Add a configure option to group pages by mobility
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
13808910 50 * Array of node states.
1da177e4 51 */
13808910
CL
52nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55#ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57#ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59#endif
60 [N_CPU] = { { [0] = 1UL } },
61#endif /* NUMA */
62};
63EXPORT_SYMBOL(node_states);
64
6c231b7b 65unsigned long totalram_pages __read_mostly;
cb45b0e9 66unsigned long totalreserve_pages __read_mostly;
1da177e4 67long nr_swap_pages;
8ad4b1fb 68int percpu_pagelist_fraction;
1da177e4 69
d98c7a09 70static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 71
1da177e4
LT
72/*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
1da177e4 82 */
2f1b6248 83int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 84#ifdef CONFIG_ZONE_DMA
2f1b6248 85 256,
4b51d669 86#endif
fb0e7942 87#ifdef CONFIG_ZONE_DMA32
2f1b6248 88 256,
fb0e7942 89#endif
e53ef38d 90#ifdef CONFIG_HIGHMEM
2a1e274a 91 32,
e53ef38d 92#endif
2a1e274a 93 32,
2f1b6248 94};
1da177e4
LT
95
96EXPORT_SYMBOL(totalram_pages);
1da177e4 97
15ad7cdc 98static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 99#ifdef CONFIG_ZONE_DMA
2f1b6248 100 "DMA",
4b51d669 101#endif
fb0e7942 102#ifdef CONFIG_ZONE_DMA32
2f1b6248 103 "DMA32",
fb0e7942 104#endif
2f1b6248 105 "Normal",
e53ef38d 106#ifdef CONFIG_HIGHMEM
2a1e274a 107 "HighMem",
e53ef38d 108#endif
2a1e274a 109 "Movable",
2f1b6248
CL
110};
111
1da177e4
LT
112int min_free_kbytes = 1024;
113
86356ab1
YG
114unsigned long __meminitdata nr_kernel_pages;
115unsigned long __meminitdata nr_all_pages;
a3142c8e 116static unsigned long __meminitdata dma_reserve;
1da177e4 117
c713216d
MG
118#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
98011f56
JB
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 143#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 146#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 147 unsigned long __initdata required_kernelcore;
7e63efef 148 unsigned long __initdata required_movablecore;
e228929b 149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
c713216d
MG
154#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
418508c1
MS
156#if MAX_NUMNODES > 1
157int nr_node_ids __read_mostly = MAX_NUMNODES;
158EXPORT_SYMBOL(nr_node_ids);
159#endif
160
b92a6edd 161#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
b2a0ac88
MG
162static inline int get_pageblock_migratetype(struct page *page)
163{
164 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
165}
166
167static void set_pageblock_migratetype(struct page *page, int migratetype)
168{
169 set_pageblock_flags_group(page, (unsigned long)migratetype,
170 PB_migrate, PB_migrate_end);
171}
172
173static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
174{
175 return ((gfp_flags & __GFP_MOVABLE) != 0);
176}
177
b92a6edd
MG
178#else
179static inline int get_pageblock_migratetype(struct page *page)
180{
181 return MIGRATE_UNMOVABLE;
182}
183
184static void set_pageblock_migratetype(struct page *page, int migratetype)
185{
186}
187
188static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
189{
190 return MIGRATE_UNMOVABLE;
191}
192#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
193
13e7444b 194#ifdef CONFIG_DEBUG_VM
c6a57e19 195static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 196{
bdc8cb98
DH
197 int ret = 0;
198 unsigned seq;
199 unsigned long pfn = page_to_pfn(page);
c6a57e19 200
bdc8cb98
DH
201 do {
202 seq = zone_span_seqbegin(zone);
203 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
204 ret = 1;
205 else if (pfn < zone->zone_start_pfn)
206 ret = 1;
207 } while (zone_span_seqretry(zone, seq));
208
209 return ret;
c6a57e19
DH
210}
211
212static int page_is_consistent(struct zone *zone, struct page *page)
213{
14e07298 214 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 215 return 0;
1da177e4 216 if (zone != page_zone(page))
c6a57e19
DH
217 return 0;
218
219 return 1;
220}
221/*
222 * Temporary debugging check for pages not lying within a given zone.
223 */
224static int bad_range(struct zone *zone, struct page *page)
225{
226 if (page_outside_zone_boundaries(zone, page))
1da177e4 227 return 1;
c6a57e19
DH
228 if (!page_is_consistent(zone, page))
229 return 1;
230
1da177e4
LT
231 return 0;
232}
13e7444b
NP
233#else
234static inline int bad_range(struct zone *zone, struct page *page)
235{
236 return 0;
237}
238#endif
239
224abf92 240static void bad_page(struct page *page)
1da177e4 241{
224abf92 242 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
243 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
244 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
245 KERN_EMERG "Backtrace:\n",
224abf92
NP
246 current->comm, page, (int)(2*sizeof(unsigned long)),
247 (unsigned long)page->flags, page->mapping,
248 page_mapcount(page), page_count(page));
1da177e4 249 dump_stack();
334795ec
HD
250 page->flags &= ~(1 << PG_lru |
251 1 << PG_private |
1da177e4 252 1 << PG_locked |
1da177e4
LT
253 1 << PG_active |
254 1 << PG_dirty |
334795ec
HD
255 1 << PG_reclaim |
256 1 << PG_slab |
1da177e4 257 1 << PG_swapcache |
676165a8
NP
258 1 << PG_writeback |
259 1 << PG_buddy );
1da177e4
LT
260 set_page_count(page, 0);
261 reset_page_mapcount(page);
262 page->mapping = NULL;
9f158333 263 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
264}
265
1da177e4
LT
266/*
267 * Higher-order pages are called "compound pages". They are structured thusly:
268 *
269 * The first PAGE_SIZE page is called the "head page".
270 *
271 * The remaining PAGE_SIZE pages are called "tail pages".
272 *
273 * All pages have PG_compound set. All pages have their ->private pointing at
274 * the head page (even the head page has this).
275 *
41d78ba5
HD
276 * The first tail page's ->lru.next holds the address of the compound page's
277 * put_page() function. Its ->lru.prev holds the order of allocation.
278 * This usage means that zero-order pages may not be compound.
1da177e4 279 */
d98c7a09
HD
280
281static void free_compound_page(struct page *page)
282{
d85f3385 283 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
284}
285
1da177e4
LT
286static void prep_compound_page(struct page *page, unsigned long order)
287{
288 int i;
289 int nr_pages = 1 << order;
290
33f2ef89 291 set_compound_page_dtor(page, free_compound_page);
d85f3385 292 set_compound_order(page, order);
6d777953 293 __SetPageHead(page);
d85f3385 294 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
295 struct page *p = page + i;
296
d85f3385 297 __SetPageTail(p);
d85f3385 298 p->first_page = page;
1da177e4
LT
299 }
300}
301
302static void destroy_compound_page(struct page *page, unsigned long order)
303{
304 int i;
305 int nr_pages = 1 << order;
306
d85f3385 307 if (unlikely(compound_order(page) != order))
224abf92 308 bad_page(page);
1da177e4 309
6d777953 310 if (unlikely(!PageHead(page)))
d85f3385 311 bad_page(page);
6d777953 312 __ClearPageHead(page);
d85f3385 313 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
314 struct page *p = page + i;
315
6d777953 316 if (unlikely(!PageTail(p) |
d85f3385 317 (p->first_page != page)))
224abf92 318 bad_page(page);
d85f3385 319 __ClearPageTail(p);
1da177e4
LT
320 }
321}
1da177e4 322
17cf4406
NP
323static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
324{
325 int i;
326
725d704e 327 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
328 /*
329 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
330 * and __GFP_HIGHMEM from hard or soft interrupt context.
331 */
725d704e 332 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
333 for (i = 0; i < (1 << order); i++)
334 clear_highpage(page + i);
335}
336
1da177e4
LT
337/*
338 * function for dealing with page's order in buddy system.
339 * zone->lock is already acquired when we use these.
340 * So, we don't need atomic page->flags operations here.
341 */
6aa3001b
AM
342static inline unsigned long page_order(struct page *page)
343{
4c21e2f2 344 return page_private(page);
1da177e4
LT
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
1da177e4
LT
444 struct zone *zone, unsigned int order)
445{
446 unsigned long page_idx;
447 int order_size = 1 << order;
b2a0ac88 448 int migratetype = get_pageblock_migratetype(page);
1da177e4 449
224abf92 450 if (unlikely(PageCompound(page)))
1da177e4
LT
451 destroy_compound_page(page, order);
452
453 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
454
725d704e
NP
455 VM_BUG_ON(page_idx & (order_size - 1));
456 VM_BUG_ON(bad_range(zone, page));
1da177e4 457
d23ad423 458 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
459 while (order < MAX_ORDER-1) {
460 unsigned long combined_idx;
1da177e4
LT
461 struct page *buddy;
462
1da177e4 463 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 464 if (!page_is_buddy(page, buddy, order))
1da177e4 465 break; /* Move the buddy up one level. */
13e7444b 466
1da177e4 467 list_del(&buddy->lru);
b2a0ac88 468 zone->free_area[order].nr_free--;
1da177e4 469 rmv_page_order(buddy);
13e7444b 470 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
471 page = page + (combined_idx - page_idx);
472 page_idx = combined_idx;
473 order++;
474 }
475 set_page_order(page, order);
b2a0ac88
MG
476 list_add(&page->lru,
477 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
478 zone->free_area[order].nr_free++;
479}
480
224abf92 481static inline int free_pages_check(struct page *page)
1da177e4 482{
92be2e33
NP
483 if (unlikely(page_mapcount(page) |
484 (page->mapping != NULL) |
485 (page_count(page) != 0) |
1da177e4
LT
486 (page->flags & (
487 1 << PG_lru |
488 1 << PG_private |
489 1 << PG_locked |
490 1 << PG_active |
1da177e4
LT
491 1 << PG_slab |
492 1 << PG_swapcache |
b5810039 493 1 << PG_writeback |
676165a8
NP
494 1 << PG_reserved |
495 1 << PG_buddy ))))
224abf92 496 bad_page(page);
1da177e4 497 if (PageDirty(page))
242e5468 498 __ClearPageDirty(page);
689bcebf
HD
499 /*
500 * For now, we report if PG_reserved was found set, but do not
501 * clear it, and do not free the page. But we shall soon need
502 * to do more, for when the ZERO_PAGE count wraps negative.
503 */
504 return PageReserved(page);
1da177e4
LT
505}
506
507/*
508 * Frees a list of pages.
509 * Assumes all pages on list are in same zone, and of same order.
207f36ee 510 * count is the number of pages to free.
1da177e4
LT
511 *
512 * If the zone was previously in an "all pages pinned" state then look to
513 * see if this freeing clears that state.
514 *
515 * And clear the zone's pages_scanned counter, to hold off the "all pages are
516 * pinned" detection logic.
517 */
48db57f8
NP
518static void free_pages_bulk(struct zone *zone, int count,
519 struct list_head *list, int order)
1da177e4 520{
c54ad30c 521 spin_lock(&zone->lock);
1da177e4
LT
522 zone->all_unreclaimable = 0;
523 zone->pages_scanned = 0;
48db57f8
NP
524 while (count--) {
525 struct page *page;
526
725d704e 527 VM_BUG_ON(list_empty(list));
1da177e4 528 page = list_entry(list->prev, struct page, lru);
48db57f8 529 /* have to delete it as __free_one_page list manipulates */
1da177e4 530 list_del(&page->lru);
48db57f8 531 __free_one_page(page, zone, order);
1da177e4 532 }
c54ad30c 533 spin_unlock(&zone->lock);
1da177e4
LT
534}
535
48db57f8 536static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 537{
006d22d9
CL
538 spin_lock(&zone->lock);
539 zone->all_unreclaimable = 0;
540 zone->pages_scanned = 0;
0798e519 541 __free_one_page(page, zone, order);
006d22d9 542 spin_unlock(&zone->lock);
48db57f8
NP
543}
544
545static void __free_pages_ok(struct page *page, unsigned int order)
546{
547 unsigned long flags;
1da177e4 548 int i;
689bcebf 549 int reserved = 0;
1da177e4 550
1da177e4 551 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 552 reserved += free_pages_check(page + i);
689bcebf
HD
553 if (reserved)
554 return;
555
9858db50
NP
556 if (!PageHighMem(page))
557 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 558 arch_free_page(page, order);
48db57f8 559 kernel_map_pages(page, 1 << order, 0);
dafb1367 560
c54ad30c 561 local_irq_save(flags);
f8891e5e 562 __count_vm_events(PGFREE, 1 << order);
48db57f8 563 free_one_page(page_zone(page), page, order);
c54ad30c 564 local_irq_restore(flags);
1da177e4
LT
565}
566
a226f6c8
DH
567/*
568 * permit the bootmem allocator to evade page validation on high-order frees
569 */
570void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
571{
572 if (order == 0) {
573 __ClearPageReserved(page);
574 set_page_count(page, 0);
7835e98b 575 set_page_refcounted(page);
545b1ea9 576 __free_page(page);
a226f6c8 577 } else {
a226f6c8
DH
578 int loop;
579
545b1ea9 580 prefetchw(page);
a226f6c8
DH
581 for (loop = 0; loop < BITS_PER_LONG; loop++) {
582 struct page *p = &page[loop];
583
545b1ea9
NP
584 if (loop + 1 < BITS_PER_LONG)
585 prefetchw(p + 1);
a226f6c8
DH
586 __ClearPageReserved(p);
587 set_page_count(p, 0);
588 }
589
7835e98b 590 set_page_refcounted(page);
545b1ea9 591 __free_pages(page, order);
a226f6c8
DH
592 }
593}
594
1da177e4
LT
595
596/*
597 * The order of subdivision here is critical for the IO subsystem.
598 * Please do not alter this order without good reasons and regression
599 * testing. Specifically, as large blocks of memory are subdivided,
600 * the order in which smaller blocks are delivered depends on the order
601 * they're subdivided in this function. This is the primary factor
602 * influencing the order in which pages are delivered to the IO
603 * subsystem according to empirical testing, and this is also justified
604 * by considering the behavior of a buddy system containing a single
605 * large block of memory acted on by a series of small allocations.
606 * This behavior is a critical factor in sglist merging's success.
607 *
608 * -- wli
609 */
085cc7d5 610static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
611 int low, int high, struct free_area *area,
612 int migratetype)
1da177e4
LT
613{
614 unsigned long size = 1 << high;
615
616 while (high > low) {
617 area--;
618 high--;
619 size >>= 1;
725d704e 620 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 621 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
622 area->nr_free++;
623 set_page_order(&page[size], high);
624 }
1da177e4
LT
625}
626
1da177e4
LT
627/*
628 * This page is about to be returned from the page allocator
629 */
17cf4406 630static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 631{
92be2e33
NP
632 if (unlikely(page_mapcount(page) |
633 (page->mapping != NULL) |
634 (page_count(page) != 0) |
334795ec
HD
635 (page->flags & (
636 1 << PG_lru |
1da177e4
LT
637 1 << PG_private |
638 1 << PG_locked |
1da177e4
LT
639 1 << PG_active |
640 1 << PG_dirty |
334795ec 641 1 << PG_slab |
1da177e4 642 1 << PG_swapcache |
b5810039 643 1 << PG_writeback |
676165a8
NP
644 1 << PG_reserved |
645 1 << PG_buddy ))))
224abf92 646 bad_page(page);
1da177e4 647
689bcebf
HD
648 /*
649 * For now, we report if PG_reserved was found set, but do not
650 * clear it, and do not allocate the page: as a safety net.
651 */
652 if (PageReserved(page))
653 return 1;
654
d77c2d7c 655 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 656 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 657 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 658 set_page_private(page, 0);
7835e98b 659 set_page_refcounted(page);
cc102509
NP
660
661 arch_alloc_page(page, order);
1da177e4 662 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
663
664 if (gfp_flags & __GFP_ZERO)
665 prep_zero_page(page, order, gfp_flags);
666
667 if (order && (gfp_flags & __GFP_COMP))
668 prep_compound_page(page, order);
669
689bcebf 670 return 0;
1da177e4
LT
671}
672
b92a6edd 673#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
b2a0ac88
MG
674/*
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
677 */
678static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 [MIGRATE_UNMOVABLE] = { MIGRATE_MOVABLE },
680 [MIGRATE_MOVABLE] = { MIGRATE_UNMOVABLE },
681};
682
683/* Remove an element from the buddy allocator from the fallback list */
684static struct page *__rmqueue_fallback(struct zone *zone, int order,
685 int start_migratetype)
686{
687 struct free_area * area;
688 int current_order;
689 struct page *page;
690 int migratetype, i;
691
692 /* Find the largest possible block of pages in the other list */
693 for (current_order = MAX_ORDER-1; current_order >= order;
694 --current_order) {
695 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
696 migratetype = fallbacks[start_migratetype][i];
697
698 area = &(zone->free_area[current_order]);
699 if (list_empty(&area->free_list[migratetype]))
700 continue;
701
702 page = list_entry(area->free_list[migratetype].next,
703 struct page, lru);
704 area->nr_free--;
705
706 /*
707 * If breaking a large block of pages, place the buddies
708 * on the preferred allocation list
709 */
710 if (unlikely(current_order >= MAX_ORDER / 2))
711 migratetype = start_migratetype;
712
713 /* Remove the page from the freelists */
714 list_del(&page->lru);
715 rmv_page_order(page);
716 __mod_zone_page_state(zone, NR_FREE_PAGES,
717 -(1UL << order));
718
719 if (current_order == MAX_ORDER - 1)
720 set_pageblock_migratetype(page,
721 start_migratetype);
722
723 expand(zone, page, order, current_order, area, migratetype);
724 return page;
725 }
726 }
727
728 return NULL;
729}
b92a6edd
MG
730#else
731static struct page *__rmqueue_fallback(struct zone *zone, int order,
732 int start_migratetype)
733{
734 return NULL;
735}
736#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
b2a0ac88 737
1da177e4
LT
738/*
739 * Do the hard work of removing an element from the buddy allocator.
740 * Call me with the zone->lock already held.
741 */
b2a0ac88
MG
742static struct page *__rmqueue(struct zone *zone, unsigned int order,
743 int migratetype)
1da177e4
LT
744{
745 struct free_area * area;
746 unsigned int current_order;
747 struct page *page;
748
b2a0ac88 749 /* Find a page of the appropriate size in the preferred list */
1da177e4 750 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
b2a0ac88
MG
751 area = &(zone->free_area[current_order]);
752 if (list_empty(&area->free_list[migratetype]))
1da177e4
LT
753 continue;
754
b2a0ac88
MG
755 page = list_entry(area->free_list[migratetype].next,
756 struct page, lru);
1da177e4
LT
757 list_del(&page->lru);
758 rmv_page_order(page);
759 area->nr_free--;
d23ad423 760 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
b2a0ac88
MG
761 expand(zone, page, order, current_order, area, migratetype);
762 goto got_page;
1da177e4
LT
763 }
764
b2a0ac88
MG
765 page = __rmqueue_fallback(zone, order, migratetype);
766
767got_page:
768
769 return page;
1da177e4
LT
770}
771
772/*
773 * Obtain a specified number of elements from the buddy allocator, all under
774 * a single hold of the lock, for efficiency. Add them to the supplied list.
775 * Returns the number of new pages which were placed at *list.
776 */
777static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
778 unsigned long count, struct list_head *list,
779 int migratetype)
1da177e4 780{
1da177e4 781 int i;
1da177e4 782
c54ad30c 783 spin_lock(&zone->lock);
1da177e4 784 for (i = 0; i < count; ++i) {
b2a0ac88 785 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 786 if (unlikely(page == NULL))
1da177e4 787 break;
535131e6
MG
788 list_add(&page->lru, list);
789 set_page_private(page, migratetype);
1da177e4 790 }
c54ad30c 791 spin_unlock(&zone->lock);
085cc7d5 792 return i;
1da177e4
LT
793}
794
4ae7c039 795#ifdef CONFIG_NUMA
8fce4d8e 796/*
4037d452
CL
797 * Called from the vmstat counter updater to drain pagesets of this
798 * currently executing processor on remote nodes after they have
799 * expired.
800 *
879336c3
CL
801 * Note that this function must be called with the thread pinned to
802 * a single processor.
8fce4d8e 803 */
4037d452 804void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 805{
4ae7c039 806 unsigned long flags;
4037d452 807 int to_drain;
4ae7c039 808
4037d452
CL
809 local_irq_save(flags);
810 if (pcp->count >= pcp->batch)
811 to_drain = pcp->batch;
812 else
813 to_drain = pcp->count;
814 free_pages_bulk(zone, to_drain, &pcp->list, 0);
815 pcp->count -= to_drain;
816 local_irq_restore(flags);
4ae7c039
CL
817}
818#endif
819
1da177e4
LT
820static void __drain_pages(unsigned int cpu)
821{
c54ad30c 822 unsigned long flags;
1da177e4
LT
823 struct zone *zone;
824 int i;
825
826 for_each_zone(zone) {
827 struct per_cpu_pageset *pset;
828
f2e12bb2
CL
829 if (!populated_zone(zone))
830 continue;
831
e7c8d5c9 832 pset = zone_pcp(zone, cpu);
1da177e4
LT
833 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
834 struct per_cpu_pages *pcp;
835
836 pcp = &pset->pcp[i];
c54ad30c 837 local_irq_save(flags);
48db57f8
NP
838 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
839 pcp->count = 0;
c54ad30c 840 local_irq_restore(flags);
1da177e4
LT
841 }
842 }
843}
1da177e4 844
296699de 845#ifdef CONFIG_HIBERNATION
1da177e4
LT
846
847void mark_free_pages(struct zone *zone)
848{
f623f0db
RW
849 unsigned long pfn, max_zone_pfn;
850 unsigned long flags;
b2a0ac88 851 int order, t;
1da177e4
LT
852 struct list_head *curr;
853
854 if (!zone->spanned_pages)
855 return;
856
857 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
858
859 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
860 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
861 if (pfn_valid(pfn)) {
862 struct page *page = pfn_to_page(pfn);
863
7be98234
RW
864 if (!swsusp_page_is_forbidden(page))
865 swsusp_unset_page_free(page);
f623f0db 866 }
1da177e4 867
b2a0ac88
MG
868 for_each_migratetype_order(order, t) {
869 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 870 unsigned long i;
1da177e4 871
f623f0db
RW
872 pfn = page_to_pfn(list_entry(curr, struct page, lru));
873 for (i = 0; i < (1UL << order); i++)
7be98234 874 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 875 }
b2a0ac88 876 }
1da177e4
LT
877 spin_unlock_irqrestore(&zone->lock, flags);
878}
879
880/*
881 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
882 */
883void drain_local_pages(void)
884{
885 unsigned long flags;
886
887 local_irq_save(flags);
888 __drain_pages(smp_processor_id());
889 local_irq_restore(flags);
890}
296699de 891#endif /* CONFIG_HIBERNATION */
1da177e4 892
1da177e4
LT
893/*
894 * Free a 0-order page
895 */
1da177e4
LT
896static void fastcall free_hot_cold_page(struct page *page, int cold)
897{
898 struct zone *zone = page_zone(page);
899 struct per_cpu_pages *pcp;
900 unsigned long flags;
901
1da177e4
LT
902 if (PageAnon(page))
903 page->mapping = NULL;
224abf92 904 if (free_pages_check(page))
689bcebf
HD
905 return;
906
9858db50
NP
907 if (!PageHighMem(page))
908 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 909 arch_free_page(page, 0);
689bcebf
HD
910 kernel_map_pages(page, 1, 0);
911
e7c8d5c9 912 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 913 local_irq_save(flags);
f8891e5e 914 __count_vm_event(PGFREE);
1da177e4 915 list_add(&page->lru, &pcp->list);
535131e6 916 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 917 pcp->count++;
48db57f8
NP
918 if (pcp->count >= pcp->high) {
919 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
920 pcp->count -= pcp->batch;
921 }
1da177e4
LT
922 local_irq_restore(flags);
923 put_cpu();
924}
925
926void fastcall free_hot_page(struct page *page)
927{
928 free_hot_cold_page(page, 0);
929}
930
931void fastcall free_cold_page(struct page *page)
932{
933 free_hot_cold_page(page, 1);
934}
935
8dfcc9ba
NP
936/*
937 * split_page takes a non-compound higher-order page, and splits it into
938 * n (1<<order) sub-pages: page[0..n]
939 * Each sub-page must be freed individually.
940 *
941 * Note: this is probably too low level an operation for use in drivers.
942 * Please consult with lkml before using this in your driver.
943 */
944void split_page(struct page *page, unsigned int order)
945{
946 int i;
947
725d704e
NP
948 VM_BUG_ON(PageCompound(page));
949 VM_BUG_ON(!page_count(page));
7835e98b
NP
950 for (i = 1; i < (1 << order); i++)
951 set_page_refcounted(page + i);
8dfcc9ba 952}
8dfcc9ba 953
1da177e4
LT
954/*
955 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
956 * we cheat by calling it from here, in the order > 0 path. Saves a branch
957 * or two.
958 */
a74609fa
NP
959static struct page *buffered_rmqueue(struct zonelist *zonelist,
960 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
961{
962 unsigned long flags;
689bcebf 963 struct page *page;
1da177e4 964 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 965 int cpu;
b2a0ac88 966 int migratetype = gfpflags_to_migratetype(gfp_flags);
1da177e4 967
689bcebf 968again:
a74609fa 969 cpu = get_cpu();
48db57f8 970 if (likely(order == 0)) {
1da177e4
LT
971 struct per_cpu_pages *pcp;
972
a74609fa 973 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 974 local_irq_save(flags);
a74609fa 975 if (!pcp->count) {
941c7105 976 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 977 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
978 if (unlikely(!pcp->count))
979 goto failed;
1da177e4 980 }
b92a6edd
MG
981
982#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
535131e6 983 /* Find a page of the appropriate migrate type */
b92a6edd
MG
984 list_for_each_entry(page, &pcp->list, lru)
985 if (page_private(page) == migratetype)
535131e6 986 break;
535131e6 987
b92a6edd
MG
988 /* Allocate more to the pcp list if necessary */
989 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
990 pcp->count += rmqueue_bulk(zone, 0,
991 pcp->batch, &pcp->list, migratetype);
992 page = list_entry(pcp->list.next, struct page, lru);
535131e6 993 }
b92a6edd
MG
994#else
995 page = list_entry(pcp->list.next, struct page, lru);
996#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
997
998 list_del(&page->lru);
999 pcp->count--;
7fb1d9fc 1000 } else {
1da177e4 1001 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1002 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1003 spin_unlock(&zone->lock);
1004 if (!page)
1005 goto failed;
1da177e4
LT
1006 }
1007
f8891e5e 1008 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 1009 zone_statistics(zonelist, zone);
a74609fa
NP
1010 local_irq_restore(flags);
1011 put_cpu();
1da177e4 1012
725d704e 1013 VM_BUG_ON(bad_range(zone, page));
17cf4406 1014 if (prep_new_page(page, order, gfp_flags))
a74609fa 1015 goto again;
1da177e4 1016 return page;
a74609fa
NP
1017
1018failed:
1019 local_irq_restore(flags);
1020 put_cpu();
1021 return NULL;
1da177e4
LT
1022}
1023
7fb1d9fc 1024#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1025#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1026#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1027#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1028#define ALLOC_HARDER 0x10 /* try to alloc harder */
1029#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1030#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1031
933e312e
AM
1032#ifdef CONFIG_FAIL_PAGE_ALLOC
1033
1034static struct fail_page_alloc_attr {
1035 struct fault_attr attr;
1036
1037 u32 ignore_gfp_highmem;
1038 u32 ignore_gfp_wait;
54114994 1039 u32 min_order;
933e312e
AM
1040
1041#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1042
1043 struct dentry *ignore_gfp_highmem_file;
1044 struct dentry *ignore_gfp_wait_file;
54114994 1045 struct dentry *min_order_file;
933e312e
AM
1046
1047#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1048
1049} fail_page_alloc = {
1050 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1051 .ignore_gfp_wait = 1,
1052 .ignore_gfp_highmem = 1,
54114994 1053 .min_order = 1,
933e312e
AM
1054};
1055
1056static int __init setup_fail_page_alloc(char *str)
1057{
1058 return setup_fault_attr(&fail_page_alloc.attr, str);
1059}
1060__setup("fail_page_alloc=", setup_fail_page_alloc);
1061
1062static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1063{
54114994
AM
1064 if (order < fail_page_alloc.min_order)
1065 return 0;
933e312e
AM
1066 if (gfp_mask & __GFP_NOFAIL)
1067 return 0;
1068 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1069 return 0;
1070 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1071 return 0;
1072
1073 return should_fail(&fail_page_alloc.attr, 1 << order);
1074}
1075
1076#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1077
1078static int __init fail_page_alloc_debugfs(void)
1079{
1080 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1081 struct dentry *dir;
1082 int err;
1083
1084 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1085 "fail_page_alloc");
1086 if (err)
1087 return err;
1088 dir = fail_page_alloc.attr.dentries.dir;
1089
1090 fail_page_alloc.ignore_gfp_wait_file =
1091 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1092 &fail_page_alloc.ignore_gfp_wait);
1093
1094 fail_page_alloc.ignore_gfp_highmem_file =
1095 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1096 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1097 fail_page_alloc.min_order_file =
1098 debugfs_create_u32("min-order", mode, dir,
1099 &fail_page_alloc.min_order);
933e312e
AM
1100
1101 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1102 !fail_page_alloc.ignore_gfp_highmem_file ||
1103 !fail_page_alloc.min_order_file) {
933e312e
AM
1104 err = -ENOMEM;
1105 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1106 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1107 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1108 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1109 }
1110
1111 return err;
1112}
1113
1114late_initcall(fail_page_alloc_debugfs);
1115
1116#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1117
1118#else /* CONFIG_FAIL_PAGE_ALLOC */
1119
1120static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1121{
1122 return 0;
1123}
1124
1125#endif /* CONFIG_FAIL_PAGE_ALLOC */
1126
1da177e4
LT
1127/*
1128 * Return 1 if free pages are above 'mark'. This takes into account the order
1129 * of the allocation.
1130 */
1131int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1132 int classzone_idx, int alloc_flags)
1da177e4
LT
1133{
1134 /* free_pages my go negative - that's OK */
d23ad423
CL
1135 long min = mark;
1136 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1137 int o;
1138
7fb1d9fc 1139 if (alloc_flags & ALLOC_HIGH)
1da177e4 1140 min -= min / 2;
7fb1d9fc 1141 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1142 min -= min / 4;
1143
1144 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1145 return 0;
1146 for (o = 0; o < order; o++) {
1147 /* At the next order, this order's pages become unavailable */
1148 free_pages -= z->free_area[o].nr_free << o;
1149
1150 /* Require fewer higher order pages to be free */
1151 min >>= 1;
1152
1153 if (free_pages <= min)
1154 return 0;
1155 }
1156 return 1;
1157}
1158
9276b1bc
PJ
1159#ifdef CONFIG_NUMA
1160/*
1161 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1162 * skip over zones that are not allowed by the cpuset, or that have
1163 * been recently (in last second) found to be nearly full. See further
1164 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1165 * that have to skip over alot of full or unallowed zones.
1166 *
1167 * If the zonelist cache is present in the passed in zonelist, then
1168 * returns a pointer to the allowed node mask (either the current
37b07e41 1169 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1170 *
1171 * If the zonelist cache is not available for this zonelist, does
1172 * nothing and returns NULL.
1173 *
1174 * If the fullzones BITMAP in the zonelist cache is stale (more than
1175 * a second since last zap'd) then we zap it out (clear its bits.)
1176 *
1177 * We hold off even calling zlc_setup, until after we've checked the
1178 * first zone in the zonelist, on the theory that most allocations will
1179 * be satisfied from that first zone, so best to examine that zone as
1180 * quickly as we can.
1181 */
1182static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1183{
1184 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1185 nodemask_t *allowednodes; /* zonelist_cache approximation */
1186
1187 zlc = zonelist->zlcache_ptr;
1188 if (!zlc)
1189 return NULL;
1190
1191 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1192 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1193 zlc->last_full_zap = jiffies;
1194 }
1195
1196 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1197 &cpuset_current_mems_allowed :
37b07e41 1198 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1199 return allowednodes;
1200}
1201
1202/*
1203 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1204 * if it is worth looking at further for free memory:
1205 * 1) Check that the zone isn't thought to be full (doesn't have its
1206 * bit set in the zonelist_cache fullzones BITMAP).
1207 * 2) Check that the zones node (obtained from the zonelist_cache
1208 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1209 * Return true (non-zero) if zone is worth looking at further, or
1210 * else return false (zero) if it is not.
1211 *
1212 * This check -ignores- the distinction between various watermarks,
1213 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1214 * found to be full for any variation of these watermarks, it will
1215 * be considered full for up to one second by all requests, unless
1216 * we are so low on memory on all allowed nodes that we are forced
1217 * into the second scan of the zonelist.
1218 *
1219 * In the second scan we ignore this zonelist cache and exactly
1220 * apply the watermarks to all zones, even it is slower to do so.
1221 * We are low on memory in the second scan, and should leave no stone
1222 * unturned looking for a free page.
1223 */
1224static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1225 nodemask_t *allowednodes)
1226{
1227 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1228 int i; /* index of *z in zonelist zones */
1229 int n; /* node that zone *z is on */
1230
1231 zlc = zonelist->zlcache_ptr;
1232 if (!zlc)
1233 return 1;
1234
1235 i = z - zonelist->zones;
1236 n = zlc->z_to_n[i];
1237
1238 /* This zone is worth trying if it is allowed but not full */
1239 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1240}
1241
1242/*
1243 * Given 'z' scanning a zonelist, set the corresponding bit in
1244 * zlc->fullzones, so that subsequent attempts to allocate a page
1245 * from that zone don't waste time re-examining it.
1246 */
1247static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1248{
1249 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1250 int i; /* index of *z in zonelist zones */
1251
1252 zlc = zonelist->zlcache_ptr;
1253 if (!zlc)
1254 return;
1255
1256 i = z - zonelist->zones;
1257
1258 set_bit(i, zlc->fullzones);
1259}
1260
1261#else /* CONFIG_NUMA */
1262
1263static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1264{
1265 return NULL;
1266}
1267
1268static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1269 nodemask_t *allowednodes)
1270{
1271 return 1;
1272}
1273
1274static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1275{
1276}
1277#endif /* CONFIG_NUMA */
1278
7fb1d9fc 1279/*
0798e519 1280 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1281 * a page.
1282 */
1283static struct page *
1284get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1285 struct zonelist *zonelist, int alloc_flags)
753ee728 1286{
9276b1bc 1287 struct zone **z;
7fb1d9fc 1288 struct page *page = NULL;
9276b1bc 1289 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1290 struct zone *zone;
9276b1bc
PJ
1291 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1292 int zlc_active = 0; /* set if using zonelist_cache */
1293 int did_zlc_setup = 0; /* just call zlc_setup() one time */
b377fd39 1294 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
7fb1d9fc 1295
9276b1bc 1296zonelist_scan:
7fb1d9fc 1297 /*
9276b1bc 1298 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1299 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1300 */
9276b1bc
PJ
1301 z = zonelist->zones;
1302
7fb1d9fc 1303 do {
b377fd39
MG
1304 /*
1305 * In NUMA, this could be a policy zonelist which contains
1306 * zones that may not be allowed by the current gfp_mask.
1307 * Check the zone is allowed by the current flags
1308 */
1309 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1310 if (highest_zoneidx == -1)
1311 highest_zoneidx = gfp_zone(gfp_mask);
1312 if (zone_idx(*z) > highest_zoneidx)
1313 continue;
1314 }
1315
9276b1bc
PJ
1316 if (NUMA_BUILD && zlc_active &&
1317 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1318 continue;
1192d526 1319 zone = *z;
7fb1d9fc 1320 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1321 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1322 goto try_next_zone;
7fb1d9fc
RS
1323
1324 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1325 unsigned long mark;
1326 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1327 mark = zone->pages_min;
3148890b 1328 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1329 mark = zone->pages_low;
3148890b 1330 else
1192d526 1331 mark = zone->pages_high;
0798e519
PJ
1332 if (!zone_watermark_ok(zone, order, mark,
1333 classzone_idx, alloc_flags)) {
9eeff239 1334 if (!zone_reclaim_mode ||
1192d526 1335 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1336 goto this_zone_full;
0798e519 1337 }
7fb1d9fc
RS
1338 }
1339
1192d526 1340 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1341 if (page)
7fb1d9fc 1342 break;
9276b1bc
PJ
1343this_zone_full:
1344 if (NUMA_BUILD)
1345 zlc_mark_zone_full(zonelist, z);
1346try_next_zone:
1347 if (NUMA_BUILD && !did_zlc_setup) {
1348 /* we do zlc_setup after the first zone is tried */
1349 allowednodes = zlc_setup(zonelist, alloc_flags);
1350 zlc_active = 1;
1351 did_zlc_setup = 1;
1352 }
7fb1d9fc 1353 } while (*(++z) != NULL);
9276b1bc
PJ
1354
1355 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1356 /* Disable zlc cache for second zonelist scan */
1357 zlc_active = 0;
1358 goto zonelist_scan;
1359 }
7fb1d9fc 1360 return page;
753ee728
MH
1361}
1362
1da177e4
LT
1363/*
1364 * This is the 'heart' of the zoned buddy allocator.
1365 */
1366struct page * fastcall
dd0fc66f 1367__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1368 struct zonelist *zonelist)
1369{
260b2367 1370 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1371 struct zone **z;
1da177e4
LT
1372 struct page *page;
1373 struct reclaim_state reclaim_state;
1374 struct task_struct *p = current;
1da177e4 1375 int do_retry;
7fb1d9fc 1376 int alloc_flags;
1da177e4
LT
1377 int did_some_progress;
1378
1379 might_sleep_if(wait);
1380
933e312e
AM
1381 if (should_fail_alloc_page(gfp_mask, order))
1382 return NULL;
1383
6b1de916 1384restart:
7fb1d9fc 1385 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1386
7fb1d9fc 1387 if (unlikely(*z == NULL)) {
523b9458
CL
1388 /*
1389 * Happens if we have an empty zonelist as a result of
1390 * GFP_THISNODE being used on a memoryless node
1391 */
1da177e4
LT
1392 return NULL;
1393 }
6b1de916 1394
7fb1d9fc 1395 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1396 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1397 if (page)
1398 goto got_pg;
1da177e4 1399
952f3b51
CL
1400 /*
1401 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1402 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1403 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1404 * using a larger set of nodes after it has established that the
1405 * allowed per node queues are empty and that nodes are
1406 * over allocated.
1407 */
1408 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1409 goto nopage;
1410
0798e519 1411 for (z = zonelist->zones; *z; z++)
43b0bc00 1412 wakeup_kswapd(*z, order);
1da177e4 1413
9bf2229f 1414 /*
7fb1d9fc
RS
1415 * OK, we're below the kswapd watermark and have kicked background
1416 * reclaim. Now things get more complex, so set up alloc_flags according
1417 * to how we want to proceed.
1418 *
1419 * The caller may dip into page reserves a bit more if the caller
1420 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1421 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1422 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1423 */
3148890b 1424 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1425 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1426 alloc_flags |= ALLOC_HARDER;
1427 if (gfp_mask & __GFP_HIGH)
1428 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1429 if (wait)
1430 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1431
1432 /*
1433 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1434 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1435 *
1436 * This is the last chance, in general, before the goto nopage.
1437 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1438 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1439 */
7fb1d9fc
RS
1440 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1441 if (page)
1442 goto got_pg;
1da177e4
LT
1443
1444 /* This allocation should allow future memory freeing. */
b84a35be 1445
b43a57bb 1446rebalance:
b84a35be
NP
1447 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1448 && !in_interrupt()) {
1449 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1450nofail_alloc:
b84a35be 1451 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1452 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1453 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1454 if (page)
1455 goto got_pg;
885036d3 1456 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1457 congestion_wait(WRITE, HZ/50);
885036d3
KK
1458 goto nofail_alloc;
1459 }
1da177e4
LT
1460 }
1461 goto nopage;
1462 }
1463
1464 /* Atomic allocations - we can't balance anything */
1465 if (!wait)
1466 goto nopage;
1467
1da177e4
LT
1468 cond_resched();
1469
1470 /* We now go into synchronous reclaim */
3e0d98b9 1471 cpuset_memory_pressure_bump();
1da177e4
LT
1472 p->flags |= PF_MEMALLOC;
1473 reclaim_state.reclaimed_slab = 0;
1474 p->reclaim_state = &reclaim_state;
1475
5ad333eb 1476 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1477
1478 p->reclaim_state = NULL;
1479 p->flags &= ~PF_MEMALLOC;
1480
1481 cond_resched();
1482
1483 if (likely(did_some_progress)) {
7fb1d9fc
RS
1484 page = get_page_from_freelist(gfp_mask, order,
1485 zonelist, alloc_flags);
1486 if (page)
1487 goto got_pg;
1da177e4
LT
1488 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1489 /*
1490 * Go through the zonelist yet one more time, keep
1491 * very high watermark here, this is only to catch
1492 * a parallel oom killing, we must fail if we're still
1493 * under heavy pressure.
1494 */
7fb1d9fc 1495 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1496 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1497 if (page)
1498 goto got_pg;
1da177e4 1499
a8bbf72a
MG
1500 /* The OOM killer will not help higher order allocs so fail */
1501 if (order > PAGE_ALLOC_COSTLY_ORDER)
1502 goto nopage;
1503
9b0f8b04 1504 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1505 goto restart;
1506 }
1507
1508 /*
1509 * Don't let big-order allocations loop unless the caller explicitly
1510 * requests that. Wait for some write requests to complete then retry.
1511 *
1512 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1513 * <= 3, but that may not be true in other implementations.
1514 */
1515 do_retry = 0;
1516 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1517 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1518 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1519 do_retry = 1;
1520 if (gfp_mask & __GFP_NOFAIL)
1521 do_retry = 1;
1522 }
1523 if (do_retry) {
3fcfab16 1524 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1525 goto rebalance;
1526 }
1527
1528nopage:
1529 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1530 printk(KERN_WARNING "%s: page allocation failure."
1531 " order:%d, mode:0x%x\n",
1532 p->comm, order, gfp_mask);
1533 dump_stack();
578c2fd6 1534 show_mem();
1da177e4 1535 }
1da177e4 1536got_pg:
1da177e4
LT
1537 return page;
1538}
1539
1540EXPORT_SYMBOL(__alloc_pages);
1541
1542/*
1543 * Common helper functions.
1544 */
dd0fc66f 1545fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1546{
1547 struct page * page;
1548 page = alloc_pages(gfp_mask, order);
1549 if (!page)
1550 return 0;
1551 return (unsigned long) page_address(page);
1552}
1553
1554EXPORT_SYMBOL(__get_free_pages);
1555
dd0fc66f 1556fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1557{
1558 struct page * page;
1559
1560 /*
1561 * get_zeroed_page() returns a 32-bit address, which cannot represent
1562 * a highmem page
1563 */
725d704e 1564 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1565
1566 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1567 if (page)
1568 return (unsigned long) page_address(page);
1569 return 0;
1570}
1571
1572EXPORT_SYMBOL(get_zeroed_page);
1573
1574void __pagevec_free(struct pagevec *pvec)
1575{
1576 int i = pagevec_count(pvec);
1577
1578 while (--i >= 0)
1579 free_hot_cold_page(pvec->pages[i], pvec->cold);
1580}
1581
1582fastcall void __free_pages(struct page *page, unsigned int order)
1583{
b5810039 1584 if (put_page_testzero(page)) {
1da177e4
LT
1585 if (order == 0)
1586 free_hot_page(page);
1587 else
1588 __free_pages_ok(page, order);
1589 }
1590}
1591
1592EXPORT_SYMBOL(__free_pages);
1593
1594fastcall void free_pages(unsigned long addr, unsigned int order)
1595{
1596 if (addr != 0) {
725d704e 1597 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1598 __free_pages(virt_to_page((void *)addr), order);
1599 }
1600}
1601
1602EXPORT_SYMBOL(free_pages);
1603
1da177e4
LT
1604static unsigned int nr_free_zone_pages(int offset)
1605{
e310fd43
MB
1606 /* Just pick one node, since fallback list is circular */
1607 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1608 unsigned int sum = 0;
1609
e310fd43
MB
1610 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1611 struct zone **zonep = zonelist->zones;
1612 struct zone *zone;
1da177e4 1613
e310fd43
MB
1614 for (zone = *zonep++; zone; zone = *zonep++) {
1615 unsigned long size = zone->present_pages;
1616 unsigned long high = zone->pages_high;
1617 if (size > high)
1618 sum += size - high;
1da177e4
LT
1619 }
1620
1621 return sum;
1622}
1623
1624/*
1625 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1626 */
1627unsigned int nr_free_buffer_pages(void)
1628{
af4ca457 1629 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1630}
c2f1a551 1631EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1632
1633/*
1634 * Amount of free RAM allocatable within all zones
1635 */
1636unsigned int nr_free_pagecache_pages(void)
1637{
2a1e274a 1638 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1639}
08e0f6a9
CL
1640
1641static inline void show_node(struct zone *zone)
1da177e4 1642{
08e0f6a9 1643 if (NUMA_BUILD)
25ba77c1 1644 printk("Node %d ", zone_to_nid(zone));
1da177e4 1645}
1da177e4 1646
1da177e4
LT
1647void si_meminfo(struct sysinfo *val)
1648{
1649 val->totalram = totalram_pages;
1650 val->sharedram = 0;
d23ad423 1651 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1652 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1653 val->totalhigh = totalhigh_pages;
1654 val->freehigh = nr_free_highpages();
1da177e4
LT
1655 val->mem_unit = PAGE_SIZE;
1656}
1657
1658EXPORT_SYMBOL(si_meminfo);
1659
1660#ifdef CONFIG_NUMA
1661void si_meminfo_node(struct sysinfo *val, int nid)
1662{
1663 pg_data_t *pgdat = NODE_DATA(nid);
1664
1665 val->totalram = pgdat->node_present_pages;
d23ad423 1666 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1667#ifdef CONFIG_HIGHMEM
1da177e4 1668 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1669 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1670 NR_FREE_PAGES);
98d2b0eb
CL
1671#else
1672 val->totalhigh = 0;
1673 val->freehigh = 0;
1674#endif
1da177e4
LT
1675 val->mem_unit = PAGE_SIZE;
1676}
1677#endif
1678
1679#define K(x) ((x) << (PAGE_SHIFT-10))
1680
1681/*
1682 * Show free area list (used inside shift_scroll-lock stuff)
1683 * We also calculate the percentage fragmentation. We do this by counting the
1684 * memory on each free list with the exception of the first item on the list.
1685 */
1686void show_free_areas(void)
1687{
c7241913 1688 int cpu;
1da177e4
LT
1689 struct zone *zone;
1690
1691 for_each_zone(zone) {
c7241913 1692 if (!populated_zone(zone))
1da177e4 1693 continue;
c7241913
JS
1694
1695 show_node(zone);
1696 printk("%s per-cpu:\n", zone->name);
1da177e4 1697
6b482c67 1698 for_each_online_cpu(cpu) {
1da177e4
LT
1699 struct per_cpu_pageset *pageset;
1700
e7c8d5c9 1701 pageset = zone_pcp(zone, cpu);
1da177e4 1702
c7241913
JS
1703 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1704 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1705 cpu, pageset->pcp[0].high,
1706 pageset->pcp[0].batch, pageset->pcp[0].count,
1707 pageset->pcp[1].high, pageset->pcp[1].batch,
1708 pageset->pcp[1].count);
1da177e4
LT
1709 }
1710 }
1711
a25700a5 1712 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1713 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1714 global_page_state(NR_ACTIVE),
1715 global_page_state(NR_INACTIVE),
b1e7a8fd 1716 global_page_state(NR_FILE_DIRTY),
ce866b34 1717 global_page_state(NR_WRITEBACK),
fd39fc85 1718 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1719 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1720 global_page_state(NR_SLAB_RECLAIMABLE) +
1721 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1722 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1723 global_page_state(NR_PAGETABLE),
1724 global_page_state(NR_BOUNCE));
1da177e4
LT
1725
1726 for_each_zone(zone) {
1727 int i;
1728
c7241913
JS
1729 if (!populated_zone(zone))
1730 continue;
1731
1da177e4
LT
1732 show_node(zone);
1733 printk("%s"
1734 " free:%lukB"
1735 " min:%lukB"
1736 " low:%lukB"
1737 " high:%lukB"
1738 " active:%lukB"
1739 " inactive:%lukB"
1740 " present:%lukB"
1741 " pages_scanned:%lu"
1742 " all_unreclaimable? %s"
1743 "\n",
1744 zone->name,
d23ad423 1745 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1746 K(zone->pages_min),
1747 K(zone->pages_low),
1748 K(zone->pages_high),
c8785385
CL
1749 K(zone_page_state(zone, NR_ACTIVE)),
1750 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1751 K(zone->present_pages),
1752 zone->pages_scanned,
1753 (zone->all_unreclaimable ? "yes" : "no")
1754 );
1755 printk("lowmem_reserve[]:");
1756 for (i = 0; i < MAX_NR_ZONES; i++)
1757 printk(" %lu", zone->lowmem_reserve[i]);
1758 printk("\n");
1759 }
1760
1761 for_each_zone(zone) {
8f9de51a 1762 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1763
c7241913
JS
1764 if (!populated_zone(zone))
1765 continue;
1766
1da177e4
LT
1767 show_node(zone);
1768 printk("%s: ", zone->name);
1da177e4
LT
1769
1770 spin_lock_irqsave(&zone->lock, flags);
1771 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1772 nr[order] = zone->free_area[order].nr_free;
1773 total += nr[order] << order;
1da177e4
LT
1774 }
1775 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1776 for (order = 0; order < MAX_ORDER; order++)
1777 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1778 printk("= %lukB\n", K(total));
1779 }
1780
1781 show_swap_cache_info();
1782}
1783
1784/*
1785 * Builds allocation fallback zone lists.
1a93205b
CL
1786 *
1787 * Add all populated zones of a node to the zonelist.
1da177e4 1788 */
f0c0b2b8
KH
1789static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1790 int nr_zones, enum zone_type zone_type)
1da177e4 1791{
1a93205b
CL
1792 struct zone *zone;
1793
98d2b0eb 1794 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1795 zone_type++;
02a68a5e
CL
1796
1797 do {
2f6726e5 1798 zone_type--;
070f8032 1799 zone = pgdat->node_zones + zone_type;
1a93205b 1800 if (populated_zone(zone)) {
070f8032
CL
1801 zonelist->zones[nr_zones++] = zone;
1802 check_highest_zone(zone_type);
1da177e4 1803 }
02a68a5e 1804
2f6726e5 1805 } while (zone_type);
070f8032 1806 return nr_zones;
1da177e4
LT
1807}
1808
f0c0b2b8
KH
1809
1810/*
1811 * zonelist_order:
1812 * 0 = automatic detection of better ordering.
1813 * 1 = order by ([node] distance, -zonetype)
1814 * 2 = order by (-zonetype, [node] distance)
1815 *
1816 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1817 * the same zonelist. So only NUMA can configure this param.
1818 */
1819#define ZONELIST_ORDER_DEFAULT 0
1820#define ZONELIST_ORDER_NODE 1
1821#define ZONELIST_ORDER_ZONE 2
1822
1823/* zonelist order in the kernel.
1824 * set_zonelist_order() will set this to NODE or ZONE.
1825 */
1826static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1827static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1828
1829
1da177e4 1830#ifdef CONFIG_NUMA
f0c0b2b8
KH
1831/* The value user specified ....changed by config */
1832static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1833/* string for sysctl */
1834#define NUMA_ZONELIST_ORDER_LEN 16
1835char numa_zonelist_order[16] = "default";
1836
1837/*
1838 * interface for configure zonelist ordering.
1839 * command line option "numa_zonelist_order"
1840 * = "[dD]efault - default, automatic configuration.
1841 * = "[nN]ode - order by node locality, then by zone within node
1842 * = "[zZ]one - order by zone, then by locality within zone
1843 */
1844
1845static int __parse_numa_zonelist_order(char *s)
1846{
1847 if (*s == 'd' || *s == 'D') {
1848 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1849 } else if (*s == 'n' || *s == 'N') {
1850 user_zonelist_order = ZONELIST_ORDER_NODE;
1851 } else if (*s == 'z' || *s == 'Z') {
1852 user_zonelist_order = ZONELIST_ORDER_ZONE;
1853 } else {
1854 printk(KERN_WARNING
1855 "Ignoring invalid numa_zonelist_order value: "
1856 "%s\n", s);
1857 return -EINVAL;
1858 }
1859 return 0;
1860}
1861
1862static __init int setup_numa_zonelist_order(char *s)
1863{
1864 if (s)
1865 return __parse_numa_zonelist_order(s);
1866 return 0;
1867}
1868early_param("numa_zonelist_order", setup_numa_zonelist_order);
1869
1870/*
1871 * sysctl handler for numa_zonelist_order
1872 */
1873int numa_zonelist_order_handler(ctl_table *table, int write,
1874 struct file *file, void __user *buffer, size_t *length,
1875 loff_t *ppos)
1876{
1877 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1878 int ret;
1879
1880 if (write)
1881 strncpy(saved_string, (char*)table->data,
1882 NUMA_ZONELIST_ORDER_LEN);
1883 ret = proc_dostring(table, write, file, buffer, length, ppos);
1884 if (ret)
1885 return ret;
1886 if (write) {
1887 int oldval = user_zonelist_order;
1888 if (__parse_numa_zonelist_order((char*)table->data)) {
1889 /*
1890 * bogus value. restore saved string
1891 */
1892 strncpy((char*)table->data, saved_string,
1893 NUMA_ZONELIST_ORDER_LEN);
1894 user_zonelist_order = oldval;
1895 } else if (oldval != user_zonelist_order)
1896 build_all_zonelists();
1897 }
1898 return 0;
1899}
1900
1901
1da177e4 1902#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
1903static int node_load[MAX_NUMNODES];
1904
1da177e4 1905/**
4dc3b16b 1906 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1907 * @node: node whose fallback list we're appending
1908 * @used_node_mask: nodemask_t of already used nodes
1909 *
1910 * We use a number of factors to determine which is the next node that should
1911 * appear on a given node's fallback list. The node should not have appeared
1912 * already in @node's fallback list, and it should be the next closest node
1913 * according to the distance array (which contains arbitrary distance values
1914 * from each node to each node in the system), and should also prefer nodes
1915 * with no CPUs, since presumably they'll have very little allocation pressure
1916 * on them otherwise.
1917 * It returns -1 if no node is found.
1918 */
f0c0b2b8 1919static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1920{
4cf808eb 1921 int n, val;
1da177e4
LT
1922 int min_val = INT_MAX;
1923 int best_node = -1;
1924
4cf808eb
LT
1925 /* Use the local node if we haven't already */
1926 if (!node_isset(node, *used_node_mask)) {
1927 node_set(node, *used_node_mask);
1928 return node;
1929 }
1da177e4 1930
37b07e41 1931 for_each_node_state(n, N_HIGH_MEMORY) {
4cf808eb 1932 cpumask_t tmp;
1da177e4
LT
1933
1934 /* Don't want a node to appear more than once */
1935 if (node_isset(n, *used_node_mask))
1936 continue;
1937
1da177e4
LT
1938 /* Use the distance array to find the distance */
1939 val = node_distance(node, n);
1940
4cf808eb
LT
1941 /* Penalize nodes under us ("prefer the next node") */
1942 val += (n < node);
1943
1da177e4
LT
1944 /* Give preference to headless and unused nodes */
1945 tmp = node_to_cpumask(n);
1946 if (!cpus_empty(tmp))
1947 val += PENALTY_FOR_NODE_WITH_CPUS;
1948
1949 /* Slight preference for less loaded node */
1950 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1951 val += node_load[n];
1952
1953 if (val < min_val) {
1954 min_val = val;
1955 best_node = n;
1956 }
1957 }
1958
1959 if (best_node >= 0)
1960 node_set(best_node, *used_node_mask);
1961
1962 return best_node;
1963}
1964
f0c0b2b8
KH
1965
1966/*
1967 * Build zonelists ordered by node and zones within node.
1968 * This results in maximum locality--normal zone overflows into local
1969 * DMA zone, if any--but risks exhausting DMA zone.
1970 */
1971static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 1972{
19655d34 1973 enum zone_type i;
f0c0b2b8 1974 int j;
1da177e4 1975 struct zonelist *zonelist;
f0c0b2b8
KH
1976
1977 for (i = 0; i < MAX_NR_ZONES; i++) {
1978 zonelist = pgdat->node_zonelists + i;
1979 for (j = 0; zonelist->zones[j] != NULL; j++)
1980 ;
1981 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1982 zonelist->zones[j] = NULL;
1983 }
1984}
1985
523b9458
CL
1986/*
1987 * Build gfp_thisnode zonelists
1988 */
1989static void build_thisnode_zonelists(pg_data_t *pgdat)
1990{
1991 enum zone_type i;
1992 int j;
1993 struct zonelist *zonelist;
1994
1995 for (i = 0; i < MAX_NR_ZONES; i++) {
1996 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
1997 j = build_zonelists_node(pgdat, zonelist, 0, i);
1998 zonelist->zones[j] = NULL;
1999 }
2000}
2001
f0c0b2b8
KH
2002/*
2003 * Build zonelists ordered by zone and nodes within zones.
2004 * This results in conserving DMA zone[s] until all Normal memory is
2005 * exhausted, but results in overflowing to remote node while memory
2006 * may still exist in local DMA zone.
2007 */
2008static int node_order[MAX_NUMNODES];
2009
2010static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2011{
2012 enum zone_type i;
2013 int pos, j, node;
2014 int zone_type; /* needs to be signed */
2015 struct zone *z;
2016 struct zonelist *zonelist;
2017
2018 for (i = 0; i < MAX_NR_ZONES; i++) {
2019 zonelist = pgdat->node_zonelists + i;
2020 pos = 0;
2021 for (zone_type = i; zone_type >= 0; zone_type--) {
2022 for (j = 0; j < nr_nodes; j++) {
2023 node = node_order[j];
2024 z = &NODE_DATA(node)->node_zones[zone_type];
2025 if (populated_zone(z)) {
2026 zonelist->zones[pos++] = z;
2027 check_highest_zone(zone_type);
2028 }
2029 }
2030 }
2031 zonelist->zones[pos] = NULL;
2032 }
2033}
2034
2035static int default_zonelist_order(void)
2036{
2037 int nid, zone_type;
2038 unsigned long low_kmem_size,total_size;
2039 struct zone *z;
2040 int average_size;
2041 /*
2042 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2043 * If they are really small and used heavily, the system can fall
2044 * into OOM very easily.
2045 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2046 */
2047 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2048 low_kmem_size = 0;
2049 total_size = 0;
2050 for_each_online_node(nid) {
2051 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2052 z = &NODE_DATA(nid)->node_zones[zone_type];
2053 if (populated_zone(z)) {
2054 if (zone_type < ZONE_NORMAL)
2055 low_kmem_size += z->present_pages;
2056 total_size += z->present_pages;
2057 }
2058 }
2059 }
2060 if (!low_kmem_size || /* there are no DMA area. */
2061 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2062 return ZONELIST_ORDER_NODE;
2063 /*
2064 * look into each node's config.
2065 * If there is a node whose DMA/DMA32 memory is very big area on
2066 * local memory, NODE_ORDER may be suitable.
2067 */
37b07e41
LS
2068 average_size = total_size /
2069 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2070 for_each_online_node(nid) {
2071 low_kmem_size = 0;
2072 total_size = 0;
2073 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2074 z = &NODE_DATA(nid)->node_zones[zone_type];
2075 if (populated_zone(z)) {
2076 if (zone_type < ZONE_NORMAL)
2077 low_kmem_size += z->present_pages;
2078 total_size += z->present_pages;
2079 }
2080 }
2081 if (low_kmem_size &&
2082 total_size > average_size && /* ignore small node */
2083 low_kmem_size > total_size * 70/100)
2084 return ZONELIST_ORDER_NODE;
2085 }
2086 return ZONELIST_ORDER_ZONE;
2087}
2088
2089static void set_zonelist_order(void)
2090{
2091 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2092 current_zonelist_order = default_zonelist_order();
2093 else
2094 current_zonelist_order = user_zonelist_order;
2095}
2096
2097static void build_zonelists(pg_data_t *pgdat)
2098{
2099 int j, node, load;
2100 enum zone_type i;
1da177e4 2101 nodemask_t used_mask;
f0c0b2b8
KH
2102 int local_node, prev_node;
2103 struct zonelist *zonelist;
2104 int order = current_zonelist_order;
1da177e4
LT
2105
2106 /* initialize zonelists */
523b9458 2107 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4
LT
2108 zonelist = pgdat->node_zonelists + i;
2109 zonelist->zones[0] = NULL;
2110 }
2111
2112 /* NUMA-aware ordering of nodes */
2113 local_node = pgdat->node_id;
2114 load = num_online_nodes();
2115 prev_node = local_node;
2116 nodes_clear(used_mask);
f0c0b2b8
KH
2117
2118 memset(node_load, 0, sizeof(node_load));
2119 memset(node_order, 0, sizeof(node_order));
2120 j = 0;
2121
1da177e4 2122 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2123 int distance = node_distance(local_node, node);
2124
2125 /*
2126 * If another node is sufficiently far away then it is better
2127 * to reclaim pages in a zone before going off node.
2128 */
2129 if (distance > RECLAIM_DISTANCE)
2130 zone_reclaim_mode = 1;
2131
1da177e4
LT
2132 /*
2133 * We don't want to pressure a particular node.
2134 * So adding penalty to the first node in same
2135 * distance group to make it round-robin.
2136 */
9eeff239 2137 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2138 node_load[node] = load;
2139
1da177e4
LT
2140 prev_node = node;
2141 load--;
f0c0b2b8
KH
2142 if (order == ZONELIST_ORDER_NODE)
2143 build_zonelists_in_node_order(pgdat, node);
2144 else
2145 node_order[j++] = node; /* remember order */
2146 }
1da177e4 2147
f0c0b2b8
KH
2148 if (order == ZONELIST_ORDER_ZONE) {
2149 /* calculate node order -- i.e., DMA last! */
2150 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2151 }
523b9458
CL
2152
2153 build_thisnode_zonelists(pgdat);
1da177e4
LT
2154}
2155
9276b1bc 2156/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2157static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2158{
2159 int i;
2160
2161 for (i = 0; i < MAX_NR_ZONES; i++) {
2162 struct zonelist *zonelist;
2163 struct zonelist_cache *zlc;
2164 struct zone **z;
2165
2166 zonelist = pgdat->node_zonelists + i;
2167 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2168 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2169 for (z = zonelist->zones; *z; z++)
2170 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2171 }
2172}
2173
f0c0b2b8 2174
1da177e4
LT
2175#else /* CONFIG_NUMA */
2176
f0c0b2b8
KH
2177static void set_zonelist_order(void)
2178{
2179 current_zonelist_order = ZONELIST_ORDER_ZONE;
2180}
2181
2182static void build_zonelists(pg_data_t *pgdat)
1da177e4 2183{
19655d34
CL
2184 int node, local_node;
2185 enum zone_type i,j;
1da177e4
LT
2186
2187 local_node = pgdat->node_id;
19655d34 2188 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2189 struct zonelist *zonelist;
2190
2191 zonelist = pgdat->node_zonelists + i;
2192
19655d34 2193 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2194 /*
2195 * Now we build the zonelist so that it contains the zones
2196 * of all the other nodes.
2197 * We don't want to pressure a particular node, so when
2198 * building the zones for node N, we make sure that the
2199 * zones coming right after the local ones are those from
2200 * node N+1 (modulo N)
2201 */
2202 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2203 if (!node_online(node))
2204 continue;
19655d34 2205 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2206 }
2207 for (node = 0; node < local_node; node++) {
2208 if (!node_online(node))
2209 continue;
19655d34 2210 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2211 }
2212
2213 zonelist->zones[j] = NULL;
2214 }
2215}
2216
9276b1bc 2217/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2218static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2219{
2220 int i;
2221
2222 for (i = 0; i < MAX_NR_ZONES; i++)
2223 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2224}
2225
1da177e4
LT
2226#endif /* CONFIG_NUMA */
2227
6811378e 2228/* return values int ....just for stop_machine_run() */
f0c0b2b8 2229static int __build_all_zonelists(void *dummy)
1da177e4 2230{
6811378e 2231 int nid;
9276b1bc
PJ
2232
2233 for_each_online_node(nid) {
7ea1530a
CL
2234 pg_data_t *pgdat = NODE_DATA(nid);
2235
2236 build_zonelists(pgdat);
2237 build_zonelist_cache(pgdat);
9276b1bc 2238 }
6811378e
YG
2239 return 0;
2240}
2241
f0c0b2b8 2242void build_all_zonelists(void)
6811378e 2243{
f0c0b2b8
KH
2244 set_zonelist_order();
2245
6811378e 2246 if (system_state == SYSTEM_BOOTING) {
423b41d7 2247 __build_all_zonelists(NULL);
6811378e
YG
2248 cpuset_init_current_mems_allowed();
2249 } else {
2250 /* we have to stop all cpus to guaranntee there is no user
2251 of zonelist */
2252 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2253 /* cpuset refresh routine should be here */
2254 }
bd1e22b8 2255 vm_total_pages = nr_free_pagecache_pages();
f0c0b2b8
KH
2256 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2257 num_online_nodes(),
2258 zonelist_order_name[current_zonelist_order],
2259 vm_total_pages);
2260#ifdef CONFIG_NUMA
2261 printk("Policy zone: %s\n", zone_names[policy_zone]);
2262#endif
1da177e4
LT
2263}
2264
2265/*
2266 * Helper functions to size the waitqueue hash table.
2267 * Essentially these want to choose hash table sizes sufficiently
2268 * large so that collisions trying to wait on pages are rare.
2269 * But in fact, the number of active page waitqueues on typical
2270 * systems is ridiculously low, less than 200. So this is even
2271 * conservative, even though it seems large.
2272 *
2273 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2274 * waitqueues, i.e. the size of the waitq table given the number of pages.
2275 */
2276#define PAGES_PER_WAITQUEUE 256
2277
cca448fe 2278#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2279static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2280{
2281 unsigned long size = 1;
2282
2283 pages /= PAGES_PER_WAITQUEUE;
2284
2285 while (size < pages)
2286 size <<= 1;
2287
2288 /*
2289 * Once we have dozens or even hundreds of threads sleeping
2290 * on IO we've got bigger problems than wait queue collision.
2291 * Limit the size of the wait table to a reasonable size.
2292 */
2293 size = min(size, 4096UL);
2294
2295 return max(size, 4UL);
2296}
cca448fe
YG
2297#else
2298/*
2299 * A zone's size might be changed by hot-add, so it is not possible to determine
2300 * a suitable size for its wait_table. So we use the maximum size now.
2301 *
2302 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2303 *
2304 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2305 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2306 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2307 *
2308 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2309 * or more by the traditional way. (See above). It equals:
2310 *
2311 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2312 * ia64(16K page size) : = ( 8G + 4M)byte.
2313 * powerpc (64K page size) : = (32G +16M)byte.
2314 */
2315static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2316{
2317 return 4096UL;
2318}
2319#endif
1da177e4
LT
2320
2321/*
2322 * This is an integer logarithm so that shifts can be used later
2323 * to extract the more random high bits from the multiplicative
2324 * hash function before the remainder is taken.
2325 */
2326static inline unsigned long wait_table_bits(unsigned long size)
2327{
2328 return ffz(~size);
2329}
2330
2331#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2332
1da177e4
LT
2333/*
2334 * Initially all pages are reserved - free ones are freed
2335 * up by free_all_bootmem() once the early boot process is
2336 * done. Non-atomic initialization, single-pass.
2337 */
c09b4240 2338void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2339 unsigned long start_pfn, enum memmap_context context)
1da177e4 2340{
1da177e4 2341 struct page *page;
29751f69
AW
2342 unsigned long end_pfn = start_pfn + size;
2343 unsigned long pfn;
1da177e4 2344
cbe8dd4a 2345 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2346 /*
2347 * There can be holes in boot-time mem_map[]s
2348 * handed to this function. They do not
2349 * exist on hotplugged memory.
2350 */
2351 if (context == MEMMAP_EARLY) {
2352 if (!early_pfn_valid(pfn))
2353 continue;
2354 if (!early_pfn_in_nid(pfn, nid))
2355 continue;
2356 }
d41dee36
AW
2357 page = pfn_to_page(pfn);
2358 set_page_links(page, zone, nid, pfn);
7835e98b 2359 init_page_count(page);
1da177e4
LT
2360 reset_page_mapcount(page);
2361 SetPageReserved(page);
b2a0ac88
MG
2362
2363 /*
2364 * Mark the block movable so that blocks are reserved for
2365 * movable at startup. This will force kernel allocations
2366 * to reserve their blocks rather than leaking throughout
2367 * the address space during boot when many long-lived
2368 * kernel allocations are made
2369 */
2370 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2371
1da177e4
LT
2372 INIT_LIST_HEAD(&page->lru);
2373#ifdef WANT_PAGE_VIRTUAL
2374 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2375 if (!is_highmem_idx(zone))
3212c6be 2376 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2377#endif
1da177e4
LT
2378 }
2379}
2380
6ea6e688
PM
2381static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2382 struct zone *zone, unsigned long size)
1da177e4 2383{
b2a0ac88
MG
2384 int order, t;
2385 for_each_migratetype_order(order, t) {
2386 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2387 zone->free_area[order].nr_free = 0;
2388 }
2389}
2390
2391#ifndef __HAVE_ARCH_MEMMAP_INIT
2392#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2393 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2394#endif
2395
d09c6b80 2396static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2397{
2398 int batch;
2399
2400 /*
2401 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2402 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2403 *
2404 * OK, so we don't know how big the cache is. So guess.
2405 */
2406 batch = zone->present_pages / 1024;
ba56e91c
SR
2407 if (batch * PAGE_SIZE > 512 * 1024)
2408 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2409 batch /= 4; /* We effectively *= 4 below */
2410 if (batch < 1)
2411 batch = 1;
2412
2413 /*
0ceaacc9
NP
2414 * Clamp the batch to a 2^n - 1 value. Having a power
2415 * of 2 value was found to be more likely to have
2416 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2417 *
0ceaacc9
NP
2418 * For example if 2 tasks are alternately allocating
2419 * batches of pages, one task can end up with a lot
2420 * of pages of one half of the possible page colors
2421 * and the other with pages of the other colors.
e7c8d5c9 2422 */
0ceaacc9 2423 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2424
e7c8d5c9
CL
2425 return batch;
2426}
2427
2caaad41
CL
2428inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2429{
2430 struct per_cpu_pages *pcp;
2431
1c6fe946
MD
2432 memset(p, 0, sizeof(*p));
2433
2caaad41
CL
2434 pcp = &p->pcp[0]; /* hot */
2435 pcp->count = 0;
2caaad41
CL
2436 pcp->high = 6 * batch;
2437 pcp->batch = max(1UL, 1 * batch);
2438 INIT_LIST_HEAD(&pcp->list);
2439
2440 pcp = &p->pcp[1]; /* cold*/
2441 pcp->count = 0;
2caaad41 2442 pcp->high = 2 * batch;
e46a5e28 2443 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2444 INIT_LIST_HEAD(&pcp->list);
2445}
2446
8ad4b1fb
RS
2447/*
2448 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2449 * to the value high for the pageset p.
2450 */
2451
2452static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2453 unsigned long high)
2454{
2455 struct per_cpu_pages *pcp;
2456
2457 pcp = &p->pcp[0]; /* hot list */
2458 pcp->high = high;
2459 pcp->batch = max(1UL, high/4);
2460 if ((high/4) > (PAGE_SHIFT * 8))
2461 pcp->batch = PAGE_SHIFT * 8;
2462}
2463
2464
e7c8d5c9
CL
2465#ifdef CONFIG_NUMA
2466/*
2caaad41
CL
2467 * Boot pageset table. One per cpu which is going to be used for all
2468 * zones and all nodes. The parameters will be set in such a way
2469 * that an item put on a list will immediately be handed over to
2470 * the buddy list. This is safe since pageset manipulation is done
2471 * with interrupts disabled.
2472 *
2473 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2474 *
2475 * The boot_pagesets must be kept even after bootup is complete for
2476 * unused processors and/or zones. They do play a role for bootstrapping
2477 * hotplugged processors.
2478 *
2479 * zoneinfo_show() and maybe other functions do
2480 * not check if the processor is online before following the pageset pointer.
2481 * Other parts of the kernel may not check if the zone is available.
2caaad41 2482 */
88a2a4ac 2483static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2484
2485/*
2486 * Dynamically allocate memory for the
e7c8d5c9
CL
2487 * per cpu pageset array in struct zone.
2488 */
6292d9aa 2489static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2490{
2491 struct zone *zone, *dzone;
37c0708d
CL
2492 int node = cpu_to_node(cpu);
2493
2494 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2495
2496 for_each_zone(zone) {
e7c8d5c9 2497
66a55030
CL
2498 if (!populated_zone(zone))
2499 continue;
2500
23316bc8 2501 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2502 GFP_KERNEL, node);
23316bc8 2503 if (!zone_pcp(zone, cpu))
e7c8d5c9 2504 goto bad;
e7c8d5c9 2505
23316bc8 2506 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2507
2508 if (percpu_pagelist_fraction)
2509 setup_pagelist_highmark(zone_pcp(zone, cpu),
2510 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2511 }
2512
2513 return 0;
2514bad:
2515 for_each_zone(dzone) {
64191688
AM
2516 if (!populated_zone(dzone))
2517 continue;
e7c8d5c9
CL
2518 if (dzone == zone)
2519 break;
23316bc8
NP
2520 kfree(zone_pcp(dzone, cpu));
2521 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2522 }
2523 return -ENOMEM;
2524}
2525
2526static inline void free_zone_pagesets(int cpu)
2527{
e7c8d5c9
CL
2528 struct zone *zone;
2529
2530 for_each_zone(zone) {
2531 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2532
f3ef9ead
DR
2533 /* Free per_cpu_pageset if it is slab allocated */
2534 if (pset != &boot_pageset[cpu])
2535 kfree(pset);
e7c8d5c9 2536 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2537 }
e7c8d5c9
CL
2538}
2539
9c7b216d 2540static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2541 unsigned long action,
2542 void *hcpu)
2543{
2544 int cpu = (long)hcpu;
2545 int ret = NOTIFY_OK;
2546
2547 switch (action) {
ce421c79 2548 case CPU_UP_PREPARE:
8bb78442 2549 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2550 if (process_zones(cpu))
2551 ret = NOTIFY_BAD;
2552 break;
2553 case CPU_UP_CANCELED:
8bb78442 2554 case CPU_UP_CANCELED_FROZEN:
ce421c79 2555 case CPU_DEAD:
8bb78442 2556 case CPU_DEAD_FROZEN:
ce421c79
AW
2557 free_zone_pagesets(cpu);
2558 break;
2559 default:
2560 break;
e7c8d5c9
CL
2561 }
2562 return ret;
2563}
2564
74b85f37 2565static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2566 { &pageset_cpuup_callback, NULL, 0 };
2567
78d9955b 2568void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2569{
2570 int err;
2571
2572 /* Initialize per_cpu_pageset for cpu 0.
2573 * A cpuup callback will do this for every cpu
2574 * as it comes online
2575 */
2576 err = process_zones(smp_processor_id());
2577 BUG_ON(err);
2578 register_cpu_notifier(&pageset_notifier);
2579}
2580
2581#endif
2582
577a32f6 2583static noinline __init_refok
cca448fe 2584int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2585{
2586 int i;
2587 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2588 size_t alloc_size;
ed8ece2e
DH
2589
2590 /*
2591 * The per-page waitqueue mechanism uses hashed waitqueues
2592 * per zone.
2593 */
02b694de
YG
2594 zone->wait_table_hash_nr_entries =
2595 wait_table_hash_nr_entries(zone_size_pages);
2596 zone->wait_table_bits =
2597 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2598 alloc_size = zone->wait_table_hash_nr_entries
2599 * sizeof(wait_queue_head_t);
2600
2601 if (system_state == SYSTEM_BOOTING) {
2602 zone->wait_table = (wait_queue_head_t *)
2603 alloc_bootmem_node(pgdat, alloc_size);
2604 } else {
2605 /*
2606 * This case means that a zone whose size was 0 gets new memory
2607 * via memory hot-add.
2608 * But it may be the case that a new node was hot-added. In
2609 * this case vmalloc() will not be able to use this new node's
2610 * memory - this wait_table must be initialized to use this new
2611 * node itself as well.
2612 * To use this new node's memory, further consideration will be
2613 * necessary.
2614 */
8691f3a7 2615 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2616 }
2617 if (!zone->wait_table)
2618 return -ENOMEM;
ed8ece2e 2619
02b694de 2620 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2621 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2622
2623 return 0;
ed8ece2e
DH
2624}
2625
c09b4240 2626static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2627{
2628 int cpu;
2629 unsigned long batch = zone_batchsize(zone);
2630
2631 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2632#ifdef CONFIG_NUMA
2633 /* Early boot. Slab allocator not functional yet */
23316bc8 2634 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2635 setup_pageset(&boot_pageset[cpu],0);
2636#else
2637 setup_pageset(zone_pcp(zone,cpu), batch);
2638#endif
2639 }
f5335c0f
AB
2640 if (zone->present_pages)
2641 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2642 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2643}
2644
718127cc
YG
2645__meminit int init_currently_empty_zone(struct zone *zone,
2646 unsigned long zone_start_pfn,
a2f3aa02
DH
2647 unsigned long size,
2648 enum memmap_context context)
ed8ece2e
DH
2649{
2650 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2651 int ret;
2652 ret = zone_wait_table_init(zone, size);
2653 if (ret)
2654 return ret;
ed8ece2e
DH
2655 pgdat->nr_zones = zone_idx(zone) + 1;
2656
ed8ece2e
DH
2657 zone->zone_start_pfn = zone_start_pfn;
2658
2659 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2660
2661 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2662
2663 return 0;
ed8ece2e
DH
2664}
2665
c713216d
MG
2666#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2667/*
2668 * Basic iterator support. Return the first range of PFNs for a node
2669 * Note: nid == MAX_NUMNODES returns first region regardless of node
2670 */
a3142c8e 2671static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2672{
2673 int i;
2674
2675 for (i = 0; i < nr_nodemap_entries; i++)
2676 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2677 return i;
2678
2679 return -1;
2680}
2681
2682/*
2683 * Basic iterator support. Return the next active range of PFNs for a node
2684 * Note: nid == MAX_NUMNODES returns next region regardles of node
2685 */
a3142c8e 2686static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2687{
2688 for (index = index + 1; index < nr_nodemap_entries; index++)
2689 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2690 return index;
2691
2692 return -1;
2693}
2694
2695#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2696/*
2697 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2698 * Architectures may implement their own version but if add_active_range()
2699 * was used and there are no special requirements, this is a convenient
2700 * alternative
2701 */
6f076f5d 2702int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2703{
2704 int i;
2705
2706 for (i = 0; i < nr_nodemap_entries; i++) {
2707 unsigned long start_pfn = early_node_map[i].start_pfn;
2708 unsigned long end_pfn = early_node_map[i].end_pfn;
2709
2710 if (start_pfn <= pfn && pfn < end_pfn)
2711 return early_node_map[i].nid;
2712 }
2713
2714 return 0;
2715}
2716#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2717
2718/* Basic iterator support to walk early_node_map[] */
2719#define for_each_active_range_index_in_nid(i, nid) \
2720 for (i = first_active_region_index_in_nid(nid); i != -1; \
2721 i = next_active_region_index_in_nid(i, nid))
2722
2723/**
2724 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2725 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2726 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2727 *
2728 * If an architecture guarantees that all ranges registered with
2729 * add_active_ranges() contain no holes and may be freed, this
2730 * this function may be used instead of calling free_bootmem() manually.
2731 */
2732void __init free_bootmem_with_active_regions(int nid,
2733 unsigned long max_low_pfn)
2734{
2735 int i;
2736
2737 for_each_active_range_index_in_nid(i, nid) {
2738 unsigned long size_pages = 0;
2739 unsigned long end_pfn = early_node_map[i].end_pfn;
2740
2741 if (early_node_map[i].start_pfn >= max_low_pfn)
2742 continue;
2743
2744 if (end_pfn > max_low_pfn)
2745 end_pfn = max_low_pfn;
2746
2747 size_pages = end_pfn - early_node_map[i].start_pfn;
2748 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2749 PFN_PHYS(early_node_map[i].start_pfn),
2750 size_pages << PAGE_SHIFT);
2751 }
2752}
2753
2754/**
2755 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2756 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2757 *
2758 * If an architecture guarantees that all ranges registered with
2759 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2760 * function may be used instead of calling memory_present() manually.
c713216d
MG
2761 */
2762void __init sparse_memory_present_with_active_regions(int nid)
2763{
2764 int i;
2765
2766 for_each_active_range_index_in_nid(i, nid)
2767 memory_present(early_node_map[i].nid,
2768 early_node_map[i].start_pfn,
2769 early_node_map[i].end_pfn);
2770}
2771
fb01439c
MG
2772/**
2773 * push_node_boundaries - Push node boundaries to at least the requested boundary
2774 * @nid: The nid of the node to push the boundary for
2775 * @start_pfn: The start pfn of the node
2776 * @end_pfn: The end pfn of the node
2777 *
2778 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2779 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2780 * be hotplugged even though no physical memory exists. This function allows
2781 * an arch to push out the node boundaries so mem_map is allocated that can
2782 * be used later.
2783 */
2784#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2785void __init push_node_boundaries(unsigned int nid,
2786 unsigned long start_pfn, unsigned long end_pfn)
2787{
2788 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2789 nid, start_pfn, end_pfn);
2790
2791 /* Initialise the boundary for this node if necessary */
2792 if (node_boundary_end_pfn[nid] == 0)
2793 node_boundary_start_pfn[nid] = -1UL;
2794
2795 /* Update the boundaries */
2796 if (node_boundary_start_pfn[nid] > start_pfn)
2797 node_boundary_start_pfn[nid] = start_pfn;
2798 if (node_boundary_end_pfn[nid] < end_pfn)
2799 node_boundary_end_pfn[nid] = end_pfn;
2800}
2801
2802/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2803static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2804 unsigned long *start_pfn, unsigned long *end_pfn)
2805{
2806 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2807 nid, *start_pfn, *end_pfn);
2808
2809 /* Return if boundary information has not been provided */
2810 if (node_boundary_end_pfn[nid] == 0)
2811 return;
2812
2813 /* Check the boundaries and update if necessary */
2814 if (node_boundary_start_pfn[nid] < *start_pfn)
2815 *start_pfn = node_boundary_start_pfn[nid];
2816 if (node_boundary_end_pfn[nid] > *end_pfn)
2817 *end_pfn = node_boundary_end_pfn[nid];
2818}
2819#else
2820void __init push_node_boundaries(unsigned int nid,
2821 unsigned long start_pfn, unsigned long end_pfn) {}
2822
98011f56 2823static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2824 unsigned long *start_pfn, unsigned long *end_pfn) {}
2825#endif
2826
2827
c713216d
MG
2828/**
2829 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2830 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2831 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2832 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2833 *
2834 * It returns the start and end page frame of a node based on information
2835 * provided by an arch calling add_active_range(). If called for a node
2836 * with no available memory, a warning is printed and the start and end
88ca3b94 2837 * PFNs will be 0.
c713216d 2838 */
a3142c8e 2839void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
2840 unsigned long *start_pfn, unsigned long *end_pfn)
2841{
2842 int i;
2843 *start_pfn = -1UL;
2844 *end_pfn = 0;
2845
2846 for_each_active_range_index_in_nid(i, nid) {
2847 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2848 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2849 }
2850
633c0666 2851 if (*start_pfn == -1UL)
c713216d 2852 *start_pfn = 0;
fb01439c
MG
2853
2854 /* Push the node boundaries out if requested */
2855 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2856}
2857
2a1e274a
MG
2858/*
2859 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2860 * assumption is made that zones within a node are ordered in monotonic
2861 * increasing memory addresses so that the "highest" populated zone is used
2862 */
2863void __init find_usable_zone_for_movable(void)
2864{
2865 int zone_index;
2866 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2867 if (zone_index == ZONE_MOVABLE)
2868 continue;
2869
2870 if (arch_zone_highest_possible_pfn[zone_index] >
2871 arch_zone_lowest_possible_pfn[zone_index])
2872 break;
2873 }
2874
2875 VM_BUG_ON(zone_index == -1);
2876 movable_zone = zone_index;
2877}
2878
2879/*
2880 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2881 * because it is sized independant of architecture. Unlike the other zones,
2882 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2883 * in each node depending on the size of each node and how evenly kernelcore
2884 * is distributed. This helper function adjusts the zone ranges
2885 * provided by the architecture for a given node by using the end of the
2886 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2887 * zones within a node are in order of monotonic increases memory addresses
2888 */
2889void __meminit adjust_zone_range_for_zone_movable(int nid,
2890 unsigned long zone_type,
2891 unsigned long node_start_pfn,
2892 unsigned long node_end_pfn,
2893 unsigned long *zone_start_pfn,
2894 unsigned long *zone_end_pfn)
2895{
2896 /* Only adjust if ZONE_MOVABLE is on this node */
2897 if (zone_movable_pfn[nid]) {
2898 /* Size ZONE_MOVABLE */
2899 if (zone_type == ZONE_MOVABLE) {
2900 *zone_start_pfn = zone_movable_pfn[nid];
2901 *zone_end_pfn = min(node_end_pfn,
2902 arch_zone_highest_possible_pfn[movable_zone]);
2903
2904 /* Adjust for ZONE_MOVABLE starting within this range */
2905 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2906 *zone_end_pfn > zone_movable_pfn[nid]) {
2907 *zone_end_pfn = zone_movable_pfn[nid];
2908
2909 /* Check if this whole range is within ZONE_MOVABLE */
2910 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2911 *zone_start_pfn = *zone_end_pfn;
2912 }
2913}
2914
c713216d
MG
2915/*
2916 * Return the number of pages a zone spans in a node, including holes
2917 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2918 */
6ea6e688 2919static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
2920 unsigned long zone_type,
2921 unsigned long *ignored)
2922{
2923 unsigned long node_start_pfn, node_end_pfn;
2924 unsigned long zone_start_pfn, zone_end_pfn;
2925
2926 /* Get the start and end of the node and zone */
2927 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2928 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2929 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
2930 adjust_zone_range_for_zone_movable(nid, zone_type,
2931 node_start_pfn, node_end_pfn,
2932 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
2933
2934 /* Check that this node has pages within the zone's required range */
2935 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2936 return 0;
2937
2938 /* Move the zone boundaries inside the node if necessary */
2939 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2940 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2941
2942 /* Return the spanned pages */
2943 return zone_end_pfn - zone_start_pfn;
2944}
2945
2946/*
2947 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2948 * then all holes in the requested range will be accounted for.
c713216d 2949 */
a3142c8e 2950unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
2951 unsigned long range_start_pfn,
2952 unsigned long range_end_pfn)
2953{
2954 int i = 0;
2955 unsigned long prev_end_pfn = 0, hole_pages = 0;
2956 unsigned long start_pfn;
2957
2958 /* Find the end_pfn of the first active range of pfns in the node */
2959 i = first_active_region_index_in_nid(nid);
2960 if (i == -1)
2961 return 0;
2962
b5445f95
MG
2963 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2964
9c7cd687
MG
2965 /* Account for ranges before physical memory on this node */
2966 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 2967 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
2968
2969 /* Find all holes for the zone within the node */
2970 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2971
2972 /* No need to continue if prev_end_pfn is outside the zone */
2973 if (prev_end_pfn >= range_end_pfn)
2974 break;
2975
2976 /* Make sure the end of the zone is not within the hole */
2977 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2978 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2979
2980 /* Update the hole size cound and move on */
2981 if (start_pfn > range_start_pfn) {
2982 BUG_ON(prev_end_pfn > start_pfn);
2983 hole_pages += start_pfn - prev_end_pfn;
2984 }
2985 prev_end_pfn = early_node_map[i].end_pfn;
2986 }
2987
9c7cd687
MG
2988 /* Account for ranges past physical memory on this node */
2989 if (range_end_pfn > prev_end_pfn)
0c6cb974 2990 hole_pages += range_end_pfn -
9c7cd687
MG
2991 max(range_start_pfn, prev_end_pfn);
2992
c713216d
MG
2993 return hole_pages;
2994}
2995
2996/**
2997 * absent_pages_in_range - Return number of page frames in holes within a range
2998 * @start_pfn: The start PFN to start searching for holes
2999 * @end_pfn: The end PFN to stop searching for holes
3000 *
88ca3b94 3001 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3002 */
3003unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3004 unsigned long end_pfn)
3005{
3006 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3007}
3008
3009/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3010static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3011 unsigned long zone_type,
3012 unsigned long *ignored)
3013{
9c7cd687
MG
3014 unsigned long node_start_pfn, node_end_pfn;
3015 unsigned long zone_start_pfn, zone_end_pfn;
3016
3017 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3018 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3019 node_start_pfn);
3020 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3021 node_end_pfn);
3022
2a1e274a
MG
3023 adjust_zone_range_for_zone_movable(nid, zone_type,
3024 node_start_pfn, node_end_pfn,
3025 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3026 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3027}
0e0b864e 3028
c713216d 3029#else
6ea6e688 3030static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3031 unsigned long zone_type,
3032 unsigned long *zones_size)
3033{
3034 return zones_size[zone_type];
3035}
3036
6ea6e688 3037static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3038 unsigned long zone_type,
3039 unsigned long *zholes_size)
3040{
3041 if (!zholes_size)
3042 return 0;
3043
3044 return zholes_size[zone_type];
3045}
0e0b864e 3046
c713216d
MG
3047#endif
3048
a3142c8e 3049static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3050 unsigned long *zones_size, unsigned long *zholes_size)
3051{
3052 unsigned long realtotalpages, totalpages = 0;
3053 enum zone_type i;
3054
3055 for (i = 0; i < MAX_NR_ZONES; i++)
3056 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3057 zones_size);
3058 pgdat->node_spanned_pages = totalpages;
3059
3060 realtotalpages = totalpages;
3061 for (i = 0; i < MAX_NR_ZONES; i++)
3062 realtotalpages -=
3063 zone_absent_pages_in_node(pgdat->node_id, i,
3064 zholes_size);
3065 pgdat->node_present_pages = realtotalpages;
3066 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3067 realtotalpages);
3068}
3069
835c134e
MG
3070#ifndef CONFIG_SPARSEMEM
3071/*
3072 * Calculate the size of the zone->blockflags rounded to an unsigned long
3073 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3074 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3075 * round what is now in bits to nearest long in bits, then return it in
3076 * bytes.
3077 */
3078static unsigned long __init usemap_size(unsigned long zonesize)
3079{
3080 unsigned long usemapsize;
3081
3082 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3083 usemapsize = usemapsize >> (MAX_ORDER-1);
3084 usemapsize *= NR_PAGEBLOCK_BITS;
3085 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3086
3087 return usemapsize / 8;
3088}
3089
3090static void __init setup_usemap(struct pglist_data *pgdat,
3091 struct zone *zone, unsigned long zonesize)
3092{
3093 unsigned long usemapsize = usemap_size(zonesize);
3094 zone->pageblock_flags = NULL;
3095 if (usemapsize) {
3096 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3097 memset(zone->pageblock_flags, 0, usemapsize);
3098 }
3099}
3100#else
3101static void inline setup_usemap(struct pglist_data *pgdat,
3102 struct zone *zone, unsigned long zonesize) {}
3103#endif /* CONFIG_SPARSEMEM */
3104
1da177e4
LT
3105/*
3106 * Set up the zone data structures:
3107 * - mark all pages reserved
3108 * - mark all memory queues empty
3109 * - clear the memory bitmaps
3110 */
86356ab1 3111static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3112 unsigned long *zones_size, unsigned long *zholes_size)
3113{
2f1b6248 3114 enum zone_type j;
ed8ece2e 3115 int nid = pgdat->node_id;
1da177e4 3116 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3117 int ret;
1da177e4 3118
208d54e5 3119 pgdat_resize_init(pgdat);
1da177e4
LT
3120 pgdat->nr_zones = 0;
3121 init_waitqueue_head(&pgdat->kswapd_wait);
3122 pgdat->kswapd_max_order = 0;
3123
3124 for (j = 0; j < MAX_NR_ZONES; j++) {
3125 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3126 unsigned long size, realsize, memmap_pages;
1da177e4 3127
c713216d
MG
3128 size = zone_spanned_pages_in_node(nid, j, zones_size);
3129 realsize = size - zone_absent_pages_in_node(nid, j,
3130 zholes_size);
1da177e4 3131
0e0b864e
MG
3132 /*
3133 * Adjust realsize so that it accounts for how much memory
3134 * is used by this zone for memmap. This affects the watermark
3135 * and per-cpu initialisations
3136 */
3137 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3138 if (realsize >= memmap_pages) {
3139 realsize -= memmap_pages;
3140 printk(KERN_DEBUG
3141 " %s zone: %lu pages used for memmap\n",
3142 zone_names[j], memmap_pages);
3143 } else
3144 printk(KERN_WARNING
3145 " %s zone: %lu pages exceeds realsize %lu\n",
3146 zone_names[j], memmap_pages, realsize);
3147
6267276f
CL
3148 /* Account for reserved pages */
3149 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3150 realsize -= dma_reserve;
6267276f
CL
3151 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3152 zone_names[0], dma_reserve);
0e0b864e
MG
3153 }
3154
98d2b0eb 3155 if (!is_highmem_idx(j))
1da177e4
LT
3156 nr_kernel_pages += realsize;
3157 nr_all_pages += realsize;
3158
3159 zone->spanned_pages = size;
3160 zone->present_pages = realsize;
9614634f 3161#ifdef CONFIG_NUMA
d5f541ed 3162 zone->node = nid;
8417bba4 3163 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3164 / 100;
0ff38490 3165 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3166#endif
1da177e4
LT
3167 zone->name = zone_names[j];
3168 spin_lock_init(&zone->lock);
3169 spin_lock_init(&zone->lru_lock);
bdc8cb98 3170 zone_seqlock_init(zone);
1da177e4 3171 zone->zone_pgdat = pgdat;
1da177e4 3172
3bb1a852 3173 zone->prev_priority = DEF_PRIORITY;
1da177e4 3174
ed8ece2e 3175 zone_pcp_init(zone);
1da177e4
LT
3176 INIT_LIST_HEAD(&zone->active_list);
3177 INIT_LIST_HEAD(&zone->inactive_list);
3178 zone->nr_scan_active = 0;
3179 zone->nr_scan_inactive = 0;
2244b95a 3180 zap_zone_vm_stats(zone);
53e9a615 3181 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
3182 if (!size)
3183 continue;
3184
835c134e 3185 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3186 ret = init_currently_empty_zone(zone, zone_start_pfn,
3187 size, MEMMAP_EARLY);
718127cc 3188 BUG_ON(ret);
1da177e4 3189 zone_start_pfn += size;
1da177e4
LT
3190 }
3191}
3192
577a32f6 3193static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3194{
1da177e4
LT
3195 /* Skip empty nodes */
3196 if (!pgdat->node_spanned_pages)
3197 return;
3198
d41dee36 3199#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3200 /* ia64 gets its own node_mem_map, before this, without bootmem */
3201 if (!pgdat->node_mem_map) {
e984bb43 3202 unsigned long size, start, end;
d41dee36
AW
3203 struct page *map;
3204
e984bb43
BP
3205 /*
3206 * The zone's endpoints aren't required to be MAX_ORDER
3207 * aligned but the node_mem_map endpoints must be in order
3208 * for the buddy allocator to function correctly.
3209 */
3210 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3211 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3212 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3213 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3214 map = alloc_remap(pgdat->node_id, size);
3215 if (!map)
3216 map = alloc_bootmem_node(pgdat, size);
e984bb43 3217 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3218 }
12d810c1 3219#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3220 /*
3221 * With no DISCONTIG, the global mem_map is just set as node 0's
3222 */
c713216d 3223 if (pgdat == NODE_DATA(0)) {
1da177e4 3224 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3225#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3226 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3227 mem_map -= pgdat->node_start_pfn;
3228#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3229 }
1da177e4 3230#endif
d41dee36 3231#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3232}
3233
86356ab1 3234void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3235 unsigned long *zones_size, unsigned long node_start_pfn,
3236 unsigned long *zholes_size)
3237{
3238 pgdat->node_id = nid;
3239 pgdat->node_start_pfn = node_start_pfn;
c713216d 3240 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3241
3242 alloc_node_mem_map(pgdat);
3243
3244 free_area_init_core(pgdat, zones_size, zholes_size);
3245}
3246
c713216d 3247#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3248
3249#if MAX_NUMNODES > 1
3250/*
3251 * Figure out the number of possible node ids.
3252 */
3253static void __init setup_nr_node_ids(void)
3254{
3255 unsigned int node;
3256 unsigned int highest = 0;
3257
3258 for_each_node_mask(node, node_possible_map)
3259 highest = node;
3260 nr_node_ids = highest + 1;
3261}
3262#else
3263static inline void setup_nr_node_ids(void)
3264{
3265}
3266#endif
3267
c713216d
MG
3268/**
3269 * add_active_range - Register a range of PFNs backed by physical memory
3270 * @nid: The node ID the range resides on
3271 * @start_pfn: The start PFN of the available physical memory
3272 * @end_pfn: The end PFN of the available physical memory
3273 *
3274 * These ranges are stored in an early_node_map[] and later used by
3275 * free_area_init_nodes() to calculate zone sizes and holes. If the
3276 * range spans a memory hole, it is up to the architecture to ensure
3277 * the memory is not freed by the bootmem allocator. If possible
3278 * the range being registered will be merged with existing ranges.
3279 */
3280void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3281 unsigned long end_pfn)
3282{
3283 int i;
3284
3285 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3286 "%d entries of %d used\n",
3287 nid, start_pfn, end_pfn,
3288 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3289
3290 /* Merge with existing active regions if possible */
3291 for (i = 0; i < nr_nodemap_entries; i++) {
3292 if (early_node_map[i].nid != nid)
3293 continue;
3294
3295 /* Skip if an existing region covers this new one */
3296 if (start_pfn >= early_node_map[i].start_pfn &&
3297 end_pfn <= early_node_map[i].end_pfn)
3298 return;
3299
3300 /* Merge forward if suitable */
3301 if (start_pfn <= early_node_map[i].end_pfn &&
3302 end_pfn > early_node_map[i].end_pfn) {
3303 early_node_map[i].end_pfn = end_pfn;
3304 return;
3305 }
3306
3307 /* Merge backward if suitable */
3308 if (start_pfn < early_node_map[i].end_pfn &&
3309 end_pfn >= early_node_map[i].start_pfn) {
3310 early_node_map[i].start_pfn = start_pfn;
3311 return;
3312 }
3313 }
3314
3315 /* Check that early_node_map is large enough */
3316 if (i >= MAX_ACTIVE_REGIONS) {
3317 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3318 MAX_ACTIVE_REGIONS);
3319 return;
3320 }
3321
3322 early_node_map[i].nid = nid;
3323 early_node_map[i].start_pfn = start_pfn;
3324 early_node_map[i].end_pfn = end_pfn;
3325 nr_nodemap_entries = i + 1;
3326}
3327
3328/**
3329 * shrink_active_range - Shrink an existing registered range of PFNs
3330 * @nid: The node id the range is on that should be shrunk
3331 * @old_end_pfn: The old end PFN of the range
3332 * @new_end_pfn: The new PFN of the range
3333 *
3334 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3335 * The map is kept at the end physical page range that has already been
3336 * registered with add_active_range(). This function allows an arch to shrink
3337 * an existing registered range.
3338 */
3339void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3340 unsigned long new_end_pfn)
3341{
3342 int i;
3343
3344 /* Find the old active region end and shrink */
3345 for_each_active_range_index_in_nid(i, nid)
3346 if (early_node_map[i].end_pfn == old_end_pfn) {
3347 early_node_map[i].end_pfn = new_end_pfn;
3348 break;
3349 }
3350}
3351
3352/**
3353 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3354 *
c713216d
MG
3355 * During discovery, it may be found that a table like SRAT is invalid
3356 * and an alternative discovery method must be used. This function removes
3357 * all currently registered regions.
3358 */
88ca3b94 3359void __init remove_all_active_ranges(void)
c713216d
MG
3360{
3361 memset(early_node_map, 0, sizeof(early_node_map));
3362 nr_nodemap_entries = 0;
fb01439c
MG
3363#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3364 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3365 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3366#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3367}
3368
3369/* Compare two active node_active_regions */
3370static int __init cmp_node_active_region(const void *a, const void *b)
3371{
3372 struct node_active_region *arange = (struct node_active_region *)a;
3373 struct node_active_region *brange = (struct node_active_region *)b;
3374
3375 /* Done this way to avoid overflows */
3376 if (arange->start_pfn > brange->start_pfn)
3377 return 1;
3378 if (arange->start_pfn < brange->start_pfn)
3379 return -1;
3380
3381 return 0;
3382}
3383
3384/* sort the node_map by start_pfn */
3385static void __init sort_node_map(void)
3386{
3387 sort(early_node_map, (size_t)nr_nodemap_entries,
3388 sizeof(struct node_active_region),
3389 cmp_node_active_region, NULL);
3390}
3391
a6af2bc3 3392/* Find the lowest pfn for a node */
c713216d
MG
3393unsigned long __init find_min_pfn_for_node(unsigned long nid)
3394{
3395 int i;
a6af2bc3 3396 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3397
c713216d
MG
3398 /* Assuming a sorted map, the first range found has the starting pfn */
3399 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3400 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3401
a6af2bc3
MG
3402 if (min_pfn == ULONG_MAX) {
3403 printk(KERN_WARNING
3404 "Could not find start_pfn for node %lu\n", nid);
3405 return 0;
3406 }
3407
3408 return min_pfn;
c713216d
MG
3409}
3410
3411/**
3412 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3413 *
3414 * It returns the minimum PFN based on information provided via
88ca3b94 3415 * add_active_range().
c713216d
MG
3416 */
3417unsigned long __init find_min_pfn_with_active_regions(void)
3418{
3419 return find_min_pfn_for_node(MAX_NUMNODES);
3420}
3421
3422/**
3423 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3424 *
3425 * It returns the maximum PFN based on information provided via
88ca3b94 3426 * add_active_range().
c713216d
MG
3427 */
3428unsigned long __init find_max_pfn_with_active_regions(void)
3429{
3430 int i;
3431 unsigned long max_pfn = 0;
3432
3433 for (i = 0; i < nr_nodemap_entries; i++)
3434 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3435
3436 return max_pfn;
3437}
3438
37b07e41
LS
3439/*
3440 * early_calculate_totalpages()
3441 * Sum pages in active regions for movable zone.
3442 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3443 */
7e63efef
MG
3444unsigned long __init early_calculate_totalpages(void)
3445{
3446 int i;
3447 unsigned long totalpages = 0;
3448
37b07e41
LS
3449 for (i = 0; i < nr_nodemap_entries; i++) {
3450 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3451 early_node_map[i].start_pfn;
37b07e41
LS
3452 totalpages += pages;
3453 if (pages)
3454 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3455 }
3456 return totalpages;
7e63efef
MG
3457}
3458
2a1e274a
MG
3459/*
3460 * Find the PFN the Movable zone begins in each node. Kernel memory
3461 * is spread evenly between nodes as long as the nodes have enough
3462 * memory. When they don't, some nodes will have more kernelcore than
3463 * others
3464 */
3465void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3466{
3467 int i, nid;
3468 unsigned long usable_startpfn;
3469 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3470 unsigned long totalpages = early_calculate_totalpages();
3471 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3472
7e63efef
MG
3473 /*
3474 * If movablecore was specified, calculate what size of
3475 * kernelcore that corresponds so that memory usable for
3476 * any allocation type is evenly spread. If both kernelcore
3477 * and movablecore are specified, then the value of kernelcore
3478 * will be used for required_kernelcore if it's greater than
3479 * what movablecore would have allowed.
3480 */
3481 if (required_movablecore) {
7e63efef
MG
3482 unsigned long corepages;
3483
3484 /*
3485 * Round-up so that ZONE_MOVABLE is at least as large as what
3486 * was requested by the user
3487 */
3488 required_movablecore =
3489 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3490 corepages = totalpages - required_movablecore;
3491
3492 required_kernelcore = max(required_kernelcore, corepages);
3493 }
3494
2a1e274a
MG
3495 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3496 if (!required_kernelcore)
3497 return;
3498
3499 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3500 find_usable_zone_for_movable();
3501 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3502
3503restart:
3504 /* Spread kernelcore memory as evenly as possible throughout nodes */
3505 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3506 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3507 /*
3508 * Recalculate kernelcore_node if the division per node
3509 * now exceeds what is necessary to satisfy the requested
3510 * amount of memory for the kernel
3511 */
3512 if (required_kernelcore < kernelcore_node)
3513 kernelcore_node = required_kernelcore / usable_nodes;
3514
3515 /*
3516 * As the map is walked, we track how much memory is usable
3517 * by the kernel using kernelcore_remaining. When it is
3518 * 0, the rest of the node is usable by ZONE_MOVABLE
3519 */
3520 kernelcore_remaining = kernelcore_node;
3521
3522 /* Go through each range of PFNs within this node */
3523 for_each_active_range_index_in_nid(i, nid) {
3524 unsigned long start_pfn, end_pfn;
3525 unsigned long size_pages;
3526
3527 start_pfn = max(early_node_map[i].start_pfn,
3528 zone_movable_pfn[nid]);
3529 end_pfn = early_node_map[i].end_pfn;
3530 if (start_pfn >= end_pfn)
3531 continue;
3532
3533 /* Account for what is only usable for kernelcore */
3534 if (start_pfn < usable_startpfn) {
3535 unsigned long kernel_pages;
3536 kernel_pages = min(end_pfn, usable_startpfn)
3537 - start_pfn;
3538
3539 kernelcore_remaining -= min(kernel_pages,
3540 kernelcore_remaining);
3541 required_kernelcore -= min(kernel_pages,
3542 required_kernelcore);
3543
3544 /* Continue if range is now fully accounted */
3545 if (end_pfn <= usable_startpfn) {
3546
3547 /*
3548 * Push zone_movable_pfn to the end so
3549 * that if we have to rebalance
3550 * kernelcore across nodes, we will
3551 * not double account here
3552 */
3553 zone_movable_pfn[nid] = end_pfn;
3554 continue;
3555 }
3556 start_pfn = usable_startpfn;
3557 }
3558
3559 /*
3560 * The usable PFN range for ZONE_MOVABLE is from
3561 * start_pfn->end_pfn. Calculate size_pages as the
3562 * number of pages used as kernelcore
3563 */
3564 size_pages = end_pfn - start_pfn;
3565 if (size_pages > kernelcore_remaining)
3566 size_pages = kernelcore_remaining;
3567 zone_movable_pfn[nid] = start_pfn + size_pages;
3568
3569 /*
3570 * Some kernelcore has been met, update counts and
3571 * break if the kernelcore for this node has been
3572 * satisified
3573 */
3574 required_kernelcore -= min(required_kernelcore,
3575 size_pages);
3576 kernelcore_remaining -= size_pages;
3577 if (!kernelcore_remaining)
3578 break;
3579 }
3580 }
3581
3582 /*
3583 * If there is still required_kernelcore, we do another pass with one
3584 * less node in the count. This will push zone_movable_pfn[nid] further
3585 * along on the nodes that still have memory until kernelcore is
3586 * satisified
3587 */
3588 usable_nodes--;
3589 if (usable_nodes && required_kernelcore > usable_nodes)
3590 goto restart;
3591
3592 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3593 for (nid = 0; nid < MAX_NUMNODES; nid++)
3594 zone_movable_pfn[nid] =
3595 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3596}
3597
37b07e41
LS
3598/* Any regular memory on that node ? */
3599static void check_for_regular_memory(pg_data_t *pgdat)
3600{
3601#ifdef CONFIG_HIGHMEM
3602 enum zone_type zone_type;
3603
3604 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3605 struct zone *zone = &pgdat->node_zones[zone_type];
3606 if (zone->present_pages)
3607 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3608 }
3609#endif
3610}
3611
c713216d
MG
3612/**
3613 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3614 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3615 *
3616 * This will call free_area_init_node() for each active node in the system.
3617 * Using the page ranges provided by add_active_range(), the size of each
3618 * zone in each node and their holes is calculated. If the maximum PFN
3619 * between two adjacent zones match, it is assumed that the zone is empty.
3620 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3621 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3622 * starts where the previous one ended. For example, ZONE_DMA32 starts
3623 * at arch_max_dma_pfn.
3624 */
3625void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3626{
3627 unsigned long nid;
3628 enum zone_type i;
3629
a6af2bc3
MG
3630 /* Sort early_node_map as initialisation assumes it is sorted */
3631 sort_node_map();
3632
c713216d
MG
3633 /* Record where the zone boundaries are */
3634 memset(arch_zone_lowest_possible_pfn, 0,
3635 sizeof(arch_zone_lowest_possible_pfn));
3636 memset(arch_zone_highest_possible_pfn, 0,
3637 sizeof(arch_zone_highest_possible_pfn));
3638 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3639 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3640 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3641 if (i == ZONE_MOVABLE)
3642 continue;
c713216d
MG
3643 arch_zone_lowest_possible_pfn[i] =
3644 arch_zone_highest_possible_pfn[i-1];
3645 arch_zone_highest_possible_pfn[i] =
3646 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3647 }
2a1e274a
MG
3648 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3649 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3650
3651 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3652 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3653 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3654
c713216d
MG
3655 /* Print out the zone ranges */
3656 printk("Zone PFN ranges:\n");
2a1e274a
MG
3657 for (i = 0; i < MAX_NR_ZONES; i++) {
3658 if (i == ZONE_MOVABLE)
3659 continue;
c713216d
MG
3660 printk(" %-8s %8lu -> %8lu\n",
3661 zone_names[i],
3662 arch_zone_lowest_possible_pfn[i],
3663 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3664 }
3665
3666 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3667 printk("Movable zone start PFN for each node\n");
3668 for (i = 0; i < MAX_NUMNODES; i++) {
3669 if (zone_movable_pfn[i])
3670 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3671 }
c713216d
MG
3672
3673 /* Print out the early_node_map[] */
3674 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3675 for (i = 0; i < nr_nodemap_entries; i++)
3676 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3677 early_node_map[i].start_pfn,
3678 early_node_map[i].end_pfn);
3679
3680 /* Initialise every node */
8ef82866 3681 setup_nr_node_ids();
c713216d
MG
3682 for_each_online_node(nid) {
3683 pg_data_t *pgdat = NODE_DATA(nid);
3684 free_area_init_node(nid, pgdat, NULL,
3685 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3686
3687 /* Any memory on that node */
3688 if (pgdat->node_present_pages)
3689 node_set_state(nid, N_HIGH_MEMORY);
3690 check_for_regular_memory(pgdat);
c713216d
MG
3691 }
3692}
2a1e274a 3693
7e63efef 3694static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3695{
3696 unsigned long long coremem;
3697 if (!p)
3698 return -EINVAL;
3699
3700 coremem = memparse(p, &p);
7e63efef 3701 *core = coremem >> PAGE_SHIFT;
2a1e274a 3702
7e63efef 3703 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3704 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3705
3706 return 0;
3707}
ed7ed365 3708
7e63efef
MG
3709/*
3710 * kernelcore=size sets the amount of memory for use for allocations that
3711 * cannot be reclaimed or migrated.
3712 */
3713static int __init cmdline_parse_kernelcore(char *p)
3714{
3715 return cmdline_parse_core(p, &required_kernelcore);
3716}
3717
3718/*
3719 * movablecore=size sets the amount of memory for use for allocations that
3720 * can be reclaimed or migrated.
3721 */
3722static int __init cmdline_parse_movablecore(char *p)
3723{
3724 return cmdline_parse_core(p, &required_movablecore);
3725}
3726
ed7ed365 3727early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3728early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3729
c713216d
MG
3730#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3731
0e0b864e 3732/**
88ca3b94
RD
3733 * set_dma_reserve - set the specified number of pages reserved in the first zone
3734 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3735 *
3736 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3737 * In the DMA zone, a significant percentage may be consumed by kernel image
3738 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3739 * function may optionally be used to account for unfreeable pages in the
3740 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3741 * smaller per-cpu batchsize.
0e0b864e
MG
3742 */
3743void __init set_dma_reserve(unsigned long new_dma_reserve)
3744{
3745 dma_reserve = new_dma_reserve;
3746}
3747
93b7504e 3748#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3749static bootmem_data_t contig_bootmem_data;
3750struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3751
3752EXPORT_SYMBOL(contig_page_data);
93b7504e 3753#endif
1da177e4
LT
3754
3755void __init free_area_init(unsigned long *zones_size)
3756{
93b7504e 3757 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3758 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3759}
1da177e4 3760
1da177e4
LT
3761static int page_alloc_cpu_notify(struct notifier_block *self,
3762 unsigned long action, void *hcpu)
3763{
3764 int cpu = (unsigned long)hcpu;
1da177e4 3765
8bb78442 3766 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3767 local_irq_disable();
3768 __drain_pages(cpu);
f8891e5e 3769 vm_events_fold_cpu(cpu);
1da177e4 3770 local_irq_enable();
2244b95a 3771 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3772 }
3773 return NOTIFY_OK;
3774}
1da177e4
LT
3775
3776void __init page_alloc_init(void)
3777{
3778 hotcpu_notifier(page_alloc_cpu_notify, 0);
3779}
3780
cb45b0e9
HA
3781/*
3782 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3783 * or min_free_kbytes changes.
3784 */
3785static void calculate_totalreserve_pages(void)
3786{
3787 struct pglist_data *pgdat;
3788 unsigned long reserve_pages = 0;
2f6726e5 3789 enum zone_type i, j;
cb45b0e9
HA
3790
3791 for_each_online_pgdat(pgdat) {
3792 for (i = 0; i < MAX_NR_ZONES; i++) {
3793 struct zone *zone = pgdat->node_zones + i;
3794 unsigned long max = 0;
3795
3796 /* Find valid and maximum lowmem_reserve in the zone */
3797 for (j = i; j < MAX_NR_ZONES; j++) {
3798 if (zone->lowmem_reserve[j] > max)
3799 max = zone->lowmem_reserve[j];
3800 }
3801
3802 /* we treat pages_high as reserved pages. */
3803 max += zone->pages_high;
3804
3805 if (max > zone->present_pages)
3806 max = zone->present_pages;
3807 reserve_pages += max;
3808 }
3809 }
3810 totalreserve_pages = reserve_pages;
3811}
3812
1da177e4
LT
3813/*
3814 * setup_per_zone_lowmem_reserve - called whenever
3815 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3816 * has a correct pages reserved value, so an adequate number of
3817 * pages are left in the zone after a successful __alloc_pages().
3818 */
3819static void setup_per_zone_lowmem_reserve(void)
3820{
3821 struct pglist_data *pgdat;
2f6726e5 3822 enum zone_type j, idx;
1da177e4 3823
ec936fc5 3824 for_each_online_pgdat(pgdat) {
1da177e4
LT
3825 for (j = 0; j < MAX_NR_ZONES; j++) {
3826 struct zone *zone = pgdat->node_zones + j;
3827 unsigned long present_pages = zone->present_pages;
3828
3829 zone->lowmem_reserve[j] = 0;
3830
2f6726e5
CL
3831 idx = j;
3832 while (idx) {
1da177e4
LT
3833 struct zone *lower_zone;
3834
2f6726e5
CL
3835 idx--;
3836
1da177e4
LT
3837 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3838 sysctl_lowmem_reserve_ratio[idx] = 1;
3839
3840 lower_zone = pgdat->node_zones + idx;
3841 lower_zone->lowmem_reserve[j] = present_pages /
3842 sysctl_lowmem_reserve_ratio[idx];
3843 present_pages += lower_zone->present_pages;
3844 }
3845 }
3846 }
cb45b0e9
HA
3847
3848 /* update totalreserve_pages */
3849 calculate_totalreserve_pages();
1da177e4
LT
3850}
3851
88ca3b94
RD
3852/**
3853 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3854 *
3855 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3856 * with respect to min_free_kbytes.
1da177e4 3857 */
3947be19 3858void setup_per_zone_pages_min(void)
1da177e4
LT
3859{
3860 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3861 unsigned long lowmem_pages = 0;
3862 struct zone *zone;
3863 unsigned long flags;
3864
3865 /* Calculate total number of !ZONE_HIGHMEM pages */
3866 for_each_zone(zone) {
3867 if (!is_highmem(zone))
3868 lowmem_pages += zone->present_pages;
3869 }
3870
3871 for_each_zone(zone) {
ac924c60
AM
3872 u64 tmp;
3873
1da177e4 3874 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3875 tmp = (u64)pages_min * zone->present_pages;
3876 do_div(tmp, lowmem_pages);
1da177e4
LT
3877 if (is_highmem(zone)) {
3878 /*
669ed175
NP
3879 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3880 * need highmem pages, so cap pages_min to a small
3881 * value here.
3882 *
3883 * The (pages_high-pages_low) and (pages_low-pages_min)
3884 * deltas controls asynch page reclaim, and so should
3885 * not be capped for highmem.
1da177e4
LT
3886 */
3887 int min_pages;
3888
3889 min_pages = zone->present_pages / 1024;
3890 if (min_pages < SWAP_CLUSTER_MAX)
3891 min_pages = SWAP_CLUSTER_MAX;
3892 if (min_pages > 128)
3893 min_pages = 128;
3894 zone->pages_min = min_pages;
3895 } else {
669ed175
NP
3896 /*
3897 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3898 * proportionate to the zone's size.
3899 */
669ed175 3900 zone->pages_min = tmp;
1da177e4
LT
3901 }
3902
ac924c60
AM
3903 zone->pages_low = zone->pages_min + (tmp >> 2);
3904 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3905 spin_unlock_irqrestore(&zone->lru_lock, flags);
3906 }
cb45b0e9
HA
3907
3908 /* update totalreserve_pages */
3909 calculate_totalreserve_pages();
1da177e4
LT
3910}
3911
3912/*
3913 * Initialise min_free_kbytes.
3914 *
3915 * For small machines we want it small (128k min). For large machines
3916 * we want it large (64MB max). But it is not linear, because network
3917 * bandwidth does not increase linearly with machine size. We use
3918 *
3919 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3920 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3921 *
3922 * which yields
3923 *
3924 * 16MB: 512k
3925 * 32MB: 724k
3926 * 64MB: 1024k
3927 * 128MB: 1448k
3928 * 256MB: 2048k
3929 * 512MB: 2896k
3930 * 1024MB: 4096k
3931 * 2048MB: 5792k
3932 * 4096MB: 8192k
3933 * 8192MB: 11584k
3934 * 16384MB: 16384k
3935 */
3936static int __init init_per_zone_pages_min(void)
3937{
3938 unsigned long lowmem_kbytes;
3939
3940 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3941
3942 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3943 if (min_free_kbytes < 128)
3944 min_free_kbytes = 128;
3945 if (min_free_kbytes > 65536)
3946 min_free_kbytes = 65536;
3947 setup_per_zone_pages_min();
3948 setup_per_zone_lowmem_reserve();
3949 return 0;
3950}
3951module_init(init_per_zone_pages_min)
3952
3953/*
3954 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3955 * that we can call two helper functions whenever min_free_kbytes
3956 * changes.
3957 */
3958int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3959 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3960{
3961 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
3962 if (write)
3963 setup_per_zone_pages_min();
1da177e4
LT
3964 return 0;
3965}
3966
9614634f
CL
3967#ifdef CONFIG_NUMA
3968int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3969 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3970{
3971 struct zone *zone;
3972 int rc;
3973
3974 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3975 if (rc)
3976 return rc;
3977
3978 for_each_zone(zone)
8417bba4 3979 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
3980 sysctl_min_unmapped_ratio) / 100;
3981 return 0;
3982}
0ff38490
CL
3983
3984int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3985 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3986{
3987 struct zone *zone;
3988 int rc;
3989
3990 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3991 if (rc)
3992 return rc;
3993
3994 for_each_zone(zone)
3995 zone->min_slab_pages = (zone->present_pages *
3996 sysctl_min_slab_ratio) / 100;
3997 return 0;
3998}
9614634f
CL
3999#endif
4000
1da177e4
LT
4001/*
4002 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4003 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4004 * whenever sysctl_lowmem_reserve_ratio changes.
4005 *
4006 * The reserve ratio obviously has absolutely no relation with the
4007 * pages_min watermarks. The lowmem reserve ratio can only make sense
4008 * if in function of the boot time zone sizes.
4009 */
4010int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4011 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4012{
4013 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4014 setup_per_zone_lowmem_reserve();
4015 return 0;
4016}
4017
8ad4b1fb
RS
4018/*
4019 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4020 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4021 * can have before it gets flushed back to buddy allocator.
4022 */
4023
4024int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4025 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4026{
4027 struct zone *zone;
4028 unsigned int cpu;
4029 int ret;
4030
4031 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4032 if (!write || (ret == -EINVAL))
4033 return ret;
4034 for_each_zone(zone) {
4035 for_each_online_cpu(cpu) {
4036 unsigned long high;
4037 high = zone->present_pages / percpu_pagelist_fraction;
4038 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4039 }
4040 }
4041 return 0;
4042}
4043
f034b5d4 4044int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4045
4046#ifdef CONFIG_NUMA
4047static int __init set_hashdist(char *str)
4048{
4049 if (!str)
4050 return 0;
4051 hashdist = simple_strtoul(str, &str, 0);
4052 return 1;
4053}
4054__setup("hashdist=", set_hashdist);
4055#endif
4056
4057/*
4058 * allocate a large system hash table from bootmem
4059 * - it is assumed that the hash table must contain an exact power-of-2
4060 * quantity of entries
4061 * - limit is the number of hash buckets, not the total allocation size
4062 */
4063void *__init alloc_large_system_hash(const char *tablename,
4064 unsigned long bucketsize,
4065 unsigned long numentries,
4066 int scale,
4067 int flags,
4068 unsigned int *_hash_shift,
4069 unsigned int *_hash_mask,
4070 unsigned long limit)
4071{
4072 unsigned long long max = limit;
4073 unsigned long log2qty, size;
4074 void *table = NULL;
4075
4076 /* allow the kernel cmdline to have a say */
4077 if (!numentries) {
4078 /* round applicable memory size up to nearest megabyte */
04903664 4079 numentries = nr_kernel_pages;
1da177e4
LT
4080 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4081 numentries >>= 20 - PAGE_SHIFT;
4082 numentries <<= 20 - PAGE_SHIFT;
4083
4084 /* limit to 1 bucket per 2^scale bytes of low memory */
4085 if (scale > PAGE_SHIFT)
4086 numentries >>= (scale - PAGE_SHIFT);
4087 else
4088 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4089
4090 /* Make sure we've got at least a 0-order allocation.. */
4091 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4092 numentries = PAGE_SIZE / bucketsize;
1da177e4 4093 }
6e692ed3 4094 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4095
4096 /* limit allocation size to 1/16 total memory by default */
4097 if (max == 0) {
4098 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4099 do_div(max, bucketsize);
4100 }
4101
4102 if (numentries > max)
4103 numentries = max;
4104
f0d1b0b3 4105 log2qty = ilog2(numentries);
1da177e4
LT
4106
4107 do {
4108 size = bucketsize << log2qty;
4109 if (flags & HASH_EARLY)
4110 table = alloc_bootmem(size);
4111 else if (hashdist)
4112 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4113 else {
4114 unsigned long order;
4115 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4116 ;
4117 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4118 /*
4119 * If bucketsize is not a power-of-two, we may free
4120 * some pages at the end of hash table.
4121 */
4122 if (table) {
4123 unsigned long alloc_end = (unsigned long)table +
4124 (PAGE_SIZE << order);
4125 unsigned long used = (unsigned long)table +
4126 PAGE_ALIGN(size);
4127 split_page(virt_to_page(table), order);
4128 while (used < alloc_end) {
4129 free_page(used);
4130 used += PAGE_SIZE;
4131 }
4132 }
1da177e4
LT
4133 }
4134 } while (!table && size > PAGE_SIZE && --log2qty);
4135
4136 if (!table)
4137 panic("Failed to allocate %s hash table\n", tablename);
4138
b49ad484 4139 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4140 tablename,
4141 (1U << log2qty),
f0d1b0b3 4142 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4143 size);
4144
4145 if (_hash_shift)
4146 *_hash_shift = log2qty;
4147 if (_hash_mask)
4148 *_hash_mask = (1 << log2qty) - 1;
4149
4150 return table;
4151}
a117e66e
KH
4152
4153#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4154struct page *pfn_to_page(unsigned long pfn)
4155{
67de6482 4156 return __pfn_to_page(pfn);
a117e66e
KH
4157}
4158unsigned long page_to_pfn(struct page *page)
4159{
67de6482 4160 return __page_to_pfn(page);
a117e66e 4161}
a117e66e
KH
4162EXPORT_SYMBOL(pfn_to_page);
4163EXPORT_SYMBOL(page_to_pfn);
4164#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4165
835c134e
MG
4166/* Return a pointer to the bitmap storing bits affecting a block of pages */
4167static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4168 unsigned long pfn)
4169{
4170#ifdef CONFIG_SPARSEMEM
4171 return __pfn_to_section(pfn)->pageblock_flags;
4172#else
4173 return zone->pageblock_flags;
4174#endif /* CONFIG_SPARSEMEM */
4175}
4176
4177static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4178{
4179#ifdef CONFIG_SPARSEMEM
4180 pfn &= (PAGES_PER_SECTION-1);
4181 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4182#else
4183 pfn = pfn - zone->zone_start_pfn;
4184 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4185#endif /* CONFIG_SPARSEMEM */
4186}
4187
4188/**
4189 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4190 * @page: The page within the block of interest
4191 * @start_bitidx: The first bit of interest to retrieve
4192 * @end_bitidx: The last bit of interest
4193 * returns pageblock_bits flags
4194 */
4195unsigned long get_pageblock_flags_group(struct page *page,
4196 int start_bitidx, int end_bitidx)
4197{
4198 struct zone *zone;
4199 unsigned long *bitmap;
4200 unsigned long pfn, bitidx;
4201 unsigned long flags = 0;
4202 unsigned long value = 1;
4203
4204 zone = page_zone(page);
4205 pfn = page_to_pfn(page);
4206 bitmap = get_pageblock_bitmap(zone, pfn);
4207 bitidx = pfn_to_bitidx(zone, pfn);
4208
4209 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4210 if (test_bit(bitidx + start_bitidx, bitmap))
4211 flags |= value;
6220ec78 4212
835c134e
MG
4213 return flags;
4214}
4215
4216/**
4217 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4218 * @page: The page within the block of interest
4219 * @start_bitidx: The first bit of interest
4220 * @end_bitidx: The last bit of interest
4221 * @flags: The flags to set
4222 */
4223void set_pageblock_flags_group(struct page *page, unsigned long flags,
4224 int start_bitidx, int end_bitidx)
4225{
4226 struct zone *zone;
4227 unsigned long *bitmap;
4228 unsigned long pfn, bitidx;
4229 unsigned long value = 1;
4230
4231 zone = page_zone(page);
4232 pfn = page_to_pfn(page);
4233 bitmap = get_pageblock_bitmap(zone, pfn);
4234 bitidx = pfn_to_bitidx(zone, pfn);
4235
4236 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4237 if (flags & value)
4238 __set_bit(bitidx + start_bitidx, bitmap);
4239 else
4240 __clear_bit(bitidx + start_bitidx, bitmap);
4241}