbc 1690}
52629506 1691
1da177e4
LT
1692/**
1693 * try_to_unmap - try to remove all page table mappings to a page
1694 * @page: the page to get unmapped
14fa31b8 1695 * @flags: action and flags
1da177e4
LT
1696 *
1697 * Tries to remove all the page table entries which are mapping this
1698 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1699 *
666e5a40 1700 * If unmap is successful, return true. Otherwise, false.
1da177e4 1701 */
666e5a40 1702bool try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1703{
52629506
JK
1704 struct rmap_walk_control rwc = {
1705 .rmap_one = try_to_unmap_one,
802a3a92 1706 .arg = (void *)flags,
2a52bcbc 1707 .done = page_mapcount_is_zero,
52629506
JK
1708 .anon_lock = page_lock_anon_vma_read,
1709 };
1da177e4 1710
52629506
JK
1711 /*
1712 * During exec, a temporary VMA is setup and later moved.
1713 * The VMA is moved under the anon_vma lock but not the
1714 * page tables leading to a race where migration cannot
1715 * find the migration ptes. Rather than increasing the
1716 * locking requirements of exec(), migration skips
1717 * temporary VMAs until after exec() completes.
1718 */
b5ff8161
NH
1719 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1720 && !PageKsm(page) && PageAnon(page))
52629506
JK
1721 rwc.invalid_vma = invalid_migration_vma;
1722
2a52bcbc 1723 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1724 rmap_walk_locked(page, &rwc);
2a52bcbc 1725 else
33fc80e2 1726 rmap_walk(page, &rwc);
52629506 1727
666e5a40 1728 return !page_mapcount(page) ? true : false;
1da177e4 1729}
81b4082d 1730
2a52bcbc
KS
1731static int page_not_mapped(struct page *page)
1732{
1733 return !page_mapped(page);
1734};
1735
b291f000
NP
1736/**
1737 * try_to_munlock - try to munlock a page
1738 * @page: the page to be munlocked
1739 *
1740 * Called from munlock code. Checks all of the VMAs mapping the page
1741 * to make sure nobody else has this page mlocked. The page will be
1742 * returned with PG_mlocked cleared if no other vmas have it mlocked.
b291f000 1743 */
854e9ed0 1744
192d7232
MK
1745void try_to_munlock(struct page *page)
1746{
e8351ac9
JK
1747 struct rmap_walk_control rwc = {
1748 .rmap_one = try_to_unmap_one,
802a3a92 1749 .arg = (void *)TTU_MUNLOCK,
e8351ac9 1750 .done = page_not_mapped,
e8351ac9
JK
1751 .anon_lock = page_lock_anon_vma_read,
1752
1753 };
1754
309381fe 1755 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 1756 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 1757
192d7232 1758 rmap_walk(page, &rwc);
b291f000 1759}
e9995ef9 1760
01d8b20d 1761void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1762{
01d8b20d 1763 struct anon_vma *root = anon_vma->root;
76545066 1764
624483f3 1765 anon_vma_free(anon_vma);
01d8b20d
PZ
1766 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1767 anon_vma_free(root);
76545066 1768}
76545066 1769
0dd1c7bb
JK
1770static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1771 struct rmap_walk_control *rwc)
faecd8dd
JK
1772{
1773 struct anon_vma *anon_vma;
1774
0dd1c7bb
JK
1775 if (rwc->anon_lock)
1776 return rwc->anon_lock(page);
1777
faecd8dd
JK
1778 /*
1779 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1780 * because that depends on page_mapped(); but not all its usages
1781 * are holding mmap_sem. Users without mmap_sem are required to
1782 * take a reference count to prevent the anon_vma disappearing
1783 */
1784 anon_vma = page_anon_vma(page);
1785 if (!anon_vma)
1786 return NULL;
1787
1788 anon_vma_lock_read(anon_vma);
1789 return anon_vma;
1790}
1791
e9995ef9 1792/*
e8351ac9
JK
1793 * rmap_walk_anon - do something to anonymous page using the object-based
1794 * rmap method
1795 * @page: the page to be handled
1796 * @rwc: control variable according to each walk type
1797 *
1798 * Find all the mappings of a page using the mapping pointer and the vma chains
1799 * contained in the anon_vma struct it points to.
1800 *
1801 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1802 * where the page was found will be held for write. So, we won't recheck
1803 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1804 * LOCKED.
e9995ef9 1805 */
1df631ae 1806static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 1807 bool locked)
e9995ef9
HD
1808{
1809 struct anon_vma *anon_vma;
a8fa41ad 1810 pgoff_t pgoff_start, pgoff_end;
5beb4930 1811 struct anon_vma_chain *avc;
e9995ef9 1812
b9773199
KS
1813 if (locked) {
1814 anon_vma = page_anon_vma(page);
1815 /* anon_vma disappear under us? */
1816 VM_BUG_ON_PAGE(!anon_vma, page);
1817 } else {
1818 anon_vma = rmap_walk_anon_lock(page, rwc);
1819 }
e9995ef9 1820 if (!anon_vma)
1df631ae 1821 return;
faecd8dd 1822
a8fa41ad
KS
1823 pgoff_start = page_to_pgoff(page);
1824 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1825 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1826 pgoff_start, pgoff_end) {
5beb4930 1827 struct vm_area_struct *vma = avc->vma;
e9995ef9 1828 unsigned long address = vma_address(page, vma);
0dd1c7bb 1829
ad12695f
AA
1830 cond_resched();
1831
0dd1c7bb
JK
1832 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1833 continue;
1834
e4b82222 1835 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 1836 break;
0dd1c7bb
JK
1837 if (rwc->done && rwc->done(page))
1838 break;
e9995ef9 1839 }
b9773199
KS
1840
1841 if (!locked)
1842 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1843}
1844
e8351ac9
JK
1845/*
1846 * rmap_walk_file - do something to file page using the object-based rmap method
1847 * @page: the page to be handled
1848 * @rwc: control variable according to each walk type
1849 *
1850 * Find all the mappings of a page using the mapping pointer and the vma chains
1851 * contained in the address_space struct it points to.
1852 *
1853 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1854 * where the page was found will be held for write. So, we won't recheck
1855 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1856 * LOCKED.
1857 */
1df631ae 1858static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 1859 bool locked)
e9995ef9 1860{
b9773199 1861 struct address_space *mapping = page_mapping(page);
a8fa41ad 1862 pgoff_t pgoff_start, pgoff_end;
e9995ef9 1863 struct vm_area_struct *vma;
e9995ef9 1864
9f32624b
JK
1865 /*
1866 * The page lock not only makes sure that page->mapping cannot
1867 * suddenly be NULLified by truncation, it makes sure that the
1868 * structure at mapping cannot be freed and reused yet,
c8c06efa 1869 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 1870 */
81d1b09c 1871 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 1872
e9995ef9 1873 if (!mapping)
1df631ae 1874 return;
3dec0ba0 1875
a8fa41ad
KS
1876 pgoff_start = page_to_pgoff(page);
1877 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
b9773199
KS
1878 if (!locked)
1879 i_mmap_lock_read(mapping);
a8fa41ad
KS
1880 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1881 pgoff_start, pgoff_end) {
e9995ef9 1882 unsigned long address = vma_address(page, vma);
0dd1c7bb 1883
ad12695f
AA
1884 cond_resched();
1885
0dd1c7bb
JK
1886 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1887 continue;
1888
e4b82222 1889 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
1890 goto done;
1891 if (rwc->done && rwc->done(page))
1892 goto done;
e9995ef9 1893 }
0dd1c7bb 1894
0dd1c7bb 1895done:
b9773199
KS
1896 if (!locked)
1897 i_mmap_unlock_read(mapping);
e9995ef9
HD
1898}
1899
1df631ae 1900void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 1901{
e9995ef9 1902 if (unlikely(PageKsm(page)))
1df631ae 1903 rmap_walk_ksm(page, rwc);
e9995ef9 1904 else if (PageAnon(page))
1df631ae 1905 rmap_walk_anon(page, rwc, false);
b9773199 1906 else
1df631ae 1907 rmap_walk_file(page, rwc, false);
b9773199
KS
1908}
1909
1910/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 1911void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
1912{
1913 /* no ksm support for now */
1914 VM_BUG_ON_PAGE(PageKsm(page), page);
1915 if (PageAnon(page))
1df631ae 1916 rmap_walk_anon(page, rwc, true);
e9995ef9 1917 else
1df631ae 1918 rmap_walk_file(page, rwc, true);
e9995ef9 1919}
0fe6e20b 1920
e3390f67 1921#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 1922/*
451b9514 1923 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
1924 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1925 * and no lru code, because we handle hugepages differently from common pages.
1926 */
0fe6e20b
NH
1927void hugepage_add_anon_rmap(struct page *page,
1928 struct vm_area_struct *vma, unsigned long address)
1929{
1930 struct anon_vma *anon_vma = vma->anon_vma;
1931 int first;
a850ea30
NH
1932
1933 BUG_ON(!PageLocked(page));
0fe6e20b 1934 BUG_ON(!anon_vma);
5dbe0af4 1935 /* address might be in next vma when migration races vma_adjust */
53f9263b 1936 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 1937 if (first)
451b9514 1938 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
1939}
1940
1941void hugepage_add_new_anon_rmap(struct page *page,
1942 struct vm_area_struct *vma, unsigned long address)
1943{
1944 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 1945 atomic_set(compound_mapcount_ptr(page), 0);
451b9514 1946 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 1947}
e3390f67 1948#endif /* CONFIG_HUGETLB_PAGE */