mm: trim more holes
[linux-2.6-block.git] / mm / readahead.c
CommitLineData
1da177e4
LT
1/*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002 akpm@zip.com.au
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/blkdev.h>
15#include <linux/backing-dev.h>
8bde37f0 16#include <linux/task_io_accounting_ops.h>
1da177e4 17#include <linux/pagevec.h>
f5ff8422 18#include <linux/pagemap.h>
1da177e4
LT
19
20void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
21{
22}
23EXPORT_SYMBOL(default_unplug_io_fn);
24
25struct backing_dev_info default_backing_dev_info = {
535443f5 26 .ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
1da177e4
LT
27 .state = 0,
28 .capabilities = BDI_CAP_MAP_COPY,
29 .unplug_io_fn = default_unplug_io_fn,
30};
31EXPORT_SYMBOL_GPL(default_backing_dev_info);
32
33/*
34 * Initialise a struct file's readahead state. Assumes that the caller has
35 * memset *ra to zero.
36 */
37void
38file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
39{
40 ra->ra_pages = mapping->backing_dev_info->ra_pages;
f4e6b498 41 ra->prev_pos = -1;
1da177e4 42}
d41cc702 43EXPORT_SYMBOL_GPL(file_ra_state_init);
1da177e4 44
1da177e4
LT
45#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
46
47/**
bd40cdda 48 * read_cache_pages - populate an address space with some pages & start reads against them
1da177e4
LT
49 * @mapping: the address_space
50 * @pages: The address of a list_head which contains the target pages. These
51 * pages have their ->index populated and are otherwise uninitialised.
52 * @filler: callback routine for filling a single page.
53 * @data: private data for the callback routine.
54 *
55 * Hides the details of the LRU cache etc from the filesystems.
56 */
57int read_cache_pages(struct address_space *mapping, struct list_head *pages,
58 int (*filler)(void *, struct page *), void *data)
59{
60 struct page *page;
61 struct pagevec lru_pvec;
62 int ret = 0;
63
64 pagevec_init(&lru_pvec, 0);
65
66 while (!list_empty(pages)) {
67 page = list_to_page(pages);
68 list_del(&page->lru);
69 if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
70 page_cache_release(page);
71 continue;
72 }
73 ret = filler(data, page);
74 if (!pagevec_add(&lru_pvec, page))
75 __pagevec_lru_add(&lru_pvec);
76 if (ret) {
38da288b 77 put_pages_list(pages);
1da177e4
LT
78 break;
79 }
8bde37f0 80 task_io_account_read(PAGE_CACHE_SIZE);
1da177e4
LT
81 }
82 pagevec_lru_add(&lru_pvec);
83 return ret;
84}
85
86EXPORT_SYMBOL(read_cache_pages);
87
88static int read_pages(struct address_space *mapping, struct file *filp,
89 struct list_head *pages, unsigned nr_pages)
90{
91 unsigned page_idx;
92 struct pagevec lru_pvec;
994fc28c 93 int ret;
1da177e4
LT
94
95 if (mapping->a_ops->readpages) {
96 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
029e332e
OH
97 /* Clean up the remaining pages */
98 put_pages_list(pages);
1da177e4
LT
99 goto out;
100 }
101
102 pagevec_init(&lru_pvec, 0);
103 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
104 struct page *page = list_to_page(pages);
105 list_del(&page->lru);
106 if (!add_to_page_cache(page, mapping,
107 page->index, GFP_KERNEL)) {
9f1a3cfc
ZB
108 mapping->a_ops->readpage(filp, page);
109 if (!pagevec_add(&lru_pvec, page))
110 __pagevec_lru_add(&lru_pvec);
111 } else
112 page_cache_release(page);
1da177e4
LT
113 }
114 pagevec_lru_add(&lru_pvec);
994fc28c 115 ret = 0;
1da177e4
LT
116out:
117 return ret;
118}
119
1da177e4
LT
120/*
121 * do_page_cache_readahead actually reads a chunk of disk. It allocates all
122 * the pages first, then submits them all for I/O. This avoids the very bad
123 * behaviour which would occur if page allocations are causing VM writeback.
124 * We really don't want to intermingle reads and writes like that.
125 *
126 * Returns the number of pages requested, or the maximum amount of I/O allowed.
127 *
128 * do_page_cache_readahead() returns -1 if it encountered request queue
129 * congestion.
130 */
131static int
132__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
46fc3e7b
FW
133 pgoff_t offset, unsigned long nr_to_read,
134 unsigned long lookahead_size)
1da177e4
LT
135{
136 struct inode *inode = mapping->host;
137 struct page *page;
138 unsigned long end_index; /* The last page we want to read */
139 LIST_HEAD(page_pool);
140 int page_idx;
141 int ret = 0;
142 loff_t isize = i_size_read(inode);
143
144 if (isize == 0)
145 goto out;
146
46fc3e7b 147 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
1da177e4
LT
148
149 /*
150 * Preallocate as many pages as we will need.
151 */
1da177e4 152 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
7361f4d8 153 pgoff_t page_offset = offset + page_idx;
c743d96b 154
1da177e4
LT
155 if (page_offset > end_index)
156 break;
157
00128188 158 rcu_read_lock();
1da177e4 159 page = radix_tree_lookup(&mapping->page_tree, page_offset);
00128188 160 rcu_read_unlock();
1da177e4
LT
161 if (page)
162 continue;
163
1da177e4 164 page = page_cache_alloc_cold(mapping);
1da177e4
LT
165 if (!page)
166 break;
167 page->index = page_offset;
168 list_add(&page->lru, &page_pool);
46fc3e7b
FW
169 if (page_idx == nr_to_read - lookahead_size)
170 SetPageReadahead(page);
1da177e4
LT
171 ret++;
172 }
1da177e4
LT
173
174 /*
175 * Now start the IO. We ignore I/O errors - if the page is not
176 * uptodate then the caller will launch readpage again, and
177 * will then handle the error.
178 */
179 if (ret)
180 read_pages(mapping, filp, &page_pool, ret);
181 BUG_ON(!list_empty(&page_pool));
182out:
183 return ret;
184}
185
186/*
187 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
188 * memory at once.
189 */
190int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 191 pgoff_t offset, unsigned long nr_to_read)
1da177e4
LT
192{
193 int ret = 0;
194
195 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
196 return -EINVAL;
197
198 while (nr_to_read) {
199 int err;
200
201 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
202
203 if (this_chunk > nr_to_read)
204 this_chunk = nr_to_read;
205 err = __do_page_cache_readahead(mapping, filp,
46fc3e7b 206 offset, this_chunk, 0);
1da177e4
LT
207 if (err < 0) {
208 ret = err;
209 break;
210 }
211 ret += err;
212 offset += this_chunk;
213 nr_to_read -= this_chunk;
214 }
215 return ret;
216}
217
1da177e4
LT
218/*
219 * This version skips the IO if the queue is read-congested, and will tell the
220 * block layer to abandon the readahead if request allocation would block.
221 *
222 * force_page_cache_readahead() will ignore queue congestion and will block on
223 * request queues.
224 */
225int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 226 pgoff_t offset, unsigned long nr_to_read)
1da177e4
LT
227{
228 if (bdi_read_congested(mapping->backing_dev_info))
229 return -1;
230
46fc3e7b 231 return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
1da177e4
LT
232}
233
1da177e4
LT
234/*
235 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
236 * sensible upper limit.
237 */
238unsigned long max_sane_readahead(unsigned long nr)
239{
05a0416b
CL
240 return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
241 + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
1da177e4 242}
5ce1110b
FW
243
244/*
245 * Submit IO for the read-ahead request in file_ra_state.
246 */
f9acc8c7 247static unsigned long ra_submit(struct file_ra_state *ra,
5ce1110b
FW
248 struct address_space *mapping, struct file *filp)
249{
5ce1110b
FW
250 int actual;
251
5ce1110b 252 actual = __do_page_cache_readahead(mapping, filp,
f9acc8c7 253 ra->start, ra->size, ra->async_size);
5ce1110b
FW
254
255 return actual;
256}
122a21d1 257
c743d96b
FW
258/*
259 * Set the initial window size, round to next power of 2 and square
260 * for small size, x 4 for medium, and x 2 for large
261 * for 128k (32 page) max ra
262 * 1-8 page = 32k initial, > 8 page = 128k initial
263 */
264static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
265{
266 unsigned long newsize = roundup_pow_of_two(size);
267
268 if (newsize <= max / 32)
269 newsize = newsize * 4;
270 else if (newsize <= max / 4)
271 newsize = newsize * 2;
272 else
273 newsize = max;
274
275 return newsize;
276}
277
122a21d1
FW
278/*
279 * Get the previous window size, ramp it up, and
280 * return it as the new window size.
281 */
c743d96b 282static unsigned long get_next_ra_size(struct file_ra_state *ra,
122a21d1
FW
283 unsigned long max)
284{
f9acc8c7 285 unsigned long cur = ra->size;
122a21d1
FW
286 unsigned long newsize;
287
288 if (cur < max / 16)
c743d96b 289 newsize = 4 * cur;
122a21d1 290 else
c743d96b 291 newsize = 2 * cur;
122a21d1
FW
292
293 return min(newsize, max);
294}
295
296/*
297 * On-demand readahead design.
298 *
299 * The fields in struct file_ra_state represent the most-recently-executed
300 * readahead attempt:
301 *
f9acc8c7
FW
302 * |<----- async_size ---------|
303 * |------------------- size -------------------->|
304 * |==================#===========================|
305 * ^start ^page marked with PG_readahead
122a21d1
FW
306 *
307 * To overlap application thinking time and disk I/O time, we do
308 * `readahead pipelining': Do not wait until the application consumed all
309 * readahead pages and stalled on the missing page at readahead_index;
f9acc8c7
FW
310 * Instead, submit an asynchronous readahead I/O as soon as there are
311 * only async_size pages left in the readahead window. Normally async_size
312 * will be equal to size, for maximum pipelining.
122a21d1
FW
313 *
314 * In interleaved sequential reads, concurrent streams on the same fd can
315 * be invalidating each other's readahead state. So we flag the new readahead
f9acc8c7 316 * page at (start+size-async_size) with PG_readahead, and use it as readahead
122a21d1
FW
317 * indicator. The flag won't be set on already cached pages, to avoid the
318 * readahead-for-nothing fuss, saving pointless page cache lookups.
319 *
f4e6b498 320 * prev_pos tracks the last visited byte in the _previous_ read request.
122a21d1
FW
321 * It should be maintained by the caller, and will be used for detecting
322 * small random reads. Note that the readahead algorithm checks loosely
323 * for sequential patterns. Hence interleaved reads might be served as
324 * sequential ones.
325 *
326 * There is a special-case: if the first page which the application tries to
327 * read happens to be the first page of the file, it is assumed that a linear
328 * read is about to happen and the window is immediately set to the initial size
329 * based on I/O request size and the max_readahead.
330 *
331 * The code ramps up the readahead size aggressively at first, but slow down as
332 * it approaches max_readhead.
333 */
334
335/*
336 * A minimal readahead algorithm for trivial sequential/random reads.
337 */
338static unsigned long
339ondemand_readahead(struct address_space *mapping,
340 struct file_ra_state *ra, struct file *filp,
cf914a7d 341 bool hit_readahead_marker, pgoff_t offset,
122a21d1
FW
342 unsigned long req_size)
343{
f4e6b498
FW
344 int max = ra->ra_pages; /* max readahead pages */
345 pgoff_t prev_offset;
346 int sequential;
122a21d1
FW
347
348 /*
f9acc8c7 349 * It's the expected callback offset, assume sequential access.
122a21d1
FW
350 * Ramp up sizes, and push forward the readahead window.
351 */
f9acc8c7
FW
352 if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
353 offset == (ra->start + ra->size))) {
354 ra->start += ra->size;
355 ra->size = get_next_ra_size(ra, max);
356 ra->async_size = ra->size;
357 goto readit;
122a21d1
FW
358 }
359
f4e6b498
FW
360 prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
361 sequential = offset - prev_offset <= 1UL || req_size > max;
362
122a21d1
FW
363 /*
364 * Standalone, small read.
365 * Read as is, and do not pollute the readahead state.
366 */
cf914a7d 367 if (!hit_readahead_marker && !sequential) {
122a21d1
FW
368 return __do_page_cache_readahead(mapping, filp,
369 offset, req_size, 0);
370 }
371
6b10c6c9
FW
372 /*
373 * Hit a marked page without valid readahead state.
374 * E.g. interleaved reads.
375 * Query the pagecache for async_size, which normally equals to
376 * readahead size. Ramp it up and use it as the new readahead size.
377 */
378 if (hit_readahead_marker) {
379 pgoff_t start;
380
381 read_lock_irq(&mapping->tree_lock);
382 start = radix_tree_next_hole(&mapping->page_tree, offset, max+1);
383 read_unlock_irq(&mapping->tree_lock);
384
385 if (!start || start - offset > max)
386 return 0;
387
388 ra->start = start;
389 ra->size = start - offset; /* old async_size */
390 ra->size = get_next_ra_size(ra, max);
391 ra->async_size = ra->size;
392 goto readit;
393 }
394
122a21d1
FW
395 /*
396 * It may be one of
397 * - first read on start of file
398 * - sequential cache miss
399 * - oversize random read
400 * Start readahead for it.
401 */
f9acc8c7
FW
402 ra->start = offset;
403 ra->size = get_init_ra_size(req_size, max);
404 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
122a21d1 405
f9acc8c7 406readit:
122a21d1
FW
407 return ra_submit(ra, mapping, filp);
408}
409
410/**
cf914a7d 411 * page_cache_sync_readahead - generic file readahead
122a21d1
FW
412 * @mapping: address_space which holds the pagecache and I/O vectors
413 * @ra: file_ra_state which holds the readahead state
414 * @filp: passed on to ->readpage() and ->readpages()
cf914a7d 415 * @offset: start offset into @mapping, in pagecache page-sized units
122a21d1 416 * @req_size: hint: total size of the read which the caller is performing in
cf914a7d 417 * pagecache pages
122a21d1 418 *
cf914a7d
RR
419 * page_cache_sync_readahead() should be called when a cache miss happened:
420 * it will submit the read. The readahead logic may decide to piggyback more
421 * pages onto the read request if access patterns suggest it will improve
422 * performance.
122a21d1 423 */
cf914a7d
RR
424void page_cache_sync_readahead(struct address_space *mapping,
425 struct file_ra_state *ra, struct file *filp,
426 pgoff_t offset, unsigned long req_size)
122a21d1
FW
427{
428 /* no read-ahead */
429 if (!ra->ra_pages)
cf914a7d
RR
430 return;
431
432 /* do read-ahead */
433 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
434}
435EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
436
437/**
438 * page_cache_async_readahead - file readahead for marked pages
439 * @mapping: address_space which holds the pagecache and I/O vectors
440 * @ra: file_ra_state which holds the readahead state
441 * @filp: passed on to ->readpage() and ->readpages()
442 * @page: the page at @offset which has the PG_readahead flag set
443 * @offset: start offset into @mapping, in pagecache page-sized units
444 * @req_size: hint: total size of the read which the caller is performing in
445 * pagecache pages
446 *
447 * page_cache_async_ondemand() should be called when a page is used which
448 * has the PG_readahead flag: this is a marker to suggest that the application
449 * has used up enough of the readahead window that we should start pulling in
450 * more pages. */
451void
452page_cache_async_readahead(struct address_space *mapping,
453 struct file_ra_state *ra, struct file *filp,
454 struct page *page, pgoff_t offset,
455 unsigned long req_size)
456{
457 /* no read-ahead */
458 if (!ra->ra_pages)
459 return;
460
461 /*
462 * Same bit is used for PG_readahead and PG_reclaim.
463 */
464 if (PageWriteback(page))
465 return;
466
467 ClearPageReadahead(page);
468
469 /*
470 * Defer asynchronous read-ahead on IO congestion.
471 */
472 if (bdi_read_congested(mapping->backing_dev_info))
473 return;
122a21d1
FW
474
475 /* do read-ahead */
cf914a7d 476 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
122a21d1 477}
cf914a7d 478EXPORT_SYMBOL_GPL(page_cache_async_readahead);