page allocator: do not disable interrupts in free_page_mlock()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
49255c61
MG
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
b2a0ac88
MG
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177}
178
13e7444b 179#ifdef CONFIG_DEBUG_VM
c6a57e19 180static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 181{
bdc8cb98
DH
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
c6a57e19 185
bdc8cb98
DH
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
c6a57e19
DH
195}
196
197static int page_is_consistent(struct zone *zone, struct page *page)
198{
14e07298 199 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 200 return 0;
1da177e4 201 if (zone != page_zone(page))
c6a57e19
DH
202 return 0;
203
204 return 1;
205}
206/*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209static int bad_range(struct zone *zone, struct page *page)
210{
211 if (page_outside_zone_boundaries(zone, page))
1da177e4 212 return 1;
c6a57e19
DH
213 if (!page_is_consistent(zone, page))
214 return 1;
215
1da177e4
LT
216 return 0;
217}
13e7444b
NP
218#else
219static inline int bad_range(struct zone *zone, struct page *page)
220{
221 return 0;
222}
223#endif
224
224abf92 225static void bad_page(struct page *page)
1da177e4 226{
d936cf9b
HD
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
1e9e6365
HD
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
1e9e6365 251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 252 current->comm, page_to_pfn(page));
1e9e6365 253 printk(KERN_ALERT
3dc14741
HD
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
3dc14741 257
1da177e4 258 dump_stack();
d936cf9b 259out:
8cc3b392
HD
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
9f158333 262 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
41d78ba5
HD
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
1da177e4 278 */
d98c7a09
HD
279
280static void free_compound_page(struct page *page)
281{
d85f3385 282 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
283}
284
01ad1c08 285void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
286{
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
303{
304 int i;
305 int nr_pages = 1 << order;
6babc32c 306 struct page *p = page + 1;
1da177e4 307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
18229df5 311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 312 __SetPageTail(p);
d85f3385 313 p->first_page = page;
1da177e4
LT
314 }
315}
18229df5 316#endif
1da177e4 317
8cc3b392 318static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
319{
320 int i;
321 int nr_pages = 1 << order;
8cc3b392 322 int bad = 0;
1da177e4 323
8cc3b392
HD
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
224abf92 326 bad_page(page);
8cc3b392
HD
327 bad++;
328 }
1da177e4 329
6d777953 330 __ClearPageHead(page);
8cc3b392 331
18229df5
AW
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
1da177e4 334
e713a21d 335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 336 bad_page(page);
8cc3b392
HD
337 bad++;
338 }
d85f3385 339 __ClearPageTail(p);
1da177e4 340 }
8cc3b392
HD
341
342 return bad;
1da177e4 343}
1da177e4 344
17cf4406
NP
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347 int i;
348
6626c5d5
AM
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
725d704e 353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356}
357
6aa3001b
AM
358static inline void set_page_order(struct page *page, int order)
359{
4c21e2f2 360 set_page_private(page, order);
676165a8 361 __SetPageBuddy(page);
1da177e4
LT
362}
363
364static inline void rmv_page_order(struct page *page)
365{
676165a8 366 __ClearPageBuddy(page);
4c21e2f2 367 set_page_private(page, 0);
1da177e4
LT
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
d6e05edc 385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398 return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
13e7444b 404 * (a) the buddy is not in a hole &&
676165a8 405 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
676165a8
NP
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 411 *
676165a8 412 * For recording page's order, we use page_private(page).
1da177e4 413 */
cb2b95e1
AW
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
1da177e4 416{
14e07298 417 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 418 return 0;
13e7444b 419
cb2b95e1
AW
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
6aa3001b 425 return 1;
676165a8 426 }
6aa3001b 427 return 0;
1da177e4
LT
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
676165a8 443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 444 * order is recorded in page_private(page) field.
1da177e4
LT
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
48db57f8 454static inline void __free_one_page(struct page *page,
ed0ae21d
MG
455 struct zone *zone, unsigned int order,
456 int migratetype)
1da177e4
LT
457{
458 unsigned long page_idx;
459 int order_size = 1 << order;
460
224abf92 461 if (unlikely(PageCompound(page)))
8cc3b392
HD
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
1da177e4 464
ed0ae21d
MG
465 VM_BUG_ON(migratetype == -1);
466
1da177e4
LT
467 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
468
725d704e
NP
469 VM_BUG_ON(page_idx & (order_size - 1));
470 VM_BUG_ON(bad_range(zone, page));
1da177e4 471
d23ad423 472 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
473 while (order < MAX_ORDER-1) {
474 unsigned long combined_idx;
1da177e4
LT
475 struct page *buddy;
476
1da177e4 477 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 478 if (!page_is_buddy(page, buddy, order))
3c82d0ce 479 break;
13e7444b 480
3c82d0ce 481 /* Our buddy is free, merge with it and move up one order. */
1da177e4 482 list_del(&buddy->lru);
b2a0ac88 483 zone->free_area[order].nr_free--;
1da177e4 484 rmv_page_order(buddy);
13e7444b 485 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
486 page = page + (combined_idx - page_idx);
487 page_idx = combined_idx;
488 order++;
489 }
490 set_page_order(page, order);
b2a0ac88
MG
491 list_add(&page->lru,
492 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
493 zone->free_area[order].nr_free++;
494}
495
224abf92 496static inline int free_pages_check(struct page *page)
1da177e4 497{
92be2e33
NP
498 if (unlikely(page_mapcount(page) |
499 (page->mapping != NULL) |
500 (page_count(page) != 0) |
8cc3b392 501 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 502 bad_page(page);
79f4b7bf 503 return 1;
8cc3b392 504 }
79f4b7bf
HD
505 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
506 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
507 return 0;
1da177e4
LT
508}
509
510/*
511 * Frees a list of pages.
512 * Assumes all pages on list are in same zone, and of same order.
207f36ee 513 * count is the number of pages to free.
1da177e4
LT
514 *
515 * If the zone was previously in an "all pages pinned" state then look to
516 * see if this freeing clears that state.
517 *
518 * And clear the zone's pages_scanned counter, to hold off the "all pages are
519 * pinned" detection logic.
520 */
48db57f8
NP
521static void free_pages_bulk(struct zone *zone, int count,
522 struct list_head *list, int order)
1da177e4 523{
c54ad30c 524 spin_lock(&zone->lock);
e815af95 525 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 526 zone->pages_scanned = 0;
48db57f8
NP
527 while (count--) {
528 struct page *page;
529
725d704e 530 VM_BUG_ON(list_empty(list));
1da177e4 531 page = list_entry(list->prev, struct page, lru);
48db57f8 532 /* have to delete it as __free_one_page list manipulates */
1da177e4 533 list_del(&page->lru);
ed0ae21d 534 __free_one_page(page, zone, order, page_private(page));
1da177e4 535 }
c54ad30c 536 spin_unlock(&zone->lock);
1da177e4
LT
537}
538
ed0ae21d
MG
539static void free_one_page(struct zone *zone, struct page *page, int order,
540 int migratetype)
1da177e4 541{
006d22d9 542 spin_lock(&zone->lock);
e815af95 543 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 544 zone->pages_scanned = 0;
ed0ae21d 545 __free_one_page(page, zone, order, migratetype);
006d22d9 546 spin_unlock(&zone->lock);
48db57f8
NP
547}
548
549static void __free_pages_ok(struct page *page, unsigned int order)
550{
551 unsigned long flags;
1da177e4 552 int i;
8cc3b392 553 int bad = 0;
da456f14 554 int clearMlocked = PageMlocked(page);
1da177e4 555
1da177e4 556 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
557 bad += free_pages_check(page + i);
558 if (bad)
689bcebf
HD
559 return;
560
3ac7fe5a 561 if (!PageHighMem(page)) {
9858db50 562 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
563 debug_check_no_obj_freed(page_address(page),
564 PAGE_SIZE << order);
565 }
dafb1367 566 arch_free_page(page, order);
48db57f8 567 kernel_map_pages(page, 1 << order, 0);
dafb1367 568
c54ad30c 569 local_irq_save(flags);
da456f14
MG
570 if (unlikely(clearMlocked))
571 free_page_mlock(page);
f8891e5e 572 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
573 free_one_page(page_zone(page), page, order,
574 get_pageblock_migratetype(page));
c54ad30c 575 local_irq_restore(flags);
1da177e4
LT
576}
577
a226f6c8
DH
578/*
579 * permit the bootmem allocator to evade page validation on high-order frees
580 */
af370fb8 581void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
582{
583 if (order == 0) {
584 __ClearPageReserved(page);
585 set_page_count(page, 0);
7835e98b 586 set_page_refcounted(page);
545b1ea9 587 __free_page(page);
a226f6c8 588 } else {
a226f6c8
DH
589 int loop;
590
545b1ea9 591 prefetchw(page);
a226f6c8
DH
592 for (loop = 0; loop < BITS_PER_LONG; loop++) {
593 struct page *p = &page[loop];
594
545b1ea9
NP
595 if (loop + 1 < BITS_PER_LONG)
596 prefetchw(p + 1);
a226f6c8
DH
597 __ClearPageReserved(p);
598 set_page_count(p, 0);
599 }
600
7835e98b 601 set_page_refcounted(page);
545b1ea9 602 __free_pages(page, order);
a226f6c8
DH
603 }
604}
605
1da177e4
LT
606
607/*
608 * The order of subdivision here is critical for the IO subsystem.
609 * Please do not alter this order without good reasons and regression
610 * testing. Specifically, as large blocks of memory are subdivided,
611 * the order in which smaller blocks are delivered depends on the order
612 * they're subdivided in this function. This is the primary factor
613 * influencing the order in which pages are delivered to the IO
614 * subsystem according to empirical testing, and this is also justified
615 * by considering the behavior of a buddy system containing a single
616 * large block of memory acted on by a series of small allocations.
617 * This behavior is a critical factor in sglist merging's success.
618 *
619 * -- wli
620 */
085cc7d5 621static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
622 int low, int high, struct free_area *area,
623 int migratetype)
1da177e4
LT
624{
625 unsigned long size = 1 << high;
626
627 while (high > low) {
628 area--;
629 high--;
630 size >>= 1;
725d704e 631 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 632 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
633 area->nr_free++;
634 set_page_order(&page[size], high);
635 }
1da177e4
LT
636}
637
1da177e4
LT
638/*
639 * This page is about to be returned from the page allocator
640 */
17cf4406 641static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 642{
92be2e33
NP
643 if (unlikely(page_mapcount(page) |
644 (page->mapping != NULL) |
645 (page_count(page) != 0) |
8cc3b392 646 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 647 bad_page(page);
689bcebf 648 return 1;
8cc3b392 649 }
689bcebf 650
4c21e2f2 651 set_page_private(page, 0);
7835e98b 652 set_page_refcounted(page);
cc102509
NP
653
654 arch_alloc_page(page, order);
1da177e4 655 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
656
657 if (gfp_flags & __GFP_ZERO)
658 prep_zero_page(page, order, gfp_flags);
659
660 if (order && (gfp_flags & __GFP_COMP))
661 prep_compound_page(page, order);
662
689bcebf 663 return 0;
1da177e4
LT
664}
665
56fd56b8
MG
666/*
667 * Go through the free lists for the given migratetype and remove
668 * the smallest available page from the freelists
669 */
728ec980
MG
670static inline
671struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
672 int migratetype)
673{
674 unsigned int current_order;
675 struct free_area * area;
676 struct page *page;
677
678 /* Find a page of the appropriate size in the preferred list */
679 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
680 area = &(zone->free_area[current_order]);
681 if (list_empty(&area->free_list[migratetype]))
682 continue;
683
684 page = list_entry(area->free_list[migratetype].next,
685 struct page, lru);
686 list_del(&page->lru);
687 rmv_page_order(page);
688 area->nr_free--;
689 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
690 expand(zone, page, order, current_order, area, migratetype);
691 return page;
692 }
693
694 return NULL;
695}
696
697
b2a0ac88
MG
698/*
699 * This array describes the order lists are fallen back to when
700 * the free lists for the desirable migrate type are depleted
701 */
702static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
703 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
704 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
705 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
707};
708
c361be55
MG
709/*
710 * Move the free pages in a range to the free lists of the requested type.
d9c23400 711 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
712 * boundary. If alignment is required, use move_freepages_block()
713 */
b69a7288
AB
714static int move_freepages(struct zone *zone,
715 struct page *start_page, struct page *end_page,
716 int migratetype)
c361be55
MG
717{
718 struct page *page;
719 unsigned long order;
d100313f 720 int pages_moved = 0;
c361be55
MG
721
722#ifndef CONFIG_HOLES_IN_ZONE
723 /*
724 * page_zone is not safe to call in this context when
725 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
726 * anyway as we check zone boundaries in move_freepages_block().
727 * Remove at a later date when no bug reports exist related to
ac0e5b7a 728 * grouping pages by mobility
c361be55
MG
729 */
730 BUG_ON(page_zone(start_page) != page_zone(end_page));
731#endif
732
733 for (page = start_page; page <= end_page;) {
344c790e
AL
734 /* Make sure we are not inadvertently changing nodes */
735 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
736
c361be55
MG
737 if (!pfn_valid_within(page_to_pfn(page))) {
738 page++;
739 continue;
740 }
741
742 if (!PageBuddy(page)) {
743 page++;
744 continue;
745 }
746
747 order = page_order(page);
748 list_del(&page->lru);
749 list_add(&page->lru,
750 &zone->free_area[order].free_list[migratetype]);
751 page += 1 << order;
d100313f 752 pages_moved += 1 << order;
c361be55
MG
753 }
754
d100313f 755 return pages_moved;
c361be55
MG
756}
757
b69a7288
AB
758static int move_freepages_block(struct zone *zone, struct page *page,
759 int migratetype)
c361be55
MG
760{
761 unsigned long start_pfn, end_pfn;
762 struct page *start_page, *end_page;
763
764 start_pfn = page_to_pfn(page);
d9c23400 765 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 766 start_page = pfn_to_page(start_pfn);
d9c23400
MG
767 end_page = start_page + pageblock_nr_pages - 1;
768 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
769
770 /* Do not cross zone boundaries */
771 if (start_pfn < zone->zone_start_pfn)
772 start_page = page;
773 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
774 return 0;
775
776 return move_freepages(zone, start_page, end_page, migratetype);
777}
778
b2a0ac88 779/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
780static inline struct page *
781__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
782{
783 struct free_area * area;
784 int current_order;
785 struct page *page;
786 int migratetype, i;
787
788 /* Find the largest possible block of pages in the other list */
789 for (current_order = MAX_ORDER-1; current_order >= order;
790 --current_order) {
791 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
792 migratetype = fallbacks[start_migratetype][i];
793
56fd56b8
MG
794 /* MIGRATE_RESERVE handled later if necessary */
795 if (migratetype == MIGRATE_RESERVE)
796 continue;
e010487d 797
b2a0ac88
MG
798 area = &(zone->free_area[current_order]);
799 if (list_empty(&area->free_list[migratetype]))
800 continue;
801
802 page = list_entry(area->free_list[migratetype].next,
803 struct page, lru);
804 area->nr_free--;
805
806 /*
c361be55 807 * If breaking a large block of pages, move all free
46dafbca
MG
808 * pages to the preferred allocation list. If falling
809 * back for a reclaimable kernel allocation, be more
810 * agressive about taking ownership of free pages
b2a0ac88 811 */
d9c23400 812 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
813 start_migratetype == MIGRATE_RECLAIMABLE) {
814 unsigned long pages;
815 pages = move_freepages_block(zone, page,
816 start_migratetype);
817
818 /* Claim the whole block if over half of it is free */
d9c23400 819 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
820 set_pageblock_migratetype(page,
821 start_migratetype);
822
b2a0ac88 823 migratetype = start_migratetype;
c361be55 824 }
b2a0ac88
MG
825
826 /* Remove the page from the freelists */
827 list_del(&page->lru);
828 rmv_page_order(page);
829 __mod_zone_page_state(zone, NR_FREE_PAGES,
830 -(1UL << order));
831
d9c23400 832 if (current_order == pageblock_order)
b2a0ac88
MG
833 set_pageblock_migratetype(page,
834 start_migratetype);
835
836 expand(zone, page, order, current_order, area, migratetype);
837 return page;
838 }
839 }
840
728ec980 841 return NULL;
b2a0ac88
MG
842}
843
56fd56b8 844/*
1da177e4
LT
845 * Do the hard work of removing an element from the buddy allocator.
846 * Call me with the zone->lock already held.
847 */
b2a0ac88
MG
848static struct page *__rmqueue(struct zone *zone, unsigned int order,
849 int migratetype)
1da177e4 850{
1da177e4
LT
851 struct page *page;
852
728ec980 853retry_reserve:
56fd56b8 854 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 855
728ec980 856 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 857 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 858
728ec980
MG
859 /*
860 * Use MIGRATE_RESERVE rather than fail an allocation. goto
861 * is used because __rmqueue_smallest is an inline function
862 * and we want just one call site
863 */
864 if (!page) {
865 migratetype = MIGRATE_RESERVE;
866 goto retry_reserve;
867 }
868 }
869
b2a0ac88 870 return page;
1da177e4
LT
871}
872
873/*
874 * Obtain a specified number of elements from the buddy allocator, all under
875 * a single hold of the lock, for efficiency. Add them to the supplied list.
876 * Returns the number of new pages which were placed at *list.
877 */
878static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
879 unsigned long count, struct list_head *list,
880 int migratetype)
1da177e4 881{
1da177e4 882 int i;
1da177e4 883
c54ad30c 884 spin_lock(&zone->lock);
1da177e4 885 for (i = 0; i < count; ++i) {
b2a0ac88 886 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 887 if (unlikely(page == NULL))
1da177e4 888 break;
81eabcbe
MG
889
890 /*
891 * Split buddy pages returned by expand() are received here
892 * in physical page order. The page is added to the callers and
893 * list and the list head then moves forward. From the callers
894 * perspective, the linked list is ordered by page number in
895 * some conditions. This is useful for IO devices that can
896 * merge IO requests if the physical pages are ordered
897 * properly.
898 */
535131e6
MG
899 list_add(&page->lru, list);
900 set_page_private(page, migratetype);
81eabcbe 901 list = &page->lru;
1da177e4 902 }
c54ad30c 903 spin_unlock(&zone->lock);
085cc7d5 904 return i;
1da177e4
LT
905}
906
4ae7c039 907#ifdef CONFIG_NUMA
8fce4d8e 908/*
4037d452
CL
909 * Called from the vmstat counter updater to drain pagesets of this
910 * currently executing processor on remote nodes after they have
911 * expired.
912 *
879336c3
CL
913 * Note that this function must be called with the thread pinned to
914 * a single processor.
8fce4d8e 915 */
4037d452 916void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 917{
4ae7c039 918 unsigned long flags;
4037d452 919 int to_drain;
4ae7c039 920
4037d452
CL
921 local_irq_save(flags);
922 if (pcp->count >= pcp->batch)
923 to_drain = pcp->batch;
924 else
925 to_drain = pcp->count;
926 free_pages_bulk(zone, to_drain, &pcp->list, 0);
927 pcp->count -= to_drain;
928 local_irq_restore(flags);
4ae7c039
CL
929}
930#endif
931
9f8f2172
CL
932/*
933 * Drain pages of the indicated processor.
934 *
935 * The processor must either be the current processor and the
936 * thread pinned to the current processor or a processor that
937 * is not online.
938 */
939static void drain_pages(unsigned int cpu)
1da177e4 940{
c54ad30c 941 unsigned long flags;
1da177e4 942 struct zone *zone;
1da177e4 943
ee99c71c 944 for_each_populated_zone(zone) {
1da177e4 945 struct per_cpu_pageset *pset;
3dfa5721 946 struct per_cpu_pages *pcp;
1da177e4 947
e7c8d5c9 948 pset = zone_pcp(zone, cpu);
3dfa5721
CL
949
950 pcp = &pset->pcp;
951 local_irq_save(flags);
952 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
953 pcp->count = 0;
954 local_irq_restore(flags);
1da177e4
LT
955 }
956}
1da177e4 957
9f8f2172
CL
958/*
959 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
960 */
961void drain_local_pages(void *arg)
962{
963 drain_pages(smp_processor_id());
964}
965
966/*
967 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
968 */
969void drain_all_pages(void)
970{
15c8b6c1 971 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
972}
973
296699de 974#ifdef CONFIG_HIBERNATION
1da177e4
LT
975
976void mark_free_pages(struct zone *zone)
977{
f623f0db
RW
978 unsigned long pfn, max_zone_pfn;
979 unsigned long flags;
b2a0ac88 980 int order, t;
1da177e4
LT
981 struct list_head *curr;
982
983 if (!zone->spanned_pages)
984 return;
985
986 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
987
988 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
989 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
990 if (pfn_valid(pfn)) {
991 struct page *page = pfn_to_page(pfn);
992
7be98234
RW
993 if (!swsusp_page_is_forbidden(page))
994 swsusp_unset_page_free(page);
f623f0db 995 }
1da177e4 996
b2a0ac88
MG
997 for_each_migratetype_order(order, t) {
998 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 999 unsigned long i;
1da177e4 1000
f623f0db
RW
1001 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1002 for (i = 0; i < (1UL << order); i++)
7be98234 1003 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1004 }
b2a0ac88 1005 }
1da177e4
LT
1006 spin_unlock_irqrestore(&zone->lock, flags);
1007}
e2c55dc8 1008#endif /* CONFIG_PM */
1da177e4 1009
1da177e4
LT
1010/*
1011 * Free a 0-order page
1012 */
920c7a5d 1013static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1014{
1015 struct zone *zone = page_zone(page);
1016 struct per_cpu_pages *pcp;
1017 unsigned long flags;
da456f14 1018 int clearMlocked = PageMlocked(page);
1da177e4 1019
1da177e4
LT
1020 if (PageAnon(page))
1021 page->mapping = NULL;
224abf92 1022 if (free_pages_check(page))
689bcebf
HD
1023 return;
1024
3ac7fe5a 1025 if (!PageHighMem(page)) {
9858db50 1026 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1027 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1028 }
dafb1367 1029 arch_free_page(page, 0);
689bcebf
HD
1030 kernel_map_pages(page, 1, 0);
1031
3dfa5721 1032 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1033 local_irq_save(flags);
da456f14
MG
1034 if (unlikely(clearMlocked))
1035 free_page_mlock(page);
f8891e5e 1036 __count_vm_event(PGFREE);
da456f14 1037
3dfa5721
CL
1038 if (cold)
1039 list_add_tail(&page->lru, &pcp->list);
1040 else
1041 list_add(&page->lru, &pcp->list);
535131e6 1042 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1043 pcp->count++;
48db57f8
NP
1044 if (pcp->count >= pcp->high) {
1045 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1046 pcp->count -= pcp->batch;
1047 }
1da177e4
LT
1048 local_irq_restore(flags);
1049 put_cpu();
1050}
1051
920c7a5d 1052void free_hot_page(struct page *page)
1da177e4
LT
1053{
1054 free_hot_cold_page(page, 0);
1055}
1056
920c7a5d 1057void free_cold_page(struct page *page)
1da177e4
LT
1058{
1059 free_hot_cold_page(page, 1);
1060}
1061
8dfcc9ba
NP
1062/*
1063 * split_page takes a non-compound higher-order page, and splits it into
1064 * n (1<<order) sub-pages: page[0..n]
1065 * Each sub-page must be freed individually.
1066 *
1067 * Note: this is probably too low level an operation for use in drivers.
1068 * Please consult with lkml before using this in your driver.
1069 */
1070void split_page(struct page *page, unsigned int order)
1071{
1072 int i;
1073
725d704e
NP
1074 VM_BUG_ON(PageCompound(page));
1075 VM_BUG_ON(!page_count(page));
7835e98b
NP
1076 for (i = 1; i < (1 << order); i++)
1077 set_page_refcounted(page + i);
8dfcc9ba 1078}
8dfcc9ba 1079
1da177e4
LT
1080/*
1081 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1082 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1083 * or two.
1084 */
0a15c3e9
MG
1085static inline
1086struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1087 struct zone *zone, int order, gfp_t gfp_flags,
1088 int migratetype)
1da177e4
LT
1089{
1090 unsigned long flags;
689bcebf 1091 struct page *page;
1da177e4 1092 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1093 int cpu;
1da177e4 1094
689bcebf 1095again:
a74609fa 1096 cpu = get_cpu();
48db57f8 1097 if (likely(order == 0)) {
1da177e4
LT
1098 struct per_cpu_pages *pcp;
1099
3dfa5721 1100 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1101 local_irq_save(flags);
a74609fa 1102 if (!pcp->count) {
941c7105 1103 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1104 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1105 if (unlikely(!pcp->count))
1106 goto failed;
1da177e4 1107 }
b92a6edd 1108
535131e6 1109 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1110 if (cold) {
1111 list_for_each_entry_reverse(page, &pcp->list, lru)
1112 if (page_private(page) == migratetype)
1113 break;
1114 } else {
1115 list_for_each_entry(page, &pcp->list, lru)
1116 if (page_private(page) == migratetype)
1117 break;
1118 }
535131e6 1119
b92a6edd
MG
1120 /* Allocate more to the pcp list if necessary */
1121 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1122 pcp->count += rmqueue_bulk(zone, 0,
1123 pcp->batch, &pcp->list, migratetype);
1124 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1125 }
b92a6edd
MG
1126
1127 list_del(&page->lru);
1128 pcp->count--;
7fb1d9fc 1129 } else {
1da177e4 1130 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1131 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1132 spin_unlock(&zone->lock);
1133 if (!page)
1134 goto failed;
1da177e4
LT
1135 }
1136
f8891e5e 1137 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1138 zone_statistics(preferred_zone, zone);
a74609fa
NP
1139 local_irq_restore(flags);
1140 put_cpu();
1da177e4 1141
725d704e 1142 VM_BUG_ON(bad_range(zone, page));
17cf4406 1143 if (prep_new_page(page, order, gfp_flags))
a74609fa 1144 goto again;
1da177e4 1145 return page;
a74609fa
NP
1146
1147failed:
1148 local_irq_restore(flags);
1149 put_cpu();
1150 return NULL;
1da177e4
LT
1151}
1152
7fb1d9fc 1153#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1154#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1155#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1156#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1157#define ALLOC_HARDER 0x10 /* try to alloc harder */
1158#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1159#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1160
933e312e
AM
1161#ifdef CONFIG_FAIL_PAGE_ALLOC
1162
1163static struct fail_page_alloc_attr {
1164 struct fault_attr attr;
1165
1166 u32 ignore_gfp_highmem;
1167 u32 ignore_gfp_wait;
54114994 1168 u32 min_order;
933e312e
AM
1169
1170#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1171
1172 struct dentry *ignore_gfp_highmem_file;
1173 struct dentry *ignore_gfp_wait_file;
54114994 1174 struct dentry *min_order_file;
933e312e
AM
1175
1176#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1177
1178} fail_page_alloc = {
1179 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1180 .ignore_gfp_wait = 1,
1181 .ignore_gfp_highmem = 1,
54114994 1182 .min_order = 1,
933e312e
AM
1183};
1184
1185static int __init setup_fail_page_alloc(char *str)
1186{
1187 return setup_fault_attr(&fail_page_alloc.attr, str);
1188}
1189__setup("fail_page_alloc=", setup_fail_page_alloc);
1190
1191static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1192{
54114994
AM
1193 if (order < fail_page_alloc.min_order)
1194 return 0;
933e312e
AM
1195 if (gfp_mask & __GFP_NOFAIL)
1196 return 0;
1197 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1198 return 0;
1199 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1200 return 0;
1201
1202 return should_fail(&fail_page_alloc.attr, 1 << order);
1203}
1204
1205#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1206
1207static int __init fail_page_alloc_debugfs(void)
1208{
1209 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1210 struct dentry *dir;
1211 int err;
1212
1213 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1214 "fail_page_alloc");
1215 if (err)
1216 return err;
1217 dir = fail_page_alloc.attr.dentries.dir;
1218
1219 fail_page_alloc.ignore_gfp_wait_file =
1220 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1221 &fail_page_alloc.ignore_gfp_wait);
1222
1223 fail_page_alloc.ignore_gfp_highmem_file =
1224 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1225 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1226 fail_page_alloc.min_order_file =
1227 debugfs_create_u32("min-order", mode, dir,
1228 &fail_page_alloc.min_order);
933e312e
AM
1229
1230 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1231 !fail_page_alloc.ignore_gfp_highmem_file ||
1232 !fail_page_alloc.min_order_file) {
933e312e
AM
1233 err = -ENOMEM;
1234 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1235 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1236 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1237 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1238 }
1239
1240 return err;
1241}
1242
1243late_initcall(fail_page_alloc_debugfs);
1244
1245#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1246
1247#else /* CONFIG_FAIL_PAGE_ALLOC */
1248
1249static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1250{
1251 return 0;
1252}
1253
1254#endif /* CONFIG_FAIL_PAGE_ALLOC */
1255
1da177e4
LT
1256/*
1257 * Return 1 if free pages are above 'mark'. This takes into account the order
1258 * of the allocation.
1259 */
1260int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1261 int classzone_idx, int alloc_flags)
1da177e4
LT
1262{
1263 /* free_pages my go negative - that's OK */
d23ad423
CL
1264 long min = mark;
1265 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1266 int o;
1267
7fb1d9fc 1268 if (alloc_flags & ALLOC_HIGH)
1da177e4 1269 min -= min / 2;
7fb1d9fc 1270 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1271 min -= min / 4;
1272
1273 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1274 return 0;
1275 for (o = 0; o < order; o++) {
1276 /* At the next order, this order's pages become unavailable */
1277 free_pages -= z->free_area[o].nr_free << o;
1278
1279 /* Require fewer higher order pages to be free */
1280 min >>= 1;
1281
1282 if (free_pages <= min)
1283 return 0;
1284 }
1285 return 1;
1286}
1287
9276b1bc
PJ
1288#ifdef CONFIG_NUMA
1289/*
1290 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1291 * skip over zones that are not allowed by the cpuset, or that have
1292 * been recently (in last second) found to be nearly full. See further
1293 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1294 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1295 *
1296 * If the zonelist cache is present in the passed in zonelist, then
1297 * returns a pointer to the allowed node mask (either the current
37b07e41 1298 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1299 *
1300 * If the zonelist cache is not available for this zonelist, does
1301 * nothing and returns NULL.
1302 *
1303 * If the fullzones BITMAP in the zonelist cache is stale (more than
1304 * a second since last zap'd) then we zap it out (clear its bits.)
1305 *
1306 * We hold off even calling zlc_setup, until after we've checked the
1307 * first zone in the zonelist, on the theory that most allocations will
1308 * be satisfied from that first zone, so best to examine that zone as
1309 * quickly as we can.
1310 */
1311static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1312{
1313 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1314 nodemask_t *allowednodes; /* zonelist_cache approximation */
1315
1316 zlc = zonelist->zlcache_ptr;
1317 if (!zlc)
1318 return NULL;
1319
f05111f5 1320 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1321 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1322 zlc->last_full_zap = jiffies;
1323 }
1324
1325 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1326 &cpuset_current_mems_allowed :
37b07e41 1327 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1328 return allowednodes;
1329}
1330
1331/*
1332 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1333 * if it is worth looking at further for free memory:
1334 * 1) Check that the zone isn't thought to be full (doesn't have its
1335 * bit set in the zonelist_cache fullzones BITMAP).
1336 * 2) Check that the zones node (obtained from the zonelist_cache
1337 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1338 * Return true (non-zero) if zone is worth looking at further, or
1339 * else return false (zero) if it is not.
1340 *
1341 * This check -ignores- the distinction between various watermarks,
1342 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1343 * found to be full for any variation of these watermarks, it will
1344 * be considered full for up to one second by all requests, unless
1345 * we are so low on memory on all allowed nodes that we are forced
1346 * into the second scan of the zonelist.
1347 *
1348 * In the second scan we ignore this zonelist cache and exactly
1349 * apply the watermarks to all zones, even it is slower to do so.
1350 * We are low on memory in the second scan, and should leave no stone
1351 * unturned looking for a free page.
1352 */
dd1a239f 1353static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1354 nodemask_t *allowednodes)
1355{
1356 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1357 int i; /* index of *z in zonelist zones */
1358 int n; /* node that zone *z is on */
1359
1360 zlc = zonelist->zlcache_ptr;
1361 if (!zlc)
1362 return 1;
1363
dd1a239f 1364 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1365 n = zlc->z_to_n[i];
1366
1367 /* This zone is worth trying if it is allowed but not full */
1368 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1369}
1370
1371/*
1372 * Given 'z' scanning a zonelist, set the corresponding bit in
1373 * zlc->fullzones, so that subsequent attempts to allocate a page
1374 * from that zone don't waste time re-examining it.
1375 */
dd1a239f 1376static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1377{
1378 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1379 int i; /* index of *z in zonelist zones */
1380
1381 zlc = zonelist->zlcache_ptr;
1382 if (!zlc)
1383 return;
1384
dd1a239f 1385 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1386
1387 set_bit(i, zlc->fullzones);
1388}
1389
1390#else /* CONFIG_NUMA */
1391
1392static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1393{
1394 return NULL;
1395}
1396
dd1a239f 1397static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1398 nodemask_t *allowednodes)
1399{
1400 return 1;
1401}
1402
dd1a239f 1403static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1404{
1405}
1406#endif /* CONFIG_NUMA */
1407
7fb1d9fc 1408/*
0798e519 1409 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1410 * a page.
1411 */
1412static struct page *
19770b32 1413get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1414 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1415 struct zone *preferred_zone, int migratetype)
753ee728 1416{
dd1a239f 1417 struct zoneref *z;
7fb1d9fc 1418 struct page *page = NULL;
54a6eb5c 1419 int classzone_idx;
5117f45d 1420 struct zone *zone;
9276b1bc
PJ
1421 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1422 int zlc_active = 0; /* set if using zonelist_cache */
1423 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1424
b3c466ce
MG
1425 if (WARN_ON_ONCE(order >= MAX_ORDER))
1426 return NULL;
1427
5117f45d 1428 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1429zonelist_scan:
7fb1d9fc 1430 /*
9276b1bc 1431 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1432 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1433 */
19770b32
MG
1434 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1435 high_zoneidx, nodemask) {
9276b1bc
PJ
1436 if (NUMA_BUILD && zlc_active &&
1437 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1438 continue;
7fb1d9fc 1439 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1440 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1441 goto try_next_zone;
7fb1d9fc
RS
1442
1443 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1444 unsigned long mark;
1445 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1446 mark = zone->pages_min;
3148890b 1447 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1448 mark = zone->pages_low;
3148890b 1449 else
1192d526 1450 mark = zone->pages_high;
0798e519
PJ
1451 if (!zone_watermark_ok(zone, order, mark,
1452 classzone_idx, alloc_flags)) {
9eeff239 1453 if (!zone_reclaim_mode ||
1192d526 1454 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1455 goto this_zone_full;
0798e519 1456 }
7fb1d9fc
RS
1457 }
1458
3dd28266
MG
1459 page = buffered_rmqueue(preferred_zone, zone, order,
1460 gfp_mask, migratetype);
0798e519 1461 if (page)
7fb1d9fc 1462 break;
9276b1bc
PJ
1463this_zone_full:
1464 if (NUMA_BUILD)
1465 zlc_mark_zone_full(zonelist, z);
1466try_next_zone:
1467 if (NUMA_BUILD && !did_zlc_setup) {
1468 /* we do zlc_setup after the first zone is tried */
1469 allowednodes = zlc_setup(zonelist, alloc_flags);
1470 zlc_active = 1;
1471 did_zlc_setup = 1;
1472 }
54a6eb5c 1473 }
9276b1bc
PJ
1474
1475 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1476 /* Disable zlc cache for second zonelist scan */
1477 zlc_active = 0;
1478 goto zonelist_scan;
1479 }
7fb1d9fc 1480 return page;
753ee728
MH
1481}
1482
11e33f6a
MG
1483static inline int
1484should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1485 unsigned long pages_reclaimed)
1da177e4 1486{
11e33f6a
MG
1487 /* Do not loop if specifically requested */
1488 if (gfp_mask & __GFP_NORETRY)
1489 return 0;
1da177e4 1490
11e33f6a
MG
1491 /*
1492 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1493 * means __GFP_NOFAIL, but that may not be true in other
1494 * implementations.
1495 */
1496 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1497 return 1;
1498
1499 /*
1500 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1501 * specified, then we retry until we no longer reclaim any pages
1502 * (above), or we've reclaimed an order of pages at least as
1503 * large as the allocation's order. In both cases, if the
1504 * allocation still fails, we stop retrying.
1505 */
1506 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1507 return 1;
cf40bd16 1508
11e33f6a
MG
1509 /*
1510 * Don't let big-order allocations loop unless the caller
1511 * explicitly requests that.
1512 */
1513 if (gfp_mask & __GFP_NOFAIL)
1514 return 1;
1da177e4 1515
11e33f6a
MG
1516 return 0;
1517}
933e312e 1518
11e33f6a
MG
1519static inline struct page *
1520__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1521 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1522 nodemask_t *nodemask, struct zone *preferred_zone,
1523 int migratetype)
11e33f6a
MG
1524{
1525 struct page *page;
1526
1527 /* Acquire the OOM killer lock for the zones in zonelist */
1528 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1529 schedule_timeout_uninterruptible(1);
1da177e4
LT
1530 return NULL;
1531 }
6b1de916 1532
11e33f6a
MG
1533 /*
1534 * Go through the zonelist yet one more time, keep very high watermark
1535 * here, this is only to catch a parallel oom killing, we must fail if
1536 * we're still under heavy pressure.
1537 */
1538 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1539 order, zonelist, high_zoneidx,
5117f45d 1540 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1541 preferred_zone, migratetype);
7fb1d9fc 1542 if (page)
11e33f6a
MG
1543 goto out;
1544
1545 /* The OOM killer will not help higher order allocs */
1546 if (order > PAGE_ALLOC_COSTLY_ORDER)
1547 goto out;
1548
1549 /* Exhausted what can be done so it's blamo time */
1550 out_of_memory(zonelist, gfp_mask, order);
1551
1552out:
1553 clear_zonelist_oom(zonelist, gfp_mask);
1554 return page;
1555}
1556
1557/* The really slow allocator path where we enter direct reclaim */
1558static inline struct page *
1559__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1560 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1561 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1562 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1563{
1564 struct page *page = NULL;
1565 struct reclaim_state reclaim_state;
1566 struct task_struct *p = current;
1567
1568 cond_resched();
1569
1570 /* We now go into synchronous reclaim */
1571 cpuset_memory_pressure_bump();
1572
1573 /*
1574 * The task's cpuset might have expanded its set of allowable nodes
1575 */
1576 p->flags |= PF_MEMALLOC;
1577 lockdep_set_current_reclaim_state(gfp_mask);
1578 reclaim_state.reclaimed_slab = 0;
1579 p->reclaim_state = &reclaim_state;
1580
1581 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1582
1583 p->reclaim_state = NULL;
1584 lockdep_clear_current_reclaim_state();
1585 p->flags &= ~PF_MEMALLOC;
1586
1587 cond_resched();
1588
1589 if (order != 0)
1590 drain_all_pages();
1591
1592 if (likely(*did_some_progress))
1593 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1594 zonelist, high_zoneidx,
3dd28266
MG
1595 alloc_flags, preferred_zone,
1596 migratetype);
11e33f6a
MG
1597 return page;
1598}
1599
11e33f6a
MG
1600/*
1601 * This is called in the allocator slow-path if the allocation request is of
1602 * sufficient urgency to ignore watermarks and take other desperate measures
1603 */
1604static inline struct page *
1605__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1606 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1607 nodemask_t *nodemask, struct zone *preferred_zone,
1608 int migratetype)
11e33f6a
MG
1609{
1610 struct page *page;
1611
1612 do {
1613 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1614 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1615 preferred_zone, migratetype);
11e33f6a
MG
1616
1617 if (!page && gfp_mask & __GFP_NOFAIL)
1618 congestion_wait(WRITE, HZ/50);
1619 } while (!page && (gfp_mask & __GFP_NOFAIL));
1620
1621 return page;
1622}
1623
1624static inline
1625void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1626 enum zone_type high_zoneidx)
1627{
1628 struct zoneref *z;
1629 struct zone *zone;
1630
1631 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1632 wakeup_kswapd(zone, order);
1633}
1634
341ce06f
PZ
1635static inline int
1636gfp_to_alloc_flags(gfp_t gfp_mask)
1637{
1638 struct task_struct *p = current;
1639 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1640 const gfp_t wait = gfp_mask & __GFP_WAIT;
1641
a56f57ff
MG
1642 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1643 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1644
341ce06f
PZ
1645 /*
1646 * The caller may dip into page reserves a bit more if the caller
1647 * cannot run direct reclaim, or if the caller has realtime scheduling
1648 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1649 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1650 */
a56f57ff 1651 alloc_flags |= (gfp_mask & __GFP_HIGH);
341ce06f
PZ
1652
1653 if (!wait) {
1654 alloc_flags |= ALLOC_HARDER;
1655 /*
1656 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1657 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1658 */
1659 alloc_flags &= ~ALLOC_CPUSET;
1660 } else if (unlikely(rt_task(p)))
1661 alloc_flags |= ALLOC_HARDER;
1662
1663 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1664 if (!in_interrupt() &&
1665 ((p->flags & PF_MEMALLOC) ||
1666 unlikely(test_thread_flag(TIF_MEMDIE))))
1667 alloc_flags |= ALLOC_NO_WATERMARKS;
1668 }
1669
1670 return alloc_flags;
1671}
1672
11e33f6a
MG
1673static inline struct page *
1674__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1675 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1676 nodemask_t *nodemask, struct zone *preferred_zone,
1677 int migratetype)
11e33f6a
MG
1678{
1679 const gfp_t wait = gfp_mask & __GFP_WAIT;
1680 struct page *page = NULL;
1681 int alloc_flags;
1682 unsigned long pages_reclaimed = 0;
1683 unsigned long did_some_progress;
1684 struct task_struct *p = current;
1da177e4 1685
952f3b51
CL
1686 /*
1687 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1688 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1689 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1690 * using a larger set of nodes after it has established that the
1691 * allowed per node queues are empty and that nodes are
1692 * over allocated.
1693 */
1694 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1695 goto nopage;
1696
11e33f6a 1697 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1698
9bf2229f 1699 /*
7fb1d9fc
RS
1700 * OK, we're below the kswapd watermark and have kicked background
1701 * reclaim. Now things get more complex, so set up alloc_flags according
1702 * to how we want to proceed.
9bf2229f 1703 */
341ce06f 1704 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1705
11e33f6a 1706restart:
341ce06f 1707 /* This is the last chance, in general, before the goto nopage. */
19770b32 1708 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1709 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1710 preferred_zone, migratetype);
7fb1d9fc
RS
1711 if (page)
1712 goto got_pg;
1da177e4 1713
b43a57bb 1714rebalance:
11e33f6a 1715 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1716 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1717 page = __alloc_pages_high_priority(gfp_mask, order,
1718 zonelist, high_zoneidx, nodemask,
1719 preferred_zone, migratetype);
1720 if (page)
1721 goto got_pg;
1da177e4
LT
1722 }
1723
1724 /* Atomic allocations - we can't balance anything */
1725 if (!wait)
1726 goto nopage;
1727
341ce06f
PZ
1728 /* Avoid recursion of direct reclaim */
1729 if (p->flags & PF_MEMALLOC)
1730 goto nopage;
1731
11e33f6a
MG
1732 /* Try direct reclaim and then allocating */
1733 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1734 zonelist, high_zoneidx,
1735 nodemask,
5117f45d 1736 alloc_flags, preferred_zone,
3dd28266 1737 migratetype, &did_some_progress);
11e33f6a
MG
1738 if (page)
1739 goto got_pg;
1da177e4 1740
11e33f6a
MG
1741 /*
1742 * If we failed to make any progress reclaiming, then we are
1743 * running out of options and have to consider going OOM
1744 */
1745 if (!did_some_progress) {
1746 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1747 page = __alloc_pages_may_oom(gfp_mask, order,
1748 zonelist, high_zoneidx,
3dd28266
MG
1749 nodemask, preferred_zone,
1750 migratetype);
11e33f6a
MG
1751 if (page)
1752 goto got_pg;
1da177e4 1753
11e33f6a
MG
1754 /*
1755 * The OOM killer does not trigger for high-order allocations
1756 * but if no progress is being made, there are no other
1757 * options and retrying is unlikely to help
1758 */
1759 if (order > PAGE_ALLOC_COSTLY_ORDER)
1760 goto nopage;
e2c55dc8 1761
ff0ceb9d
DR
1762 goto restart;
1763 }
1da177e4
LT
1764 }
1765
11e33f6a 1766 /* Check if we should retry the allocation */
a41f24ea 1767 pages_reclaimed += did_some_progress;
11e33f6a
MG
1768 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1769 /* Wait for some write requests to complete then retry */
3fcfab16 1770 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1771 goto rebalance;
1772 }
1773
1774nopage:
1775 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1776 printk(KERN_WARNING "%s: page allocation failure."
1777 " order:%d, mode:0x%x\n",
1778 p->comm, order, gfp_mask);
1779 dump_stack();
578c2fd6 1780 show_mem();
1da177e4 1781 }
1da177e4 1782got_pg:
1da177e4 1783 return page;
11e33f6a
MG
1784
1785}
1786
1787/*
1788 * This is the 'heart' of the zoned buddy allocator.
1789 */
1790struct page *
1791__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1792 struct zonelist *zonelist, nodemask_t *nodemask)
1793{
1794 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1795 struct zone *preferred_zone;
11e33f6a 1796 struct page *page;
3dd28266 1797 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1798
1799 lockdep_trace_alloc(gfp_mask);
1800
1801 might_sleep_if(gfp_mask & __GFP_WAIT);
1802
1803 if (should_fail_alloc_page(gfp_mask, order))
1804 return NULL;
1805
1806 /*
1807 * Check the zones suitable for the gfp_mask contain at least one
1808 * valid zone. It's possible to have an empty zonelist as a result
1809 * of GFP_THISNODE and a memoryless node
1810 */
1811 if (unlikely(!zonelist->_zonerefs->zone))
1812 return NULL;
1813
5117f45d
MG
1814 /* The preferred zone is used for statistics later */
1815 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1816 if (!preferred_zone)
1817 return NULL;
1818
1819 /* First allocation attempt */
11e33f6a 1820 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1821 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1822 preferred_zone, migratetype);
11e33f6a
MG
1823 if (unlikely(!page))
1824 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1825 zonelist, high_zoneidx, nodemask,
3dd28266 1826 preferred_zone, migratetype);
11e33f6a
MG
1827
1828 return page;
1da177e4 1829}
d239171e 1830EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1831
1832/*
1833 * Common helper functions.
1834 */
920c7a5d 1835unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1836{
1837 struct page * page;
1838 page = alloc_pages(gfp_mask, order);
1839 if (!page)
1840 return 0;
1841 return (unsigned long) page_address(page);
1842}
1843
1844EXPORT_SYMBOL(__get_free_pages);
1845
920c7a5d 1846unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1847{
1848 struct page * page;
1849
1850 /*
1851 * get_zeroed_page() returns a 32-bit address, which cannot represent
1852 * a highmem page
1853 */
725d704e 1854 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1855
1856 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1857 if (page)
1858 return (unsigned long) page_address(page);
1859 return 0;
1860}
1861
1862EXPORT_SYMBOL(get_zeroed_page);
1863
1864void __pagevec_free(struct pagevec *pvec)
1865{
1866 int i = pagevec_count(pvec);
1867
1868 while (--i >= 0)
1869 free_hot_cold_page(pvec->pages[i], pvec->cold);
1870}
1871
920c7a5d 1872void __free_pages(struct page *page, unsigned int order)
1da177e4 1873{
b5810039 1874 if (put_page_testzero(page)) {
1da177e4
LT
1875 if (order == 0)
1876 free_hot_page(page);
1877 else
1878 __free_pages_ok(page, order);
1879 }
1880}
1881
1882EXPORT_SYMBOL(__free_pages);
1883
920c7a5d 1884void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1885{
1886 if (addr != 0) {
725d704e 1887 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1888 __free_pages(virt_to_page((void *)addr), order);
1889 }
1890}
1891
1892EXPORT_SYMBOL(free_pages);
1893
2be0ffe2
TT
1894/**
1895 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1896 * @size: the number of bytes to allocate
1897 * @gfp_mask: GFP flags for the allocation
1898 *
1899 * This function is similar to alloc_pages(), except that it allocates the
1900 * minimum number of pages to satisfy the request. alloc_pages() can only
1901 * allocate memory in power-of-two pages.
1902 *
1903 * This function is also limited by MAX_ORDER.
1904 *
1905 * Memory allocated by this function must be released by free_pages_exact().
1906 */
1907void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1908{
1909 unsigned int order = get_order(size);
1910 unsigned long addr;
1911
1912 addr = __get_free_pages(gfp_mask, order);
1913 if (addr) {
1914 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1915 unsigned long used = addr + PAGE_ALIGN(size);
1916
1917 split_page(virt_to_page(addr), order);
1918 while (used < alloc_end) {
1919 free_page(used);
1920 used += PAGE_SIZE;
1921 }
1922 }
1923
1924 return (void *)addr;
1925}
1926EXPORT_SYMBOL(alloc_pages_exact);
1927
1928/**
1929 * free_pages_exact - release memory allocated via alloc_pages_exact()
1930 * @virt: the value returned by alloc_pages_exact.
1931 * @size: size of allocation, same value as passed to alloc_pages_exact().
1932 *
1933 * Release the memory allocated by a previous call to alloc_pages_exact.
1934 */
1935void free_pages_exact(void *virt, size_t size)
1936{
1937 unsigned long addr = (unsigned long)virt;
1938 unsigned long end = addr + PAGE_ALIGN(size);
1939
1940 while (addr < end) {
1941 free_page(addr);
1942 addr += PAGE_SIZE;
1943 }
1944}
1945EXPORT_SYMBOL(free_pages_exact);
1946
1da177e4
LT
1947static unsigned int nr_free_zone_pages(int offset)
1948{
dd1a239f 1949 struct zoneref *z;
54a6eb5c
MG
1950 struct zone *zone;
1951
e310fd43 1952 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1953 unsigned int sum = 0;
1954
0e88460d 1955 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1956
54a6eb5c 1957 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1958 unsigned long size = zone->present_pages;
1959 unsigned long high = zone->pages_high;
1960 if (size > high)
1961 sum += size - high;
1da177e4
LT
1962 }
1963
1964 return sum;
1965}
1966
1967/*
1968 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1969 */
1970unsigned int nr_free_buffer_pages(void)
1971{
af4ca457 1972 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1973}
c2f1a551 1974EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1975
1976/*
1977 * Amount of free RAM allocatable within all zones
1978 */
1979unsigned int nr_free_pagecache_pages(void)
1980{
2a1e274a 1981 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1982}
08e0f6a9
CL
1983
1984static inline void show_node(struct zone *zone)
1da177e4 1985{
08e0f6a9 1986 if (NUMA_BUILD)
25ba77c1 1987 printk("Node %d ", zone_to_nid(zone));
1da177e4 1988}
1da177e4 1989
1da177e4
LT
1990void si_meminfo(struct sysinfo *val)
1991{
1992 val->totalram = totalram_pages;
1993 val->sharedram = 0;
d23ad423 1994 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1995 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1996 val->totalhigh = totalhigh_pages;
1997 val->freehigh = nr_free_highpages();
1da177e4
LT
1998 val->mem_unit = PAGE_SIZE;
1999}
2000
2001EXPORT_SYMBOL(si_meminfo);
2002
2003#ifdef CONFIG_NUMA
2004void si_meminfo_node(struct sysinfo *val, int nid)
2005{
2006 pg_data_t *pgdat = NODE_DATA(nid);
2007
2008 val->totalram = pgdat->node_present_pages;
d23ad423 2009 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2010#ifdef CONFIG_HIGHMEM
1da177e4 2011 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2012 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2013 NR_FREE_PAGES);
98d2b0eb
CL
2014#else
2015 val->totalhigh = 0;
2016 val->freehigh = 0;
2017#endif
1da177e4
LT
2018 val->mem_unit = PAGE_SIZE;
2019}
2020#endif
2021
2022#define K(x) ((x) << (PAGE_SHIFT-10))
2023
2024/*
2025 * Show free area list (used inside shift_scroll-lock stuff)
2026 * We also calculate the percentage fragmentation. We do this by counting the
2027 * memory on each free list with the exception of the first item on the list.
2028 */
2029void show_free_areas(void)
2030{
c7241913 2031 int cpu;
1da177e4
LT
2032 struct zone *zone;
2033
ee99c71c 2034 for_each_populated_zone(zone) {
c7241913
JS
2035 show_node(zone);
2036 printk("%s per-cpu:\n", zone->name);
1da177e4 2037
6b482c67 2038 for_each_online_cpu(cpu) {
1da177e4
LT
2039 struct per_cpu_pageset *pageset;
2040
e7c8d5c9 2041 pageset = zone_pcp(zone, cpu);
1da177e4 2042
3dfa5721
CL
2043 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2044 cpu, pageset->pcp.high,
2045 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2046 }
2047 }
2048
7b854121
LS
2049 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2050 " inactive_file:%lu"
2051//TODO: check/adjust line lengths
2052#ifdef CONFIG_UNEVICTABLE_LRU
2053 " unevictable:%lu"
2054#endif
2055 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2056 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2057 global_page_state(NR_ACTIVE_ANON),
2058 global_page_state(NR_ACTIVE_FILE),
2059 global_page_state(NR_INACTIVE_ANON),
2060 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2061#ifdef CONFIG_UNEVICTABLE_LRU
2062 global_page_state(NR_UNEVICTABLE),
2063#endif
b1e7a8fd 2064 global_page_state(NR_FILE_DIRTY),
ce866b34 2065 global_page_state(NR_WRITEBACK),
fd39fc85 2066 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2067 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2068 global_page_state(NR_SLAB_RECLAIMABLE) +
2069 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2070 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2071 global_page_state(NR_PAGETABLE),
2072 global_page_state(NR_BOUNCE));
1da177e4 2073
ee99c71c 2074 for_each_populated_zone(zone) {
1da177e4
LT
2075 int i;
2076
2077 show_node(zone);
2078 printk("%s"
2079 " free:%lukB"
2080 " min:%lukB"
2081 " low:%lukB"
2082 " high:%lukB"
4f98a2fe
RR
2083 " active_anon:%lukB"
2084 " inactive_anon:%lukB"
2085 " active_file:%lukB"
2086 " inactive_file:%lukB"
7b854121
LS
2087#ifdef CONFIG_UNEVICTABLE_LRU
2088 " unevictable:%lukB"
2089#endif
1da177e4
LT
2090 " present:%lukB"
2091 " pages_scanned:%lu"
2092 " all_unreclaimable? %s"
2093 "\n",
2094 zone->name,
d23ad423 2095 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
2096 K(zone->pages_min),
2097 K(zone->pages_low),
2098 K(zone->pages_high),
4f98a2fe
RR
2099 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2100 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2101 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2102 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2103#ifdef CONFIG_UNEVICTABLE_LRU
2104 K(zone_page_state(zone, NR_UNEVICTABLE)),
2105#endif
1da177e4
LT
2106 K(zone->present_pages),
2107 zone->pages_scanned,
e815af95 2108 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2109 );
2110 printk("lowmem_reserve[]:");
2111 for (i = 0; i < MAX_NR_ZONES; i++)
2112 printk(" %lu", zone->lowmem_reserve[i]);
2113 printk("\n");
2114 }
2115
ee99c71c 2116 for_each_populated_zone(zone) {
8f9de51a 2117 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2118
2119 show_node(zone);
2120 printk("%s: ", zone->name);
1da177e4
LT
2121
2122 spin_lock_irqsave(&zone->lock, flags);
2123 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2124 nr[order] = zone->free_area[order].nr_free;
2125 total += nr[order] << order;
1da177e4
LT
2126 }
2127 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2128 for (order = 0; order < MAX_ORDER; order++)
2129 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2130 printk("= %lukB\n", K(total));
2131 }
2132
e6f3602d
LW
2133 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2134
1da177e4
LT
2135 show_swap_cache_info();
2136}
2137
19770b32
MG
2138static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2139{
2140 zoneref->zone = zone;
2141 zoneref->zone_idx = zone_idx(zone);
2142}
2143
1da177e4
LT
2144/*
2145 * Builds allocation fallback zone lists.
1a93205b
CL
2146 *
2147 * Add all populated zones of a node to the zonelist.
1da177e4 2148 */
f0c0b2b8
KH
2149static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2150 int nr_zones, enum zone_type zone_type)
1da177e4 2151{
1a93205b
CL
2152 struct zone *zone;
2153
98d2b0eb 2154 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2155 zone_type++;
02a68a5e
CL
2156
2157 do {
2f6726e5 2158 zone_type--;
070f8032 2159 zone = pgdat->node_zones + zone_type;
1a93205b 2160 if (populated_zone(zone)) {
dd1a239f
MG
2161 zoneref_set_zone(zone,
2162 &zonelist->_zonerefs[nr_zones++]);
070f8032 2163 check_highest_zone(zone_type);
1da177e4 2164 }
02a68a5e 2165
2f6726e5 2166 } while (zone_type);
070f8032 2167 return nr_zones;
1da177e4
LT
2168}
2169
f0c0b2b8
KH
2170
2171/*
2172 * zonelist_order:
2173 * 0 = automatic detection of better ordering.
2174 * 1 = order by ([node] distance, -zonetype)
2175 * 2 = order by (-zonetype, [node] distance)
2176 *
2177 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2178 * the same zonelist. So only NUMA can configure this param.
2179 */
2180#define ZONELIST_ORDER_DEFAULT 0
2181#define ZONELIST_ORDER_NODE 1
2182#define ZONELIST_ORDER_ZONE 2
2183
2184/* zonelist order in the kernel.
2185 * set_zonelist_order() will set this to NODE or ZONE.
2186 */
2187static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2188static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2189
2190
1da177e4 2191#ifdef CONFIG_NUMA
f0c0b2b8
KH
2192/* The value user specified ....changed by config */
2193static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2194/* string for sysctl */
2195#define NUMA_ZONELIST_ORDER_LEN 16
2196char numa_zonelist_order[16] = "default";
2197
2198/*
2199 * interface for configure zonelist ordering.
2200 * command line option "numa_zonelist_order"
2201 * = "[dD]efault - default, automatic configuration.
2202 * = "[nN]ode - order by node locality, then by zone within node
2203 * = "[zZ]one - order by zone, then by locality within zone
2204 */
2205
2206static int __parse_numa_zonelist_order(char *s)
2207{
2208 if (*s == 'd' || *s == 'D') {
2209 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2210 } else if (*s == 'n' || *s == 'N') {
2211 user_zonelist_order = ZONELIST_ORDER_NODE;
2212 } else if (*s == 'z' || *s == 'Z') {
2213 user_zonelist_order = ZONELIST_ORDER_ZONE;
2214 } else {
2215 printk(KERN_WARNING
2216 "Ignoring invalid numa_zonelist_order value: "
2217 "%s\n", s);
2218 return -EINVAL;
2219 }
2220 return 0;
2221}
2222
2223static __init int setup_numa_zonelist_order(char *s)
2224{
2225 if (s)
2226 return __parse_numa_zonelist_order(s);
2227 return 0;
2228}
2229early_param("numa_zonelist_order", setup_numa_zonelist_order);
2230
2231/*
2232 * sysctl handler for numa_zonelist_order
2233 */
2234int numa_zonelist_order_handler(ctl_table *table, int write,
2235 struct file *file, void __user *buffer, size_t *length,
2236 loff_t *ppos)
2237{
2238 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2239 int ret;
2240
2241 if (write)
2242 strncpy(saved_string, (char*)table->data,
2243 NUMA_ZONELIST_ORDER_LEN);
2244 ret = proc_dostring(table, write, file, buffer, length, ppos);
2245 if (ret)
2246 return ret;
2247 if (write) {
2248 int oldval = user_zonelist_order;
2249 if (__parse_numa_zonelist_order((char*)table->data)) {
2250 /*
2251 * bogus value. restore saved string
2252 */
2253 strncpy((char*)table->data, saved_string,
2254 NUMA_ZONELIST_ORDER_LEN);
2255 user_zonelist_order = oldval;
2256 } else if (oldval != user_zonelist_order)
2257 build_all_zonelists();
2258 }
2259 return 0;
2260}
2261
2262
1da177e4 2263#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2264static int node_load[MAX_NUMNODES];
2265
1da177e4 2266/**
4dc3b16b 2267 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2268 * @node: node whose fallback list we're appending
2269 * @used_node_mask: nodemask_t of already used nodes
2270 *
2271 * We use a number of factors to determine which is the next node that should
2272 * appear on a given node's fallback list. The node should not have appeared
2273 * already in @node's fallback list, and it should be the next closest node
2274 * according to the distance array (which contains arbitrary distance values
2275 * from each node to each node in the system), and should also prefer nodes
2276 * with no CPUs, since presumably they'll have very little allocation pressure
2277 * on them otherwise.
2278 * It returns -1 if no node is found.
2279 */
f0c0b2b8 2280static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2281{
4cf808eb 2282 int n, val;
1da177e4
LT
2283 int min_val = INT_MAX;
2284 int best_node = -1;
a70f7302 2285 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2286
4cf808eb
LT
2287 /* Use the local node if we haven't already */
2288 if (!node_isset(node, *used_node_mask)) {
2289 node_set(node, *used_node_mask);
2290 return node;
2291 }
1da177e4 2292
37b07e41 2293 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2294
2295 /* Don't want a node to appear more than once */
2296 if (node_isset(n, *used_node_mask))
2297 continue;
2298
1da177e4
LT
2299 /* Use the distance array to find the distance */
2300 val = node_distance(node, n);
2301
4cf808eb
LT
2302 /* Penalize nodes under us ("prefer the next node") */
2303 val += (n < node);
2304
1da177e4 2305 /* Give preference to headless and unused nodes */
a70f7302
RR
2306 tmp = cpumask_of_node(n);
2307 if (!cpumask_empty(tmp))
1da177e4
LT
2308 val += PENALTY_FOR_NODE_WITH_CPUS;
2309
2310 /* Slight preference for less loaded node */
2311 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2312 val += node_load[n];
2313
2314 if (val < min_val) {
2315 min_val = val;
2316 best_node = n;
2317 }
2318 }
2319
2320 if (best_node >= 0)
2321 node_set(best_node, *used_node_mask);
2322
2323 return best_node;
2324}
2325
f0c0b2b8
KH
2326
2327/*
2328 * Build zonelists ordered by node and zones within node.
2329 * This results in maximum locality--normal zone overflows into local
2330 * DMA zone, if any--but risks exhausting DMA zone.
2331 */
2332static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2333{
f0c0b2b8 2334 int j;
1da177e4 2335 struct zonelist *zonelist;
f0c0b2b8 2336
54a6eb5c 2337 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2338 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2339 ;
2340 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2341 MAX_NR_ZONES - 1);
dd1a239f
MG
2342 zonelist->_zonerefs[j].zone = NULL;
2343 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2344}
2345
523b9458
CL
2346/*
2347 * Build gfp_thisnode zonelists
2348 */
2349static void build_thisnode_zonelists(pg_data_t *pgdat)
2350{
523b9458
CL
2351 int j;
2352 struct zonelist *zonelist;
2353
54a6eb5c
MG
2354 zonelist = &pgdat->node_zonelists[1];
2355 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2356 zonelist->_zonerefs[j].zone = NULL;
2357 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2358}
2359
f0c0b2b8
KH
2360/*
2361 * Build zonelists ordered by zone and nodes within zones.
2362 * This results in conserving DMA zone[s] until all Normal memory is
2363 * exhausted, but results in overflowing to remote node while memory
2364 * may still exist in local DMA zone.
2365 */
2366static int node_order[MAX_NUMNODES];
2367
2368static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2369{
f0c0b2b8
KH
2370 int pos, j, node;
2371 int zone_type; /* needs to be signed */
2372 struct zone *z;
2373 struct zonelist *zonelist;
2374
54a6eb5c
MG
2375 zonelist = &pgdat->node_zonelists[0];
2376 pos = 0;
2377 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2378 for (j = 0; j < nr_nodes; j++) {
2379 node = node_order[j];
2380 z = &NODE_DATA(node)->node_zones[zone_type];
2381 if (populated_zone(z)) {
dd1a239f
MG
2382 zoneref_set_zone(z,
2383 &zonelist->_zonerefs[pos++]);
54a6eb5c 2384 check_highest_zone(zone_type);
f0c0b2b8
KH
2385 }
2386 }
f0c0b2b8 2387 }
dd1a239f
MG
2388 zonelist->_zonerefs[pos].zone = NULL;
2389 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2390}
2391
2392static int default_zonelist_order(void)
2393{
2394 int nid, zone_type;
2395 unsigned long low_kmem_size,total_size;
2396 struct zone *z;
2397 int average_size;
2398 /*
2399 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2400 * If they are really small and used heavily, the system can fall
2401 * into OOM very easily.
2402 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2403 */
2404 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2405 low_kmem_size = 0;
2406 total_size = 0;
2407 for_each_online_node(nid) {
2408 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2409 z = &NODE_DATA(nid)->node_zones[zone_type];
2410 if (populated_zone(z)) {
2411 if (zone_type < ZONE_NORMAL)
2412 low_kmem_size += z->present_pages;
2413 total_size += z->present_pages;
2414 }
2415 }
2416 }
2417 if (!low_kmem_size || /* there are no DMA area. */
2418 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2419 return ZONELIST_ORDER_NODE;
2420 /*
2421 * look into each node's config.
2422 * If there is a node whose DMA/DMA32 memory is very big area on
2423 * local memory, NODE_ORDER may be suitable.
2424 */
37b07e41
LS
2425 average_size = total_size /
2426 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2427 for_each_online_node(nid) {
2428 low_kmem_size = 0;
2429 total_size = 0;
2430 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2431 z = &NODE_DATA(nid)->node_zones[zone_type];
2432 if (populated_zone(z)) {
2433 if (zone_type < ZONE_NORMAL)
2434 low_kmem_size += z->present_pages;
2435 total_size += z->present_pages;
2436 }
2437 }
2438 if (low_kmem_size &&
2439 total_size > average_size && /* ignore small node */
2440 low_kmem_size > total_size * 70/100)
2441 return ZONELIST_ORDER_NODE;
2442 }
2443 return ZONELIST_ORDER_ZONE;
2444}
2445
2446static void set_zonelist_order(void)
2447{
2448 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2449 current_zonelist_order = default_zonelist_order();
2450 else
2451 current_zonelist_order = user_zonelist_order;
2452}
2453
2454static void build_zonelists(pg_data_t *pgdat)
2455{
2456 int j, node, load;
2457 enum zone_type i;
1da177e4 2458 nodemask_t used_mask;
f0c0b2b8
KH
2459 int local_node, prev_node;
2460 struct zonelist *zonelist;
2461 int order = current_zonelist_order;
1da177e4
LT
2462
2463 /* initialize zonelists */
523b9458 2464 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2465 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2466 zonelist->_zonerefs[0].zone = NULL;
2467 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2468 }
2469
2470 /* NUMA-aware ordering of nodes */
2471 local_node = pgdat->node_id;
2472 load = num_online_nodes();
2473 prev_node = local_node;
2474 nodes_clear(used_mask);
f0c0b2b8
KH
2475
2476 memset(node_load, 0, sizeof(node_load));
2477 memset(node_order, 0, sizeof(node_order));
2478 j = 0;
2479
1da177e4 2480 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2481 int distance = node_distance(local_node, node);
2482
2483 /*
2484 * If another node is sufficiently far away then it is better
2485 * to reclaim pages in a zone before going off node.
2486 */
2487 if (distance > RECLAIM_DISTANCE)
2488 zone_reclaim_mode = 1;
2489
1da177e4
LT
2490 /*
2491 * We don't want to pressure a particular node.
2492 * So adding penalty to the first node in same
2493 * distance group to make it round-robin.
2494 */
9eeff239 2495 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2496 node_load[node] = load;
2497
1da177e4
LT
2498 prev_node = node;
2499 load--;
f0c0b2b8
KH
2500 if (order == ZONELIST_ORDER_NODE)
2501 build_zonelists_in_node_order(pgdat, node);
2502 else
2503 node_order[j++] = node; /* remember order */
2504 }
1da177e4 2505
f0c0b2b8
KH
2506 if (order == ZONELIST_ORDER_ZONE) {
2507 /* calculate node order -- i.e., DMA last! */
2508 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2509 }
523b9458
CL
2510
2511 build_thisnode_zonelists(pgdat);
1da177e4
LT
2512}
2513
9276b1bc 2514/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2515static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2516{
54a6eb5c
MG
2517 struct zonelist *zonelist;
2518 struct zonelist_cache *zlc;
dd1a239f 2519 struct zoneref *z;
9276b1bc 2520
54a6eb5c
MG
2521 zonelist = &pgdat->node_zonelists[0];
2522 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2523 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2524 for (z = zonelist->_zonerefs; z->zone; z++)
2525 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2526}
2527
f0c0b2b8 2528
1da177e4
LT
2529#else /* CONFIG_NUMA */
2530
f0c0b2b8
KH
2531static void set_zonelist_order(void)
2532{
2533 current_zonelist_order = ZONELIST_ORDER_ZONE;
2534}
2535
2536static void build_zonelists(pg_data_t *pgdat)
1da177e4 2537{
19655d34 2538 int node, local_node;
54a6eb5c
MG
2539 enum zone_type j;
2540 struct zonelist *zonelist;
1da177e4
LT
2541
2542 local_node = pgdat->node_id;
1da177e4 2543
54a6eb5c
MG
2544 zonelist = &pgdat->node_zonelists[0];
2545 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2546
54a6eb5c
MG
2547 /*
2548 * Now we build the zonelist so that it contains the zones
2549 * of all the other nodes.
2550 * We don't want to pressure a particular node, so when
2551 * building the zones for node N, we make sure that the
2552 * zones coming right after the local ones are those from
2553 * node N+1 (modulo N)
2554 */
2555 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2556 if (!node_online(node))
2557 continue;
2558 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2559 MAX_NR_ZONES - 1);
1da177e4 2560 }
54a6eb5c
MG
2561 for (node = 0; node < local_node; node++) {
2562 if (!node_online(node))
2563 continue;
2564 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2565 MAX_NR_ZONES - 1);
2566 }
2567
dd1a239f
MG
2568 zonelist->_zonerefs[j].zone = NULL;
2569 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2570}
2571
9276b1bc 2572/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2573static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2574{
54a6eb5c 2575 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2576}
2577
1da177e4
LT
2578#endif /* CONFIG_NUMA */
2579
9b1a4d38 2580/* return values int ....just for stop_machine() */
f0c0b2b8 2581static int __build_all_zonelists(void *dummy)
1da177e4 2582{
6811378e 2583 int nid;
9276b1bc
PJ
2584
2585 for_each_online_node(nid) {
7ea1530a
CL
2586 pg_data_t *pgdat = NODE_DATA(nid);
2587
2588 build_zonelists(pgdat);
2589 build_zonelist_cache(pgdat);
9276b1bc 2590 }
6811378e
YG
2591 return 0;
2592}
2593
f0c0b2b8 2594void build_all_zonelists(void)
6811378e 2595{
f0c0b2b8
KH
2596 set_zonelist_order();
2597
6811378e 2598 if (system_state == SYSTEM_BOOTING) {
423b41d7 2599 __build_all_zonelists(NULL);
68ad8df4 2600 mminit_verify_zonelist();
6811378e
YG
2601 cpuset_init_current_mems_allowed();
2602 } else {
183ff22b 2603 /* we have to stop all cpus to guarantee there is no user
6811378e 2604 of zonelist */
9b1a4d38 2605 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2606 /* cpuset refresh routine should be here */
2607 }
bd1e22b8 2608 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2609 /*
2610 * Disable grouping by mobility if the number of pages in the
2611 * system is too low to allow the mechanism to work. It would be
2612 * more accurate, but expensive to check per-zone. This check is
2613 * made on memory-hotadd so a system can start with mobility
2614 * disabled and enable it later
2615 */
d9c23400 2616 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2617 page_group_by_mobility_disabled = 1;
2618 else
2619 page_group_by_mobility_disabled = 0;
2620
2621 printk("Built %i zonelists in %s order, mobility grouping %s. "
2622 "Total pages: %ld\n",
f0c0b2b8
KH
2623 num_online_nodes(),
2624 zonelist_order_name[current_zonelist_order],
9ef9acb0 2625 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2626 vm_total_pages);
2627#ifdef CONFIG_NUMA
2628 printk("Policy zone: %s\n", zone_names[policy_zone]);
2629#endif
1da177e4
LT
2630}
2631
2632/*
2633 * Helper functions to size the waitqueue hash table.
2634 * Essentially these want to choose hash table sizes sufficiently
2635 * large so that collisions trying to wait on pages are rare.
2636 * But in fact, the number of active page waitqueues on typical
2637 * systems is ridiculously low, less than 200. So this is even
2638 * conservative, even though it seems large.
2639 *
2640 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2641 * waitqueues, i.e. the size of the waitq table given the number of pages.
2642 */
2643#define PAGES_PER_WAITQUEUE 256
2644
cca448fe 2645#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2646static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2647{
2648 unsigned long size = 1;
2649
2650 pages /= PAGES_PER_WAITQUEUE;
2651
2652 while (size < pages)
2653 size <<= 1;
2654
2655 /*
2656 * Once we have dozens or even hundreds of threads sleeping
2657 * on IO we've got bigger problems than wait queue collision.
2658 * Limit the size of the wait table to a reasonable size.
2659 */
2660 size = min(size, 4096UL);
2661
2662 return max(size, 4UL);
2663}
cca448fe
YG
2664#else
2665/*
2666 * A zone's size might be changed by hot-add, so it is not possible to determine
2667 * a suitable size for its wait_table. So we use the maximum size now.
2668 *
2669 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2670 *
2671 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2672 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2673 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2674 *
2675 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2676 * or more by the traditional way. (See above). It equals:
2677 *
2678 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2679 * ia64(16K page size) : = ( 8G + 4M)byte.
2680 * powerpc (64K page size) : = (32G +16M)byte.
2681 */
2682static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2683{
2684 return 4096UL;
2685}
2686#endif
1da177e4
LT
2687
2688/*
2689 * This is an integer logarithm so that shifts can be used later
2690 * to extract the more random high bits from the multiplicative
2691 * hash function before the remainder is taken.
2692 */
2693static inline unsigned long wait_table_bits(unsigned long size)
2694{
2695 return ffz(~size);
2696}
2697
2698#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2699
56fd56b8 2700/*
d9c23400 2701 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2702 * of blocks reserved is based on zone->pages_min. The memory within the
2703 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2704 * higher will lead to a bigger reserve which will get freed as contiguous
2705 * blocks as reclaim kicks in
2706 */
2707static void setup_zone_migrate_reserve(struct zone *zone)
2708{
2709 unsigned long start_pfn, pfn, end_pfn;
2710 struct page *page;
2711 unsigned long reserve, block_migratetype;
2712
2713 /* Get the start pfn, end pfn and the number of blocks to reserve */
2714 start_pfn = zone->zone_start_pfn;
2715 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2716 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2717 pageblock_order;
56fd56b8 2718
d9c23400 2719 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2720 if (!pfn_valid(pfn))
2721 continue;
2722 page = pfn_to_page(pfn);
2723
344c790e
AL
2724 /* Watch out for overlapping nodes */
2725 if (page_to_nid(page) != zone_to_nid(zone))
2726 continue;
2727
56fd56b8
MG
2728 /* Blocks with reserved pages will never free, skip them. */
2729 if (PageReserved(page))
2730 continue;
2731
2732 block_migratetype = get_pageblock_migratetype(page);
2733
2734 /* If this block is reserved, account for it */
2735 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2736 reserve--;
2737 continue;
2738 }
2739
2740 /* Suitable for reserving if this block is movable */
2741 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2742 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2743 move_freepages_block(zone, page, MIGRATE_RESERVE);
2744 reserve--;
2745 continue;
2746 }
2747
2748 /*
2749 * If the reserve is met and this is a previous reserved block,
2750 * take it back
2751 */
2752 if (block_migratetype == MIGRATE_RESERVE) {
2753 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2754 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2755 }
2756 }
2757}
ac0e5b7a 2758
1da177e4
LT
2759/*
2760 * Initially all pages are reserved - free ones are freed
2761 * up by free_all_bootmem() once the early boot process is
2762 * done. Non-atomic initialization, single-pass.
2763 */
c09b4240 2764void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2765 unsigned long start_pfn, enum memmap_context context)
1da177e4 2766{
1da177e4 2767 struct page *page;
29751f69
AW
2768 unsigned long end_pfn = start_pfn + size;
2769 unsigned long pfn;
86051ca5 2770 struct zone *z;
1da177e4 2771
22b31eec
HD
2772 if (highest_memmap_pfn < end_pfn - 1)
2773 highest_memmap_pfn = end_pfn - 1;
2774
86051ca5 2775 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2776 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2777 /*
2778 * There can be holes in boot-time mem_map[]s
2779 * handed to this function. They do not
2780 * exist on hotplugged memory.
2781 */
2782 if (context == MEMMAP_EARLY) {
2783 if (!early_pfn_valid(pfn))
2784 continue;
2785 if (!early_pfn_in_nid(pfn, nid))
2786 continue;
2787 }
d41dee36
AW
2788 page = pfn_to_page(pfn);
2789 set_page_links(page, zone, nid, pfn);
708614e6 2790 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2791 init_page_count(page);
1da177e4
LT
2792 reset_page_mapcount(page);
2793 SetPageReserved(page);
b2a0ac88
MG
2794 /*
2795 * Mark the block movable so that blocks are reserved for
2796 * movable at startup. This will force kernel allocations
2797 * to reserve their blocks rather than leaking throughout
2798 * the address space during boot when many long-lived
56fd56b8
MG
2799 * kernel allocations are made. Later some blocks near
2800 * the start are marked MIGRATE_RESERVE by
2801 * setup_zone_migrate_reserve()
86051ca5
KH
2802 *
2803 * bitmap is created for zone's valid pfn range. but memmap
2804 * can be created for invalid pages (for alignment)
2805 * check here not to call set_pageblock_migratetype() against
2806 * pfn out of zone.
b2a0ac88 2807 */
86051ca5
KH
2808 if ((z->zone_start_pfn <= pfn)
2809 && (pfn < z->zone_start_pfn + z->spanned_pages)
2810 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2811 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2812
1da177e4
LT
2813 INIT_LIST_HEAD(&page->lru);
2814#ifdef WANT_PAGE_VIRTUAL
2815 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2816 if (!is_highmem_idx(zone))
3212c6be 2817 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2818#endif
1da177e4
LT
2819 }
2820}
2821
1e548deb 2822static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2823{
b2a0ac88
MG
2824 int order, t;
2825 for_each_migratetype_order(order, t) {
2826 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2827 zone->free_area[order].nr_free = 0;
2828 }
2829}
2830
2831#ifndef __HAVE_ARCH_MEMMAP_INIT
2832#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2833 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2834#endif
2835
1d6f4e60 2836static int zone_batchsize(struct zone *zone)
e7c8d5c9 2837{
3a6be87f 2838#ifdef CONFIG_MMU
e7c8d5c9
CL
2839 int batch;
2840
2841 /*
2842 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2843 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2844 *
2845 * OK, so we don't know how big the cache is. So guess.
2846 */
2847 batch = zone->present_pages / 1024;
ba56e91c
SR
2848 if (batch * PAGE_SIZE > 512 * 1024)
2849 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2850 batch /= 4; /* We effectively *= 4 below */
2851 if (batch < 1)
2852 batch = 1;
2853
2854 /*
0ceaacc9
NP
2855 * Clamp the batch to a 2^n - 1 value. Having a power
2856 * of 2 value was found to be more likely to have
2857 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2858 *
0ceaacc9
NP
2859 * For example if 2 tasks are alternately allocating
2860 * batches of pages, one task can end up with a lot
2861 * of pages of one half of the possible page colors
2862 * and the other with pages of the other colors.
e7c8d5c9 2863 */
9155203a 2864 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2865
e7c8d5c9 2866 return batch;
3a6be87f
DH
2867
2868#else
2869 /* The deferral and batching of frees should be suppressed under NOMMU
2870 * conditions.
2871 *
2872 * The problem is that NOMMU needs to be able to allocate large chunks
2873 * of contiguous memory as there's no hardware page translation to
2874 * assemble apparent contiguous memory from discontiguous pages.
2875 *
2876 * Queueing large contiguous runs of pages for batching, however,
2877 * causes the pages to actually be freed in smaller chunks. As there
2878 * can be a significant delay between the individual batches being
2879 * recycled, this leads to the once large chunks of space being
2880 * fragmented and becoming unavailable for high-order allocations.
2881 */
2882 return 0;
2883#endif
e7c8d5c9
CL
2884}
2885
b69a7288 2886static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2887{
2888 struct per_cpu_pages *pcp;
2889
1c6fe946
MD
2890 memset(p, 0, sizeof(*p));
2891
3dfa5721 2892 pcp = &p->pcp;
2caaad41 2893 pcp->count = 0;
2caaad41
CL
2894 pcp->high = 6 * batch;
2895 pcp->batch = max(1UL, 1 * batch);
2896 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2897}
2898
8ad4b1fb
RS
2899/*
2900 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2901 * to the value high for the pageset p.
2902 */
2903
2904static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2905 unsigned long high)
2906{
2907 struct per_cpu_pages *pcp;
2908
3dfa5721 2909 pcp = &p->pcp;
8ad4b1fb
RS
2910 pcp->high = high;
2911 pcp->batch = max(1UL, high/4);
2912 if ((high/4) > (PAGE_SHIFT * 8))
2913 pcp->batch = PAGE_SHIFT * 8;
2914}
2915
2916
e7c8d5c9
CL
2917#ifdef CONFIG_NUMA
2918/*
2caaad41
CL
2919 * Boot pageset table. One per cpu which is going to be used for all
2920 * zones and all nodes. The parameters will be set in such a way
2921 * that an item put on a list will immediately be handed over to
2922 * the buddy list. This is safe since pageset manipulation is done
2923 * with interrupts disabled.
2924 *
2925 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2926 *
2927 * The boot_pagesets must be kept even after bootup is complete for
2928 * unused processors and/or zones. They do play a role for bootstrapping
2929 * hotplugged processors.
2930 *
2931 * zoneinfo_show() and maybe other functions do
2932 * not check if the processor is online before following the pageset pointer.
2933 * Other parts of the kernel may not check if the zone is available.
2caaad41 2934 */
88a2a4ac 2935static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2936
2937/*
2938 * Dynamically allocate memory for the
e7c8d5c9
CL
2939 * per cpu pageset array in struct zone.
2940 */
6292d9aa 2941static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2942{
2943 struct zone *zone, *dzone;
37c0708d
CL
2944 int node = cpu_to_node(cpu);
2945
2946 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2947
ee99c71c 2948 for_each_populated_zone(zone) {
23316bc8 2949 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2950 GFP_KERNEL, node);
23316bc8 2951 if (!zone_pcp(zone, cpu))
e7c8d5c9 2952 goto bad;
e7c8d5c9 2953
23316bc8 2954 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2955
2956 if (percpu_pagelist_fraction)
2957 setup_pagelist_highmark(zone_pcp(zone, cpu),
2958 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2959 }
2960
2961 return 0;
2962bad:
2963 for_each_zone(dzone) {
64191688
AM
2964 if (!populated_zone(dzone))
2965 continue;
e7c8d5c9
CL
2966 if (dzone == zone)
2967 break;
23316bc8
NP
2968 kfree(zone_pcp(dzone, cpu));
2969 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2970 }
2971 return -ENOMEM;
2972}
2973
2974static inline void free_zone_pagesets(int cpu)
2975{
e7c8d5c9
CL
2976 struct zone *zone;
2977
2978 for_each_zone(zone) {
2979 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2980
f3ef9ead
DR
2981 /* Free per_cpu_pageset if it is slab allocated */
2982 if (pset != &boot_pageset[cpu])
2983 kfree(pset);
e7c8d5c9 2984 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2985 }
e7c8d5c9
CL
2986}
2987
9c7b216d 2988static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2989 unsigned long action,
2990 void *hcpu)
2991{
2992 int cpu = (long)hcpu;
2993 int ret = NOTIFY_OK;
2994
2995 switch (action) {
ce421c79 2996 case CPU_UP_PREPARE:
8bb78442 2997 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2998 if (process_zones(cpu))
2999 ret = NOTIFY_BAD;
3000 break;
3001 case CPU_UP_CANCELED:
8bb78442 3002 case CPU_UP_CANCELED_FROZEN:
ce421c79 3003 case CPU_DEAD:
8bb78442 3004 case CPU_DEAD_FROZEN:
ce421c79
AW
3005 free_zone_pagesets(cpu);
3006 break;
3007 default:
3008 break;
e7c8d5c9
CL
3009 }
3010 return ret;
3011}
3012
74b85f37 3013static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3014 { &pageset_cpuup_callback, NULL, 0 };
3015
78d9955b 3016void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3017{
3018 int err;
3019
3020 /* Initialize per_cpu_pageset for cpu 0.
3021 * A cpuup callback will do this for every cpu
3022 * as it comes online
3023 */
3024 err = process_zones(smp_processor_id());
3025 BUG_ON(err);
3026 register_cpu_notifier(&pageset_notifier);
3027}
3028
3029#endif
3030
577a32f6 3031static noinline __init_refok
cca448fe 3032int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3033{
3034 int i;
3035 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3036 size_t alloc_size;
ed8ece2e
DH
3037
3038 /*
3039 * The per-page waitqueue mechanism uses hashed waitqueues
3040 * per zone.
3041 */
02b694de
YG
3042 zone->wait_table_hash_nr_entries =
3043 wait_table_hash_nr_entries(zone_size_pages);
3044 zone->wait_table_bits =
3045 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3046 alloc_size = zone->wait_table_hash_nr_entries
3047 * sizeof(wait_queue_head_t);
3048
cd94b9db 3049 if (!slab_is_available()) {
cca448fe
YG
3050 zone->wait_table = (wait_queue_head_t *)
3051 alloc_bootmem_node(pgdat, alloc_size);
3052 } else {
3053 /*
3054 * This case means that a zone whose size was 0 gets new memory
3055 * via memory hot-add.
3056 * But it may be the case that a new node was hot-added. In
3057 * this case vmalloc() will not be able to use this new node's
3058 * memory - this wait_table must be initialized to use this new
3059 * node itself as well.
3060 * To use this new node's memory, further consideration will be
3061 * necessary.
3062 */
8691f3a7 3063 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3064 }
3065 if (!zone->wait_table)
3066 return -ENOMEM;
ed8ece2e 3067
02b694de 3068 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3069 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3070
3071 return 0;
ed8ece2e
DH
3072}
3073
c09b4240 3074static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3075{
3076 int cpu;
3077 unsigned long batch = zone_batchsize(zone);
3078
3079 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3080#ifdef CONFIG_NUMA
3081 /* Early boot. Slab allocator not functional yet */
23316bc8 3082 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3083 setup_pageset(&boot_pageset[cpu],0);
3084#else
3085 setup_pageset(zone_pcp(zone,cpu), batch);
3086#endif
3087 }
f5335c0f
AB
3088 if (zone->present_pages)
3089 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3090 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3091}
3092
718127cc
YG
3093__meminit int init_currently_empty_zone(struct zone *zone,
3094 unsigned long zone_start_pfn,
a2f3aa02
DH
3095 unsigned long size,
3096 enum memmap_context context)
ed8ece2e
DH
3097{
3098 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3099 int ret;
3100 ret = zone_wait_table_init(zone, size);
3101 if (ret)
3102 return ret;
ed8ece2e
DH
3103 pgdat->nr_zones = zone_idx(zone) + 1;
3104
ed8ece2e
DH
3105 zone->zone_start_pfn = zone_start_pfn;
3106
708614e6
MG
3107 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3108 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3109 pgdat->node_id,
3110 (unsigned long)zone_idx(zone),
3111 zone_start_pfn, (zone_start_pfn + size));
3112
1e548deb 3113 zone_init_free_lists(zone);
718127cc
YG
3114
3115 return 0;
ed8ece2e
DH
3116}
3117
c713216d
MG
3118#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3119/*
3120 * Basic iterator support. Return the first range of PFNs for a node
3121 * Note: nid == MAX_NUMNODES returns first region regardless of node
3122 */
a3142c8e 3123static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3124{
3125 int i;
3126
3127 for (i = 0; i < nr_nodemap_entries; i++)
3128 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3129 return i;
3130
3131 return -1;
3132}
3133
3134/*
3135 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3136 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3137 */
a3142c8e 3138static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3139{
3140 for (index = index + 1; index < nr_nodemap_entries; index++)
3141 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3142 return index;
3143
3144 return -1;
3145}
3146
3147#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3148/*
3149 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3150 * Architectures may implement their own version but if add_active_range()
3151 * was used and there are no special requirements, this is a convenient
3152 * alternative
3153 */
f2dbcfa7 3154int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3155{
3156 int i;
3157
3158 for (i = 0; i < nr_nodemap_entries; i++) {
3159 unsigned long start_pfn = early_node_map[i].start_pfn;
3160 unsigned long end_pfn = early_node_map[i].end_pfn;
3161
3162 if (start_pfn <= pfn && pfn < end_pfn)
3163 return early_node_map[i].nid;
3164 }
cc2559bc
KH
3165 /* This is a memory hole */
3166 return -1;
c713216d
MG
3167}
3168#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3169
f2dbcfa7
KH
3170int __meminit early_pfn_to_nid(unsigned long pfn)
3171{
cc2559bc
KH
3172 int nid;
3173
3174 nid = __early_pfn_to_nid(pfn);
3175 if (nid >= 0)
3176 return nid;
3177 /* just returns 0 */
3178 return 0;
f2dbcfa7
KH
3179}
3180
cc2559bc
KH
3181#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3182bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3183{
3184 int nid;
3185
3186 nid = __early_pfn_to_nid(pfn);
3187 if (nid >= 0 && nid != node)
3188 return false;
3189 return true;
3190}
3191#endif
f2dbcfa7 3192
c713216d
MG
3193/* Basic iterator support to walk early_node_map[] */
3194#define for_each_active_range_index_in_nid(i, nid) \
3195 for (i = first_active_region_index_in_nid(nid); i != -1; \
3196 i = next_active_region_index_in_nid(i, nid))
3197
3198/**
3199 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3200 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3201 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3202 *
3203 * If an architecture guarantees that all ranges registered with
3204 * add_active_ranges() contain no holes and may be freed, this
3205 * this function may be used instead of calling free_bootmem() manually.
3206 */
3207void __init free_bootmem_with_active_regions(int nid,
3208 unsigned long max_low_pfn)
3209{
3210 int i;
3211
3212 for_each_active_range_index_in_nid(i, nid) {
3213 unsigned long size_pages = 0;
3214 unsigned long end_pfn = early_node_map[i].end_pfn;
3215
3216 if (early_node_map[i].start_pfn >= max_low_pfn)
3217 continue;
3218
3219 if (end_pfn > max_low_pfn)
3220 end_pfn = max_low_pfn;
3221
3222 size_pages = end_pfn - early_node_map[i].start_pfn;
3223 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3224 PFN_PHYS(early_node_map[i].start_pfn),
3225 size_pages << PAGE_SHIFT);
3226 }
3227}
3228
b5bc6c0e
YL
3229void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3230{
3231 int i;
d52d53b8 3232 int ret;
b5bc6c0e 3233
d52d53b8
YL
3234 for_each_active_range_index_in_nid(i, nid) {
3235 ret = work_fn(early_node_map[i].start_pfn,
3236 early_node_map[i].end_pfn, data);
3237 if (ret)
3238 break;
3239 }
b5bc6c0e 3240}
c713216d
MG
3241/**
3242 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3243 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3244 *
3245 * If an architecture guarantees that all ranges registered with
3246 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3247 * function may be used instead of calling memory_present() manually.
c713216d
MG
3248 */
3249void __init sparse_memory_present_with_active_regions(int nid)
3250{
3251 int i;
3252
3253 for_each_active_range_index_in_nid(i, nid)
3254 memory_present(early_node_map[i].nid,
3255 early_node_map[i].start_pfn,
3256 early_node_map[i].end_pfn);
3257}
3258
3259/**
3260 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3261 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3262 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3263 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3264 *
3265 * It returns the start and end page frame of a node based on information
3266 * provided by an arch calling add_active_range(). If called for a node
3267 * with no available memory, a warning is printed and the start and end
88ca3b94 3268 * PFNs will be 0.
c713216d 3269 */
a3142c8e 3270void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3271 unsigned long *start_pfn, unsigned long *end_pfn)
3272{
3273 int i;
3274 *start_pfn = -1UL;
3275 *end_pfn = 0;
3276
3277 for_each_active_range_index_in_nid(i, nid) {
3278 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3279 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3280 }
3281
633c0666 3282 if (*start_pfn == -1UL)
c713216d 3283 *start_pfn = 0;
c713216d
MG
3284}
3285
2a1e274a
MG
3286/*
3287 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3288 * assumption is made that zones within a node are ordered in monotonic
3289 * increasing memory addresses so that the "highest" populated zone is used
3290 */
b69a7288 3291static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3292{
3293 int zone_index;
3294 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3295 if (zone_index == ZONE_MOVABLE)
3296 continue;
3297
3298 if (arch_zone_highest_possible_pfn[zone_index] >
3299 arch_zone_lowest_possible_pfn[zone_index])
3300 break;
3301 }
3302
3303 VM_BUG_ON(zone_index == -1);
3304 movable_zone = zone_index;
3305}
3306
3307/*
3308 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3309 * because it is sized independant of architecture. Unlike the other zones,
3310 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3311 * in each node depending on the size of each node and how evenly kernelcore
3312 * is distributed. This helper function adjusts the zone ranges
3313 * provided by the architecture for a given node by using the end of the
3314 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3315 * zones within a node are in order of monotonic increases memory addresses
3316 */
b69a7288 3317static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3318 unsigned long zone_type,
3319 unsigned long node_start_pfn,
3320 unsigned long node_end_pfn,
3321 unsigned long *zone_start_pfn,
3322 unsigned long *zone_end_pfn)
3323{
3324 /* Only adjust if ZONE_MOVABLE is on this node */
3325 if (zone_movable_pfn[nid]) {
3326 /* Size ZONE_MOVABLE */
3327 if (zone_type == ZONE_MOVABLE) {
3328 *zone_start_pfn = zone_movable_pfn[nid];
3329 *zone_end_pfn = min(node_end_pfn,
3330 arch_zone_highest_possible_pfn[movable_zone]);
3331
3332 /* Adjust for ZONE_MOVABLE starting within this range */
3333 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3334 *zone_end_pfn > zone_movable_pfn[nid]) {
3335 *zone_end_pfn = zone_movable_pfn[nid];
3336
3337 /* Check if this whole range is within ZONE_MOVABLE */
3338 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3339 *zone_start_pfn = *zone_end_pfn;
3340 }
3341}
3342
c713216d
MG
3343/*
3344 * Return the number of pages a zone spans in a node, including holes
3345 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3346 */
6ea6e688 3347static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3348 unsigned long zone_type,
3349 unsigned long *ignored)
3350{
3351 unsigned long node_start_pfn, node_end_pfn;
3352 unsigned long zone_start_pfn, zone_end_pfn;
3353
3354 /* Get the start and end of the node and zone */
3355 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3356 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3357 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3358 adjust_zone_range_for_zone_movable(nid, zone_type,
3359 node_start_pfn, node_end_pfn,
3360 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3361
3362 /* Check that this node has pages within the zone's required range */
3363 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3364 return 0;
3365
3366 /* Move the zone boundaries inside the node if necessary */
3367 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3368 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3369
3370 /* Return the spanned pages */
3371 return zone_end_pfn - zone_start_pfn;
3372}
3373
3374/*
3375 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3376 * then all holes in the requested range will be accounted for.
c713216d 3377 */
b69a7288 3378static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3379 unsigned long range_start_pfn,
3380 unsigned long range_end_pfn)
3381{
3382 int i = 0;
3383 unsigned long prev_end_pfn = 0, hole_pages = 0;
3384 unsigned long start_pfn;
3385
3386 /* Find the end_pfn of the first active range of pfns in the node */
3387 i = first_active_region_index_in_nid(nid);
3388 if (i == -1)
3389 return 0;
3390
b5445f95
MG
3391 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3392
9c7cd687
MG
3393 /* Account for ranges before physical memory on this node */
3394 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3395 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3396
3397 /* Find all holes for the zone within the node */
3398 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3399
3400 /* No need to continue if prev_end_pfn is outside the zone */
3401 if (prev_end_pfn >= range_end_pfn)
3402 break;
3403
3404 /* Make sure the end of the zone is not within the hole */
3405 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3406 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3407
3408 /* Update the hole size cound and move on */
3409 if (start_pfn > range_start_pfn) {
3410 BUG_ON(prev_end_pfn > start_pfn);
3411 hole_pages += start_pfn - prev_end_pfn;
3412 }
3413 prev_end_pfn = early_node_map[i].end_pfn;
3414 }
3415
9c7cd687
MG
3416 /* Account for ranges past physical memory on this node */
3417 if (range_end_pfn > prev_end_pfn)
0c6cb974 3418 hole_pages += range_end_pfn -
9c7cd687
MG
3419 max(range_start_pfn, prev_end_pfn);
3420
c713216d
MG
3421 return hole_pages;
3422}
3423
3424/**
3425 * absent_pages_in_range - Return number of page frames in holes within a range
3426 * @start_pfn: The start PFN to start searching for holes
3427 * @end_pfn: The end PFN to stop searching for holes
3428 *
88ca3b94 3429 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3430 */
3431unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3432 unsigned long end_pfn)
3433{
3434 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3435}
3436
3437/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3438static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3439 unsigned long zone_type,
3440 unsigned long *ignored)
3441{
9c7cd687
MG
3442 unsigned long node_start_pfn, node_end_pfn;
3443 unsigned long zone_start_pfn, zone_end_pfn;
3444
3445 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3446 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3447 node_start_pfn);
3448 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3449 node_end_pfn);
3450
2a1e274a
MG
3451 adjust_zone_range_for_zone_movable(nid, zone_type,
3452 node_start_pfn, node_end_pfn,
3453 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3454 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3455}
0e0b864e 3456
c713216d 3457#else
6ea6e688 3458static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3459 unsigned long zone_type,
3460 unsigned long *zones_size)
3461{
3462 return zones_size[zone_type];
3463}
3464
6ea6e688 3465static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3466 unsigned long zone_type,
3467 unsigned long *zholes_size)
3468{
3469 if (!zholes_size)
3470 return 0;
3471
3472 return zholes_size[zone_type];
3473}
0e0b864e 3474
c713216d
MG
3475#endif
3476
a3142c8e 3477static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3478 unsigned long *zones_size, unsigned long *zholes_size)
3479{
3480 unsigned long realtotalpages, totalpages = 0;
3481 enum zone_type i;
3482
3483 for (i = 0; i < MAX_NR_ZONES; i++)
3484 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3485 zones_size);
3486 pgdat->node_spanned_pages = totalpages;
3487
3488 realtotalpages = totalpages;
3489 for (i = 0; i < MAX_NR_ZONES; i++)
3490 realtotalpages -=
3491 zone_absent_pages_in_node(pgdat->node_id, i,
3492 zholes_size);
3493 pgdat->node_present_pages = realtotalpages;
3494 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3495 realtotalpages);
3496}
3497
835c134e
MG
3498#ifndef CONFIG_SPARSEMEM
3499/*
3500 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3501 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3502 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3503 * round what is now in bits to nearest long in bits, then return it in
3504 * bytes.
3505 */
3506static unsigned long __init usemap_size(unsigned long zonesize)
3507{
3508 unsigned long usemapsize;
3509
d9c23400
MG
3510 usemapsize = roundup(zonesize, pageblock_nr_pages);
3511 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3512 usemapsize *= NR_PAGEBLOCK_BITS;
3513 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3514
3515 return usemapsize / 8;
3516}
3517
3518static void __init setup_usemap(struct pglist_data *pgdat,
3519 struct zone *zone, unsigned long zonesize)
3520{
3521 unsigned long usemapsize = usemap_size(zonesize);
3522 zone->pageblock_flags = NULL;
58a01a45 3523 if (usemapsize)
835c134e 3524 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3525}
3526#else
3527static void inline setup_usemap(struct pglist_data *pgdat,
3528 struct zone *zone, unsigned long zonesize) {}
3529#endif /* CONFIG_SPARSEMEM */
3530
d9c23400 3531#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3532
3533/* Return a sensible default order for the pageblock size. */
3534static inline int pageblock_default_order(void)
3535{
3536 if (HPAGE_SHIFT > PAGE_SHIFT)
3537 return HUGETLB_PAGE_ORDER;
3538
3539 return MAX_ORDER-1;
3540}
3541
d9c23400
MG
3542/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3543static inline void __init set_pageblock_order(unsigned int order)
3544{
3545 /* Check that pageblock_nr_pages has not already been setup */
3546 if (pageblock_order)
3547 return;
3548
3549 /*
3550 * Assume the largest contiguous order of interest is a huge page.
3551 * This value may be variable depending on boot parameters on IA64
3552 */
3553 pageblock_order = order;
3554}
3555#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3556
ba72cb8c
MG
3557/*
3558 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3559 * and pageblock_default_order() are unused as pageblock_order is set
3560 * at compile-time. See include/linux/pageblock-flags.h for the values of
3561 * pageblock_order based on the kernel config
3562 */
3563static inline int pageblock_default_order(unsigned int order)
3564{
3565 return MAX_ORDER-1;
3566}
d9c23400
MG
3567#define set_pageblock_order(x) do {} while (0)
3568
3569#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3570
1da177e4
LT
3571/*
3572 * Set up the zone data structures:
3573 * - mark all pages reserved
3574 * - mark all memory queues empty
3575 * - clear the memory bitmaps
3576 */
b5a0e011 3577static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3578 unsigned long *zones_size, unsigned long *zholes_size)
3579{
2f1b6248 3580 enum zone_type j;
ed8ece2e 3581 int nid = pgdat->node_id;
1da177e4 3582 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3583 int ret;
1da177e4 3584
208d54e5 3585 pgdat_resize_init(pgdat);
1da177e4
LT
3586 pgdat->nr_zones = 0;
3587 init_waitqueue_head(&pgdat->kswapd_wait);
3588 pgdat->kswapd_max_order = 0;
52d4b9ac 3589 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3590
3591 for (j = 0; j < MAX_NR_ZONES; j++) {
3592 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3593 unsigned long size, realsize, memmap_pages;
b69408e8 3594 enum lru_list l;
1da177e4 3595
c713216d
MG
3596 size = zone_spanned_pages_in_node(nid, j, zones_size);
3597 realsize = size - zone_absent_pages_in_node(nid, j,
3598 zholes_size);
1da177e4 3599
0e0b864e
MG
3600 /*
3601 * Adjust realsize so that it accounts for how much memory
3602 * is used by this zone for memmap. This affects the watermark
3603 * and per-cpu initialisations
3604 */
f7232154
JW
3605 memmap_pages =
3606 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3607 if (realsize >= memmap_pages) {
3608 realsize -= memmap_pages;
5594c8c8
YL
3609 if (memmap_pages)
3610 printk(KERN_DEBUG
3611 " %s zone: %lu pages used for memmap\n",
3612 zone_names[j], memmap_pages);
0e0b864e
MG
3613 } else
3614 printk(KERN_WARNING
3615 " %s zone: %lu pages exceeds realsize %lu\n",
3616 zone_names[j], memmap_pages, realsize);
3617
6267276f
CL
3618 /* Account for reserved pages */
3619 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3620 realsize -= dma_reserve;
d903ef9f 3621 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3622 zone_names[0], dma_reserve);
0e0b864e
MG
3623 }
3624
98d2b0eb 3625 if (!is_highmem_idx(j))
1da177e4
LT
3626 nr_kernel_pages += realsize;
3627 nr_all_pages += realsize;
3628
3629 zone->spanned_pages = size;
3630 zone->present_pages = realsize;
9614634f 3631#ifdef CONFIG_NUMA
d5f541ed 3632 zone->node = nid;
8417bba4 3633 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3634 / 100;
0ff38490 3635 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3636#endif
1da177e4
LT
3637 zone->name = zone_names[j];
3638 spin_lock_init(&zone->lock);
3639 spin_lock_init(&zone->lru_lock);
bdc8cb98 3640 zone_seqlock_init(zone);
1da177e4 3641 zone->zone_pgdat = pgdat;
1da177e4 3642
3bb1a852 3643 zone->prev_priority = DEF_PRIORITY;
1da177e4 3644
ed8ece2e 3645 zone_pcp_init(zone);
b69408e8
CL
3646 for_each_lru(l) {
3647 INIT_LIST_HEAD(&zone->lru[l].list);
3648 zone->lru[l].nr_scan = 0;
3649 }
6e901571
KM
3650 zone->reclaim_stat.recent_rotated[0] = 0;
3651 zone->reclaim_stat.recent_rotated[1] = 0;
3652 zone->reclaim_stat.recent_scanned[0] = 0;
3653 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3654 zap_zone_vm_stats(zone);
e815af95 3655 zone->flags = 0;
1da177e4
LT
3656 if (!size)
3657 continue;
3658
ba72cb8c 3659 set_pageblock_order(pageblock_default_order());
835c134e 3660 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3661 ret = init_currently_empty_zone(zone, zone_start_pfn,
3662 size, MEMMAP_EARLY);
718127cc 3663 BUG_ON(ret);
76cdd58e 3664 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3665 zone_start_pfn += size;
1da177e4
LT
3666 }
3667}
3668
577a32f6 3669static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3670{
1da177e4
LT
3671 /* Skip empty nodes */
3672 if (!pgdat->node_spanned_pages)
3673 return;
3674
d41dee36 3675#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3676 /* ia64 gets its own node_mem_map, before this, without bootmem */
3677 if (!pgdat->node_mem_map) {
e984bb43 3678 unsigned long size, start, end;
d41dee36
AW
3679 struct page *map;
3680
e984bb43
BP
3681 /*
3682 * The zone's endpoints aren't required to be MAX_ORDER
3683 * aligned but the node_mem_map endpoints must be in order
3684 * for the buddy allocator to function correctly.
3685 */
3686 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3687 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3688 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3689 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3690 map = alloc_remap(pgdat->node_id, size);
3691 if (!map)
3692 map = alloc_bootmem_node(pgdat, size);
e984bb43 3693 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3694 }
12d810c1 3695#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3696 /*
3697 * With no DISCONTIG, the global mem_map is just set as node 0's
3698 */
c713216d 3699 if (pgdat == NODE_DATA(0)) {
1da177e4 3700 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3701#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3702 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3703 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3704#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3705 }
1da177e4 3706#endif
d41dee36 3707#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3708}
3709
9109fb7b
JW
3710void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3711 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3712{
9109fb7b
JW
3713 pg_data_t *pgdat = NODE_DATA(nid);
3714
1da177e4
LT
3715 pgdat->node_id = nid;
3716 pgdat->node_start_pfn = node_start_pfn;
c713216d 3717 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3718
3719 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3720#ifdef CONFIG_FLAT_NODE_MEM_MAP
3721 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3722 nid, (unsigned long)pgdat,
3723 (unsigned long)pgdat->node_mem_map);
3724#endif
1da177e4
LT
3725
3726 free_area_init_core(pgdat, zones_size, zholes_size);
3727}
3728
c713216d 3729#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3730
3731#if MAX_NUMNODES > 1
3732/*
3733 * Figure out the number of possible node ids.
3734 */
3735static void __init setup_nr_node_ids(void)
3736{
3737 unsigned int node;
3738 unsigned int highest = 0;
3739
3740 for_each_node_mask(node, node_possible_map)
3741 highest = node;
3742 nr_node_ids = highest + 1;
3743}
3744#else
3745static inline void setup_nr_node_ids(void)
3746{
3747}
3748#endif
3749
c713216d
MG
3750/**
3751 * add_active_range - Register a range of PFNs backed by physical memory
3752 * @nid: The node ID the range resides on
3753 * @start_pfn: The start PFN of the available physical memory
3754 * @end_pfn: The end PFN of the available physical memory
3755 *
3756 * These ranges are stored in an early_node_map[] and later used by
3757 * free_area_init_nodes() to calculate zone sizes and holes. If the
3758 * range spans a memory hole, it is up to the architecture to ensure
3759 * the memory is not freed by the bootmem allocator. If possible
3760 * the range being registered will be merged with existing ranges.
3761 */
3762void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3763 unsigned long end_pfn)
3764{
3765 int i;
3766
6b74ab97
MG
3767 mminit_dprintk(MMINIT_TRACE, "memory_register",
3768 "Entering add_active_range(%d, %#lx, %#lx) "
3769 "%d entries of %d used\n",
3770 nid, start_pfn, end_pfn,
3771 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3772
2dbb51c4
MG
3773 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3774
c713216d
MG
3775 /* Merge with existing active regions if possible */
3776 for (i = 0; i < nr_nodemap_entries; i++) {
3777 if (early_node_map[i].nid != nid)
3778 continue;
3779
3780 /* Skip if an existing region covers this new one */
3781 if (start_pfn >= early_node_map[i].start_pfn &&
3782 end_pfn <= early_node_map[i].end_pfn)
3783 return;
3784
3785 /* Merge forward if suitable */
3786 if (start_pfn <= early_node_map[i].end_pfn &&
3787 end_pfn > early_node_map[i].end_pfn) {
3788 early_node_map[i].end_pfn = end_pfn;
3789 return;
3790 }
3791
3792 /* Merge backward if suitable */
3793 if (start_pfn < early_node_map[i].end_pfn &&
3794 end_pfn >= early_node_map[i].start_pfn) {
3795 early_node_map[i].start_pfn = start_pfn;
3796 return;
3797 }
3798 }
3799
3800 /* Check that early_node_map is large enough */
3801 if (i >= MAX_ACTIVE_REGIONS) {
3802 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3803 MAX_ACTIVE_REGIONS);
3804 return;
3805 }
3806
3807 early_node_map[i].nid = nid;
3808 early_node_map[i].start_pfn = start_pfn;
3809 early_node_map[i].end_pfn = end_pfn;
3810 nr_nodemap_entries = i + 1;
3811}
3812
3813/**
cc1050ba 3814 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3815 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3816 * @start_pfn: The new PFN of the range
3817 * @end_pfn: The new PFN of the range
c713216d
MG
3818 *
3819 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3820 * The map is kept near the end physical page range that has already been
3821 * registered. This function allows an arch to shrink an existing registered
3822 * range.
c713216d 3823 */
cc1050ba
YL
3824void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3825 unsigned long end_pfn)
c713216d 3826{
cc1a9d86
YL
3827 int i, j;
3828 int removed = 0;
c713216d 3829
cc1050ba
YL
3830 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3831 nid, start_pfn, end_pfn);
3832
c713216d 3833 /* Find the old active region end and shrink */
cc1a9d86 3834 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3835 if (early_node_map[i].start_pfn >= start_pfn &&
3836 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3837 /* clear it */
cc1050ba 3838 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3839 early_node_map[i].end_pfn = 0;
3840 removed = 1;
3841 continue;
3842 }
cc1050ba
YL
3843 if (early_node_map[i].start_pfn < start_pfn &&
3844 early_node_map[i].end_pfn > start_pfn) {
3845 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3846 early_node_map[i].end_pfn = start_pfn;
3847 if (temp_end_pfn > end_pfn)
3848 add_active_range(nid, end_pfn, temp_end_pfn);
3849 continue;
3850 }
3851 if (early_node_map[i].start_pfn >= start_pfn &&
3852 early_node_map[i].end_pfn > end_pfn &&
3853 early_node_map[i].start_pfn < end_pfn) {
3854 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3855 continue;
c713216d 3856 }
cc1a9d86
YL
3857 }
3858
3859 if (!removed)
3860 return;
3861
3862 /* remove the blank ones */
3863 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3864 if (early_node_map[i].nid != nid)
3865 continue;
3866 if (early_node_map[i].end_pfn)
3867 continue;
3868 /* we found it, get rid of it */
3869 for (j = i; j < nr_nodemap_entries - 1; j++)
3870 memcpy(&early_node_map[j], &early_node_map[j+1],
3871 sizeof(early_node_map[j]));
3872 j = nr_nodemap_entries - 1;
3873 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3874 nr_nodemap_entries--;
3875 }
c713216d
MG
3876}
3877
3878/**
3879 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3880 *
c713216d
MG
3881 * During discovery, it may be found that a table like SRAT is invalid
3882 * and an alternative discovery method must be used. This function removes
3883 * all currently registered regions.
3884 */
88ca3b94 3885void __init remove_all_active_ranges(void)
c713216d
MG
3886{
3887 memset(early_node_map, 0, sizeof(early_node_map));
3888 nr_nodemap_entries = 0;
3889}
3890
3891/* Compare two active node_active_regions */
3892static int __init cmp_node_active_region(const void *a, const void *b)
3893{
3894 struct node_active_region *arange = (struct node_active_region *)a;
3895 struct node_active_region *brange = (struct node_active_region *)b;
3896
3897 /* Done this way to avoid overflows */
3898 if (arange->start_pfn > brange->start_pfn)
3899 return 1;
3900 if (arange->start_pfn < brange->start_pfn)
3901 return -1;
3902
3903 return 0;
3904}
3905
3906/* sort the node_map by start_pfn */
3907static void __init sort_node_map(void)
3908{
3909 sort(early_node_map, (size_t)nr_nodemap_entries,
3910 sizeof(struct node_active_region),
3911 cmp_node_active_region, NULL);
3912}
3913
a6af2bc3 3914/* Find the lowest pfn for a node */
b69a7288 3915static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3916{
3917 int i;
a6af2bc3 3918 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3919
c713216d
MG
3920 /* Assuming a sorted map, the first range found has the starting pfn */
3921 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3922 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3923
a6af2bc3
MG
3924 if (min_pfn == ULONG_MAX) {
3925 printk(KERN_WARNING
2bc0d261 3926 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3927 return 0;
3928 }
3929
3930 return min_pfn;
c713216d
MG
3931}
3932
3933/**
3934 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3935 *
3936 * It returns the minimum PFN based on information provided via
88ca3b94 3937 * add_active_range().
c713216d
MG
3938 */
3939unsigned long __init find_min_pfn_with_active_regions(void)
3940{
3941 return find_min_pfn_for_node(MAX_NUMNODES);
3942}
3943
37b07e41
LS
3944/*
3945 * early_calculate_totalpages()
3946 * Sum pages in active regions for movable zone.
3947 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3948 */
484f51f8 3949static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3950{
3951 int i;
3952 unsigned long totalpages = 0;
3953
37b07e41
LS
3954 for (i = 0; i < nr_nodemap_entries; i++) {
3955 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3956 early_node_map[i].start_pfn;
37b07e41
LS
3957 totalpages += pages;
3958 if (pages)
3959 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3960 }
3961 return totalpages;
7e63efef
MG
3962}
3963
2a1e274a
MG
3964/*
3965 * Find the PFN the Movable zone begins in each node. Kernel memory
3966 * is spread evenly between nodes as long as the nodes have enough
3967 * memory. When they don't, some nodes will have more kernelcore than
3968 * others
3969 */
b69a7288 3970static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3971{
3972 int i, nid;
3973 unsigned long usable_startpfn;
3974 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3975 unsigned long totalpages = early_calculate_totalpages();
3976 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3977
7e63efef
MG
3978 /*
3979 * If movablecore was specified, calculate what size of
3980 * kernelcore that corresponds so that memory usable for
3981 * any allocation type is evenly spread. If both kernelcore
3982 * and movablecore are specified, then the value of kernelcore
3983 * will be used for required_kernelcore if it's greater than
3984 * what movablecore would have allowed.
3985 */
3986 if (required_movablecore) {
7e63efef
MG
3987 unsigned long corepages;
3988
3989 /*
3990 * Round-up so that ZONE_MOVABLE is at least as large as what
3991 * was requested by the user
3992 */
3993 required_movablecore =
3994 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3995 corepages = totalpages - required_movablecore;
3996
3997 required_kernelcore = max(required_kernelcore, corepages);
3998 }
3999
2a1e274a
MG
4000 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4001 if (!required_kernelcore)
4002 return;
4003
4004 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4005 find_usable_zone_for_movable();
4006 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4007
4008restart:
4009 /* Spread kernelcore memory as evenly as possible throughout nodes */
4010 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4011 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4012 /*
4013 * Recalculate kernelcore_node if the division per node
4014 * now exceeds what is necessary to satisfy the requested
4015 * amount of memory for the kernel
4016 */
4017 if (required_kernelcore < kernelcore_node)
4018 kernelcore_node = required_kernelcore / usable_nodes;
4019
4020 /*
4021 * As the map is walked, we track how much memory is usable
4022 * by the kernel using kernelcore_remaining. When it is
4023 * 0, the rest of the node is usable by ZONE_MOVABLE
4024 */
4025 kernelcore_remaining = kernelcore_node;
4026
4027 /* Go through each range of PFNs within this node */
4028 for_each_active_range_index_in_nid(i, nid) {
4029 unsigned long start_pfn, end_pfn;
4030 unsigned long size_pages;
4031
4032 start_pfn = max(early_node_map[i].start_pfn,
4033 zone_movable_pfn[nid]);
4034 end_pfn = early_node_map[i].end_pfn;
4035 if (start_pfn >= end_pfn)
4036 continue;
4037
4038 /* Account for what is only usable for kernelcore */
4039 if (start_pfn < usable_startpfn) {
4040 unsigned long kernel_pages;
4041 kernel_pages = min(end_pfn, usable_startpfn)
4042 - start_pfn;
4043
4044 kernelcore_remaining -= min(kernel_pages,
4045 kernelcore_remaining);
4046 required_kernelcore -= min(kernel_pages,
4047 required_kernelcore);
4048
4049 /* Continue if range is now fully accounted */
4050 if (end_pfn <= usable_startpfn) {
4051
4052 /*
4053 * Push zone_movable_pfn to the end so
4054 * that if we have to rebalance
4055 * kernelcore across nodes, we will
4056 * not double account here
4057 */
4058 zone_movable_pfn[nid] = end_pfn;
4059 continue;
4060 }
4061 start_pfn = usable_startpfn;
4062 }
4063
4064 /*
4065 * The usable PFN range for ZONE_MOVABLE is from
4066 * start_pfn->end_pfn. Calculate size_pages as the
4067 * number of pages used as kernelcore
4068 */
4069 size_pages = end_pfn - start_pfn;
4070 if (size_pages > kernelcore_remaining)
4071 size_pages = kernelcore_remaining;
4072 zone_movable_pfn[nid] = start_pfn + size_pages;
4073
4074 /*
4075 * Some kernelcore has been met, update counts and
4076 * break if the kernelcore for this node has been
4077 * satisified
4078 */
4079 required_kernelcore -= min(required_kernelcore,
4080 size_pages);
4081 kernelcore_remaining -= size_pages;
4082 if (!kernelcore_remaining)
4083 break;
4084 }
4085 }
4086
4087 /*
4088 * If there is still required_kernelcore, we do another pass with one
4089 * less node in the count. This will push zone_movable_pfn[nid] further
4090 * along on the nodes that still have memory until kernelcore is
4091 * satisified
4092 */
4093 usable_nodes--;
4094 if (usable_nodes && required_kernelcore > usable_nodes)
4095 goto restart;
4096
4097 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4098 for (nid = 0; nid < MAX_NUMNODES; nid++)
4099 zone_movable_pfn[nid] =
4100 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4101}
4102
37b07e41
LS
4103/* Any regular memory on that node ? */
4104static void check_for_regular_memory(pg_data_t *pgdat)
4105{
4106#ifdef CONFIG_HIGHMEM
4107 enum zone_type zone_type;
4108
4109 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4110 struct zone *zone = &pgdat->node_zones[zone_type];
4111 if (zone->present_pages)
4112 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4113 }
4114#endif
4115}
4116
c713216d
MG
4117/**
4118 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4119 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4120 *
4121 * This will call free_area_init_node() for each active node in the system.
4122 * Using the page ranges provided by add_active_range(), the size of each
4123 * zone in each node and their holes is calculated. If the maximum PFN
4124 * between two adjacent zones match, it is assumed that the zone is empty.
4125 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4126 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4127 * starts where the previous one ended. For example, ZONE_DMA32 starts
4128 * at arch_max_dma_pfn.
4129 */
4130void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4131{
4132 unsigned long nid;
db99100d 4133 int i;
c713216d 4134
a6af2bc3
MG
4135 /* Sort early_node_map as initialisation assumes it is sorted */
4136 sort_node_map();
4137
c713216d
MG
4138 /* Record where the zone boundaries are */
4139 memset(arch_zone_lowest_possible_pfn, 0,
4140 sizeof(arch_zone_lowest_possible_pfn));
4141 memset(arch_zone_highest_possible_pfn, 0,
4142 sizeof(arch_zone_highest_possible_pfn));
4143 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4144 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4145 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4146 if (i == ZONE_MOVABLE)
4147 continue;
c713216d
MG
4148 arch_zone_lowest_possible_pfn[i] =
4149 arch_zone_highest_possible_pfn[i-1];
4150 arch_zone_highest_possible_pfn[i] =
4151 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4152 }
2a1e274a
MG
4153 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4154 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4155
4156 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4157 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4158 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4159
c713216d
MG
4160 /* Print out the zone ranges */
4161 printk("Zone PFN ranges:\n");
2a1e274a
MG
4162 for (i = 0; i < MAX_NR_ZONES; i++) {
4163 if (i == ZONE_MOVABLE)
4164 continue;
5dab8ec1 4165 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4166 zone_names[i],
4167 arch_zone_lowest_possible_pfn[i],
4168 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4169 }
4170
4171 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4172 printk("Movable zone start PFN for each node\n");
4173 for (i = 0; i < MAX_NUMNODES; i++) {
4174 if (zone_movable_pfn[i])
4175 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4176 }
c713216d
MG
4177
4178 /* Print out the early_node_map[] */
4179 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4180 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4181 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4182 early_node_map[i].start_pfn,
4183 early_node_map[i].end_pfn);
4184
4185 /* Initialise every node */
708614e6 4186 mminit_verify_pageflags_layout();
8ef82866 4187 setup_nr_node_ids();
c713216d
MG
4188 for_each_online_node(nid) {
4189 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4190 free_area_init_node(nid, NULL,
c713216d 4191 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4192
4193 /* Any memory on that node */
4194 if (pgdat->node_present_pages)
4195 node_set_state(nid, N_HIGH_MEMORY);
4196 check_for_regular_memory(pgdat);
c713216d
MG
4197 }
4198}
2a1e274a 4199
7e63efef 4200static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4201{
4202 unsigned long long coremem;
4203 if (!p)
4204 return -EINVAL;
4205
4206 coremem = memparse(p, &p);
7e63efef 4207 *core = coremem >> PAGE_SHIFT;
2a1e274a 4208
7e63efef 4209 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4210 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4211
4212 return 0;
4213}
ed7ed365 4214
7e63efef
MG
4215/*
4216 * kernelcore=size sets the amount of memory for use for allocations that
4217 * cannot be reclaimed or migrated.
4218 */
4219static int __init cmdline_parse_kernelcore(char *p)
4220{
4221 return cmdline_parse_core(p, &required_kernelcore);
4222}
4223
4224/*
4225 * movablecore=size sets the amount of memory for use for allocations that
4226 * can be reclaimed or migrated.
4227 */
4228static int __init cmdline_parse_movablecore(char *p)
4229{
4230 return cmdline_parse_core(p, &required_movablecore);
4231}
4232
ed7ed365 4233early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4234early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4235
c713216d
MG
4236#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4237
0e0b864e 4238/**
88ca3b94
RD
4239 * set_dma_reserve - set the specified number of pages reserved in the first zone
4240 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4241 *
4242 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4243 * In the DMA zone, a significant percentage may be consumed by kernel image
4244 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4245 * function may optionally be used to account for unfreeable pages in the
4246 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4247 * smaller per-cpu batchsize.
0e0b864e
MG
4248 */
4249void __init set_dma_reserve(unsigned long new_dma_reserve)
4250{
4251 dma_reserve = new_dma_reserve;
4252}
4253
93b7504e 4254#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4255struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4256EXPORT_SYMBOL(contig_page_data);
93b7504e 4257#endif
1da177e4
LT
4258
4259void __init free_area_init(unsigned long *zones_size)
4260{
9109fb7b 4261 free_area_init_node(0, zones_size,
1da177e4
LT
4262 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4263}
1da177e4 4264
1da177e4
LT
4265static int page_alloc_cpu_notify(struct notifier_block *self,
4266 unsigned long action, void *hcpu)
4267{
4268 int cpu = (unsigned long)hcpu;
1da177e4 4269
8bb78442 4270 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4271 drain_pages(cpu);
4272
4273 /*
4274 * Spill the event counters of the dead processor
4275 * into the current processors event counters.
4276 * This artificially elevates the count of the current
4277 * processor.
4278 */
f8891e5e 4279 vm_events_fold_cpu(cpu);
9f8f2172
CL
4280
4281 /*
4282 * Zero the differential counters of the dead processor
4283 * so that the vm statistics are consistent.
4284 *
4285 * This is only okay since the processor is dead and cannot
4286 * race with what we are doing.
4287 */
2244b95a 4288 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4289 }
4290 return NOTIFY_OK;
4291}
1da177e4
LT
4292
4293void __init page_alloc_init(void)
4294{
4295 hotcpu_notifier(page_alloc_cpu_notify, 0);
4296}
4297
cb45b0e9
HA
4298/*
4299 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4300 * or min_free_kbytes changes.
4301 */
4302static void calculate_totalreserve_pages(void)
4303{
4304 struct pglist_data *pgdat;
4305 unsigned long reserve_pages = 0;
2f6726e5 4306 enum zone_type i, j;
cb45b0e9
HA
4307
4308 for_each_online_pgdat(pgdat) {
4309 for (i = 0; i < MAX_NR_ZONES; i++) {
4310 struct zone *zone = pgdat->node_zones + i;
4311 unsigned long max = 0;
4312
4313 /* Find valid and maximum lowmem_reserve in the zone */
4314 for (j = i; j < MAX_NR_ZONES; j++) {
4315 if (zone->lowmem_reserve[j] > max)
4316 max = zone->lowmem_reserve[j];
4317 }
4318
4319 /* we treat pages_high as reserved pages. */
4320 max += zone->pages_high;
4321
4322 if (max > zone->present_pages)
4323 max = zone->present_pages;
4324 reserve_pages += max;
4325 }
4326 }
4327 totalreserve_pages = reserve_pages;
4328}
4329
1da177e4
LT
4330/*
4331 * setup_per_zone_lowmem_reserve - called whenever
4332 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4333 * has a correct pages reserved value, so an adequate number of
4334 * pages are left in the zone after a successful __alloc_pages().
4335 */
4336static void setup_per_zone_lowmem_reserve(void)
4337{
4338 struct pglist_data *pgdat;
2f6726e5 4339 enum zone_type j, idx;
1da177e4 4340
ec936fc5 4341 for_each_online_pgdat(pgdat) {
1da177e4
LT
4342 for (j = 0; j < MAX_NR_ZONES; j++) {
4343 struct zone *zone = pgdat->node_zones + j;
4344 unsigned long present_pages = zone->present_pages;
4345
4346 zone->lowmem_reserve[j] = 0;
4347
2f6726e5
CL
4348 idx = j;
4349 while (idx) {
1da177e4
LT
4350 struct zone *lower_zone;
4351
2f6726e5
CL
4352 idx--;
4353
1da177e4
LT
4354 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4355 sysctl_lowmem_reserve_ratio[idx] = 1;
4356
4357 lower_zone = pgdat->node_zones + idx;
4358 lower_zone->lowmem_reserve[j] = present_pages /
4359 sysctl_lowmem_reserve_ratio[idx];
4360 present_pages += lower_zone->present_pages;
4361 }
4362 }
4363 }
cb45b0e9
HA
4364
4365 /* update totalreserve_pages */
4366 calculate_totalreserve_pages();
1da177e4
LT
4367}
4368
88ca3b94
RD
4369/**
4370 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4371 *
4372 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4373 * with respect to min_free_kbytes.
1da177e4 4374 */
3947be19 4375void setup_per_zone_pages_min(void)
1da177e4
LT
4376{
4377 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4378 unsigned long lowmem_pages = 0;
4379 struct zone *zone;
4380 unsigned long flags;
4381
4382 /* Calculate total number of !ZONE_HIGHMEM pages */
4383 for_each_zone(zone) {
4384 if (!is_highmem(zone))
4385 lowmem_pages += zone->present_pages;
4386 }
4387
4388 for_each_zone(zone) {
ac924c60
AM
4389 u64 tmp;
4390
1125b4e3 4391 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4392 tmp = (u64)pages_min * zone->present_pages;
4393 do_div(tmp, lowmem_pages);
1da177e4
LT
4394 if (is_highmem(zone)) {
4395 /*
669ed175
NP
4396 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4397 * need highmem pages, so cap pages_min to a small
4398 * value here.
4399 *
4400 * The (pages_high-pages_low) and (pages_low-pages_min)
4401 * deltas controls asynch page reclaim, and so should
4402 * not be capped for highmem.
1da177e4
LT
4403 */
4404 int min_pages;
4405
4406 min_pages = zone->present_pages / 1024;
4407 if (min_pages < SWAP_CLUSTER_MAX)
4408 min_pages = SWAP_CLUSTER_MAX;
4409 if (min_pages > 128)
4410 min_pages = 128;
4411 zone->pages_min = min_pages;
4412 } else {
669ed175
NP
4413 /*
4414 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4415 * proportionate to the zone's size.
4416 */
669ed175 4417 zone->pages_min = tmp;
1da177e4
LT
4418 }
4419
ac924c60
AM
4420 zone->pages_low = zone->pages_min + (tmp >> 2);
4421 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4422 setup_zone_migrate_reserve(zone);
1125b4e3 4423 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4424 }
cb45b0e9
HA
4425
4426 /* update totalreserve_pages */
4427 calculate_totalreserve_pages();
1da177e4
LT
4428}
4429
556adecb
RR
4430/**
4431 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4432 *
4433 * The inactive anon list should be small enough that the VM never has to
4434 * do too much work, but large enough that each inactive page has a chance
4435 * to be referenced again before it is swapped out.
4436 *
4437 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4438 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4439 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4440 * the anonymous pages are kept on the inactive list.
4441 *
4442 * total target max
4443 * memory ratio inactive anon
4444 * -------------------------------------
4445 * 10MB 1 5MB
4446 * 100MB 1 50MB
4447 * 1GB 3 250MB
4448 * 10GB 10 0.9GB
4449 * 100GB 31 3GB
4450 * 1TB 101 10GB
4451 * 10TB 320 32GB
4452 */
efab8186 4453static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4454{
4455 struct zone *zone;
4456
4457 for_each_zone(zone) {
4458 unsigned int gb, ratio;
4459
4460 /* Zone size in gigabytes */
4461 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4462 ratio = int_sqrt(10 * gb);
4463 if (!ratio)
4464 ratio = 1;
4465
4466 zone->inactive_ratio = ratio;
4467 }
4468}
4469
1da177e4
LT
4470/*
4471 * Initialise min_free_kbytes.
4472 *
4473 * For small machines we want it small (128k min). For large machines
4474 * we want it large (64MB max). But it is not linear, because network
4475 * bandwidth does not increase linearly with machine size. We use
4476 *
4477 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4478 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4479 *
4480 * which yields
4481 *
4482 * 16MB: 512k
4483 * 32MB: 724k
4484 * 64MB: 1024k
4485 * 128MB: 1448k
4486 * 256MB: 2048k
4487 * 512MB: 2896k
4488 * 1024MB: 4096k
4489 * 2048MB: 5792k
4490 * 4096MB: 8192k
4491 * 8192MB: 11584k
4492 * 16384MB: 16384k
4493 */
4494static int __init init_per_zone_pages_min(void)
4495{
4496 unsigned long lowmem_kbytes;
4497
4498 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4499
4500 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4501 if (min_free_kbytes < 128)
4502 min_free_kbytes = 128;
4503 if (min_free_kbytes > 65536)
4504 min_free_kbytes = 65536;
4505 setup_per_zone_pages_min();
4506 setup_per_zone_lowmem_reserve();
556adecb 4507 setup_per_zone_inactive_ratio();
1da177e4
LT
4508 return 0;
4509}
4510module_init(init_per_zone_pages_min)
4511
4512/*
4513 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4514 * that we can call two helper functions whenever min_free_kbytes
4515 * changes.
4516 */
4517int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4518 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4519{
4520 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4521 if (write)
4522 setup_per_zone_pages_min();
1da177e4
LT
4523 return 0;
4524}
4525
9614634f
CL
4526#ifdef CONFIG_NUMA
4527int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4528 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4529{
4530 struct zone *zone;
4531 int rc;
4532
4533 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4534 if (rc)
4535 return rc;
4536
4537 for_each_zone(zone)
8417bba4 4538 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4539 sysctl_min_unmapped_ratio) / 100;
4540 return 0;
4541}
0ff38490
CL
4542
4543int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4544 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4545{
4546 struct zone *zone;
4547 int rc;
4548
4549 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4550 if (rc)
4551 return rc;
4552
4553 for_each_zone(zone)
4554 zone->min_slab_pages = (zone->present_pages *
4555 sysctl_min_slab_ratio) / 100;
4556 return 0;
4557}
9614634f
CL
4558#endif
4559
1da177e4
LT
4560/*
4561 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4562 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4563 * whenever sysctl_lowmem_reserve_ratio changes.
4564 *
4565 * The reserve ratio obviously has absolutely no relation with the
4566 * pages_min watermarks. The lowmem reserve ratio can only make sense
4567 * if in function of the boot time zone sizes.
4568 */
4569int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4570 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4571{
4572 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4573 setup_per_zone_lowmem_reserve();
4574 return 0;
4575}
4576
8ad4b1fb
RS
4577/*
4578 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4579 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4580 * can have before it gets flushed back to buddy allocator.
4581 */
4582
4583int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4584 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4585{
4586 struct zone *zone;
4587 unsigned int cpu;
4588 int ret;
4589
4590 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4591 if (!write || (ret == -EINVAL))
4592 return ret;
4593 for_each_zone(zone) {
4594 for_each_online_cpu(cpu) {
4595 unsigned long high;
4596 high = zone->present_pages / percpu_pagelist_fraction;
4597 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4598 }
4599 }
4600 return 0;
4601}
4602
f034b5d4 4603int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4604
4605#ifdef CONFIG_NUMA
4606static int __init set_hashdist(char *str)
4607{
4608 if (!str)
4609 return 0;
4610 hashdist = simple_strtoul(str, &str, 0);
4611 return 1;
4612}
4613__setup("hashdist=", set_hashdist);
4614#endif
4615
4616/*
4617 * allocate a large system hash table from bootmem
4618 * - it is assumed that the hash table must contain an exact power-of-2
4619 * quantity of entries
4620 * - limit is the number of hash buckets, not the total allocation size
4621 */
4622void *__init alloc_large_system_hash(const char *tablename,
4623 unsigned long bucketsize,
4624 unsigned long numentries,
4625 int scale,
4626 int flags,
4627 unsigned int *_hash_shift,
4628 unsigned int *_hash_mask,
4629 unsigned long limit)
4630{
4631 unsigned long long max = limit;
4632 unsigned long log2qty, size;
4633 void *table = NULL;
4634
4635 /* allow the kernel cmdline to have a say */
4636 if (!numentries) {
4637 /* round applicable memory size up to nearest megabyte */
04903664 4638 numentries = nr_kernel_pages;
1da177e4
LT
4639 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4640 numentries >>= 20 - PAGE_SHIFT;
4641 numentries <<= 20 - PAGE_SHIFT;
4642
4643 /* limit to 1 bucket per 2^scale bytes of low memory */
4644 if (scale > PAGE_SHIFT)
4645 numentries >>= (scale - PAGE_SHIFT);
4646 else
4647 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4648
4649 /* Make sure we've got at least a 0-order allocation.. */
4650 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4651 numentries = PAGE_SIZE / bucketsize;
1da177e4 4652 }
6e692ed3 4653 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4654
4655 /* limit allocation size to 1/16 total memory by default */
4656 if (max == 0) {
4657 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4658 do_div(max, bucketsize);
4659 }
4660
4661 if (numentries > max)
4662 numentries = max;
4663
f0d1b0b3 4664 log2qty = ilog2(numentries);
1da177e4
LT
4665
4666 do {
4667 size = bucketsize << log2qty;
4668 if (flags & HASH_EARLY)
74768ed8 4669 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4670 else if (hashdist)
4671 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4672 else {
2309f9e6 4673 unsigned long order = get_order(size);
6c0db466
HD
4674
4675 if (order < MAX_ORDER)
4676 table = (void *)__get_free_pages(GFP_ATOMIC,
4677 order);
1037b83b
ED
4678 /*
4679 * If bucketsize is not a power-of-two, we may free
4680 * some pages at the end of hash table.
4681 */
4682 if (table) {
4683 unsigned long alloc_end = (unsigned long)table +
4684 (PAGE_SIZE << order);
4685 unsigned long used = (unsigned long)table +
4686 PAGE_ALIGN(size);
4687 split_page(virt_to_page(table), order);
4688 while (used < alloc_end) {
4689 free_page(used);
4690 used += PAGE_SIZE;
4691 }
4692 }
1da177e4
LT
4693 }
4694 } while (!table && size > PAGE_SIZE && --log2qty);
4695
4696 if (!table)
4697 panic("Failed to allocate %s hash table\n", tablename);
4698
b49ad484 4699 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4700 tablename,
4701 (1U << log2qty),
f0d1b0b3 4702 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4703 size);
4704
4705 if (_hash_shift)
4706 *_hash_shift = log2qty;
4707 if (_hash_mask)
4708 *_hash_mask = (1 << log2qty) - 1;
4709
dbb1f81c
CM
4710 /*
4711 * If hashdist is set, the table allocation is done with __vmalloc()
4712 * which invokes the kmemleak_alloc() callback. This function may also
4713 * be called before the slab and kmemleak are initialised when
4714 * kmemleak simply buffers the request to be executed later
4715 * (GFP_ATOMIC flag ignored in this case).
4716 */
4717 if (!hashdist)
4718 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4719
1da177e4
LT
4720 return table;
4721}
a117e66e 4722
835c134e
MG
4723/* Return a pointer to the bitmap storing bits affecting a block of pages */
4724static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4725 unsigned long pfn)
4726{
4727#ifdef CONFIG_SPARSEMEM
4728 return __pfn_to_section(pfn)->pageblock_flags;
4729#else
4730 return zone->pageblock_flags;
4731#endif /* CONFIG_SPARSEMEM */
4732}
4733
4734static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4735{
4736#ifdef CONFIG_SPARSEMEM
4737 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4738 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4739#else
4740 pfn = pfn - zone->zone_start_pfn;
d9c23400 4741 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4742#endif /* CONFIG_SPARSEMEM */
4743}
4744
4745/**
d9c23400 4746 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4747 * @page: The page within the block of interest
4748 * @start_bitidx: The first bit of interest to retrieve
4749 * @end_bitidx: The last bit of interest
4750 * returns pageblock_bits flags
4751 */
4752unsigned long get_pageblock_flags_group(struct page *page,
4753 int start_bitidx, int end_bitidx)
4754{
4755 struct zone *zone;
4756 unsigned long *bitmap;
4757 unsigned long pfn, bitidx;
4758 unsigned long flags = 0;
4759 unsigned long value = 1;
4760
4761 zone = page_zone(page);
4762 pfn = page_to_pfn(page);
4763 bitmap = get_pageblock_bitmap(zone, pfn);
4764 bitidx = pfn_to_bitidx(zone, pfn);
4765
4766 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4767 if (test_bit(bitidx + start_bitidx, bitmap))
4768 flags |= value;
6220ec78 4769
835c134e
MG
4770 return flags;
4771}
4772
4773/**
d9c23400 4774 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4775 * @page: The page within the block of interest
4776 * @start_bitidx: The first bit of interest
4777 * @end_bitidx: The last bit of interest
4778 * @flags: The flags to set
4779 */
4780void set_pageblock_flags_group(struct page *page, unsigned long flags,
4781 int start_bitidx, int end_bitidx)
4782{
4783 struct zone *zone;
4784 unsigned long *bitmap;
4785 unsigned long pfn, bitidx;
4786 unsigned long value = 1;
4787
4788 zone = page_zone(page);
4789 pfn = page_to_pfn(page);
4790 bitmap = get_pageblock_bitmap(zone, pfn);
4791 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4792 VM_BUG_ON(pfn < zone->zone_start_pfn);
4793 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4794
4795 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4796 if (flags & value)
4797 __set_bit(bitidx + start_bitidx, bitmap);
4798 else
4799 __clear_bit(bitidx + start_bitidx, bitmap);
4800}
a5d76b54
KH
4801
4802/*
4803 * This is designed as sub function...plz see page_isolation.c also.
4804 * set/clear page block's type to be ISOLATE.
4805 * page allocater never alloc memory from ISOLATE block.
4806 */
4807
4808int set_migratetype_isolate(struct page *page)
4809{
4810 struct zone *zone;
4811 unsigned long flags;
4812 int ret = -EBUSY;
4813
4814 zone = page_zone(page);
4815 spin_lock_irqsave(&zone->lock, flags);
4816 /*
4817 * In future, more migrate types will be able to be isolation target.
4818 */
4819 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4820 goto out;
4821 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4822 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4823 ret = 0;
4824out:
4825 spin_unlock_irqrestore(&zone->lock, flags);
4826 if (!ret)
9f8f2172 4827 drain_all_pages();
a5d76b54
KH
4828 return ret;
4829}
4830
4831void unset_migratetype_isolate(struct page *page)
4832{
4833 struct zone *zone;
4834 unsigned long flags;
4835 zone = page_zone(page);
4836 spin_lock_irqsave(&zone->lock, flags);
4837 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4838 goto out;
4839 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4840 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4841out:
4842 spin_unlock_irqrestore(&zone->lock, flags);
4843}
0c0e6195
KH
4844
4845#ifdef CONFIG_MEMORY_HOTREMOVE
4846/*
4847 * All pages in the range must be isolated before calling this.
4848 */
4849void
4850__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4851{
4852 struct page *page;
4853 struct zone *zone;
4854 int order, i;
4855 unsigned long pfn;
4856 unsigned long flags;
4857 /* find the first valid pfn */
4858 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4859 if (pfn_valid(pfn))
4860 break;
4861 if (pfn == end_pfn)
4862 return;
4863 zone = page_zone(pfn_to_page(pfn));
4864 spin_lock_irqsave(&zone->lock, flags);
4865 pfn = start_pfn;
4866 while (pfn < end_pfn) {
4867 if (!pfn_valid(pfn)) {
4868 pfn++;
4869 continue;
4870 }
4871 page = pfn_to_page(pfn);
4872 BUG_ON(page_count(page));
4873 BUG_ON(!PageBuddy(page));
4874 order = page_order(page);
4875#ifdef CONFIG_DEBUG_VM
4876 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4877 pfn, 1 << order, end_pfn);
4878#endif
4879 list_del(&page->lru);
4880 rmv_page_order(page);
4881 zone->free_area[order].nr_free--;
4882 __mod_zone_page_state(zone, NR_FREE_PAGES,
4883 - (1UL << order));
4884 for (i = 0; i < (1 << order); i++)
4885 SetPageReserved((page+i));
4886 pfn += (1 << order);
4887 }
4888 spin_unlock_irqrestore(&zone->lock, flags);
4889}
4890#endif