mm: writeback: cleanups in preparation for per-zone dirty limits
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
8ad4b1fb 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
b2a0ac88
MG
221static void set_pageblock_migratetype(struct page *page, int migratetype)
222{
49255c61
MG
223
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
226
b2a0ac88
MG
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
229}
230
7f33d49a
RW
231bool oom_killer_disabled __read_mostly;
232
13e7444b 233#ifdef CONFIG_DEBUG_VM
c6a57e19 234static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 235{
bdc8cb98
DH
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
c6a57e19 239
bdc8cb98
DH
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
247
248 return ret;
c6a57e19
DH
249}
250
251static int page_is_consistent(struct zone *zone, struct page *page)
252{
14e07298 253 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 254 return 0;
1da177e4 255 if (zone != page_zone(page))
c6a57e19
DH
256 return 0;
257
258 return 1;
259}
260/*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
263static int bad_range(struct zone *zone, struct page *page)
264{
265 if (page_outside_zone_boundaries(zone, page))
1da177e4 266 return 1;
c6a57e19
DH
267 if (!page_is_consistent(zone, page))
268 return 1;
269
1da177e4
LT
270 return 0;
271}
13e7444b
NP
272#else
273static inline int bad_range(struct zone *zone, struct page *page)
274{
275 return 0;
276}
277#endif
278
224abf92 279static void bad_page(struct page *page)
1da177e4 280{
d936cf9b
HD
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
284
2a7684a2
WF
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
ef2b4b95 287 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
288 return;
289 }
290
d936cf9b
HD
291 /*
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
294 */
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
299 }
300 if (nr_unshown) {
1e9e6365
HD
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
303 nr_unshown);
304 nr_unshown = 0;
305 }
306 nr_shown = 0;
307 }
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
310
1e9e6365 311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 312 current->comm, page_to_pfn(page));
718a3821 313 dump_page(page);
3dc14741 314
4f31888c 315 print_modules();
1da177e4 316 dump_stack();
d936cf9b 317out:
8cc3b392 318 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 319 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 320 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
321}
322
1da177e4
LT
323/*
324 * Higher-order pages are called "compound pages". They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
6416b9fa
WSH
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
1da177e4 332 *
41d78ba5
HD
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
1da177e4 336 */
d98c7a09
HD
337
338static void free_compound_page(struct page *page)
339{
d85f3385 340 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
341}
342
01ad1c08 343void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
344{
345 int i;
346 int nr_pages = 1 << order;
347
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
18229df5 353 __SetPageTail(p);
58a84aa9 354 set_page_count(p, 0);
18229df5
AW
355 p->first_page = page;
356 }
357}
358
59ff4216 359/* update __split_huge_page_refcount if you change this function */
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
c0a32fc5
SG
400#ifdef CONFIG_DEBUG_PAGEALLOC
401unsigned int _debug_guardpage_minorder;
402
403static int __init debug_guardpage_minorder_setup(char *buf)
404{
405 unsigned long res;
406
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
410 }
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
414}
415__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
417static inline void set_page_guard_flag(struct page *page)
418{
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420}
421
422static inline void clear_page_guard_flag(struct page *page)
423{
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426#else
427static inline void set_page_guard_flag(struct page *page) { }
428static inline void clear_page_guard_flag(struct page *page) { }
429#endif
430
6aa3001b
AM
431static inline void set_page_order(struct page *page, int order)
432{
4c21e2f2 433 set_page_private(page, order);
676165a8 434 __SetPageBuddy(page);
1da177e4
LT
435}
436
437static inline void rmv_page_order(struct page *page)
438{
676165a8 439 __ClearPageBuddy(page);
4c21e2f2 440 set_page_private(page, 0);
1da177e4
LT
441}
442
443/*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
457 *
d6e05edc 458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 459 */
1da177e4 460static inline unsigned long
43506fad 461__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 462{
43506fad 463 return page_idx ^ (1 << order);
1da177e4
LT
464}
465
466/*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
13e7444b 469 * (a) the buddy is not in a hole &&
676165a8 470 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
676165a8 473 *
5f24ce5f
AA
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 476 *
676165a8 477 * For recording page's order, we use page_private(page).
1da177e4 478 */
cb2b95e1
AW
479static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
1da177e4 481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 483 return 0;
13e7444b 484
cb2b95e1
AW
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
487
c0a32fc5
SG
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
491 }
492
cb2b95e1 493 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 494 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 495 return 1;
676165a8 496 }
6aa3001b 497 return 0;
1da177e4
LT
498}
499
500/*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 514 * order is recorded in page_private(page) field.
1da177e4
LT
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
520 *
521 * -- wli
522 */
523
48db57f8 524static inline void __free_one_page(struct page *page,
ed0ae21d
MG
525 struct zone *zone, unsigned int order,
526 int migratetype)
1da177e4
LT
527{
528 unsigned long page_idx;
6dda9d55 529 unsigned long combined_idx;
43506fad 530 unsigned long uninitialized_var(buddy_idx);
6dda9d55 531 struct page *buddy;
1da177e4 532
224abf92 533 if (unlikely(PageCompound(page)))
8cc3b392
HD
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
1da177e4 536
ed0ae21d
MG
537 VM_BUG_ON(migratetype == -1);
538
1da177e4
LT
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
f2260e6b 541 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 542 VM_BUG_ON(bad_range(zone, page));
1da177e4 543
1da177e4 544 while (order < MAX_ORDER-1) {
43506fad
KC
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
cb2b95e1 547 if (!page_is_buddy(page, buddy, order))
3c82d0ce 548 break;
c0a32fc5
SG
549 /*
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
552 */
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
561 }
43506fad 562 combined_idx = buddy_idx & page_idx;
1da177e4
LT
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
566 }
567 set_page_order(page, order);
6dda9d55
CZ
568
569 /*
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
576 */
b7f50cfa 577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 578 struct page *higher_page, *higher_buddy;
43506fad
KC
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
587 }
588 }
589
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591out:
1da177e4
LT
592 zone->free_area[order].nr_free++;
593}
594
092cead6
KM
595/*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
600static inline void free_page_mlock(struct page *page)
601{
092cead6
KM
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
604}
092cead6 605
224abf92 606static inline int free_pages_check(struct page *page)
1da177e4 607{
92be2e33
NP
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
a3af9c38 610 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
224abf92 613 bad_page(page);
79f4b7bf 614 return 1;
8cc3b392 615 }
79f4b7bf
HD
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
1da177e4
LT
619}
620
621/*
5f8dcc21 622 * Frees a number of pages from the PCP lists
1da177e4 623 * Assumes all pages on list are in same zone, and of same order.
207f36ee 624 * count is the number of pages to free.
1da177e4
LT
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
5f8dcc21
MG
632static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
1da177e4 634{
5f8dcc21 635 int migratetype = 0;
a6f9edd6 636 int batch_free = 0;
72853e29 637 int to_free = count;
5f8dcc21 638
c54ad30c 639 spin_lock(&zone->lock);
93e4a89a 640 zone->all_unreclaimable = 0;
1da177e4 641 zone->pages_scanned = 0;
f2260e6b 642
72853e29 643 while (to_free) {
48db57f8 644 struct page *page;
5f8dcc21
MG
645 struct list_head *list;
646
647 /*
a6f9edd6
MG
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
5f8dcc21
MG
653 */
654 do {
a6f9edd6 655 batch_free++;
5f8dcc21
MG
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
48db57f8 660
1d16871d
NK
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
664
a6f9edd6
MG
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
a7016235
HD
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
72853e29 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 687 spin_unlock(&zone->lock);
48db57f8
NP
688}
689
ec95f53a 690static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 691{
1da177e4 692 int i;
8cc3b392 693 int bad = 0;
1da177e4 694
b413d48a 695 trace_mm_page_free(page, order);
b1eeab67
VN
696 kmemcheck_free_shadow(page, order);
697
8dd60a3a
AA
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
8cc3b392 702 if (bad)
ec95f53a 703 return false;
689bcebf 704
3ac7fe5a 705 if (!PageHighMem(page)) {
9858db50 706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
709 }
dafb1367 710 arch_free_page(page, order);
48db57f8 711 kernel_map_pages(page, 1 << order, 0);
dafb1367 712
ec95f53a
KM
713 return true;
714}
715
716static void __free_pages_ok(struct page *page, unsigned int order)
717{
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
720
721 if (!free_pages_prepare(page, order))
722 return;
723
c54ad30c 724 local_irq_save(flags);
c277331d 725 if (unlikely(wasMlocked))
da456f14 726 free_page_mlock(page);
f8891e5e 727 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
a226f6c8
DH
733/*
734 * permit the bootmem allocator to evade page validation on high-order frees
735 */
af370fb8 736void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
737{
738 if (order == 0) {
739 __ClearPageReserved(page);
740 set_page_count(page, 0);
7835e98b 741 set_page_refcounted(page);
545b1ea9 742 __free_page(page);
a226f6c8 743 } else {
a226f6c8
DH
744 int loop;
745
545b1ea9 746 prefetchw(page);
53348f27 747 for (loop = 0; loop < (1 << order); loop++) {
a226f6c8
DH
748 struct page *p = &page[loop];
749
53348f27 750 if (loop + 1 < (1 << order))
545b1ea9 751 prefetchw(p + 1);
a226f6c8
DH
752 __ClearPageReserved(p);
753 set_page_count(p, 0);
754 }
755
7835e98b 756 set_page_refcounted(page);
545b1ea9 757 __free_pages(page, order);
a226f6c8
DH
758 }
759}
760
1da177e4
LT
761
762/*
763 * The order of subdivision here is critical for the IO subsystem.
764 * Please do not alter this order without good reasons and regression
765 * testing. Specifically, as large blocks of memory are subdivided,
766 * the order in which smaller blocks are delivered depends on the order
767 * they're subdivided in this function. This is the primary factor
768 * influencing the order in which pages are delivered to the IO
769 * subsystem according to empirical testing, and this is also justified
770 * by considering the behavior of a buddy system containing a single
771 * large block of memory acted on by a series of small allocations.
772 * This behavior is a critical factor in sglist merging's success.
773 *
774 * -- wli
775 */
085cc7d5 776static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
777 int low, int high, struct free_area *area,
778 int migratetype)
1da177e4
LT
779{
780 unsigned long size = 1 << high;
781
782 while (high > low) {
783 area--;
784 high--;
785 size >>= 1;
725d704e 786 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
787
788#ifdef CONFIG_DEBUG_PAGEALLOC
789 if (high < debug_guardpage_minorder()) {
790 /*
791 * Mark as guard pages (or page), that will allow to
792 * merge back to allocator when buddy will be freed.
793 * Corresponding page table entries will not be touched,
794 * pages will stay not present in virtual address space
795 */
796 INIT_LIST_HEAD(&page[size].lru);
797 set_page_guard_flag(&page[size]);
798 set_page_private(&page[size], high);
799 /* Guard pages are not available for any usage */
800 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
801 continue;
802 }
803#endif
b2a0ac88 804 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
805 area->nr_free++;
806 set_page_order(&page[size], high);
807 }
1da177e4
LT
808}
809
1da177e4
LT
810/*
811 * This page is about to be returned from the page allocator
812 */
2a7684a2 813static inline int check_new_page(struct page *page)
1da177e4 814{
92be2e33
NP
815 if (unlikely(page_mapcount(page) |
816 (page->mapping != NULL) |
a3af9c38 817 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
818 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
819 (mem_cgroup_bad_page_check(page)))) {
224abf92 820 bad_page(page);
689bcebf 821 return 1;
8cc3b392 822 }
2a7684a2
WF
823 return 0;
824}
825
826static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
827{
828 int i;
829
830 for (i = 0; i < (1 << order); i++) {
831 struct page *p = page + i;
832 if (unlikely(check_new_page(p)))
833 return 1;
834 }
689bcebf 835
4c21e2f2 836 set_page_private(page, 0);
7835e98b 837 set_page_refcounted(page);
cc102509
NP
838
839 arch_alloc_page(page, order);
1da177e4 840 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
841
842 if (gfp_flags & __GFP_ZERO)
843 prep_zero_page(page, order, gfp_flags);
844
845 if (order && (gfp_flags & __GFP_COMP))
846 prep_compound_page(page, order);
847
689bcebf 848 return 0;
1da177e4
LT
849}
850
56fd56b8
MG
851/*
852 * Go through the free lists for the given migratetype and remove
853 * the smallest available page from the freelists
854 */
728ec980
MG
855static inline
856struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
857 int migratetype)
858{
859 unsigned int current_order;
860 struct free_area * area;
861 struct page *page;
862
863 /* Find a page of the appropriate size in the preferred list */
864 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
865 area = &(zone->free_area[current_order]);
866 if (list_empty(&area->free_list[migratetype]))
867 continue;
868
869 page = list_entry(area->free_list[migratetype].next,
870 struct page, lru);
871 list_del(&page->lru);
872 rmv_page_order(page);
873 area->nr_free--;
56fd56b8
MG
874 expand(zone, page, order, current_order, area, migratetype);
875 return page;
876 }
877
878 return NULL;
879}
880
881
b2a0ac88
MG
882/*
883 * This array describes the order lists are fallen back to when
884 * the free lists for the desirable migrate type are depleted
885 */
886static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
887 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
888 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
889 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
890 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
891};
892
c361be55
MG
893/*
894 * Move the free pages in a range to the free lists of the requested type.
d9c23400 895 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
896 * boundary. If alignment is required, use move_freepages_block()
897 */
b69a7288
AB
898static int move_freepages(struct zone *zone,
899 struct page *start_page, struct page *end_page,
900 int migratetype)
c361be55
MG
901{
902 struct page *page;
903 unsigned long order;
d100313f 904 int pages_moved = 0;
c361be55
MG
905
906#ifndef CONFIG_HOLES_IN_ZONE
907 /*
908 * page_zone is not safe to call in this context when
909 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
910 * anyway as we check zone boundaries in move_freepages_block().
911 * Remove at a later date when no bug reports exist related to
ac0e5b7a 912 * grouping pages by mobility
c361be55
MG
913 */
914 BUG_ON(page_zone(start_page) != page_zone(end_page));
915#endif
916
917 for (page = start_page; page <= end_page;) {
344c790e
AL
918 /* Make sure we are not inadvertently changing nodes */
919 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
920
c361be55
MG
921 if (!pfn_valid_within(page_to_pfn(page))) {
922 page++;
923 continue;
924 }
925
926 if (!PageBuddy(page)) {
927 page++;
928 continue;
929 }
930
931 order = page_order(page);
84be48d8
KS
932 list_move(&page->lru,
933 &zone->free_area[order].free_list[migratetype]);
c361be55 934 page += 1 << order;
d100313f 935 pages_moved += 1 << order;
c361be55
MG
936 }
937
d100313f 938 return pages_moved;
c361be55
MG
939}
940
b69a7288
AB
941static int move_freepages_block(struct zone *zone, struct page *page,
942 int migratetype)
c361be55
MG
943{
944 unsigned long start_pfn, end_pfn;
945 struct page *start_page, *end_page;
946
947 start_pfn = page_to_pfn(page);
d9c23400 948 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 949 start_page = pfn_to_page(start_pfn);
d9c23400
MG
950 end_page = start_page + pageblock_nr_pages - 1;
951 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
952
953 /* Do not cross zone boundaries */
954 if (start_pfn < zone->zone_start_pfn)
955 start_page = page;
956 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
957 return 0;
958
959 return move_freepages(zone, start_page, end_page, migratetype);
960}
961
2f66a68f
MG
962static void change_pageblock_range(struct page *pageblock_page,
963 int start_order, int migratetype)
964{
965 int nr_pageblocks = 1 << (start_order - pageblock_order);
966
967 while (nr_pageblocks--) {
968 set_pageblock_migratetype(pageblock_page, migratetype);
969 pageblock_page += pageblock_nr_pages;
970 }
971}
972
b2a0ac88 973/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
974static inline struct page *
975__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
976{
977 struct free_area * area;
978 int current_order;
979 struct page *page;
980 int migratetype, i;
981
982 /* Find the largest possible block of pages in the other list */
983 for (current_order = MAX_ORDER-1; current_order >= order;
984 --current_order) {
985 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
986 migratetype = fallbacks[start_migratetype][i];
987
56fd56b8
MG
988 /* MIGRATE_RESERVE handled later if necessary */
989 if (migratetype == MIGRATE_RESERVE)
990 continue;
e010487d 991
b2a0ac88
MG
992 area = &(zone->free_area[current_order]);
993 if (list_empty(&area->free_list[migratetype]))
994 continue;
995
996 page = list_entry(area->free_list[migratetype].next,
997 struct page, lru);
998 area->nr_free--;
999
1000 /*
c361be55 1001 * If breaking a large block of pages, move all free
46dafbca
MG
1002 * pages to the preferred allocation list. If falling
1003 * back for a reclaimable kernel allocation, be more
25985edc 1004 * aggressive about taking ownership of free pages
b2a0ac88 1005 */
d9c23400 1006 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
1007 start_migratetype == MIGRATE_RECLAIMABLE ||
1008 page_group_by_mobility_disabled) {
46dafbca
MG
1009 unsigned long pages;
1010 pages = move_freepages_block(zone, page,
1011 start_migratetype);
1012
1013 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1014 if (pages >= (1 << (pageblock_order-1)) ||
1015 page_group_by_mobility_disabled)
46dafbca
MG
1016 set_pageblock_migratetype(page,
1017 start_migratetype);
1018
b2a0ac88 1019 migratetype = start_migratetype;
c361be55 1020 }
b2a0ac88
MG
1021
1022 /* Remove the page from the freelists */
1023 list_del(&page->lru);
1024 rmv_page_order(page);
b2a0ac88 1025
2f66a68f
MG
1026 /* Take ownership for orders >= pageblock_order */
1027 if (current_order >= pageblock_order)
1028 change_pageblock_range(page, current_order,
b2a0ac88
MG
1029 start_migratetype);
1030
1031 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
1032
1033 trace_mm_page_alloc_extfrag(page, order, current_order,
1034 start_migratetype, migratetype);
1035
b2a0ac88
MG
1036 return page;
1037 }
1038 }
1039
728ec980 1040 return NULL;
b2a0ac88
MG
1041}
1042
56fd56b8 1043/*
1da177e4
LT
1044 * Do the hard work of removing an element from the buddy allocator.
1045 * Call me with the zone->lock already held.
1046 */
b2a0ac88
MG
1047static struct page *__rmqueue(struct zone *zone, unsigned int order,
1048 int migratetype)
1da177e4 1049{
1da177e4
LT
1050 struct page *page;
1051
728ec980 1052retry_reserve:
56fd56b8 1053 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1054
728ec980 1055 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1056 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1057
728ec980
MG
1058 /*
1059 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1060 * is used because __rmqueue_smallest is an inline function
1061 * and we want just one call site
1062 */
1063 if (!page) {
1064 migratetype = MIGRATE_RESERVE;
1065 goto retry_reserve;
1066 }
1067 }
1068
0d3d062a 1069 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1070 return page;
1da177e4
LT
1071}
1072
1073/*
1074 * Obtain a specified number of elements from the buddy allocator, all under
1075 * a single hold of the lock, for efficiency. Add them to the supplied list.
1076 * Returns the number of new pages which were placed at *list.
1077 */
1078static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1079 unsigned long count, struct list_head *list,
e084b2d9 1080 int migratetype, int cold)
1da177e4 1081{
1da177e4 1082 int i;
1da177e4 1083
c54ad30c 1084 spin_lock(&zone->lock);
1da177e4 1085 for (i = 0; i < count; ++i) {
b2a0ac88 1086 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1087 if (unlikely(page == NULL))
1da177e4 1088 break;
81eabcbe
MG
1089
1090 /*
1091 * Split buddy pages returned by expand() are received here
1092 * in physical page order. The page is added to the callers and
1093 * list and the list head then moves forward. From the callers
1094 * perspective, the linked list is ordered by page number in
1095 * some conditions. This is useful for IO devices that can
1096 * merge IO requests if the physical pages are ordered
1097 * properly.
1098 */
e084b2d9
MG
1099 if (likely(cold == 0))
1100 list_add(&page->lru, list);
1101 else
1102 list_add_tail(&page->lru, list);
535131e6 1103 set_page_private(page, migratetype);
81eabcbe 1104 list = &page->lru;
1da177e4 1105 }
f2260e6b 1106 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1107 spin_unlock(&zone->lock);
085cc7d5 1108 return i;
1da177e4
LT
1109}
1110
4ae7c039 1111#ifdef CONFIG_NUMA
8fce4d8e 1112/*
4037d452
CL
1113 * Called from the vmstat counter updater to drain pagesets of this
1114 * currently executing processor on remote nodes after they have
1115 * expired.
1116 *
879336c3
CL
1117 * Note that this function must be called with the thread pinned to
1118 * a single processor.
8fce4d8e 1119 */
4037d452 1120void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1121{
4ae7c039 1122 unsigned long flags;
4037d452 1123 int to_drain;
4ae7c039 1124
4037d452
CL
1125 local_irq_save(flags);
1126 if (pcp->count >= pcp->batch)
1127 to_drain = pcp->batch;
1128 else
1129 to_drain = pcp->count;
5f8dcc21 1130 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1131 pcp->count -= to_drain;
1132 local_irq_restore(flags);
4ae7c039
CL
1133}
1134#endif
1135
9f8f2172
CL
1136/*
1137 * Drain pages of the indicated processor.
1138 *
1139 * The processor must either be the current processor and the
1140 * thread pinned to the current processor or a processor that
1141 * is not online.
1142 */
1143static void drain_pages(unsigned int cpu)
1da177e4 1144{
c54ad30c 1145 unsigned long flags;
1da177e4 1146 struct zone *zone;
1da177e4 1147
ee99c71c 1148 for_each_populated_zone(zone) {
1da177e4 1149 struct per_cpu_pageset *pset;
3dfa5721 1150 struct per_cpu_pages *pcp;
1da177e4 1151
99dcc3e5
CL
1152 local_irq_save(flags);
1153 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1154
1155 pcp = &pset->pcp;
2ff754fa
DR
1156 if (pcp->count) {
1157 free_pcppages_bulk(zone, pcp->count, pcp);
1158 pcp->count = 0;
1159 }
3dfa5721 1160 local_irq_restore(flags);
1da177e4
LT
1161 }
1162}
1da177e4 1163
9f8f2172
CL
1164/*
1165 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1166 */
1167void drain_local_pages(void *arg)
1168{
1169 drain_pages(smp_processor_id());
1170}
1171
1172/*
1173 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1174 */
1175void drain_all_pages(void)
1176{
15c8b6c1 1177 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1178}
1179
296699de 1180#ifdef CONFIG_HIBERNATION
1da177e4
LT
1181
1182void mark_free_pages(struct zone *zone)
1183{
f623f0db
RW
1184 unsigned long pfn, max_zone_pfn;
1185 unsigned long flags;
b2a0ac88 1186 int order, t;
1da177e4
LT
1187 struct list_head *curr;
1188
1189 if (!zone->spanned_pages)
1190 return;
1191
1192 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1193
1194 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1195 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1196 if (pfn_valid(pfn)) {
1197 struct page *page = pfn_to_page(pfn);
1198
7be98234
RW
1199 if (!swsusp_page_is_forbidden(page))
1200 swsusp_unset_page_free(page);
f623f0db 1201 }
1da177e4 1202
b2a0ac88
MG
1203 for_each_migratetype_order(order, t) {
1204 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1205 unsigned long i;
1da177e4 1206
f623f0db
RW
1207 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1208 for (i = 0; i < (1UL << order); i++)
7be98234 1209 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1210 }
b2a0ac88 1211 }
1da177e4
LT
1212 spin_unlock_irqrestore(&zone->lock, flags);
1213}
e2c55dc8 1214#endif /* CONFIG_PM */
1da177e4 1215
1da177e4
LT
1216/*
1217 * Free a 0-order page
fc91668e 1218 * cold == 1 ? free a cold page : free a hot page
1da177e4 1219 */
fc91668e 1220void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1221{
1222 struct zone *zone = page_zone(page);
1223 struct per_cpu_pages *pcp;
1224 unsigned long flags;
5f8dcc21 1225 int migratetype;
451ea25d 1226 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1227
ec95f53a 1228 if (!free_pages_prepare(page, 0))
689bcebf
HD
1229 return;
1230
5f8dcc21
MG
1231 migratetype = get_pageblock_migratetype(page);
1232 set_page_private(page, migratetype);
1da177e4 1233 local_irq_save(flags);
c277331d 1234 if (unlikely(wasMlocked))
da456f14 1235 free_page_mlock(page);
f8891e5e 1236 __count_vm_event(PGFREE);
da456f14 1237
5f8dcc21
MG
1238 /*
1239 * We only track unmovable, reclaimable and movable on pcp lists.
1240 * Free ISOLATE pages back to the allocator because they are being
1241 * offlined but treat RESERVE as movable pages so we can get those
1242 * areas back if necessary. Otherwise, we may have to free
1243 * excessively into the page allocator
1244 */
1245 if (migratetype >= MIGRATE_PCPTYPES) {
1246 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1247 free_one_page(zone, page, 0, migratetype);
1248 goto out;
1249 }
1250 migratetype = MIGRATE_MOVABLE;
1251 }
1252
99dcc3e5 1253 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1254 if (cold)
5f8dcc21 1255 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1256 else
5f8dcc21 1257 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1258 pcp->count++;
48db57f8 1259 if (pcp->count >= pcp->high) {
5f8dcc21 1260 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1261 pcp->count -= pcp->batch;
1262 }
5f8dcc21
MG
1263
1264out:
1da177e4 1265 local_irq_restore(flags);
1da177e4
LT
1266}
1267
cc59850e
KK
1268/*
1269 * Free a list of 0-order pages
1270 */
1271void free_hot_cold_page_list(struct list_head *list, int cold)
1272{
1273 struct page *page, *next;
1274
1275 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1276 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1277 free_hot_cold_page(page, cold);
1278 }
1279}
1280
8dfcc9ba
NP
1281/*
1282 * split_page takes a non-compound higher-order page, and splits it into
1283 * n (1<<order) sub-pages: page[0..n]
1284 * Each sub-page must be freed individually.
1285 *
1286 * Note: this is probably too low level an operation for use in drivers.
1287 * Please consult with lkml before using this in your driver.
1288 */
1289void split_page(struct page *page, unsigned int order)
1290{
1291 int i;
1292
725d704e
NP
1293 VM_BUG_ON(PageCompound(page));
1294 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1295
1296#ifdef CONFIG_KMEMCHECK
1297 /*
1298 * Split shadow pages too, because free(page[0]) would
1299 * otherwise free the whole shadow.
1300 */
1301 if (kmemcheck_page_is_tracked(page))
1302 split_page(virt_to_page(page[0].shadow), order);
1303#endif
1304
7835e98b
NP
1305 for (i = 1; i < (1 << order); i++)
1306 set_page_refcounted(page + i);
8dfcc9ba 1307}
8dfcc9ba 1308
748446bb
MG
1309/*
1310 * Similar to split_page except the page is already free. As this is only
1311 * being used for migration, the migratetype of the block also changes.
1312 * As this is called with interrupts disabled, the caller is responsible
1313 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1314 * are enabled.
1315 *
1316 * Note: this is probably too low level an operation for use in drivers.
1317 * Please consult with lkml before using this in your driver.
1318 */
1319int split_free_page(struct page *page)
1320{
1321 unsigned int order;
1322 unsigned long watermark;
1323 struct zone *zone;
1324
1325 BUG_ON(!PageBuddy(page));
1326
1327 zone = page_zone(page);
1328 order = page_order(page);
1329
1330 /* Obey watermarks as if the page was being allocated */
1331 watermark = low_wmark_pages(zone) + (1 << order);
1332 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1333 return 0;
1334
1335 /* Remove page from free list */
1336 list_del(&page->lru);
1337 zone->free_area[order].nr_free--;
1338 rmv_page_order(page);
1339 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1340
1341 /* Split into individual pages */
1342 set_page_refcounted(page);
1343 split_page(page, order);
1344
1345 if (order >= pageblock_order - 1) {
1346 struct page *endpage = page + (1 << order) - 1;
1347 for (; page < endpage; page += pageblock_nr_pages)
1348 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1349 }
1350
1351 return 1 << order;
1352}
1353
1da177e4
LT
1354/*
1355 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1356 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1357 * or two.
1358 */
0a15c3e9
MG
1359static inline
1360struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1361 struct zone *zone, int order, gfp_t gfp_flags,
1362 int migratetype)
1da177e4
LT
1363{
1364 unsigned long flags;
689bcebf 1365 struct page *page;
1da177e4
LT
1366 int cold = !!(gfp_flags & __GFP_COLD);
1367
689bcebf 1368again:
48db57f8 1369 if (likely(order == 0)) {
1da177e4 1370 struct per_cpu_pages *pcp;
5f8dcc21 1371 struct list_head *list;
1da177e4 1372
1da177e4 1373 local_irq_save(flags);
99dcc3e5
CL
1374 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1375 list = &pcp->lists[migratetype];
5f8dcc21 1376 if (list_empty(list)) {
535131e6 1377 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1378 pcp->batch, list,
e084b2d9 1379 migratetype, cold);
5f8dcc21 1380 if (unlikely(list_empty(list)))
6fb332fa 1381 goto failed;
535131e6 1382 }
b92a6edd 1383
5f8dcc21
MG
1384 if (cold)
1385 page = list_entry(list->prev, struct page, lru);
1386 else
1387 page = list_entry(list->next, struct page, lru);
1388
b92a6edd
MG
1389 list_del(&page->lru);
1390 pcp->count--;
7fb1d9fc 1391 } else {
dab48dab
AM
1392 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1393 /*
1394 * __GFP_NOFAIL is not to be used in new code.
1395 *
1396 * All __GFP_NOFAIL callers should be fixed so that they
1397 * properly detect and handle allocation failures.
1398 *
1399 * We most definitely don't want callers attempting to
4923abf9 1400 * allocate greater than order-1 page units with
dab48dab
AM
1401 * __GFP_NOFAIL.
1402 */
4923abf9 1403 WARN_ON_ONCE(order > 1);
dab48dab 1404 }
1da177e4 1405 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1406 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1407 spin_unlock(&zone->lock);
1408 if (!page)
1409 goto failed;
6ccf80eb 1410 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1411 }
1412
f8891e5e 1413 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1414 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1415 local_irq_restore(flags);
1da177e4 1416
725d704e 1417 VM_BUG_ON(bad_range(zone, page));
17cf4406 1418 if (prep_new_page(page, order, gfp_flags))
a74609fa 1419 goto again;
1da177e4 1420 return page;
a74609fa
NP
1421
1422failed:
1423 local_irq_restore(flags);
a74609fa 1424 return NULL;
1da177e4
LT
1425}
1426
41858966
MG
1427/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1428#define ALLOC_WMARK_MIN WMARK_MIN
1429#define ALLOC_WMARK_LOW WMARK_LOW
1430#define ALLOC_WMARK_HIGH WMARK_HIGH
1431#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1432
1433/* Mask to get the watermark bits */
1434#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1435
3148890b
NP
1436#define ALLOC_HARDER 0x10 /* try to alloc harder */
1437#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1438#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1439
933e312e
AM
1440#ifdef CONFIG_FAIL_PAGE_ALLOC
1441
b2588c4b 1442static struct {
933e312e
AM
1443 struct fault_attr attr;
1444
1445 u32 ignore_gfp_highmem;
1446 u32 ignore_gfp_wait;
54114994 1447 u32 min_order;
933e312e
AM
1448} fail_page_alloc = {
1449 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1450 .ignore_gfp_wait = 1,
1451 .ignore_gfp_highmem = 1,
54114994 1452 .min_order = 1,
933e312e
AM
1453};
1454
1455static int __init setup_fail_page_alloc(char *str)
1456{
1457 return setup_fault_attr(&fail_page_alloc.attr, str);
1458}
1459__setup("fail_page_alloc=", setup_fail_page_alloc);
1460
1461static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1462{
54114994
AM
1463 if (order < fail_page_alloc.min_order)
1464 return 0;
933e312e
AM
1465 if (gfp_mask & __GFP_NOFAIL)
1466 return 0;
1467 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1468 return 0;
1469 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1470 return 0;
1471
1472 return should_fail(&fail_page_alloc.attr, 1 << order);
1473}
1474
1475#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1476
1477static int __init fail_page_alloc_debugfs(void)
1478{
f4ae40a6 1479 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1480 struct dentry *dir;
933e312e 1481
dd48c085
AM
1482 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1483 &fail_page_alloc.attr);
1484 if (IS_ERR(dir))
1485 return PTR_ERR(dir);
933e312e 1486
b2588c4b
AM
1487 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1488 &fail_page_alloc.ignore_gfp_wait))
1489 goto fail;
1490 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1491 &fail_page_alloc.ignore_gfp_highmem))
1492 goto fail;
1493 if (!debugfs_create_u32("min-order", mode, dir,
1494 &fail_page_alloc.min_order))
1495 goto fail;
1496
1497 return 0;
1498fail:
dd48c085 1499 debugfs_remove_recursive(dir);
933e312e 1500
b2588c4b 1501 return -ENOMEM;
933e312e
AM
1502}
1503
1504late_initcall(fail_page_alloc_debugfs);
1505
1506#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1507
1508#else /* CONFIG_FAIL_PAGE_ALLOC */
1509
1510static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1511{
1512 return 0;
1513}
1514
1515#endif /* CONFIG_FAIL_PAGE_ALLOC */
1516
1da177e4 1517/*
88f5acf8 1518 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1519 * of the allocation.
1520 */
88f5acf8
MG
1521static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1522 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1523{
1524 /* free_pages my go negative - that's OK */
d23ad423 1525 long min = mark;
1da177e4
LT
1526 int o;
1527
88f5acf8 1528 free_pages -= (1 << order) + 1;
7fb1d9fc 1529 if (alloc_flags & ALLOC_HIGH)
1da177e4 1530 min -= min / 2;
7fb1d9fc 1531 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1532 min -= min / 4;
1533
1534 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1535 return false;
1da177e4
LT
1536 for (o = 0; o < order; o++) {
1537 /* At the next order, this order's pages become unavailable */
1538 free_pages -= z->free_area[o].nr_free << o;
1539
1540 /* Require fewer higher order pages to be free */
1541 min >>= 1;
1542
1543 if (free_pages <= min)
88f5acf8 1544 return false;
1da177e4 1545 }
88f5acf8
MG
1546 return true;
1547}
1548
1549bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1550 int classzone_idx, int alloc_flags)
1551{
1552 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1553 zone_page_state(z, NR_FREE_PAGES));
1554}
1555
1556bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1557 int classzone_idx, int alloc_flags)
1558{
1559 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1560
1561 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1562 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1563
1564 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1565 free_pages);
1da177e4
LT
1566}
1567
9276b1bc
PJ
1568#ifdef CONFIG_NUMA
1569/*
1570 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1571 * skip over zones that are not allowed by the cpuset, or that have
1572 * been recently (in last second) found to be nearly full. See further
1573 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1574 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1575 *
1576 * If the zonelist cache is present in the passed in zonelist, then
1577 * returns a pointer to the allowed node mask (either the current
37b07e41 1578 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1579 *
1580 * If the zonelist cache is not available for this zonelist, does
1581 * nothing and returns NULL.
1582 *
1583 * If the fullzones BITMAP in the zonelist cache is stale (more than
1584 * a second since last zap'd) then we zap it out (clear its bits.)
1585 *
1586 * We hold off even calling zlc_setup, until after we've checked the
1587 * first zone in the zonelist, on the theory that most allocations will
1588 * be satisfied from that first zone, so best to examine that zone as
1589 * quickly as we can.
1590 */
1591static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1592{
1593 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1594 nodemask_t *allowednodes; /* zonelist_cache approximation */
1595
1596 zlc = zonelist->zlcache_ptr;
1597 if (!zlc)
1598 return NULL;
1599
f05111f5 1600 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1601 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1602 zlc->last_full_zap = jiffies;
1603 }
1604
1605 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1606 &cpuset_current_mems_allowed :
37b07e41 1607 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1608 return allowednodes;
1609}
1610
1611/*
1612 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1613 * if it is worth looking at further for free memory:
1614 * 1) Check that the zone isn't thought to be full (doesn't have its
1615 * bit set in the zonelist_cache fullzones BITMAP).
1616 * 2) Check that the zones node (obtained from the zonelist_cache
1617 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1618 * Return true (non-zero) if zone is worth looking at further, or
1619 * else return false (zero) if it is not.
1620 *
1621 * This check -ignores- the distinction between various watermarks,
1622 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1623 * found to be full for any variation of these watermarks, it will
1624 * be considered full for up to one second by all requests, unless
1625 * we are so low on memory on all allowed nodes that we are forced
1626 * into the second scan of the zonelist.
1627 *
1628 * In the second scan we ignore this zonelist cache and exactly
1629 * apply the watermarks to all zones, even it is slower to do so.
1630 * We are low on memory in the second scan, and should leave no stone
1631 * unturned looking for a free page.
1632 */
dd1a239f 1633static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1634 nodemask_t *allowednodes)
1635{
1636 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1637 int i; /* index of *z in zonelist zones */
1638 int n; /* node that zone *z is on */
1639
1640 zlc = zonelist->zlcache_ptr;
1641 if (!zlc)
1642 return 1;
1643
dd1a239f 1644 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1645 n = zlc->z_to_n[i];
1646
1647 /* This zone is worth trying if it is allowed but not full */
1648 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1649}
1650
1651/*
1652 * Given 'z' scanning a zonelist, set the corresponding bit in
1653 * zlc->fullzones, so that subsequent attempts to allocate a page
1654 * from that zone don't waste time re-examining it.
1655 */
dd1a239f 1656static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1657{
1658 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1659 int i; /* index of *z in zonelist zones */
1660
1661 zlc = zonelist->zlcache_ptr;
1662 if (!zlc)
1663 return;
1664
dd1a239f 1665 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1666
1667 set_bit(i, zlc->fullzones);
1668}
1669
76d3fbf8
MG
1670/*
1671 * clear all zones full, called after direct reclaim makes progress so that
1672 * a zone that was recently full is not skipped over for up to a second
1673 */
1674static void zlc_clear_zones_full(struct zonelist *zonelist)
1675{
1676 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1677
1678 zlc = zonelist->zlcache_ptr;
1679 if (!zlc)
1680 return;
1681
1682 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1683}
1684
9276b1bc
PJ
1685#else /* CONFIG_NUMA */
1686
1687static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1688{
1689 return NULL;
1690}
1691
dd1a239f 1692static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1693 nodemask_t *allowednodes)
1694{
1695 return 1;
1696}
1697
dd1a239f 1698static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1699{
1700}
76d3fbf8
MG
1701
1702static void zlc_clear_zones_full(struct zonelist *zonelist)
1703{
1704}
9276b1bc
PJ
1705#endif /* CONFIG_NUMA */
1706
7fb1d9fc 1707/*
0798e519 1708 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1709 * a page.
1710 */
1711static struct page *
19770b32 1712get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1713 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1714 struct zone *preferred_zone, int migratetype)
753ee728 1715{
dd1a239f 1716 struct zoneref *z;
7fb1d9fc 1717 struct page *page = NULL;
54a6eb5c 1718 int classzone_idx;
5117f45d 1719 struct zone *zone;
9276b1bc
PJ
1720 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1721 int zlc_active = 0; /* set if using zonelist_cache */
1722 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1723
19770b32 1724 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1725zonelist_scan:
7fb1d9fc 1726 /*
9276b1bc 1727 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1728 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1729 */
19770b32
MG
1730 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1731 high_zoneidx, nodemask) {
9276b1bc
PJ
1732 if (NUMA_BUILD && zlc_active &&
1733 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1734 continue;
7fb1d9fc 1735 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1736 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1737 continue;
7fb1d9fc 1738
41858966 1739 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1740 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1741 unsigned long mark;
fa5e084e
MG
1742 int ret;
1743
41858966 1744 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1745 if (zone_watermark_ok(zone, order, mark,
1746 classzone_idx, alloc_flags))
1747 goto try_this_zone;
1748
cd38b115
MG
1749 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1750 /*
1751 * we do zlc_setup if there are multiple nodes
1752 * and before considering the first zone allowed
1753 * by the cpuset.
1754 */
1755 allowednodes = zlc_setup(zonelist, alloc_flags);
1756 zlc_active = 1;
1757 did_zlc_setup = 1;
1758 }
1759
fa5e084e
MG
1760 if (zone_reclaim_mode == 0)
1761 goto this_zone_full;
1762
cd38b115
MG
1763 /*
1764 * As we may have just activated ZLC, check if the first
1765 * eligible zone has failed zone_reclaim recently.
1766 */
1767 if (NUMA_BUILD && zlc_active &&
1768 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1769 continue;
1770
fa5e084e
MG
1771 ret = zone_reclaim(zone, gfp_mask, order);
1772 switch (ret) {
1773 case ZONE_RECLAIM_NOSCAN:
1774 /* did not scan */
cd38b115 1775 continue;
fa5e084e
MG
1776 case ZONE_RECLAIM_FULL:
1777 /* scanned but unreclaimable */
cd38b115 1778 continue;
fa5e084e
MG
1779 default:
1780 /* did we reclaim enough */
1781 if (!zone_watermark_ok(zone, order, mark,
1782 classzone_idx, alloc_flags))
9276b1bc 1783 goto this_zone_full;
0798e519 1784 }
7fb1d9fc
RS
1785 }
1786
fa5e084e 1787try_this_zone:
3dd28266
MG
1788 page = buffered_rmqueue(preferred_zone, zone, order,
1789 gfp_mask, migratetype);
0798e519 1790 if (page)
7fb1d9fc 1791 break;
9276b1bc
PJ
1792this_zone_full:
1793 if (NUMA_BUILD)
1794 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1795 }
9276b1bc
PJ
1796
1797 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1798 /* Disable zlc cache for second zonelist scan */
1799 zlc_active = 0;
1800 goto zonelist_scan;
1801 }
7fb1d9fc 1802 return page;
753ee728
MH
1803}
1804
29423e77
DR
1805/*
1806 * Large machines with many possible nodes should not always dump per-node
1807 * meminfo in irq context.
1808 */
1809static inline bool should_suppress_show_mem(void)
1810{
1811 bool ret = false;
1812
1813#if NODES_SHIFT > 8
1814 ret = in_interrupt();
1815#endif
1816 return ret;
1817}
1818
a238ab5b
DH
1819static DEFINE_RATELIMIT_STATE(nopage_rs,
1820 DEFAULT_RATELIMIT_INTERVAL,
1821 DEFAULT_RATELIMIT_BURST);
1822
1823void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1824{
a238ab5b
DH
1825 unsigned int filter = SHOW_MEM_FILTER_NODES;
1826
c0a32fc5
SG
1827 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1828 debug_guardpage_minorder() > 0)
a238ab5b
DH
1829 return;
1830
1831 /*
1832 * This documents exceptions given to allocations in certain
1833 * contexts that are allowed to allocate outside current's set
1834 * of allowed nodes.
1835 */
1836 if (!(gfp_mask & __GFP_NOMEMALLOC))
1837 if (test_thread_flag(TIF_MEMDIE) ||
1838 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1839 filter &= ~SHOW_MEM_FILTER_NODES;
1840 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1841 filter &= ~SHOW_MEM_FILTER_NODES;
1842
1843 if (fmt) {
3ee9a4f0
JP
1844 struct va_format vaf;
1845 va_list args;
1846
a238ab5b 1847 va_start(args, fmt);
3ee9a4f0
JP
1848
1849 vaf.fmt = fmt;
1850 vaf.va = &args;
1851
1852 pr_warn("%pV", &vaf);
1853
a238ab5b
DH
1854 va_end(args);
1855 }
1856
3ee9a4f0
JP
1857 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1858 current->comm, order, gfp_mask);
a238ab5b
DH
1859
1860 dump_stack();
1861 if (!should_suppress_show_mem())
1862 show_mem(filter);
1863}
1864
11e33f6a
MG
1865static inline int
1866should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1867 unsigned long did_some_progress,
11e33f6a 1868 unsigned long pages_reclaimed)
1da177e4 1869{
11e33f6a
MG
1870 /* Do not loop if specifically requested */
1871 if (gfp_mask & __GFP_NORETRY)
1872 return 0;
1da177e4 1873
f90ac398
MG
1874 /* Always retry if specifically requested */
1875 if (gfp_mask & __GFP_NOFAIL)
1876 return 1;
1877
1878 /*
1879 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1880 * making forward progress without invoking OOM. Suspend also disables
1881 * storage devices so kswapd will not help. Bail if we are suspending.
1882 */
1883 if (!did_some_progress && pm_suspended_storage())
1884 return 0;
1885
11e33f6a
MG
1886 /*
1887 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1888 * means __GFP_NOFAIL, but that may not be true in other
1889 * implementations.
1890 */
1891 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1892 return 1;
1893
1894 /*
1895 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1896 * specified, then we retry until we no longer reclaim any pages
1897 * (above), or we've reclaimed an order of pages at least as
1898 * large as the allocation's order. In both cases, if the
1899 * allocation still fails, we stop retrying.
1900 */
1901 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1902 return 1;
cf40bd16 1903
11e33f6a
MG
1904 return 0;
1905}
933e312e 1906
11e33f6a
MG
1907static inline struct page *
1908__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1909 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1910 nodemask_t *nodemask, struct zone *preferred_zone,
1911 int migratetype)
11e33f6a
MG
1912{
1913 struct page *page;
1914
1915 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1916 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1917 schedule_timeout_uninterruptible(1);
1da177e4
LT
1918 return NULL;
1919 }
6b1de916 1920
11e33f6a
MG
1921 /*
1922 * Go through the zonelist yet one more time, keep very high watermark
1923 * here, this is only to catch a parallel oom killing, we must fail if
1924 * we're still under heavy pressure.
1925 */
1926 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1927 order, zonelist, high_zoneidx,
5117f45d 1928 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1929 preferred_zone, migratetype);
7fb1d9fc 1930 if (page)
11e33f6a
MG
1931 goto out;
1932
4365a567
KH
1933 if (!(gfp_mask & __GFP_NOFAIL)) {
1934 /* The OOM killer will not help higher order allocs */
1935 if (order > PAGE_ALLOC_COSTLY_ORDER)
1936 goto out;
03668b3c
DR
1937 /* The OOM killer does not needlessly kill tasks for lowmem */
1938 if (high_zoneidx < ZONE_NORMAL)
1939 goto out;
4365a567
KH
1940 /*
1941 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1942 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1943 * The caller should handle page allocation failure by itself if
1944 * it specifies __GFP_THISNODE.
1945 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1946 */
1947 if (gfp_mask & __GFP_THISNODE)
1948 goto out;
1949 }
11e33f6a 1950 /* Exhausted what can be done so it's blamo time */
4365a567 1951 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1952
1953out:
1954 clear_zonelist_oom(zonelist, gfp_mask);
1955 return page;
1956}
1957
56de7263
MG
1958#ifdef CONFIG_COMPACTION
1959/* Try memory compaction for high-order allocations before reclaim */
1960static struct page *
1961__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1962 struct zonelist *zonelist, enum zone_type high_zoneidx,
1963 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1964 int migratetype, unsigned long *did_some_progress,
1965 bool sync_migration)
56de7263
MG
1966{
1967 struct page *page;
1968
4f92e258 1969 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1970 return NULL;
1971
c06b1fca 1972 current->flags |= PF_MEMALLOC;
56de7263 1973 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1974 nodemask, sync_migration);
c06b1fca 1975 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1976 if (*did_some_progress != COMPACT_SKIPPED) {
1977
1978 /* Page migration frees to the PCP lists but we want merging */
1979 drain_pages(get_cpu());
1980 put_cpu();
1981
1982 page = get_page_from_freelist(gfp_mask, nodemask,
1983 order, zonelist, high_zoneidx,
1984 alloc_flags, preferred_zone,
1985 migratetype);
1986 if (page) {
4f92e258
MG
1987 preferred_zone->compact_considered = 0;
1988 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1989 count_vm_event(COMPACTSUCCESS);
1990 return page;
1991 }
1992
1993 /*
1994 * It's bad if compaction run occurs and fails.
1995 * The most likely reason is that pages exist,
1996 * but not enough to satisfy watermarks.
1997 */
1998 count_vm_event(COMPACTFAIL);
4f92e258 1999 defer_compaction(preferred_zone);
56de7263
MG
2000
2001 cond_resched();
2002 }
2003
2004 return NULL;
2005}
2006#else
2007static inline struct page *
2008__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2009 struct zonelist *zonelist, enum zone_type high_zoneidx,
2010 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
2011 int migratetype, unsigned long *did_some_progress,
2012 bool sync_migration)
56de7263
MG
2013{
2014 return NULL;
2015}
2016#endif /* CONFIG_COMPACTION */
2017
11e33f6a
MG
2018/* The really slow allocator path where we enter direct reclaim */
2019static inline struct page *
2020__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2021 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 2022 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 2023 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
2024{
2025 struct page *page = NULL;
2026 struct reclaim_state reclaim_state;
9ee493ce 2027 bool drained = false;
11e33f6a
MG
2028
2029 cond_resched();
2030
2031 /* We now go into synchronous reclaim */
2032 cpuset_memory_pressure_bump();
c06b1fca 2033 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2034 lockdep_set_current_reclaim_state(gfp_mask);
2035 reclaim_state.reclaimed_slab = 0;
c06b1fca 2036 current->reclaim_state = &reclaim_state;
11e33f6a
MG
2037
2038 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2039
c06b1fca 2040 current->reclaim_state = NULL;
11e33f6a 2041 lockdep_clear_current_reclaim_state();
c06b1fca 2042 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2043
2044 cond_resched();
2045
9ee493ce
MG
2046 if (unlikely(!(*did_some_progress)))
2047 return NULL;
11e33f6a 2048
76d3fbf8
MG
2049 /* After successful reclaim, reconsider all zones for allocation */
2050 if (NUMA_BUILD)
2051 zlc_clear_zones_full(zonelist);
2052
9ee493ce
MG
2053retry:
2054 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2055 zonelist, high_zoneidx,
3dd28266
MG
2056 alloc_flags, preferred_zone,
2057 migratetype);
9ee493ce
MG
2058
2059 /*
2060 * If an allocation failed after direct reclaim, it could be because
2061 * pages are pinned on the per-cpu lists. Drain them and try again
2062 */
2063 if (!page && !drained) {
2064 drain_all_pages();
2065 drained = true;
2066 goto retry;
2067 }
2068
11e33f6a
MG
2069 return page;
2070}
2071
1da177e4 2072/*
11e33f6a
MG
2073 * This is called in the allocator slow-path if the allocation request is of
2074 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2075 */
11e33f6a
MG
2076static inline struct page *
2077__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2078 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2079 nodemask_t *nodemask, struct zone *preferred_zone,
2080 int migratetype)
11e33f6a
MG
2081{
2082 struct page *page;
2083
2084 do {
2085 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2086 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2087 preferred_zone, migratetype);
11e33f6a
MG
2088
2089 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2090 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2091 } while (!page && (gfp_mask & __GFP_NOFAIL));
2092
2093 return page;
2094}
2095
2096static inline
2097void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2098 enum zone_type high_zoneidx,
2099 enum zone_type classzone_idx)
1da177e4 2100{
dd1a239f
MG
2101 struct zoneref *z;
2102 struct zone *zone;
1da177e4 2103
11e33f6a 2104 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2105 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2106}
cf40bd16 2107
341ce06f
PZ
2108static inline int
2109gfp_to_alloc_flags(gfp_t gfp_mask)
2110{
341ce06f
PZ
2111 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2112 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2113
a56f57ff 2114 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2115 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2116
341ce06f
PZ
2117 /*
2118 * The caller may dip into page reserves a bit more if the caller
2119 * cannot run direct reclaim, or if the caller has realtime scheduling
2120 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2121 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2122 */
e6223a3b 2123 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2124
341ce06f 2125 if (!wait) {
5c3240d9
AA
2126 /*
2127 * Not worth trying to allocate harder for
2128 * __GFP_NOMEMALLOC even if it can't schedule.
2129 */
2130 if (!(gfp_mask & __GFP_NOMEMALLOC))
2131 alloc_flags |= ALLOC_HARDER;
523b9458 2132 /*
341ce06f
PZ
2133 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2134 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2135 */
341ce06f 2136 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2137 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2138 alloc_flags |= ALLOC_HARDER;
2139
2140 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2141 if (!in_interrupt() &&
c06b1fca 2142 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2143 unlikely(test_thread_flag(TIF_MEMDIE))))
2144 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2145 }
6b1de916 2146
341ce06f
PZ
2147 return alloc_flags;
2148}
2149
11e33f6a
MG
2150static inline struct page *
2151__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2153 nodemask_t *nodemask, struct zone *preferred_zone,
2154 int migratetype)
11e33f6a
MG
2155{
2156 const gfp_t wait = gfp_mask & __GFP_WAIT;
2157 struct page *page = NULL;
2158 int alloc_flags;
2159 unsigned long pages_reclaimed = 0;
2160 unsigned long did_some_progress;
77f1fe6b 2161 bool sync_migration = false;
1da177e4 2162
72807a74
MG
2163 /*
2164 * In the slowpath, we sanity check order to avoid ever trying to
2165 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2166 * be using allocators in order of preference for an area that is
2167 * too large.
2168 */
1fc28b70
MG
2169 if (order >= MAX_ORDER) {
2170 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2171 return NULL;
1fc28b70 2172 }
1da177e4 2173
952f3b51
CL
2174 /*
2175 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2176 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2177 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2178 * using a larger set of nodes after it has established that the
2179 * allowed per node queues are empty and that nodes are
2180 * over allocated.
2181 */
2182 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2183 goto nopage;
2184
cc4a6851 2185restart:
32dba98e
AA
2186 if (!(gfp_mask & __GFP_NO_KSWAPD))
2187 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2188 zone_idx(preferred_zone));
1da177e4 2189
9bf2229f 2190 /*
7fb1d9fc
RS
2191 * OK, we're below the kswapd watermark and have kicked background
2192 * reclaim. Now things get more complex, so set up alloc_flags according
2193 * to how we want to proceed.
9bf2229f 2194 */
341ce06f 2195 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2196
f33261d7
DR
2197 /*
2198 * Find the true preferred zone if the allocation is unconstrained by
2199 * cpusets.
2200 */
2201 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2202 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2203 &preferred_zone);
2204
cfa54a0f 2205rebalance:
341ce06f 2206 /* This is the last chance, in general, before the goto nopage. */
19770b32 2207 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2208 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2209 preferred_zone, migratetype);
7fb1d9fc
RS
2210 if (page)
2211 goto got_pg;
1da177e4 2212
11e33f6a 2213 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2214 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2215 page = __alloc_pages_high_priority(gfp_mask, order,
2216 zonelist, high_zoneidx, nodemask,
2217 preferred_zone, migratetype);
2218 if (page)
2219 goto got_pg;
1da177e4
LT
2220 }
2221
2222 /* Atomic allocations - we can't balance anything */
2223 if (!wait)
2224 goto nopage;
2225
341ce06f 2226 /* Avoid recursion of direct reclaim */
c06b1fca 2227 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2228 goto nopage;
2229
6583bb64
DR
2230 /* Avoid allocations with no watermarks from looping endlessly */
2231 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2232 goto nopage;
2233
77f1fe6b
MG
2234 /*
2235 * Try direct compaction. The first pass is asynchronous. Subsequent
2236 * attempts after direct reclaim are synchronous
2237 */
56de7263
MG
2238 page = __alloc_pages_direct_compact(gfp_mask, order,
2239 zonelist, high_zoneidx,
2240 nodemask,
2241 alloc_flags, preferred_zone,
77f1fe6b
MG
2242 migratetype, &did_some_progress,
2243 sync_migration);
56de7263
MG
2244 if (page)
2245 goto got_pg;
c6a140bf 2246 sync_migration = true;
56de7263 2247
11e33f6a
MG
2248 /* Try direct reclaim and then allocating */
2249 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2250 zonelist, high_zoneidx,
2251 nodemask,
5117f45d 2252 alloc_flags, preferred_zone,
3dd28266 2253 migratetype, &did_some_progress);
11e33f6a
MG
2254 if (page)
2255 goto got_pg;
1da177e4 2256
e33c3b5e 2257 /*
11e33f6a
MG
2258 * If we failed to make any progress reclaiming, then we are
2259 * running out of options and have to consider going OOM
e33c3b5e 2260 */
11e33f6a
MG
2261 if (!did_some_progress) {
2262 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2263 if (oom_killer_disabled)
2264 goto nopage;
11e33f6a
MG
2265 page = __alloc_pages_may_oom(gfp_mask, order,
2266 zonelist, high_zoneidx,
3dd28266
MG
2267 nodemask, preferred_zone,
2268 migratetype);
11e33f6a
MG
2269 if (page)
2270 goto got_pg;
1da177e4 2271
03668b3c
DR
2272 if (!(gfp_mask & __GFP_NOFAIL)) {
2273 /*
2274 * The oom killer is not called for high-order
2275 * allocations that may fail, so if no progress
2276 * is being made, there are no other options and
2277 * retrying is unlikely to help.
2278 */
2279 if (order > PAGE_ALLOC_COSTLY_ORDER)
2280 goto nopage;
2281 /*
2282 * The oom killer is not called for lowmem
2283 * allocations to prevent needlessly killing
2284 * innocent tasks.
2285 */
2286 if (high_zoneidx < ZONE_NORMAL)
2287 goto nopage;
2288 }
e2c55dc8 2289
ff0ceb9d
DR
2290 goto restart;
2291 }
1da177e4
LT
2292 }
2293
11e33f6a 2294 /* Check if we should retry the allocation */
a41f24ea 2295 pages_reclaimed += did_some_progress;
f90ac398
MG
2296 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2297 pages_reclaimed)) {
11e33f6a 2298 /* Wait for some write requests to complete then retry */
0e093d99 2299 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2300 goto rebalance;
3e7d3449
MG
2301 } else {
2302 /*
2303 * High-order allocations do not necessarily loop after
2304 * direct reclaim and reclaim/compaction depends on compaction
2305 * being called after reclaim so call directly if necessary
2306 */
2307 page = __alloc_pages_direct_compact(gfp_mask, order,
2308 zonelist, high_zoneidx,
2309 nodemask,
2310 alloc_flags, preferred_zone,
77f1fe6b
MG
2311 migratetype, &did_some_progress,
2312 sync_migration);
3e7d3449
MG
2313 if (page)
2314 goto got_pg;
1da177e4
LT
2315 }
2316
2317nopage:
a238ab5b 2318 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2319 return page;
1da177e4 2320got_pg:
b1eeab67
VN
2321 if (kmemcheck_enabled)
2322 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2323 return page;
11e33f6a 2324
1da177e4 2325}
11e33f6a
MG
2326
2327/*
2328 * This is the 'heart' of the zoned buddy allocator.
2329 */
2330struct page *
2331__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2332 struct zonelist *zonelist, nodemask_t *nodemask)
2333{
2334 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2335 struct zone *preferred_zone;
11e33f6a 2336 struct page *page;
3dd28266 2337 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2338
dcce284a
BH
2339 gfp_mask &= gfp_allowed_mask;
2340
11e33f6a
MG
2341 lockdep_trace_alloc(gfp_mask);
2342
2343 might_sleep_if(gfp_mask & __GFP_WAIT);
2344
2345 if (should_fail_alloc_page(gfp_mask, order))
2346 return NULL;
2347
2348 /*
2349 * Check the zones suitable for the gfp_mask contain at least one
2350 * valid zone. It's possible to have an empty zonelist as a result
2351 * of GFP_THISNODE and a memoryless node
2352 */
2353 if (unlikely(!zonelist->_zonerefs->zone))
2354 return NULL;
2355
c0ff7453 2356 get_mems_allowed();
5117f45d 2357 /* The preferred zone is used for statistics later */
f33261d7
DR
2358 first_zones_zonelist(zonelist, high_zoneidx,
2359 nodemask ? : &cpuset_current_mems_allowed,
2360 &preferred_zone);
c0ff7453
MX
2361 if (!preferred_zone) {
2362 put_mems_allowed();
5117f45d 2363 return NULL;
c0ff7453 2364 }
5117f45d
MG
2365
2366 /* First allocation attempt */
11e33f6a 2367 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2368 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2369 preferred_zone, migratetype);
11e33f6a
MG
2370 if (unlikely(!page))
2371 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2372 zonelist, high_zoneidx, nodemask,
3dd28266 2373 preferred_zone, migratetype);
c0ff7453 2374 put_mems_allowed();
11e33f6a 2375
4b4f278c 2376 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2377 return page;
1da177e4 2378}
d239171e 2379EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2380
2381/*
2382 * Common helper functions.
2383 */
920c7a5d 2384unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2385{
945a1113
AM
2386 struct page *page;
2387
2388 /*
2389 * __get_free_pages() returns a 32-bit address, which cannot represent
2390 * a highmem page
2391 */
2392 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2393
1da177e4
LT
2394 page = alloc_pages(gfp_mask, order);
2395 if (!page)
2396 return 0;
2397 return (unsigned long) page_address(page);
2398}
1da177e4
LT
2399EXPORT_SYMBOL(__get_free_pages);
2400
920c7a5d 2401unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2402{
945a1113 2403 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2404}
1da177e4
LT
2405EXPORT_SYMBOL(get_zeroed_page);
2406
920c7a5d 2407void __free_pages(struct page *page, unsigned int order)
1da177e4 2408{
b5810039 2409 if (put_page_testzero(page)) {
1da177e4 2410 if (order == 0)
fc91668e 2411 free_hot_cold_page(page, 0);
1da177e4
LT
2412 else
2413 __free_pages_ok(page, order);
2414 }
2415}
2416
2417EXPORT_SYMBOL(__free_pages);
2418
920c7a5d 2419void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2420{
2421 if (addr != 0) {
725d704e 2422 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2423 __free_pages(virt_to_page((void *)addr), order);
2424 }
2425}
2426
2427EXPORT_SYMBOL(free_pages);
2428
ee85c2e1
AK
2429static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2430{
2431 if (addr) {
2432 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2433 unsigned long used = addr + PAGE_ALIGN(size);
2434
2435 split_page(virt_to_page((void *)addr), order);
2436 while (used < alloc_end) {
2437 free_page(used);
2438 used += PAGE_SIZE;
2439 }
2440 }
2441 return (void *)addr;
2442}
2443
2be0ffe2
TT
2444/**
2445 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2446 * @size: the number of bytes to allocate
2447 * @gfp_mask: GFP flags for the allocation
2448 *
2449 * This function is similar to alloc_pages(), except that it allocates the
2450 * minimum number of pages to satisfy the request. alloc_pages() can only
2451 * allocate memory in power-of-two pages.
2452 *
2453 * This function is also limited by MAX_ORDER.
2454 *
2455 * Memory allocated by this function must be released by free_pages_exact().
2456 */
2457void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2458{
2459 unsigned int order = get_order(size);
2460 unsigned long addr;
2461
2462 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2463 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2464}
2465EXPORT_SYMBOL(alloc_pages_exact);
2466
ee85c2e1
AK
2467/**
2468 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2469 * pages on a node.
b5e6ab58 2470 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2471 * @size: the number of bytes to allocate
2472 * @gfp_mask: GFP flags for the allocation
2473 *
2474 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2475 * back.
2476 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2477 * but is not exact.
2478 */
2479void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2480{
2481 unsigned order = get_order(size);
2482 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2483 if (!p)
2484 return NULL;
2485 return make_alloc_exact((unsigned long)page_address(p), order, size);
2486}
2487EXPORT_SYMBOL(alloc_pages_exact_nid);
2488
2be0ffe2
TT
2489/**
2490 * free_pages_exact - release memory allocated via alloc_pages_exact()
2491 * @virt: the value returned by alloc_pages_exact.
2492 * @size: size of allocation, same value as passed to alloc_pages_exact().
2493 *
2494 * Release the memory allocated by a previous call to alloc_pages_exact.
2495 */
2496void free_pages_exact(void *virt, size_t size)
2497{
2498 unsigned long addr = (unsigned long)virt;
2499 unsigned long end = addr + PAGE_ALIGN(size);
2500
2501 while (addr < end) {
2502 free_page(addr);
2503 addr += PAGE_SIZE;
2504 }
2505}
2506EXPORT_SYMBOL(free_pages_exact);
2507
1da177e4
LT
2508static unsigned int nr_free_zone_pages(int offset)
2509{
dd1a239f 2510 struct zoneref *z;
54a6eb5c
MG
2511 struct zone *zone;
2512
e310fd43 2513 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2514 unsigned int sum = 0;
2515
0e88460d 2516 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2517
54a6eb5c 2518 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2519 unsigned long size = zone->present_pages;
41858966 2520 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2521 if (size > high)
2522 sum += size - high;
1da177e4
LT
2523 }
2524
2525 return sum;
2526}
2527
2528/*
2529 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2530 */
2531unsigned int nr_free_buffer_pages(void)
2532{
af4ca457 2533 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2534}
c2f1a551 2535EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2536
2537/*
2538 * Amount of free RAM allocatable within all zones
2539 */
2540unsigned int nr_free_pagecache_pages(void)
2541{
2a1e274a 2542 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2543}
08e0f6a9
CL
2544
2545static inline void show_node(struct zone *zone)
1da177e4 2546{
08e0f6a9 2547 if (NUMA_BUILD)
25ba77c1 2548 printk("Node %d ", zone_to_nid(zone));
1da177e4 2549}
1da177e4 2550
1da177e4
LT
2551void si_meminfo(struct sysinfo *val)
2552{
2553 val->totalram = totalram_pages;
2554 val->sharedram = 0;
d23ad423 2555 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2556 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2557 val->totalhigh = totalhigh_pages;
2558 val->freehigh = nr_free_highpages();
1da177e4
LT
2559 val->mem_unit = PAGE_SIZE;
2560}
2561
2562EXPORT_SYMBOL(si_meminfo);
2563
2564#ifdef CONFIG_NUMA
2565void si_meminfo_node(struct sysinfo *val, int nid)
2566{
2567 pg_data_t *pgdat = NODE_DATA(nid);
2568
2569 val->totalram = pgdat->node_present_pages;
d23ad423 2570 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2571#ifdef CONFIG_HIGHMEM
1da177e4 2572 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2573 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2574 NR_FREE_PAGES);
98d2b0eb
CL
2575#else
2576 val->totalhigh = 0;
2577 val->freehigh = 0;
2578#endif
1da177e4
LT
2579 val->mem_unit = PAGE_SIZE;
2580}
2581#endif
2582
ddd588b5 2583/*
7bf02ea2
DR
2584 * Determine whether the node should be displayed or not, depending on whether
2585 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2586 */
7bf02ea2 2587bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2588{
2589 bool ret = false;
2590
2591 if (!(flags & SHOW_MEM_FILTER_NODES))
2592 goto out;
2593
2594 get_mems_allowed();
7bf02ea2 2595 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2596 put_mems_allowed();
2597out:
2598 return ret;
2599}
2600
1da177e4
LT
2601#define K(x) ((x) << (PAGE_SHIFT-10))
2602
2603/*
2604 * Show free area list (used inside shift_scroll-lock stuff)
2605 * We also calculate the percentage fragmentation. We do this by counting the
2606 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2607 * Suppresses nodes that are not allowed by current's cpuset if
2608 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2609 */
7bf02ea2 2610void show_free_areas(unsigned int filter)
1da177e4 2611{
c7241913 2612 int cpu;
1da177e4
LT
2613 struct zone *zone;
2614
ee99c71c 2615 for_each_populated_zone(zone) {
7bf02ea2 2616 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2617 continue;
c7241913
JS
2618 show_node(zone);
2619 printk("%s per-cpu:\n", zone->name);
1da177e4 2620
6b482c67 2621 for_each_online_cpu(cpu) {
1da177e4
LT
2622 struct per_cpu_pageset *pageset;
2623
99dcc3e5 2624 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2625
3dfa5721
CL
2626 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2627 cpu, pageset->pcp.high,
2628 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2629 }
2630 }
2631
a731286d
KM
2632 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2633 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2634 " unevictable:%lu"
b76146ed 2635 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2636 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2637 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2638 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2639 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2640 global_page_state(NR_ISOLATED_ANON),
2641 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2642 global_page_state(NR_INACTIVE_FILE),
a731286d 2643 global_page_state(NR_ISOLATED_FILE),
7b854121 2644 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2645 global_page_state(NR_FILE_DIRTY),
ce866b34 2646 global_page_state(NR_WRITEBACK),
fd39fc85 2647 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2648 global_page_state(NR_FREE_PAGES),
3701b033
KM
2649 global_page_state(NR_SLAB_RECLAIMABLE),
2650 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2651 global_page_state(NR_FILE_MAPPED),
4b02108a 2652 global_page_state(NR_SHMEM),
a25700a5
AM
2653 global_page_state(NR_PAGETABLE),
2654 global_page_state(NR_BOUNCE));
1da177e4 2655
ee99c71c 2656 for_each_populated_zone(zone) {
1da177e4
LT
2657 int i;
2658
7bf02ea2 2659 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2660 continue;
1da177e4
LT
2661 show_node(zone);
2662 printk("%s"
2663 " free:%lukB"
2664 " min:%lukB"
2665 " low:%lukB"
2666 " high:%lukB"
4f98a2fe
RR
2667 " active_anon:%lukB"
2668 " inactive_anon:%lukB"
2669 " active_file:%lukB"
2670 " inactive_file:%lukB"
7b854121 2671 " unevictable:%lukB"
a731286d
KM
2672 " isolated(anon):%lukB"
2673 " isolated(file):%lukB"
1da177e4 2674 " present:%lukB"
4a0aa73f
KM
2675 " mlocked:%lukB"
2676 " dirty:%lukB"
2677 " writeback:%lukB"
2678 " mapped:%lukB"
4b02108a 2679 " shmem:%lukB"
4a0aa73f
KM
2680 " slab_reclaimable:%lukB"
2681 " slab_unreclaimable:%lukB"
c6a7f572 2682 " kernel_stack:%lukB"
4a0aa73f
KM
2683 " pagetables:%lukB"
2684 " unstable:%lukB"
2685 " bounce:%lukB"
2686 " writeback_tmp:%lukB"
1da177e4
LT
2687 " pages_scanned:%lu"
2688 " all_unreclaimable? %s"
2689 "\n",
2690 zone->name,
88f5acf8 2691 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2692 K(min_wmark_pages(zone)),
2693 K(low_wmark_pages(zone)),
2694 K(high_wmark_pages(zone)),
4f98a2fe
RR
2695 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2696 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2697 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2698 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2699 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2700 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2701 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2702 K(zone->present_pages),
4a0aa73f
KM
2703 K(zone_page_state(zone, NR_MLOCK)),
2704 K(zone_page_state(zone, NR_FILE_DIRTY)),
2705 K(zone_page_state(zone, NR_WRITEBACK)),
2706 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2707 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2708 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2709 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2710 zone_page_state(zone, NR_KERNEL_STACK) *
2711 THREAD_SIZE / 1024,
4a0aa73f
KM
2712 K(zone_page_state(zone, NR_PAGETABLE)),
2713 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2714 K(zone_page_state(zone, NR_BOUNCE)),
2715 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2716 zone->pages_scanned,
93e4a89a 2717 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2718 );
2719 printk("lowmem_reserve[]:");
2720 for (i = 0; i < MAX_NR_ZONES; i++)
2721 printk(" %lu", zone->lowmem_reserve[i]);
2722 printk("\n");
2723 }
2724
ee99c71c 2725 for_each_populated_zone(zone) {
8f9de51a 2726 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2727
7bf02ea2 2728 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2729 continue;
1da177e4
LT
2730 show_node(zone);
2731 printk("%s: ", zone->name);
1da177e4
LT
2732
2733 spin_lock_irqsave(&zone->lock, flags);
2734 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2735 nr[order] = zone->free_area[order].nr_free;
2736 total += nr[order] << order;
1da177e4
LT
2737 }
2738 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2739 for (order = 0; order < MAX_ORDER; order++)
2740 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2741 printk("= %lukB\n", K(total));
2742 }
2743
e6f3602d
LW
2744 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2745
1da177e4
LT
2746 show_swap_cache_info();
2747}
2748
19770b32
MG
2749static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2750{
2751 zoneref->zone = zone;
2752 zoneref->zone_idx = zone_idx(zone);
2753}
2754
1da177e4
LT
2755/*
2756 * Builds allocation fallback zone lists.
1a93205b
CL
2757 *
2758 * Add all populated zones of a node to the zonelist.
1da177e4 2759 */
f0c0b2b8
KH
2760static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2761 int nr_zones, enum zone_type zone_type)
1da177e4 2762{
1a93205b
CL
2763 struct zone *zone;
2764
98d2b0eb 2765 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2766 zone_type++;
02a68a5e
CL
2767
2768 do {
2f6726e5 2769 zone_type--;
070f8032 2770 zone = pgdat->node_zones + zone_type;
1a93205b 2771 if (populated_zone(zone)) {
dd1a239f
MG
2772 zoneref_set_zone(zone,
2773 &zonelist->_zonerefs[nr_zones++]);
070f8032 2774 check_highest_zone(zone_type);
1da177e4 2775 }
02a68a5e 2776
2f6726e5 2777 } while (zone_type);
070f8032 2778 return nr_zones;
1da177e4
LT
2779}
2780
f0c0b2b8
KH
2781
2782/*
2783 * zonelist_order:
2784 * 0 = automatic detection of better ordering.
2785 * 1 = order by ([node] distance, -zonetype)
2786 * 2 = order by (-zonetype, [node] distance)
2787 *
2788 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2789 * the same zonelist. So only NUMA can configure this param.
2790 */
2791#define ZONELIST_ORDER_DEFAULT 0
2792#define ZONELIST_ORDER_NODE 1
2793#define ZONELIST_ORDER_ZONE 2
2794
2795/* zonelist order in the kernel.
2796 * set_zonelist_order() will set this to NODE or ZONE.
2797 */
2798static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2799static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2800
2801
1da177e4 2802#ifdef CONFIG_NUMA
f0c0b2b8
KH
2803/* The value user specified ....changed by config */
2804static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2805/* string for sysctl */
2806#define NUMA_ZONELIST_ORDER_LEN 16
2807char numa_zonelist_order[16] = "default";
2808
2809/*
2810 * interface for configure zonelist ordering.
2811 * command line option "numa_zonelist_order"
2812 * = "[dD]efault - default, automatic configuration.
2813 * = "[nN]ode - order by node locality, then by zone within node
2814 * = "[zZ]one - order by zone, then by locality within zone
2815 */
2816
2817static int __parse_numa_zonelist_order(char *s)
2818{
2819 if (*s == 'd' || *s == 'D') {
2820 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2821 } else if (*s == 'n' || *s == 'N') {
2822 user_zonelist_order = ZONELIST_ORDER_NODE;
2823 } else if (*s == 'z' || *s == 'Z') {
2824 user_zonelist_order = ZONELIST_ORDER_ZONE;
2825 } else {
2826 printk(KERN_WARNING
2827 "Ignoring invalid numa_zonelist_order value: "
2828 "%s\n", s);
2829 return -EINVAL;
2830 }
2831 return 0;
2832}
2833
2834static __init int setup_numa_zonelist_order(char *s)
2835{
ecb256f8
VL
2836 int ret;
2837
2838 if (!s)
2839 return 0;
2840
2841 ret = __parse_numa_zonelist_order(s);
2842 if (ret == 0)
2843 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2844
2845 return ret;
f0c0b2b8
KH
2846}
2847early_param("numa_zonelist_order", setup_numa_zonelist_order);
2848
2849/*
2850 * sysctl handler for numa_zonelist_order
2851 */
2852int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2853 void __user *buffer, size_t *length,
f0c0b2b8
KH
2854 loff_t *ppos)
2855{
2856 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2857 int ret;
443c6f14 2858 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2859
443c6f14 2860 mutex_lock(&zl_order_mutex);
f0c0b2b8 2861 if (write)
443c6f14 2862 strcpy(saved_string, (char*)table->data);
8d65af78 2863 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2864 if (ret)
443c6f14 2865 goto out;
f0c0b2b8
KH
2866 if (write) {
2867 int oldval = user_zonelist_order;
2868 if (__parse_numa_zonelist_order((char*)table->data)) {
2869 /*
2870 * bogus value. restore saved string
2871 */
2872 strncpy((char*)table->data, saved_string,
2873 NUMA_ZONELIST_ORDER_LEN);
2874 user_zonelist_order = oldval;
4eaf3f64
HL
2875 } else if (oldval != user_zonelist_order) {
2876 mutex_lock(&zonelists_mutex);
1f522509 2877 build_all_zonelists(NULL);
4eaf3f64
HL
2878 mutex_unlock(&zonelists_mutex);
2879 }
f0c0b2b8 2880 }
443c6f14
AK
2881out:
2882 mutex_unlock(&zl_order_mutex);
2883 return ret;
f0c0b2b8
KH
2884}
2885
2886
62bc62a8 2887#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2888static int node_load[MAX_NUMNODES];
2889
1da177e4 2890/**
4dc3b16b 2891 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2892 * @node: node whose fallback list we're appending
2893 * @used_node_mask: nodemask_t of already used nodes
2894 *
2895 * We use a number of factors to determine which is the next node that should
2896 * appear on a given node's fallback list. The node should not have appeared
2897 * already in @node's fallback list, and it should be the next closest node
2898 * according to the distance array (which contains arbitrary distance values
2899 * from each node to each node in the system), and should also prefer nodes
2900 * with no CPUs, since presumably they'll have very little allocation pressure
2901 * on them otherwise.
2902 * It returns -1 if no node is found.
2903 */
f0c0b2b8 2904static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2905{
4cf808eb 2906 int n, val;
1da177e4
LT
2907 int min_val = INT_MAX;
2908 int best_node = -1;
a70f7302 2909 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2910
4cf808eb
LT
2911 /* Use the local node if we haven't already */
2912 if (!node_isset(node, *used_node_mask)) {
2913 node_set(node, *used_node_mask);
2914 return node;
2915 }
1da177e4 2916
37b07e41 2917 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2918
2919 /* Don't want a node to appear more than once */
2920 if (node_isset(n, *used_node_mask))
2921 continue;
2922
1da177e4
LT
2923 /* Use the distance array to find the distance */
2924 val = node_distance(node, n);
2925
4cf808eb
LT
2926 /* Penalize nodes under us ("prefer the next node") */
2927 val += (n < node);
2928
1da177e4 2929 /* Give preference to headless and unused nodes */
a70f7302
RR
2930 tmp = cpumask_of_node(n);
2931 if (!cpumask_empty(tmp))
1da177e4
LT
2932 val += PENALTY_FOR_NODE_WITH_CPUS;
2933
2934 /* Slight preference for less loaded node */
2935 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2936 val += node_load[n];
2937
2938 if (val < min_val) {
2939 min_val = val;
2940 best_node = n;
2941 }
2942 }
2943
2944 if (best_node >= 0)
2945 node_set(best_node, *used_node_mask);
2946
2947 return best_node;
2948}
2949
f0c0b2b8
KH
2950
2951/*
2952 * Build zonelists ordered by node and zones within node.
2953 * This results in maximum locality--normal zone overflows into local
2954 * DMA zone, if any--but risks exhausting DMA zone.
2955 */
2956static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2957{
f0c0b2b8 2958 int j;
1da177e4 2959 struct zonelist *zonelist;
f0c0b2b8 2960
54a6eb5c 2961 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2962 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2963 ;
2964 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2965 MAX_NR_ZONES - 1);
dd1a239f
MG
2966 zonelist->_zonerefs[j].zone = NULL;
2967 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2968}
2969
523b9458
CL
2970/*
2971 * Build gfp_thisnode zonelists
2972 */
2973static void build_thisnode_zonelists(pg_data_t *pgdat)
2974{
523b9458
CL
2975 int j;
2976 struct zonelist *zonelist;
2977
54a6eb5c
MG
2978 zonelist = &pgdat->node_zonelists[1];
2979 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2980 zonelist->_zonerefs[j].zone = NULL;
2981 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2982}
2983
f0c0b2b8
KH
2984/*
2985 * Build zonelists ordered by zone and nodes within zones.
2986 * This results in conserving DMA zone[s] until all Normal memory is
2987 * exhausted, but results in overflowing to remote node while memory
2988 * may still exist in local DMA zone.
2989 */
2990static int node_order[MAX_NUMNODES];
2991
2992static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2993{
f0c0b2b8
KH
2994 int pos, j, node;
2995 int zone_type; /* needs to be signed */
2996 struct zone *z;
2997 struct zonelist *zonelist;
2998
54a6eb5c
MG
2999 zonelist = &pgdat->node_zonelists[0];
3000 pos = 0;
3001 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3002 for (j = 0; j < nr_nodes; j++) {
3003 node = node_order[j];
3004 z = &NODE_DATA(node)->node_zones[zone_type];
3005 if (populated_zone(z)) {
dd1a239f
MG
3006 zoneref_set_zone(z,
3007 &zonelist->_zonerefs[pos++]);
54a6eb5c 3008 check_highest_zone(zone_type);
f0c0b2b8
KH
3009 }
3010 }
f0c0b2b8 3011 }
dd1a239f
MG
3012 zonelist->_zonerefs[pos].zone = NULL;
3013 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3014}
3015
3016static int default_zonelist_order(void)
3017{
3018 int nid, zone_type;
3019 unsigned long low_kmem_size,total_size;
3020 struct zone *z;
3021 int average_size;
3022 /*
88393161 3023 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3024 * If they are really small and used heavily, the system can fall
3025 * into OOM very easily.
e325c90f 3026 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3027 */
3028 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3029 low_kmem_size = 0;
3030 total_size = 0;
3031 for_each_online_node(nid) {
3032 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3033 z = &NODE_DATA(nid)->node_zones[zone_type];
3034 if (populated_zone(z)) {
3035 if (zone_type < ZONE_NORMAL)
3036 low_kmem_size += z->present_pages;
3037 total_size += z->present_pages;
e325c90f
DR
3038 } else if (zone_type == ZONE_NORMAL) {
3039 /*
3040 * If any node has only lowmem, then node order
3041 * is preferred to allow kernel allocations
3042 * locally; otherwise, they can easily infringe
3043 * on other nodes when there is an abundance of
3044 * lowmem available to allocate from.
3045 */
3046 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3047 }
3048 }
3049 }
3050 if (!low_kmem_size || /* there are no DMA area. */
3051 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3052 return ZONELIST_ORDER_NODE;
3053 /*
3054 * look into each node's config.
3055 * If there is a node whose DMA/DMA32 memory is very big area on
3056 * local memory, NODE_ORDER may be suitable.
3057 */
37b07e41
LS
3058 average_size = total_size /
3059 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3060 for_each_online_node(nid) {
3061 low_kmem_size = 0;
3062 total_size = 0;
3063 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3064 z = &NODE_DATA(nid)->node_zones[zone_type];
3065 if (populated_zone(z)) {
3066 if (zone_type < ZONE_NORMAL)
3067 low_kmem_size += z->present_pages;
3068 total_size += z->present_pages;
3069 }
3070 }
3071 if (low_kmem_size &&
3072 total_size > average_size && /* ignore small node */
3073 low_kmem_size > total_size * 70/100)
3074 return ZONELIST_ORDER_NODE;
3075 }
3076 return ZONELIST_ORDER_ZONE;
3077}
3078
3079static void set_zonelist_order(void)
3080{
3081 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3082 current_zonelist_order = default_zonelist_order();
3083 else
3084 current_zonelist_order = user_zonelist_order;
3085}
3086
3087static void build_zonelists(pg_data_t *pgdat)
3088{
3089 int j, node, load;
3090 enum zone_type i;
1da177e4 3091 nodemask_t used_mask;
f0c0b2b8
KH
3092 int local_node, prev_node;
3093 struct zonelist *zonelist;
3094 int order = current_zonelist_order;
1da177e4
LT
3095
3096 /* initialize zonelists */
523b9458 3097 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3098 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3099 zonelist->_zonerefs[0].zone = NULL;
3100 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3101 }
3102
3103 /* NUMA-aware ordering of nodes */
3104 local_node = pgdat->node_id;
62bc62a8 3105 load = nr_online_nodes;
1da177e4
LT
3106 prev_node = local_node;
3107 nodes_clear(used_mask);
f0c0b2b8 3108
f0c0b2b8
KH
3109 memset(node_order, 0, sizeof(node_order));
3110 j = 0;
3111
1da177e4 3112 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3113 int distance = node_distance(local_node, node);
3114
3115 /*
3116 * If another node is sufficiently far away then it is better
3117 * to reclaim pages in a zone before going off node.
3118 */
3119 if (distance > RECLAIM_DISTANCE)
3120 zone_reclaim_mode = 1;
3121
1da177e4
LT
3122 /*
3123 * We don't want to pressure a particular node.
3124 * So adding penalty to the first node in same
3125 * distance group to make it round-robin.
3126 */
9eeff239 3127 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3128 node_load[node] = load;
3129
1da177e4
LT
3130 prev_node = node;
3131 load--;
f0c0b2b8
KH
3132 if (order == ZONELIST_ORDER_NODE)
3133 build_zonelists_in_node_order(pgdat, node);
3134 else
3135 node_order[j++] = node; /* remember order */
3136 }
1da177e4 3137
f0c0b2b8
KH
3138 if (order == ZONELIST_ORDER_ZONE) {
3139 /* calculate node order -- i.e., DMA last! */
3140 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3141 }
523b9458
CL
3142
3143 build_thisnode_zonelists(pgdat);
1da177e4
LT
3144}
3145
9276b1bc 3146/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3147static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3148{
54a6eb5c
MG
3149 struct zonelist *zonelist;
3150 struct zonelist_cache *zlc;
dd1a239f 3151 struct zoneref *z;
9276b1bc 3152
54a6eb5c
MG
3153 zonelist = &pgdat->node_zonelists[0];
3154 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3155 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3156 for (z = zonelist->_zonerefs; z->zone; z++)
3157 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3158}
3159
7aac7898
LS
3160#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3161/*
3162 * Return node id of node used for "local" allocations.
3163 * I.e., first node id of first zone in arg node's generic zonelist.
3164 * Used for initializing percpu 'numa_mem', which is used primarily
3165 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3166 */
3167int local_memory_node(int node)
3168{
3169 struct zone *zone;
3170
3171 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3172 gfp_zone(GFP_KERNEL),
3173 NULL,
3174 &zone);
3175 return zone->node;
3176}
3177#endif
f0c0b2b8 3178
1da177e4
LT
3179#else /* CONFIG_NUMA */
3180
f0c0b2b8
KH
3181static void set_zonelist_order(void)
3182{
3183 current_zonelist_order = ZONELIST_ORDER_ZONE;
3184}
3185
3186static void build_zonelists(pg_data_t *pgdat)
1da177e4 3187{
19655d34 3188 int node, local_node;
54a6eb5c
MG
3189 enum zone_type j;
3190 struct zonelist *zonelist;
1da177e4
LT
3191
3192 local_node = pgdat->node_id;
1da177e4 3193
54a6eb5c
MG
3194 zonelist = &pgdat->node_zonelists[0];
3195 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3196
54a6eb5c
MG
3197 /*
3198 * Now we build the zonelist so that it contains the zones
3199 * of all the other nodes.
3200 * We don't want to pressure a particular node, so when
3201 * building the zones for node N, we make sure that the
3202 * zones coming right after the local ones are those from
3203 * node N+1 (modulo N)
3204 */
3205 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3206 if (!node_online(node))
3207 continue;
3208 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3209 MAX_NR_ZONES - 1);
1da177e4 3210 }
54a6eb5c
MG
3211 for (node = 0; node < local_node; node++) {
3212 if (!node_online(node))
3213 continue;
3214 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3215 MAX_NR_ZONES - 1);
3216 }
3217
dd1a239f
MG
3218 zonelist->_zonerefs[j].zone = NULL;
3219 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3220}
3221
9276b1bc 3222/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3223static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3224{
54a6eb5c 3225 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3226}
3227
1da177e4
LT
3228#endif /* CONFIG_NUMA */
3229
99dcc3e5
CL
3230/*
3231 * Boot pageset table. One per cpu which is going to be used for all
3232 * zones and all nodes. The parameters will be set in such a way
3233 * that an item put on a list will immediately be handed over to
3234 * the buddy list. This is safe since pageset manipulation is done
3235 * with interrupts disabled.
3236 *
3237 * The boot_pagesets must be kept even after bootup is complete for
3238 * unused processors and/or zones. They do play a role for bootstrapping
3239 * hotplugged processors.
3240 *
3241 * zoneinfo_show() and maybe other functions do
3242 * not check if the processor is online before following the pageset pointer.
3243 * Other parts of the kernel may not check if the zone is available.
3244 */
3245static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3246static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3247static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3248
4eaf3f64
HL
3249/*
3250 * Global mutex to protect against size modification of zonelists
3251 * as well as to serialize pageset setup for the new populated zone.
3252 */
3253DEFINE_MUTEX(zonelists_mutex);
3254
9b1a4d38 3255/* return values int ....just for stop_machine() */
1f522509 3256static __init_refok int __build_all_zonelists(void *data)
1da177e4 3257{
6811378e 3258 int nid;
99dcc3e5 3259 int cpu;
9276b1bc 3260
7f9cfb31
BL
3261#ifdef CONFIG_NUMA
3262 memset(node_load, 0, sizeof(node_load));
3263#endif
9276b1bc 3264 for_each_online_node(nid) {
7ea1530a
CL
3265 pg_data_t *pgdat = NODE_DATA(nid);
3266
3267 build_zonelists(pgdat);
3268 build_zonelist_cache(pgdat);
9276b1bc 3269 }
99dcc3e5
CL
3270
3271 /*
3272 * Initialize the boot_pagesets that are going to be used
3273 * for bootstrapping processors. The real pagesets for
3274 * each zone will be allocated later when the per cpu
3275 * allocator is available.
3276 *
3277 * boot_pagesets are used also for bootstrapping offline
3278 * cpus if the system is already booted because the pagesets
3279 * are needed to initialize allocators on a specific cpu too.
3280 * F.e. the percpu allocator needs the page allocator which
3281 * needs the percpu allocator in order to allocate its pagesets
3282 * (a chicken-egg dilemma).
3283 */
7aac7898 3284 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3285 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3286
7aac7898
LS
3287#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3288 /*
3289 * We now know the "local memory node" for each node--
3290 * i.e., the node of the first zone in the generic zonelist.
3291 * Set up numa_mem percpu variable for on-line cpus. During
3292 * boot, only the boot cpu should be on-line; we'll init the
3293 * secondary cpus' numa_mem as they come on-line. During
3294 * node/memory hotplug, we'll fixup all on-line cpus.
3295 */
3296 if (cpu_online(cpu))
3297 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3298#endif
3299 }
3300
6811378e
YG
3301 return 0;
3302}
3303
4eaf3f64
HL
3304/*
3305 * Called with zonelists_mutex held always
3306 * unless system_state == SYSTEM_BOOTING.
3307 */
9f6ae448 3308void __ref build_all_zonelists(void *data)
6811378e 3309{
f0c0b2b8
KH
3310 set_zonelist_order();
3311
6811378e 3312 if (system_state == SYSTEM_BOOTING) {
423b41d7 3313 __build_all_zonelists(NULL);
68ad8df4 3314 mminit_verify_zonelist();
6811378e
YG
3315 cpuset_init_current_mems_allowed();
3316 } else {
183ff22b 3317 /* we have to stop all cpus to guarantee there is no user
6811378e 3318 of zonelist */
e9959f0f
KH
3319#ifdef CONFIG_MEMORY_HOTPLUG
3320 if (data)
3321 setup_zone_pageset((struct zone *)data);
3322#endif
3323 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3324 /* cpuset refresh routine should be here */
3325 }
bd1e22b8 3326 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3327 /*
3328 * Disable grouping by mobility if the number of pages in the
3329 * system is too low to allow the mechanism to work. It would be
3330 * more accurate, but expensive to check per-zone. This check is
3331 * made on memory-hotadd so a system can start with mobility
3332 * disabled and enable it later
3333 */
d9c23400 3334 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3335 page_group_by_mobility_disabled = 1;
3336 else
3337 page_group_by_mobility_disabled = 0;
3338
3339 printk("Built %i zonelists in %s order, mobility grouping %s. "
3340 "Total pages: %ld\n",
62bc62a8 3341 nr_online_nodes,
f0c0b2b8 3342 zonelist_order_name[current_zonelist_order],
9ef9acb0 3343 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3344 vm_total_pages);
3345#ifdef CONFIG_NUMA
3346 printk("Policy zone: %s\n", zone_names[policy_zone]);
3347#endif
1da177e4
LT
3348}
3349
3350/*
3351 * Helper functions to size the waitqueue hash table.
3352 * Essentially these want to choose hash table sizes sufficiently
3353 * large so that collisions trying to wait on pages are rare.
3354 * But in fact, the number of active page waitqueues on typical
3355 * systems is ridiculously low, less than 200. So this is even
3356 * conservative, even though it seems large.
3357 *
3358 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3359 * waitqueues, i.e. the size of the waitq table given the number of pages.
3360 */
3361#define PAGES_PER_WAITQUEUE 256
3362
cca448fe 3363#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3364static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3365{
3366 unsigned long size = 1;
3367
3368 pages /= PAGES_PER_WAITQUEUE;
3369
3370 while (size < pages)
3371 size <<= 1;
3372
3373 /*
3374 * Once we have dozens or even hundreds of threads sleeping
3375 * on IO we've got bigger problems than wait queue collision.
3376 * Limit the size of the wait table to a reasonable size.
3377 */
3378 size = min(size, 4096UL);
3379
3380 return max(size, 4UL);
3381}
cca448fe
YG
3382#else
3383/*
3384 * A zone's size might be changed by hot-add, so it is not possible to determine
3385 * a suitable size for its wait_table. So we use the maximum size now.
3386 *
3387 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3388 *
3389 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3390 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3391 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3392 *
3393 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3394 * or more by the traditional way. (See above). It equals:
3395 *
3396 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3397 * ia64(16K page size) : = ( 8G + 4M)byte.
3398 * powerpc (64K page size) : = (32G +16M)byte.
3399 */
3400static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3401{
3402 return 4096UL;
3403}
3404#endif
1da177e4
LT
3405
3406/*
3407 * This is an integer logarithm so that shifts can be used later
3408 * to extract the more random high bits from the multiplicative
3409 * hash function before the remainder is taken.
3410 */
3411static inline unsigned long wait_table_bits(unsigned long size)
3412{
3413 return ffz(~size);
3414}
3415
3416#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3417
6d3163ce
AH
3418/*
3419 * Check if a pageblock contains reserved pages
3420 */
3421static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3422{
3423 unsigned long pfn;
3424
3425 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3426 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3427 return 1;
3428 }
3429 return 0;
3430}
3431
56fd56b8 3432/*
d9c23400 3433 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3434 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3435 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3436 * higher will lead to a bigger reserve which will get freed as contiguous
3437 * blocks as reclaim kicks in
3438 */
3439static void setup_zone_migrate_reserve(struct zone *zone)
3440{
6d3163ce 3441 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3442 struct page *page;
78986a67
MG
3443 unsigned long block_migratetype;
3444 int reserve;
56fd56b8 3445
d0215638
MH
3446 /*
3447 * Get the start pfn, end pfn and the number of blocks to reserve
3448 * We have to be careful to be aligned to pageblock_nr_pages to
3449 * make sure that we always check pfn_valid for the first page in
3450 * the block.
3451 */
56fd56b8
MG
3452 start_pfn = zone->zone_start_pfn;
3453 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3454 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3455 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3456 pageblock_order;
56fd56b8 3457
78986a67
MG
3458 /*
3459 * Reserve blocks are generally in place to help high-order atomic
3460 * allocations that are short-lived. A min_free_kbytes value that
3461 * would result in more than 2 reserve blocks for atomic allocations
3462 * is assumed to be in place to help anti-fragmentation for the
3463 * future allocation of hugepages at runtime.
3464 */
3465 reserve = min(2, reserve);
3466
d9c23400 3467 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3468 if (!pfn_valid(pfn))
3469 continue;
3470 page = pfn_to_page(pfn);
3471
344c790e
AL
3472 /* Watch out for overlapping nodes */
3473 if (page_to_nid(page) != zone_to_nid(zone))
3474 continue;
3475
56fd56b8
MG
3476 block_migratetype = get_pageblock_migratetype(page);
3477
938929f1
MG
3478 /* Only test what is necessary when the reserves are not met */
3479 if (reserve > 0) {
3480 /*
3481 * Blocks with reserved pages will never free, skip
3482 * them.
3483 */
3484 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3485 if (pageblock_is_reserved(pfn, block_end_pfn))
3486 continue;
56fd56b8 3487
938929f1
MG
3488 /* If this block is reserved, account for it */
3489 if (block_migratetype == MIGRATE_RESERVE) {
3490 reserve--;
3491 continue;
3492 }
3493
3494 /* Suitable for reserving if this block is movable */
3495 if (block_migratetype == MIGRATE_MOVABLE) {
3496 set_pageblock_migratetype(page,
3497 MIGRATE_RESERVE);
3498 move_freepages_block(zone, page,
3499 MIGRATE_RESERVE);
3500 reserve--;
3501 continue;
3502 }
56fd56b8
MG
3503 }
3504
3505 /*
3506 * If the reserve is met and this is a previous reserved block,
3507 * take it back
3508 */
3509 if (block_migratetype == MIGRATE_RESERVE) {
3510 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3511 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3512 }
3513 }
3514}
ac0e5b7a 3515
1da177e4
LT
3516/*
3517 * Initially all pages are reserved - free ones are freed
3518 * up by free_all_bootmem() once the early boot process is
3519 * done. Non-atomic initialization, single-pass.
3520 */
c09b4240 3521void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3522 unsigned long start_pfn, enum memmap_context context)
1da177e4 3523{
1da177e4 3524 struct page *page;
29751f69
AW
3525 unsigned long end_pfn = start_pfn + size;
3526 unsigned long pfn;
86051ca5 3527 struct zone *z;
1da177e4 3528
22b31eec
HD
3529 if (highest_memmap_pfn < end_pfn - 1)
3530 highest_memmap_pfn = end_pfn - 1;
3531
86051ca5 3532 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3533 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3534 /*
3535 * There can be holes in boot-time mem_map[]s
3536 * handed to this function. They do not
3537 * exist on hotplugged memory.
3538 */
3539 if (context == MEMMAP_EARLY) {
3540 if (!early_pfn_valid(pfn))
3541 continue;
3542 if (!early_pfn_in_nid(pfn, nid))
3543 continue;
3544 }
d41dee36
AW
3545 page = pfn_to_page(pfn);
3546 set_page_links(page, zone, nid, pfn);
708614e6 3547 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3548 init_page_count(page);
1da177e4
LT
3549 reset_page_mapcount(page);
3550 SetPageReserved(page);
b2a0ac88
MG
3551 /*
3552 * Mark the block movable so that blocks are reserved for
3553 * movable at startup. This will force kernel allocations
3554 * to reserve their blocks rather than leaking throughout
3555 * the address space during boot when many long-lived
56fd56b8
MG
3556 * kernel allocations are made. Later some blocks near
3557 * the start are marked MIGRATE_RESERVE by
3558 * setup_zone_migrate_reserve()
86051ca5
KH
3559 *
3560 * bitmap is created for zone's valid pfn range. but memmap
3561 * can be created for invalid pages (for alignment)
3562 * check here not to call set_pageblock_migratetype() against
3563 * pfn out of zone.
b2a0ac88 3564 */
86051ca5
KH
3565 if ((z->zone_start_pfn <= pfn)
3566 && (pfn < z->zone_start_pfn + z->spanned_pages)
3567 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3568 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3569
1da177e4
LT
3570 INIT_LIST_HEAD(&page->lru);
3571#ifdef WANT_PAGE_VIRTUAL
3572 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3573 if (!is_highmem_idx(zone))
3212c6be 3574 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3575#endif
1da177e4
LT
3576 }
3577}
3578
1e548deb 3579static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3580{
b2a0ac88
MG
3581 int order, t;
3582 for_each_migratetype_order(order, t) {
3583 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3584 zone->free_area[order].nr_free = 0;
3585 }
3586}
3587
3588#ifndef __HAVE_ARCH_MEMMAP_INIT
3589#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3590 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3591#endif
3592
1d6f4e60 3593static int zone_batchsize(struct zone *zone)
e7c8d5c9 3594{
3a6be87f 3595#ifdef CONFIG_MMU
e7c8d5c9
CL
3596 int batch;
3597
3598 /*
3599 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3600 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3601 *
3602 * OK, so we don't know how big the cache is. So guess.
3603 */
3604 batch = zone->present_pages / 1024;
ba56e91c
SR
3605 if (batch * PAGE_SIZE > 512 * 1024)
3606 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3607 batch /= 4; /* We effectively *= 4 below */
3608 if (batch < 1)
3609 batch = 1;
3610
3611 /*
0ceaacc9
NP
3612 * Clamp the batch to a 2^n - 1 value. Having a power
3613 * of 2 value was found to be more likely to have
3614 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3615 *
0ceaacc9
NP
3616 * For example if 2 tasks are alternately allocating
3617 * batches of pages, one task can end up with a lot
3618 * of pages of one half of the possible page colors
3619 * and the other with pages of the other colors.
e7c8d5c9 3620 */
9155203a 3621 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3622
e7c8d5c9 3623 return batch;
3a6be87f
DH
3624
3625#else
3626 /* The deferral and batching of frees should be suppressed under NOMMU
3627 * conditions.
3628 *
3629 * The problem is that NOMMU needs to be able to allocate large chunks
3630 * of contiguous memory as there's no hardware page translation to
3631 * assemble apparent contiguous memory from discontiguous pages.
3632 *
3633 * Queueing large contiguous runs of pages for batching, however,
3634 * causes the pages to actually be freed in smaller chunks. As there
3635 * can be a significant delay between the individual batches being
3636 * recycled, this leads to the once large chunks of space being
3637 * fragmented and becoming unavailable for high-order allocations.
3638 */
3639 return 0;
3640#endif
e7c8d5c9
CL
3641}
3642
b69a7288 3643static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3644{
3645 struct per_cpu_pages *pcp;
5f8dcc21 3646 int migratetype;
2caaad41 3647
1c6fe946
MD
3648 memset(p, 0, sizeof(*p));
3649
3dfa5721 3650 pcp = &p->pcp;
2caaad41 3651 pcp->count = 0;
2caaad41
CL
3652 pcp->high = 6 * batch;
3653 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3654 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3655 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3656}
3657
8ad4b1fb
RS
3658/*
3659 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3660 * to the value high for the pageset p.
3661 */
3662
3663static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3664 unsigned long high)
3665{
3666 struct per_cpu_pages *pcp;
3667
3dfa5721 3668 pcp = &p->pcp;
8ad4b1fb
RS
3669 pcp->high = high;
3670 pcp->batch = max(1UL, high/4);
3671 if ((high/4) > (PAGE_SHIFT * 8))
3672 pcp->batch = PAGE_SHIFT * 8;
3673}
3674
58c2ee40 3675static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3676{
3677 int cpu;
3678
3679 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3680
3681 for_each_possible_cpu(cpu) {
3682 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3683
3684 setup_pageset(pcp, zone_batchsize(zone));
3685
3686 if (percpu_pagelist_fraction)
3687 setup_pagelist_highmark(pcp,
3688 (zone->present_pages /
3689 percpu_pagelist_fraction));
3690 }
3691}
3692
2caaad41 3693/*
99dcc3e5
CL
3694 * Allocate per cpu pagesets and initialize them.
3695 * Before this call only boot pagesets were available.
e7c8d5c9 3696 */
99dcc3e5 3697void __init setup_per_cpu_pageset(void)
e7c8d5c9 3698{
99dcc3e5 3699 struct zone *zone;
e7c8d5c9 3700
319774e2
WF
3701 for_each_populated_zone(zone)
3702 setup_zone_pageset(zone);
e7c8d5c9
CL
3703}
3704
577a32f6 3705static noinline __init_refok
cca448fe 3706int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3707{
3708 int i;
3709 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3710 size_t alloc_size;
ed8ece2e
DH
3711
3712 /*
3713 * The per-page waitqueue mechanism uses hashed waitqueues
3714 * per zone.
3715 */
02b694de
YG
3716 zone->wait_table_hash_nr_entries =
3717 wait_table_hash_nr_entries(zone_size_pages);
3718 zone->wait_table_bits =
3719 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3720 alloc_size = zone->wait_table_hash_nr_entries
3721 * sizeof(wait_queue_head_t);
3722
cd94b9db 3723 if (!slab_is_available()) {
cca448fe 3724 zone->wait_table = (wait_queue_head_t *)
8f389a99 3725 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3726 } else {
3727 /*
3728 * This case means that a zone whose size was 0 gets new memory
3729 * via memory hot-add.
3730 * But it may be the case that a new node was hot-added. In
3731 * this case vmalloc() will not be able to use this new node's
3732 * memory - this wait_table must be initialized to use this new
3733 * node itself as well.
3734 * To use this new node's memory, further consideration will be
3735 * necessary.
3736 */
8691f3a7 3737 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3738 }
3739 if (!zone->wait_table)
3740 return -ENOMEM;
ed8ece2e 3741
02b694de 3742 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3743 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3744
3745 return 0;
ed8ece2e
DH
3746}
3747
112067f0
SL
3748static int __zone_pcp_update(void *data)
3749{
3750 struct zone *zone = data;
3751 int cpu;
3752 unsigned long batch = zone_batchsize(zone), flags;
3753
2d30a1f6 3754 for_each_possible_cpu(cpu) {
112067f0
SL
3755 struct per_cpu_pageset *pset;
3756 struct per_cpu_pages *pcp;
3757
99dcc3e5 3758 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3759 pcp = &pset->pcp;
3760
3761 local_irq_save(flags);
5f8dcc21 3762 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3763 setup_pageset(pset, batch);
3764 local_irq_restore(flags);
3765 }
3766 return 0;
3767}
3768
3769void zone_pcp_update(struct zone *zone)
3770{
3771 stop_machine(__zone_pcp_update, zone, NULL);
3772}
3773
c09b4240 3774static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3775{
99dcc3e5
CL
3776 /*
3777 * per cpu subsystem is not up at this point. The following code
3778 * relies on the ability of the linker to provide the
3779 * offset of a (static) per cpu variable into the per cpu area.
3780 */
3781 zone->pageset = &boot_pageset;
ed8ece2e 3782
f5335c0f 3783 if (zone->present_pages)
99dcc3e5
CL
3784 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3785 zone->name, zone->present_pages,
3786 zone_batchsize(zone));
ed8ece2e
DH
3787}
3788
718127cc
YG
3789__meminit int init_currently_empty_zone(struct zone *zone,
3790 unsigned long zone_start_pfn,
a2f3aa02
DH
3791 unsigned long size,
3792 enum memmap_context context)
ed8ece2e
DH
3793{
3794 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3795 int ret;
3796 ret = zone_wait_table_init(zone, size);
3797 if (ret)
3798 return ret;
ed8ece2e
DH
3799 pgdat->nr_zones = zone_idx(zone) + 1;
3800
ed8ece2e
DH
3801 zone->zone_start_pfn = zone_start_pfn;
3802
708614e6
MG
3803 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3804 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3805 pgdat->node_id,
3806 (unsigned long)zone_idx(zone),
3807 zone_start_pfn, (zone_start_pfn + size));
3808
1e548deb 3809 zone_init_free_lists(zone);
718127cc
YG
3810
3811 return 0;
ed8ece2e
DH
3812}
3813
0ee332c1 3814#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3815#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3816/*
3817 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3818 * Architectures may implement their own version but if add_active_range()
3819 * was used and there are no special requirements, this is a convenient
3820 * alternative
3821 */
f2dbcfa7 3822int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3823{
c13291a5
TH
3824 unsigned long start_pfn, end_pfn;
3825 int i, nid;
c713216d 3826
c13291a5 3827 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3828 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3829 return nid;
cc2559bc
KH
3830 /* This is a memory hole */
3831 return -1;
c713216d
MG
3832}
3833#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3834
f2dbcfa7
KH
3835int __meminit early_pfn_to_nid(unsigned long pfn)
3836{
cc2559bc
KH
3837 int nid;
3838
3839 nid = __early_pfn_to_nid(pfn);
3840 if (nid >= 0)
3841 return nid;
3842 /* just returns 0 */
3843 return 0;
f2dbcfa7
KH
3844}
3845
cc2559bc
KH
3846#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3847bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3848{
3849 int nid;
3850
3851 nid = __early_pfn_to_nid(pfn);
3852 if (nid >= 0 && nid != node)
3853 return false;
3854 return true;
3855}
3856#endif
f2dbcfa7 3857
c713216d
MG
3858/**
3859 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3860 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3861 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3862 *
3863 * If an architecture guarantees that all ranges registered with
3864 * add_active_ranges() contain no holes and may be freed, this
3865 * this function may be used instead of calling free_bootmem() manually.
3866 */
c13291a5 3867void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 3868{
c13291a5
TH
3869 unsigned long start_pfn, end_pfn;
3870 int i, this_nid;
edbe7d23 3871
c13291a5
TH
3872 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3873 start_pfn = min(start_pfn, max_low_pfn);
3874 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 3875
c13291a5
TH
3876 if (start_pfn < end_pfn)
3877 free_bootmem_node(NODE_DATA(this_nid),
3878 PFN_PHYS(start_pfn),
3879 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 3880 }
edbe7d23 3881}
edbe7d23 3882
08677214
YL
3883int __init add_from_early_node_map(struct range *range, int az,
3884 int nr_range, int nid)
3885{
c13291a5 3886 unsigned long start_pfn, end_pfn;
08677214 3887 int i;
08677214
YL
3888
3889 /* need to go over early_node_map to find out good range for node */
c13291a5
TH
3890 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3891 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
08677214
YL
3892 return nr_range;
3893}
3894
c713216d
MG
3895/**
3896 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3897 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3898 *
3899 * If an architecture guarantees that all ranges registered with
3900 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3901 * function may be used instead of calling memory_present() manually.
c713216d
MG
3902 */
3903void __init sparse_memory_present_with_active_regions(int nid)
3904{
c13291a5
TH
3905 unsigned long start_pfn, end_pfn;
3906 int i, this_nid;
c713216d 3907
c13291a5
TH
3908 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3909 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
3910}
3911
3912/**
3913 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3914 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3915 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3916 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3917 *
3918 * It returns the start and end page frame of a node based on information
3919 * provided by an arch calling add_active_range(). If called for a node
3920 * with no available memory, a warning is printed and the start and end
88ca3b94 3921 * PFNs will be 0.
c713216d 3922 */
a3142c8e 3923void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3924 unsigned long *start_pfn, unsigned long *end_pfn)
3925{
c13291a5 3926 unsigned long this_start_pfn, this_end_pfn;
c713216d 3927 int i;
c13291a5 3928
c713216d
MG
3929 *start_pfn = -1UL;
3930 *end_pfn = 0;
3931
c13291a5
TH
3932 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3933 *start_pfn = min(*start_pfn, this_start_pfn);
3934 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
3935 }
3936
633c0666 3937 if (*start_pfn == -1UL)
c713216d 3938 *start_pfn = 0;
c713216d
MG
3939}
3940
2a1e274a
MG
3941/*
3942 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3943 * assumption is made that zones within a node are ordered in monotonic
3944 * increasing memory addresses so that the "highest" populated zone is used
3945 */
b69a7288 3946static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3947{
3948 int zone_index;
3949 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3950 if (zone_index == ZONE_MOVABLE)
3951 continue;
3952
3953 if (arch_zone_highest_possible_pfn[zone_index] >
3954 arch_zone_lowest_possible_pfn[zone_index])
3955 break;
3956 }
3957
3958 VM_BUG_ON(zone_index == -1);
3959 movable_zone = zone_index;
3960}
3961
3962/*
3963 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 3964 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
3965 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3966 * in each node depending on the size of each node and how evenly kernelcore
3967 * is distributed. This helper function adjusts the zone ranges
3968 * provided by the architecture for a given node by using the end of the
3969 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3970 * zones within a node are in order of monotonic increases memory addresses
3971 */
b69a7288 3972static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3973 unsigned long zone_type,
3974 unsigned long node_start_pfn,
3975 unsigned long node_end_pfn,
3976 unsigned long *zone_start_pfn,
3977 unsigned long *zone_end_pfn)
3978{
3979 /* Only adjust if ZONE_MOVABLE is on this node */
3980 if (zone_movable_pfn[nid]) {
3981 /* Size ZONE_MOVABLE */
3982 if (zone_type == ZONE_MOVABLE) {
3983 *zone_start_pfn = zone_movable_pfn[nid];
3984 *zone_end_pfn = min(node_end_pfn,
3985 arch_zone_highest_possible_pfn[movable_zone]);
3986
3987 /* Adjust for ZONE_MOVABLE starting within this range */
3988 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3989 *zone_end_pfn > zone_movable_pfn[nid]) {
3990 *zone_end_pfn = zone_movable_pfn[nid];
3991
3992 /* Check if this whole range is within ZONE_MOVABLE */
3993 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3994 *zone_start_pfn = *zone_end_pfn;
3995 }
3996}
3997
c713216d
MG
3998/*
3999 * Return the number of pages a zone spans in a node, including holes
4000 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4001 */
6ea6e688 4002static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4003 unsigned long zone_type,
4004 unsigned long *ignored)
4005{
4006 unsigned long node_start_pfn, node_end_pfn;
4007 unsigned long zone_start_pfn, zone_end_pfn;
4008
4009 /* Get the start and end of the node and zone */
4010 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4011 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4012 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4013 adjust_zone_range_for_zone_movable(nid, zone_type,
4014 node_start_pfn, node_end_pfn,
4015 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4016
4017 /* Check that this node has pages within the zone's required range */
4018 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4019 return 0;
4020
4021 /* Move the zone boundaries inside the node if necessary */
4022 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4023 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4024
4025 /* Return the spanned pages */
4026 return zone_end_pfn - zone_start_pfn;
4027}
4028
4029/*
4030 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4031 * then all holes in the requested range will be accounted for.
c713216d 4032 */
32996250 4033unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4034 unsigned long range_start_pfn,
4035 unsigned long range_end_pfn)
4036{
96e907d1
TH
4037 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4038 unsigned long start_pfn, end_pfn;
4039 int i;
c713216d 4040
96e907d1
TH
4041 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4042 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4043 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4044 nr_absent -= end_pfn - start_pfn;
c713216d 4045 }
96e907d1 4046 return nr_absent;
c713216d
MG
4047}
4048
4049/**
4050 * absent_pages_in_range - Return number of page frames in holes within a range
4051 * @start_pfn: The start PFN to start searching for holes
4052 * @end_pfn: The end PFN to stop searching for holes
4053 *
88ca3b94 4054 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4055 */
4056unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4057 unsigned long end_pfn)
4058{
4059 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4060}
4061
4062/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4063static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4064 unsigned long zone_type,
4065 unsigned long *ignored)
4066{
96e907d1
TH
4067 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4068 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4069 unsigned long node_start_pfn, node_end_pfn;
4070 unsigned long zone_start_pfn, zone_end_pfn;
4071
4072 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4073 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4074 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4075
2a1e274a
MG
4076 adjust_zone_range_for_zone_movable(nid, zone_type,
4077 node_start_pfn, node_end_pfn,
4078 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4079 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4080}
0e0b864e 4081
0ee332c1 4082#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4083static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4084 unsigned long zone_type,
4085 unsigned long *zones_size)
4086{
4087 return zones_size[zone_type];
4088}
4089
6ea6e688 4090static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4091 unsigned long zone_type,
4092 unsigned long *zholes_size)
4093{
4094 if (!zholes_size)
4095 return 0;
4096
4097 return zholes_size[zone_type];
4098}
0e0b864e 4099
0ee332c1 4100#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4101
a3142c8e 4102static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4103 unsigned long *zones_size, unsigned long *zholes_size)
4104{
4105 unsigned long realtotalpages, totalpages = 0;
4106 enum zone_type i;
4107
4108 for (i = 0; i < MAX_NR_ZONES; i++)
4109 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4110 zones_size);
4111 pgdat->node_spanned_pages = totalpages;
4112
4113 realtotalpages = totalpages;
4114 for (i = 0; i < MAX_NR_ZONES; i++)
4115 realtotalpages -=
4116 zone_absent_pages_in_node(pgdat->node_id, i,
4117 zholes_size);
4118 pgdat->node_present_pages = realtotalpages;
4119 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4120 realtotalpages);
4121}
4122
835c134e
MG
4123#ifndef CONFIG_SPARSEMEM
4124/*
4125 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4126 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4127 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4128 * round what is now in bits to nearest long in bits, then return it in
4129 * bytes.
4130 */
4131static unsigned long __init usemap_size(unsigned long zonesize)
4132{
4133 unsigned long usemapsize;
4134
d9c23400
MG
4135 usemapsize = roundup(zonesize, pageblock_nr_pages);
4136 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4137 usemapsize *= NR_PAGEBLOCK_BITS;
4138 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4139
4140 return usemapsize / 8;
4141}
4142
4143static void __init setup_usemap(struct pglist_data *pgdat,
4144 struct zone *zone, unsigned long zonesize)
4145{
4146 unsigned long usemapsize = usemap_size(zonesize);
4147 zone->pageblock_flags = NULL;
58a01a45 4148 if (usemapsize)
8f389a99
YL
4149 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4150 usemapsize);
835c134e
MG
4151}
4152#else
fa9f90be 4153static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4154 struct zone *zone, unsigned long zonesize) {}
4155#endif /* CONFIG_SPARSEMEM */
4156
d9c23400 4157#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4158
4159/* Return a sensible default order for the pageblock size. */
4160static inline int pageblock_default_order(void)
4161{
4162 if (HPAGE_SHIFT > PAGE_SHIFT)
4163 return HUGETLB_PAGE_ORDER;
4164
4165 return MAX_ORDER-1;
4166}
4167
d9c23400
MG
4168/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4169static inline void __init set_pageblock_order(unsigned int order)
4170{
4171 /* Check that pageblock_nr_pages has not already been setup */
4172 if (pageblock_order)
4173 return;
4174
4175 /*
4176 * Assume the largest contiguous order of interest is a huge page.
4177 * This value may be variable depending on boot parameters on IA64
4178 */
4179 pageblock_order = order;
4180}
4181#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4182
ba72cb8c
MG
4183/*
4184 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4185 * and pageblock_default_order() are unused as pageblock_order is set
4186 * at compile-time. See include/linux/pageblock-flags.h for the values of
4187 * pageblock_order based on the kernel config
4188 */
4189static inline int pageblock_default_order(unsigned int order)
4190{
4191 return MAX_ORDER-1;
4192}
d9c23400
MG
4193#define set_pageblock_order(x) do {} while (0)
4194
4195#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4196
1da177e4
LT
4197/*
4198 * Set up the zone data structures:
4199 * - mark all pages reserved
4200 * - mark all memory queues empty
4201 * - clear the memory bitmaps
4202 */
b5a0e011 4203static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4204 unsigned long *zones_size, unsigned long *zholes_size)
4205{
2f1b6248 4206 enum zone_type j;
ed8ece2e 4207 int nid = pgdat->node_id;
1da177e4 4208 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4209 int ret;
1da177e4 4210
208d54e5 4211 pgdat_resize_init(pgdat);
1da177e4
LT
4212 pgdat->nr_zones = 0;
4213 init_waitqueue_head(&pgdat->kswapd_wait);
4214 pgdat->kswapd_max_order = 0;
52d4b9ac 4215 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4216
4217 for (j = 0; j < MAX_NR_ZONES; j++) {
4218 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4219 unsigned long size, realsize, memmap_pages;
b69408e8 4220 enum lru_list l;
1da177e4 4221
c713216d
MG
4222 size = zone_spanned_pages_in_node(nid, j, zones_size);
4223 realsize = size - zone_absent_pages_in_node(nid, j,
4224 zholes_size);
1da177e4 4225
0e0b864e
MG
4226 /*
4227 * Adjust realsize so that it accounts for how much memory
4228 * is used by this zone for memmap. This affects the watermark
4229 * and per-cpu initialisations
4230 */
f7232154
JW
4231 memmap_pages =
4232 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4233 if (realsize >= memmap_pages) {
4234 realsize -= memmap_pages;
5594c8c8
YL
4235 if (memmap_pages)
4236 printk(KERN_DEBUG
4237 " %s zone: %lu pages used for memmap\n",
4238 zone_names[j], memmap_pages);
0e0b864e
MG
4239 } else
4240 printk(KERN_WARNING
4241 " %s zone: %lu pages exceeds realsize %lu\n",
4242 zone_names[j], memmap_pages, realsize);
4243
6267276f
CL
4244 /* Account for reserved pages */
4245 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4246 realsize -= dma_reserve;
d903ef9f 4247 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4248 zone_names[0], dma_reserve);
0e0b864e
MG
4249 }
4250
98d2b0eb 4251 if (!is_highmem_idx(j))
1da177e4
LT
4252 nr_kernel_pages += realsize;
4253 nr_all_pages += realsize;
4254
4255 zone->spanned_pages = size;
4256 zone->present_pages = realsize;
9614634f 4257#ifdef CONFIG_NUMA
d5f541ed 4258 zone->node = nid;
8417bba4 4259 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4260 / 100;
0ff38490 4261 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4262#endif
1da177e4
LT
4263 zone->name = zone_names[j];
4264 spin_lock_init(&zone->lock);
4265 spin_lock_init(&zone->lru_lock);
bdc8cb98 4266 zone_seqlock_init(zone);
1da177e4 4267 zone->zone_pgdat = pgdat;
1da177e4 4268
ed8ece2e 4269 zone_pcp_init(zone);
246e87a9 4270 for_each_lru(l)
b69408e8 4271 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4272 zone->reclaim_stat.recent_rotated[0] = 0;
4273 zone->reclaim_stat.recent_rotated[1] = 0;
4274 zone->reclaim_stat.recent_scanned[0] = 0;
4275 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4276 zap_zone_vm_stats(zone);
e815af95 4277 zone->flags = 0;
1da177e4
LT
4278 if (!size)
4279 continue;
4280
ba72cb8c 4281 set_pageblock_order(pageblock_default_order());
835c134e 4282 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4283 ret = init_currently_empty_zone(zone, zone_start_pfn,
4284 size, MEMMAP_EARLY);
718127cc 4285 BUG_ON(ret);
76cdd58e 4286 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4287 zone_start_pfn += size;
1da177e4
LT
4288 }
4289}
4290
577a32f6 4291static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4292{
1da177e4
LT
4293 /* Skip empty nodes */
4294 if (!pgdat->node_spanned_pages)
4295 return;
4296
d41dee36 4297#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4298 /* ia64 gets its own node_mem_map, before this, without bootmem */
4299 if (!pgdat->node_mem_map) {
e984bb43 4300 unsigned long size, start, end;
d41dee36
AW
4301 struct page *map;
4302
e984bb43
BP
4303 /*
4304 * The zone's endpoints aren't required to be MAX_ORDER
4305 * aligned but the node_mem_map endpoints must be in order
4306 * for the buddy allocator to function correctly.
4307 */
4308 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4309 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4310 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4311 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4312 map = alloc_remap(pgdat->node_id, size);
4313 if (!map)
8f389a99 4314 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4315 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4316 }
12d810c1 4317#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4318 /*
4319 * With no DISCONTIG, the global mem_map is just set as node 0's
4320 */
c713216d 4321 if (pgdat == NODE_DATA(0)) {
1da177e4 4322 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4323#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4324 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4325 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4326#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4327 }
1da177e4 4328#endif
d41dee36 4329#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4330}
4331
9109fb7b
JW
4332void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4333 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4334{
9109fb7b
JW
4335 pg_data_t *pgdat = NODE_DATA(nid);
4336
1da177e4
LT
4337 pgdat->node_id = nid;
4338 pgdat->node_start_pfn = node_start_pfn;
c713216d 4339 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4340
4341 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4342#ifdef CONFIG_FLAT_NODE_MEM_MAP
4343 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4344 nid, (unsigned long)pgdat,
4345 (unsigned long)pgdat->node_mem_map);
4346#endif
1da177e4
LT
4347
4348 free_area_init_core(pgdat, zones_size, zholes_size);
4349}
4350
0ee332c1 4351#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4352
4353#if MAX_NUMNODES > 1
4354/*
4355 * Figure out the number of possible node ids.
4356 */
4357static void __init setup_nr_node_ids(void)
4358{
4359 unsigned int node;
4360 unsigned int highest = 0;
4361
4362 for_each_node_mask(node, node_possible_map)
4363 highest = node;
4364 nr_node_ids = highest + 1;
4365}
4366#else
4367static inline void setup_nr_node_ids(void)
4368{
4369}
4370#endif
4371
1e01979c
TH
4372/**
4373 * node_map_pfn_alignment - determine the maximum internode alignment
4374 *
4375 * This function should be called after node map is populated and sorted.
4376 * It calculates the maximum power of two alignment which can distinguish
4377 * all the nodes.
4378 *
4379 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4380 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4381 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4382 * shifted, 1GiB is enough and this function will indicate so.
4383 *
4384 * This is used to test whether pfn -> nid mapping of the chosen memory
4385 * model has fine enough granularity to avoid incorrect mapping for the
4386 * populated node map.
4387 *
4388 * Returns the determined alignment in pfn's. 0 if there is no alignment
4389 * requirement (single node).
4390 */
4391unsigned long __init node_map_pfn_alignment(void)
4392{
4393 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4394 unsigned long start, end, mask;
1e01979c 4395 int last_nid = -1;
c13291a5 4396 int i, nid;
1e01979c 4397
c13291a5 4398 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4399 if (!start || last_nid < 0 || last_nid == nid) {
4400 last_nid = nid;
4401 last_end = end;
4402 continue;
4403 }
4404
4405 /*
4406 * Start with a mask granular enough to pin-point to the
4407 * start pfn and tick off bits one-by-one until it becomes
4408 * too coarse to separate the current node from the last.
4409 */
4410 mask = ~((1 << __ffs(start)) - 1);
4411 while (mask && last_end <= (start & (mask << 1)))
4412 mask <<= 1;
4413
4414 /* accumulate all internode masks */
4415 accl_mask |= mask;
4416 }
4417
4418 /* convert mask to number of pages */
4419 return ~accl_mask + 1;
4420}
4421
a6af2bc3 4422/* Find the lowest pfn for a node */
b69a7288 4423static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4424{
a6af2bc3 4425 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4426 unsigned long start_pfn;
4427 int i;
1abbfb41 4428
c13291a5
TH
4429 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4430 min_pfn = min(min_pfn, start_pfn);
c713216d 4431
a6af2bc3
MG
4432 if (min_pfn == ULONG_MAX) {
4433 printk(KERN_WARNING
2bc0d261 4434 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4435 return 0;
4436 }
4437
4438 return min_pfn;
c713216d
MG
4439}
4440
4441/**
4442 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4443 *
4444 * It returns the minimum PFN based on information provided via
88ca3b94 4445 * add_active_range().
c713216d
MG
4446 */
4447unsigned long __init find_min_pfn_with_active_regions(void)
4448{
4449 return find_min_pfn_for_node(MAX_NUMNODES);
4450}
4451
37b07e41
LS
4452/*
4453 * early_calculate_totalpages()
4454 * Sum pages in active regions for movable zone.
4455 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4456 */
484f51f8 4457static unsigned long __init early_calculate_totalpages(void)
7e63efef 4458{
7e63efef 4459 unsigned long totalpages = 0;
c13291a5
TH
4460 unsigned long start_pfn, end_pfn;
4461 int i, nid;
4462
4463 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4464 unsigned long pages = end_pfn - start_pfn;
7e63efef 4465
37b07e41
LS
4466 totalpages += pages;
4467 if (pages)
c13291a5 4468 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4469 }
4470 return totalpages;
7e63efef
MG
4471}
4472
2a1e274a
MG
4473/*
4474 * Find the PFN the Movable zone begins in each node. Kernel memory
4475 * is spread evenly between nodes as long as the nodes have enough
4476 * memory. When they don't, some nodes will have more kernelcore than
4477 * others
4478 */
b69a7288 4479static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4480{
4481 int i, nid;
4482 unsigned long usable_startpfn;
4483 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4484 /* save the state before borrow the nodemask */
4485 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4486 unsigned long totalpages = early_calculate_totalpages();
4487 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4488
7e63efef
MG
4489 /*
4490 * If movablecore was specified, calculate what size of
4491 * kernelcore that corresponds so that memory usable for
4492 * any allocation type is evenly spread. If both kernelcore
4493 * and movablecore are specified, then the value of kernelcore
4494 * will be used for required_kernelcore if it's greater than
4495 * what movablecore would have allowed.
4496 */
4497 if (required_movablecore) {
7e63efef
MG
4498 unsigned long corepages;
4499
4500 /*
4501 * Round-up so that ZONE_MOVABLE is at least as large as what
4502 * was requested by the user
4503 */
4504 required_movablecore =
4505 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4506 corepages = totalpages - required_movablecore;
4507
4508 required_kernelcore = max(required_kernelcore, corepages);
4509 }
4510
2a1e274a
MG
4511 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4512 if (!required_kernelcore)
66918dcd 4513 goto out;
2a1e274a
MG
4514
4515 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4516 find_usable_zone_for_movable();
4517 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4518
4519restart:
4520 /* Spread kernelcore memory as evenly as possible throughout nodes */
4521 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4522 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4523 unsigned long start_pfn, end_pfn;
4524
2a1e274a
MG
4525 /*
4526 * Recalculate kernelcore_node if the division per node
4527 * now exceeds what is necessary to satisfy the requested
4528 * amount of memory for the kernel
4529 */
4530 if (required_kernelcore < kernelcore_node)
4531 kernelcore_node = required_kernelcore / usable_nodes;
4532
4533 /*
4534 * As the map is walked, we track how much memory is usable
4535 * by the kernel using kernelcore_remaining. When it is
4536 * 0, the rest of the node is usable by ZONE_MOVABLE
4537 */
4538 kernelcore_remaining = kernelcore_node;
4539
4540 /* Go through each range of PFNs within this node */
c13291a5 4541 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4542 unsigned long size_pages;
4543
c13291a5 4544 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4545 if (start_pfn >= end_pfn)
4546 continue;
4547
4548 /* Account for what is only usable for kernelcore */
4549 if (start_pfn < usable_startpfn) {
4550 unsigned long kernel_pages;
4551 kernel_pages = min(end_pfn, usable_startpfn)
4552 - start_pfn;
4553
4554 kernelcore_remaining -= min(kernel_pages,
4555 kernelcore_remaining);
4556 required_kernelcore -= min(kernel_pages,
4557 required_kernelcore);
4558
4559 /* Continue if range is now fully accounted */
4560 if (end_pfn <= usable_startpfn) {
4561
4562 /*
4563 * Push zone_movable_pfn to the end so
4564 * that if we have to rebalance
4565 * kernelcore across nodes, we will
4566 * not double account here
4567 */
4568 zone_movable_pfn[nid] = end_pfn;
4569 continue;
4570 }
4571 start_pfn = usable_startpfn;
4572 }
4573
4574 /*
4575 * The usable PFN range for ZONE_MOVABLE is from
4576 * start_pfn->end_pfn. Calculate size_pages as the
4577 * number of pages used as kernelcore
4578 */
4579 size_pages = end_pfn - start_pfn;
4580 if (size_pages > kernelcore_remaining)
4581 size_pages = kernelcore_remaining;
4582 zone_movable_pfn[nid] = start_pfn + size_pages;
4583
4584 /*
4585 * Some kernelcore has been met, update counts and
4586 * break if the kernelcore for this node has been
4587 * satisified
4588 */
4589 required_kernelcore -= min(required_kernelcore,
4590 size_pages);
4591 kernelcore_remaining -= size_pages;
4592 if (!kernelcore_remaining)
4593 break;
4594 }
4595 }
4596
4597 /*
4598 * If there is still required_kernelcore, we do another pass with one
4599 * less node in the count. This will push zone_movable_pfn[nid] further
4600 * along on the nodes that still have memory until kernelcore is
4601 * satisified
4602 */
4603 usable_nodes--;
4604 if (usable_nodes && required_kernelcore > usable_nodes)
4605 goto restart;
4606
4607 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4608 for (nid = 0; nid < MAX_NUMNODES; nid++)
4609 zone_movable_pfn[nid] =
4610 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4611
4612out:
4613 /* restore the node_state */
4614 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4615}
4616
37b07e41
LS
4617/* Any regular memory on that node ? */
4618static void check_for_regular_memory(pg_data_t *pgdat)
4619{
4620#ifdef CONFIG_HIGHMEM
4621 enum zone_type zone_type;
4622
4623 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4624 struct zone *zone = &pgdat->node_zones[zone_type];
4625 if (zone->present_pages)
4626 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4627 }
4628#endif
4629}
4630
c713216d
MG
4631/**
4632 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4633 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4634 *
4635 * This will call free_area_init_node() for each active node in the system.
4636 * Using the page ranges provided by add_active_range(), the size of each
4637 * zone in each node and their holes is calculated. If the maximum PFN
4638 * between two adjacent zones match, it is assumed that the zone is empty.
4639 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4640 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4641 * starts where the previous one ended. For example, ZONE_DMA32 starts
4642 * at arch_max_dma_pfn.
4643 */
4644void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4645{
c13291a5
TH
4646 unsigned long start_pfn, end_pfn;
4647 int i, nid;
a6af2bc3 4648
c713216d
MG
4649 /* Record where the zone boundaries are */
4650 memset(arch_zone_lowest_possible_pfn, 0,
4651 sizeof(arch_zone_lowest_possible_pfn));
4652 memset(arch_zone_highest_possible_pfn, 0,
4653 sizeof(arch_zone_highest_possible_pfn));
4654 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4655 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4656 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4657 if (i == ZONE_MOVABLE)
4658 continue;
c713216d
MG
4659 arch_zone_lowest_possible_pfn[i] =
4660 arch_zone_highest_possible_pfn[i-1];
4661 arch_zone_highest_possible_pfn[i] =
4662 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4663 }
2a1e274a
MG
4664 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4665 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4666
4667 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4668 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4669 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4670
c713216d
MG
4671 /* Print out the zone ranges */
4672 printk("Zone PFN ranges:\n");
2a1e274a
MG
4673 for (i = 0; i < MAX_NR_ZONES; i++) {
4674 if (i == ZONE_MOVABLE)
4675 continue;
72f0ba02
DR
4676 printk(" %-8s ", zone_names[i]);
4677 if (arch_zone_lowest_possible_pfn[i] ==
4678 arch_zone_highest_possible_pfn[i])
4679 printk("empty\n");
4680 else
4681 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4682 arch_zone_lowest_possible_pfn[i],
4683 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4684 }
4685
4686 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4687 printk("Movable zone start PFN for each node\n");
4688 for (i = 0; i < MAX_NUMNODES; i++) {
4689 if (zone_movable_pfn[i])
4690 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4691 }
c713216d
MG
4692
4693 /* Print out the early_node_map[] */
c13291a5
TH
4694 printk("Early memory PFN ranges\n");
4695 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4696 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
c713216d
MG
4697
4698 /* Initialise every node */
708614e6 4699 mminit_verify_pageflags_layout();
8ef82866 4700 setup_nr_node_ids();
c713216d
MG
4701 for_each_online_node(nid) {
4702 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4703 free_area_init_node(nid, NULL,
c713216d 4704 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4705
4706 /* Any memory on that node */
4707 if (pgdat->node_present_pages)
4708 node_set_state(nid, N_HIGH_MEMORY);
4709 check_for_regular_memory(pgdat);
c713216d
MG
4710 }
4711}
2a1e274a 4712
7e63efef 4713static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4714{
4715 unsigned long long coremem;
4716 if (!p)
4717 return -EINVAL;
4718
4719 coremem = memparse(p, &p);
7e63efef 4720 *core = coremem >> PAGE_SHIFT;
2a1e274a 4721
7e63efef 4722 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4723 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4724
4725 return 0;
4726}
ed7ed365 4727
7e63efef
MG
4728/*
4729 * kernelcore=size sets the amount of memory for use for allocations that
4730 * cannot be reclaimed or migrated.
4731 */
4732static int __init cmdline_parse_kernelcore(char *p)
4733{
4734 return cmdline_parse_core(p, &required_kernelcore);
4735}
4736
4737/*
4738 * movablecore=size sets the amount of memory for use for allocations that
4739 * can be reclaimed or migrated.
4740 */
4741static int __init cmdline_parse_movablecore(char *p)
4742{
4743 return cmdline_parse_core(p, &required_movablecore);
4744}
4745
ed7ed365 4746early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4747early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4748
0ee332c1 4749#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4750
0e0b864e 4751/**
88ca3b94
RD
4752 * set_dma_reserve - set the specified number of pages reserved in the first zone
4753 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4754 *
4755 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4756 * In the DMA zone, a significant percentage may be consumed by kernel image
4757 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4758 * function may optionally be used to account for unfreeable pages in the
4759 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4760 * smaller per-cpu batchsize.
0e0b864e
MG
4761 */
4762void __init set_dma_reserve(unsigned long new_dma_reserve)
4763{
4764 dma_reserve = new_dma_reserve;
4765}
4766
1da177e4
LT
4767void __init free_area_init(unsigned long *zones_size)
4768{
9109fb7b 4769 free_area_init_node(0, zones_size,
1da177e4
LT
4770 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4771}
1da177e4 4772
1da177e4
LT
4773static int page_alloc_cpu_notify(struct notifier_block *self,
4774 unsigned long action, void *hcpu)
4775{
4776 int cpu = (unsigned long)hcpu;
1da177e4 4777
8bb78442 4778 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4779 drain_pages(cpu);
4780
4781 /*
4782 * Spill the event counters of the dead processor
4783 * into the current processors event counters.
4784 * This artificially elevates the count of the current
4785 * processor.
4786 */
f8891e5e 4787 vm_events_fold_cpu(cpu);
9f8f2172
CL
4788
4789 /*
4790 * Zero the differential counters of the dead processor
4791 * so that the vm statistics are consistent.
4792 *
4793 * This is only okay since the processor is dead and cannot
4794 * race with what we are doing.
4795 */
2244b95a 4796 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4797 }
4798 return NOTIFY_OK;
4799}
1da177e4
LT
4800
4801void __init page_alloc_init(void)
4802{
4803 hotcpu_notifier(page_alloc_cpu_notify, 0);
4804}
4805
cb45b0e9
HA
4806/*
4807 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4808 * or min_free_kbytes changes.
4809 */
4810static void calculate_totalreserve_pages(void)
4811{
4812 struct pglist_data *pgdat;
4813 unsigned long reserve_pages = 0;
2f6726e5 4814 enum zone_type i, j;
cb45b0e9
HA
4815
4816 for_each_online_pgdat(pgdat) {
4817 for (i = 0; i < MAX_NR_ZONES; i++) {
4818 struct zone *zone = pgdat->node_zones + i;
4819 unsigned long max = 0;
4820
4821 /* Find valid and maximum lowmem_reserve in the zone */
4822 for (j = i; j < MAX_NR_ZONES; j++) {
4823 if (zone->lowmem_reserve[j] > max)
4824 max = zone->lowmem_reserve[j];
4825 }
4826
41858966
MG
4827 /* we treat the high watermark as reserved pages. */
4828 max += high_wmark_pages(zone);
cb45b0e9
HA
4829
4830 if (max > zone->present_pages)
4831 max = zone->present_pages;
4832 reserve_pages += max;
ab8fabd4
JW
4833 /*
4834 * Lowmem reserves are not available to
4835 * GFP_HIGHUSER page cache allocations and
4836 * kswapd tries to balance zones to their high
4837 * watermark. As a result, neither should be
4838 * regarded as dirtyable memory, to prevent a
4839 * situation where reclaim has to clean pages
4840 * in order to balance the zones.
4841 */
4842 zone->dirty_balance_reserve = max;
cb45b0e9
HA
4843 }
4844 }
ab8fabd4 4845 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
4846 totalreserve_pages = reserve_pages;
4847}
4848
1da177e4
LT
4849/*
4850 * setup_per_zone_lowmem_reserve - called whenever
4851 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4852 * has a correct pages reserved value, so an adequate number of
4853 * pages are left in the zone after a successful __alloc_pages().
4854 */
4855static void setup_per_zone_lowmem_reserve(void)
4856{
4857 struct pglist_data *pgdat;
2f6726e5 4858 enum zone_type j, idx;
1da177e4 4859
ec936fc5 4860 for_each_online_pgdat(pgdat) {
1da177e4
LT
4861 for (j = 0; j < MAX_NR_ZONES; j++) {
4862 struct zone *zone = pgdat->node_zones + j;
4863 unsigned long present_pages = zone->present_pages;
4864
4865 zone->lowmem_reserve[j] = 0;
4866
2f6726e5
CL
4867 idx = j;
4868 while (idx) {
1da177e4
LT
4869 struct zone *lower_zone;
4870
2f6726e5
CL
4871 idx--;
4872
1da177e4
LT
4873 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4874 sysctl_lowmem_reserve_ratio[idx] = 1;
4875
4876 lower_zone = pgdat->node_zones + idx;
4877 lower_zone->lowmem_reserve[j] = present_pages /
4878 sysctl_lowmem_reserve_ratio[idx];
4879 present_pages += lower_zone->present_pages;
4880 }
4881 }
4882 }
cb45b0e9
HA
4883
4884 /* update totalreserve_pages */
4885 calculate_totalreserve_pages();
1da177e4
LT
4886}
4887
88ca3b94 4888/**
bc75d33f 4889 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4890 * or when memory is hot-{added|removed}
88ca3b94 4891 *
bc75d33f
MK
4892 * Ensures that the watermark[min,low,high] values for each zone are set
4893 * correctly with respect to min_free_kbytes.
1da177e4 4894 */
bc75d33f 4895void setup_per_zone_wmarks(void)
1da177e4
LT
4896{
4897 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4898 unsigned long lowmem_pages = 0;
4899 struct zone *zone;
4900 unsigned long flags;
4901
4902 /* Calculate total number of !ZONE_HIGHMEM pages */
4903 for_each_zone(zone) {
4904 if (!is_highmem(zone))
4905 lowmem_pages += zone->present_pages;
4906 }
4907
4908 for_each_zone(zone) {
ac924c60
AM
4909 u64 tmp;
4910
1125b4e3 4911 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4912 tmp = (u64)pages_min * zone->present_pages;
4913 do_div(tmp, lowmem_pages);
1da177e4
LT
4914 if (is_highmem(zone)) {
4915 /*
669ed175
NP
4916 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4917 * need highmem pages, so cap pages_min to a small
4918 * value here.
4919 *
41858966 4920 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4921 * deltas controls asynch page reclaim, and so should
4922 * not be capped for highmem.
1da177e4
LT
4923 */
4924 int min_pages;
4925
4926 min_pages = zone->present_pages / 1024;
4927 if (min_pages < SWAP_CLUSTER_MAX)
4928 min_pages = SWAP_CLUSTER_MAX;
4929 if (min_pages > 128)
4930 min_pages = 128;
41858966 4931 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4932 } else {
669ed175
NP
4933 /*
4934 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4935 * proportionate to the zone's size.
4936 */
41858966 4937 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4938 }
4939
41858966
MG
4940 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4941 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4942 setup_zone_migrate_reserve(zone);
1125b4e3 4943 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4944 }
cb45b0e9
HA
4945
4946 /* update totalreserve_pages */
4947 calculate_totalreserve_pages();
1da177e4
LT
4948}
4949
55a4462a 4950/*
556adecb
RR
4951 * The inactive anon list should be small enough that the VM never has to
4952 * do too much work, but large enough that each inactive page has a chance
4953 * to be referenced again before it is swapped out.
4954 *
4955 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4956 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4957 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4958 * the anonymous pages are kept on the inactive list.
4959 *
4960 * total target max
4961 * memory ratio inactive anon
4962 * -------------------------------------
4963 * 10MB 1 5MB
4964 * 100MB 1 50MB
4965 * 1GB 3 250MB
4966 * 10GB 10 0.9GB
4967 * 100GB 31 3GB
4968 * 1TB 101 10GB
4969 * 10TB 320 32GB
4970 */
1b79acc9 4971static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4972{
96cb4df5 4973 unsigned int gb, ratio;
556adecb 4974
96cb4df5
MK
4975 /* Zone size in gigabytes */
4976 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4977 if (gb)
556adecb 4978 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4979 else
4980 ratio = 1;
556adecb 4981
96cb4df5
MK
4982 zone->inactive_ratio = ratio;
4983}
556adecb 4984
839a4fcc 4985static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
4986{
4987 struct zone *zone;
4988
4989 for_each_zone(zone)
4990 calculate_zone_inactive_ratio(zone);
556adecb
RR
4991}
4992
1da177e4
LT
4993/*
4994 * Initialise min_free_kbytes.
4995 *
4996 * For small machines we want it small (128k min). For large machines
4997 * we want it large (64MB max). But it is not linear, because network
4998 * bandwidth does not increase linearly with machine size. We use
4999 *
5000 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5001 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5002 *
5003 * which yields
5004 *
5005 * 16MB: 512k
5006 * 32MB: 724k
5007 * 64MB: 1024k
5008 * 128MB: 1448k
5009 * 256MB: 2048k
5010 * 512MB: 2896k
5011 * 1024MB: 4096k
5012 * 2048MB: 5792k
5013 * 4096MB: 8192k
5014 * 8192MB: 11584k
5015 * 16384MB: 16384k
5016 */
1b79acc9 5017int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5018{
5019 unsigned long lowmem_kbytes;
5020
5021 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5022
5023 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5024 if (min_free_kbytes < 128)
5025 min_free_kbytes = 128;
5026 if (min_free_kbytes > 65536)
5027 min_free_kbytes = 65536;
bc75d33f 5028 setup_per_zone_wmarks();
a6cccdc3 5029 refresh_zone_stat_thresholds();
1da177e4 5030 setup_per_zone_lowmem_reserve();
556adecb 5031 setup_per_zone_inactive_ratio();
1da177e4
LT
5032 return 0;
5033}
bc75d33f 5034module_init(init_per_zone_wmark_min)
1da177e4
LT
5035
5036/*
5037 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5038 * that we can call two helper functions whenever min_free_kbytes
5039 * changes.
5040 */
5041int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5042 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5043{
8d65af78 5044 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5045 if (write)
bc75d33f 5046 setup_per_zone_wmarks();
1da177e4
LT
5047 return 0;
5048}
5049
9614634f
CL
5050#ifdef CONFIG_NUMA
5051int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5052 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5053{
5054 struct zone *zone;
5055 int rc;
5056
8d65af78 5057 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5058 if (rc)
5059 return rc;
5060
5061 for_each_zone(zone)
8417bba4 5062 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5063 sysctl_min_unmapped_ratio) / 100;
5064 return 0;
5065}
0ff38490
CL
5066
5067int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5068 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5069{
5070 struct zone *zone;
5071 int rc;
5072
8d65af78 5073 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5074 if (rc)
5075 return rc;
5076
5077 for_each_zone(zone)
5078 zone->min_slab_pages = (zone->present_pages *
5079 sysctl_min_slab_ratio) / 100;
5080 return 0;
5081}
9614634f
CL
5082#endif
5083
1da177e4
LT
5084/*
5085 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5086 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5087 * whenever sysctl_lowmem_reserve_ratio changes.
5088 *
5089 * The reserve ratio obviously has absolutely no relation with the
41858966 5090 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5091 * if in function of the boot time zone sizes.
5092 */
5093int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5094 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5095{
8d65af78 5096 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5097 setup_per_zone_lowmem_reserve();
5098 return 0;
5099}
5100
8ad4b1fb
RS
5101/*
5102 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5103 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5104 * can have before it gets flushed back to buddy allocator.
5105 */
5106
5107int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5108 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5109{
5110 struct zone *zone;
5111 unsigned int cpu;
5112 int ret;
5113
8d65af78 5114 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5115 if (!write || (ret == -EINVAL))
5116 return ret;
364df0eb 5117 for_each_populated_zone(zone) {
99dcc3e5 5118 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5119 unsigned long high;
5120 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5121 setup_pagelist_highmark(
5122 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5123 }
5124 }
5125 return 0;
5126}
5127
f034b5d4 5128int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5129
5130#ifdef CONFIG_NUMA
5131static int __init set_hashdist(char *str)
5132{
5133 if (!str)
5134 return 0;
5135 hashdist = simple_strtoul(str, &str, 0);
5136 return 1;
5137}
5138__setup("hashdist=", set_hashdist);
5139#endif
5140
5141/*
5142 * allocate a large system hash table from bootmem
5143 * - it is assumed that the hash table must contain an exact power-of-2
5144 * quantity of entries
5145 * - limit is the number of hash buckets, not the total allocation size
5146 */
5147void *__init alloc_large_system_hash(const char *tablename,
5148 unsigned long bucketsize,
5149 unsigned long numentries,
5150 int scale,
5151 int flags,
5152 unsigned int *_hash_shift,
5153 unsigned int *_hash_mask,
5154 unsigned long limit)
5155{
5156 unsigned long long max = limit;
5157 unsigned long log2qty, size;
5158 void *table = NULL;
5159
5160 /* allow the kernel cmdline to have a say */
5161 if (!numentries) {
5162 /* round applicable memory size up to nearest megabyte */
04903664 5163 numentries = nr_kernel_pages;
1da177e4
LT
5164 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5165 numentries >>= 20 - PAGE_SHIFT;
5166 numentries <<= 20 - PAGE_SHIFT;
5167
5168 /* limit to 1 bucket per 2^scale bytes of low memory */
5169 if (scale > PAGE_SHIFT)
5170 numentries >>= (scale - PAGE_SHIFT);
5171 else
5172 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5173
5174 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5175 if (unlikely(flags & HASH_SMALL)) {
5176 /* Makes no sense without HASH_EARLY */
5177 WARN_ON(!(flags & HASH_EARLY));
5178 if (!(numentries >> *_hash_shift)) {
5179 numentries = 1UL << *_hash_shift;
5180 BUG_ON(!numentries);
5181 }
5182 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5183 numentries = PAGE_SIZE / bucketsize;
1da177e4 5184 }
6e692ed3 5185 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5186
5187 /* limit allocation size to 1/16 total memory by default */
5188 if (max == 0) {
5189 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5190 do_div(max, bucketsize);
5191 }
5192
5193 if (numentries > max)
5194 numentries = max;
5195
f0d1b0b3 5196 log2qty = ilog2(numentries);
1da177e4
LT
5197
5198 do {
5199 size = bucketsize << log2qty;
5200 if (flags & HASH_EARLY)
74768ed8 5201 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5202 else if (hashdist)
5203 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5204 else {
1037b83b
ED
5205 /*
5206 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5207 * some pages at the end of hash table which
5208 * alloc_pages_exact() automatically does
1037b83b 5209 */
264ef8a9 5210 if (get_order(size) < MAX_ORDER) {
a1dd268c 5211 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5212 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5213 }
1da177e4
LT
5214 }
5215 } while (!table && size > PAGE_SIZE && --log2qty);
5216
5217 if (!table)
5218 panic("Failed to allocate %s hash table\n", tablename);
5219
f241e660 5220 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5221 tablename,
f241e660 5222 (1UL << log2qty),
f0d1b0b3 5223 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5224 size);
5225
5226 if (_hash_shift)
5227 *_hash_shift = log2qty;
5228 if (_hash_mask)
5229 *_hash_mask = (1 << log2qty) - 1;
5230
5231 return table;
5232}
a117e66e 5233
835c134e
MG
5234/* Return a pointer to the bitmap storing bits affecting a block of pages */
5235static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5236 unsigned long pfn)
5237{
5238#ifdef CONFIG_SPARSEMEM
5239 return __pfn_to_section(pfn)->pageblock_flags;
5240#else
5241 return zone->pageblock_flags;
5242#endif /* CONFIG_SPARSEMEM */
5243}
5244
5245static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5246{
5247#ifdef CONFIG_SPARSEMEM
5248 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5249 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5250#else
5251 pfn = pfn - zone->zone_start_pfn;
d9c23400 5252 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5253#endif /* CONFIG_SPARSEMEM */
5254}
5255
5256/**
d9c23400 5257 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5258 * @page: The page within the block of interest
5259 * @start_bitidx: The first bit of interest to retrieve
5260 * @end_bitidx: The last bit of interest
5261 * returns pageblock_bits flags
5262 */
5263unsigned long get_pageblock_flags_group(struct page *page,
5264 int start_bitidx, int end_bitidx)
5265{
5266 struct zone *zone;
5267 unsigned long *bitmap;
5268 unsigned long pfn, bitidx;
5269 unsigned long flags = 0;
5270 unsigned long value = 1;
5271
5272 zone = page_zone(page);
5273 pfn = page_to_pfn(page);
5274 bitmap = get_pageblock_bitmap(zone, pfn);
5275 bitidx = pfn_to_bitidx(zone, pfn);
5276
5277 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5278 if (test_bit(bitidx + start_bitidx, bitmap))
5279 flags |= value;
6220ec78 5280
835c134e
MG
5281 return flags;
5282}
5283
5284/**
d9c23400 5285 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5286 * @page: The page within the block of interest
5287 * @start_bitidx: The first bit of interest
5288 * @end_bitidx: The last bit of interest
5289 * @flags: The flags to set
5290 */
5291void set_pageblock_flags_group(struct page *page, unsigned long flags,
5292 int start_bitidx, int end_bitidx)
5293{
5294 struct zone *zone;
5295 unsigned long *bitmap;
5296 unsigned long pfn, bitidx;
5297 unsigned long value = 1;
5298
5299 zone = page_zone(page);
5300 pfn = page_to_pfn(page);
5301 bitmap = get_pageblock_bitmap(zone, pfn);
5302 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5303 VM_BUG_ON(pfn < zone->zone_start_pfn);
5304 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5305
5306 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5307 if (flags & value)
5308 __set_bit(bitidx + start_bitidx, bitmap);
5309 else
5310 __clear_bit(bitidx + start_bitidx, bitmap);
5311}
a5d76b54
KH
5312
5313/*
5314 * This is designed as sub function...plz see page_isolation.c also.
5315 * set/clear page block's type to be ISOLATE.
5316 * page allocater never alloc memory from ISOLATE block.
5317 */
5318
49ac8255
KH
5319static int
5320__count_immobile_pages(struct zone *zone, struct page *page, int count)
5321{
5322 unsigned long pfn, iter, found;
5323 /*
5324 * For avoiding noise data, lru_add_drain_all() should be called
5325 * If ZONE_MOVABLE, the zone never contains immobile pages
5326 */
5327 if (zone_idx(zone) == ZONE_MOVABLE)
5328 return true;
5329
5330 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5331 return true;
5332
5333 pfn = page_to_pfn(page);
5334 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5335 unsigned long check = pfn + iter;
5336
29723fcc 5337 if (!pfn_valid_within(check))
49ac8255 5338 continue;
29723fcc 5339
49ac8255
KH
5340 page = pfn_to_page(check);
5341 if (!page_count(page)) {
5342 if (PageBuddy(page))
5343 iter += (1 << page_order(page)) - 1;
5344 continue;
5345 }
5346 if (!PageLRU(page))
5347 found++;
5348 /*
5349 * If there are RECLAIMABLE pages, we need to check it.
5350 * But now, memory offline itself doesn't call shrink_slab()
5351 * and it still to be fixed.
5352 */
5353 /*
5354 * If the page is not RAM, page_count()should be 0.
5355 * we don't need more check. This is an _used_ not-movable page.
5356 *
5357 * The problematic thing here is PG_reserved pages. PG_reserved
5358 * is set to both of a memory hole page and a _used_ kernel
5359 * page at boot.
5360 */
5361 if (found > count)
5362 return false;
5363 }
5364 return true;
5365}
5366
5367bool is_pageblock_removable_nolock(struct page *page)
5368{
5369 struct zone *zone = page_zone(page);
5370 return __count_immobile_pages(zone, page, 0);
5371}
5372
a5d76b54
KH
5373int set_migratetype_isolate(struct page *page)
5374{
5375 struct zone *zone;
49ac8255 5376 unsigned long flags, pfn;
925cc71e
RJ
5377 struct memory_isolate_notify arg;
5378 int notifier_ret;
a5d76b54
KH
5379 int ret = -EBUSY;
5380
5381 zone = page_zone(page);
925cc71e 5382
a5d76b54 5383 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5384
5385 pfn = page_to_pfn(page);
5386 arg.start_pfn = pfn;
5387 arg.nr_pages = pageblock_nr_pages;
5388 arg.pages_found = 0;
5389
a5d76b54 5390 /*
925cc71e
RJ
5391 * It may be possible to isolate a pageblock even if the
5392 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5393 * notifier chain is used by balloon drivers to return the
5394 * number of pages in a range that are held by the balloon
5395 * driver to shrink memory. If all the pages are accounted for
5396 * by balloons, are free, or on the LRU, isolation can continue.
5397 * Later, for example, when memory hotplug notifier runs, these
5398 * pages reported as "can be isolated" should be isolated(freed)
5399 * by the balloon driver through the memory notifier chain.
a5d76b54 5400 */
925cc71e
RJ
5401 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5402 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5403 if (notifier_ret)
a5d76b54 5404 goto out;
49ac8255
KH
5405 /*
5406 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5407 * We just check MOVABLE pages.
5408 */
5409 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5410 ret = 0;
5411
49ac8255
KH
5412 /*
5413 * immobile means "not-on-lru" paes. If immobile is larger than
5414 * removable-by-driver pages reported by notifier, we'll fail.
5415 */
5416
a5d76b54 5417out:
925cc71e
RJ
5418 if (!ret) {
5419 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5420 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5421 }
5422
a5d76b54
KH
5423 spin_unlock_irqrestore(&zone->lock, flags);
5424 if (!ret)
9f8f2172 5425 drain_all_pages();
a5d76b54
KH
5426 return ret;
5427}
5428
5429void unset_migratetype_isolate(struct page *page)
5430{
5431 struct zone *zone;
5432 unsigned long flags;
5433 zone = page_zone(page);
5434 spin_lock_irqsave(&zone->lock, flags);
5435 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5436 goto out;
5437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5438 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5439out:
5440 spin_unlock_irqrestore(&zone->lock, flags);
5441}
0c0e6195
KH
5442
5443#ifdef CONFIG_MEMORY_HOTREMOVE
5444/*
5445 * All pages in the range must be isolated before calling this.
5446 */
5447void
5448__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5449{
5450 struct page *page;
5451 struct zone *zone;
5452 int order, i;
5453 unsigned long pfn;
5454 unsigned long flags;
5455 /* find the first valid pfn */
5456 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5457 if (pfn_valid(pfn))
5458 break;
5459 if (pfn == end_pfn)
5460 return;
5461 zone = page_zone(pfn_to_page(pfn));
5462 spin_lock_irqsave(&zone->lock, flags);
5463 pfn = start_pfn;
5464 while (pfn < end_pfn) {
5465 if (!pfn_valid(pfn)) {
5466 pfn++;
5467 continue;
5468 }
5469 page = pfn_to_page(pfn);
5470 BUG_ON(page_count(page));
5471 BUG_ON(!PageBuddy(page));
5472 order = page_order(page);
5473#ifdef CONFIG_DEBUG_VM
5474 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5475 pfn, 1 << order, end_pfn);
5476#endif
5477 list_del(&page->lru);
5478 rmv_page_order(page);
5479 zone->free_area[order].nr_free--;
5480 __mod_zone_page_state(zone, NR_FREE_PAGES,
5481 - (1UL << order));
5482 for (i = 0; i < (1 << order); i++)
5483 SetPageReserved((page+i));
5484 pfn += (1 << order);
5485 }
5486 spin_unlock_irqrestore(&zone->lock, flags);
5487}
5488#endif
8d22ba1b
WF
5489
5490#ifdef CONFIG_MEMORY_FAILURE
5491bool is_free_buddy_page(struct page *page)
5492{
5493 struct zone *zone = page_zone(page);
5494 unsigned long pfn = page_to_pfn(page);
5495 unsigned long flags;
5496 int order;
5497
5498 spin_lock_irqsave(&zone->lock, flags);
5499 for (order = 0; order < MAX_ORDER; order++) {
5500 struct page *page_head = page - (pfn & ((1 << order) - 1));
5501
5502 if (PageBuddy(page_head) && page_order(page_head) >= order)
5503 break;
5504 }
5505 spin_unlock_irqrestore(&zone->lock, flags);
5506
5507 return order < MAX_ORDER;
5508}
5509#endif
718a3821
WF
5510
5511static struct trace_print_flags pageflag_names[] = {
5512 {1UL << PG_locked, "locked" },
5513 {1UL << PG_error, "error" },
5514 {1UL << PG_referenced, "referenced" },
5515 {1UL << PG_uptodate, "uptodate" },
5516 {1UL << PG_dirty, "dirty" },
5517 {1UL << PG_lru, "lru" },
5518 {1UL << PG_active, "active" },
5519 {1UL << PG_slab, "slab" },
5520 {1UL << PG_owner_priv_1, "owner_priv_1" },
5521 {1UL << PG_arch_1, "arch_1" },
5522 {1UL << PG_reserved, "reserved" },
5523 {1UL << PG_private, "private" },
5524 {1UL << PG_private_2, "private_2" },
5525 {1UL << PG_writeback, "writeback" },
5526#ifdef CONFIG_PAGEFLAGS_EXTENDED
5527 {1UL << PG_head, "head" },
5528 {1UL << PG_tail, "tail" },
5529#else
5530 {1UL << PG_compound, "compound" },
5531#endif
5532 {1UL << PG_swapcache, "swapcache" },
5533 {1UL << PG_mappedtodisk, "mappedtodisk" },
5534 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5535 {1UL << PG_swapbacked, "swapbacked" },
5536 {1UL << PG_unevictable, "unevictable" },
5537#ifdef CONFIG_MMU
5538 {1UL << PG_mlocked, "mlocked" },
5539#endif
5540#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5541 {1UL << PG_uncached, "uncached" },
5542#endif
5543#ifdef CONFIG_MEMORY_FAILURE
5544 {1UL << PG_hwpoison, "hwpoison" },
5545#endif
5546 {-1UL, NULL },
5547};
5548
5549static void dump_page_flags(unsigned long flags)
5550{
5551 const char *delim = "";
5552 unsigned long mask;
5553 int i;
5554
5555 printk(KERN_ALERT "page flags: %#lx(", flags);
5556
5557 /* remove zone id */
5558 flags &= (1UL << NR_PAGEFLAGS) - 1;
5559
5560 for (i = 0; pageflag_names[i].name && flags; i++) {
5561
5562 mask = pageflag_names[i].mask;
5563 if ((flags & mask) != mask)
5564 continue;
5565
5566 flags &= ~mask;
5567 printk("%s%s", delim, pageflag_names[i].name);
5568 delim = "|";
5569 }
5570
5571 /* check for left over flags */
5572 if (flags)
5573 printk("%s%#lx", delim, flags);
5574
5575 printk(")\n");
5576}
5577
5578void dump_page(struct page *page)
5579{
5580 printk(KERN_ALERT
5581 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5582 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5583 page->mapping, page->index);
5584 dump_page_flags(page->flags);
f212ad7c 5585 mem_cgroup_print_bad_page(page);
718a3821 5586}