[PATCH] VM: add may_swap flag to scan_control
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/nodemask.h>
36#include <linux/vmalloc.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45nodemask_t node_online_map = { { [0] = 1UL } };
7223a93a 46EXPORT_SYMBOL(node_online_map);
1da177e4 47nodemask_t node_possible_map = NODE_MASK_ALL;
7223a93a 48EXPORT_SYMBOL(node_possible_map);
1da177e4
LT
49struct pglist_data *pgdat_list;
50unsigned long totalram_pages;
51unsigned long totalhigh_pages;
52long nr_swap_pages;
53
54/*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64EXPORT_SYMBOL(totalram_pages);
65EXPORT_SYMBOL(nr_swap_pages);
66
67/*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72EXPORT_SYMBOL(zone_table);
73
74static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75int min_free_kbytes = 1024;
76
77unsigned long __initdata nr_kernel_pages;
78unsigned long __initdata nr_all_pages;
79
80/*
81 * Temporary debugging check for pages not lying within a given zone.
82 */
83static int bad_range(struct zone *zone, struct page *page)
84{
85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 return 1;
87 if (page_to_pfn(page) < zone->zone_start_pfn)
88 return 1;
89#ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page)))
91 return 1;
92#endif
93 if (zone != page_zone(page))
94 return 1;
95 return 0;
96}
97
98static void bad_page(const char *function, struct page *page)
99{
100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 function, current->comm, page);
102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 page->mapping, page_mapcount(page), page_count(page));
105 printk(KERN_EMERG "Backtrace:\n");
106 dump_stack();
107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 page->flags &= ~(1 << PG_private |
109 1 << PG_locked |
110 1 << PG_lru |
111 1 << PG_active |
112 1 << PG_dirty |
113 1 << PG_swapcache |
114 1 << PG_writeback);
115 set_page_count(page, 0);
116 reset_page_mapcount(page);
117 page->mapping = NULL;
118 tainted |= TAINT_BAD_PAGE;
119}
120
121#ifndef CONFIG_HUGETLB_PAGE
122#define prep_compound_page(page, order) do { } while (0)
123#define destroy_compound_page(page, order) do { } while (0)
124#else
125/*
126 * Higher-order pages are called "compound pages". They are structured thusly:
127 *
128 * The first PAGE_SIZE page is called the "head page".
129 *
130 * The remaining PAGE_SIZE pages are called "tail pages".
131 *
132 * All pages have PG_compound set. All pages have their ->private pointing at
133 * the head page (even the head page has this).
134 *
135 * The first tail page's ->mapping, if non-zero, holds the address of the
136 * compound page's put_page() function.
137 *
138 * The order of the allocation is stored in the first tail page's ->index
139 * This is only for debug at present. This usage means that zero-order pages
140 * may not be compound.
141 */
142static void prep_compound_page(struct page *page, unsigned long order)
143{
144 int i;
145 int nr_pages = 1 << order;
146
147 page[1].mapping = NULL;
148 page[1].index = order;
149 for (i = 0; i < nr_pages; i++) {
150 struct page *p = page + i;
151
152 SetPageCompound(p);
153 p->private = (unsigned long)page;
154 }
155}
156
157static void destroy_compound_page(struct page *page, unsigned long order)
158{
159 int i;
160 int nr_pages = 1 << order;
161
162 if (!PageCompound(page))
163 return;
164
165 if (page[1].index != order)
166 bad_page(__FUNCTION__, page);
167
168 for (i = 0; i < nr_pages; i++) {
169 struct page *p = page + i;
170
171 if (!PageCompound(p))
172 bad_page(__FUNCTION__, page);
173 if (p->private != (unsigned long)page)
174 bad_page(__FUNCTION__, page);
175 ClearPageCompound(p);
176 }
177}
178#endif /* CONFIG_HUGETLB_PAGE */
179
180/*
181 * function for dealing with page's order in buddy system.
182 * zone->lock is already acquired when we use these.
183 * So, we don't need atomic page->flags operations here.
184 */
185static inline unsigned long page_order(struct page *page) {
186 return page->private;
187}
188
189static inline void set_page_order(struct page *page, int order) {
190 page->private = order;
191 __SetPagePrivate(page);
192}
193
194static inline void rmv_page_order(struct page *page)
195{
196 __ClearPagePrivate(page);
197 page->private = 0;
198}
199
200/*
201 * Locate the struct page for both the matching buddy in our
202 * pair (buddy1) and the combined O(n+1) page they form (page).
203 *
204 * 1) Any buddy B1 will have an order O twin B2 which satisfies
205 * the following equation:
206 * B2 = B1 ^ (1 << O)
207 * For example, if the starting buddy (buddy2) is #8 its order
208 * 1 buddy is #10:
209 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
210 *
211 * 2) Any buddy B will have an order O+1 parent P which
212 * satisfies the following equation:
213 * P = B & ~(1 << O)
214 *
215 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
216 */
217static inline struct page *
218__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
219{
220 unsigned long buddy_idx = page_idx ^ (1 << order);
221
222 return page + (buddy_idx - page_idx);
223}
224
225static inline unsigned long
226__find_combined_index(unsigned long page_idx, unsigned int order)
227{
228 return (page_idx & ~(1 << order));
229}
230
231/*
232 * This function checks whether a page is free && is the buddy
233 * we can do coalesce a page and its buddy if
234 * (a) the buddy is free &&
235 * (b) the buddy is on the buddy system &&
236 * (c) a page and its buddy have the same order.
237 * for recording page's order, we use page->private and PG_private.
238 *
239 */
240static inline int page_is_buddy(struct page *page, int order)
241{
242 if (PagePrivate(page) &&
243 (page_order(page) == order) &&
244 !PageReserved(page) &&
245 page_count(page) == 0)
246 return 1;
247 return 0;
248}
249
250/*
251 * Freeing function for a buddy system allocator.
252 *
253 * The concept of a buddy system is to maintain direct-mapped table
254 * (containing bit values) for memory blocks of various "orders".
255 * The bottom level table contains the map for the smallest allocatable
256 * units of memory (here, pages), and each level above it describes
257 * pairs of units from the levels below, hence, "buddies".
258 * At a high level, all that happens here is marking the table entry
259 * at the bottom level available, and propagating the changes upward
260 * as necessary, plus some accounting needed to play nicely with other
261 * parts of the VM system.
262 * At each level, we keep a list of pages, which are heads of continuous
263 * free pages of length of (1 << order) and marked with PG_Private.Page's
264 * order is recorded in page->private field.
265 * So when we are allocating or freeing one, we can derive the state of the
266 * other. That is, if we allocate a small block, and both were
267 * free, the remainder of the region must be split into blocks.
268 * If a block is freed, and its buddy is also free, then this
269 * triggers coalescing into a block of larger size.
270 *
271 * -- wli
272 */
273
274static inline void __free_pages_bulk (struct page *page,
275 struct zone *zone, unsigned int order)
276{
277 unsigned long page_idx;
278 int order_size = 1 << order;
279
280 if (unlikely(order))
281 destroy_compound_page(page, order);
282
283 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
284
285 BUG_ON(page_idx & (order_size - 1));
286 BUG_ON(bad_range(zone, page));
287
288 zone->free_pages += order_size;
289 while (order < MAX_ORDER-1) {
290 unsigned long combined_idx;
291 struct free_area *area;
292 struct page *buddy;
293
294 combined_idx = __find_combined_index(page_idx, order);
295 buddy = __page_find_buddy(page, page_idx, order);
296
297 if (bad_range(zone, buddy))
298 break;
299 if (!page_is_buddy(buddy, order))
300 break; /* Move the buddy up one level. */
301 list_del(&buddy->lru);
302 area = zone->free_area + order;
303 area->nr_free--;
304 rmv_page_order(buddy);
305 page = page + (combined_idx - page_idx);
306 page_idx = combined_idx;
307 order++;
308 }
309 set_page_order(page, order);
310 list_add(&page->lru, &zone->free_area[order].free_list);
311 zone->free_area[order].nr_free++;
312}
313
314static inline void free_pages_check(const char *function, struct page *page)
315{
316 if ( page_mapcount(page) ||
317 page->mapping != NULL ||
318 page_count(page) != 0 ||
319 (page->flags & (
320 1 << PG_lru |
321 1 << PG_private |
322 1 << PG_locked |
323 1 << PG_active |
324 1 << PG_reclaim |
325 1 << PG_slab |
326 1 << PG_swapcache |
327 1 << PG_writeback )))
328 bad_page(function, page);
329 if (PageDirty(page))
330 ClearPageDirty(page);
331}
332
333/*
334 * Frees a list of pages.
335 * Assumes all pages on list are in same zone, and of same order.
336 * count is the number of pages to free, or 0 for all on the list.
337 *
338 * If the zone was previously in an "all pages pinned" state then look to
339 * see if this freeing clears that state.
340 *
341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
342 * pinned" detection logic.
343 */
344static int
345free_pages_bulk(struct zone *zone, int count,
346 struct list_head *list, unsigned int order)
347{
348 unsigned long flags;
349 struct page *page = NULL;
350 int ret = 0;
351
352 spin_lock_irqsave(&zone->lock, flags);
353 zone->all_unreclaimable = 0;
354 zone->pages_scanned = 0;
355 while (!list_empty(list) && count--) {
356 page = list_entry(list->prev, struct page, lru);
357 /* have to delete it as __free_pages_bulk list manipulates */
358 list_del(&page->lru);
359 __free_pages_bulk(page, zone, order);
360 ret++;
361 }
362 spin_unlock_irqrestore(&zone->lock, flags);
363 return ret;
364}
365
366void __free_pages_ok(struct page *page, unsigned int order)
367{
368 LIST_HEAD(list);
369 int i;
370
371 arch_free_page(page, order);
372
373 mod_page_state(pgfree, 1 << order);
374
375#ifndef CONFIG_MMU
376 if (order > 0)
377 for (i = 1 ; i < (1 << order) ; ++i)
378 __put_page(page + i);
379#endif
380
381 for (i = 0 ; i < (1 << order) ; ++i)
382 free_pages_check(__FUNCTION__, page + i);
383 list_add(&page->lru, &list);
384 kernel_map_pages(page, 1<<order, 0);
385 free_pages_bulk(page_zone(page), 1, &list, order);
386}
387
388
389/*
390 * The order of subdivision here is critical for the IO subsystem.
391 * Please do not alter this order without good reasons and regression
392 * testing. Specifically, as large blocks of memory are subdivided,
393 * the order in which smaller blocks are delivered depends on the order
394 * they're subdivided in this function. This is the primary factor
395 * influencing the order in which pages are delivered to the IO
396 * subsystem according to empirical testing, and this is also justified
397 * by considering the behavior of a buddy system containing a single
398 * large block of memory acted on by a series of small allocations.
399 * This behavior is a critical factor in sglist merging's success.
400 *
401 * -- wli
402 */
403static inline struct page *
404expand(struct zone *zone, struct page *page,
405 int low, int high, struct free_area *area)
406{
407 unsigned long size = 1 << high;
408
409 while (high > low) {
410 area--;
411 high--;
412 size >>= 1;
413 BUG_ON(bad_range(zone, &page[size]));
414 list_add(&page[size].lru, &area->free_list);
415 area->nr_free++;
416 set_page_order(&page[size], high);
417 }
418 return page;
419}
420
421void set_page_refs(struct page *page, int order)
422{
423#ifdef CONFIG_MMU
424 set_page_count(page, 1);
425#else
426 int i;
427
428 /*
429 * We need to reference all the pages for this order, otherwise if
430 * anyone accesses one of the pages with (get/put) it will be freed.
431 * - eg: access_process_vm()
432 */
433 for (i = 0; i < (1 << order); i++)
434 set_page_count(page + i, 1);
435#endif /* CONFIG_MMU */
436}
437
438/*
439 * This page is about to be returned from the page allocator
440 */
441static void prep_new_page(struct page *page, int order)
442{
443 if (page->mapping || page_mapcount(page) ||
444 (page->flags & (
445 1 << PG_private |
446 1 << PG_locked |
447 1 << PG_lru |
448 1 << PG_active |
449 1 << PG_dirty |
450 1 << PG_reclaim |
451 1 << PG_swapcache |
452 1 << PG_writeback )))
453 bad_page(__FUNCTION__, page);
454
455 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
456 1 << PG_referenced | 1 << PG_arch_1 |
457 1 << PG_checked | 1 << PG_mappedtodisk);
458 page->private = 0;
459 set_page_refs(page, order);
460 kernel_map_pages(page, 1 << order, 1);
461}
462
463/*
464 * Do the hard work of removing an element from the buddy allocator.
465 * Call me with the zone->lock already held.
466 */
467static struct page *__rmqueue(struct zone *zone, unsigned int order)
468{
469 struct free_area * area;
470 unsigned int current_order;
471 struct page *page;
472
473 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
474 area = zone->free_area + current_order;
475 if (list_empty(&area->free_list))
476 continue;
477
478 page = list_entry(area->free_list.next, struct page, lru);
479 list_del(&page->lru);
480 rmv_page_order(page);
481 area->nr_free--;
482 zone->free_pages -= 1UL << order;
483 return expand(zone, page, order, current_order, area);
484 }
485
486 return NULL;
487}
488
489/*
490 * Obtain a specified number of elements from the buddy allocator, all under
491 * a single hold of the lock, for efficiency. Add them to the supplied list.
492 * Returns the number of new pages which were placed at *list.
493 */
494static int rmqueue_bulk(struct zone *zone, unsigned int order,
495 unsigned long count, struct list_head *list)
496{
497 unsigned long flags;
498 int i;
499 int allocated = 0;
500 struct page *page;
501
502 spin_lock_irqsave(&zone->lock, flags);
503 for (i = 0; i < count; ++i) {
504 page = __rmqueue(zone, order);
505 if (page == NULL)
506 break;
507 allocated++;
508 list_add_tail(&page->lru, list);
509 }
510 spin_unlock_irqrestore(&zone->lock, flags);
511 return allocated;
512}
513
514#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
515static void __drain_pages(unsigned int cpu)
516{
517 struct zone *zone;
518 int i;
519
520 for_each_zone(zone) {
521 struct per_cpu_pageset *pset;
522
523 pset = &zone->pageset[cpu];
524 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
525 struct per_cpu_pages *pcp;
526
527 pcp = &pset->pcp[i];
528 pcp->count -= free_pages_bulk(zone, pcp->count,
529 &pcp->list, 0);
530 }
531 }
532}
533#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
534
535#ifdef CONFIG_PM
536
537void mark_free_pages(struct zone *zone)
538{
539 unsigned long zone_pfn, flags;
540 int order;
541 struct list_head *curr;
542
543 if (!zone->spanned_pages)
544 return;
545
546 spin_lock_irqsave(&zone->lock, flags);
547 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
548 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
549
550 for (order = MAX_ORDER - 1; order >= 0; --order)
551 list_for_each(curr, &zone->free_area[order].free_list) {
552 unsigned long start_pfn, i;
553
554 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
555
556 for (i=0; i < (1<<order); i++)
557 SetPageNosaveFree(pfn_to_page(start_pfn+i));
558 }
559 spin_unlock_irqrestore(&zone->lock, flags);
560}
561
562/*
563 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
564 */
565void drain_local_pages(void)
566{
567 unsigned long flags;
568
569 local_irq_save(flags);
570 __drain_pages(smp_processor_id());
571 local_irq_restore(flags);
572}
573#endif /* CONFIG_PM */
574
575static void zone_statistics(struct zonelist *zonelist, struct zone *z)
576{
577#ifdef CONFIG_NUMA
578 unsigned long flags;
579 int cpu;
580 pg_data_t *pg = z->zone_pgdat;
581 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
582 struct per_cpu_pageset *p;
583
584 local_irq_save(flags);
585 cpu = smp_processor_id();
586 p = &z->pageset[cpu];
587 if (pg == orig) {
588 z->pageset[cpu].numa_hit++;
589 } else {
590 p->numa_miss++;
591 zonelist->zones[0]->pageset[cpu].numa_foreign++;
592 }
593 if (pg == NODE_DATA(numa_node_id()))
594 p->local_node++;
595 else
596 p->other_node++;
597 local_irq_restore(flags);
598#endif
599}
600
601/*
602 * Free a 0-order page
603 */
604static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
605static void fastcall free_hot_cold_page(struct page *page, int cold)
606{
607 struct zone *zone = page_zone(page);
608 struct per_cpu_pages *pcp;
609 unsigned long flags;
610
611 arch_free_page(page, 0);
612
613 kernel_map_pages(page, 1, 0);
614 inc_page_state(pgfree);
615 if (PageAnon(page))
616 page->mapping = NULL;
617 free_pages_check(__FUNCTION__, page);
618 pcp = &zone->pageset[get_cpu()].pcp[cold];
619 local_irq_save(flags);
620 if (pcp->count >= pcp->high)
621 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
622 list_add(&page->lru, &pcp->list);
623 pcp->count++;
624 local_irq_restore(flags);
625 put_cpu();
626}
627
628void fastcall free_hot_page(struct page *page)
629{
630 free_hot_cold_page(page, 0);
631}
632
633void fastcall free_cold_page(struct page *page)
634{
635 free_hot_cold_page(page, 1);
636}
637
638static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
639{
640 int i;
641
642 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
643 for(i = 0; i < (1 << order); i++)
644 clear_highpage(page + i);
645}
646
647/*
648 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
649 * we cheat by calling it from here, in the order > 0 path. Saves a branch
650 * or two.
651 */
652static struct page *
653buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
654{
655 unsigned long flags;
656 struct page *page = NULL;
657 int cold = !!(gfp_flags & __GFP_COLD);
658
659 if (order == 0) {
660 struct per_cpu_pages *pcp;
661
662 pcp = &zone->pageset[get_cpu()].pcp[cold];
663 local_irq_save(flags);
664 if (pcp->count <= pcp->low)
665 pcp->count += rmqueue_bulk(zone, 0,
666 pcp->batch, &pcp->list);
667 if (pcp->count) {
668 page = list_entry(pcp->list.next, struct page, lru);
669 list_del(&page->lru);
670 pcp->count--;
671 }
672 local_irq_restore(flags);
673 put_cpu();
674 }
675
676 if (page == NULL) {
677 spin_lock_irqsave(&zone->lock, flags);
678 page = __rmqueue(zone, order);
679 spin_unlock_irqrestore(&zone->lock, flags);
680 }
681
682 if (page != NULL) {
683 BUG_ON(bad_range(zone, page));
684 mod_page_state_zone(zone, pgalloc, 1 << order);
685 prep_new_page(page, order);
686
687 if (gfp_flags & __GFP_ZERO)
688 prep_zero_page(page, order, gfp_flags);
689
690 if (order && (gfp_flags & __GFP_COMP))
691 prep_compound_page(page, order);
692 }
693 return page;
694}
695
696/*
697 * Return 1 if free pages are above 'mark'. This takes into account the order
698 * of the allocation.
699 */
700int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
701 int classzone_idx, int can_try_harder, int gfp_high)
702{
703 /* free_pages my go negative - that's OK */
704 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
705 int o;
706
707 if (gfp_high)
708 min -= min / 2;
709 if (can_try_harder)
710 min -= min / 4;
711
712 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
713 return 0;
714 for (o = 0; o < order; o++) {
715 /* At the next order, this order's pages become unavailable */
716 free_pages -= z->free_area[o].nr_free << o;
717
718 /* Require fewer higher order pages to be free */
719 min >>= 1;
720
721 if (free_pages <= min)
722 return 0;
723 }
724 return 1;
725}
726
727/*
728 * This is the 'heart' of the zoned buddy allocator.
729 */
730struct page * fastcall
731__alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
732 struct zonelist *zonelist)
733{
734 const int wait = gfp_mask & __GFP_WAIT;
735 struct zone **zones, *z;
736 struct page *page;
737 struct reclaim_state reclaim_state;
738 struct task_struct *p = current;
739 int i;
740 int classzone_idx;
741 int do_retry;
742 int can_try_harder;
743 int did_some_progress;
744
745 might_sleep_if(wait);
746
747 /*
748 * The caller may dip into page reserves a bit more if the caller
749 * cannot run direct reclaim, or is the caller has realtime scheduling
750 * policy
751 */
752 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
753
754 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
755
756 if (unlikely(zones[0] == NULL)) {
757 /* Should this ever happen?? */
758 return NULL;
759 }
760
761 classzone_idx = zone_idx(zones[0]);
762
763 restart:
764 /* Go through the zonelist once, looking for a zone with enough free */
765 for (i = 0; (z = zones[i]) != NULL; i++) {
766
767 if (!zone_watermark_ok(z, order, z->pages_low,
768 classzone_idx, 0, 0))
769 continue;
770
771 if (!cpuset_zone_allowed(z))
772 continue;
773
774 page = buffered_rmqueue(z, order, gfp_mask);
775 if (page)
776 goto got_pg;
777 }
778
779 for (i = 0; (z = zones[i]) != NULL; i++)
780 wakeup_kswapd(z, order);
781
782 /*
783 * Go through the zonelist again. Let __GFP_HIGH and allocations
784 * coming from realtime tasks to go deeper into reserves
785 *
786 * This is the last chance, in general, before the goto nopage.
787 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
788 */
789 for (i = 0; (z = zones[i]) != NULL; i++) {
790 if (!zone_watermark_ok(z, order, z->pages_min,
791 classzone_idx, can_try_harder,
792 gfp_mask & __GFP_HIGH))
793 continue;
794
795 if (wait && !cpuset_zone_allowed(z))
796 continue;
797
798 page = buffered_rmqueue(z, order, gfp_mask);
799 if (page)
800 goto got_pg;
801 }
802
803 /* This allocation should allow future memory freeing. */
b84a35be
NP
804
805 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
806 && !in_interrupt()) {
807 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
808 /* go through the zonelist yet again, ignoring mins */
809 for (i = 0; (z = zones[i]) != NULL; i++) {
810 if (!cpuset_zone_allowed(z))
811 continue;
812 page = buffered_rmqueue(z, order, gfp_mask);
813 if (page)
814 goto got_pg;
815 }
1da177e4
LT
816 }
817 goto nopage;
818 }
819
820 /* Atomic allocations - we can't balance anything */
821 if (!wait)
822 goto nopage;
823
824rebalance:
825 cond_resched();
826
827 /* We now go into synchronous reclaim */
828 p->flags |= PF_MEMALLOC;
829 reclaim_state.reclaimed_slab = 0;
830 p->reclaim_state = &reclaim_state;
831
832 did_some_progress = try_to_free_pages(zones, gfp_mask, order);
833
834 p->reclaim_state = NULL;
835 p->flags &= ~PF_MEMALLOC;
836
837 cond_resched();
838
839 if (likely(did_some_progress)) {
840 /*
841 * Go through the zonelist yet one more time, keep
842 * very high watermark here, this is only to catch
843 * a parallel oom killing, we must fail if we're still
844 * under heavy pressure.
845 */
846 for (i = 0; (z = zones[i]) != NULL; i++) {
847 if (!zone_watermark_ok(z, order, z->pages_min,
848 classzone_idx, can_try_harder,
849 gfp_mask & __GFP_HIGH))
850 continue;
851
852 if (!cpuset_zone_allowed(z))
853 continue;
854
855 page = buffered_rmqueue(z, order, gfp_mask);
856 if (page)
857 goto got_pg;
858 }
859 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
860 /*
861 * Go through the zonelist yet one more time, keep
862 * very high watermark here, this is only to catch
863 * a parallel oom killing, we must fail if we're still
864 * under heavy pressure.
865 */
866 for (i = 0; (z = zones[i]) != NULL; i++) {
867 if (!zone_watermark_ok(z, order, z->pages_high,
868 classzone_idx, 0, 0))
869 continue;
870
871 if (!cpuset_zone_allowed(z))
872 continue;
873
874 page = buffered_rmqueue(z, order, gfp_mask);
875 if (page)
876 goto got_pg;
877 }
878
879 out_of_memory(gfp_mask);
880 goto restart;
881 }
882
883 /*
884 * Don't let big-order allocations loop unless the caller explicitly
885 * requests that. Wait for some write requests to complete then retry.
886 *
887 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
888 * <= 3, but that may not be true in other implementations.
889 */
890 do_retry = 0;
891 if (!(gfp_mask & __GFP_NORETRY)) {
892 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
893 do_retry = 1;
894 if (gfp_mask & __GFP_NOFAIL)
895 do_retry = 1;
896 }
897 if (do_retry) {
898 blk_congestion_wait(WRITE, HZ/50);
899 goto rebalance;
900 }
901
902nopage:
903 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
904 printk(KERN_WARNING "%s: page allocation failure."
905 " order:%d, mode:0x%x\n",
906 p->comm, order, gfp_mask);
907 dump_stack();
908 }
909 return NULL;
910got_pg:
911 zone_statistics(zonelist, z);
912 return page;
913}
914
915EXPORT_SYMBOL(__alloc_pages);
916
917/*
918 * Common helper functions.
919 */
920fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
921{
922 struct page * page;
923 page = alloc_pages(gfp_mask, order);
924 if (!page)
925 return 0;
926 return (unsigned long) page_address(page);
927}
928
929EXPORT_SYMBOL(__get_free_pages);
930
931fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
932{
933 struct page * page;
934
935 /*
936 * get_zeroed_page() returns a 32-bit address, which cannot represent
937 * a highmem page
938 */
939 BUG_ON(gfp_mask & __GFP_HIGHMEM);
940
941 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
942 if (page)
943 return (unsigned long) page_address(page);
944 return 0;
945}
946
947EXPORT_SYMBOL(get_zeroed_page);
948
949void __pagevec_free(struct pagevec *pvec)
950{
951 int i = pagevec_count(pvec);
952
953 while (--i >= 0)
954 free_hot_cold_page(pvec->pages[i], pvec->cold);
955}
956
957fastcall void __free_pages(struct page *page, unsigned int order)
958{
959 if (!PageReserved(page) && put_page_testzero(page)) {
960 if (order == 0)
961 free_hot_page(page);
962 else
963 __free_pages_ok(page, order);
964 }
965}
966
967EXPORT_SYMBOL(__free_pages);
968
969fastcall void free_pages(unsigned long addr, unsigned int order)
970{
971 if (addr != 0) {
972 BUG_ON(!virt_addr_valid((void *)addr));
973 __free_pages(virt_to_page((void *)addr), order);
974 }
975}
976
977EXPORT_SYMBOL(free_pages);
978
979/*
980 * Total amount of free (allocatable) RAM:
981 */
982unsigned int nr_free_pages(void)
983{
984 unsigned int sum = 0;
985 struct zone *zone;
986
987 for_each_zone(zone)
988 sum += zone->free_pages;
989
990 return sum;
991}
992
993EXPORT_SYMBOL(nr_free_pages);
994
995#ifdef CONFIG_NUMA
996unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
997{
998 unsigned int i, sum = 0;
999
1000 for (i = 0; i < MAX_NR_ZONES; i++)
1001 sum += pgdat->node_zones[i].free_pages;
1002
1003 return sum;
1004}
1005#endif
1006
1007static unsigned int nr_free_zone_pages(int offset)
1008{
1009 pg_data_t *pgdat;
1010 unsigned int sum = 0;
1011
1012 for_each_pgdat(pgdat) {
1013 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1014 struct zone **zonep = zonelist->zones;
1015 struct zone *zone;
1016
1017 for (zone = *zonep++; zone; zone = *zonep++) {
1018 unsigned long size = zone->present_pages;
1019 unsigned long high = zone->pages_high;
1020 if (size > high)
1021 sum += size - high;
1022 }
1023 }
1024
1025 return sum;
1026}
1027
1028/*
1029 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1030 */
1031unsigned int nr_free_buffer_pages(void)
1032{
1033 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1034}
1035
1036/*
1037 * Amount of free RAM allocatable within all zones
1038 */
1039unsigned int nr_free_pagecache_pages(void)
1040{
1041 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1042}
1043
1044#ifdef CONFIG_HIGHMEM
1045unsigned int nr_free_highpages (void)
1046{
1047 pg_data_t *pgdat;
1048 unsigned int pages = 0;
1049
1050 for_each_pgdat(pgdat)
1051 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1052
1053 return pages;
1054}
1055#endif
1056
1057#ifdef CONFIG_NUMA
1058static void show_node(struct zone *zone)
1059{
1060 printk("Node %d ", zone->zone_pgdat->node_id);
1061}
1062#else
1063#define show_node(zone) do { } while (0)
1064#endif
1065
1066/*
1067 * Accumulate the page_state information across all CPUs.
1068 * The result is unavoidably approximate - it can change
1069 * during and after execution of this function.
1070 */
1071static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1072
1073atomic_t nr_pagecache = ATOMIC_INIT(0);
1074EXPORT_SYMBOL(nr_pagecache);
1075#ifdef CONFIG_SMP
1076DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1077#endif
1078
1079void __get_page_state(struct page_state *ret, int nr)
1080{
1081 int cpu = 0;
1082
1083 memset(ret, 0, sizeof(*ret));
1084
1085 cpu = first_cpu(cpu_online_map);
1086 while (cpu < NR_CPUS) {
1087 unsigned long *in, *out, off;
1088
1089 in = (unsigned long *)&per_cpu(page_states, cpu);
1090
1091 cpu = next_cpu(cpu, cpu_online_map);
1092
1093 if (cpu < NR_CPUS)
1094 prefetch(&per_cpu(page_states, cpu));
1095
1096 out = (unsigned long *)ret;
1097 for (off = 0; off < nr; off++)
1098 *out++ += *in++;
1099 }
1100}
1101
1102void get_page_state(struct page_state *ret)
1103{
1104 int nr;
1105
1106 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1107 nr /= sizeof(unsigned long);
1108
1109 __get_page_state(ret, nr + 1);
1110}
1111
1112void get_full_page_state(struct page_state *ret)
1113{
1114 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1115}
1116
1117unsigned long __read_page_state(unsigned offset)
1118{
1119 unsigned long ret = 0;
1120 int cpu;
1121
1122 for_each_online_cpu(cpu) {
1123 unsigned long in;
1124
1125 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1126 ret += *((unsigned long *)in);
1127 }
1128 return ret;
1129}
1130
1131void __mod_page_state(unsigned offset, unsigned long delta)
1132{
1133 unsigned long flags;
1134 void* ptr;
1135
1136 local_irq_save(flags);
1137 ptr = &__get_cpu_var(page_states);
1138 *(unsigned long*)(ptr + offset) += delta;
1139 local_irq_restore(flags);
1140}
1141
1142EXPORT_SYMBOL(__mod_page_state);
1143
1144void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1145 unsigned long *free, struct pglist_data *pgdat)
1146{
1147 struct zone *zones = pgdat->node_zones;
1148 int i;
1149
1150 *active = 0;
1151 *inactive = 0;
1152 *free = 0;
1153 for (i = 0; i < MAX_NR_ZONES; i++) {
1154 *active += zones[i].nr_active;
1155 *inactive += zones[i].nr_inactive;
1156 *free += zones[i].free_pages;
1157 }
1158}
1159
1160void get_zone_counts(unsigned long *active,
1161 unsigned long *inactive, unsigned long *free)
1162{
1163 struct pglist_data *pgdat;
1164
1165 *active = 0;
1166 *inactive = 0;
1167 *free = 0;
1168 for_each_pgdat(pgdat) {
1169 unsigned long l, m, n;
1170 __get_zone_counts(&l, &m, &n, pgdat);
1171 *active += l;
1172 *inactive += m;
1173 *free += n;
1174 }
1175}
1176
1177void si_meminfo(struct sysinfo *val)
1178{
1179 val->totalram = totalram_pages;
1180 val->sharedram = 0;
1181 val->freeram = nr_free_pages();
1182 val->bufferram = nr_blockdev_pages();
1183#ifdef CONFIG_HIGHMEM
1184 val->totalhigh = totalhigh_pages;
1185 val->freehigh = nr_free_highpages();
1186#else
1187 val->totalhigh = 0;
1188 val->freehigh = 0;
1189#endif
1190 val->mem_unit = PAGE_SIZE;
1191}
1192
1193EXPORT_SYMBOL(si_meminfo);
1194
1195#ifdef CONFIG_NUMA
1196void si_meminfo_node(struct sysinfo *val, int nid)
1197{
1198 pg_data_t *pgdat = NODE_DATA(nid);
1199
1200 val->totalram = pgdat->node_present_pages;
1201 val->freeram = nr_free_pages_pgdat(pgdat);
1202 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1203 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1204 val->mem_unit = PAGE_SIZE;
1205}
1206#endif
1207
1208#define K(x) ((x) << (PAGE_SHIFT-10))
1209
1210/*
1211 * Show free area list (used inside shift_scroll-lock stuff)
1212 * We also calculate the percentage fragmentation. We do this by counting the
1213 * memory on each free list with the exception of the first item on the list.
1214 */
1215void show_free_areas(void)
1216{
1217 struct page_state ps;
1218 int cpu, temperature;
1219 unsigned long active;
1220 unsigned long inactive;
1221 unsigned long free;
1222 struct zone *zone;
1223
1224 for_each_zone(zone) {
1225 show_node(zone);
1226 printk("%s per-cpu:", zone->name);
1227
1228 if (!zone->present_pages) {
1229 printk(" empty\n");
1230 continue;
1231 } else
1232 printk("\n");
1233
1234 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1235 struct per_cpu_pageset *pageset;
1236
1237 if (!cpu_possible(cpu))
1238 continue;
1239
1240 pageset = zone->pageset + cpu;
1241
1242 for (temperature = 0; temperature < 2; temperature++)
1243 printk("cpu %d %s: low %d, high %d, batch %d\n",
1244 cpu,
1245 temperature ? "cold" : "hot",
1246 pageset->pcp[temperature].low,
1247 pageset->pcp[temperature].high,
1248 pageset->pcp[temperature].batch);
1249 }
1250 }
1251
1252 get_page_state(&ps);
1253 get_zone_counts(&active, &inactive, &free);
1254
1255 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1256 K(nr_free_pages()),
1257 K(nr_free_highpages()));
1258
1259 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1260 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1261 active,
1262 inactive,
1263 ps.nr_dirty,
1264 ps.nr_writeback,
1265 ps.nr_unstable,
1266 nr_free_pages(),
1267 ps.nr_slab,
1268 ps.nr_mapped,
1269 ps.nr_page_table_pages);
1270
1271 for_each_zone(zone) {
1272 int i;
1273
1274 show_node(zone);
1275 printk("%s"
1276 " free:%lukB"
1277 " min:%lukB"
1278 " low:%lukB"
1279 " high:%lukB"
1280 " active:%lukB"
1281 " inactive:%lukB"
1282 " present:%lukB"
1283 " pages_scanned:%lu"
1284 " all_unreclaimable? %s"
1285 "\n",
1286 zone->name,
1287 K(zone->free_pages),
1288 K(zone->pages_min),
1289 K(zone->pages_low),
1290 K(zone->pages_high),
1291 K(zone->nr_active),
1292 K(zone->nr_inactive),
1293 K(zone->present_pages),
1294 zone->pages_scanned,
1295 (zone->all_unreclaimable ? "yes" : "no")
1296 );
1297 printk("lowmem_reserve[]:");
1298 for (i = 0; i < MAX_NR_ZONES; i++)
1299 printk(" %lu", zone->lowmem_reserve[i]);
1300 printk("\n");
1301 }
1302
1303 for_each_zone(zone) {
1304 unsigned long nr, flags, order, total = 0;
1305
1306 show_node(zone);
1307 printk("%s: ", zone->name);
1308 if (!zone->present_pages) {
1309 printk("empty\n");
1310 continue;
1311 }
1312
1313 spin_lock_irqsave(&zone->lock, flags);
1314 for (order = 0; order < MAX_ORDER; order++) {
1315 nr = zone->free_area[order].nr_free;
1316 total += nr << order;
1317 printk("%lu*%lukB ", nr, K(1UL) << order);
1318 }
1319 spin_unlock_irqrestore(&zone->lock, flags);
1320 printk("= %lukB\n", K(total));
1321 }
1322
1323 show_swap_cache_info();
1324}
1325
1326/*
1327 * Builds allocation fallback zone lists.
1328 */
1329static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1330{
1331 switch (k) {
1332 struct zone *zone;
1333 default:
1334 BUG();
1335 case ZONE_HIGHMEM:
1336 zone = pgdat->node_zones + ZONE_HIGHMEM;
1337 if (zone->present_pages) {
1338#ifndef CONFIG_HIGHMEM
1339 BUG();
1340#endif
1341 zonelist->zones[j++] = zone;
1342 }
1343 case ZONE_NORMAL:
1344 zone = pgdat->node_zones + ZONE_NORMAL;
1345 if (zone->present_pages)
1346 zonelist->zones[j++] = zone;
1347 case ZONE_DMA:
1348 zone = pgdat->node_zones + ZONE_DMA;
1349 if (zone->present_pages)
1350 zonelist->zones[j++] = zone;
1351 }
1352
1353 return j;
1354}
1355
1356#ifdef CONFIG_NUMA
1357#define MAX_NODE_LOAD (num_online_nodes())
1358static int __initdata node_load[MAX_NUMNODES];
1359/**
4dc3b16b 1360 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1361 * @node: node whose fallback list we're appending
1362 * @used_node_mask: nodemask_t of already used nodes
1363 *
1364 * We use a number of factors to determine which is the next node that should
1365 * appear on a given node's fallback list. The node should not have appeared
1366 * already in @node's fallback list, and it should be the next closest node
1367 * according to the distance array (which contains arbitrary distance values
1368 * from each node to each node in the system), and should also prefer nodes
1369 * with no CPUs, since presumably they'll have very little allocation pressure
1370 * on them otherwise.
1371 * It returns -1 if no node is found.
1372 */
1373static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1374{
1375 int i, n, val;
1376 int min_val = INT_MAX;
1377 int best_node = -1;
1378
1379 for_each_online_node(i) {
1380 cpumask_t tmp;
1381
1382 /* Start from local node */
1383 n = (node+i) % num_online_nodes();
1384
1385 /* Don't want a node to appear more than once */
1386 if (node_isset(n, *used_node_mask))
1387 continue;
1388
1389 /* Use the local node if we haven't already */
1390 if (!node_isset(node, *used_node_mask)) {
1391 best_node = node;
1392 break;
1393 }
1394
1395 /* Use the distance array to find the distance */
1396 val = node_distance(node, n);
1397
1398 /* Give preference to headless and unused nodes */
1399 tmp = node_to_cpumask(n);
1400 if (!cpus_empty(tmp))
1401 val += PENALTY_FOR_NODE_WITH_CPUS;
1402
1403 /* Slight preference for less loaded node */
1404 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1405 val += node_load[n];
1406
1407 if (val < min_val) {
1408 min_val = val;
1409 best_node = n;
1410 }
1411 }
1412
1413 if (best_node >= 0)
1414 node_set(best_node, *used_node_mask);
1415
1416 return best_node;
1417}
1418
1419static void __init build_zonelists(pg_data_t *pgdat)
1420{
1421 int i, j, k, node, local_node;
1422 int prev_node, load;
1423 struct zonelist *zonelist;
1424 nodemask_t used_mask;
1425
1426 /* initialize zonelists */
1427 for (i = 0; i < GFP_ZONETYPES; i++) {
1428 zonelist = pgdat->node_zonelists + i;
1429 zonelist->zones[0] = NULL;
1430 }
1431
1432 /* NUMA-aware ordering of nodes */
1433 local_node = pgdat->node_id;
1434 load = num_online_nodes();
1435 prev_node = local_node;
1436 nodes_clear(used_mask);
1437 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1438 /*
1439 * We don't want to pressure a particular node.
1440 * So adding penalty to the first node in same
1441 * distance group to make it round-robin.
1442 */
1443 if (node_distance(local_node, node) !=
1444 node_distance(local_node, prev_node))
1445 node_load[node] += load;
1446 prev_node = node;
1447 load--;
1448 for (i = 0; i < GFP_ZONETYPES; i++) {
1449 zonelist = pgdat->node_zonelists + i;
1450 for (j = 0; zonelist->zones[j] != NULL; j++);
1451
1452 k = ZONE_NORMAL;
1453 if (i & __GFP_HIGHMEM)
1454 k = ZONE_HIGHMEM;
1455 if (i & __GFP_DMA)
1456 k = ZONE_DMA;
1457
1458 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1459 zonelist->zones[j] = NULL;
1460 }
1461 }
1462}
1463
1464#else /* CONFIG_NUMA */
1465
1466static void __init build_zonelists(pg_data_t *pgdat)
1467{
1468 int i, j, k, node, local_node;
1469
1470 local_node = pgdat->node_id;
1471 for (i = 0; i < GFP_ZONETYPES; i++) {
1472 struct zonelist *zonelist;
1473
1474 zonelist = pgdat->node_zonelists + i;
1475
1476 j = 0;
1477 k = ZONE_NORMAL;
1478 if (i & __GFP_HIGHMEM)
1479 k = ZONE_HIGHMEM;
1480 if (i & __GFP_DMA)
1481 k = ZONE_DMA;
1482
1483 j = build_zonelists_node(pgdat, zonelist, j, k);
1484 /*
1485 * Now we build the zonelist so that it contains the zones
1486 * of all the other nodes.
1487 * We don't want to pressure a particular node, so when
1488 * building the zones for node N, we make sure that the
1489 * zones coming right after the local ones are those from
1490 * node N+1 (modulo N)
1491 */
1492 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1493 if (!node_online(node))
1494 continue;
1495 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1496 }
1497 for (node = 0; node < local_node; node++) {
1498 if (!node_online(node))
1499 continue;
1500 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1501 }
1502
1503 zonelist->zones[j] = NULL;
1504 }
1505}
1506
1507#endif /* CONFIG_NUMA */
1508
1509void __init build_all_zonelists(void)
1510{
1511 int i;
1512
1513 for_each_online_node(i)
1514 build_zonelists(NODE_DATA(i));
1515 printk("Built %i zonelists\n", num_online_nodes());
1516 cpuset_init_current_mems_allowed();
1517}
1518
1519/*
1520 * Helper functions to size the waitqueue hash table.
1521 * Essentially these want to choose hash table sizes sufficiently
1522 * large so that collisions trying to wait on pages are rare.
1523 * But in fact, the number of active page waitqueues on typical
1524 * systems is ridiculously low, less than 200. So this is even
1525 * conservative, even though it seems large.
1526 *
1527 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1528 * waitqueues, i.e. the size of the waitq table given the number of pages.
1529 */
1530#define PAGES_PER_WAITQUEUE 256
1531
1532static inline unsigned long wait_table_size(unsigned long pages)
1533{
1534 unsigned long size = 1;
1535
1536 pages /= PAGES_PER_WAITQUEUE;
1537
1538 while (size < pages)
1539 size <<= 1;
1540
1541 /*
1542 * Once we have dozens or even hundreds of threads sleeping
1543 * on IO we've got bigger problems than wait queue collision.
1544 * Limit the size of the wait table to a reasonable size.
1545 */
1546 size = min(size, 4096UL);
1547
1548 return max(size, 4UL);
1549}
1550
1551/*
1552 * This is an integer logarithm so that shifts can be used later
1553 * to extract the more random high bits from the multiplicative
1554 * hash function before the remainder is taken.
1555 */
1556static inline unsigned long wait_table_bits(unsigned long size)
1557{
1558 return ffz(~size);
1559}
1560
1561#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1562
1563static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1564 unsigned long *zones_size, unsigned long *zholes_size)
1565{
1566 unsigned long realtotalpages, totalpages = 0;
1567 int i;
1568
1569 for (i = 0; i < MAX_NR_ZONES; i++)
1570 totalpages += zones_size[i];
1571 pgdat->node_spanned_pages = totalpages;
1572
1573 realtotalpages = totalpages;
1574 if (zholes_size)
1575 for (i = 0; i < MAX_NR_ZONES; i++)
1576 realtotalpages -= zholes_size[i];
1577 pgdat->node_present_pages = realtotalpages;
1578 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1579}
1580
1581
1582/*
1583 * Initially all pages are reserved - free ones are freed
1584 * up by free_all_bootmem() once the early boot process is
1585 * done. Non-atomic initialization, single-pass.
1586 */
1587void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1588 unsigned long start_pfn)
1589{
1590 struct page *start = pfn_to_page(start_pfn);
1591 struct page *page;
1592
1593 for (page = start; page < (start + size); page++) {
1594 set_page_zone(page, NODEZONE(nid, zone));
1595 set_page_count(page, 0);
1596 reset_page_mapcount(page);
1597 SetPageReserved(page);
1598 INIT_LIST_HEAD(&page->lru);
1599#ifdef WANT_PAGE_VIRTUAL
1600 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1601 if (!is_highmem_idx(zone))
1602 set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1603#endif
1604 start_pfn++;
1605 }
1606}
1607
1608void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1609 unsigned long size)
1610{
1611 int order;
1612 for (order = 0; order < MAX_ORDER ; order++) {
1613 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1614 zone->free_area[order].nr_free = 0;
1615 }
1616}
1617
1618#ifndef __HAVE_ARCH_MEMMAP_INIT
1619#define memmap_init(size, nid, zone, start_pfn) \
1620 memmap_init_zone((size), (nid), (zone), (start_pfn))
1621#endif
1622
1623/*
1624 * Set up the zone data structures:
1625 * - mark all pages reserved
1626 * - mark all memory queues empty
1627 * - clear the memory bitmaps
1628 */
1629static void __init free_area_init_core(struct pglist_data *pgdat,
1630 unsigned long *zones_size, unsigned long *zholes_size)
1631{
1632 unsigned long i, j;
1633 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1634 int cpu, nid = pgdat->node_id;
1635 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1636
1637 pgdat->nr_zones = 0;
1638 init_waitqueue_head(&pgdat->kswapd_wait);
1639 pgdat->kswapd_max_order = 0;
1640
1641 for (j = 0; j < MAX_NR_ZONES; j++) {
1642 struct zone *zone = pgdat->node_zones + j;
1643 unsigned long size, realsize;
1644 unsigned long batch;
1645
1646 zone_table[NODEZONE(nid, j)] = zone;
1647 realsize = size = zones_size[j];
1648 if (zholes_size)
1649 realsize -= zholes_size[j];
1650
1651 if (j == ZONE_DMA || j == ZONE_NORMAL)
1652 nr_kernel_pages += realsize;
1653 nr_all_pages += realsize;
1654
1655 zone->spanned_pages = size;
1656 zone->present_pages = realsize;
1657 zone->name = zone_names[j];
1658 spin_lock_init(&zone->lock);
1659 spin_lock_init(&zone->lru_lock);
1660 zone->zone_pgdat = pgdat;
1661 zone->free_pages = 0;
1662
1663 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1664
1665 /*
1666 * The per-cpu-pages pools are set to around 1000th of the
1667 * size of the zone. But no more than 1/4 of a meg - there's
1668 * no point in going beyond the size of L2 cache.
1669 *
1670 * OK, so we don't know how big the cache is. So guess.
1671 */
1672 batch = zone->present_pages / 1024;
1673 if (batch * PAGE_SIZE > 256 * 1024)
1674 batch = (256 * 1024) / PAGE_SIZE;
1675 batch /= 4; /* We effectively *= 4 below */
1676 if (batch < 1)
1677 batch = 1;
1678
8e30f272
NP
1679 /*
1680 * Clamp the batch to a 2^n - 1 value. Having a power
1681 * of 2 value was found to be more likely to have
1682 * suboptimal cache aliasing properties in some cases.
1683 *
1684 * For example if 2 tasks are alternately allocating
1685 * batches of pages, one task can end up with a lot
1686 * of pages of one half of the possible page colors
1687 * and the other with pages of the other colors.
1688 */
1689 batch = (1 << fls(batch + batch/2)) - 1;
1690
1da177e4
LT
1691 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1692 struct per_cpu_pages *pcp;
1693
1694 pcp = &zone->pageset[cpu].pcp[0]; /* hot */
1695 pcp->count = 0;
1696 pcp->low = 2 * batch;
1697 pcp->high = 6 * batch;
1698 pcp->batch = 1 * batch;
1699 INIT_LIST_HEAD(&pcp->list);
1700
1701 pcp = &zone->pageset[cpu].pcp[1]; /* cold */
1702 pcp->count = 0;
1703 pcp->low = 0;
1704 pcp->high = 2 * batch;
1705 pcp->batch = 1 * batch;
1706 INIT_LIST_HEAD(&pcp->list);
1707 }
1708 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1709 zone_names[j], realsize, batch);
1710 INIT_LIST_HEAD(&zone->active_list);
1711 INIT_LIST_HEAD(&zone->inactive_list);
1712 zone->nr_scan_active = 0;
1713 zone->nr_scan_inactive = 0;
1714 zone->nr_active = 0;
1715 zone->nr_inactive = 0;
1716 if (!size)
1717 continue;
1718
1719 /*
1720 * The per-page waitqueue mechanism uses hashed waitqueues
1721 * per zone.
1722 */
1723 zone->wait_table_size = wait_table_size(size);
1724 zone->wait_table_bits =
1725 wait_table_bits(zone->wait_table_size);
1726 zone->wait_table = (wait_queue_head_t *)
1727 alloc_bootmem_node(pgdat, zone->wait_table_size
1728 * sizeof(wait_queue_head_t));
1729
1730 for(i = 0; i < zone->wait_table_size; ++i)
1731 init_waitqueue_head(zone->wait_table + i);
1732
1733 pgdat->nr_zones = j+1;
1734
1735 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1736 zone->zone_start_pfn = zone_start_pfn;
1737
1738 if ((zone_start_pfn) & (zone_required_alignment-1))
1739 printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1740
1741 memmap_init(size, nid, j, zone_start_pfn);
1742
1743 zone_start_pfn += size;
1744
1745 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1746 }
1747}
1748
1749static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1750{
1751 unsigned long size;
1752
1753 /* Skip empty nodes */
1754 if (!pgdat->node_spanned_pages)
1755 return;
1756
1757 /* ia64 gets its own node_mem_map, before this, without bootmem */
1758 if (!pgdat->node_mem_map) {
1759 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1760 pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1761 }
1762#ifndef CONFIG_DISCONTIGMEM
1763 /*
1764 * With no DISCONTIG, the global mem_map is just set as node 0's
1765 */
1766 if (pgdat == NODE_DATA(0))
1767 mem_map = NODE_DATA(0)->node_mem_map;
1768#endif
1769}
1770
1771void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1772 unsigned long *zones_size, unsigned long node_start_pfn,
1773 unsigned long *zholes_size)
1774{
1775 pgdat->node_id = nid;
1776 pgdat->node_start_pfn = node_start_pfn;
1777 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1778
1779 alloc_node_mem_map(pgdat);
1780
1781 free_area_init_core(pgdat, zones_size, zholes_size);
1782}
1783
1784#ifndef CONFIG_DISCONTIGMEM
1785static bootmem_data_t contig_bootmem_data;
1786struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1787
1788EXPORT_SYMBOL(contig_page_data);
1789
1790void __init free_area_init(unsigned long *zones_size)
1791{
1792 free_area_init_node(0, &contig_page_data, zones_size,
1793 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1794}
1795#endif
1796
1797#ifdef CONFIG_PROC_FS
1798
1799#include <linux/seq_file.h>
1800
1801static void *frag_start(struct seq_file *m, loff_t *pos)
1802{
1803 pg_data_t *pgdat;
1804 loff_t node = *pos;
1805
1806 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1807 --node;
1808
1809 return pgdat;
1810}
1811
1812static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1813{
1814 pg_data_t *pgdat = (pg_data_t *)arg;
1815
1816 (*pos)++;
1817 return pgdat->pgdat_next;
1818}
1819
1820static void frag_stop(struct seq_file *m, void *arg)
1821{
1822}
1823
1824/*
1825 * This walks the free areas for each zone.
1826 */
1827static int frag_show(struct seq_file *m, void *arg)
1828{
1829 pg_data_t *pgdat = (pg_data_t *)arg;
1830 struct zone *zone;
1831 struct zone *node_zones = pgdat->node_zones;
1832 unsigned long flags;
1833 int order;
1834
1835 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1836 if (!zone->present_pages)
1837 continue;
1838
1839 spin_lock_irqsave(&zone->lock, flags);
1840 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1841 for (order = 0; order < MAX_ORDER; ++order)
1842 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844 seq_putc(m, '\n');
1845 }
1846 return 0;
1847}
1848
1849struct seq_operations fragmentation_op = {
1850 .start = frag_start,
1851 .next = frag_next,
1852 .stop = frag_stop,
1853 .show = frag_show,
1854};
1855
295ab934
ND
1856/*
1857 * Output information about zones in @pgdat.
1858 */
1859static int zoneinfo_show(struct seq_file *m, void *arg)
1860{
1861 pg_data_t *pgdat = arg;
1862 struct zone *zone;
1863 struct zone *node_zones = pgdat->node_zones;
1864 unsigned long flags;
1865
1866 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
1867 int i;
1868
1869 if (!zone->present_pages)
1870 continue;
1871
1872 spin_lock_irqsave(&zone->lock, flags);
1873 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1874 seq_printf(m,
1875 "\n pages free %lu"
1876 "\n min %lu"
1877 "\n low %lu"
1878 "\n high %lu"
1879 "\n active %lu"
1880 "\n inactive %lu"
1881 "\n scanned %lu (a: %lu i: %lu)"
1882 "\n spanned %lu"
1883 "\n present %lu",
1884 zone->free_pages,
1885 zone->pages_min,
1886 zone->pages_low,
1887 zone->pages_high,
1888 zone->nr_active,
1889 zone->nr_inactive,
1890 zone->pages_scanned,
1891 zone->nr_scan_active, zone->nr_scan_inactive,
1892 zone->spanned_pages,
1893 zone->present_pages);
1894 seq_printf(m,
1895 "\n protection: (%lu",
1896 zone->lowmem_reserve[0]);
1897 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1898 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1899 seq_printf(m,
1900 ")"
1901 "\n pagesets");
1902 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
1903 struct per_cpu_pageset *pageset;
1904 int j;
1905
1906 pageset = &zone->pageset[i];
1907 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
1908 if (pageset->pcp[j].count)
1909 break;
1910 }
1911 if (j == ARRAY_SIZE(pageset->pcp))
1912 continue;
1913 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
1914 seq_printf(m,
1915 "\n cpu: %i pcp: %i"
1916 "\n count: %i"
1917 "\n low: %i"
1918 "\n high: %i"
1919 "\n batch: %i",
1920 i, j,
1921 pageset->pcp[j].count,
1922 pageset->pcp[j].low,
1923 pageset->pcp[j].high,
1924 pageset->pcp[j].batch);
1925 }
1926#ifdef CONFIG_NUMA
1927 seq_printf(m,
1928 "\n numa_hit: %lu"
1929 "\n numa_miss: %lu"
1930 "\n numa_foreign: %lu"
1931 "\n interleave_hit: %lu"
1932 "\n local_node: %lu"
1933 "\n other_node: %lu",
1934 pageset->numa_hit,
1935 pageset->numa_miss,
1936 pageset->numa_foreign,
1937 pageset->interleave_hit,
1938 pageset->local_node,
1939 pageset->other_node);
1940#endif
1941 }
1942 seq_printf(m,
1943 "\n all_unreclaimable: %u"
1944 "\n prev_priority: %i"
1945 "\n temp_priority: %i"
1946 "\n start_pfn: %lu",
1947 zone->all_unreclaimable,
1948 zone->prev_priority,
1949 zone->temp_priority,
1950 zone->zone_start_pfn);
1951 spin_unlock_irqrestore(&zone->lock, flags);
1952 seq_putc(m, '\n');
1953 }
1954 return 0;
1955}
1956
1957struct seq_operations zoneinfo_op = {
1958 .start = frag_start, /* iterate over all zones. The same as in
1959 * fragmentation. */
1960 .next = frag_next,
1961 .stop = frag_stop,
1962 .show = zoneinfo_show,
1963};
1964
1da177e4
LT
1965static char *vmstat_text[] = {
1966 "nr_dirty",
1967 "nr_writeback",
1968 "nr_unstable",
1969 "nr_page_table_pages",
1970 "nr_mapped",
1971 "nr_slab",
1972
1973 "pgpgin",
1974 "pgpgout",
1975 "pswpin",
1976 "pswpout",
1977 "pgalloc_high",
1978
1979 "pgalloc_normal",
1980 "pgalloc_dma",
1981 "pgfree",
1982 "pgactivate",
1983 "pgdeactivate",
1984
1985 "pgfault",
1986 "pgmajfault",
1987 "pgrefill_high",
1988 "pgrefill_normal",
1989 "pgrefill_dma",
1990
1991 "pgsteal_high",
1992 "pgsteal_normal",
1993 "pgsteal_dma",
1994 "pgscan_kswapd_high",
1995 "pgscan_kswapd_normal",
1996
1997 "pgscan_kswapd_dma",
1998 "pgscan_direct_high",
1999 "pgscan_direct_normal",
2000 "pgscan_direct_dma",
2001 "pginodesteal",
2002
2003 "slabs_scanned",
2004 "kswapd_steal",
2005 "kswapd_inodesteal",
2006 "pageoutrun",
2007 "allocstall",
2008
2009 "pgrotated",
edfbe2b0 2010 "nr_bounce",
1da177e4
LT
2011};
2012
2013static void *vmstat_start(struct seq_file *m, loff_t *pos)
2014{
2015 struct page_state *ps;
2016
2017 if (*pos >= ARRAY_SIZE(vmstat_text))
2018 return NULL;
2019
2020 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2021 m->private = ps;
2022 if (!ps)
2023 return ERR_PTR(-ENOMEM);
2024 get_full_page_state(ps);
2025 ps->pgpgin /= 2; /* sectors -> kbytes */
2026 ps->pgpgout /= 2;
2027 return (unsigned long *)ps + *pos;
2028}
2029
2030static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2031{
2032 (*pos)++;
2033 if (*pos >= ARRAY_SIZE(vmstat_text))
2034 return NULL;
2035 return (unsigned long *)m->private + *pos;
2036}
2037
2038static int vmstat_show(struct seq_file *m, void *arg)
2039{
2040 unsigned long *l = arg;
2041 unsigned long off = l - (unsigned long *)m->private;
2042
2043 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2044 return 0;
2045}
2046
2047static void vmstat_stop(struct seq_file *m, void *arg)
2048{
2049 kfree(m->private);
2050 m->private = NULL;
2051}
2052
2053struct seq_operations vmstat_op = {
2054 .start = vmstat_start,
2055 .next = vmstat_next,
2056 .stop = vmstat_stop,
2057 .show = vmstat_show,
2058};
2059
2060#endif /* CONFIG_PROC_FS */
2061
2062#ifdef CONFIG_HOTPLUG_CPU
2063static int page_alloc_cpu_notify(struct notifier_block *self,
2064 unsigned long action, void *hcpu)
2065{
2066 int cpu = (unsigned long)hcpu;
2067 long *count;
2068 unsigned long *src, *dest;
2069
2070 if (action == CPU_DEAD) {
2071 int i;
2072
2073 /* Drain local pagecache count. */
2074 count = &per_cpu(nr_pagecache_local, cpu);
2075 atomic_add(*count, &nr_pagecache);
2076 *count = 0;
2077 local_irq_disable();
2078 __drain_pages(cpu);
2079
2080 /* Add dead cpu's page_states to our own. */
2081 dest = (unsigned long *)&__get_cpu_var(page_states);
2082 src = (unsigned long *)&per_cpu(page_states, cpu);
2083
2084 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2085 i++) {
2086 dest[i] += src[i];
2087 src[i] = 0;
2088 }
2089
2090 local_irq_enable();
2091 }
2092 return NOTIFY_OK;
2093}
2094#endif /* CONFIG_HOTPLUG_CPU */
2095
2096void __init page_alloc_init(void)
2097{
2098 hotcpu_notifier(page_alloc_cpu_notify, 0);
2099}
2100
2101/*
2102 * setup_per_zone_lowmem_reserve - called whenever
2103 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2104 * has a correct pages reserved value, so an adequate number of
2105 * pages are left in the zone after a successful __alloc_pages().
2106 */
2107static void setup_per_zone_lowmem_reserve(void)
2108{
2109 struct pglist_data *pgdat;
2110 int j, idx;
2111
2112 for_each_pgdat(pgdat) {
2113 for (j = 0; j < MAX_NR_ZONES; j++) {
2114 struct zone *zone = pgdat->node_zones + j;
2115 unsigned long present_pages = zone->present_pages;
2116
2117 zone->lowmem_reserve[j] = 0;
2118
2119 for (idx = j-1; idx >= 0; idx--) {
2120 struct zone *lower_zone;
2121
2122 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2123 sysctl_lowmem_reserve_ratio[idx] = 1;
2124
2125 lower_zone = pgdat->node_zones + idx;
2126 lower_zone->lowmem_reserve[j] = present_pages /
2127 sysctl_lowmem_reserve_ratio[idx];
2128 present_pages += lower_zone->present_pages;
2129 }
2130 }
2131 }
2132}
2133
2134/*
2135 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2136 * that the pages_{min,low,high} values for each zone are set correctly
2137 * with respect to min_free_kbytes.
2138 */
2139static void setup_per_zone_pages_min(void)
2140{
2141 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2142 unsigned long lowmem_pages = 0;
2143 struct zone *zone;
2144 unsigned long flags;
2145
2146 /* Calculate total number of !ZONE_HIGHMEM pages */
2147 for_each_zone(zone) {
2148 if (!is_highmem(zone))
2149 lowmem_pages += zone->present_pages;
2150 }
2151
2152 for_each_zone(zone) {
2153 spin_lock_irqsave(&zone->lru_lock, flags);
2154 if (is_highmem(zone)) {
2155 /*
2156 * Often, highmem doesn't need to reserve any pages.
2157 * But the pages_min/low/high values are also used for
2158 * batching up page reclaim activity so we need a
2159 * decent value here.
2160 */
2161 int min_pages;
2162
2163 min_pages = zone->present_pages / 1024;
2164 if (min_pages < SWAP_CLUSTER_MAX)
2165 min_pages = SWAP_CLUSTER_MAX;
2166 if (min_pages > 128)
2167 min_pages = 128;
2168 zone->pages_min = min_pages;
2169 } else {
295ab934 2170 /* if it's a lowmem zone, reserve a number of pages
1da177e4
LT
2171 * proportionate to the zone's size.
2172 */
295ab934 2173 zone->pages_min = (pages_min * zone->present_pages) /
1da177e4
LT
2174 lowmem_pages;
2175 }
2176
2177 /*
2178 * When interpreting these watermarks, just keep in mind that:
2179 * zone->pages_min == (zone->pages_min * 4) / 4;
2180 */
2181 zone->pages_low = (zone->pages_min * 5) / 4;
2182 zone->pages_high = (zone->pages_min * 6) / 4;
2183 spin_unlock_irqrestore(&zone->lru_lock, flags);
2184 }
2185}
2186
2187/*
2188 * Initialise min_free_kbytes.
2189 *
2190 * For small machines we want it small (128k min). For large machines
2191 * we want it large (64MB max). But it is not linear, because network
2192 * bandwidth does not increase linearly with machine size. We use
2193 *
2194 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2195 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2196 *
2197 * which yields
2198 *
2199 * 16MB: 512k
2200 * 32MB: 724k
2201 * 64MB: 1024k
2202 * 128MB: 1448k
2203 * 256MB: 2048k
2204 * 512MB: 2896k
2205 * 1024MB: 4096k
2206 * 2048MB: 5792k
2207 * 4096MB: 8192k
2208 * 8192MB: 11584k
2209 * 16384MB: 16384k
2210 */
2211static int __init init_per_zone_pages_min(void)
2212{
2213 unsigned long lowmem_kbytes;
2214
2215 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2216
2217 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2218 if (min_free_kbytes < 128)
2219 min_free_kbytes = 128;
2220 if (min_free_kbytes > 65536)
2221 min_free_kbytes = 65536;
2222 setup_per_zone_pages_min();
2223 setup_per_zone_lowmem_reserve();
2224 return 0;
2225}
2226module_init(init_per_zone_pages_min)
2227
2228/*
2229 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2230 * that we can call two helper functions whenever min_free_kbytes
2231 * changes.
2232 */
2233int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2234 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2235{
2236 proc_dointvec(table, write, file, buffer, length, ppos);
2237 setup_per_zone_pages_min();
2238 return 0;
2239}
2240
2241/*
2242 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2243 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2244 * whenever sysctl_lowmem_reserve_ratio changes.
2245 *
2246 * The reserve ratio obviously has absolutely no relation with the
2247 * pages_min watermarks. The lowmem reserve ratio can only make sense
2248 * if in function of the boot time zone sizes.
2249 */
2250int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2251 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2252{
2253 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2254 setup_per_zone_lowmem_reserve();
2255 return 0;
2256}
2257
2258__initdata int hashdist = HASHDIST_DEFAULT;
2259
2260#ifdef CONFIG_NUMA
2261static int __init set_hashdist(char *str)
2262{
2263 if (!str)
2264 return 0;
2265 hashdist = simple_strtoul(str, &str, 0);
2266 return 1;
2267}
2268__setup("hashdist=", set_hashdist);
2269#endif
2270
2271/*
2272 * allocate a large system hash table from bootmem
2273 * - it is assumed that the hash table must contain an exact power-of-2
2274 * quantity of entries
2275 * - limit is the number of hash buckets, not the total allocation size
2276 */
2277void *__init alloc_large_system_hash(const char *tablename,
2278 unsigned long bucketsize,
2279 unsigned long numentries,
2280 int scale,
2281 int flags,
2282 unsigned int *_hash_shift,
2283 unsigned int *_hash_mask,
2284 unsigned long limit)
2285{
2286 unsigned long long max = limit;
2287 unsigned long log2qty, size;
2288 void *table = NULL;
2289
2290 /* allow the kernel cmdline to have a say */
2291 if (!numentries) {
2292 /* round applicable memory size up to nearest megabyte */
2293 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2294 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2295 numentries >>= 20 - PAGE_SHIFT;
2296 numentries <<= 20 - PAGE_SHIFT;
2297
2298 /* limit to 1 bucket per 2^scale bytes of low memory */
2299 if (scale > PAGE_SHIFT)
2300 numentries >>= (scale - PAGE_SHIFT);
2301 else
2302 numentries <<= (PAGE_SHIFT - scale);
2303 }
2304 /* rounded up to nearest power of 2 in size */
2305 numentries = 1UL << (long_log2(numentries) + 1);
2306
2307 /* limit allocation size to 1/16 total memory by default */
2308 if (max == 0) {
2309 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2310 do_div(max, bucketsize);
2311 }
2312
2313 if (numentries > max)
2314 numentries = max;
2315
2316 log2qty = long_log2(numentries);
2317
2318 do {
2319 size = bucketsize << log2qty;
2320 if (flags & HASH_EARLY)
2321 table = alloc_bootmem(size);
2322 else if (hashdist)
2323 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2324 else {
2325 unsigned long order;
2326 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2327 ;
2328 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2329 }
2330 } while (!table && size > PAGE_SIZE && --log2qty);
2331
2332 if (!table)
2333 panic("Failed to allocate %s hash table\n", tablename);
2334
2335 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2336 tablename,
2337 (1U << log2qty),
2338 long_log2(size) - PAGE_SHIFT,
2339 size);
2340
2341 if (_hash_shift)
2342 *_hash_shift = log2qty;
2343 if (_hash_mask)
2344 *_hash_mask = (1 << log2qty) - 1;
2345
2346 return table;
2347}