Make page->private usable in compound pages
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
c3d8c141 53nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 54EXPORT_SYMBOL(node_online_map);
c3d8c141 55nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 56EXPORT_SYMBOL(node_possible_map);
6c231b7b 57unsigned long totalram_pages __read_mostly;
cb45b0e9 58unsigned long totalreserve_pages __read_mostly;
1da177e4 59long nr_swap_pages;
8ad4b1fb 60int percpu_pagelist_fraction;
1da177e4 61
d98c7a09 62static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 63
1da177e4
LT
64/*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
1da177e4 74 */
2f1b6248 75int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 76#ifdef CONFIG_ZONE_DMA
2f1b6248 77 256,
4b51d669 78#endif
fb0e7942 79#ifdef CONFIG_ZONE_DMA32
2f1b6248 80 256,
fb0e7942 81#endif
e53ef38d 82#ifdef CONFIG_HIGHMEM
2f1b6248 83 32
e53ef38d 84#endif
2f1b6248 85};
1da177e4
LT
86
87EXPORT_SYMBOL(totalram_pages);
1da177e4 88
15ad7cdc 89static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 90#ifdef CONFIG_ZONE_DMA
2f1b6248 91 "DMA",
4b51d669 92#endif
fb0e7942 93#ifdef CONFIG_ZONE_DMA32
2f1b6248 94 "DMA32",
fb0e7942 95#endif
2f1b6248 96 "Normal",
e53ef38d 97#ifdef CONFIG_HIGHMEM
2f1b6248 98 "HighMem"
e53ef38d 99#endif
2f1b6248
CL
100};
101
1da177e4
LT
102int min_free_kbytes = 1024;
103
86356ab1
YG
104unsigned long __meminitdata nr_kernel_pages;
105unsigned long __meminitdata nr_all_pages;
0e0b864e 106static unsigned long __initdata dma_reserve;
1da177e4 107
c713216d
MG
108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109 /*
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
115 */
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
128
129 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130 int __initdata nr_nodemap_entries;
131 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c
MG
133#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
137#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138
13e7444b 139#ifdef CONFIG_DEBUG_VM
c6a57e19 140static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 141{
bdc8cb98
DH
142 int ret = 0;
143 unsigned seq;
144 unsigned long pfn = page_to_pfn(page);
c6a57e19 145
bdc8cb98
DH
146 do {
147 seq = zone_span_seqbegin(zone);
148 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 ret = 1;
150 else if (pfn < zone->zone_start_pfn)
151 ret = 1;
152 } while (zone_span_seqretry(zone, seq));
153
154 return ret;
c6a57e19
DH
155}
156
157static int page_is_consistent(struct zone *zone, struct page *page)
158{
14e07298 159 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 160 return 0;
1da177e4 161 if (zone != page_zone(page))
c6a57e19
DH
162 return 0;
163
164 return 1;
165}
166/*
167 * Temporary debugging check for pages not lying within a given zone.
168 */
169static int bad_range(struct zone *zone, struct page *page)
170{
171 if (page_outside_zone_boundaries(zone, page))
1da177e4 172 return 1;
c6a57e19
DH
173 if (!page_is_consistent(zone, page))
174 return 1;
175
1da177e4
LT
176 return 0;
177}
13e7444b
NP
178#else
179static inline int bad_range(struct zone *zone, struct page *page)
180{
181 return 0;
182}
183#endif
184
224abf92 185static void bad_page(struct page *page)
1da177e4 186{
224abf92 187 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
188 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
190 KERN_EMERG "Backtrace:\n",
224abf92
NP
191 current->comm, page, (int)(2*sizeof(unsigned long)),
192 (unsigned long)page->flags, page->mapping,
193 page_mapcount(page), page_count(page));
1da177e4 194 dump_stack();
334795ec
HD
195 page->flags &= ~(1 << PG_lru |
196 1 << PG_private |
1da177e4 197 1 << PG_locked |
1da177e4
LT
198 1 << PG_active |
199 1 << PG_dirty |
334795ec
HD
200 1 << PG_reclaim |
201 1 << PG_slab |
1da177e4 202 1 << PG_swapcache |
676165a8
NP
203 1 << PG_writeback |
204 1 << PG_buddy );
1da177e4
LT
205 set_page_count(page, 0);
206 reset_page_mapcount(page);
207 page->mapping = NULL;
9f158333 208 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
209}
210
1da177e4
LT
211/*
212 * Higher-order pages are called "compound pages". They are structured thusly:
213 *
214 * The first PAGE_SIZE page is called the "head page".
215 *
216 * The remaining PAGE_SIZE pages are called "tail pages".
217 *
218 * All pages have PG_compound set. All pages have their ->private pointing at
219 * the head page (even the head page has this).
220 *
41d78ba5
HD
221 * The first tail page's ->lru.next holds the address of the compound page's
222 * put_page() function. Its ->lru.prev holds the order of allocation.
223 * This usage means that zero-order pages may not be compound.
1da177e4 224 */
d98c7a09
HD
225
226static void free_compound_page(struct page *page)
227{
d85f3385 228 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
229}
230
1da177e4
LT
231static void prep_compound_page(struct page *page, unsigned long order)
232{
233 int i;
234 int nr_pages = 1 << order;
235
33f2ef89 236 set_compound_page_dtor(page, free_compound_page);
d85f3385
CL
237 set_compound_order(page, order);
238 __SetPageCompound(page);
239 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
240 struct page *p = page + i;
241
d85f3385 242 __SetPageTail(p);
5e9dace8 243 __SetPageCompound(p);
d85f3385 244 p->first_page = page;
1da177e4
LT
245 }
246}
247
248static void destroy_compound_page(struct page *page, unsigned long order)
249{
250 int i;
251 int nr_pages = 1 << order;
252
d85f3385 253 if (unlikely(compound_order(page) != order))
224abf92 254 bad_page(page);
1da177e4 255
d85f3385
CL
256 if (unlikely(!PageCompound(page)))
257 bad_page(page);
258 __ClearPageCompound(page);
259 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
260 struct page *p = page + i;
261
d85f3385
CL
262 if (unlikely(!PageCompound(p) | !PageTail(p) |
263 (p->first_page != page)))
224abf92 264 bad_page(page);
d85f3385 265 __ClearPageTail(p);
5e9dace8 266 __ClearPageCompound(p);
1da177e4
LT
267 }
268}
1da177e4 269
17cf4406
NP
270static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
271{
272 int i;
273
725d704e 274 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
275 /*
276 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
277 * and __GFP_HIGHMEM from hard or soft interrupt context.
278 */
725d704e 279 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
280 for (i = 0; i < (1 << order); i++)
281 clear_highpage(page + i);
282}
283
1da177e4
LT
284/*
285 * function for dealing with page's order in buddy system.
286 * zone->lock is already acquired when we use these.
287 * So, we don't need atomic page->flags operations here.
288 */
6aa3001b
AM
289static inline unsigned long page_order(struct page *page)
290{
4c21e2f2 291 return page_private(page);
1da177e4
LT
292}
293
6aa3001b
AM
294static inline void set_page_order(struct page *page, int order)
295{
4c21e2f2 296 set_page_private(page, order);
676165a8 297 __SetPageBuddy(page);
1da177e4
LT
298}
299
300static inline void rmv_page_order(struct page *page)
301{
676165a8 302 __ClearPageBuddy(page);
4c21e2f2 303 set_page_private(page, 0);
1da177e4
LT
304}
305
306/*
307 * Locate the struct page for both the matching buddy in our
308 * pair (buddy1) and the combined O(n+1) page they form (page).
309 *
310 * 1) Any buddy B1 will have an order O twin B2 which satisfies
311 * the following equation:
312 * B2 = B1 ^ (1 << O)
313 * For example, if the starting buddy (buddy2) is #8 its order
314 * 1 buddy is #10:
315 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
316 *
317 * 2) Any buddy B will have an order O+1 parent P which
318 * satisfies the following equation:
319 * P = B & ~(1 << O)
320 *
d6e05edc 321 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
322 */
323static inline struct page *
324__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
325{
326 unsigned long buddy_idx = page_idx ^ (1 << order);
327
328 return page + (buddy_idx - page_idx);
329}
330
331static inline unsigned long
332__find_combined_index(unsigned long page_idx, unsigned int order)
333{
334 return (page_idx & ~(1 << order));
335}
336
337/*
338 * This function checks whether a page is free && is the buddy
339 * we can do coalesce a page and its buddy if
13e7444b 340 * (a) the buddy is not in a hole &&
676165a8 341 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
342 * (c) a page and its buddy have the same order &&
343 * (d) a page and its buddy are in the same zone.
676165a8
NP
344 *
345 * For recording whether a page is in the buddy system, we use PG_buddy.
346 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 347 *
676165a8 348 * For recording page's order, we use page_private(page).
1da177e4 349 */
cb2b95e1
AW
350static inline int page_is_buddy(struct page *page, struct page *buddy,
351 int order)
1da177e4 352{
14e07298 353 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 354 return 0;
13e7444b 355
cb2b95e1
AW
356 if (page_zone_id(page) != page_zone_id(buddy))
357 return 0;
358
359 if (PageBuddy(buddy) && page_order(buddy) == order) {
360 BUG_ON(page_count(buddy) != 0);
6aa3001b 361 return 1;
676165a8 362 }
6aa3001b 363 return 0;
1da177e4
LT
364}
365
366/*
367 * Freeing function for a buddy system allocator.
368 *
369 * The concept of a buddy system is to maintain direct-mapped table
370 * (containing bit values) for memory blocks of various "orders".
371 * The bottom level table contains the map for the smallest allocatable
372 * units of memory (here, pages), and each level above it describes
373 * pairs of units from the levels below, hence, "buddies".
374 * At a high level, all that happens here is marking the table entry
375 * at the bottom level available, and propagating the changes upward
376 * as necessary, plus some accounting needed to play nicely with other
377 * parts of the VM system.
378 * At each level, we keep a list of pages, which are heads of continuous
676165a8 379 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 380 * order is recorded in page_private(page) field.
1da177e4
LT
381 * So when we are allocating or freeing one, we can derive the state of the
382 * other. That is, if we allocate a small block, and both were
383 * free, the remainder of the region must be split into blocks.
384 * If a block is freed, and its buddy is also free, then this
385 * triggers coalescing into a block of larger size.
386 *
387 * -- wli
388 */
389
48db57f8 390static inline void __free_one_page(struct page *page,
1da177e4
LT
391 struct zone *zone, unsigned int order)
392{
393 unsigned long page_idx;
394 int order_size = 1 << order;
395
224abf92 396 if (unlikely(PageCompound(page)))
1da177e4
LT
397 destroy_compound_page(page, order);
398
399 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
400
725d704e
NP
401 VM_BUG_ON(page_idx & (order_size - 1));
402 VM_BUG_ON(bad_range(zone, page));
1da177e4 403
d23ad423 404 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
405 while (order < MAX_ORDER-1) {
406 unsigned long combined_idx;
407 struct free_area *area;
408 struct page *buddy;
409
1da177e4 410 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 411 if (!page_is_buddy(page, buddy, order))
1da177e4 412 break; /* Move the buddy up one level. */
13e7444b 413
1da177e4
LT
414 list_del(&buddy->lru);
415 area = zone->free_area + order;
416 area->nr_free--;
417 rmv_page_order(buddy);
13e7444b 418 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
419 page = page + (combined_idx - page_idx);
420 page_idx = combined_idx;
421 order++;
422 }
423 set_page_order(page, order);
424 list_add(&page->lru, &zone->free_area[order].free_list);
425 zone->free_area[order].nr_free++;
426}
427
224abf92 428static inline int free_pages_check(struct page *page)
1da177e4 429{
92be2e33
NP
430 if (unlikely(page_mapcount(page) |
431 (page->mapping != NULL) |
432 (page_count(page) != 0) |
1da177e4
LT
433 (page->flags & (
434 1 << PG_lru |
435 1 << PG_private |
436 1 << PG_locked |
437 1 << PG_active |
1da177e4
LT
438 1 << PG_slab |
439 1 << PG_swapcache |
b5810039 440 1 << PG_writeback |
676165a8
NP
441 1 << PG_reserved |
442 1 << PG_buddy ))))
224abf92 443 bad_page(page);
d85f3385
CL
444 /*
445 * PageReclaim == PageTail. It is only an error
446 * for PageReclaim to be set if PageCompound is clear.
447 */
448 if (unlikely(!PageCompound(page) && PageReclaim(page)))
449 bad_page(page);
1da177e4 450 if (PageDirty(page))
242e5468 451 __ClearPageDirty(page);
689bcebf
HD
452 /*
453 * For now, we report if PG_reserved was found set, but do not
454 * clear it, and do not free the page. But we shall soon need
455 * to do more, for when the ZERO_PAGE count wraps negative.
456 */
457 return PageReserved(page);
1da177e4
LT
458}
459
460/*
461 * Frees a list of pages.
462 * Assumes all pages on list are in same zone, and of same order.
207f36ee 463 * count is the number of pages to free.
1da177e4
LT
464 *
465 * If the zone was previously in an "all pages pinned" state then look to
466 * see if this freeing clears that state.
467 *
468 * And clear the zone's pages_scanned counter, to hold off the "all pages are
469 * pinned" detection logic.
470 */
48db57f8
NP
471static void free_pages_bulk(struct zone *zone, int count,
472 struct list_head *list, int order)
1da177e4 473{
c54ad30c 474 spin_lock(&zone->lock);
1da177e4
LT
475 zone->all_unreclaimable = 0;
476 zone->pages_scanned = 0;
48db57f8
NP
477 while (count--) {
478 struct page *page;
479
725d704e 480 VM_BUG_ON(list_empty(list));
1da177e4 481 page = list_entry(list->prev, struct page, lru);
48db57f8 482 /* have to delete it as __free_one_page list manipulates */
1da177e4 483 list_del(&page->lru);
48db57f8 484 __free_one_page(page, zone, order);
1da177e4 485 }
c54ad30c 486 spin_unlock(&zone->lock);
1da177e4
LT
487}
488
48db57f8 489static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 490{
006d22d9
CL
491 spin_lock(&zone->lock);
492 zone->all_unreclaimable = 0;
493 zone->pages_scanned = 0;
0798e519 494 __free_one_page(page, zone, order);
006d22d9 495 spin_unlock(&zone->lock);
48db57f8
NP
496}
497
498static void __free_pages_ok(struct page *page, unsigned int order)
499{
500 unsigned long flags;
1da177e4 501 int i;
689bcebf 502 int reserved = 0;
1da177e4 503
1da177e4 504 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 505 reserved += free_pages_check(page + i);
689bcebf
HD
506 if (reserved)
507 return;
508
9858db50
NP
509 if (!PageHighMem(page))
510 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 511 arch_free_page(page, order);
48db57f8 512 kernel_map_pages(page, 1 << order, 0);
dafb1367 513
c54ad30c 514 local_irq_save(flags);
f8891e5e 515 __count_vm_events(PGFREE, 1 << order);
48db57f8 516 free_one_page(page_zone(page), page, order);
c54ad30c 517 local_irq_restore(flags);
1da177e4
LT
518}
519
a226f6c8
DH
520/*
521 * permit the bootmem allocator to evade page validation on high-order frees
522 */
523void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
524{
525 if (order == 0) {
526 __ClearPageReserved(page);
527 set_page_count(page, 0);
7835e98b 528 set_page_refcounted(page);
545b1ea9 529 __free_page(page);
a226f6c8 530 } else {
a226f6c8
DH
531 int loop;
532
545b1ea9 533 prefetchw(page);
a226f6c8
DH
534 for (loop = 0; loop < BITS_PER_LONG; loop++) {
535 struct page *p = &page[loop];
536
545b1ea9
NP
537 if (loop + 1 < BITS_PER_LONG)
538 prefetchw(p + 1);
a226f6c8
DH
539 __ClearPageReserved(p);
540 set_page_count(p, 0);
541 }
542
7835e98b 543 set_page_refcounted(page);
545b1ea9 544 __free_pages(page, order);
a226f6c8
DH
545 }
546}
547
1da177e4
LT
548
549/*
550 * The order of subdivision here is critical for the IO subsystem.
551 * Please do not alter this order without good reasons and regression
552 * testing. Specifically, as large blocks of memory are subdivided,
553 * the order in which smaller blocks are delivered depends on the order
554 * they're subdivided in this function. This is the primary factor
555 * influencing the order in which pages are delivered to the IO
556 * subsystem according to empirical testing, and this is also justified
557 * by considering the behavior of a buddy system containing a single
558 * large block of memory acted on by a series of small allocations.
559 * This behavior is a critical factor in sglist merging's success.
560 *
561 * -- wli
562 */
085cc7d5 563static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
564 int low, int high, struct free_area *area)
565{
566 unsigned long size = 1 << high;
567
568 while (high > low) {
569 area--;
570 high--;
571 size >>= 1;
725d704e 572 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
573 list_add(&page[size].lru, &area->free_list);
574 area->nr_free++;
575 set_page_order(&page[size], high);
576 }
1da177e4
LT
577}
578
1da177e4
LT
579/*
580 * This page is about to be returned from the page allocator
581 */
17cf4406 582static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 583{
92be2e33
NP
584 if (unlikely(page_mapcount(page) |
585 (page->mapping != NULL) |
586 (page_count(page) != 0) |
334795ec
HD
587 (page->flags & (
588 1 << PG_lru |
1da177e4
LT
589 1 << PG_private |
590 1 << PG_locked |
1da177e4
LT
591 1 << PG_active |
592 1 << PG_dirty |
593 1 << PG_reclaim |
334795ec 594 1 << PG_slab |
1da177e4 595 1 << PG_swapcache |
b5810039 596 1 << PG_writeback |
676165a8
NP
597 1 << PG_reserved |
598 1 << PG_buddy ))))
224abf92 599 bad_page(page);
1da177e4 600
689bcebf
HD
601 /*
602 * For now, we report if PG_reserved was found set, but do not
603 * clear it, and do not allocate the page: as a safety net.
604 */
605 if (PageReserved(page))
606 return 1;
607
1da177e4
LT
608 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
609 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 610 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 611 set_page_private(page, 0);
7835e98b 612 set_page_refcounted(page);
cc102509
NP
613
614 arch_alloc_page(page, order);
1da177e4 615 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
616
617 if (gfp_flags & __GFP_ZERO)
618 prep_zero_page(page, order, gfp_flags);
619
620 if (order && (gfp_flags & __GFP_COMP))
621 prep_compound_page(page, order);
622
689bcebf 623 return 0;
1da177e4
LT
624}
625
626/*
627 * Do the hard work of removing an element from the buddy allocator.
628 * Call me with the zone->lock already held.
629 */
630static struct page *__rmqueue(struct zone *zone, unsigned int order)
631{
632 struct free_area * area;
633 unsigned int current_order;
634 struct page *page;
635
636 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
637 area = zone->free_area + current_order;
638 if (list_empty(&area->free_list))
639 continue;
640
641 page = list_entry(area->free_list.next, struct page, lru);
642 list_del(&page->lru);
643 rmv_page_order(page);
644 area->nr_free--;
d23ad423 645 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
085cc7d5
NP
646 expand(zone, page, order, current_order, area);
647 return page;
1da177e4
LT
648 }
649
650 return NULL;
651}
652
653/*
654 * Obtain a specified number of elements from the buddy allocator, all under
655 * a single hold of the lock, for efficiency. Add them to the supplied list.
656 * Returns the number of new pages which were placed at *list.
657 */
658static int rmqueue_bulk(struct zone *zone, unsigned int order,
659 unsigned long count, struct list_head *list)
660{
1da177e4 661 int i;
1da177e4 662
c54ad30c 663 spin_lock(&zone->lock);
1da177e4 664 for (i = 0; i < count; ++i) {
085cc7d5
NP
665 struct page *page = __rmqueue(zone, order);
666 if (unlikely(page == NULL))
1da177e4 667 break;
1da177e4
LT
668 list_add_tail(&page->lru, list);
669 }
c54ad30c 670 spin_unlock(&zone->lock);
085cc7d5 671 return i;
1da177e4
LT
672}
673
74c7aa8b 674#if MAX_NUMNODES > 1
476f3534 675int nr_node_ids __read_mostly = MAX_NUMNODES;
74c7aa8b
CL
676EXPORT_SYMBOL(nr_node_ids);
677
678/*
679 * Figure out the number of possible node ids.
680 */
681static void __init setup_nr_node_ids(void)
682{
683 unsigned int node;
684 unsigned int highest = 0;
685
686 for_each_node_mask(node, node_possible_map)
687 highest = node;
688 nr_node_ids = highest + 1;
689}
690#else
691static void __init setup_nr_node_ids(void) {}
692#endif
693
4ae7c039 694#ifdef CONFIG_NUMA
8fce4d8e
CL
695/*
696 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 697 * belongs to the currently executing processor.
879336c3
CL
698 * Note that this function must be called with the thread pinned to
699 * a single processor.
8fce4d8e
CL
700 */
701void drain_node_pages(int nodeid)
4ae7c039 702{
2f6726e5
CL
703 int i;
704 enum zone_type z;
4ae7c039
CL
705 unsigned long flags;
706
8fce4d8e
CL
707 for (z = 0; z < MAX_NR_ZONES; z++) {
708 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
709 struct per_cpu_pageset *pset;
710
39bbcb8f
CL
711 if (!populated_zone(zone))
712 continue;
713
23316bc8 714 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
715 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716 struct per_cpu_pages *pcp;
717
718 pcp = &pset->pcp[i];
879336c3 719 if (pcp->count) {
bc4ba393
CL
720 int to_drain;
721
879336c3 722 local_irq_save(flags);
bc4ba393
CL
723 if (pcp->count >= pcp->batch)
724 to_drain = pcp->batch;
725 else
726 to_drain = pcp->count;
727 free_pages_bulk(zone, to_drain, &pcp->list, 0);
728 pcp->count -= to_drain;
879336c3
CL
729 local_irq_restore(flags);
730 }
4ae7c039
CL
731 }
732 }
4ae7c039
CL
733}
734#endif
735
1da177e4
LT
736static void __drain_pages(unsigned int cpu)
737{
c54ad30c 738 unsigned long flags;
1da177e4
LT
739 struct zone *zone;
740 int i;
741
742 for_each_zone(zone) {
743 struct per_cpu_pageset *pset;
744
f2e12bb2
CL
745 if (!populated_zone(zone))
746 continue;
747
e7c8d5c9 748 pset = zone_pcp(zone, cpu);
1da177e4
LT
749 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
750 struct per_cpu_pages *pcp;
751
752 pcp = &pset->pcp[i];
c54ad30c 753 local_irq_save(flags);
48db57f8
NP
754 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
755 pcp->count = 0;
c54ad30c 756 local_irq_restore(flags);
1da177e4
LT
757 }
758 }
759}
1da177e4
LT
760
761#ifdef CONFIG_PM
762
763void mark_free_pages(struct zone *zone)
764{
f623f0db
RW
765 unsigned long pfn, max_zone_pfn;
766 unsigned long flags;
1da177e4
LT
767 int order;
768 struct list_head *curr;
769
770 if (!zone->spanned_pages)
771 return;
772
773 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
774
775 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
776 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
777 if (pfn_valid(pfn)) {
778 struct page *page = pfn_to_page(pfn);
779
780 if (!PageNosave(page))
781 ClearPageNosaveFree(page);
782 }
1da177e4
LT
783
784 for (order = MAX_ORDER - 1; order >= 0; --order)
785 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 786 unsigned long i;
1da177e4 787
f623f0db
RW
788 pfn = page_to_pfn(list_entry(curr, struct page, lru));
789 for (i = 0; i < (1UL << order); i++)
790 SetPageNosaveFree(pfn_to_page(pfn + i));
791 }
1da177e4 792
1da177e4
LT
793 spin_unlock_irqrestore(&zone->lock, flags);
794}
795
796/*
797 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
798 */
799void drain_local_pages(void)
800{
801 unsigned long flags;
802
803 local_irq_save(flags);
804 __drain_pages(smp_processor_id());
805 local_irq_restore(flags);
806}
807#endif /* CONFIG_PM */
808
1da177e4
LT
809/*
810 * Free a 0-order page
811 */
1da177e4
LT
812static void fastcall free_hot_cold_page(struct page *page, int cold)
813{
814 struct zone *zone = page_zone(page);
815 struct per_cpu_pages *pcp;
816 unsigned long flags;
817
1da177e4
LT
818 if (PageAnon(page))
819 page->mapping = NULL;
224abf92 820 if (free_pages_check(page))
689bcebf
HD
821 return;
822
9858db50
NP
823 if (!PageHighMem(page))
824 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 825 arch_free_page(page, 0);
689bcebf
HD
826 kernel_map_pages(page, 1, 0);
827
e7c8d5c9 828 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 829 local_irq_save(flags);
f8891e5e 830 __count_vm_event(PGFREE);
1da177e4
LT
831 list_add(&page->lru, &pcp->list);
832 pcp->count++;
48db57f8
NP
833 if (pcp->count >= pcp->high) {
834 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
835 pcp->count -= pcp->batch;
836 }
1da177e4
LT
837 local_irq_restore(flags);
838 put_cpu();
839}
840
841void fastcall free_hot_page(struct page *page)
842{
843 free_hot_cold_page(page, 0);
844}
845
846void fastcall free_cold_page(struct page *page)
847{
848 free_hot_cold_page(page, 1);
849}
850
8dfcc9ba
NP
851/*
852 * split_page takes a non-compound higher-order page, and splits it into
853 * n (1<<order) sub-pages: page[0..n]
854 * Each sub-page must be freed individually.
855 *
856 * Note: this is probably too low level an operation for use in drivers.
857 * Please consult with lkml before using this in your driver.
858 */
859void split_page(struct page *page, unsigned int order)
860{
861 int i;
862
725d704e
NP
863 VM_BUG_ON(PageCompound(page));
864 VM_BUG_ON(!page_count(page));
7835e98b
NP
865 for (i = 1; i < (1 << order); i++)
866 set_page_refcounted(page + i);
8dfcc9ba 867}
8dfcc9ba 868
1da177e4
LT
869/*
870 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
871 * we cheat by calling it from here, in the order > 0 path. Saves a branch
872 * or two.
873 */
a74609fa
NP
874static struct page *buffered_rmqueue(struct zonelist *zonelist,
875 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
876{
877 unsigned long flags;
689bcebf 878 struct page *page;
1da177e4 879 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 880 int cpu;
1da177e4 881
689bcebf 882again:
a74609fa 883 cpu = get_cpu();
48db57f8 884 if (likely(order == 0)) {
1da177e4
LT
885 struct per_cpu_pages *pcp;
886
a74609fa 887 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 888 local_irq_save(flags);
a74609fa 889 if (!pcp->count) {
941c7105 890 pcp->count = rmqueue_bulk(zone, 0,
1da177e4 891 pcp->batch, &pcp->list);
a74609fa
NP
892 if (unlikely(!pcp->count))
893 goto failed;
1da177e4 894 }
a74609fa
NP
895 page = list_entry(pcp->list.next, struct page, lru);
896 list_del(&page->lru);
897 pcp->count--;
7fb1d9fc 898 } else {
1da177e4
LT
899 spin_lock_irqsave(&zone->lock, flags);
900 page = __rmqueue(zone, order);
a74609fa
NP
901 spin_unlock(&zone->lock);
902 if (!page)
903 goto failed;
1da177e4
LT
904 }
905
f8891e5e 906 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 907 zone_statistics(zonelist, zone);
a74609fa
NP
908 local_irq_restore(flags);
909 put_cpu();
1da177e4 910
725d704e 911 VM_BUG_ON(bad_range(zone, page));
17cf4406 912 if (prep_new_page(page, order, gfp_flags))
a74609fa 913 goto again;
1da177e4 914 return page;
a74609fa
NP
915
916failed:
917 local_irq_restore(flags);
918 put_cpu();
919 return NULL;
1da177e4
LT
920}
921
7fb1d9fc 922#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
923#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
924#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
925#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
926#define ALLOC_HARDER 0x10 /* try to alloc harder */
927#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
928#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 929
933e312e
AM
930#ifdef CONFIG_FAIL_PAGE_ALLOC
931
932static struct fail_page_alloc_attr {
933 struct fault_attr attr;
934
935 u32 ignore_gfp_highmem;
936 u32 ignore_gfp_wait;
937
938#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
939
940 struct dentry *ignore_gfp_highmem_file;
941 struct dentry *ignore_gfp_wait_file;
942
943#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
944
945} fail_page_alloc = {
946 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
947 .ignore_gfp_wait = 1,
948 .ignore_gfp_highmem = 1,
933e312e
AM
949};
950
951static int __init setup_fail_page_alloc(char *str)
952{
953 return setup_fault_attr(&fail_page_alloc.attr, str);
954}
955__setup("fail_page_alloc=", setup_fail_page_alloc);
956
957static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
958{
959 if (gfp_mask & __GFP_NOFAIL)
960 return 0;
961 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
962 return 0;
963 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
964 return 0;
965
966 return should_fail(&fail_page_alloc.attr, 1 << order);
967}
968
969#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
970
971static int __init fail_page_alloc_debugfs(void)
972{
973 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
974 struct dentry *dir;
975 int err;
976
977 err = init_fault_attr_dentries(&fail_page_alloc.attr,
978 "fail_page_alloc");
979 if (err)
980 return err;
981 dir = fail_page_alloc.attr.dentries.dir;
982
983 fail_page_alloc.ignore_gfp_wait_file =
984 debugfs_create_bool("ignore-gfp-wait", mode, dir,
985 &fail_page_alloc.ignore_gfp_wait);
986
987 fail_page_alloc.ignore_gfp_highmem_file =
988 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
989 &fail_page_alloc.ignore_gfp_highmem);
990
991 if (!fail_page_alloc.ignore_gfp_wait_file ||
992 !fail_page_alloc.ignore_gfp_highmem_file) {
993 err = -ENOMEM;
994 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
995 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
996 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
997 }
998
999 return err;
1000}
1001
1002late_initcall(fail_page_alloc_debugfs);
1003
1004#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1005
1006#else /* CONFIG_FAIL_PAGE_ALLOC */
1007
1008static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1009{
1010 return 0;
1011}
1012
1013#endif /* CONFIG_FAIL_PAGE_ALLOC */
1014
1da177e4
LT
1015/*
1016 * Return 1 if free pages are above 'mark'. This takes into account the order
1017 * of the allocation.
1018 */
1019int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1020 int classzone_idx, int alloc_flags)
1da177e4
LT
1021{
1022 /* free_pages my go negative - that's OK */
d23ad423
CL
1023 long min = mark;
1024 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1025 int o;
1026
7fb1d9fc 1027 if (alloc_flags & ALLOC_HIGH)
1da177e4 1028 min -= min / 2;
7fb1d9fc 1029 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1030 min -= min / 4;
1031
1032 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1033 return 0;
1034 for (o = 0; o < order; o++) {
1035 /* At the next order, this order's pages become unavailable */
1036 free_pages -= z->free_area[o].nr_free << o;
1037
1038 /* Require fewer higher order pages to be free */
1039 min >>= 1;
1040
1041 if (free_pages <= min)
1042 return 0;
1043 }
1044 return 1;
1045}
1046
9276b1bc
PJ
1047#ifdef CONFIG_NUMA
1048/*
1049 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1050 * skip over zones that are not allowed by the cpuset, or that have
1051 * been recently (in last second) found to be nearly full. See further
1052 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1053 * that have to skip over alot of full or unallowed zones.
1054 *
1055 * If the zonelist cache is present in the passed in zonelist, then
1056 * returns a pointer to the allowed node mask (either the current
1057 * tasks mems_allowed, or node_online_map.)
1058 *
1059 * If the zonelist cache is not available for this zonelist, does
1060 * nothing and returns NULL.
1061 *
1062 * If the fullzones BITMAP in the zonelist cache is stale (more than
1063 * a second since last zap'd) then we zap it out (clear its bits.)
1064 *
1065 * We hold off even calling zlc_setup, until after we've checked the
1066 * first zone in the zonelist, on the theory that most allocations will
1067 * be satisfied from that first zone, so best to examine that zone as
1068 * quickly as we can.
1069 */
1070static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1071{
1072 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1073 nodemask_t *allowednodes; /* zonelist_cache approximation */
1074
1075 zlc = zonelist->zlcache_ptr;
1076 if (!zlc)
1077 return NULL;
1078
1079 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1080 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1081 zlc->last_full_zap = jiffies;
1082 }
1083
1084 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1085 &cpuset_current_mems_allowed :
1086 &node_online_map;
1087 return allowednodes;
1088}
1089
1090/*
1091 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1092 * if it is worth looking at further for free memory:
1093 * 1) Check that the zone isn't thought to be full (doesn't have its
1094 * bit set in the zonelist_cache fullzones BITMAP).
1095 * 2) Check that the zones node (obtained from the zonelist_cache
1096 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1097 * Return true (non-zero) if zone is worth looking at further, or
1098 * else return false (zero) if it is not.
1099 *
1100 * This check -ignores- the distinction between various watermarks,
1101 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1102 * found to be full for any variation of these watermarks, it will
1103 * be considered full for up to one second by all requests, unless
1104 * we are so low on memory on all allowed nodes that we are forced
1105 * into the second scan of the zonelist.
1106 *
1107 * In the second scan we ignore this zonelist cache and exactly
1108 * apply the watermarks to all zones, even it is slower to do so.
1109 * We are low on memory in the second scan, and should leave no stone
1110 * unturned looking for a free page.
1111 */
1112static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1113 nodemask_t *allowednodes)
1114{
1115 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1116 int i; /* index of *z in zonelist zones */
1117 int n; /* node that zone *z is on */
1118
1119 zlc = zonelist->zlcache_ptr;
1120 if (!zlc)
1121 return 1;
1122
1123 i = z - zonelist->zones;
1124 n = zlc->z_to_n[i];
1125
1126 /* This zone is worth trying if it is allowed but not full */
1127 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1128}
1129
1130/*
1131 * Given 'z' scanning a zonelist, set the corresponding bit in
1132 * zlc->fullzones, so that subsequent attempts to allocate a page
1133 * from that zone don't waste time re-examining it.
1134 */
1135static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1136{
1137 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1138 int i; /* index of *z in zonelist zones */
1139
1140 zlc = zonelist->zlcache_ptr;
1141 if (!zlc)
1142 return;
1143
1144 i = z - zonelist->zones;
1145
1146 set_bit(i, zlc->fullzones);
1147}
1148
1149#else /* CONFIG_NUMA */
1150
1151static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1152{
1153 return NULL;
1154}
1155
1156static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1157 nodemask_t *allowednodes)
1158{
1159 return 1;
1160}
1161
1162static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1163{
1164}
1165#endif /* CONFIG_NUMA */
1166
7fb1d9fc 1167/*
0798e519 1168 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1169 * a page.
1170 */
1171static struct page *
1172get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1173 struct zonelist *zonelist, int alloc_flags)
753ee728 1174{
9276b1bc 1175 struct zone **z;
7fb1d9fc 1176 struct page *page = NULL;
9276b1bc 1177 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1178 struct zone *zone;
9276b1bc
PJ
1179 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1180 int zlc_active = 0; /* set if using zonelist_cache */
1181 int did_zlc_setup = 0; /* just call zlc_setup() one time */
7fb1d9fc 1182
9276b1bc 1183zonelist_scan:
7fb1d9fc 1184 /*
9276b1bc 1185 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1186 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1187 */
9276b1bc
PJ
1188 z = zonelist->zones;
1189
7fb1d9fc 1190 do {
9276b1bc
PJ
1191 if (NUMA_BUILD && zlc_active &&
1192 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1193 continue;
1192d526 1194 zone = *z;
08e0f6a9 1195 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1192d526 1196 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 1197 break;
7fb1d9fc 1198 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1199 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1200 goto try_next_zone;
7fb1d9fc
RS
1201
1202 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1203 unsigned long mark;
1204 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1205 mark = zone->pages_min;
3148890b 1206 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1207 mark = zone->pages_low;
3148890b 1208 else
1192d526 1209 mark = zone->pages_high;
0798e519
PJ
1210 if (!zone_watermark_ok(zone, order, mark,
1211 classzone_idx, alloc_flags)) {
9eeff239 1212 if (!zone_reclaim_mode ||
1192d526 1213 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1214 goto this_zone_full;
0798e519 1215 }
7fb1d9fc
RS
1216 }
1217
1192d526 1218 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1219 if (page)
7fb1d9fc 1220 break;
9276b1bc
PJ
1221this_zone_full:
1222 if (NUMA_BUILD)
1223 zlc_mark_zone_full(zonelist, z);
1224try_next_zone:
1225 if (NUMA_BUILD && !did_zlc_setup) {
1226 /* we do zlc_setup after the first zone is tried */
1227 allowednodes = zlc_setup(zonelist, alloc_flags);
1228 zlc_active = 1;
1229 did_zlc_setup = 1;
1230 }
7fb1d9fc 1231 } while (*(++z) != NULL);
9276b1bc
PJ
1232
1233 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1234 /* Disable zlc cache for second zonelist scan */
1235 zlc_active = 0;
1236 goto zonelist_scan;
1237 }
7fb1d9fc 1238 return page;
753ee728
MH
1239}
1240
1da177e4
LT
1241/*
1242 * This is the 'heart' of the zoned buddy allocator.
1243 */
1244struct page * fastcall
dd0fc66f 1245__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1246 struct zonelist *zonelist)
1247{
260b2367 1248 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1249 struct zone **z;
1da177e4
LT
1250 struct page *page;
1251 struct reclaim_state reclaim_state;
1252 struct task_struct *p = current;
1da177e4 1253 int do_retry;
7fb1d9fc 1254 int alloc_flags;
1da177e4
LT
1255 int did_some_progress;
1256
1257 might_sleep_if(wait);
1258
933e312e
AM
1259 if (should_fail_alloc_page(gfp_mask, order))
1260 return NULL;
1261
6b1de916 1262restart:
7fb1d9fc 1263 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1264
7fb1d9fc 1265 if (unlikely(*z == NULL)) {
1da177e4
LT
1266 /* Should this ever happen?? */
1267 return NULL;
1268 }
6b1de916 1269
7fb1d9fc 1270 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1271 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1272 if (page)
1273 goto got_pg;
1da177e4 1274
952f3b51
CL
1275 /*
1276 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1277 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1278 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1279 * using a larger set of nodes after it has established that the
1280 * allowed per node queues are empty and that nodes are
1281 * over allocated.
1282 */
1283 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1284 goto nopage;
1285
0798e519 1286 for (z = zonelist->zones; *z; z++)
43b0bc00 1287 wakeup_kswapd(*z, order);
1da177e4 1288
9bf2229f 1289 /*
7fb1d9fc
RS
1290 * OK, we're below the kswapd watermark and have kicked background
1291 * reclaim. Now things get more complex, so set up alloc_flags according
1292 * to how we want to proceed.
1293 *
1294 * The caller may dip into page reserves a bit more if the caller
1295 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1296 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1297 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1298 */
3148890b 1299 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1300 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1301 alloc_flags |= ALLOC_HARDER;
1302 if (gfp_mask & __GFP_HIGH)
1303 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1304 if (wait)
1305 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1306
1307 /*
1308 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1309 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1310 *
1311 * This is the last chance, in general, before the goto nopage.
1312 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1313 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1314 */
7fb1d9fc
RS
1315 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1316 if (page)
1317 goto got_pg;
1da177e4
LT
1318
1319 /* This allocation should allow future memory freeing. */
b84a35be 1320
b43a57bb 1321rebalance:
b84a35be
NP
1322 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1323 && !in_interrupt()) {
1324 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1325nofail_alloc:
b84a35be 1326 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1327 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1328 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1329 if (page)
1330 goto got_pg;
885036d3 1331 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1332 congestion_wait(WRITE, HZ/50);
885036d3
KK
1333 goto nofail_alloc;
1334 }
1da177e4
LT
1335 }
1336 goto nopage;
1337 }
1338
1339 /* Atomic allocations - we can't balance anything */
1340 if (!wait)
1341 goto nopage;
1342
1da177e4
LT
1343 cond_resched();
1344
1345 /* We now go into synchronous reclaim */
3e0d98b9 1346 cpuset_memory_pressure_bump();
1da177e4
LT
1347 p->flags |= PF_MEMALLOC;
1348 reclaim_state.reclaimed_slab = 0;
1349 p->reclaim_state = &reclaim_state;
1350
7fb1d9fc 1351 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1352
1353 p->reclaim_state = NULL;
1354 p->flags &= ~PF_MEMALLOC;
1355
1356 cond_resched();
1357
1358 if (likely(did_some_progress)) {
7fb1d9fc
RS
1359 page = get_page_from_freelist(gfp_mask, order,
1360 zonelist, alloc_flags);
1361 if (page)
1362 goto got_pg;
1da177e4
LT
1363 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1364 /*
1365 * Go through the zonelist yet one more time, keep
1366 * very high watermark here, this is only to catch
1367 * a parallel oom killing, we must fail if we're still
1368 * under heavy pressure.
1369 */
7fb1d9fc 1370 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1371 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1372 if (page)
1373 goto got_pg;
1da177e4 1374
9b0f8b04 1375 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1376 goto restart;
1377 }
1378
1379 /*
1380 * Don't let big-order allocations loop unless the caller explicitly
1381 * requests that. Wait for some write requests to complete then retry.
1382 *
1383 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1384 * <= 3, but that may not be true in other implementations.
1385 */
1386 do_retry = 0;
1387 if (!(gfp_mask & __GFP_NORETRY)) {
1388 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1389 do_retry = 1;
1390 if (gfp_mask & __GFP_NOFAIL)
1391 do_retry = 1;
1392 }
1393 if (do_retry) {
3fcfab16 1394 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1395 goto rebalance;
1396 }
1397
1398nopage:
1399 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1400 printk(KERN_WARNING "%s: page allocation failure."
1401 " order:%d, mode:0x%x\n",
1402 p->comm, order, gfp_mask);
1403 dump_stack();
578c2fd6 1404 show_mem();
1da177e4 1405 }
1da177e4 1406got_pg:
1da177e4
LT
1407 return page;
1408}
1409
1410EXPORT_SYMBOL(__alloc_pages);
1411
1412/*
1413 * Common helper functions.
1414 */
dd0fc66f 1415fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1416{
1417 struct page * page;
1418 page = alloc_pages(gfp_mask, order);
1419 if (!page)
1420 return 0;
1421 return (unsigned long) page_address(page);
1422}
1423
1424EXPORT_SYMBOL(__get_free_pages);
1425
dd0fc66f 1426fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1427{
1428 struct page * page;
1429
1430 /*
1431 * get_zeroed_page() returns a 32-bit address, which cannot represent
1432 * a highmem page
1433 */
725d704e 1434 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1435
1436 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1437 if (page)
1438 return (unsigned long) page_address(page);
1439 return 0;
1440}
1441
1442EXPORT_SYMBOL(get_zeroed_page);
1443
1444void __pagevec_free(struct pagevec *pvec)
1445{
1446 int i = pagevec_count(pvec);
1447
1448 while (--i >= 0)
1449 free_hot_cold_page(pvec->pages[i], pvec->cold);
1450}
1451
1452fastcall void __free_pages(struct page *page, unsigned int order)
1453{
b5810039 1454 if (put_page_testzero(page)) {
1da177e4
LT
1455 if (order == 0)
1456 free_hot_page(page);
1457 else
1458 __free_pages_ok(page, order);
1459 }
1460}
1461
1462EXPORT_SYMBOL(__free_pages);
1463
1464fastcall void free_pages(unsigned long addr, unsigned int order)
1465{
1466 if (addr != 0) {
725d704e 1467 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1468 __free_pages(virt_to_page((void *)addr), order);
1469 }
1470}
1471
1472EXPORT_SYMBOL(free_pages);
1473
1da177e4
LT
1474static unsigned int nr_free_zone_pages(int offset)
1475{
e310fd43
MB
1476 /* Just pick one node, since fallback list is circular */
1477 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1478 unsigned int sum = 0;
1479
e310fd43
MB
1480 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1481 struct zone **zonep = zonelist->zones;
1482 struct zone *zone;
1da177e4 1483
e310fd43
MB
1484 for (zone = *zonep++; zone; zone = *zonep++) {
1485 unsigned long size = zone->present_pages;
1486 unsigned long high = zone->pages_high;
1487 if (size > high)
1488 sum += size - high;
1da177e4
LT
1489 }
1490
1491 return sum;
1492}
1493
1494/*
1495 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1496 */
1497unsigned int nr_free_buffer_pages(void)
1498{
af4ca457 1499 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1500}
1501
1502/*
1503 * Amount of free RAM allocatable within all zones
1504 */
1505unsigned int nr_free_pagecache_pages(void)
1506{
af4ca457 1507 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1508}
08e0f6a9
CL
1509
1510static inline void show_node(struct zone *zone)
1da177e4 1511{
08e0f6a9 1512 if (NUMA_BUILD)
25ba77c1 1513 printk("Node %d ", zone_to_nid(zone));
1da177e4 1514}
1da177e4 1515
1da177e4
LT
1516void si_meminfo(struct sysinfo *val)
1517{
1518 val->totalram = totalram_pages;
1519 val->sharedram = 0;
d23ad423 1520 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1521 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1522 val->totalhigh = totalhigh_pages;
1523 val->freehigh = nr_free_highpages();
1da177e4
LT
1524 val->mem_unit = PAGE_SIZE;
1525}
1526
1527EXPORT_SYMBOL(si_meminfo);
1528
1529#ifdef CONFIG_NUMA
1530void si_meminfo_node(struct sysinfo *val, int nid)
1531{
1532 pg_data_t *pgdat = NODE_DATA(nid);
1533
1534 val->totalram = pgdat->node_present_pages;
d23ad423 1535 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1536#ifdef CONFIG_HIGHMEM
1da177e4 1537 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1538 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1539 NR_FREE_PAGES);
98d2b0eb
CL
1540#else
1541 val->totalhigh = 0;
1542 val->freehigh = 0;
1543#endif
1da177e4
LT
1544 val->mem_unit = PAGE_SIZE;
1545}
1546#endif
1547
1548#define K(x) ((x) << (PAGE_SHIFT-10))
1549
1550/*
1551 * Show free area list (used inside shift_scroll-lock stuff)
1552 * We also calculate the percentage fragmentation. We do this by counting the
1553 * memory on each free list with the exception of the first item on the list.
1554 */
1555void show_free_areas(void)
1556{
c7241913 1557 int cpu;
1da177e4
LT
1558 struct zone *zone;
1559
1560 for_each_zone(zone) {
c7241913 1561 if (!populated_zone(zone))
1da177e4 1562 continue;
c7241913
JS
1563
1564 show_node(zone);
1565 printk("%s per-cpu:\n", zone->name);
1da177e4 1566
6b482c67 1567 for_each_online_cpu(cpu) {
1da177e4
LT
1568 struct per_cpu_pageset *pageset;
1569
e7c8d5c9 1570 pageset = zone_pcp(zone, cpu);
1da177e4 1571
c7241913
JS
1572 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1573 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1574 cpu, pageset->pcp[0].high,
1575 pageset->pcp[0].batch, pageset->pcp[0].count,
1576 pageset->pcp[1].high, pageset->pcp[1].batch,
1577 pageset->pcp[1].count);
1da177e4
LT
1578 }
1579 }
1580
a25700a5 1581 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1582 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1583 global_page_state(NR_ACTIVE),
1584 global_page_state(NR_INACTIVE),
b1e7a8fd 1585 global_page_state(NR_FILE_DIRTY),
ce866b34 1586 global_page_state(NR_WRITEBACK),
fd39fc85 1587 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1588 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1589 global_page_state(NR_SLAB_RECLAIMABLE) +
1590 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1591 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1592 global_page_state(NR_PAGETABLE),
1593 global_page_state(NR_BOUNCE));
1da177e4
LT
1594
1595 for_each_zone(zone) {
1596 int i;
1597
c7241913
JS
1598 if (!populated_zone(zone))
1599 continue;
1600
1da177e4
LT
1601 show_node(zone);
1602 printk("%s"
1603 " free:%lukB"
1604 " min:%lukB"
1605 " low:%lukB"
1606 " high:%lukB"
1607 " active:%lukB"
1608 " inactive:%lukB"
1609 " present:%lukB"
1610 " pages_scanned:%lu"
1611 " all_unreclaimable? %s"
1612 "\n",
1613 zone->name,
d23ad423 1614 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1615 K(zone->pages_min),
1616 K(zone->pages_low),
1617 K(zone->pages_high),
c8785385
CL
1618 K(zone_page_state(zone, NR_ACTIVE)),
1619 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1620 K(zone->present_pages),
1621 zone->pages_scanned,
1622 (zone->all_unreclaimable ? "yes" : "no")
1623 );
1624 printk("lowmem_reserve[]:");
1625 for (i = 0; i < MAX_NR_ZONES; i++)
1626 printk(" %lu", zone->lowmem_reserve[i]);
1627 printk("\n");
1628 }
1629
1630 for_each_zone(zone) {
8f9de51a 1631 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1632
c7241913
JS
1633 if (!populated_zone(zone))
1634 continue;
1635
1da177e4
LT
1636 show_node(zone);
1637 printk("%s: ", zone->name);
1da177e4
LT
1638
1639 spin_lock_irqsave(&zone->lock, flags);
1640 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1641 nr[order] = zone->free_area[order].nr_free;
1642 total += nr[order] << order;
1da177e4
LT
1643 }
1644 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1645 for (order = 0; order < MAX_ORDER; order++)
1646 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1647 printk("= %lukB\n", K(total));
1648 }
1649
1650 show_swap_cache_info();
1651}
1652
1653/*
1654 * Builds allocation fallback zone lists.
1a93205b
CL
1655 *
1656 * Add all populated zones of a node to the zonelist.
1da177e4 1657 */
86356ab1 1658static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1659 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1660{
1a93205b
CL
1661 struct zone *zone;
1662
98d2b0eb 1663 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1664 zone_type++;
02a68a5e
CL
1665
1666 do {
2f6726e5 1667 zone_type--;
070f8032 1668 zone = pgdat->node_zones + zone_type;
1a93205b 1669 if (populated_zone(zone)) {
070f8032
CL
1670 zonelist->zones[nr_zones++] = zone;
1671 check_highest_zone(zone_type);
1da177e4 1672 }
02a68a5e 1673
2f6726e5 1674 } while (zone_type);
070f8032 1675 return nr_zones;
1da177e4
LT
1676}
1677
1678#ifdef CONFIG_NUMA
1679#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1680static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1681/**
4dc3b16b 1682 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1683 * @node: node whose fallback list we're appending
1684 * @used_node_mask: nodemask_t of already used nodes
1685 *
1686 * We use a number of factors to determine which is the next node that should
1687 * appear on a given node's fallback list. The node should not have appeared
1688 * already in @node's fallback list, and it should be the next closest node
1689 * according to the distance array (which contains arbitrary distance values
1690 * from each node to each node in the system), and should also prefer nodes
1691 * with no CPUs, since presumably they'll have very little allocation pressure
1692 * on them otherwise.
1693 * It returns -1 if no node is found.
1694 */
86356ab1 1695static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1696{
4cf808eb 1697 int n, val;
1da177e4
LT
1698 int min_val = INT_MAX;
1699 int best_node = -1;
1700
4cf808eb
LT
1701 /* Use the local node if we haven't already */
1702 if (!node_isset(node, *used_node_mask)) {
1703 node_set(node, *used_node_mask);
1704 return node;
1705 }
1da177e4 1706
4cf808eb
LT
1707 for_each_online_node(n) {
1708 cpumask_t tmp;
1da177e4
LT
1709
1710 /* Don't want a node to appear more than once */
1711 if (node_isset(n, *used_node_mask))
1712 continue;
1713
1da177e4
LT
1714 /* Use the distance array to find the distance */
1715 val = node_distance(node, n);
1716
4cf808eb
LT
1717 /* Penalize nodes under us ("prefer the next node") */
1718 val += (n < node);
1719
1da177e4
LT
1720 /* Give preference to headless and unused nodes */
1721 tmp = node_to_cpumask(n);
1722 if (!cpus_empty(tmp))
1723 val += PENALTY_FOR_NODE_WITH_CPUS;
1724
1725 /* Slight preference for less loaded node */
1726 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1727 val += node_load[n];
1728
1729 if (val < min_val) {
1730 min_val = val;
1731 best_node = n;
1732 }
1733 }
1734
1735 if (best_node >= 0)
1736 node_set(best_node, *used_node_mask);
1737
1738 return best_node;
1739}
1740
86356ab1 1741static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1742{
19655d34
CL
1743 int j, node, local_node;
1744 enum zone_type i;
1da177e4
LT
1745 int prev_node, load;
1746 struct zonelist *zonelist;
1747 nodemask_t used_mask;
1748
1749 /* initialize zonelists */
19655d34 1750 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1751 zonelist = pgdat->node_zonelists + i;
1752 zonelist->zones[0] = NULL;
1753 }
1754
1755 /* NUMA-aware ordering of nodes */
1756 local_node = pgdat->node_id;
1757 load = num_online_nodes();
1758 prev_node = local_node;
1759 nodes_clear(used_mask);
1760 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1761 int distance = node_distance(local_node, node);
1762
1763 /*
1764 * If another node is sufficiently far away then it is better
1765 * to reclaim pages in a zone before going off node.
1766 */
1767 if (distance > RECLAIM_DISTANCE)
1768 zone_reclaim_mode = 1;
1769
1da177e4
LT
1770 /*
1771 * We don't want to pressure a particular node.
1772 * So adding penalty to the first node in same
1773 * distance group to make it round-robin.
1774 */
9eeff239
CL
1775
1776 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1777 node_load[node] += load;
1778 prev_node = node;
1779 load--;
19655d34 1780 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1781 zonelist = pgdat->node_zonelists + i;
1782 for (j = 0; zonelist->zones[j] != NULL; j++);
1783
19655d34 1784 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1785 zonelist->zones[j] = NULL;
1786 }
1787 }
1788}
1789
9276b1bc
PJ
1790/* Construct the zonelist performance cache - see further mmzone.h */
1791static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1792{
1793 int i;
1794
1795 for (i = 0; i < MAX_NR_ZONES; i++) {
1796 struct zonelist *zonelist;
1797 struct zonelist_cache *zlc;
1798 struct zone **z;
1799
1800 zonelist = pgdat->node_zonelists + i;
1801 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1802 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1803 for (z = zonelist->zones; *z; z++)
1804 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1805 }
1806}
1807
1da177e4
LT
1808#else /* CONFIG_NUMA */
1809
86356ab1 1810static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1811{
19655d34
CL
1812 int node, local_node;
1813 enum zone_type i,j;
1da177e4
LT
1814
1815 local_node = pgdat->node_id;
19655d34 1816 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1817 struct zonelist *zonelist;
1818
1819 zonelist = pgdat->node_zonelists + i;
1820
19655d34 1821 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1822 /*
1823 * Now we build the zonelist so that it contains the zones
1824 * of all the other nodes.
1825 * We don't want to pressure a particular node, so when
1826 * building the zones for node N, we make sure that the
1827 * zones coming right after the local ones are those from
1828 * node N+1 (modulo N)
1829 */
1830 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1831 if (!node_online(node))
1832 continue;
19655d34 1833 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1834 }
1835 for (node = 0; node < local_node; node++) {
1836 if (!node_online(node))
1837 continue;
19655d34 1838 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1839 }
1840
1841 zonelist->zones[j] = NULL;
1842 }
1843}
1844
9276b1bc
PJ
1845/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1846static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1847{
1848 int i;
1849
1850 for (i = 0; i < MAX_NR_ZONES; i++)
1851 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1852}
1853
1da177e4
LT
1854#endif /* CONFIG_NUMA */
1855
6811378e
YG
1856/* return values int ....just for stop_machine_run() */
1857static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1858{
6811378e 1859 int nid;
9276b1bc
PJ
1860
1861 for_each_online_node(nid) {
6811378e 1862 build_zonelists(NODE_DATA(nid));
9276b1bc
PJ
1863 build_zonelist_cache(NODE_DATA(nid));
1864 }
6811378e
YG
1865 return 0;
1866}
1867
1868void __meminit build_all_zonelists(void)
1869{
1870 if (system_state == SYSTEM_BOOTING) {
423b41d7 1871 __build_all_zonelists(NULL);
6811378e
YG
1872 cpuset_init_current_mems_allowed();
1873 } else {
1874 /* we have to stop all cpus to guaranntee there is no user
1875 of zonelist */
1876 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1877 /* cpuset refresh routine should be here */
1878 }
bd1e22b8
AM
1879 vm_total_pages = nr_free_pagecache_pages();
1880 printk("Built %i zonelists. Total pages: %ld\n",
1881 num_online_nodes(), vm_total_pages);
1da177e4
LT
1882}
1883
1884/*
1885 * Helper functions to size the waitqueue hash table.
1886 * Essentially these want to choose hash table sizes sufficiently
1887 * large so that collisions trying to wait on pages are rare.
1888 * But in fact, the number of active page waitqueues on typical
1889 * systems is ridiculously low, less than 200. So this is even
1890 * conservative, even though it seems large.
1891 *
1892 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1893 * waitqueues, i.e. the size of the waitq table given the number of pages.
1894 */
1895#define PAGES_PER_WAITQUEUE 256
1896
cca448fe 1897#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1898static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1899{
1900 unsigned long size = 1;
1901
1902 pages /= PAGES_PER_WAITQUEUE;
1903
1904 while (size < pages)
1905 size <<= 1;
1906
1907 /*
1908 * Once we have dozens or even hundreds of threads sleeping
1909 * on IO we've got bigger problems than wait queue collision.
1910 * Limit the size of the wait table to a reasonable size.
1911 */
1912 size = min(size, 4096UL);
1913
1914 return max(size, 4UL);
1915}
cca448fe
YG
1916#else
1917/*
1918 * A zone's size might be changed by hot-add, so it is not possible to determine
1919 * a suitable size for its wait_table. So we use the maximum size now.
1920 *
1921 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1922 *
1923 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1924 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1925 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1926 *
1927 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1928 * or more by the traditional way. (See above). It equals:
1929 *
1930 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1931 * ia64(16K page size) : = ( 8G + 4M)byte.
1932 * powerpc (64K page size) : = (32G +16M)byte.
1933 */
1934static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1935{
1936 return 4096UL;
1937}
1938#endif
1da177e4
LT
1939
1940/*
1941 * This is an integer logarithm so that shifts can be used later
1942 * to extract the more random high bits from the multiplicative
1943 * hash function before the remainder is taken.
1944 */
1945static inline unsigned long wait_table_bits(unsigned long size)
1946{
1947 return ffz(~size);
1948}
1949
1950#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1951
1da177e4
LT
1952/*
1953 * Initially all pages are reserved - free ones are freed
1954 * up by free_all_bootmem() once the early boot process is
1955 * done. Non-atomic initialization, single-pass.
1956 */
c09b4240 1957void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 1958 unsigned long start_pfn, enum memmap_context context)
1da177e4 1959{
1da177e4 1960 struct page *page;
29751f69
AW
1961 unsigned long end_pfn = start_pfn + size;
1962 unsigned long pfn;
1da177e4 1963
cbe8dd4a 1964 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
1965 /*
1966 * There can be holes in boot-time mem_map[]s
1967 * handed to this function. They do not
1968 * exist on hotplugged memory.
1969 */
1970 if (context == MEMMAP_EARLY) {
1971 if (!early_pfn_valid(pfn))
1972 continue;
1973 if (!early_pfn_in_nid(pfn, nid))
1974 continue;
1975 }
d41dee36
AW
1976 page = pfn_to_page(pfn);
1977 set_page_links(page, zone, nid, pfn);
7835e98b 1978 init_page_count(page);
1da177e4
LT
1979 reset_page_mapcount(page);
1980 SetPageReserved(page);
1981 INIT_LIST_HEAD(&page->lru);
1982#ifdef WANT_PAGE_VIRTUAL
1983 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1984 if (!is_highmem_idx(zone))
3212c6be 1985 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1986#endif
1da177e4
LT
1987 }
1988}
1989
1990void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1991 unsigned long size)
1992{
1993 int order;
1994 for (order = 0; order < MAX_ORDER ; order++) {
1995 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1996 zone->free_area[order].nr_free = 0;
1997 }
1998}
1999
2000#ifndef __HAVE_ARCH_MEMMAP_INIT
2001#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2002 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2003#endif
2004
6292d9aa 2005static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2006{
2007 int batch;
2008
2009 /*
2010 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2011 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2012 *
2013 * OK, so we don't know how big the cache is. So guess.
2014 */
2015 batch = zone->present_pages / 1024;
ba56e91c
SR
2016 if (batch * PAGE_SIZE > 512 * 1024)
2017 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2018 batch /= 4; /* We effectively *= 4 below */
2019 if (batch < 1)
2020 batch = 1;
2021
2022 /*
0ceaacc9
NP
2023 * Clamp the batch to a 2^n - 1 value. Having a power
2024 * of 2 value was found to be more likely to have
2025 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2026 *
0ceaacc9
NP
2027 * For example if 2 tasks are alternately allocating
2028 * batches of pages, one task can end up with a lot
2029 * of pages of one half of the possible page colors
2030 * and the other with pages of the other colors.
e7c8d5c9 2031 */
0ceaacc9 2032 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2033
e7c8d5c9
CL
2034 return batch;
2035}
2036
2caaad41
CL
2037inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2038{
2039 struct per_cpu_pages *pcp;
2040
1c6fe946
MD
2041 memset(p, 0, sizeof(*p));
2042
2caaad41
CL
2043 pcp = &p->pcp[0]; /* hot */
2044 pcp->count = 0;
2caaad41
CL
2045 pcp->high = 6 * batch;
2046 pcp->batch = max(1UL, 1 * batch);
2047 INIT_LIST_HEAD(&pcp->list);
2048
2049 pcp = &p->pcp[1]; /* cold*/
2050 pcp->count = 0;
2caaad41 2051 pcp->high = 2 * batch;
e46a5e28 2052 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2053 INIT_LIST_HEAD(&pcp->list);
2054}
2055
8ad4b1fb
RS
2056/*
2057 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2058 * to the value high for the pageset p.
2059 */
2060
2061static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2062 unsigned long high)
2063{
2064 struct per_cpu_pages *pcp;
2065
2066 pcp = &p->pcp[0]; /* hot list */
2067 pcp->high = high;
2068 pcp->batch = max(1UL, high/4);
2069 if ((high/4) > (PAGE_SHIFT * 8))
2070 pcp->batch = PAGE_SHIFT * 8;
2071}
2072
2073
e7c8d5c9
CL
2074#ifdef CONFIG_NUMA
2075/*
2caaad41
CL
2076 * Boot pageset table. One per cpu which is going to be used for all
2077 * zones and all nodes. The parameters will be set in such a way
2078 * that an item put on a list will immediately be handed over to
2079 * the buddy list. This is safe since pageset manipulation is done
2080 * with interrupts disabled.
2081 *
2082 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2083 *
2084 * The boot_pagesets must be kept even after bootup is complete for
2085 * unused processors and/or zones. They do play a role for bootstrapping
2086 * hotplugged processors.
2087 *
2088 * zoneinfo_show() and maybe other functions do
2089 * not check if the processor is online before following the pageset pointer.
2090 * Other parts of the kernel may not check if the zone is available.
2caaad41 2091 */
88a2a4ac 2092static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2093
2094/*
2095 * Dynamically allocate memory for the
e7c8d5c9
CL
2096 * per cpu pageset array in struct zone.
2097 */
6292d9aa 2098static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2099{
2100 struct zone *zone, *dzone;
e7c8d5c9
CL
2101
2102 for_each_zone(zone) {
e7c8d5c9 2103
66a55030
CL
2104 if (!populated_zone(zone))
2105 continue;
2106
23316bc8 2107 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 2108 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 2109 if (!zone_pcp(zone, cpu))
e7c8d5c9 2110 goto bad;
e7c8d5c9 2111
23316bc8 2112 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2113
2114 if (percpu_pagelist_fraction)
2115 setup_pagelist_highmark(zone_pcp(zone, cpu),
2116 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2117 }
2118
2119 return 0;
2120bad:
2121 for_each_zone(dzone) {
2122 if (dzone == zone)
2123 break;
23316bc8
NP
2124 kfree(zone_pcp(dzone, cpu));
2125 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2126 }
2127 return -ENOMEM;
2128}
2129
2130static inline void free_zone_pagesets(int cpu)
2131{
e7c8d5c9
CL
2132 struct zone *zone;
2133
2134 for_each_zone(zone) {
2135 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2136
f3ef9ead
DR
2137 /* Free per_cpu_pageset if it is slab allocated */
2138 if (pset != &boot_pageset[cpu])
2139 kfree(pset);
e7c8d5c9 2140 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2141 }
e7c8d5c9
CL
2142}
2143
9c7b216d 2144static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2145 unsigned long action,
2146 void *hcpu)
2147{
2148 int cpu = (long)hcpu;
2149 int ret = NOTIFY_OK;
2150
2151 switch (action) {
ce421c79
AW
2152 case CPU_UP_PREPARE:
2153 if (process_zones(cpu))
2154 ret = NOTIFY_BAD;
2155 break;
2156 case CPU_UP_CANCELED:
2157 case CPU_DEAD:
2158 free_zone_pagesets(cpu);
2159 break;
2160 default:
2161 break;
e7c8d5c9
CL
2162 }
2163 return ret;
2164}
2165
74b85f37 2166static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2167 { &pageset_cpuup_callback, NULL, 0 };
2168
78d9955b 2169void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2170{
2171 int err;
2172
2173 /* Initialize per_cpu_pageset for cpu 0.
2174 * A cpuup callback will do this for every cpu
2175 * as it comes online
2176 */
2177 err = process_zones(smp_processor_id());
2178 BUG_ON(err);
2179 register_cpu_notifier(&pageset_notifier);
2180}
2181
2182#endif
2183
c09b4240 2184static __meminit
cca448fe 2185int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2186{
2187 int i;
2188 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2189 size_t alloc_size;
ed8ece2e
DH
2190
2191 /*
2192 * The per-page waitqueue mechanism uses hashed waitqueues
2193 * per zone.
2194 */
02b694de
YG
2195 zone->wait_table_hash_nr_entries =
2196 wait_table_hash_nr_entries(zone_size_pages);
2197 zone->wait_table_bits =
2198 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2199 alloc_size = zone->wait_table_hash_nr_entries
2200 * sizeof(wait_queue_head_t);
2201
2202 if (system_state == SYSTEM_BOOTING) {
2203 zone->wait_table = (wait_queue_head_t *)
2204 alloc_bootmem_node(pgdat, alloc_size);
2205 } else {
2206 /*
2207 * This case means that a zone whose size was 0 gets new memory
2208 * via memory hot-add.
2209 * But it may be the case that a new node was hot-added. In
2210 * this case vmalloc() will not be able to use this new node's
2211 * memory - this wait_table must be initialized to use this new
2212 * node itself as well.
2213 * To use this new node's memory, further consideration will be
2214 * necessary.
2215 */
2216 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2217 }
2218 if (!zone->wait_table)
2219 return -ENOMEM;
ed8ece2e 2220
02b694de 2221 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2222 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2223
2224 return 0;
ed8ece2e
DH
2225}
2226
c09b4240 2227static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2228{
2229 int cpu;
2230 unsigned long batch = zone_batchsize(zone);
2231
2232 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2233#ifdef CONFIG_NUMA
2234 /* Early boot. Slab allocator not functional yet */
23316bc8 2235 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2236 setup_pageset(&boot_pageset[cpu],0);
2237#else
2238 setup_pageset(zone_pcp(zone,cpu), batch);
2239#endif
2240 }
f5335c0f
AB
2241 if (zone->present_pages)
2242 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2243 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2244}
2245
718127cc
YG
2246__meminit int init_currently_empty_zone(struct zone *zone,
2247 unsigned long zone_start_pfn,
a2f3aa02
DH
2248 unsigned long size,
2249 enum memmap_context context)
ed8ece2e
DH
2250{
2251 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2252 int ret;
2253 ret = zone_wait_table_init(zone, size);
2254 if (ret)
2255 return ret;
ed8ece2e
DH
2256 pgdat->nr_zones = zone_idx(zone) + 1;
2257
ed8ece2e
DH
2258 zone->zone_start_pfn = zone_start_pfn;
2259
2260 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2261
2262 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2263
2264 return 0;
ed8ece2e
DH
2265}
2266
c713216d
MG
2267#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2268/*
2269 * Basic iterator support. Return the first range of PFNs for a node
2270 * Note: nid == MAX_NUMNODES returns first region regardless of node
2271 */
2272static int __init first_active_region_index_in_nid(int nid)
2273{
2274 int i;
2275
2276 for (i = 0; i < nr_nodemap_entries; i++)
2277 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2278 return i;
2279
2280 return -1;
2281}
2282
2283/*
2284 * Basic iterator support. Return the next active range of PFNs for a node
2285 * Note: nid == MAX_NUMNODES returns next region regardles of node
2286 */
2287static int __init next_active_region_index_in_nid(int index, int nid)
2288{
2289 for (index = index + 1; index < nr_nodemap_entries; index++)
2290 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2291 return index;
2292
2293 return -1;
2294}
2295
2296#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2297/*
2298 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2299 * Architectures may implement their own version but if add_active_range()
2300 * was used and there are no special requirements, this is a convenient
2301 * alternative
2302 */
2303int __init early_pfn_to_nid(unsigned long pfn)
2304{
2305 int i;
2306
2307 for (i = 0; i < nr_nodemap_entries; i++) {
2308 unsigned long start_pfn = early_node_map[i].start_pfn;
2309 unsigned long end_pfn = early_node_map[i].end_pfn;
2310
2311 if (start_pfn <= pfn && pfn < end_pfn)
2312 return early_node_map[i].nid;
2313 }
2314
2315 return 0;
2316}
2317#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2318
2319/* Basic iterator support to walk early_node_map[] */
2320#define for_each_active_range_index_in_nid(i, nid) \
2321 for (i = first_active_region_index_in_nid(nid); i != -1; \
2322 i = next_active_region_index_in_nid(i, nid))
2323
2324/**
2325 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2326 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2327 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2328 *
2329 * If an architecture guarantees that all ranges registered with
2330 * add_active_ranges() contain no holes and may be freed, this
2331 * this function may be used instead of calling free_bootmem() manually.
2332 */
2333void __init free_bootmem_with_active_regions(int nid,
2334 unsigned long max_low_pfn)
2335{
2336 int i;
2337
2338 for_each_active_range_index_in_nid(i, nid) {
2339 unsigned long size_pages = 0;
2340 unsigned long end_pfn = early_node_map[i].end_pfn;
2341
2342 if (early_node_map[i].start_pfn >= max_low_pfn)
2343 continue;
2344
2345 if (end_pfn > max_low_pfn)
2346 end_pfn = max_low_pfn;
2347
2348 size_pages = end_pfn - early_node_map[i].start_pfn;
2349 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2350 PFN_PHYS(early_node_map[i].start_pfn),
2351 size_pages << PAGE_SHIFT);
2352 }
2353}
2354
2355/**
2356 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2357 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2358 *
2359 * If an architecture guarantees that all ranges registered with
2360 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2361 * function may be used instead of calling memory_present() manually.
c713216d
MG
2362 */
2363void __init sparse_memory_present_with_active_regions(int nid)
2364{
2365 int i;
2366
2367 for_each_active_range_index_in_nid(i, nid)
2368 memory_present(early_node_map[i].nid,
2369 early_node_map[i].start_pfn,
2370 early_node_map[i].end_pfn);
2371}
2372
fb01439c
MG
2373/**
2374 * push_node_boundaries - Push node boundaries to at least the requested boundary
2375 * @nid: The nid of the node to push the boundary for
2376 * @start_pfn: The start pfn of the node
2377 * @end_pfn: The end pfn of the node
2378 *
2379 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2380 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2381 * be hotplugged even though no physical memory exists. This function allows
2382 * an arch to push out the node boundaries so mem_map is allocated that can
2383 * be used later.
2384 */
2385#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2386void __init push_node_boundaries(unsigned int nid,
2387 unsigned long start_pfn, unsigned long end_pfn)
2388{
2389 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2390 nid, start_pfn, end_pfn);
2391
2392 /* Initialise the boundary for this node if necessary */
2393 if (node_boundary_end_pfn[nid] == 0)
2394 node_boundary_start_pfn[nid] = -1UL;
2395
2396 /* Update the boundaries */
2397 if (node_boundary_start_pfn[nid] > start_pfn)
2398 node_boundary_start_pfn[nid] = start_pfn;
2399 if (node_boundary_end_pfn[nid] < end_pfn)
2400 node_boundary_end_pfn[nid] = end_pfn;
2401}
2402
2403/* If necessary, push the node boundary out for reserve hotadd */
2404static void __init account_node_boundary(unsigned int nid,
2405 unsigned long *start_pfn, unsigned long *end_pfn)
2406{
2407 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2408 nid, *start_pfn, *end_pfn);
2409
2410 /* Return if boundary information has not been provided */
2411 if (node_boundary_end_pfn[nid] == 0)
2412 return;
2413
2414 /* Check the boundaries and update if necessary */
2415 if (node_boundary_start_pfn[nid] < *start_pfn)
2416 *start_pfn = node_boundary_start_pfn[nid];
2417 if (node_boundary_end_pfn[nid] > *end_pfn)
2418 *end_pfn = node_boundary_end_pfn[nid];
2419}
2420#else
2421void __init push_node_boundaries(unsigned int nid,
2422 unsigned long start_pfn, unsigned long end_pfn) {}
2423
2424static void __init account_node_boundary(unsigned int nid,
2425 unsigned long *start_pfn, unsigned long *end_pfn) {}
2426#endif
2427
2428
c713216d
MG
2429/**
2430 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2431 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2432 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2433 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2434 *
2435 * It returns the start and end page frame of a node based on information
2436 * provided by an arch calling add_active_range(). If called for a node
2437 * with no available memory, a warning is printed and the start and end
88ca3b94 2438 * PFNs will be 0.
c713216d
MG
2439 */
2440void __init get_pfn_range_for_nid(unsigned int nid,
2441 unsigned long *start_pfn, unsigned long *end_pfn)
2442{
2443 int i;
2444 *start_pfn = -1UL;
2445 *end_pfn = 0;
2446
2447 for_each_active_range_index_in_nid(i, nid) {
2448 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2449 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2450 }
2451
2452 if (*start_pfn == -1UL) {
2453 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2454 *start_pfn = 0;
2455 }
fb01439c
MG
2456
2457 /* Push the node boundaries out if requested */
2458 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2459}
2460
2461/*
2462 * Return the number of pages a zone spans in a node, including holes
2463 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2464 */
2465unsigned long __init zone_spanned_pages_in_node(int nid,
2466 unsigned long zone_type,
2467 unsigned long *ignored)
2468{
2469 unsigned long node_start_pfn, node_end_pfn;
2470 unsigned long zone_start_pfn, zone_end_pfn;
2471
2472 /* Get the start and end of the node and zone */
2473 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2474 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2475 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2476
2477 /* Check that this node has pages within the zone's required range */
2478 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2479 return 0;
2480
2481 /* Move the zone boundaries inside the node if necessary */
2482 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2483 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2484
2485 /* Return the spanned pages */
2486 return zone_end_pfn - zone_start_pfn;
2487}
2488
2489/*
2490 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2491 * then all holes in the requested range will be accounted for.
c713216d
MG
2492 */
2493unsigned long __init __absent_pages_in_range(int nid,
2494 unsigned long range_start_pfn,
2495 unsigned long range_end_pfn)
2496{
2497 int i = 0;
2498 unsigned long prev_end_pfn = 0, hole_pages = 0;
2499 unsigned long start_pfn;
2500
2501 /* Find the end_pfn of the first active range of pfns in the node */
2502 i = first_active_region_index_in_nid(nid);
2503 if (i == -1)
2504 return 0;
2505
9c7cd687
MG
2506 /* Account for ranges before physical memory on this node */
2507 if (early_node_map[i].start_pfn > range_start_pfn)
2508 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2509
c713216d
MG
2510 prev_end_pfn = early_node_map[i].start_pfn;
2511
2512 /* Find all holes for the zone within the node */
2513 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2514
2515 /* No need to continue if prev_end_pfn is outside the zone */
2516 if (prev_end_pfn >= range_end_pfn)
2517 break;
2518
2519 /* Make sure the end of the zone is not within the hole */
2520 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2521 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2522
2523 /* Update the hole size cound and move on */
2524 if (start_pfn > range_start_pfn) {
2525 BUG_ON(prev_end_pfn > start_pfn);
2526 hole_pages += start_pfn - prev_end_pfn;
2527 }
2528 prev_end_pfn = early_node_map[i].end_pfn;
2529 }
2530
9c7cd687
MG
2531 /* Account for ranges past physical memory on this node */
2532 if (range_end_pfn > prev_end_pfn)
0c6cb974 2533 hole_pages += range_end_pfn -
9c7cd687
MG
2534 max(range_start_pfn, prev_end_pfn);
2535
c713216d
MG
2536 return hole_pages;
2537}
2538
2539/**
2540 * absent_pages_in_range - Return number of page frames in holes within a range
2541 * @start_pfn: The start PFN to start searching for holes
2542 * @end_pfn: The end PFN to stop searching for holes
2543 *
88ca3b94 2544 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
2545 */
2546unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2547 unsigned long end_pfn)
2548{
2549 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2550}
2551
2552/* Return the number of page frames in holes in a zone on a node */
2553unsigned long __init zone_absent_pages_in_node(int nid,
2554 unsigned long zone_type,
2555 unsigned long *ignored)
2556{
9c7cd687
MG
2557 unsigned long node_start_pfn, node_end_pfn;
2558 unsigned long zone_start_pfn, zone_end_pfn;
2559
2560 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2561 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2562 node_start_pfn);
2563 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2564 node_end_pfn);
2565
2566 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 2567}
0e0b864e 2568
c713216d
MG
2569#else
2570static inline unsigned long zone_spanned_pages_in_node(int nid,
2571 unsigned long zone_type,
2572 unsigned long *zones_size)
2573{
2574 return zones_size[zone_type];
2575}
2576
2577static inline unsigned long zone_absent_pages_in_node(int nid,
2578 unsigned long zone_type,
2579 unsigned long *zholes_size)
2580{
2581 if (!zholes_size)
2582 return 0;
2583
2584 return zholes_size[zone_type];
2585}
0e0b864e 2586
c713216d
MG
2587#endif
2588
2589static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2590 unsigned long *zones_size, unsigned long *zholes_size)
2591{
2592 unsigned long realtotalpages, totalpages = 0;
2593 enum zone_type i;
2594
2595 for (i = 0; i < MAX_NR_ZONES; i++)
2596 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2597 zones_size);
2598 pgdat->node_spanned_pages = totalpages;
2599
2600 realtotalpages = totalpages;
2601 for (i = 0; i < MAX_NR_ZONES; i++)
2602 realtotalpages -=
2603 zone_absent_pages_in_node(pgdat->node_id, i,
2604 zholes_size);
2605 pgdat->node_present_pages = realtotalpages;
2606 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2607 realtotalpages);
2608}
2609
1da177e4
LT
2610/*
2611 * Set up the zone data structures:
2612 * - mark all pages reserved
2613 * - mark all memory queues empty
2614 * - clear the memory bitmaps
2615 */
86356ab1 2616static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2617 unsigned long *zones_size, unsigned long *zholes_size)
2618{
2f1b6248 2619 enum zone_type j;
ed8ece2e 2620 int nid = pgdat->node_id;
1da177e4 2621 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2622 int ret;
1da177e4 2623
208d54e5 2624 pgdat_resize_init(pgdat);
1da177e4
LT
2625 pgdat->nr_zones = 0;
2626 init_waitqueue_head(&pgdat->kswapd_wait);
2627 pgdat->kswapd_max_order = 0;
2628
2629 for (j = 0; j < MAX_NR_ZONES; j++) {
2630 struct zone *zone = pgdat->node_zones + j;
0e0b864e 2631 unsigned long size, realsize, memmap_pages;
1da177e4 2632
c713216d
MG
2633 size = zone_spanned_pages_in_node(nid, j, zones_size);
2634 realsize = size - zone_absent_pages_in_node(nid, j,
2635 zholes_size);
1da177e4 2636
0e0b864e
MG
2637 /*
2638 * Adjust realsize so that it accounts for how much memory
2639 * is used by this zone for memmap. This affects the watermark
2640 * and per-cpu initialisations
2641 */
2642 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2643 if (realsize >= memmap_pages) {
2644 realsize -= memmap_pages;
2645 printk(KERN_DEBUG
2646 " %s zone: %lu pages used for memmap\n",
2647 zone_names[j], memmap_pages);
2648 } else
2649 printk(KERN_WARNING
2650 " %s zone: %lu pages exceeds realsize %lu\n",
2651 zone_names[j], memmap_pages, realsize);
2652
6267276f
CL
2653 /* Account for reserved pages */
2654 if (j == 0 && realsize > dma_reserve) {
0e0b864e 2655 realsize -= dma_reserve;
6267276f
CL
2656 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2657 zone_names[0], dma_reserve);
0e0b864e
MG
2658 }
2659
98d2b0eb 2660 if (!is_highmem_idx(j))
1da177e4
LT
2661 nr_kernel_pages += realsize;
2662 nr_all_pages += realsize;
2663
2664 zone->spanned_pages = size;
2665 zone->present_pages = realsize;
9614634f 2666#ifdef CONFIG_NUMA
d5f541ed 2667 zone->node = nid;
8417bba4 2668 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2669 / 100;
0ff38490 2670 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2671#endif
1da177e4
LT
2672 zone->name = zone_names[j];
2673 spin_lock_init(&zone->lock);
2674 spin_lock_init(&zone->lru_lock);
bdc8cb98 2675 zone_seqlock_init(zone);
1da177e4 2676 zone->zone_pgdat = pgdat;
1da177e4 2677
3bb1a852 2678 zone->prev_priority = DEF_PRIORITY;
1da177e4 2679
ed8ece2e 2680 zone_pcp_init(zone);
1da177e4
LT
2681 INIT_LIST_HEAD(&zone->active_list);
2682 INIT_LIST_HEAD(&zone->inactive_list);
2683 zone->nr_scan_active = 0;
2684 zone->nr_scan_inactive = 0;
2244b95a 2685 zap_zone_vm_stats(zone);
53e9a615 2686 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2687 if (!size)
2688 continue;
2689
a2f3aa02
DH
2690 ret = init_currently_empty_zone(zone, zone_start_pfn,
2691 size, MEMMAP_EARLY);
718127cc 2692 BUG_ON(ret);
1da177e4 2693 zone_start_pfn += size;
1da177e4
LT
2694 }
2695}
2696
2697static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2698{
1da177e4
LT
2699 /* Skip empty nodes */
2700 if (!pgdat->node_spanned_pages)
2701 return;
2702
d41dee36 2703#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2704 /* ia64 gets its own node_mem_map, before this, without bootmem */
2705 if (!pgdat->node_mem_map) {
e984bb43 2706 unsigned long size, start, end;
d41dee36
AW
2707 struct page *map;
2708
e984bb43
BP
2709 /*
2710 * The zone's endpoints aren't required to be MAX_ORDER
2711 * aligned but the node_mem_map endpoints must be in order
2712 * for the buddy allocator to function correctly.
2713 */
2714 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2715 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2716 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2717 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2718 map = alloc_remap(pgdat->node_id, size);
2719 if (!map)
2720 map = alloc_bootmem_node(pgdat, size);
e984bb43 2721 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2722 }
d41dee36 2723#ifdef CONFIG_FLATMEM
1da177e4
LT
2724 /*
2725 * With no DISCONTIG, the global mem_map is just set as node 0's
2726 */
c713216d 2727 if (pgdat == NODE_DATA(0)) {
1da177e4 2728 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
2729#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2730 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2731 mem_map -= pgdat->node_start_pfn;
2732#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2733 }
1da177e4 2734#endif
d41dee36 2735#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2736}
2737
86356ab1 2738void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2739 unsigned long *zones_size, unsigned long node_start_pfn,
2740 unsigned long *zholes_size)
2741{
2742 pgdat->node_id = nid;
2743 pgdat->node_start_pfn = node_start_pfn;
c713216d 2744 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
2745
2746 alloc_node_mem_map(pgdat);
2747
2748 free_area_init_core(pgdat, zones_size, zholes_size);
2749}
2750
c713216d
MG
2751#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2752/**
2753 * add_active_range - Register a range of PFNs backed by physical memory
2754 * @nid: The node ID the range resides on
2755 * @start_pfn: The start PFN of the available physical memory
2756 * @end_pfn: The end PFN of the available physical memory
2757 *
2758 * These ranges are stored in an early_node_map[] and later used by
2759 * free_area_init_nodes() to calculate zone sizes and holes. If the
2760 * range spans a memory hole, it is up to the architecture to ensure
2761 * the memory is not freed by the bootmem allocator. If possible
2762 * the range being registered will be merged with existing ranges.
2763 */
2764void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2765 unsigned long end_pfn)
2766{
2767 int i;
2768
2769 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2770 "%d entries of %d used\n",
2771 nid, start_pfn, end_pfn,
2772 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2773
2774 /* Merge with existing active regions if possible */
2775 for (i = 0; i < nr_nodemap_entries; i++) {
2776 if (early_node_map[i].nid != nid)
2777 continue;
2778
2779 /* Skip if an existing region covers this new one */
2780 if (start_pfn >= early_node_map[i].start_pfn &&
2781 end_pfn <= early_node_map[i].end_pfn)
2782 return;
2783
2784 /* Merge forward if suitable */
2785 if (start_pfn <= early_node_map[i].end_pfn &&
2786 end_pfn > early_node_map[i].end_pfn) {
2787 early_node_map[i].end_pfn = end_pfn;
2788 return;
2789 }
2790
2791 /* Merge backward if suitable */
2792 if (start_pfn < early_node_map[i].end_pfn &&
2793 end_pfn >= early_node_map[i].start_pfn) {
2794 early_node_map[i].start_pfn = start_pfn;
2795 return;
2796 }
2797 }
2798
2799 /* Check that early_node_map is large enough */
2800 if (i >= MAX_ACTIVE_REGIONS) {
2801 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2802 MAX_ACTIVE_REGIONS);
2803 return;
2804 }
2805
2806 early_node_map[i].nid = nid;
2807 early_node_map[i].start_pfn = start_pfn;
2808 early_node_map[i].end_pfn = end_pfn;
2809 nr_nodemap_entries = i + 1;
2810}
2811
2812/**
2813 * shrink_active_range - Shrink an existing registered range of PFNs
2814 * @nid: The node id the range is on that should be shrunk
2815 * @old_end_pfn: The old end PFN of the range
2816 * @new_end_pfn: The new PFN of the range
2817 *
2818 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2819 * The map is kept at the end physical page range that has already been
2820 * registered with add_active_range(). This function allows an arch to shrink
2821 * an existing registered range.
2822 */
2823void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2824 unsigned long new_end_pfn)
2825{
2826 int i;
2827
2828 /* Find the old active region end and shrink */
2829 for_each_active_range_index_in_nid(i, nid)
2830 if (early_node_map[i].end_pfn == old_end_pfn) {
2831 early_node_map[i].end_pfn = new_end_pfn;
2832 break;
2833 }
2834}
2835
2836/**
2837 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 2838 *
c713216d
MG
2839 * During discovery, it may be found that a table like SRAT is invalid
2840 * and an alternative discovery method must be used. This function removes
2841 * all currently registered regions.
2842 */
88ca3b94 2843void __init remove_all_active_ranges(void)
c713216d
MG
2844{
2845 memset(early_node_map, 0, sizeof(early_node_map));
2846 nr_nodemap_entries = 0;
fb01439c
MG
2847#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2848 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2849 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2850#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
2851}
2852
2853/* Compare two active node_active_regions */
2854static int __init cmp_node_active_region(const void *a, const void *b)
2855{
2856 struct node_active_region *arange = (struct node_active_region *)a;
2857 struct node_active_region *brange = (struct node_active_region *)b;
2858
2859 /* Done this way to avoid overflows */
2860 if (arange->start_pfn > brange->start_pfn)
2861 return 1;
2862 if (arange->start_pfn < brange->start_pfn)
2863 return -1;
2864
2865 return 0;
2866}
2867
2868/* sort the node_map by start_pfn */
2869static void __init sort_node_map(void)
2870{
2871 sort(early_node_map, (size_t)nr_nodemap_entries,
2872 sizeof(struct node_active_region),
2873 cmp_node_active_region, NULL);
2874}
2875
a6af2bc3 2876/* Find the lowest pfn for a node */
c713216d
MG
2877unsigned long __init find_min_pfn_for_node(unsigned long nid)
2878{
2879 int i;
a6af2bc3 2880 unsigned long min_pfn = ULONG_MAX;
1abbfb41 2881
c713216d
MG
2882 /* Assuming a sorted map, the first range found has the starting pfn */
2883 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 2884 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 2885
a6af2bc3
MG
2886 if (min_pfn == ULONG_MAX) {
2887 printk(KERN_WARNING
2888 "Could not find start_pfn for node %lu\n", nid);
2889 return 0;
2890 }
2891
2892 return min_pfn;
c713216d
MG
2893}
2894
2895/**
2896 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2897 *
2898 * It returns the minimum PFN based on information provided via
88ca3b94 2899 * add_active_range().
c713216d
MG
2900 */
2901unsigned long __init find_min_pfn_with_active_regions(void)
2902{
2903 return find_min_pfn_for_node(MAX_NUMNODES);
2904}
2905
2906/**
2907 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2908 *
2909 * It returns the maximum PFN based on information provided via
88ca3b94 2910 * add_active_range().
c713216d
MG
2911 */
2912unsigned long __init find_max_pfn_with_active_regions(void)
2913{
2914 int i;
2915 unsigned long max_pfn = 0;
2916
2917 for (i = 0; i < nr_nodemap_entries; i++)
2918 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2919
2920 return max_pfn;
2921}
2922
2923/**
2924 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 2925 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
2926 *
2927 * This will call free_area_init_node() for each active node in the system.
2928 * Using the page ranges provided by add_active_range(), the size of each
2929 * zone in each node and their holes is calculated. If the maximum PFN
2930 * between two adjacent zones match, it is assumed that the zone is empty.
2931 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2932 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2933 * starts where the previous one ended. For example, ZONE_DMA32 starts
2934 * at arch_max_dma_pfn.
2935 */
2936void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2937{
2938 unsigned long nid;
2939 enum zone_type i;
2940
a6af2bc3
MG
2941 /* Sort early_node_map as initialisation assumes it is sorted */
2942 sort_node_map();
2943
c713216d
MG
2944 /* Record where the zone boundaries are */
2945 memset(arch_zone_lowest_possible_pfn, 0,
2946 sizeof(arch_zone_lowest_possible_pfn));
2947 memset(arch_zone_highest_possible_pfn, 0,
2948 sizeof(arch_zone_highest_possible_pfn));
2949 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2950 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2951 for (i = 1; i < MAX_NR_ZONES; i++) {
2952 arch_zone_lowest_possible_pfn[i] =
2953 arch_zone_highest_possible_pfn[i-1];
2954 arch_zone_highest_possible_pfn[i] =
2955 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2956 }
2957
c713216d
MG
2958 /* Print out the zone ranges */
2959 printk("Zone PFN ranges:\n");
2960 for (i = 0; i < MAX_NR_ZONES; i++)
2961 printk(" %-8s %8lu -> %8lu\n",
2962 zone_names[i],
2963 arch_zone_lowest_possible_pfn[i],
2964 arch_zone_highest_possible_pfn[i]);
2965
2966 /* Print out the early_node_map[] */
2967 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2968 for (i = 0; i < nr_nodemap_entries; i++)
2969 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2970 early_node_map[i].start_pfn,
2971 early_node_map[i].end_pfn);
2972
2973 /* Initialise every node */
8ef82866 2974 setup_nr_node_ids();
c713216d
MG
2975 for_each_online_node(nid) {
2976 pg_data_t *pgdat = NODE_DATA(nid);
2977 free_area_init_node(nid, pgdat, NULL,
2978 find_min_pfn_for_node(nid), NULL);
2979 }
2980}
2981#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2982
0e0b864e 2983/**
88ca3b94
RD
2984 * set_dma_reserve - set the specified number of pages reserved in the first zone
2985 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
2986 *
2987 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2988 * In the DMA zone, a significant percentage may be consumed by kernel image
2989 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
2990 * function may optionally be used to account for unfreeable pages in the
2991 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2992 * smaller per-cpu batchsize.
0e0b864e
MG
2993 */
2994void __init set_dma_reserve(unsigned long new_dma_reserve)
2995{
2996 dma_reserve = new_dma_reserve;
2997}
2998
93b7504e 2999#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3000static bootmem_data_t contig_bootmem_data;
3001struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3002
3003EXPORT_SYMBOL(contig_page_data);
93b7504e 3004#endif
1da177e4
LT
3005
3006void __init free_area_init(unsigned long *zones_size)
3007{
93b7504e 3008 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3009 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3010}
1da177e4 3011
1da177e4
LT
3012static int page_alloc_cpu_notify(struct notifier_block *self,
3013 unsigned long action, void *hcpu)
3014{
3015 int cpu = (unsigned long)hcpu;
1da177e4
LT
3016
3017 if (action == CPU_DEAD) {
1da177e4
LT
3018 local_irq_disable();
3019 __drain_pages(cpu);
f8891e5e 3020 vm_events_fold_cpu(cpu);
1da177e4 3021 local_irq_enable();
2244b95a 3022 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3023 }
3024 return NOTIFY_OK;
3025}
1da177e4
LT
3026
3027void __init page_alloc_init(void)
3028{
3029 hotcpu_notifier(page_alloc_cpu_notify, 0);
3030}
3031
cb45b0e9
HA
3032/*
3033 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3034 * or min_free_kbytes changes.
3035 */
3036static void calculate_totalreserve_pages(void)
3037{
3038 struct pglist_data *pgdat;
3039 unsigned long reserve_pages = 0;
2f6726e5 3040 enum zone_type i, j;
cb45b0e9
HA
3041
3042 for_each_online_pgdat(pgdat) {
3043 for (i = 0; i < MAX_NR_ZONES; i++) {
3044 struct zone *zone = pgdat->node_zones + i;
3045 unsigned long max = 0;
3046
3047 /* Find valid and maximum lowmem_reserve in the zone */
3048 for (j = i; j < MAX_NR_ZONES; j++) {
3049 if (zone->lowmem_reserve[j] > max)
3050 max = zone->lowmem_reserve[j];
3051 }
3052
3053 /* we treat pages_high as reserved pages. */
3054 max += zone->pages_high;
3055
3056 if (max > zone->present_pages)
3057 max = zone->present_pages;
3058 reserve_pages += max;
3059 }
3060 }
3061 totalreserve_pages = reserve_pages;
3062}
3063
1da177e4
LT
3064/*
3065 * setup_per_zone_lowmem_reserve - called whenever
3066 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3067 * has a correct pages reserved value, so an adequate number of
3068 * pages are left in the zone after a successful __alloc_pages().
3069 */
3070static void setup_per_zone_lowmem_reserve(void)
3071{
3072 struct pglist_data *pgdat;
2f6726e5 3073 enum zone_type j, idx;
1da177e4 3074
ec936fc5 3075 for_each_online_pgdat(pgdat) {
1da177e4
LT
3076 for (j = 0; j < MAX_NR_ZONES; j++) {
3077 struct zone *zone = pgdat->node_zones + j;
3078 unsigned long present_pages = zone->present_pages;
3079
3080 zone->lowmem_reserve[j] = 0;
3081
2f6726e5
CL
3082 idx = j;
3083 while (idx) {
1da177e4
LT
3084 struct zone *lower_zone;
3085
2f6726e5
CL
3086 idx--;
3087
1da177e4
LT
3088 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3089 sysctl_lowmem_reserve_ratio[idx] = 1;
3090
3091 lower_zone = pgdat->node_zones + idx;
3092 lower_zone->lowmem_reserve[j] = present_pages /
3093 sysctl_lowmem_reserve_ratio[idx];
3094 present_pages += lower_zone->present_pages;
3095 }
3096 }
3097 }
cb45b0e9
HA
3098
3099 /* update totalreserve_pages */
3100 calculate_totalreserve_pages();
1da177e4
LT
3101}
3102
88ca3b94
RD
3103/**
3104 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3105 *
3106 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3107 * with respect to min_free_kbytes.
1da177e4 3108 */
3947be19 3109void setup_per_zone_pages_min(void)
1da177e4
LT
3110{
3111 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3112 unsigned long lowmem_pages = 0;
3113 struct zone *zone;
3114 unsigned long flags;
3115
3116 /* Calculate total number of !ZONE_HIGHMEM pages */
3117 for_each_zone(zone) {
3118 if (!is_highmem(zone))
3119 lowmem_pages += zone->present_pages;
3120 }
3121
3122 for_each_zone(zone) {
ac924c60
AM
3123 u64 tmp;
3124
1da177e4 3125 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3126 tmp = (u64)pages_min * zone->present_pages;
3127 do_div(tmp, lowmem_pages);
1da177e4
LT
3128 if (is_highmem(zone)) {
3129 /*
669ed175
NP
3130 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3131 * need highmem pages, so cap pages_min to a small
3132 * value here.
3133 *
3134 * The (pages_high-pages_low) and (pages_low-pages_min)
3135 * deltas controls asynch page reclaim, and so should
3136 * not be capped for highmem.
1da177e4
LT
3137 */
3138 int min_pages;
3139
3140 min_pages = zone->present_pages / 1024;
3141 if (min_pages < SWAP_CLUSTER_MAX)
3142 min_pages = SWAP_CLUSTER_MAX;
3143 if (min_pages > 128)
3144 min_pages = 128;
3145 zone->pages_min = min_pages;
3146 } else {
669ed175
NP
3147 /*
3148 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3149 * proportionate to the zone's size.
3150 */
669ed175 3151 zone->pages_min = tmp;
1da177e4
LT
3152 }
3153
ac924c60
AM
3154 zone->pages_low = zone->pages_min + (tmp >> 2);
3155 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3156 spin_unlock_irqrestore(&zone->lru_lock, flags);
3157 }
cb45b0e9
HA
3158
3159 /* update totalreserve_pages */
3160 calculate_totalreserve_pages();
1da177e4
LT
3161}
3162
3163/*
3164 * Initialise min_free_kbytes.
3165 *
3166 * For small machines we want it small (128k min). For large machines
3167 * we want it large (64MB max). But it is not linear, because network
3168 * bandwidth does not increase linearly with machine size. We use
3169 *
3170 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3171 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3172 *
3173 * which yields
3174 *
3175 * 16MB: 512k
3176 * 32MB: 724k
3177 * 64MB: 1024k
3178 * 128MB: 1448k
3179 * 256MB: 2048k
3180 * 512MB: 2896k
3181 * 1024MB: 4096k
3182 * 2048MB: 5792k
3183 * 4096MB: 8192k
3184 * 8192MB: 11584k
3185 * 16384MB: 16384k
3186 */
3187static int __init init_per_zone_pages_min(void)
3188{
3189 unsigned long lowmem_kbytes;
3190
3191 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3192
3193 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3194 if (min_free_kbytes < 128)
3195 min_free_kbytes = 128;
3196 if (min_free_kbytes > 65536)
3197 min_free_kbytes = 65536;
3198 setup_per_zone_pages_min();
3199 setup_per_zone_lowmem_reserve();
3200 return 0;
3201}
3202module_init(init_per_zone_pages_min)
3203
3204/*
3205 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3206 * that we can call two helper functions whenever min_free_kbytes
3207 * changes.
3208 */
3209int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3210 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3211{
3212 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
3213 if (write)
3214 setup_per_zone_pages_min();
1da177e4
LT
3215 return 0;
3216}
3217
9614634f
CL
3218#ifdef CONFIG_NUMA
3219int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3220 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3221{
3222 struct zone *zone;
3223 int rc;
3224
3225 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3226 if (rc)
3227 return rc;
3228
3229 for_each_zone(zone)
8417bba4 3230 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
3231 sysctl_min_unmapped_ratio) / 100;
3232 return 0;
3233}
0ff38490
CL
3234
3235int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3236 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3237{
3238 struct zone *zone;
3239 int rc;
3240
3241 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3242 if (rc)
3243 return rc;
3244
3245 for_each_zone(zone)
3246 zone->min_slab_pages = (zone->present_pages *
3247 sysctl_min_slab_ratio) / 100;
3248 return 0;
3249}
9614634f
CL
3250#endif
3251
1da177e4
LT
3252/*
3253 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3254 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3255 * whenever sysctl_lowmem_reserve_ratio changes.
3256 *
3257 * The reserve ratio obviously has absolutely no relation with the
3258 * pages_min watermarks. The lowmem reserve ratio can only make sense
3259 * if in function of the boot time zone sizes.
3260 */
3261int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3262 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3263{
3264 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3265 setup_per_zone_lowmem_reserve();
3266 return 0;
3267}
3268
8ad4b1fb
RS
3269/*
3270 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3271 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3272 * can have before it gets flushed back to buddy allocator.
3273 */
3274
3275int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3276 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3277{
3278 struct zone *zone;
3279 unsigned int cpu;
3280 int ret;
3281
3282 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3283 if (!write || (ret == -EINVAL))
3284 return ret;
3285 for_each_zone(zone) {
3286 for_each_online_cpu(cpu) {
3287 unsigned long high;
3288 high = zone->present_pages / percpu_pagelist_fraction;
3289 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3290 }
3291 }
3292 return 0;
3293}
3294
f034b5d4 3295int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
3296
3297#ifdef CONFIG_NUMA
3298static int __init set_hashdist(char *str)
3299{
3300 if (!str)
3301 return 0;
3302 hashdist = simple_strtoul(str, &str, 0);
3303 return 1;
3304}
3305__setup("hashdist=", set_hashdist);
3306#endif
3307
3308/*
3309 * allocate a large system hash table from bootmem
3310 * - it is assumed that the hash table must contain an exact power-of-2
3311 * quantity of entries
3312 * - limit is the number of hash buckets, not the total allocation size
3313 */
3314void *__init alloc_large_system_hash(const char *tablename,
3315 unsigned long bucketsize,
3316 unsigned long numentries,
3317 int scale,
3318 int flags,
3319 unsigned int *_hash_shift,
3320 unsigned int *_hash_mask,
3321 unsigned long limit)
3322{
3323 unsigned long long max = limit;
3324 unsigned long log2qty, size;
3325 void *table = NULL;
3326
3327 /* allow the kernel cmdline to have a say */
3328 if (!numentries) {
3329 /* round applicable memory size up to nearest megabyte */
04903664 3330 numentries = nr_kernel_pages;
1da177e4
LT
3331 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3332 numentries >>= 20 - PAGE_SHIFT;
3333 numentries <<= 20 - PAGE_SHIFT;
3334
3335 /* limit to 1 bucket per 2^scale bytes of low memory */
3336 if (scale > PAGE_SHIFT)
3337 numentries >>= (scale - PAGE_SHIFT);
3338 else
3339 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
3340
3341 /* Make sure we've got at least a 0-order allocation.. */
3342 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3343 numentries = PAGE_SIZE / bucketsize;
1da177e4 3344 }
6e692ed3 3345 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
3346
3347 /* limit allocation size to 1/16 total memory by default */
3348 if (max == 0) {
3349 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3350 do_div(max, bucketsize);
3351 }
3352
3353 if (numentries > max)
3354 numentries = max;
3355
f0d1b0b3 3356 log2qty = ilog2(numentries);
1da177e4
LT
3357
3358 do {
3359 size = bucketsize << log2qty;
3360 if (flags & HASH_EARLY)
3361 table = alloc_bootmem(size);
3362 else if (hashdist)
3363 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3364 else {
3365 unsigned long order;
3366 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3367 ;
3368 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3369 }
3370 } while (!table && size > PAGE_SIZE && --log2qty);
3371
3372 if (!table)
3373 panic("Failed to allocate %s hash table\n", tablename);
3374
3375 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3376 tablename,
3377 (1U << log2qty),
f0d1b0b3 3378 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
3379 size);
3380
3381 if (_hash_shift)
3382 *_hash_shift = log2qty;
3383 if (_hash_mask)
3384 *_hash_mask = (1 << log2qty) - 1;
3385
3386 return table;
3387}
a117e66e
KH
3388
3389#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
3390struct page *pfn_to_page(unsigned long pfn)
3391{
67de6482 3392 return __pfn_to_page(pfn);
a117e66e
KH
3393}
3394unsigned long page_to_pfn(struct page *page)
3395{
67de6482 3396 return __page_to_pfn(page);
a117e66e 3397}
a117e66e
KH
3398EXPORT_SYMBOL(pfn_to_page);
3399EXPORT_SYMBOL(page_to_pfn);
3400#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 3401
6220ec78 3402