[PATCH] Some page migration fixups
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
6c231b7b
RT
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
1da177e4 54long nr_swap_pages;
8ad4b1fb 55int percpu_pagelist_fraction;
1da177e4 56
d98c7a09 57static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 58
1da177e4
LT
59/*
60 * results with 256, 32 in the lowmem_reserve sysctl:
61 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62 * 1G machine -> (16M dma, 784M normal, 224M high)
63 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
66 *
67 * TBD: should special case ZONE_DMA32 machines here - in those we normally
68 * don't need any ZONE_NORMAL reservation
1da177e4 69 */
a2f1b424 70int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
71
72EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
73
74/*
75 * Used by page_zone() to look up the address of the struct zone whose
76 * id is encoded in the upper bits of page->flags
77 */
c3d8c141 78struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
79EXPORT_SYMBOL(zone_table);
80
a2f1b424 81static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
82int min_free_kbytes = 1024;
83
84unsigned long __initdata nr_kernel_pages;
85unsigned long __initdata nr_all_pages;
86
13e7444b 87#ifdef CONFIG_DEBUG_VM
c6a57e19 88static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 89{
bdc8cb98
DH
90 int ret = 0;
91 unsigned seq;
92 unsigned long pfn = page_to_pfn(page);
c6a57e19 93
bdc8cb98
DH
94 do {
95 seq = zone_span_seqbegin(zone);
96 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97 ret = 1;
98 else if (pfn < zone->zone_start_pfn)
99 ret = 1;
100 } while (zone_span_seqretry(zone, seq));
101
102 return ret;
c6a57e19
DH
103}
104
105static int page_is_consistent(struct zone *zone, struct page *page)
106{
1da177e4
LT
107#ifdef CONFIG_HOLES_IN_ZONE
108 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 109 return 0;
1da177e4
LT
110#endif
111 if (zone != page_zone(page))
c6a57e19
DH
112 return 0;
113
114 return 1;
115}
116/*
117 * Temporary debugging check for pages not lying within a given zone.
118 */
119static int bad_range(struct zone *zone, struct page *page)
120{
121 if (page_outside_zone_boundaries(zone, page))
1da177e4 122 return 1;
c6a57e19
DH
123 if (!page_is_consistent(zone, page))
124 return 1;
125
1da177e4
LT
126 return 0;
127}
128
13e7444b
NP
129#else
130static inline int bad_range(struct zone *zone, struct page *page)
131{
132 return 0;
133}
134#endif
135
224abf92 136static void bad_page(struct page *page)
1da177e4 137{
224abf92 138 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
139 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
141 KERN_EMERG "Backtrace:\n",
224abf92
NP
142 current->comm, page, (int)(2*sizeof(unsigned long)),
143 (unsigned long)page->flags, page->mapping,
144 page_mapcount(page), page_count(page));
1da177e4 145 dump_stack();
334795ec
HD
146 page->flags &= ~(1 << PG_lru |
147 1 << PG_private |
1da177e4 148 1 << PG_locked |
1da177e4
LT
149 1 << PG_active |
150 1 << PG_dirty |
334795ec
HD
151 1 << PG_reclaim |
152 1 << PG_slab |
1da177e4 153 1 << PG_swapcache |
676165a8
NP
154 1 << PG_writeback |
155 1 << PG_buddy );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4 175 */
d98c7a09
HD
176
177static void free_compound_page(struct page *page)
178{
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
180}
181
1da177e4
LT
182static void prep_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
d98c7a09 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 188 page[1].lru.prev = (void *)order;
1da177e4
LT
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
191
5e9dace8 192 __SetPageCompound(p);
4c21e2f2 193 set_page_private(p, (unsigned long)page);
1da177e4
LT
194 }
195}
196
197static void destroy_compound_page(struct page *page, unsigned long order)
198{
199 int i;
200 int nr_pages = 1 << order;
201
41d78ba5 202 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 203 bad_page(page);
1da177e4
LT
204
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
207
224abf92
NP
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
5e9dace8 211 __ClearPageCompound(p);
1da177e4
LT
212 }
213}
1da177e4 214
17cf4406
NP
215static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
216{
217 int i;
218
219 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
220 /*
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
223 */
224 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
225 for (i = 0; i < (1 << order); i++)
226 clear_highpage(page + i);
227}
228
1da177e4
LT
229/*
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
233 */
234static inline unsigned long page_order(struct page *page) {
4c21e2f2 235 return page_private(page);
1da177e4
LT
236}
237
238static inline void set_page_order(struct page *page, int order) {
4c21e2f2 239 set_page_private(page, order);
676165a8 240 __SetPageBuddy(page);
1da177e4
LT
241}
242
243static inline void rmv_page_order(struct page *page)
244{
676165a8 245 __ClearPageBuddy(page);
4c21e2f2 246 set_page_private(page, 0);
1da177e4
LT
247}
248
249/*
250 * Locate the struct page for both the matching buddy in our
251 * pair (buddy1) and the combined O(n+1) page they form (page).
252 *
253 * 1) Any buddy B1 will have an order O twin B2 which satisfies
254 * the following equation:
255 * B2 = B1 ^ (1 << O)
256 * For example, if the starting buddy (buddy2) is #8 its order
257 * 1 buddy is #10:
258 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
259 *
260 * 2) Any buddy B will have an order O+1 parent P which
261 * satisfies the following equation:
262 * P = B & ~(1 << O)
263 *
264 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
265 */
266static inline struct page *
267__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
268{
269 unsigned long buddy_idx = page_idx ^ (1 << order);
270
271 return page + (buddy_idx - page_idx);
272}
273
274static inline unsigned long
275__find_combined_index(unsigned long page_idx, unsigned int order)
276{
277 return (page_idx & ~(1 << order));
278}
279
280/*
281 * This function checks whether a page is free && is the buddy
282 * we can do coalesce a page and its buddy if
13e7444b 283 * (a) the buddy is not in a hole &&
676165a8
NP
284 * (b) the buddy is in the buddy system &&
285 * (c) a page and its buddy have the same order.
286 *
287 * For recording whether a page is in the buddy system, we use PG_buddy.
288 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 289 *
676165a8 290 * For recording page's order, we use page_private(page).
1da177e4
LT
291 */
292static inline int page_is_buddy(struct page *page, int order)
293{
13e7444b
NP
294#ifdef CONFIG_HOLES_IN_ZONE
295 if (!pfn_valid(page_to_pfn(page)))
296 return 0;
297#endif
298
676165a8
NP
299 if (PageBuddy(page) && page_order(page) == order) {
300 BUG_ON(page_count(page) != 0);
1da177e4 301 return 1;
676165a8 302 }
1da177e4
LT
303 return 0;
304}
305
306/*
307 * Freeing function for a buddy system allocator.
308 *
309 * The concept of a buddy system is to maintain direct-mapped table
310 * (containing bit values) for memory blocks of various "orders".
311 * The bottom level table contains the map for the smallest allocatable
312 * units of memory (here, pages), and each level above it describes
313 * pairs of units from the levels below, hence, "buddies".
314 * At a high level, all that happens here is marking the table entry
315 * at the bottom level available, and propagating the changes upward
316 * as necessary, plus some accounting needed to play nicely with other
317 * parts of the VM system.
318 * At each level, we keep a list of pages, which are heads of continuous
676165a8 319 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 320 * order is recorded in page_private(page) field.
1da177e4
LT
321 * So when we are allocating or freeing one, we can derive the state of the
322 * other. That is, if we allocate a small block, and both were
323 * free, the remainder of the region must be split into blocks.
324 * If a block is freed, and its buddy is also free, then this
325 * triggers coalescing into a block of larger size.
326 *
327 * -- wli
328 */
329
48db57f8 330static inline void __free_one_page(struct page *page,
1da177e4
LT
331 struct zone *zone, unsigned int order)
332{
333 unsigned long page_idx;
334 int order_size = 1 << order;
335
224abf92 336 if (unlikely(PageCompound(page)))
1da177e4
LT
337 destroy_compound_page(page, order);
338
339 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
340
341 BUG_ON(page_idx & (order_size - 1));
342 BUG_ON(bad_range(zone, page));
343
344 zone->free_pages += order_size;
345 while (order < MAX_ORDER-1) {
346 unsigned long combined_idx;
347 struct free_area *area;
348 struct page *buddy;
349
1da177e4 350 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
351 if (!page_is_buddy(buddy, order))
352 break; /* Move the buddy up one level. */
13e7444b 353
1da177e4
LT
354 list_del(&buddy->lru);
355 area = zone->free_area + order;
356 area->nr_free--;
357 rmv_page_order(buddy);
13e7444b 358 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
359 page = page + (combined_idx - page_idx);
360 page_idx = combined_idx;
361 order++;
362 }
363 set_page_order(page, order);
364 list_add(&page->lru, &zone->free_area[order].free_list);
365 zone->free_area[order].nr_free++;
366}
367
224abf92 368static inline int free_pages_check(struct page *page)
1da177e4 369{
92be2e33
NP
370 if (unlikely(page_mapcount(page) |
371 (page->mapping != NULL) |
372 (page_count(page) != 0) |
1da177e4
LT
373 (page->flags & (
374 1 << PG_lru |
375 1 << PG_private |
376 1 << PG_locked |
377 1 << PG_active |
378 1 << PG_reclaim |
379 1 << PG_slab |
380 1 << PG_swapcache |
b5810039 381 1 << PG_writeback |
676165a8
NP
382 1 << PG_reserved |
383 1 << PG_buddy ))))
224abf92 384 bad_page(page);
1da177e4 385 if (PageDirty(page))
242e5468 386 __ClearPageDirty(page);
689bcebf
HD
387 /*
388 * For now, we report if PG_reserved was found set, but do not
389 * clear it, and do not free the page. But we shall soon need
390 * to do more, for when the ZERO_PAGE count wraps negative.
391 */
392 return PageReserved(page);
1da177e4
LT
393}
394
395/*
396 * Frees a list of pages.
397 * Assumes all pages on list are in same zone, and of same order.
207f36ee 398 * count is the number of pages to free.
1da177e4
LT
399 *
400 * If the zone was previously in an "all pages pinned" state then look to
401 * see if this freeing clears that state.
402 *
403 * And clear the zone's pages_scanned counter, to hold off the "all pages are
404 * pinned" detection logic.
405 */
48db57f8
NP
406static void free_pages_bulk(struct zone *zone, int count,
407 struct list_head *list, int order)
1da177e4 408{
c54ad30c 409 spin_lock(&zone->lock);
1da177e4
LT
410 zone->all_unreclaimable = 0;
411 zone->pages_scanned = 0;
48db57f8
NP
412 while (count--) {
413 struct page *page;
414
415 BUG_ON(list_empty(list));
1da177e4 416 page = list_entry(list->prev, struct page, lru);
48db57f8 417 /* have to delete it as __free_one_page list manipulates */
1da177e4 418 list_del(&page->lru);
48db57f8 419 __free_one_page(page, zone, order);
1da177e4 420 }
c54ad30c 421 spin_unlock(&zone->lock);
1da177e4
LT
422}
423
48db57f8 424static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
425{
426 LIST_HEAD(list);
48db57f8
NP
427 list_add(&page->lru, &list);
428 free_pages_bulk(zone, 1, &list, order);
429}
430
431static void __free_pages_ok(struct page *page, unsigned int order)
432{
433 unsigned long flags;
1da177e4 434 int i;
689bcebf 435 int reserved = 0;
1da177e4
LT
436
437 arch_free_page(page, order);
de5097c2
IM
438 if (!PageHighMem(page))
439 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 440 PAGE_SIZE<<order);
1da177e4 441
1da177e4 442 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 443 reserved += free_pages_check(page + i);
689bcebf
HD
444 if (reserved)
445 return;
446
48db57f8 447 kernel_map_pages(page, 1 << order, 0);
c54ad30c 448 local_irq_save(flags);
a74609fa 449 __mod_page_state(pgfree, 1 << order);
48db57f8 450 free_one_page(page_zone(page), page, order);
c54ad30c 451 local_irq_restore(flags);
1da177e4
LT
452}
453
a226f6c8
DH
454/*
455 * permit the bootmem allocator to evade page validation on high-order frees
456 */
457void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
458{
459 if (order == 0) {
460 __ClearPageReserved(page);
461 set_page_count(page, 0);
7835e98b 462 set_page_refcounted(page);
545b1ea9 463 __free_page(page);
a226f6c8 464 } else {
a226f6c8
DH
465 int loop;
466
545b1ea9 467 prefetchw(page);
a226f6c8
DH
468 for (loop = 0; loop < BITS_PER_LONG; loop++) {
469 struct page *p = &page[loop];
470
545b1ea9
NP
471 if (loop + 1 < BITS_PER_LONG)
472 prefetchw(p + 1);
a226f6c8
DH
473 __ClearPageReserved(p);
474 set_page_count(p, 0);
475 }
476
7835e98b 477 set_page_refcounted(page);
545b1ea9 478 __free_pages(page, order);
a226f6c8
DH
479 }
480}
481
1da177e4
LT
482
483/*
484 * The order of subdivision here is critical for the IO subsystem.
485 * Please do not alter this order without good reasons and regression
486 * testing. Specifically, as large blocks of memory are subdivided,
487 * the order in which smaller blocks are delivered depends on the order
488 * they're subdivided in this function. This is the primary factor
489 * influencing the order in which pages are delivered to the IO
490 * subsystem according to empirical testing, and this is also justified
491 * by considering the behavior of a buddy system containing a single
492 * large block of memory acted on by a series of small allocations.
493 * This behavior is a critical factor in sglist merging's success.
494 *
495 * -- wli
496 */
085cc7d5 497static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
498 int low, int high, struct free_area *area)
499{
500 unsigned long size = 1 << high;
501
502 while (high > low) {
503 area--;
504 high--;
505 size >>= 1;
506 BUG_ON(bad_range(zone, &page[size]));
507 list_add(&page[size].lru, &area->free_list);
508 area->nr_free++;
509 set_page_order(&page[size], high);
510 }
1da177e4
LT
511}
512
1da177e4
LT
513/*
514 * This page is about to be returned from the page allocator
515 */
17cf4406 516static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 517{
92be2e33
NP
518 if (unlikely(page_mapcount(page) |
519 (page->mapping != NULL) |
520 (page_count(page) != 0) |
334795ec
HD
521 (page->flags & (
522 1 << PG_lru |
1da177e4
LT
523 1 << PG_private |
524 1 << PG_locked |
1da177e4
LT
525 1 << PG_active |
526 1 << PG_dirty |
527 1 << PG_reclaim |
334795ec 528 1 << PG_slab |
1da177e4 529 1 << PG_swapcache |
b5810039 530 1 << PG_writeback |
676165a8
NP
531 1 << PG_reserved |
532 1 << PG_buddy ))))
224abf92 533 bad_page(page);
1da177e4 534
689bcebf
HD
535 /*
536 * For now, we report if PG_reserved was found set, but do not
537 * clear it, and do not allocate the page: as a safety net.
538 */
539 if (PageReserved(page))
540 return 1;
541
1da177e4
LT
542 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
543 1 << PG_referenced | 1 << PG_arch_1 |
544 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 545 set_page_private(page, 0);
7835e98b 546 set_page_refcounted(page);
1da177e4 547 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
548
549 if (gfp_flags & __GFP_ZERO)
550 prep_zero_page(page, order, gfp_flags);
551
552 if (order && (gfp_flags & __GFP_COMP))
553 prep_compound_page(page, order);
554
689bcebf 555 return 0;
1da177e4
LT
556}
557
558/*
559 * Do the hard work of removing an element from the buddy allocator.
560 * Call me with the zone->lock already held.
561 */
562static struct page *__rmqueue(struct zone *zone, unsigned int order)
563{
564 struct free_area * area;
565 unsigned int current_order;
566 struct page *page;
567
568 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
569 area = zone->free_area + current_order;
570 if (list_empty(&area->free_list))
571 continue;
572
573 page = list_entry(area->free_list.next, struct page, lru);
574 list_del(&page->lru);
575 rmv_page_order(page);
576 area->nr_free--;
577 zone->free_pages -= 1UL << order;
085cc7d5
NP
578 expand(zone, page, order, current_order, area);
579 return page;
1da177e4
LT
580 }
581
582 return NULL;
583}
584
585/*
586 * Obtain a specified number of elements from the buddy allocator, all under
587 * a single hold of the lock, for efficiency. Add them to the supplied list.
588 * Returns the number of new pages which were placed at *list.
589 */
590static int rmqueue_bulk(struct zone *zone, unsigned int order,
591 unsigned long count, struct list_head *list)
592{
1da177e4 593 int i;
1da177e4 594
c54ad30c 595 spin_lock(&zone->lock);
1da177e4 596 for (i = 0; i < count; ++i) {
085cc7d5
NP
597 struct page *page = __rmqueue(zone, order);
598 if (unlikely(page == NULL))
1da177e4 599 break;
1da177e4
LT
600 list_add_tail(&page->lru, list);
601 }
c54ad30c 602 spin_unlock(&zone->lock);
085cc7d5 603 return i;
1da177e4
LT
604}
605
4ae7c039 606#ifdef CONFIG_NUMA
8fce4d8e
CL
607/*
608 * Called from the slab reaper to drain pagesets on a particular node that
609 * belong to the currently executing processor.
879336c3
CL
610 * Note that this function must be called with the thread pinned to
611 * a single processor.
8fce4d8e
CL
612 */
613void drain_node_pages(int nodeid)
4ae7c039 614{
8fce4d8e 615 int i, z;
4ae7c039
CL
616 unsigned long flags;
617
8fce4d8e
CL
618 for (z = 0; z < MAX_NR_ZONES; z++) {
619 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
620 struct per_cpu_pageset *pset;
621
23316bc8 622 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
623 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
624 struct per_cpu_pages *pcp;
625
626 pcp = &pset->pcp[i];
879336c3
CL
627 if (pcp->count) {
628 local_irq_save(flags);
629 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
630 pcp->count = 0;
631 local_irq_restore(flags);
632 }
4ae7c039
CL
633 }
634 }
4ae7c039
CL
635}
636#endif
637
1da177e4
LT
638#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
639static void __drain_pages(unsigned int cpu)
640{
c54ad30c 641 unsigned long flags;
1da177e4
LT
642 struct zone *zone;
643 int i;
644
645 for_each_zone(zone) {
646 struct per_cpu_pageset *pset;
647
e7c8d5c9 648 pset = zone_pcp(zone, cpu);
1da177e4
LT
649 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
650 struct per_cpu_pages *pcp;
651
652 pcp = &pset->pcp[i];
c54ad30c 653 local_irq_save(flags);
48db57f8
NP
654 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
655 pcp->count = 0;
c54ad30c 656 local_irq_restore(flags);
1da177e4
LT
657 }
658 }
659}
660#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
661
662#ifdef CONFIG_PM
663
664void mark_free_pages(struct zone *zone)
665{
666 unsigned long zone_pfn, flags;
667 int order;
668 struct list_head *curr;
669
670 if (!zone->spanned_pages)
671 return;
672
673 spin_lock_irqsave(&zone->lock, flags);
674 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
675 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
676
677 for (order = MAX_ORDER - 1; order >= 0; --order)
678 list_for_each(curr, &zone->free_area[order].free_list) {
679 unsigned long start_pfn, i;
680
681 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
682
683 for (i=0; i < (1<<order); i++)
684 SetPageNosaveFree(pfn_to_page(start_pfn+i));
685 }
686 spin_unlock_irqrestore(&zone->lock, flags);
687}
688
689/*
690 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
691 */
692void drain_local_pages(void)
693{
694 unsigned long flags;
695
696 local_irq_save(flags);
697 __drain_pages(smp_processor_id());
698 local_irq_restore(flags);
699}
700#endif /* CONFIG_PM */
701
a74609fa 702static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
703{
704#ifdef CONFIG_NUMA
1da177e4
LT
705 pg_data_t *pg = z->zone_pgdat;
706 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
707 struct per_cpu_pageset *p;
708
a74609fa 709 p = zone_pcp(z, cpu);
1da177e4 710 if (pg == orig) {
e7c8d5c9 711 p->numa_hit++;
1da177e4
LT
712 } else {
713 p->numa_miss++;
e7c8d5c9 714 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
715 }
716 if (pg == NODE_DATA(numa_node_id()))
717 p->local_node++;
718 else
719 p->other_node++;
1da177e4
LT
720#endif
721}
722
723/*
724 * Free a 0-order page
725 */
1da177e4
LT
726static void fastcall free_hot_cold_page(struct page *page, int cold)
727{
728 struct zone *zone = page_zone(page);
729 struct per_cpu_pages *pcp;
730 unsigned long flags;
731
732 arch_free_page(page, 0);
733
1da177e4
LT
734 if (PageAnon(page))
735 page->mapping = NULL;
224abf92 736 if (free_pages_check(page))
689bcebf
HD
737 return;
738
689bcebf
HD
739 kernel_map_pages(page, 1, 0);
740
e7c8d5c9 741 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 742 local_irq_save(flags);
a74609fa 743 __inc_page_state(pgfree);
1da177e4
LT
744 list_add(&page->lru, &pcp->list);
745 pcp->count++;
48db57f8
NP
746 if (pcp->count >= pcp->high) {
747 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
748 pcp->count -= pcp->batch;
749 }
1da177e4
LT
750 local_irq_restore(flags);
751 put_cpu();
752}
753
754void fastcall free_hot_page(struct page *page)
755{
756 free_hot_cold_page(page, 0);
757}
758
759void fastcall free_cold_page(struct page *page)
760{
761 free_hot_cold_page(page, 1);
762}
763
8dfcc9ba
NP
764/*
765 * split_page takes a non-compound higher-order page, and splits it into
766 * n (1<<order) sub-pages: page[0..n]
767 * Each sub-page must be freed individually.
768 *
769 * Note: this is probably too low level an operation for use in drivers.
770 * Please consult with lkml before using this in your driver.
771 */
772void split_page(struct page *page, unsigned int order)
773{
774 int i;
775
776 BUG_ON(PageCompound(page));
777 BUG_ON(!page_count(page));
7835e98b
NP
778 for (i = 1; i < (1 << order); i++)
779 set_page_refcounted(page + i);
8dfcc9ba 780}
8dfcc9ba 781
1da177e4
LT
782/*
783 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
784 * we cheat by calling it from here, in the order > 0 path. Saves a branch
785 * or two.
786 */
a74609fa
NP
787static struct page *buffered_rmqueue(struct zonelist *zonelist,
788 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
789{
790 unsigned long flags;
689bcebf 791 struct page *page;
1da177e4 792 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 793 int cpu;
1da177e4 794
689bcebf 795again:
a74609fa 796 cpu = get_cpu();
48db57f8 797 if (likely(order == 0)) {
1da177e4
LT
798 struct per_cpu_pages *pcp;
799
a74609fa 800 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 801 local_irq_save(flags);
a74609fa 802 if (!pcp->count) {
1da177e4
LT
803 pcp->count += rmqueue_bulk(zone, 0,
804 pcp->batch, &pcp->list);
a74609fa
NP
805 if (unlikely(!pcp->count))
806 goto failed;
1da177e4 807 }
a74609fa
NP
808 page = list_entry(pcp->list.next, struct page, lru);
809 list_del(&page->lru);
810 pcp->count--;
7fb1d9fc 811 } else {
1da177e4
LT
812 spin_lock_irqsave(&zone->lock, flags);
813 page = __rmqueue(zone, order);
a74609fa
NP
814 spin_unlock(&zone->lock);
815 if (!page)
816 goto failed;
1da177e4
LT
817 }
818
a74609fa
NP
819 __mod_page_state_zone(zone, pgalloc, 1 << order);
820 zone_statistics(zonelist, zone, cpu);
821 local_irq_restore(flags);
822 put_cpu();
1da177e4 823
a74609fa 824 BUG_ON(bad_range(zone, page));
17cf4406 825 if (prep_new_page(page, order, gfp_flags))
a74609fa 826 goto again;
1da177e4 827 return page;
a74609fa
NP
828
829failed:
830 local_irq_restore(flags);
831 put_cpu();
832 return NULL;
1da177e4
LT
833}
834
7fb1d9fc 835#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
836#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
837#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
838#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
839#define ALLOC_HARDER 0x10 /* try to alloc harder */
840#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
841#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 842
1da177e4
LT
843/*
844 * Return 1 if free pages are above 'mark'. This takes into account the order
845 * of the allocation.
846 */
847int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 848 int classzone_idx, int alloc_flags)
1da177e4
LT
849{
850 /* free_pages my go negative - that's OK */
851 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
852 int o;
853
7fb1d9fc 854 if (alloc_flags & ALLOC_HIGH)
1da177e4 855 min -= min / 2;
7fb1d9fc 856 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
857 min -= min / 4;
858
859 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
860 return 0;
861 for (o = 0; o < order; o++) {
862 /* At the next order, this order's pages become unavailable */
863 free_pages -= z->free_area[o].nr_free << o;
864
865 /* Require fewer higher order pages to be free */
866 min >>= 1;
867
868 if (free_pages <= min)
869 return 0;
870 }
871 return 1;
872}
873
7fb1d9fc
RS
874/*
875 * get_page_from_freeliest goes through the zonelist trying to allocate
876 * a page.
877 */
878static struct page *
879get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
880 struct zonelist *zonelist, int alloc_flags)
753ee728 881{
7fb1d9fc
RS
882 struct zone **z = zonelist->zones;
883 struct page *page = NULL;
884 int classzone_idx = zone_idx(*z);
885
886 /*
887 * Go through the zonelist once, looking for a zone with enough free.
888 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
889 */
890 do {
891 if ((alloc_flags & ALLOC_CPUSET) &&
892 !cpuset_zone_allowed(*z, gfp_mask))
893 continue;
894
895 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
896 unsigned long mark;
897 if (alloc_flags & ALLOC_WMARK_MIN)
898 mark = (*z)->pages_min;
899 else if (alloc_flags & ALLOC_WMARK_LOW)
900 mark = (*z)->pages_low;
901 else
902 mark = (*z)->pages_high;
903 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 904 classzone_idx, alloc_flags))
9eeff239
CL
905 if (!zone_reclaim_mode ||
906 !zone_reclaim(*z, gfp_mask, order))
907 continue;
7fb1d9fc
RS
908 }
909
a74609fa 910 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 911 if (page) {
7fb1d9fc
RS
912 break;
913 }
914 } while (*(++z) != NULL);
915 return page;
753ee728
MH
916}
917
1da177e4
LT
918/*
919 * This is the 'heart' of the zoned buddy allocator.
920 */
921struct page * fastcall
dd0fc66f 922__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
923 struct zonelist *zonelist)
924{
260b2367 925 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 926 struct zone **z;
1da177e4
LT
927 struct page *page;
928 struct reclaim_state reclaim_state;
929 struct task_struct *p = current;
1da177e4 930 int do_retry;
7fb1d9fc 931 int alloc_flags;
1da177e4
LT
932 int did_some_progress;
933
934 might_sleep_if(wait);
935
6b1de916 936restart:
7fb1d9fc 937 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 938
7fb1d9fc 939 if (unlikely(*z == NULL)) {
1da177e4
LT
940 /* Should this ever happen?? */
941 return NULL;
942 }
6b1de916 943
7fb1d9fc 944 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 945 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
946 if (page)
947 goto got_pg;
1da177e4 948
6b1de916 949 do {
0b1303fc
CL
950 if (cpuset_zone_allowed(*z, gfp_mask))
951 wakeup_kswapd(*z, order);
6b1de916 952 } while (*(++z));
1da177e4 953
9bf2229f 954 /*
7fb1d9fc
RS
955 * OK, we're below the kswapd watermark and have kicked background
956 * reclaim. Now things get more complex, so set up alloc_flags according
957 * to how we want to proceed.
958 *
959 * The caller may dip into page reserves a bit more if the caller
960 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
961 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
962 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 963 */
3148890b 964 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
965 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
966 alloc_flags |= ALLOC_HARDER;
967 if (gfp_mask & __GFP_HIGH)
968 alloc_flags |= ALLOC_HIGH;
47f3a867 969 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
970
971 /*
972 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 973 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
974 *
975 * This is the last chance, in general, before the goto nopage.
976 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 977 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 978 */
7fb1d9fc
RS
979 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
980 if (page)
981 goto got_pg;
1da177e4
LT
982
983 /* This allocation should allow future memory freeing. */
b84a35be
NP
984
985 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
986 && !in_interrupt()) {
987 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 988nofail_alloc:
b84a35be 989 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 990 page = get_page_from_freelist(gfp_mask, order,
47f3a867 991 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
992 if (page)
993 goto got_pg;
885036d3
KK
994 if (gfp_mask & __GFP_NOFAIL) {
995 blk_congestion_wait(WRITE, HZ/50);
996 goto nofail_alloc;
997 }
1da177e4
LT
998 }
999 goto nopage;
1000 }
1001
1002 /* Atomic allocations - we can't balance anything */
1003 if (!wait)
1004 goto nopage;
1005
1006rebalance:
1007 cond_resched();
1008
1009 /* We now go into synchronous reclaim */
3e0d98b9 1010 cpuset_memory_pressure_bump();
1da177e4
LT
1011 p->flags |= PF_MEMALLOC;
1012 reclaim_state.reclaimed_slab = 0;
1013 p->reclaim_state = &reclaim_state;
1014
7fb1d9fc 1015 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1016
1017 p->reclaim_state = NULL;
1018 p->flags &= ~PF_MEMALLOC;
1019
1020 cond_resched();
1021
1022 if (likely(did_some_progress)) {
7fb1d9fc
RS
1023 page = get_page_from_freelist(gfp_mask, order,
1024 zonelist, alloc_flags);
1025 if (page)
1026 goto got_pg;
1da177e4
LT
1027 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1028 /*
1029 * Go through the zonelist yet one more time, keep
1030 * very high watermark here, this is only to catch
1031 * a parallel oom killing, we must fail if we're still
1032 * under heavy pressure.
1033 */
7fb1d9fc 1034 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1035 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1036 if (page)
1037 goto got_pg;
1da177e4 1038
9b0f8b04 1039 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1040 goto restart;
1041 }
1042
1043 /*
1044 * Don't let big-order allocations loop unless the caller explicitly
1045 * requests that. Wait for some write requests to complete then retry.
1046 *
1047 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1048 * <= 3, but that may not be true in other implementations.
1049 */
1050 do_retry = 0;
1051 if (!(gfp_mask & __GFP_NORETRY)) {
1052 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1053 do_retry = 1;
1054 if (gfp_mask & __GFP_NOFAIL)
1055 do_retry = 1;
1056 }
1057 if (do_retry) {
1058 blk_congestion_wait(WRITE, HZ/50);
1059 goto rebalance;
1060 }
1061
1062nopage:
1063 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1064 printk(KERN_WARNING "%s: page allocation failure."
1065 " order:%d, mode:0x%x\n",
1066 p->comm, order, gfp_mask);
1067 dump_stack();
578c2fd6 1068 show_mem();
1da177e4 1069 }
1da177e4 1070got_pg:
1da177e4
LT
1071 return page;
1072}
1073
1074EXPORT_SYMBOL(__alloc_pages);
1075
1076/*
1077 * Common helper functions.
1078 */
dd0fc66f 1079fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1080{
1081 struct page * page;
1082 page = alloc_pages(gfp_mask, order);
1083 if (!page)
1084 return 0;
1085 return (unsigned long) page_address(page);
1086}
1087
1088EXPORT_SYMBOL(__get_free_pages);
1089
dd0fc66f 1090fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1091{
1092 struct page * page;
1093
1094 /*
1095 * get_zeroed_page() returns a 32-bit address, which cannot represent
1096 * a highmem page
1097 */
260b2367 1098 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1099
1100 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1101 if (page)
1102 return (unsigned long) page_address(page);
1103 return 0;
1104}
1105
1106EXPORT_SYMBOL(get_zeroed_page);
1107
1108void __pagevec_free(struct pagevec *pvec)
1109{
1110 int i = pagevec_count(pvec);
1111
1112 while (--i >= 0)
1113 free_hot_cold_page(pvec->pages[i], pvec->cold);
1114}
1115
1116fastcall void __free_pages(struct page *page, unsigned int order)
1117{
b5810039 1118 if (put_page_testzero(page)) {
1da177e4
LT
1119 if (order == 0)
1120 free_hot_page(page);
1121 else
1122 __free_pages_ok(page, order);
1123 }
1124}
1125
1126EXPORT_SYMBOL(__free_pages);
1127
1128fastcall void free_pages(unsigned long addr, unsigned int order)
1129{
1130 if (addr != 0) {
1131 BUG_ON(!virt_addr_valid((void *)addr));
1132 __free_pages(virt_to_page((void *)addr), order);
1133 }
1134}
1135
1136EXPORT_SYMBOL(free_pages);
1137
1138/*
1139 * Total amount of free (allocatable) RAM:
1140 */
1141unsigned int nr_free_pages(void)
1142{
1143 unsigned int sum = 0;
1144 struct zone *zone;
1145
1146 for_each_zone(zone)
1147 sum += zone->free_pages;
1148
1149 return sum;
1150}
1151
1152EXPORT_SYMBOL(nr_free_pages);
1153
1154#ifdef CONFIG_NUMA
1155unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1156{
1157 unsigned int i, sum = 0;
1158
1159 for (i = 0; i < MAX_NR_ZONES; i++)
1160 sum += pgdat->node_zones[i].free_pages;
1161
1162 return sum;
1163}
1164#endif
1165
1166static unsigned int nr_free_zone_pages(int offset)
1167{
e310fd43
MB
1168 /* Just pick one node, since fallback list is circular */
1169 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1170 unsigned int sum = 0;
1171
e310fd43
MB
1172 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1173 struct zone **zonep = zonelist->zones;
1174 struct zone *zone;
1da177e4 1175
e310fd43
MB
1176 for (zone = *zonep++; zone; zone = *zonep++) {
1177 unsigned long size = zone->present_pages;
1178 unsigned long high = zone->pages_high;
1179 if (size > high)
1180 sum += size - high;
1da177e4
LT
1181 }
1182
1183 return sum;
1184}
1185
1186/*
1187 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1188 */
1189unsigned int nr_free_buffer_pages(void)
1190{
af4ca457 1191 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1192}
1193
1194/*
1195 * Amount of free RAM allocatable within all zones
1196 */
1197unsigned int nr_free_pagecache_pages(void)
1198{
af4ca457 1199 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1200}
1201
1202#ifdef CONFIG_HIGHMEM
1203unsigned int nr_free_highpages (void)
1204{
1205 pg_data_t *pgdat;
1206 unsigned int pages = 0;
1207
ec936fc5 1208 for_each_online_pgdat(pgdat)
1da177e4
LT
1209 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1210
1211 return pages;
1212}
1213#endif
1214
1215#ifdef CONFIG_NUMA
1216static void show_node(struct zone *zone)
1217{
1218 printk("Node %d ", zone->zone_pgdat->node_id);
1219}
1220#else
1221#define show_node(zone) do { } while (0)
1222#endif
1223
1224/*
1225 * Accumulate the page_state information across all CPUs.
1226 * The result is unavoidably approximate - it can change
1227 * during and after execution of this function.
1228 */
1229static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1230
1231atomic_t nr_pagecache = ATOMIC_INIT(0);
1232EXPORT_SYMBOL(nr_pagecache);
1233#ifdef CONFIG_SMP
1234DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1235#endif
1236
a86b1f53 1237static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4 1238{
b40607fc 1239 unsigned cpu;
1da177e4 1240
88a2a4ac 1241 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1242 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1243
b40607fc
AM
1244 for_each_cpu_mask(cpu, *cpumask) {
1245 unsigned long *in;
1246 unsigned long *out;
1247 unsigned off;
1248 unsigned next_cpu;
88a2a4ac 1249
1da177e4
LT
1250 in = (unsigned long *)&per_cpu(page_states, cpu);
1251
b40607fc
AM
1252 next_cpu = next_cpu(cpu, *cpumask);
1253 if (likely(next_cpu < NR_CPUS))
1254 prefetch(&per_cpu(page_states, next_cpu));
1da177e4
LT
1255
1256 out = (unsigned long *)ret;
1257 for (off = 0; off < nr; off++)
1258 *out++ += *in++;
1259 }
1260}
1261
c07e02db
MH
1262void get_page_state_node(struct page_state *ret, int node)
1263{
1264 int nr;
1265 cpumask_t mask = node_to_cpumask(node);
1266
1267 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1268 nr /= sizeof(unsigned long);
1269
1270 __get_page_state(ret, nr+1, &mask);
1271}
1272
1da177e4
LT
1273void get_page_state(struct page_state *ret)
1274{
1275 int nr;
c07e02db 1276 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1277
1278 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1279 nr /= sizeof(unsigned long);
1280
c07e02db 1281 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1282}
1283
1284void get_full_page_state(struct page_state *ret)
1285{
c07e02db
MH
1286 cpumask_t mask = CPU_MASK_ALL;
1287
1288 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1289}
1290
a74609fa 1291unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1292{
1293 unsigned long ret = 0;
1294 int cpu;
1295
84c2008a 1296 for_each_online_cpu(cpu) {
1da177e4
LT
1297 unsigned long in;
1298
1299 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1300 ret += *((unsigned long *)in);
1301 }
1302 return ret;
1303}
1304
a74609fa
NP
1305void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1306{
1307 void *ptr;
1308
1309 ptr = &__get_cpu_var(page_states);
1310 *(unsigned long *)(ptr + offset) += delta;
1311}
1312EXPORT_SYMBOL(__mod_page_state_offset);
1313
1314void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1315{
1316 unsigned long flags;
a74609fa 1317 void *ptr;
1da177e4
LT
1318
1319 local_irq_save(flags);
1320 ptr = &__get_cpu_var(page_states);
a74609fa 1321 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1322 local_irq_restore(flags);
1323}
a74609fa 1324EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1325
1326void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1327 unsigned long *free, struct pglist_data *pgdat)
1328{
1329 struct zone *zones = pgdat->node_zones;
1330 int i;
1331
1332 *active = 0;
1333 *inactive = 0;
1334 *free = 0;
1335 for (i = 0; i < MAX_NR_ZONES; i++) {
1336 *active += zones[i].nr_active;
1337 *inactive += zones[i].nr_inactive;
1338 *free += zones[i].free_pages;
1339 }
1340}
1341
1342void get_zone_counts(unsigned long *active,
1343 unsigned long *inactive, unsigned long *free)
1344{
1345 struct pglist_data *pgdat;
1346
1347 *active = 0;
1348 *inactive = 0;
1349 *free = 0;
ec936fc5 1350 for_each_online_pgdat(pgdat) {
1da177e4
LT
1351 unsigned long l, m, n;
1352 __get_zone_counts(&l, &m, &n, pgdat);
1353 *active += l;
1354 *inactive += m;
1355 *free += n;
1356 }
1357}
1358
1359void si_meminfo(struct sysinfo *val)
1360{
1361 val->totalram = totalram_pages;
1362 val->sharedram = 0;
1363 val->freeram = nr_free_pages();
1364 val->bufferram = nr_blockdev_pages();
1365#ifdef CONFIG_HIGHMEM
1366 val->totalhigh = totalhigh_pages;
1367 val->freehigh = nr_free_highpages();
1368#else
1369 val->totalhigh = 0;
1370 val->freehigh = 0;
1371#endif
1372 val->mem_unit = PAGE_SIZE;
1373}
1374
1375EXPORT_SYMBOL(si_meminfo);
1376
1377#ifdef CONFIG_NUMA
1378void si_meminfo_node(struct sysinfo *val, int nid)
1379{
1380 pg_data_t *pgdat = NODE_DATA(nid);
1381
1382 val->totalram = pgdat->node_present_pages;
1383 val->freeram = nr_free_pages_pgdat(pgdat);
1384 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1385 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1386 val->mem_unit = PAGE_SIZE;
1387}
1388#endif
1389
1390#define K(x) ((x) << (PAGE_SHIFT-10))
1391
1392/*
1393 * Show free area list (used inside shift_scroll-lock stuff)
1394 * We also calculate the percentage fragmentation. We do this by counting the
1395 * memory on each free list with the exception of the first item on the list.
1396 */
1397void show_free_areas(void)
1398{
1399 struct page_state ps;
1400 int cpu, temperature;
1401 unsigned long active;
1402 unsigned long inactive;
1403 unsigned long free;
1404 struct zone *zone;
1405
1406 for_each_zone(zone) {
1407 show_node(zone);
1408 printk("%s per-cpu:", zone->name);
1409
f3fe6512 1410 if (!populated_zone(zone)) {
1da177e4
LT
1411 printk(" empty\n");
1412 continue;
1413 } else
1414 printk("\n");
1415
6b482c67 1416 for_each_online_cpu(cpu) {
1da177e4
LT
1417 struct per_cpu_pageset *pageset;
1418
e7c8d5c9 1419 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1420
1421 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1422 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1423 cpu,
1424 temperature ? "cold" : "hot",
1da177e4 1425 pageset->pcp[temperature].high,
4ae7c039
CL
1426 pageset->pcp[temperature].batch,
1427 pageset->pcp[temperature].count);
1da177e4
LT
1428 }
1429 }
1430
1431 get_page_state(&ps);
1432 get_zone_counts(&active, &inactive, &free);
1433
c0d62219 1434 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1435 K(nr_free_pages()),
1436 K(nr_free_highpages()));
1437
1438 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1439 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1440 active,
1441 inactive,
1442 ps.nr_dirty,
1443 ps.nr_writeback,
1444 ps.nr_unstable,
1445 nr_free_pages(),
1446 ps.nr_slab,
1447 ps.nr_mapped,
1448 ps.nr_page_table_pages);
1449
1450 for_each_zone(zone) {
1451 int i;
1452
1453 show_node(zone);
1454 printk("%s"
1455 " free:%lukB"
1456 " min:%lukB"
1457 " low:%lukB"
1458 " high:%lukB"
1459 " active:%lukB"
1460 " inactive:%lukB"
1461 " present:%lukB"
1462 " pages_scanned:%lu"
1463 " all_unreclaimable? %s"
1464 "\n",
1465 zone->name,
1466 K(zone->free_pages),
1467 K(zone->pages_min),
1468 K(zone->pages_low),
1469 K(zone->pages_high),
1470 K(zone->nr_active),
1471 K(zone->nr_inactive),
1472 K(zone->present_pages),
1473 zone->pages_scanned,
1474 (zone->all_unreclaimable ? "yes" : "no")
1475 );
1476 printk("lowmem_reserve[]:");
1477 for (i = 0; i < MAX_NR_ZONES; i++)
1478 printk(" %lu", zone->lowmem_reserve[i]);
1479 printk("\n");
1480 }
1481
1482 for_each_zone(zone) {
1483 unsigned long nr, flags, order, total = 0;
1484
1485 show_node(zone);
1486 printk("%s: ", zone->name);
f3fe6512 1487 if (!populated_zone(zone)) {
1da177e4
LT
1488 printk("empty\n");
1489 continue;
1490 }
1491
1492 spin_lock_irqsave(&zone->lock, flags);
1493 for (order = 0; order < MAX_ORDER; order++) {
1494 nr = zone->free_area[order].nr_free;
1495 total += nr << order;
1496 printk("%lu*%lukB ", nr, K(1UL) << order);
1497 }
1498 spin_unlock_irqrestore(&zone->lock, flags);
1499 printk("= %lukB\n", K(total));
1500 }
1501
1502 show_swap_cache_info();
1503}
1504
1505/*
1506 * Builds allocation fallback zone lists.
1a93205b
CL
1507 *
1508 * Add all populated zones of a node to the zonelist.
1da177e4 1509 */
1a93205b 1510static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1511 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1512{
1a93205b
CL
1513 struct zone *zone;
1514
070f8032 1515 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1516
1517 do {
070f8032 1518 zone = pgdat->node_zones + zone_type;
1a93205b 1519 if (populated_zone(zone)) {
1da177e4 1520#ifndef CONFIG_HIGHMEM
070f8032 1521 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1522#endif
070f8032
CL
1523 zonelist->zones[nr_zones++] = zone;
1524 check_highest_zone(zone_type);
1da177e4 1525 }
070f8032 1526 zone_type--;
02a68a5e 1527
070f8032
CL
1528 } while (zone_type >= 0);
1529 return nr_zones;
1da177e4
LT
1530}
1531
260b2367
AV
1532static inline int highest_zone(int zone_bits)
1533{
1534 int res = ZONE_NORMAL;
1535 if (zone_bits & (__force int)__GFP_HIGHMEM)
1536 res = ZONE_HIGHMEM;
a2f1b424
AK
1537 if (zone_bits & (__force int)__GFP_DMA32)
1538 res = ZONE_DMA32;
260b2367
AV
1539 if (zone_bits & (__force int)__GFP_DMA)
1540 res = ZONE_DMA;
1541 return res;
1542}
1543
1da177e4
LT
1544#ifdef CONFIG_NUMA
1545#define MAX_NODE_LOAD (num_online_nodes())
1546static int __initdata node_load[MAX_NUMNODES];
1547/**
4dc3b16b 1548 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1549 * @node: node whose fallback list we're appending
1550 * @used_node_mask: nodemask_t of already used nodes
1551 *
1552 * We use a number of factors to determine which is the next node that should
1553 * appear on a given node's fallback list. The node should not have appeared
1554 * already in @node's fallback list, and it should be the next closest node
1555 * according to the distance array (which contains arbitrary distance values
1556 * from each node to each node in the system), and should also prefer nodes
1557 * with no CPUs, since presumably they'll have very little allocation pressure
1558 * on them otherwise.
1559 * It returns -1 if no node is found.
1560 */
1561static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1562{
4cf808eb 1563 int n, val;
1da177e4
LT
1564 int min_val = INT_MAX;
1565 int best_node = -1;
1566
4cf808eb
LT
1567 /* Use the local node if we haven't already */
1568 if (!node_isset(node, *used_node_mask)) {
1569 node_set(node, *used_node_mask);
1570 return node;
1571 }
1da177e4 1572
4cf808eb
LT
1573 for_each_online_node(n) {
1574 cpumask_t tmp;
1da177e4
LT
1575
1576 /* Don't want a node to appear more than once */
1577 if (node_isset(n, *used_node_mask))
1578 continue;
1579
1da177e4
LT
1580 /* Use the distance array to find the distance */
1581 val = node_distance(node, n);
1582
4cf808eb
LT
1583 /* Penalize nodes under us ("prefer the next node") */
1584 val += (n < node);
1585
1da177e4
LT
1586 /* Give preference to headless and unused nodes */
1587 tmp = node_to_cpumask(n);
1588 if (!cpus_empty(tmp))
1589 val += PENALTY_FOR_NODE_WITH_CPUS;
1590
1591 /* Slight preference for less loaded node */
1592 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1593 val += node_load[n];
1594
1595 if (val < min_val) {
1596 min_val = val;
1597 best_node = n;
1598 }
1599 }
1600
1601 if (best_node >= 0)
1602 node_set(best_node, *used_node_mask);
1603
1604 return best_node;
1605}
1606
1607static void __init build_zonelists(pg_data_t *pgdat)
1608{
1609 int i, j, k, node, local_node;
1610 int prev_node, load;
1611 struct zonelist *zonelist;
1612 nodemask_t used_mask;
1613
1614 /* initialize zonelists */
1615 for (i = 0; i < GFP_ZONETYPES; i++) {
1616 zonelist = pgdat->node_zonelists + i;
1617 zonelist->zones[0] = NULL;
1618 }
1619
1620 /* NUMA-aware ordering of nodes */
1621 local_node = pgdat->node_id;
1622 load = num_online_nodes();
1623 prev_node = local_node;
1624 nodes_clear(used_mask);
1625 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1626 int distance = node_distance(local_node, node);
1627
1628 /*
1629 * If another node is sufficiently far away then it is better
1630 * to reclaim pages in a zone before going off node.
1631 */
1632 if (distance > RECLAIM_DISTANCE)
1633 zone_reclaim_mode = 1;
1634
1da177e4
LT
1635 /*
1636 * We don't want to pressure a particular node.
1637 * So adding penalty to the first node in same
1638 * distance group to make it round-robin.
1639 */
9eeff239
CL
1640
1641 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1642 node_load[node] += load;
1643 prev_node = node;
1644 load--;
1645 for (i = 0; i < GFP_ZONETYPES; i++) {
1646 zonelist = pgdat->node_zonelists + i;
1647 for (j = 0; zonelist->zones[j] != NULL; j++);
1648
260b2367 1649 k = highest_zone(i);
1da177e4
LT
1650
1651 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1652 zonelist->zones[j] = NULL;
1653 }
1654 }
1655}
1656
1657#else /* CONFIG_NUMA */
1658
1659static void __init build_zonelists(pg_data_t *pgdat)
1660{
1661 int i, j, k, node, local_node;
1662
1663 local_node = pgdat->node_id;
1664 for (i = 0; i < GFP_ZONETYPES; i++) {
1665 struct zonelist *zonelist;
1666
1667 zonelist = pgdat->node_zonelists + i;
1668
1669 j = 0;
260b2367 1670 k = highest_zone(i);
1da177e4
LT
1671 j = build_zonelists_node(pgdat, zonelist, j, k);
1672 /*
1673 * Now we build the zonelist so that it contains the zones
1674 * of all the other nodes.
1675 * We don't want to pressure a particular node, so when
1676 * building the zones for node N, we make sure that the
1677 * zones coming right after the local ones are those from
1678 * node N+1 (modulo N)
1679 */
1680 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1681 if (!node_online(node))
1682 continue;
1683 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1684 }
1685 for (node = 0; node < local_node; node++) {
1686 if (!node_online(node))
1687 continue;
1688 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1689 }
1690
1691 zonelist->zones[j] = NULL;
1692 }
1693}
1694
1695#endif /* CONFIG_NUMA */
1696
1697void __init build_all_zonelists(void)
1698{
1699 int i;
1700
1701 for_each_online_node(i)
1702 build_zonelists(NODE_DATA(i));
1703 printk("Built %i zonelists\n", num_online_nodes());
1704 cpuset_init_current_mems_allowed();
1705}
1706
1707/*
1708 * Helper functions to size the waitqueue hash table.
1709 * Essentially these want to choose hash table sizes sufficiently
1710 * large so that collisions trying to wait on pages are rare.
1711 * But in fact, the number of active page waitqueues on typical
1712 * systems is ridiculously low, less than 200. So this is even
1713 * conservative, even though it seems large.
1714 *
1715 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1716 * waitqueues, i.e. the size of the waitq table given the number of pages.
1717 */
1718#define PAGES_PER_WAITQUEUE 256
1719
1720static inline unsigned long wait_table_size(unsigned long pages)
1721{
1722 unsigned long size = 1;
1723
1724 pages /= PAGES_PER_WAITQUEUE;
1725
1726 while (size < pages)
1727 size <<= 1;
1728
1729 /*
1730 * Once we have dozens or even hundreds of threads sleeping
1731 * on IO we've got bigger problems than wait queue collision.
1732 * Limit the size of the wait table to a reasonable size.
1733 */
1734 size = min(size, 4096UL);
1735
1736 return max(size, 4UL);
1737}
1738
1739/*
1740 * This is an integer logarithm so that shifts can be used later
1741 * to extract the more random high bits from the multiplicative
1742 * hash function before the remainder is taken.
1743 */
1744static inline unsigned long wait_table_bits(unsigned long size)
1745{
1746 return ffz(~size);
1747}
1748
1749#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1750
1751static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1752 unsigned long *zones_size, unsigned long *zholes_size)
1753{
1754 unsigned long realtotalpages, totalpages = 0;
1755 int i;
1756
1757 for (i = 0; i < MAX_NR_ZONES; i++)
1758 totalpages += zones_size[i];
1759 pgdat->node_spanned_pages = totalpages;
1760
1761 realtotalpages = totalpages;
1762 if (zholes_size)
1763 for (i = 0; i < MAX_NR_ZONES; i++)
1764 realtotalpages -= zholes_size[i];
1765 pgdat->node_present_pages = realtotalpages;
1766 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1767}
1768
1769
1770/*
1771 * Initially all pages are reserved - free ones are freed
1772 * up by free_all_bootmem() once the early boot process is
1773 * done. Non-atomic initialization, single-pass.
1774 */
c09b4240 1775void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1776 unsigned long start_pfn)
1777{
1da177e4 1778 struct page *page;
29751f69
AW
1779 unsigned long end_pfn = start_pfn + size;
1780 unsigned long pfn;
1da177e4 1781
cbe8dd4a 1782 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1783 if (!early_pfn_valid(pfn))
1784 continue;
1785 page = pfn_to_page(pfn);
1786 set_page_links(page, zone, nid, pfn);
7835e98b 1787 init_page_count(page);
1da177e4
LT
1788 reset_page_mapcount(page);
1789 SetPageReserved(page);
1790 INIT_LIST_HEAD(&page->lru);
1791#ifdef WANT_PAGE_VIRTUAL
1792 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1793 if (!is_highmem_idx(zone))
3212c6be 1794 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1795#endif
1da177e4
LT
1796 }
1797}
1798
1799void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1800 unsigned long size)
1801{
1802 int order;
1803 for (order = 0; order < MAX_ORDER ; order++) {
1804 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1805 zone->free_area[order].nr_free = 0;
1806 }
1807}
1808
d41dee36
AW
1809#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1810void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1811 unsigned long size)
1812{
1813 unsigned long snum = pfn_to_section_nr(pfn);
1814 unsigned long end = pfn_to_section_nr(pfn + size);
1815
1816 if (FLAGS_HAS_NODE)
1817 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1818 else
1819 for (; snum <= end; snum++)
1820 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1821}
1822
1da177e4
LT
1823#ifndef __HAVE_ARCH_MEMMAP_INIT
1824#define memmap_init(size, nid, zone, start_pfn) \
1825 memmap_init_zone((size), (nid), (zone), (start_pfn))
1826#endif
1827
6292d9aa 1828static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1829{
1830 int batch;
1831
1832 /*
1833 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1834 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1835 *
1836 * OK, so we don't know how big the cache is. So guess.
1837 */
1838 batch = zone->present_pages / 1024;
ba56e91c
SR
1839 if (batch * PAGE_SIZE > 512 * 1024)
1840 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1841 batch /= 4; /* We effectively *= 4 below */
1842 if (batch < 1)
1843 batch = 1;
1844
1845 /*
0ceaacc9
NP
1846 * Clamp the batch to a 2^n - 1 value. Having a power
1847 * of 2 value was found to be more likely to have
1848 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1849 *
0ceaacc9
NP
1850 * For example if 2 tasks are alternately allocating
1851 * batches of pages, one task can end up with a lot
1852 * of pages of one half of the possible page colors
1853 * and the other with pages of the other colors.
e7c8d5c9 1854 */
0ceaacc9 1855 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1856
e7c8d5c9
CL
1857 return batch;
1858}
1859
2caaad41
CL
1860inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1861{
1862 struct per_cpu_pages *pcp;
1863
1c6fe946
MD
1864 memset(p, 0, sizeof(*p));
1865
2caaad41
CL
1866 pcp = &p->pcp[0]; /* hot */
1867 pcp->count = 0;
2caaad41
CL
1868 pcp->high = 6 * batch;
1869 pcp->batch = max(1UL, 1 * batch);
1870 INIT_LIST_HEAD(&pcp->list);
1871
1872 pcp = &p->pcp[1]; /* cold*/
1873 pcp->count = 0;
2caaad41 1874 pcp->high = 2 * batch;
e46a5e28 1875 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1876 INIT_LIST_HEAD(&pcp->list);
1877}
1878
8ad4b1fb
RS
1879/*
1880 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1881 * to the value high for the pageset p.
1882 */
1883
1884static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1885 unsigned long high)
1886{
1887 struct per_cpu_pages *pcp;
1888
1889 pcp = &p->pcp[0]; /* hot list */
1890 pcp->high = high;
1891 pcp->batch = max(1UL, high/4);
1892 if ((high/4) > (PAGE_SHIFT * 8))
1893 pcp->batch = PAGE_SHIFT * 8;
1894}
1895
1896
e7c8d5c9
CL
1897#ifdef CONFIG_NUMA
1898/*
2caaad41
CL
1899 * Boot pageset table. One per cpu which is going to be used for all
1900 * zones and all nodes. The parameters will be set in such a way
1901 * that an item put on a list will immediately be handed over to
1902 * the buddy list. This is safe since pageset manipulation is done
1903 * with interrupts disabled.
1904 *
1905 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1906 *
1907 * The boot_pagesets must be kept even after bootup is complete for
1908 * unused processors and/or zones. They do play a role for bootstrapping
1909 * hotplugged processors.
1910 *
1911 * zoneinfo_show() and maybe other functions do
1912 * not check if the processor is online before following the pageset pointer.
1913 * Other parts of the kernel may not check if the zone is available.
2caaad41 1914 */
88a2a4ac 1915static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1916
1917/*
1918 * Dynamically allocate memory for the
e7c8d5c9
CL
1919 * per cpu pageset array in struct zone.
1920 */
6292d9aa 1921static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1922{
1923 struct zone *zone, *dzone;
e7c8d5c9
CL
1924
1925 for_each_zone(zone) {
e7c8d5c9 1926
23316bc8 1927 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1928 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1929 if (!zone_pcp(zone, cpu))
e7c8d5c9 1930 goto bad;
e7c8d5c9 1931
23316bc8 1932 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1933
1934 if (percpu_pagelist_fraction)
1935 setup_pagelist_highmark(zone_pcp(zone, cpu),
1936 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1937 }
1938
1939 return 0;
1940bad:
1941 for_each_zone(dzone) {
1942 if (dzone == zone)
1943 break;
23316bc8
NP
1944 kfree(zone_pcp(dzone, cpu));
1945 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1946 }
1947 return -ENOMEM;
1948}
1949
1950static inline void free_zone_pagesets(int cpu)
1951{
e7c8d5c9
CL
1952 struct zone *zone;
1953
1954 for_each_zone(zone) {
1955 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1956
1957 zone_pcp(zone, cpu) = NULL;
1958 kfree(pset);
1959 }
e7c8d5c9
CL
1960}
1961
6292d9aa 1962static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1963 unsigned long action,
1964 void *hcpu)
1965{
1966 int cpu = (long)hcpu;
1967 int ret = NOTIFY_OK;
1968
1969 switch (action) {
1970 case CPU_UP_PREPARE:
1971 if (process_zones(cpu))
1972 ret = NOTIFY_BAD;
1973 break;
b0d41693 1974 case CPU_UP_CANCELED:
e7c8d5c9
CL
1975 case CPU_DEAD:
1976 free_zone_pagesets(cpu);
1977 break;
e7c8d5c9
CL
1978 default:
1979 break;
1980 }
1981 return ret;
1982}
1983
1984static struct notifier_block pageset_notifier =
1985 { &pageset_cpuup_callback, NULL, 0 };
1986
78d9955b 1987void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1988{
1989 int err;
1990
1991 /* Initialize per_cpu_pageset for cpu 0.
1992 * A cpuup callback will do this for every cpu
1993 * as it comes online
1994 */
1995 err = process_zones(smp_processor_id());
1996 BUG_ON(err);
1997 register_cpu_notifier(&pageset_notifier);
1998}
1999
2000#endif
2001
c09b4240 2002static __meminit
ed8ece2e
DH
2003void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2004{
2005 int i;
2006 struct pglist_data *pgdat = zone->zone_pgdat;
2007
2008 /*
2009 * The per-page waitqueue mechanism uses hashed waitqueues
2010 * per zone.
2011 */
2012 zone->wait_table_size = wait_table_size(zone_size_pages);
2013 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2014 zone->wait_table = (wait_queue_head_t *)
2015 alloc_bootmem_node(pgdat, zone->wait_table_size
2016 * sizeof(wait_queue_head_t));
2017
2018 for(i = 0; i < zone->wait_table_size; ++i)
2019 init_waitqueue_head(zone->wait_table + i);
2020}
2021
c09b4240 2022static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2023{
2024 int cpu;
2025 unsigned long batch = zone_batchsize(zone);
2026
2027 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2028#ifdef CONFIG_NUMA
2029 /* Early boot. Slab allocator not functional yet */
23316bc8 2030 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2031 setup_pageset(&boot_pageset[cpu],0);
2032#else
2033 setup_pageset(zone_pcp(zone,cpu), batch);
2034#endif
2035 }
f5335c0f
AB
2036 if (zone->present_pages)
2037 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2038 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2039}
2040
c09b4240 2041static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2042 unsigned long zone_start_pfn, unsigned long size)
2043{
2044 struct pglist_data *pgdat = zone->zone_pgdat;
2045
2046 zone_wait_table_init(zone, size);
2047 pgdat->nr_zones = zone_idx(zone) + 1;
2048
ed8ece2e
DH
2049 zone->zone_start_pfn = zone_start_pfn;
2050
2051 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2052
2053 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2054}
2055
1da177e4
LT
2056/*
2057 * Set up the zone data structures:
2058 * - mark all pages reserved
2059 * - mark all memory queues empty
2060 * - clear the memory bitmaps
2061 */
2062static void __init free_area_init_core(struct pglist_data *pgdat,
2063 unsigned long *zones_size, unsigned long *zholes_size)
2064{
ed8ece2e
DH
2065 unsigned long j;
2066 int nid = pgdat->node_id;
1da177e4
LT
2067 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2068
208d54e5 2069 pgdat_resize_init(pgdat);
1da177e4
LT
2070 pgdat->nr_zones = 0;
2071 init_waitqueue_head(&pgdat->kswapd_wait);
2072 pgdat->kswapd_max_order = 0;
2073
2074 for (j = 0; j < MAX_NR_ZONES; j++) {
2075 struct zone *zone = pgdat->node_zones + j;
2076 unsigned long size, realsize;
1da177e4 2077
1da177e4
LT
2078 realsize = size = zones_size[j];
2079 if (zholes_size)
2080 realsize -= zholes_size[j];
2081
a2f1b424 2082 if (j < ZONE_HIGHMEM)
1da177e4
LT
2083 nr_kernel_pages += realsize;
2084 nr_all_pages += realsize;
2085
2086 zone->spanned_pages = size;
2087 zone->present_pages = realsize;
2088 zone->name = zone_names[j];
2089 spin_lock_init(&zone->lock);
2090 spin_lock_init(&zone->lru_lock);
bdc8cb98 2091 zone_seqlock_init(zone);
1da177e4
LT
2092 zone->zone_pgdat = pgdat;
2093 zone->free_pages = 0;
2094
2095 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2096
ed8ece2e 2097 zone_pcp_init(zone);
1da177e4
LT
2098 INIT_LIST_HEAD(&zone->active_list);
2099 INIT_LIST_HEAD(&zone->inactive_list);
2100 zone->nr_scan_active = 0;
2101 zone->nr_scan_inactive = 0;
2102 zone->nr_active = 0;
2103 zone->nr_inactive = 0;
53e9a615 2104 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2105 if (!size)
2106 continue;
2107
d41dee36 2108 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2109 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2110 zone_start_pfn += size;
1da177e4
LT
2111 }
2112}
2113
2114static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2115{
1da177e4
LT
2116 /* Skip empty nodes */
2117 if (!pgdat->node_spanned_pages)
2118 return;
2119
d41dee36 2120#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2121 /* ia64 gets its own node_mem_map, before this, without bootmem */
2122 if (!pgdat->node_mem_map) {
d41dee36
AW
2123 unsigned long size;
2124 struct page *map;
2125
1da177e4 2126 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2127 map = alloc_remap(pgdat->node_id, size);
2128 if (!map)
2129 map = alloc_bootmem_node(pgdat, size);
2130 pgdat->node_mem_map = map;
1da177e4 2131 }
d41dee36 2132#ifdef CONFIG_FLATMEM
1da177e4
LT
2133 /*
2134 * With no DISCONTIG, the global mem_map is just set as node 0's
2135 */
2136 if (pgdat == NODE_DATA(0))
2137 mem_map = NODE_DATA(0)->node_mem_map;
2138#endif
d41dee36 2139#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2140}
2141
2142void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2143 unsigned long *zones_size, unsigned long node_start_pfn,
2144 unsigned long *zholes_size)
2145{
2146 pgdat->node_id = nid;
2147 pgdat->node_start_pfn = node_start_pfn;
2148 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2149
2150 alloc_node_mem_map(pgdat);
2151
2152 free_area_init_core(pgdat, zones_size, zholes_size);
2153}
2154
93b7504e 2155#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2156static bootmem_data_t contig_bootmem_data;
2157struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2158
2159EXPORT_SYMBOL(contig_page_data);
93b7504e 2160#endif
1da177e4
LT
2161
2162void __init free_area_init(unsigned long *zones_size)
2163{
93b7504e 2164 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2165 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2166}
1da177e4
LT
2167
2168#ifdef CONFIG_PROC_FS
2169
2170#include <linux/seq_file.h>
2171
2172static void *frag_start(struct seq_file *m, loff_t *pos)
2173{
2174 pg_data_t *pgdat;
2175 loff_t node = *pos;
ae0f15fb
KH
2176 for (pgdat = first_online_pgdat();
2177 pgdat && node;
2178 pgdat = next_online_pgdat(pgdat))
1da177e4
LT
2179 --node;
2180
2181 return pgdat;
2182}
2183
2184static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2185{
2186 pg_data_t *pgdat = (pg_data_t *)arg;
2187
2188 (*pos)++;
ae0f15fb 2189 return next_online_pgdat(pgdat);
1da177e4
LT
2190}
2191
2192static void frag_stop(struct seq_file *m, void *arg)
2193{
2194}
2195
2196/*
2197 * This walks the free areas for each zone.
2198 */
2199static int frag_show(struct seq_file *m, void *arg)
2200{
2201 pg_data_t *pgdat = (pg_data_t *)arg;
2202 struct zone *zone;
2203 struct zone *node_zones = pgdat->node_zones;
2204 unsigned long flags;
2205 int order;
2206
2207 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2208 if (!populated_zone(zone))
1da177e4
LT
2209 continue;
2210
2211 spin_lock_irqsave(&zone->lock, flags);
2212 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2213 for (order = 0; order < MAX_ORDER; ++order)
2214 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2215 spin_unlock_irqrestore(&zone->lock, flags);
2216 seq_putc(m, '\n');
2217 }
2218 return 0;
2219}
2220
2221struct seq_operations fragmentation_op = {
2222 .start = frag_start,
2223 .next = frag_next,
2224 .stop = frag_stop,
2225 .show = frag_show,
2226};
2227
295ab934
ND
2228/*
2229 * Output information about zones in @pgdat.
2230 */
2231static int zoneinfo_show(struct seq_file *m, void *arg)
2232{
2233 pg_data_t *pgdat = arg;
2234 struct zone *zone;
2235 struct zone *node_zones = pgdat->node_zones;
2236 unsigned long flags;
2237
2238 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2239 int i;
2240
f3fe6512 2241 if (!populated_zone(zone))
295ab934
ND
2242 continue;
2243
2244 spin_lock_irqsave(&zone->lock, flags);
2245 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2246 seq_printf(m,
2247 "\n pages free %lu"
2248 "\n min %lu"
2249 "\n low %lu"
2250 "\n high %lu"
2251 "\n active %lu"
2252 "\n inactive %lu"
2253 "\n scanned %lu (a: %lu i: %lu)"
2254 "\n spanned %lu"
2255 "\n present %lu",
2256 zone->free_pages,
2257 zone->pages_min,
2258 zone->pages_low,
2259 zone->pages_high,
2260 zone->nr_active,
2261 zone->nr_inactive,
2262 zone->pages_scanned,
2263 zone->nr_scan_active, zone->nr_scan_inactive,
2264 zone->spanned_pages,
2265 zone->present_pages);
2266 seq_printf(m,
2267 "\n protection: (%lu",
2268 zone->lowmem_reserve[0]);
2269 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2270 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2271 seq_printf(m,
2272 ")"
2273 "\n pagesets");
23316bc8 2274 for_each_online_cpu(i) {
295ab934
ND
2275 struct per_cpu_pageset *pageset;
2276 int j;
2277
e7c8d5c9 2278 pageset = zone_pcp(zone, i);
295ab934
ND
2279 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2280 if (pageset->pcp[j].count)
2281 break;
2282 }
2283 if (j == ARRAY_SIZE(pageset->pcp))
2284 continue;
2285 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2286 seq_printf(m,
2287 "\n cpu: %i pcp: %i"
2288 "\n count: %i"
295ab934
ND
2289 "\n high: %i"
2290 "\n batch: %i",
2291 i, j,
2292 pageset->pcp[j].count,
295ab934
ND
2293 pageset->pcp[j].high,
2294 pageset->pcp[j].batch);
2295 }
2296#ifdef CONFIG_NUMA
2297 seq_printf(m,
2298 "\n numa_hit: %lu"
2299 "\n numa_miss: %lu"
2300 "\n numa_foreign: %lu"
2301 "\n interleave_hit: %lu"
2302 "\n local_node: %lu"
2303 "\n other_node: %lu",
2304 pageset->numa_hit,
2305 pageset->numa_miss,
2306 pageset->numa_foreign,
2307 pageset->interleave_hit,
2308 pageset->local_node,
2309 pageset->other_node);
2310#endif
2311 }
2312 seq_printf(m,
2313 "\n all_unreclaimable: %u"
2314 "\n prev_priority: %i"
2315 "\n temp_priority: %i"
2316 "\n start_pfn: %lu",
2317 zone->all_unreclaimable,
2318 zone->prev_priority,
2319 zone->temp_priority,
2320 zone->zone_start_pfn);
2321 spin_unlock_irqrestore(&zone->lock, flags);
2322 seq_putc(m, '\n');
2323 }
2324 return 0;
2325}
2326
2327struct seq_operations zoneinfo_op = {
2328 .start = frag_start, /* iterate over all zones. The same as in
2329 * fragmentation. */
2330 .next = frag_next,
2331 .stop = frag_stop,
2332 .show = zoneinfo_show,
2333};
2334
1da177e4
LT
2335static char *vmstat_text[] = {
2336 "nr_dirty",
2337 "nr_writeback",
2338 "nr_unstable",
2339 "nr_page_table_pages",
2340 "nr_mapped",
2341 "nr_slab",
2342
2343 "pgpgin",
2344 "pgpgout",
2345 "pswpin",
2346 "pswpout",
1da177e4 2347
9328b8fa 2348 "pgalloc_high",
1da177e4 2349 "pgalloc_normal",
9328b8fa 2350 "pgalloc_dma32",
1da177e4 2351 "pgalloc_dma",
9328b8fa 2352
1da177e4
LT
2353 "pgfree",
2354 "pgactivate",
2355 "pgdeactivate",
2356
2357 "pgfault",
2358 "pgmajfault",
9328b8fa 2359
1da177e4
LT
2360 "pgrefill_high",
2361 "pgrefill_normal",
9328b8fa 2362 "pgrefill_dma32",
1da177e4
LT
2363 "pgrefill_dma",
2364
2365 "pgsteal_high",
2366 "pgsteal_normal",
9328b8fa 2367 "pgsteal_dma32",
1da177e4 2368 "pgsteal_dma",
9328b8fa 2369
1da177e4
LT
2370 "pgscan_kswapd_high",
2371 "pgscan_kswapd_normal",
9328b8fa 2372 "pgscan_kswapd_dma32",
1da177e4 2373 "pgscan_kswapd_dma",
9328b8fa 2374
1da177e4
LT
2375 "pgscan_direct_high",
2376 "pgscan_direct_normal",
9328b8fa 2377 "pgscan_direct_dma32",
1da177e4 2378 "pgscan_direct_dma",
1da177e4 2379
9328b8fa 2380 "pginodesteal",
1da177e4
LT
2381 "slabs_scanned",
2382 "kswapd_steal",
2383 "kswapd_inodesteal",
2384 "pageoutrun",
2385 "allocstall",
2386
2387 "pgrotated",
edfbe2b0 2388 "nr_bounce",
1da177e4
LT
2389};
2390
2391static void *vmstat_start(struct seq_file *m, loff_t *pos)
2392{
2393 struct page_state *ps;
2394
2395 if (*pos >= ARRAY_SIZE(vmstat_text))
2396 return NULL;
2397
2398 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2399 m->private = ps;
2400 if (!ps)
2401 return ERR_PTR(-ENOMEM);
2402 get_full_page_state(ps);
2403 ps->pgpgin /= 2; /* sectors -> kbytes */
2404 ps->pgpgout /= 2;
2405 return (unsigned long *)ps + *pos;
2406}
2407
2408static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2409{
2410 (*pos)++;
2411 if (*pos >= ARRAY_SIZE(vmstat_text))
2412 return NULL;
2413 return (unsigned long *)m->private + *pos;
2414}
2415
2416static int vmstat_show(struct seq_file *m, void *arg)
2417{
2418 unsigned long *l = arg;
2419 unsigned long off = l - (unsigned long *)m->private;
2420
2421 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2422 return 0;
2423}
2424
2425static void vmstat_stop(struct seq_file *m, void *arg)
2426{
2427 kfree(m->private);
2428 m->private = NULL;
2429}
2430
2431struct seq_operations vmstat_op = {
2432 .start = vmstat_start,
2433 .next = vmstat_next,
2434 .stop = vmstat_stop,
2435 .show = vmstat_show,
2436};
2437
2438#endif /* CONFIG_PROC_FS */
2439
2440#ifdef CONFIG_HOTPLUG_CPU
2441static int page_alloc_cpu_notify(struct notifier_block *self,
2442 unsigned long action, void *hcpu)
2443{
2444 int cpu = (unsigned long)hcpu;
2445 long *count;
2446 unsigned long *src, *dest;
2447
2448 if (action == CPU_DEAD) {
2449 int i;
2450
2451 /* Drain local pagecache count. */
2452 count = &per_cpu(nr_pagecache_local, cpu);
2453 atomic_add(*count, &nr_pagecache);
2454 *count = 0;
2455 local_irq_disable();
2456 __drain_pages(cpu);
2457
2458 /* Add dead cpu's page_states to our own. */
2459 dest = (unsigned long *)&__get_cpu_var(page_states);
2460 src = (unsigned long *)&per_cpu(page_states, cpu);
2461
2462 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2463 i++) {
2464 dest[i] += src[i];
2465 src[i] = 0;
2466 }
2467
2468 local_irq_enable();
2469 }
2470 return NOTIFY_OK;
2471}
2472#endif /* CONFIG_HOTPLUG_CPU */
2473
2474void __init page_alloc_init(void)
2475{
2476 hotcpu_notifier(page_alloc_cpu_notify, 0);
2477}
2478
2479/*
2480 * setup_per_zone_lowmem_reserve - called whenever
2481 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2482 * has a correct pages reserved value, so an adequate number of
2483 * pages are left in the zone after a successful __alloc_pages().
2484 */
2485static void setup_per_zone_lowmem_reserve(void)
2486{
2487 struct pglist_data *pgdat;
2488 int j, idx;
2489
ec936fc5 2490 for_each_online_pgdat(pgdat) {
1da177e4
LT
2491 for (j = 0; j < MAX_NR_ZONES; j++) {
2492 struct zone *zone = pgdat->node_zones + j;
2493 unsigned long present_pages = zone->present_pages;
2494
2495 zone->lowmem_reserve[j] = 0;
2496
2497 for (idx = j-1; idx >= 0; idx--) {
2498 struct zone *lower_zone;
2499
2500 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2501 sysctl_lowmem_reserve_ratio[idx] = 1;
2502
2503 lower_zone = pgdat->node_zones + idx;
2504 lower_zone->lowmem_reserve[j] = present_pages /
2505 sysctl_lowmem_reserve_ratio[idx];
2506 present_pages += lower_zone->present_pages;
2507 }
2508 }
2509 }
2510}
2511
2512/*
2513 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2514 * that the pages_{min,low,high} values for each zone are set correctly
2515 * with respect to min_free_kbytes.
2516 */
3947be19 2517void setup_per_zone_pages_min(void)
1da177e4
LT
2518{
2519 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2520 unsigned long lowmem_pages = 0;
2521 struct zone *zone;
2522 unsigned long flags;
2523
2524 /* Calculate total number of !ZONE_HIGHMEM pages */
2525 for_each_zone(zone) {
2526 if (!is_highmem(zone))
2527 lowmem_pages += zone->present_pages;
2528 }
2529
2530 for_each_zone(zone) {
669ed175 2531 unsigned long tmp;
1da177e4 2532 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2533 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2534 if (is_highmem(zone)) {
2535 /*
669ed175
NP
2536 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2537 * need highmem pages, so cap pages_min to a small
2538 * value here.
2539 *
2540 * The (pages_high-pages_low) and (pages_low-pages_min)
2541 * deltas controls asynch page reclaim, and so should
2542 * not be capped for highmem.
1da177e4
LT
2543 */
2544 int min_pages;
2545
2546 min_pages = zone->present_pages / 1024;
2547 if (min_pages < SWAP_CLUSTER_MAX)
2548 min_pages = SWAP_CLUSTER_MAX;
2549 if (min_pages > 128)
2550 min_pages = 128;
2551 zone->pages_min = min_pages;
2552 } else {
669ed175
NP
2553 /*
2554 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2555 * proportionate to the zone's size.
2556 */
669ed175 2557 zone->pages_min = tmp;
1da177e4
LT
2558 }
2559
669ed175
NP
2560 zone->pages_low = zone->pages_min + tmp / 4;
2561 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2562 spin_unlock_irqrestore(&zone->lru_lock, flags);
2563 }
2564}
2565
2566/*
2567 * Initialise min_free_kbytes.
2568 *
2569 * For small machines we want it small (128k min). For large machines
2570 * we want it large (64MB max). But it is not linear, because network
2571 * bandwidth does not increase linearly with machine size. We use
2572 *
2573 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2574 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2575 *
2576 * which yields
2577 *
2578 * 16MB: 512k
2579 * 32MB: 724k
2580 * 64MB: 1024k
2581 * 128MB: 1448k
2582 * 256MB: 2048k
2583 * 512MB: 2896k
2584 * 1024MB: 4096k
2585 * 2048MB: 5792k
2586 * 4096MB: 8192k
2587 * 8192MB: 11584k
2588 * 16384MB: 16384k
2589 */
2590static int __init init_per_zone_pages_min(void)
2591{
2592 unsigned long lowmem_kbytes;
2593
2594 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2595
2596 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2597 if (min_free_kbytes < 128)
2598 min_free_kbytes = 128;
2599 if (min_free_kbytes > 65536)
2600 min_free_kbytes = 65536;
2601 setup_per_zone_pages_min();
2602 setup_per_zone_lowmem_reserve();
2603 return 0;
2604}
2605module_init(init_per_zone_pages_min)
2606
2607/*
2608 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2609 * that we can call two helper functions whenever min_free_kbytes
2610 * changes.
2611 */
2612int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2613 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2614{
2615 proc_dointvec(table, write, file, buffer, length, ppos);
2616 setup_per_zone_pages_min();
2617 return 0;
2618}
2619
2620/*
2621 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2622 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2623 * whenever sysctl_lowmem_reserve_ratio changes.
2624 *
2625 * The reserve ratio obviously has absolutely no relation with the
2626 * pages_min watermarks. The lowmem reserve ratio can only make sense
2627 * if in function of the boot time zone sizes.
2628 */
2629int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2630 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2631{
2632 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2633 setup_per_zone_lowmem_reserve();
2634 return 0;
2635}
2636
8ad4b1fb
RS
2637/*
2638 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2639 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2640 * can have before it gets flushed back to buddy allocator.
2641 */
2642
2643int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2644 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2645{
2646 struct zone *zone;
2647 unsigned int cpu;
2648 int ret;
2649
2650 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2651 if (!write || (ret == -EINVAL))
2652 return ret;
2653 for_each_zone(zone) {
2654 for_each_online_cpu(cpu) {
2655 unsigned long high;
2656 high = zone->present_pages / percpu_pagelist_fraction;
2657 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2658 }
2659 }
2660 return 0;
2661}
2662
1da177e4
LT
2663__initdata int hashdist = HASHDIST_DEFAULT;
2664
2665#ifdef CONFIG_NUMA
2666static int __init set_hashdist(char *str)
2667{
2668 if (!str)
2669 return 0;
2670 hashdist = simple_strtoul(str, &str, 0);
2671 return 1;
2672}
2673__setup("hashdist=", set_hashdist);
2674#endif
2675
2676/*
2677 * allocate a large system hash table from bootmem
2678 * - it is assumed that the hash table must contain an exact power-of-2
2679 * quantity of entries
2680 * - limit is the number of hash buckets, not the total allocation size
2681 */
2682void *__init alloc_large_system_hash(const char *tablename,
2683 unsigned long bucketsize,
2684 unsigned long numentries,
2685 int scale,
2686 int flags,
2687 unsigned int *_hash_shift,
2688 unsigned int *_hash_mask,
2689 unsigned long limit)
2690{
2691 unsigned long long max = limit;
2692 unsigned long log2qty, size;
2693 void *table = NULL;
2694
2695 /* allow the kernel cmdline to have a say */
2696 if (!numentries) {
2697 /* round applicable memory size up to nearest megabyte */
2698 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2699 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2700 numentries >>= 20 - PAGE_SHIFT;
2701 numentries <<= 20 - PAGE_SHIFT;
2702
2703 /* limit to 1 bucket per 2^scale bytes of low memory */
2704 if (scale > PAGE_SHIFT)
2705 numentries >>= (scale - PAGE_SHIFT);
2706 else
2707 numentries <<= (PAGE_SHIFT - scale);
2708 }
6e692ed3 2709 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2710
2711 /* limit allocation size to 1/16 total memory by default */
2712 if (max == 0) {
2713 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2714 do_div(max, bucketsize);
2715 }
2716
2717 if (numentries > max)
2718 numentries = max;
2719
2720 log2qty = long_log2(numentries);
2721
2722 do {
2723 size = bucketsize << log2qty;
2724 if (flags & HASH_EARLY)
2725 table = alloc_bootmem(size);
2726 else if (hashdist)
2727 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2728 else {
2729 unsigned long order;
2730 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2731 ;
2732 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2733 }
2734 } while (!table && size > PAGE_SIZE && --log2qty);
2735
2736 if (!table)
2737 panic("Failed to allocate %s hash table\n", tablename);
2738
2739 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2740 tablename,
2741 (1U << log2qty),
2742 long_log2(size) - PAGE_SHIFT,
2743 size);
2744
2745 if (_hash_shift)
2746 *_hash_shift = log2qty;
2747 if (_hash_mask)
2748 *_hash_mask = (1 << log2qty) - 1;
2749
2750 return table;
2751}
a117e66e
KH
2752
2753#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2754/*
2755 * pfn <-> page translation. out-of-line version.
2756 * (see asm-generic/memory_model.h)
2757 */
2758#if defined(CONFIG_FLATMEM)
2759struct page *pfn_to_page(unsigned long pfn)
2760{
2761 return mem_map + (pfn - ARCH_PFN_OFFSET);
2762}
2763unsigned long page_to_pfn(struct page *page)
2764{
2765 return (page - mem_map) + ARCH_PFN_OFFSET;
2766}
2767#elif defined(CONFIG_DISCONTIGMEM)
2768struct page *pfn_to_page(unsigned long pfn)
2769{
2770 int nid = arch_pfn_to_nid(pfn);
2771 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2772}
2773unsigned long page_to_pfn(struct page *page)
2774{
a0140c1d
KH
2775 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2776 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
a117e66e
KH
2777}
2778#elif defined(CONFIG_SPARSEMEM)
2779struct page *pfn_to_page(unsigned long pfn)
2780{
2781 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2782}
2783
2784unsigned long page_to_pfn(struct page *page)
2785{
2786 long section_id = page_to_section(page);
2787 return page - __section_mem_map_addr(__nr_to_section(section_id));
2788}
2789#endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2790EXPORT_SYMBOL(pfn_to_page);
2791EXPORT_SYMBOL(page_to_pfn);
2792#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */