[PATCH] slab: fix drain_array() so that it works correctly with the shared_array
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92 139 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
224abf92
NP
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4 175 */
d98c7a09
HD
176
177static void free_compound_page(struct page *page)
178{
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
180}
181
1da177e4
LT
182static void prep_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
d98c7a09 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 188 page[1].lru.prev = (void *)order;
1da177e4
LT
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
191
5e9dace8 192 __SetPageCompound(p);
4c21e2f2 193 set_page_private(p, (unsigned long)page);
1da177e4
LT
194 }
195}
196
197static void destroy_compound_page(struct page *page, unsigned long order)
198{
199 int i;
200 int nr_pages = 1 << order;
201
41d78ba5 202 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 203 bad_page(page);
1da177e4
LT
204
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
207
224abf92
NP
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
5e9dace8 211 __ClearPageCompound(p);
1da177e4
LT
212 }
213}
1da177e4 214
17cf4406
NP
215static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
216{
217 int i;
218
219 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
220 /*
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
223 */
224 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
225 for (i = 0; i < (1 << order); i++)
226 clear_highpage(page + i);
227}
228
1da177e4
LT
229/*
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
233 */
234static inline unsigned long page_order(struct page *page) {
4c21e2f2 235 return page_private(page);
1da177e4
LT
236}
237
238static inline void set_page_order(struct page *page, int order) {
4c21e2f2 239 set_page_private(page, order);
1da177e4
LT
240 __SetPagePrivate(page);
241}
242
243static inline void rmv_page_order(struct page *page)
244{
245 __ClearPagePrivate(page);
4c21e2f2 246 set_page_private(page, 0);
1da177e4
LT
247}
248
249/*
250 * Locate the struct page for both the matching buddy in our
251 * pair (buddy1) and the combined O(n+1) page they form (page).
252 *
253 * 1) Any buddy B1 will have an order O twin B2 which satisfies
254 * the following equation:
255 * B2 = B1 ^ (1 << O)
256 * For example, if the starting buddy (buddy2) is #8 its order
257 * 1 buddy is #10:
258 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
259 *
260 * 2) Any buddy B will have an order O+1 parent P which
261 * satisfies the following equation:
262 * P = B & ~(1 << O)
263 *
264 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
265 */
266static inline struct page *
267__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
268{
269 unsigned long buddy_idx = page_idx ^ (1 << order);
270
271 return page + (buddy_idx - page_idx);
272}
273
274static inline unsigned long
275__find_combined_index(unsigned long page_idx, unsigned int order)
276{
277 return (page_idx & ~(1 << order));
278}
279
280/*
281 * This function checks whether a page is free && is the buddy
282 * we can do coalesce a page and its buddy if
13e7444b
NP
283 * (a) the buddy is not in a hole &&
284 * (b) the buddy is free &&
285 * (c) the buddy is on the buddy system &&
286 * (d) a page and its buddy have the same order.
4c21e2f2 287 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
288 *
289 */
290static inline int page_is_buddy(struct page *page, int order)
291{
13e7444b
NP
292#ifdef CONFIG_HOLES_IN_ZONE
293 if (!pfn_valid(page_to_pfn(page)))
294 return 0;
295#endif
296
1da177e4
LT
297 if (PagePrivate(page) &&
298 (page_order(page) == order) &&
1da177e4
LT
299 page_count(page) == 0)
300 return 1;
301 return 0;
302}
303
304/*
305 * Freeing function for a buddy system allocator.
306 *
307 * The concept of a buddy system is to maintain direct-mapped table
308 * (containing bit values) for memory blocks of various "orders".
309 * The bottom level table contains the map for the smallest allocatable
310 * units of memory (here, pages), and each level above it describes
311 * pairs of units from the levels below, hence, "buddies".
312 * At a high level, all that happens here is marking the table entry
313 * at the bottom level available, and propagating the changes upward
314 * as necessary, plus some accounting needed to play nicely with other
315 * parts of the VM system.
316 * At each level, we keep a list of pages, which are heads of continuous
317 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 318 * order is recorded in page_private(page) field.
1da177e4
LT
319 * So when we are allocating or freeing one, we can derive the state of the
320 * other. That is, if we allocate a small block, and both were
321 * free, the remainder of the region must be split into blocks.
322 * If a block is freed, and its buddy is also free, then this
323 * triggers coalescing into a block of larger size.
324 *
325 * -- wli
326 */
327
48db57f8 328static inline void __free_one_page(struct page *page,
1da177e4
LT
329 struct zone *zone, unsigned int order)
330{
331 unsigned long page_idx;
332 int order_size = 1 << order;
333
224abf92 334 if (unlikely(PageCompound(page)))
1da177e4
LT
335 destroy_compound_page(page, order);
336
337 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
338
339 BUG_ON(page_idx & (order_size - 1));
340 BUG_ON(bad_range(zone, page));
341
342 zone->free_pages += order_size;
343 while (order < MAX_ORDER-1) {
344 unsigned long combined_idx;
345 struct free_area *area;
346 struct page *buddy;
347
1da177e4 348 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
349 if (!page_is_buddy(buddy, order))
350 break; /* Move the buddy up one level. */
13e7444b 351
1da177e4
LT
352 list_del(&buddy->lru);
353 area = zone->free_area + order;
354 area->nr_free--;
355 rmv_page_order(buddy);
13e7444b 356 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
357 page = page + (combined_idx - page_idx);
358 page_idx = combined_idx;
359 order++;
360 }
361 set_page_order(page, order);
362 list_add(&page->lru, &zone->free_area[order].free_list);
363 zone->free_area[order].nr_free++;
364}
365
224abf92 366static inline int free_pages_check(struct page *page)
1da177e4 367{
92be2e33
NP
368 if (unlikely(page_mapcount(page) |
369 (page->mapping != NULL) |
370 (page_count(page) != 0) |
1da177e4
LT
371 (page->flags & (
372 1 << PG_lru |
373 1 << PG_private |
374 1 << PG_locked |
375 1 << PG_active |
376 1 << PG_reclaim |
377 1 << PG_slab |
378 1 << PG_swapcache |
b5810039 379 1 << PG_writeback |
92be2e33 380 1 << PG_reserved ))))
224abf92 381 bad_page(page);
1da177e4 382 if (PageDirty(page))
242e5468 383 __ClearPageDirty(page);
689bcebf
HD
384 /*
385 * For now, we report if PG_reserved was found set, but do not
386 * clear it, and do not free the page. But we shall soon need
387 * to do more, for when the ZERO_PAGE count wraps negative.
388 */
389 return PageReserved(page);
1da177e4
LT
390}
391
392/*
393 * Frees a list of pages.
394 * Assumes all pages on list are in same zone, and of same order.
207f36ee 395 * count is the number of pages to free.
1da177e4
LT
396 *
397 * If the zone was previously in an "all pages pinned" state then look to
398 * see if this freeing clears that state.
399 *
400 * And clear the zone's pages_scanned counter, to hold off the "all pages are
401 * pinned" detection logic.
402 */
48db57f8
NP
403static void free_pages_bulk(struct zone *zone, int count,
404 struct list_head *list, int order)
1da177e4 405{
c54ad30c 406 spin_lock(&zone->lock);
1da177e4
LT
407 zone->all_unreclaimable = 0;
408 zone->pages_scanned = 0;
48db57f8
NP
409 while (count--) {
410 struct page *page;
411
412 BUG_ON(list_empty(list));
1da177e4 413 page = list_entry(list->prev, struct page, lru);
48db57f8 414 /* have to delete it as __free_one_page list manipulates */
1da177e4 415 list_del(&page->lru);
48db57f8 416 __free_one_page(page, zone, order);
1da177e4 417 }
c54ad30c 418 spin_unlock(&zone->lock);
1da177e4
LT
419}
420
48db57f8 421static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
422{
423 LIST_HEAD(list);
48db57f8
NP
424 list_add(&page->lru, &list);
425 free_pages_bulk(zone, 1, &list, order);
426}
427
428static void __free_pages_ok(struct page *page, unsigned int order)
429{
430 unsigned long flags;
1da177e4 431 int i;
689bcebf 432 int reserved = 0;
1da177e4
LT
433
434 arch_free_page(page, order);
de5097c2
IM
435 if (!PageHighMem(page))
436 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 437 PAGE_SIZE<<order);
1da177e4 438
1da177e4 439 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 440 reserved += free_pages_check(page + i);
689bcebf
HD
441 if (reserved)
442 return;
443
48db57f8 444 kernel_map_pages(page, 1 << order, 0);
c54ad30c 445 local_irq_save(flags);
a74609fa 446 __mod_page_state(pgfree, 1 << order);
48db57f8 447 free_one_page(page_zone(page), page, order);
c54ad30c 448 local_irq_restore(flags);
1da177e4
LT
449}
450
a226f6c8
DH
451/*
452 * permit the bootmem allocator to evade page validation on high-order frees
453 */
454void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
455{
456 if (order == 0) {
457 __ClearPageReserved(page);
458 set_page_count(page, 0);
7835e98b 459 set_page_refcounted(page);
545b1ea9 460 __free_page(page);
a226f6c8 461 } else {
a226f6c8
DH
462 int loop;
463
545b1ea9 464 prefetchw(page);
a226f6c8
DH
465 for (loop = 0; loop < BITS_PER_LONG; loop++) {
466 struct page *p = &page[loop];
467
545b1ea9
NP
468 if (loop + 1 < BITS_PER_LONG)
469 prefetchw(p + 1);
a226f6c8
DH
470 __ClearPageReserved(p);
471 set_page_count(p, 0);
472 }
473
7835e98b 474 set_page_refcounted(page);
545b1ea9 475 __free_pages(page, order);
a226f6c8
DH
476 }
477}
478
1da177e4
LT
479
480/*
481 * The order of subdivision here is critical for the IO subsystem.
482 * Please do not alter this order without good reasons and regression
483 * testing. Specifically, as large blocks of memory are subdivided,
484 * the order in which smaller blocks are delivered depends on the order
485 * they're subdivided in this function. This is the primary factor
486 * influencing the order in which pages are delivered to the IO
487 * subsystem according to empirical testing, and this is also justified
488 * by considering the behavior of a buddy system containing a single
489 * large block of memory acted on by a series of small allocations.
490 * This behavior is a critical factor in sglist merging's success.
491 *
492 * -- wli
493 */
085cc7d5 494static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
495 int low, int high, struct free_area *area)
496{
497 unsigned long size = 1 << high;
498
499 while (high > low) {
500 area--;
501 high--;
502 size >>= 1;
503 BUG_ON(bad_range(zone, &page[size]));
504 list_add(&page[size].lru, &area->free_list);
505 area->nr_free++;
506 set_page_order(&page[size], high);
507 }
1da177e4
LT
508}
509
1da177e4
LT
510/*
511 * This page is about to be returned from the page allocator
512 */
17cf4406 513static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 514{
92be2e33
NP
515 if (unlikely(page_mapcount(page) |
516 (page->mapping != NULL) |
517 (page_count(page) != 0) |
334795ec
HD
518 (page->flags & (
519 1 << PG_lru |
1da177e4
LT
520 1 << PG_private |
521 1 << PG_locked |
1da177e4
LT
522 1 << PG_active |
523 1 << PG_dirty |
524 1 << PG_reclaim |
334795ec 525 1 << PG_slab |
1da177e4 526 1 << PG_swapcache |
b5810039 527 1 << PG_writeback |
92be2e33 528 1 << PG_reserved ))))
224abf92 529 bad_page(page);
1da177e4 530
689bcebf
HD
531 /*
532 * For now, we report if PG_reserved was found set, but do not
533 * clear it, and do not allocate the page: as a safety net.
534 */
535 if (PageReserved(page))
536 return 1;
537
1da177e4
LT
538 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
539 1 << PG_referenced | 1 << PG_arch_1 |
540 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 541 set_page_private(page, 0);
7835e98b 542 set_page_refcounted(page);
1da177e4 543 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
544
545 if (gfp_flags & __GFP_ZERO)
546 prep_zero_page(page, order, gfp_flags);
547
548 if (order && (gfp_flags & __GFP_COMP))
549 prep_compound_page(page, order);
550
689bcebf 551 return 0;
1da177e4
LT
552}
553
554/*
555 * Do the hard work of removing an element from the buddy allocator.
556 * Call me with the zone->lock already held.
557 */
558static struct page *__rmqueue(struct zone *zone, unsigned int order)
559{
560 struct free_area * area;
561 unsigned int current_order;
562 struct page *page;
563
564 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
565 area = zone->free_area + current_order;
566 if (list_empty(&area->free_list))
567 continue;
568
569 page = list_entry(area->free_list.next, struct page, lru);
570 list_del(&page->lru);
571 rmv_page_order(page);
572 area->nr_free--;
573 zone->free_pages -= 1UL << order;
085cc7d5
NP
574 expand(zone, page, order, current_order, area);
575 return page;
1da177e4
LT
576 }
577
578 return NULL;
579}
580
581/*
582 * Obtain a specified number of elements from the buddy allocator, all under
583 * a single hold of the lock, for efficiency. Add them to the supplied list.
584 * Returns the number of new pages which were placed at *list.
585 */
586static int rmqueue_bulk(struct zone *zone, unsigned int order,
587 unsigned long count, struct list_head *list)
588{
1da177e4 589 int i;
1da177e4 590
c54ad30c 591 spin_lock(&zone->lock);
1da177e4 592 for (i = 0; i < count; ++i) {
085cc7d5
NP
593 struct page *page = __rmqueue(zone, order);
594 if (unlikely(page == NULL))
1da177e4 595 break;
1da177e4
LT
596 list_add_tail(&page->lru, list);
597 }
c54ad30c 598 spin_unlock(&zone->lock);
085cc7d5 599 return i;
1da177e4
LT
600}
601
4ae7c039 602#ifdef CONFIG_NUMA
8fce4d8e
CL
603/*
604 * Called from the slab reaper to drain pagesets on a particular node that
605 * belong to the currently executing processor.
606 */
607void drain_node_pages(int nodeid)
4ae7c039 608{
8fce4d8e 609 int i, z;
4ae7c039
CL
610 unsigned long flags;
611
612 local_irq_save(flags);
8fce4d8e
CL
613 for (z = 0; z < MAX_NR_ZONES; z++) {
614 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
615 struct per_cpu_pageset *pset;
616
23316bc8 617 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
618 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
619 struct per_cpu_pages *pcp;
620
621 pcp = &pset->pcp[i];
48db57f8
NP
622 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
623 pcp->count = 0;
4ae7c039
CL
624 }
625 }
626 local_irq_restore(flags);
627}
628#endif
629
1da177e4
LT
630#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
631static void __drain_pages(unsigned int cpu)
632{
c54ad30c 633 unsigned long flags;
1da177e4
LT
634 struct zone *zone;
635 int i;
636
637 for_each_zone(zone) {
638 struct per_cpu_pageset *pset;
639
e7c8d5c9 640 pset = zone_pcp(zone, cpu);
1da177e4
LT
641 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
642 struct per_cpu_pages *pcp;
643
644 pcp = &pset->pcp[i];
c54ad30c 645 local_irq_save(flags);
48db57f8
NP
646 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
647 pcp->count = 0;
c54ad30c 648 local_irq_restore(flags);
1da177e4
LT
649 }
650 }
651}
652#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
653
654#ifdef CONFIG_PM
655
656void mark_free_pages(struct zone *zone)
657{
658 unsigned long zone_pfn, flags;
659 int order;
660 struct list_head *curr;
661
662 if (!zone->spanned_pages)
663 return;
664
665 spin_lock_irqsave(&zone->lock, flags);
666 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
667 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
668
669 for (order = MAX_ORDER - 1; order >= 0; --order)
670 list_for_each(curr, &zone->free_area[order].free_list) {
671 unsigned long start_pfn, i;
672
673 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
674
675 for (i=0; i < (1<<order); i++)
676 SetPageNosaveFree(pfn_to_page(start_pfn+i));
677 }
678 spin_unlock_irqrestore(&zone->lock, flags);
679}
680
681/*
682 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
683 */
684void drain_local_pages(void)
685{
686 unsigned long flags;
687
688 local_irq_save(flags);
689 __drain_pages(smp_processor_id());
690 local_irq_restore(flags);
691}
692#endif /* CONFIG_PM */
693
a74609fa 694static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
695{
696#ifdef CONFIG_NUMA
1da177e4
LT
697 pg_data_t *pg = z->zone_pgdat;
698 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
699 struct per_cpu_pageset *p;
700
a74609fa 701 p = zone_pcp(z, cpu);
1da177e4 702 if (pg == orig) {
e7c8d5c9 703 p->numa_hit++;
1da177e4
LT
704 } else {
705 p->numa_miss++;
e7c8d5c9 706 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
707 }
708 if (pg == NODE_DATA(numa_node_id()))
709 p->local_node++;
710 else
711 p->other_node++;
1da177e4
LT
712#endif
713}
714
715/*
716 * Free a 0-order page
717 */
1da177e4
LT
718static void fastcall free_hot_cold_page(struct page *page, int cold)
719{
720 struct zone *zone = page_zone(page);
721 struct per_cpu_pages *pcp;
722 unsigned long flags;
723
724 arch_free_page(page, 0);
725
1da177e4
LT
726 if (PageAnon(page))
727 page->mapping = NULL;
224abf92 728 if (free_pages_check(page))
689bcebf
HD
729 return;
730
689bcebf
HD
731 kernel_map_pages(page, 1, 0);
732
e7c8d5c9 733 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 734 local_irq_save(flags);
a74609fa 735 __inc_page_state(pgfree);
1da177e4
LT
736 list_add(&page->lru, &pcp->list);
737 pcp->count++;
48db57f8
NP
738 if (pcp->count >= pcp->high) {
739 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
740 pcp->count -= pcp->batch;
741 }
1da177e4
LT
742 local_irq_restore(flags);
743 put_cpu();
744}
745
746void fastcall free_hot_page(struct page *page)
747{
748 free_hot_cold_page(page, 0);
749}
750
751void fastcall free_cold_page(struct page *page)
752{
753 free_hot_cold_page(page, 1);
754}
755
8dfcc9ba
NP
756/*
757 * split_page takes a non-compound higher-order page, and splits it into
758 * n (1<<order) sub-pages: page[0..n]
759 * Each sub-page must be freed individually.
760 *
761 * Note: this is probably too low level an operation for use in drivers.
762 * Please consult with lkml before using this in your driver.
763 */
764void split_page(struct page *page, unsigned int order)
765{
766 int i;
767
768 BUG_ON(PageCompound(page));
769 BUG_ON(!page_count(page));
7835e98b
NP
770 for (i = 1; i < (1 << order); i++)
771 set_page_refcounted(page + i);
8dfcc9ba 772}
8dfcc9ba 773
1da177e4
LT
774/*
775 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
776 * we cheat by calling it from here, in the order > 0 path. Saves a branch
777 * or two.
778 */
a74609fa
NP
779static struct page *buffered_rmqueue(struct zonelist *zonelist,
780 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
781{
782 unsigned long flags;
689bcebf 783 struct page *page;
1da177e4 784 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 785 int cpu;
1da177e4 786
689bcebf 787again:
a74609fa 788 cpu = get_cpu();
48db57f8 789 if (likely(order == 0)) {
1da177e4
LT
790 struct per_cpu_pages *pcp;
791
a74609fa 792 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 793 local_irq_save(flags);
a74609fa 794 if (!pcp->count) {
1da177e4
LT
795 pcp->count += rmqueue_bulk(zone, 0,
796 pcp->batch, &pcp->list);
a74609fa
NP
797 if (unlikely(!pcp->count))
798 goto failed;
1da177e4 799 }
a74609fa
NP
800 page = list_entry(pcp->list.next, struct page, lru);
801 list_del(&page->lru);
802 pcp->count--;
7fb1d9fc 803 } else {
1da177e4
LT
804 spin_lock_irqsave(&zone->lock, flags);
805 page = __rmqueue(zone, order);
a74609fa
NP
806 spin_unlock(&zone->lock);
807 if (!page)
808 goto failed;
1da177e4
LT
809 }
810
a74609fa
NP
811 __mod_page_state_zone(zone, pgalloc, 1 << order);
812 zone_statistics(zonelist, zone, cpu);
813 local_irq_restore(flags);
814 put_cpu();
1da177e4 815
a74609fa 816 BUG_ON(bad_range(zone, page));
17cf4406 817 if (prep_new_page(page, order, gfp_flags))
a74609fa 818 goto again;
1da177e4 819 return page;
a74609fa
NP
820
821failed:
822 local_irq_restore(flags);
823 put_cpu();
824 return NULL;
1da177e4
LT
825}
826
7fb1d9fc 827#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
828#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
829#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
830#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
831#define ALLOC_HARDER 0x10 /* try to alloc harder */
832#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
833#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 834
1da177e4
LT
835/*
836 * Return 1 if free pages are above 'mark'. This takes into account the order
837 * of the allocation.
838 */
839int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 840 int classzone_idx, int alloc_flags)
1da177e4
LT
841{
842 /* free_pages my go negative - that's OK */
843 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
844 int o;
845
7fb1d9fc 846 if (alloc_flags & ALLOC_HIGH)
1da177e4 847 min -= min / 2;
7fb1d9fc 848 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
849 min -= min / 4;
850
851 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
852 return 0;
853 for (o = 0; o < order; o++) {
854 /* At the next order, this order's pages become unavailable */
855 free_pages -= z->free_area[o].nr_free << o;
856
857 /* Require fewer higher order pages to be free */
858 min >>= 1;
859
860 if (free_pages <= min)
861 return 0;
862 }
863 return 1;
864}
865
7fb1d9fc
RS
866/*
867 * get_page_from_freeliest goes through the zonelist trying to allocate
868 * a page.
869 */
870static struct page *
871get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
872 struct zonelist *zonelist, int alloc_flags)
753ee728 873{
7fb1d9fc
RS
874 struct zone **z = zonelist->zones;
875 struct page *page = NULL;
876 int classzone_idx = zone_idx(*z);
877
878 /*
879 * Go through the zonelist once, looking for a zone with enough free.
880 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
881 */
882 do {
883 if ((alloc_flags & ALLOC_CPUSET) &&
884 !cpuset_zone_allowed(*z, gfp_mask))
885 continue;
886
887 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
888 unsigned long mark;
889 if (alloc_flags & ALLOC_WMARK_MIN)
890 mark = (*z)->pages_min;
891 else if (alloc_flags & ALLOC_WMARK_LOW)
892 mark = (*z)->pages_low;
893 else
894 mark = (*z)->pages_high;
895 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 896 classzone_idx, alloc_flags))
9eeff239
CL
897 if (!zone_reclaim_mode ||
898 !zone_reclaim(*z, gfp_mask, order))
899 continue;
7fb1d9fc
RS
900 }
901
a74609fa 902 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 903 if (page) {
7fb1d9fc
RS
904 break;
905 }
906 } while (*(++z) != NULL);
907 return page;
753ee728
MH
908}
909
1da177e4
LT
910/*
911 * This is the 'heart' of the zoned buddy allocator.
912 */
913struct page * fastcall
dd0fc66f 914__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
915 struct zonelist *zonelist)
916{
260b2367 917 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 918 struct zone **z;
1da177e4
LT
919 struct page *page;
920 struct reclaim_state reclaim_state;
921 struct task_struct *p = current;
1da177e4 922 int do_retry;
7fb1d9fc 923 int alloc_flags;
1da177e4
LT
924 int did_some_progress;
925
926 might_sleep_if(wait);
927
6b1de916 928restart:
7fb1d9fc 929 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 930
7fb1d9fc 931 if (unlikely(*z == NULL)) {
1da177e4
LT
932 /* Should this ever happen?? */
933 return NULL;
934 }
6b1de916 935
7fb1d9fc 936 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 937 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
938 if (page)
939 goto got_pg;
1da177e4 940
6b1de916 941 do {
7fb1d9fc 942 wakeup_kswapd(*z, order);
6b1de916 943 } while (*(++z));
1da177e4 944
9bf2229f 945 /*
7fb1d9fc
RS
946 * OK, we're below the kswapd watermark and have kicked background
947 * reclaim. Now things get more complex, so set up alloc_flags according
948 * to how we want to proceed.
949 *
950 * The caller may dip into page reserves a bit more if the caller
951 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
952 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
953 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 954 */
3148890b 955 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
956 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
957 alloc_flags |= ALLOC_HARDER;
958 if (gfp_mask & __GFP_HIGH)
959 alloc_flags |= ALLOC_HIGH;
47f3a867 960 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
961
962 /*
963 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 964 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
965 *
966 * This is the last chance, in general, before the goto nopage.
967 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 968 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 969 */
7fb1d9fc
RS
970 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
971 if (page)
972 goto got_pg;
1da177e4
LT
973
974 /* This allocation should allow future memory freeing. */
b84a35be
NP
975
976 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
977 && !in_interrupt()) {
978 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 979nofail_alloc:
b84a35be 980 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 981 page = get_page_from_freelist(gfp_mask, order,
47f3a867 982 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
983 if (page)
984 goto got_pg;
885036d3
KK
985 if (gfp_mask & __GFP_NOFAIL) {
986 blk_congestion_wait(WRITE, HZ/50);
987 goto nofail_alloc;
988 }
1da177e4
LT
989 }
990 goto nopage;
991 }
992
993 /* Atomic allocations - we can't balance anything */
994 if (!wait)
995 goto nopage;
996
997rebalance:
998 cond_resched();
999
1000 /* We now go into synchronous reclaim */
3e0d98b9 1001 cpuset_memory_pressure_bump();
1da177e4
LT
1002 p->flags |= PF_MEMALLOC;
1003 reclaim_state.reclaimed_slab = 0;
1004 p->reclaim_state = &reclaim_state;
1005
7fb1d9fc 1006 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1007
1008 p->reclaim_state = NULL;
1009 p->flags &= ~PF_MEMALLOC;
1010
1011 cond_resched();
1012
1013 if (likely(did_some_progress)) {
7fb1d9fc
RS
1014 page = get_page_from_freelist(gfp_mask, order,
1015 zonelist, alloc_flags);
1016 if (page)
1017 goto got_pg;
1da177e4
LT
1018 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1019 /*
1020 * Go through the zonelist yet one more time, keep
1021 * very high watermark here, this is only to catch
1022 * a parallel oom killing, we must fail if we're still
1023 * under heavy pressure.
1024 */
7fb1d9fc 1025 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1026 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1027 if (page)
1028 goto got_pg;
1da177e4 1029
9b0f8b04 1030 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1031 goto restart;
1032 }
1033
1034 /*
1035 * Don't let big-order allocations loop unless the caller explicitly
1036 * requests that. Wait for some write requests to complete then retry.
1037 *
1038 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1039 * <= 3, but that may not be true in other implementations.
1040 */
1041 do_retry = 0;
1042 if (!(gfp_mask & __GFP_NORETRY)) {
1043 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1044 do_retry = 1;
1045 if (gfp_mask & __GFP_NOFAIL)
1046 do_retry = 1;
1047 }
1048 if (do_retry) {
1049 blk_congestion_wait(WRITE, HZ/50);
1050 goto rebalance;
1051 }
1052
1053nopage:
1054 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1055 printk(KERN_WARNING "%s: page allocation failure."
1056 " order:%d, mode:0x%x\n",
1057 p->comm, order, gfp_mask);
1058 dump_stack();
578c2fd6 1059 show_mem();
1da177e4 1060 }
1da177e4 1061got_pg:
1da177e4
LT
1062 return page;
1063}
1064
1065EXPORT_SYMBOL(__alloc_pages);
1066
1067/*
1068 * Common helper functions.
1069 */
dd0fc66f 1070fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1071{
1072 struct page * page;
1073 page = alloc_pages(gfp_mask, order);
1074 if (!page)
1075 return 0;
1076 return (unsigned long) page_address(page);
1077}
1078
1079EXPORT_SYMBOL(__get_free_pages);
1080
dd0fc66f 1081fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1082{
1083 struct page * page;
1084
1085 /*
1086 * get_zeroed_page() returns a 32-bit address, which cannot represent
1087 * a highmem page
1088 */
260b2367 1089 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1090
1091 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1092 if (page)
1093 return (unsigned long) page_address(page);
1094 return 0;
1095}
1096
1097EXPORT_SYMBOL(get_zeroed_page);
1098
1099void __pagevec_free(struct pagevec *pvec)
1100{
1101 int i = pagevec_count(pvec);
1102
1103 while (--i >= 0)
1104 free_hot_cold_page(pvec->pages[i], pvec->cold);
1105}
1106
1107fastcall void __free_pages(struct page *page, unsigned int order)
1108{
b5810039 1109 if (put_page_testzero(page)) {
1da177e4
LT
1110 if (order == 0)
1111 free_hot_page(page);
1112 else
1113 __free_pages_ok(page, order);
1114 }
1115}
1116
1117EXPORT_SYMBOL(__free_pages);
1118
1119fastcall void free_pages(unsigned long addr, unsigned int order)
1120{
1121 if (addr != 0) {
1122 BUG_ON(!virt_addr_valid((void *)addr));
1123 __free_pages(virt_to_page((void *)addr), order);
1124 }
1125}
1126
1127EXPORT_SYMBOL(free_pages);
1128
1129/*
1130 * Total amount of free (allocatable) RAM:
1131 */
1132unsigned int nr_free_pages(void)
1133{
1134 unsigned int sum = 0;
1135 struct zone *zone;
1136
1137 for_each_zone(zone)
1138 sum += zone->free_pages;
1139
1140 return sum;
1141}
1142
1143EXPORT_SYMBOL(nr_free_pages);
1144
1145#ifdef CONFIG_NUMA
1146unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1147{
1148 unsigned int i, sum = 0;
1149
1150 for (i = 0; i < MAX_NR_ZONES; i++)
1151 sum += pgdat->node_zones[i].free_pages;
1152
1153 return sum;
1154}
1155#endif
1156
1157static unsigned int nr_free_zone_pages(int offset)
1158{
e310fd43
MB
1159 /* Just pick one node, since fallback list is circular */
1160 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1161 unsigned int sum = 0;
1162
e310fd43
MB
1163 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1164 struct zone **zonep = zonelist->zones;
1165 struct zone *zone;
1da177e4 1166
e310fd43
MB
1167 for (zone = *zonep++; zone; zone = *zonep++) {
1168 unsigned long size = zone->present_pages;
1169 unsigned long high = zone->pages_high;
1170 if (size > high)
1171 sum += size - high;
1da177e4
LT
1172 }
1173
1174 return sum;
1175}
1176
1177/*
1178 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1179 */
1180unsigned int nr_free_buffer_pages(void)
1181{
af4ca457 1182 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1183}
1184
1185/*
1186 * Amount of free RAM allocatable within all zones
1187 */
1188unsigned int nr_free_pagecache_pages(void)
1189{
af4ca457 1190 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1191}
1192
1193#ifdef CONFIG_HIGHMEM
1194unsigned int nr_free_highpages (void)
1195{
1196 pg_data_t *pgdat;
1197 unsigned int pages = 0;
1198
1199 for_each_pgdat(pgdat)
1200 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1201
1202 return pages;
1203}
1204#endif
1205
1206#ifdef CONFIG_NUMA
1207static void show_node(struct zone *zone)
1208{
1209 printk("Node %d ", zone->zone_pgdat->node_id);
1210}
1211#else
1212#define show_node(zone) do { } while (0)
1213#endif
1214
1215/*
1216 * Accumulate the page_state information across all CPUs.
1217 * The result is unavoidably approximate - it can change
1218 * during and after execution of this function.
1219 */
1220static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1221
1222atomic_t nr_pagecache = ATOMIC_INIT(0);
1223EXPORT_SYMBOL(nr_pagecache);
1224#ifdef CONFIG_SMP
1225DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1226#endif
1227
a86b1f53 1228static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4 1229{
b40607fc 1230 unsigned cpu;
1da177e4 1231
88a2a4ac 1232 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1233 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1234
b40607fc
AM
1235 for_each_cpu_mask(cpu, *cpumask) {
1236 unsigned long *in;
1237 unsigned long *out;
1238 unsigned off;
1239 unsigned next_cpu;
88a2a4ac 1240
1da177e4
LT
1241 in = (unsigned long *)&per_cpu(page_states, cpu);
1242
b40607fc
AM
1243 next_cpu = next_cpu(cpu, *cpumask);
1244 if (likely(next_cpu < NR_CPUS))
1245 prefetch(&per_cpu(page_states, next_cpu));
1da177e4
LT
1246
1247 out = (unsigned long *)ret;
1248 for (off = 0; off < nr; off++)
1249 *out++ += *in++;
1250 }
1251}
1252
c07e02db
MH
1253void get_page_state_node(struct page_state *ret, int node)
1254{
1255 int nr;
1256 cpumask_t mask = node_to_cpumask(node);
1257
1258 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1259 nr /= sizeof(unsigned long);
1260
1261 __get_page_state(ret, nr+1, &mask);
1262}
1263
1da177e4
LT
1264void get_page_state(struct page_state *ret)
1265{
1266 int nr;
c07e02db 1267 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1268
1269 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1270 nr /= sizeof(unsigned long);
1271
c07e02db 1272 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1273}
1274
1275void get_full_page_state(struct page_state *ret)
1276{
c07e02db
MH
1277 cpumask_t mask = CPU_MASK_ALL;
1278
1279 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1280}
1281
a74609fa 1282unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1283{
1284 unsigned long ret = 0;
1285 int cpu;
1286
84c2008a 1287 for_each_online_cpu(cpu) {
1da177e4
LT
1288 unsigned long in;
1289
1290 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1291 ret += *((unsigned long *)in);
1292 }
1293 return ret;
1294}
1295
a74609fa
NP
1296void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1297{
1298 void *ptr;
1299
1300 ptr = &__get_cpu_var(page_states);
1301 *(unsigned long *)(ptr + offset) += delta;
1302}
1303EXPORT_SYMBOL(__mod_page_state_offset);
1304
1305void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1306{
1307 unsigned long flags;
a74609fa 1308 void *ptr;
1da177e4
LT
1309
1310 local_irq_save(flags);
1311 ptr = &__get_cpu_var(page_states);
a74609fa 1312 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1313 local_irq_restore(flags);
1314}
a74609fa 1315EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1316
1317void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1318 unsigned long *free, struct pglist_data *pgdat)
1319{
1320 struct zone *zones = pgdat->node_zones;
1321 int i;
1322
1323 *active = 0;
1324 *inactive = 0;
1325 *free = 0;
1326 for (i = 0; i < MAX_NR_ZONES; i++) {
1327 *active += zones[i].nr_active;
1328 *inactive += zones[i].nr_inactive;
1329 *free += zones[i].free_pages;
1330 }
1331}
1332
1333void get_zone_counts(unsigned long *active,
1334 unsigned long *inactive, unsigned long *free)
1335{
1336 struct pglist_data *pgdat;
1337
1338 *active = 0;
1339 *inactive = 0;
1340 *free = 0;
1341 for_each_pgdat(pgdat) {
1342 unsigned long l, m, n;
1343 __get_zone_counts(&l, &m, &n, pgdat);
1344 *active += l;
1345 *inactive += m;
1346 *free += n;
1347 }
1348}
1349
1350void si_meminfo(struct sysinfo *val)
1351{
1352 val->totalram = totalram_pages;
1353 val->sharedram = 0;
1354 val->freeram = nr_free_pages();
1355 val->bufferram = nr_blockdev_pages();
1356#ifdef CONFIG_HIGHMEM
1357 val->totalhigh = totalhigh_pages;
1358 val->freehigh = nr_free_highpages();
1359#else
1360 val->totalhigh = 0;
1361 val->freehigh = 0;
1362#endif
1363 val->mem_unit = PAGE_SIZE;
1364}
1365
1366EXPORT_SYMBOL(si_meminfo);
1367
1368#ifdef CONFIG_NUMA
1369void si_meminfo_node(struct sysinfo *val, int nid)
1370{
1371 pg_data_t *pgdat = NODE_DATA(nid);
1372
1373 val->totalram = pgdat->node_present_pages;
1374 val->freeram = nr_free_pages_pgdat(pgdat);
1375 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1376 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1377 val->mem_unit = PAGE_SIZE;
1378}
1379#endif
1380
1381#define K(x) ((x) << (PAGE_SHIFT-10))
1382
1383/*
1384 * Show free area list (used inside shift_scroll-lock stuff)
1385 * We also calculate the percentage fragmentation. We do this by counting the
1386 * memory on each free list with the exception of the first item on the list.
1387 */
1388void show_free_areas(void)
1389{
1390 struct page_state ps;
1391 int cpu, temperature;
1392 unsigned long active;
1393 unsigned long inactive;
1394 unsigned long free;
1395 struct zone *zone;
1396
1397 for_each_zone(zone) {
1398 show_node(zone);
1399 printk("%s per-cpu:", zone->name);
1400
f3fe6512 1401 if (!populated_zone(zone)) {
1da177e4
LT
1402 printk(" empty\n");
1403 continue;
1404 } else
1405 printk("\n");
1406
6b482c67 1407 for_each_online_cpu(cpu) {
1da177e4
LT
1408 struct per_cpu_pageset *pageset;
1409
e7c8d5c9 1410 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1411
1412 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1413 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1414 cpu,
1415 temperature ? "cold" : "hot",
1da177e4 1416 pageset->pcp[temperature].high,
4ae7c039
CL
1417 pageset->pcp[temperature].batch,
1418 pageset->pcp[temperature].count);
1da177e4
LT
1419 }
1420 }
1421
1422 get_page_state(&ps);
1423 get_zone_counts(&active, &inactive, &free);
1424
c0d62219 1425 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1426 K(nr_free_pages()),
1427 K(nr_free_highpages()));
1428
1429 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1430 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1431 active,
1432 inactive,
1433 ps.nr_dirty,
1434 ps.nr_writeback,
1435 ps.nr_unstable,
1436 nr_free_pages(),
1437 ps.nr_slab,
1438 ps.nr_mapped,
1439 ps.nr_page_table_pages);
1440
1441 for_each_zone(zone) {
1442 int i;
1443
1444 show_node(zone);
1445 printk("%s"
1446 " free:%lukB"
1447 " min:%lukB"
1448 " low:%lukB"
1449 " high:%lukB"
1450 " active:%lukB"
1451 " inactive:%lukB"
1452 " present:%lukB"
1453 " pages_scanned:%lu"
1454 " all_unreclaimable? %s"
1455 "\n",
1456 zone->name,
1457 K(zone->free_pages),
1458 K(zone->pages_min),
1459 K(zone->pages_low),
1460 K(zone->pages_high),
1461 K(zone->nr_active),
1462 K(zone->nr_inactive),
1463 K(zone->present_pages),
1464 zone->pages_scanned,
1465 (zone->all_unreclaimable ? "yes" : "no")
1466 );
1467 printk("lowmem_reserve[]:");
1468 for (i = 0; i < MAX_NR_ZONES; i++)
1469 printk(" %lu", zone->lowmem_reserve[i]);
1470 printk("\n");
1471 }
1472
1473 for_each_zone(zone) {
1474 unsigned long nr, flags, order, total = 0;
1475
1476 show_node(zone);
1477 printk("%s: ", zone->name);
f3fe6512 1478 if (!populated_zone(zone)) {
1da177e4
LT
1479 printk("empty\n");
1480 continue;
1481 }
1482
1483 spin_lock_irqsave(&zone->lock, flags);
1484 for (order = 0; order < MAX_ORDER; order++) {
1485 nr = zone->free_area[order].nr_free;
1486 total += nr << order;
1487 printk("%lu*%lukB ", nr, K(1UL) << order);
1488 }
1489 spin_unlock_irqrestore(&zone->lock, flags);
1490 printk("= %lukB\n", K(total));
1491 }
1492
1493 show_swap_cache_info();
1494}
1495
1496/*
1497 * Builds allocation fallback zone lists.
1a93205b
CL
1498 *
1499 * Add all populated zones of a node to the zonelist.
1da177e4 1500 */
1a93205b 1501static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1502 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1503{
1a93205b
CL
1504 struct zone *zone;
1505
070f8032 1506 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1507
1508 do {
070f8032 1509 zone = pgdat->node_zones + zone_type;
1a93205b 1510 if (populated_zone(zone)) {
1da177e4 1511#ifndef CONFIG_HIGHMEM
070f8032 1512 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1513#endif
070f8032
CL
1514 zonelist->zones[nr_zones++] = zone;
1515 check_highest_zone(zone_type);
1da177e4 1516 }
070f8032 1517 zone_type--;
02a68a5e 1518
070f8032
CL
1519 } while (zone_type >= 0);
1520 return nr_zones;
1da177e4
LT
1521}
1522
260b2367
AV
1523static inline int highest_zone(int zone_bits)
1524{
1525 int res = ZONE_NORMAL;
1526 if (zone_bits & (__force int)__GFP_HIGHMEM)
1527 res = ZONE_HIGHMEM;
a2f1b424
AK
1528 if (zone_bits & (__force int)__GFP_DMA32)
1529 res = ZONE_DMA32;
260b2367
AV
1530 if (zone_bits & (__force int)__GFP_DMA)
1531 res = ZONE_DMA;
1532 return res;
1533}
1534
1da177e4
LT
1535#ifdef CONFIG_NUMA
1536#define MAX_NODE_LOAD (num_online_nodes())
1537static int __initdata node_load[MAX_NUMNODES];
1538/**
4dc3b16b 1539 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1540 * @node: node whose fallback list we're appending
1541 * @used_node_mask: nodemask_t of already used nodes
1542 *
1543 * We use a number of factors to determine which is the next node that should
1544 * appear on a given node's fallback list. The node should not have appeared
1545 * already in @node's fallback list, and it should be the next closest node
1546 * according to the distance array (which contains arbitrary distance values
1547 * from each node to each node in the system), and should also prefer nodes
1548 * with no CPUs, since presumably they'll have very little allocation pressure
1549 * on them otherwise.
1550 * It returns -1 if no node is found.
1551 */
1552static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1553{
4cf808eb 1554 int n, val;
1da177e4
LT
1555 int min_val = INT_MAX;
1556 int best_node = -1;
1557
4cf808eb
LT
1558 /* Use the local node if we haven't already */
1559 if (!node_isset(node, *used_node_mask)) {
1560 node_set(node, *used_node_mask);
1561 return node;
1562 }
1da177e4 1563
4cf808eb
LT
1564 for_each_online_node(n) {
1565 cpumask_t tmp;
1da177e4
LT
1566
1567 /* Don't want a node to appear more than once */
1568 if (node_isset(n, *used_node_mask))
1569 continue;
1570
1da177e4
LT
1571 /* Use the distance array to find the distance */
1572 val = node_distance(node, n);
1573
4cf808eb
LT
1574 /* Penalize nodes under us ("prefer the next node") */
1575 val += (n < node);
1576
1da177e4
LT
1577 /* Give preference to headless and unused nodes */
1578 tmp = node_to_cpumask(n);
1579 if (!cpus_empty(tmp))
1580 val += PENALTY_FOR_NODE_WITH_CPUS;
1581
1582 /* Slight preference for less loaded node */
1583 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1584 val += node_load[n];
1585
1586 if (val < min_val) {
1587 min_val = val;
1588 best_node = n;
1589 }
1590 }
1591
1592 if (best_node >= 0)
1593 node_set(best_node, *used_node_mask);
1594
1595 return best_node;
1596}
1597
1598static void __init build_zonelists(pg_data_t *pgdat)
1599{
1600 int i, j, k, node, local_node;
1601 int prev_node, load;
1602 struct zonelist *zonelist;
1603 nodemask_t used_mask;
1604
1605 /* initialize zonelists */
1606 for (i = 0; i < GFP_ZONETYPES; i++) {
1607 zonelist = pgdat->node_zonelists + i;
1608 zonelist->zones[0] = NULL;
1609 }
1610
1611 /* NUMA-aware ordering of nodes */
1612 local_node = pgdat->node_id;
1613 load = num_online_nodes();
1614 prev_node = local_node;
1615 nodes_clear(used_mask);
1616 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1617 int distance = node_distance(local_node, node);
1618
1619 /*
1620 * If another node is sufficiently far away then it is better
1621 * to reclaim pages in a zone before going off node.
1622 */
1623 if (distance > RECLAIM_DISTANCE)
1624 zone_reclaim_mode = 1;
1625
1da177e4
LT
1626 /*
1627 * We don't want to pressure a particular node.
1628 * So adding penalty to the first node in same
1629 * distance group to make it round-robin.
1630 */
9eeff239
CL
1631
1632 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1633 node_load[node] += load;
1634 prev_node = node;
1635 load--;
1636 for (i = 0; i < GFP_ZONETYPES; i++) {
1637 zonelist = pgdat->node_zonelists + i;
1638 for (j = 0; zonelist->zones[j] != NULL; j++);
1639
260b2367 1640 k = highest_zone(i);
1da177e4
LT
1641
1642 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1643 zonelist->zones[j] = NULL;
1644 }
1645 }
1646}
1647
1648#else /* CONFIG_NUMA */
1649
1650static void __init build_zonelists(pg_data_t *pgdat)
1651{
1652 int i, j, k, node, local_node;
1653
1654 local_node = pgdat->node_id;
1655 for (i = 0; i < GFP_ZONETYPES; i++) {
1656 struct zonelist *zonelist;
1657
1658 zonelist = pgdat->node_zonelists + i;
1659
1660 j = 0;
260b2367 1661 k = highest_zone(i);
1da177e4
LT
1662 j = build_zonelists_node(pgdat, zonelist, j, k);
1663 /*
1664 * Now we build the zonelist so that it contains the zones
1665 * of all the other nodes.
1666 * We don't want to pressure a particular node, so when
1667 * building the zones for node N, we make sure that the
1668 * zones coming right after the local ones are those from
1669 * node N+1 (modulo N)
1670 */
1671 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1672 if (!node_online(node))
1673 continue;
1674 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1675 }
1676 for (node = 0; node < local_node; node++) {
1677 if (!node_online(node))
1678 continue;
1679 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1680 }
1681
1682 zonelist->zones[j] = NULL;
1683 }
1684}
1685
1686#endif /* CONFIG_NUMA */
1687
1688void __init build_all_zonelists(void)
1689{
1690 int i;
1691
1692 for_each_online_node(i)
1693 build_zonelists(NODE_DATA(i));
1694 printk("Built %i zonelists\n", num_online_nodes());
1695 cpuset_init_current_mems_allowed();
1696}
1697
1698/*
1699 * Helper functions to size the waitqueue hash table.
1700 * Essentially these want to choose hash table sizes sufficiently
1701 * large so that collisions trying to wait on pages are rare.
1702 * But in fact, the number of active page waitqueues on typical
1703 * systems is ridiculously low, less than 200. So this is even
1704 * conservative, even though it seems large.
1705 *
1706 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1707 * waitqueues, i.e. the size of the waitq table given the number of pages.
1708 */
1709#define PAGES_PER_WAITQUEUE 256
1710
1711static inline unsigned long wait_table_size(unsigned long pages)
1712{
1713 unsigned long size = 1;
1714
1715 pages /= PAGES_PER_WAITQUEUE;
1716
1717 while (size < pages)
1718 size <<= 1;
1719
1720 /*
1721 * Once we have dozens or even hundreds of threads sleeping
1722 * on IO we've got bigger problems than wait queue collision.
1723 * Limit the size of the wait table to a reasonable size.
1724 */
1725 size = min(size, 4096UL);
1726
1727 return max(size, 4UL);
1728}
1729
1730/*
1731 * This is an integer logarithm so that shifts can be used later
1732 * to extract the more random high bits from the multiplicative
1733 * hash function before the remainder is taken.
1734 */
1735static inline unsigned long wait_table_bits(unsigned long size)
1736{
1737 return ffz(~size);
1738}
1739
1740#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1741
1742static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1743 unsigned long *zones_size, unsigned long *zholes_size)
1744{
1745 unsigned long realtotalpages, totalpages = 0;
1746 int i;
1747
1748 for (i = 0; i < MAX_NR_ZONES; i++)
1749 totalpages += zones_size[i];
1750 pgdat->node_spanned_pages = totalpages;
1751
1752 realtotalpages = totalpages;
1753 if (zholes_size)
1754 for (i = 0; i < MAX_NR_ZONES; i++)
1755 realtotalpages -= zholes_size[i];
1756 pgdat->node_present_pages = realtotalpages;
1757 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1758}
1759
1760
1761/*
1762 * Initially all pages are reserved - free ones are freed
1763 * up by free_all_bootmem() once the early boot process is
1764 * done. Non-atomic initialization, single-pass.
1765 */
c09b4240 1766void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1767 unsigned long start_pfn)
1768{
1da177e4 1769 struct page *page;
29751f69
AW
1770 unsigned long end_pfn = start_pfn + size;
1771 unsigned long pfn;
1da177e4 1772
cbe8dd4a 1773 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1774 if (!early_pfn_valid(pfn))
1775 continue;
1776 page = pfn_to_page(pfn);
1777 set_page_links(page, zone, nid, pfn);
7835e98b 1778 init_page_count(page);
1da177e4
LT
1779 reset_page_mapcount(page);
1780 SetPageReserved(page);
1781 INIT_LIST_HEAD(&page->lru);
1782#ifdef WANT_PAGE_VIRTUAL
1783 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1784 if (!is_highmem_idx(zone))
3212c6be 1785 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1786#endif
1da177e4
LT
1787 }
1788}
1789
1790void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1791 unsigned long size)
1792{
1793 int order;
1794 for (order = 0; order < MAX_ORDER ; order++) {
1795 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1796 zone->free_area[order].nr_free = 0;
1797 }
1798}
1799
d41dee36
AW
1800#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1801void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1802 unsigned long size)
1803{
1804 unsigned long snum = pfn_to_section_nr(pfn);
1805 unsigned long end = pfn_to_section_nr(pfn + size);
1806
1807 if (FLAGS_HAS_NODE)
1808 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1809 else
1810 for (; snum <= end; snum++)
1811 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1812}
1813
1da177e4
LT
1814#ifndef __HAVE_ARCH_MEMMAP_INIT
1815#define memmap_init(size, nid, zone, start_pfn) \
1816 memmap_init_zone((size), (nid), (zone), (start_pfn))
1817#endif
1818
6292d9aa 1819static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1820{
1821 int batch;
1822
1823 /*
1824 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1825 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1826 *
1827 * OK, so we don't know how big the cache is. So guess.
1828 */
1829 batch = zone->present_pages / 1024;
ba56e91c
SR
1830 if (batch * PAGE_SIZE > 512 * 1024)
1831 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1832 batch /= 4; /* We effectively *= 4 below */
1833 if (batch < 1)
1834 batch = 1;
1835
1836 /*
0ceaacc9
NP
1837 * Clamp the batch to a 2^n - 1 value. Having a power
1838 * of 2 value was found to be more likely to have
1839 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1840 *
0ceaacc9
NP
1841 * For example if 2 tasks are alternately allocating
1842 * batches of pages, one task can end up with a lot
1843 * of pages of one half of the possible page colors
1844 * and the other with pages of the other colors.
e7c8d5c9 1845 */
0ceaacc9 1846 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1847
e7c8d5c9
CL
1848 return batch;
1849}
1850
2caaad41
CL
1851inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1852{
1853 struct per_cpu_pages *pcp;
1854
1c6fe946
MD
1855 memset(p, 0, sizeof(*p));
1856
2caaad41
CL
1857 pcp = &p->pcp[0]; /* hot */
1858 pcp->count = 0;
2caaad41
CL
1859 pcp->high = 6 * batch;
1860 pcp->batch = max(1UL, 1 * batch);
1861 INIT_LIST_HEAD(&pcp->list);
1862
1863 pcp = &p->pcp[1]; /* cold*/
1864 pcp->count = 0;
2caaad41 1865 pcp->high = 2 * batch;
e46a5e28 1866 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1867 INIT_LIST_HEAD(&pcp->list);
1868}
1869
8ad4b1fb
RS
1870/*
1871 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1872 * to the value high for the pageset p.
1873 */
1874
1875static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1876 unsigned long high)
1877{
1878 struct per_cpu_pages *pcp;
1879
1880 pcp = &p->pcp[0]; /* hot list */
1881 pcp->high = high;
1882 pcp->batch = max(1UL, high/4);
1883 if ((high/4) > (PAGE_SHIFT * 8))
1884 pcp->batch = PAGE_SHIFT * 8;
1885}
1886
1887
e7c8d5c9
CL
1888#ifdef CONFIG_NUMA
1889/*
2caaad41
CL
1890 * Boot pageset table. One per cpu which is going to be used for all
1891 * zones and all nodes. The parameters will be set in such a way
1892 * that an item put on a list will immediately be handed over to
1893 * the buddy list. This is safe since pageset manipulation is done
1894 * with interrupts disabled.
1895 *
1896 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1897 *
1898 * The boot_pagesets must be kept even after bootup is complete for
1899 * unused processors and/or zones. They do play a role for bootstrapping
1900 * hotplugged processors.
1901 *
1902 * zoneinfo_show() and maybe other functions do
1903 * not check if the processor is online before following the pageset pointer.
1904 * Other parts of the kernel may not check if the zone is available.
2caaad41 1905 */
88a2a4ac 1906static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1907
1908/*
1909 * Dynamically allocate memory for the
e7c8d5c9
CL
1910 * per cpu pageset array in struct zone.
1911 */
6292d9aa 1912static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1913{
1914 struct zone *zone, *dzone;
e7c8d5c9
CL
1915
1916 for_each_zone(zone) {
e7c8d5c9 1917
23316bc8 1918 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1919 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1920 if (!zone_pcp(zone, cpu))
e7c8d5c9 1921 goto bad;
e7c8d5c9 1922
23316bc8 1923 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1924
1925 if (percpu_pagelist_fraction)
1926 setup_pagelist_highmark(zone_pcp(zone, cpu),
1927 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1928 }
1929
1930 return 0;
1931bad:
1932 for_each_zone(dzone) {
1933 if (dzone == zone)
1934 break;
23316bc8
NP
1935 kfree(zone_pcp(dzone, cpu));
1936 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1937 }
1938 return -ENOMEM;
1939}
1940
1941static inline void free_zone_pagesets(int cpu)
1942{
e7c8d5c9
CL
1943 struct zone *zone;
1944
1945 for_each_zone(zone) {
1946 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1947
1948 zone_pcp(zone, cpu) = NULL;
1949 kfree(pset);
1950 }
e7c8d5c9
CL
1951}
1952
6292d9aa 1953static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1954 unsigned long action,
1955 void *hcpu)
1956{
1957 int cpu = (long)hcpu;
1958 int ret = NOTIFY_OK;
1959
1960 switch (action) {
1961 case CPU_UP_PREPARE:
1962 if (process_zones(cpu))
1963 ret = NOTIFY_BAD;
1964 break;
b0d41693 1965 case CPU_UP_CANCELED:
e7c8d5c9
CL
1966 case CPU_DEAD:
1967 free_zone_pagesets(cpu);
1968 break;
e7c8d5c9
CL
1969 default:
1970 break;
1971 }
1972 return ret;
1973}
1974
1975static struct notifier_block pageset_notifier =
1976 { &pageset_cpuup_callback, NULL, 0 };
1977
78d9955b 1978void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1979{
1980 int err;
1981
1982 /* Initialize per_cpu_pageset for cpu 0.
1983 * A cpuup callback will do this for every cpu
1984 * as it comes online
1985 */
1986 err = process_zones(smp_processor_id());
1987 BUG_ON(err);
1988 register_cpu_notifier(&pageset_notifier);
1989}
1990
1991#endif
1992
c09b4240 1993static __meminit
ed8ece2e
DH
1994void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1995{
1996 int i;
1997 struct pglist_data *pgdat = zone->zone_pgdat;
1998
1999 /*
2000 * The per-page waitqueue mechanism uses hashed waitqueues
2001 * per zone.
2002 */
2003 zone->wait_table_size = wait_table_size(zone_size_pages);
2004 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2005 zone->wait_table = (wait_queue_head_t *)
2006 alloc_bootmem_node(pgdat, zone->wait_table_size
2007 * sizeof(wait_queue_head_t));
2008
2009 for(i = 0; i < zone->wait_table_size; ++i)
2010 init_waitqueue_head(zone->wait_table + i);
2011}
2012
c09b4240 2013static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2014{
2015 int cpu;
2016 unsigned long batch = zone_batchsize(zone);
2017
2018 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2019#ifdef CONFIG_NUMA
2020 /* Early boot. Slab allocator not functional yet */
23316bc8 2021 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2022 setup_pageset(&boot_pageset[cpu],0);
2023#else
2024 setup_pageset(zone_pcp(zone,cpu), batch);
2025#endif
2026 }
2027 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2028 zone->name, zone->present_pages, batch);
2029}
2030
c09b4240 2031static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2032 unsigned long zone_start_pfn, unsigned long size)
2033{
2034 struct pglist_data *pgdat = zone->zone_pgdat;
2035
2036 zone_wait_table_init(zone, size);
2037 pgdat->nr_zones = zone_idx(zone) + 1;
2038
2039 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2040 zone->zone_start_pfn = zone_start_pfn;
2041
2042 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2043
2044 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2045}
2046
1da177e4
LT
2047/*
2048 * Set up the zone data structures:
2049 * - mark all pages reserved
2050 * - mark all memory queues empty
2051 * - clear the memory bitmaps
2052 */
2053static void __init free_area_init_core(struct pglist_data *pgdat,
2054 unsigned long *zones_size, unsigned long *zholes_size)
2055{
ed8ece2e
DH
2056 unsigned long j;
2057 int nid = pgdat->node_id;
1da177e4
LT
2058 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2059
208d54e5 2060 pgdat_resize_init(pgdat);
1da177e4
LT
2061 pgdat->nr_zones = 0;
2062 init_waitqueue_head(&pgdat->kswapd_wait);
2063 pgdat->kswapd_max_order = 0;
2064
2065 for (j = 0; j < MAX_NR_ZONES; j++) {
2066 struct zone *zone = pgdat->node_zones + j;
2067 unsigned long size, realsize;
1da177e4 2068
1da177e4
LT
2069 realsize = size = zones_size[j];
2070 if (zholes_size)
2071 realsize -= zholes_size[j];
2072
a2f1b424 2073 if (j < ZONE_HIGHMEM)
1da177e4
LT
2074 nr_kernel_pages += realsize;
2075 nr_all_pages += realsize;
2076
2077 zone->spanned_pages = size;
2078 zone->present_pages = realsize;
2079 zone->name = zone_names[j];
2080 spin_lock_init(&zone->lock);
2081 spin_lock_init(&zone->lru_lock);
bdc8cb98 2082 zone_seqlock_init(zone);
1da177e4
LT
2083 zone->zone_pgdat = pgdat;
2084 zone->free_pages = 0;
2085
2086 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2087
ed8ece2e 2088 zone_pcp_init(zone);
1da177e4
LT
2089 INIT_LIST_HEAD(&zone->active_list);
2090 INIT_LIST_HEAD(&zone->inactive_list);
2091 zone->nr_scan_active = 0;
2092 zone->nr_scan_inactive = 0;
2093 zone->nr_active = 0;
2094 zone->nr_inactive = 0;
53e9a615 2095 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2096 if (!size)
2097 continue;
2098
d41dee36 2099 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2100 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2101 zone_start_pfn += size;
1da177e4
LT
2102 }
2103}
2104
2105static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2106{
1da177e4
LT
2107 /* Skip empty nodes */
2108 if (!pgdat->node_spanned_pages)
2109 return;
2110
d41dee36 2111#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2112 /* ia64 gets its own node_mem_map, before this, without bootmem */
2113 if (!pgdat->node_mem_map) {
d41dee36
AW
2114 unsigned long size;
2115 struct page *map;
2116
1da177e4 2117 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2118 map = alloc_remap(pgdat->node_id, size);
2119 if (!map)
2120 map = alloc_bootmem_node(pgdat, size);
2121 pgdat->node_mem_map = map;
1da177e4 2122 }
d41dee36 2123#ifdef CONFIG_FLATMEM
1da177e4
LT
2124 /*
2125 * With no DISCONTIG, the global mem_map is just set as node 0's
2126 */
2127 if (pgdat == NODE_DATA(0))
2128 mem_map = NODE_DATA(0)->node_mem_map;
2129#endif
d41dee36 2130#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2131}
2132
2133void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2134 unsigned long *zones_size, unsigned long node_start_pfn,
2135 unsigned long *zholes_size)
2136{
2137 pgdat->node_id = nid;
2138 pgdat->node_start_pfn = node_start_pfn;
2139 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2140
2141 alloc_node_mem_map(pgdat);
2142
2143 free_area_init_core(pgdat, zones_size, zholes_size);
2144}
2145
93b7504e 2146#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2147static bootmem_data_t contig_bootmem_data;
2148struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2149
2150EXPORT_SYMBOL(contig_page_data);
93b7504e 2151#endif
1da177e4
LT
2152
2153void __init free_area_init(unsigned long *zones_size)
2154{
93b7504e 2155 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2156 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2157}
1da177e4
LT
2158
2159#ifdef CONFIG_PROC_FS
2160
2161#include <linux/seq_file.h>
2162
2163static void *frag_start(struct seq_file *m, loff_t *pos)
2164{
2165 pg_data_t *pgdat;
2166 loff_t node = *pos;
2167
2168 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2169 --node;
2170
2171 return pgdat;
2172}
2173
2174static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2175{
2176 pg_data_t *pgdat = (pg_data_t *)arg;
2177
2178 (*pos)++;
2179 return pgdat->pgdat_next;
2180}
2181
2182static void frag_stop(struct seq_file *m, void *arg)
2183{
2184}
2185
2186/*
2187 * This walks the free areas for each zone.
2188 */
2189static int frag_show(struct seq_file *m, void *arg)
2190{
2191 pg_data_t *pgdat = (pg_data_t *)arg;
2192 struct zone *zone;
2193 struct zone *node_zones = pgdat->node_zones;
2194 unsigned long flags;
2195 int order;
2196
2197 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2198 if (!populated_zone(zone))
1da177e4
LT
2199 continue;
2200
2201 spin_lock_irqsave(&zone->lock, flags);
2202 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2203 for (order = 0; order < MAX_ORDER; ++order)
2204 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2205 spin_unlock_irqrestore(&zone->lock, flags);
2206 seq_putc(m, '\n');
2207 }
2208 return 0;
2209}
2210
2211struct seq_operations fragmentation_op = {
2212 .start = frag_start,
2213 .next = frag_next,
2214 .stop = frag_stop,
2215 .show = frag_show,
2216};
2217
295ab934
ND
2218/*
2219 * Output information about zones in @pgdat.
2220 */
2221static int zoneinfo_show(struct seq_file *m, void *arg)
2222{
2223 pg_data_t *pgdat = arg;
2224 struct zone *zone;
2225 struct zone *node_zones = pgdat->node_zones;
2226 unsigned long flags;
2227
2228 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2229 int i;
2230
f3fe6512 2231 if (!populated_zone(zone))
295ab934
ND
2232 continue;
2233
2234 spin_lock_irqsave(&zone->lock, flags);
2235 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2236 seq_printf(m,
2237 "\n pages free %lu"
2238 "\n min %lu"
2239 "\n low %lu"
2240 "\n high %lu"
2241 "\n active %lu"
2242 "\n inactive %lu"
2243 "\n scanned %lu (a: %lu i: %lu)"
2244 "\n spanned %lu"
2245 "\n present %lu",
2246 zone->free_pages,
2247 zone->pages_min,
2248 zone->pages_low,
2249 zone->pages_high,
2250 zone->nr_active,
2251 zone->nr_inactive,
2252 zone->pages_scanned,
2253 zone->nr_scan_active, zone->nr_scan_inactive,
2254 zone->spanned_pages,
2255 zone->present_pages);
2256 seq_printf(m,
2257 "\n protection: (%lu",
2258 zone->lowmem_reserve[0]);
2259 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2260 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2261 seq_printf(m,
2262 ")"
2263 "\n pagesets");
23316bc8 2264 for_each_online_cpu(i) {
295ab934
ND
2265 struct per_cpu_pageset *pageset;
2266 int j;
2267
e7c8d5c9 2268 pageset = zone_pcp(zone, i);
295ab934
ND
2269 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2270 if (pageset->pcp[j].count)
2271 break;
2272 }
2273 if (j == ARRAY_SIZE(pageset->pcp))
2274 continue;
2275 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2276 seq_printf(m,
2277 "\n cpu: %i pcp: %i"
2278 "\n count: %i"
295ab934
ND
2279 "\n high: %i"
2280 "\n batch: %i",
2281 i, j,
2282 pageset->pcp[j].count,
295ab934
ND
2283 pageset->pcp[j].high,
2284 pageset->pcp[j].batch);
2285 }
2286#ifdef CONFIG_NUMA
2287 seq_printf(m,
2288 "\n numa_hit: %lu"
2289 "\n numa_miss: %lu"
2290 "\n numa_foreign: %lu"
2291 "\n interleave_hit: %lu"
2292 "\n local_node: %lu"
2293 "\n other_node: %lu",
2294 pageset->numa_hit,
2295 pageset->numa_miss,
2296 pageset->numa_foreign,
2297 pageset->interleave_hit,
2298 pageset->local_node,
2299 pageset->other_node);
2300#endif
2301 }
2302 seq_printf(m,
2303 "\n all_unreclaimable: %u"
2304 "\n prev_priority: %i"
2305 "\n temp_priority: %i"
2306 "\n start_pfn: %lu",
2307 zone->all_unreclaimable,
2308 zone->prev_priority,
2309 zone->temp_priority,
2310 zone->zone_start_pfn);
2311 spin_unlock_irqrestore(&zone->lock, flags);
2312 seq_putc(m, '\n');
2313 }
2314 return 0;
2315}
2316
2317struct seq_operations zoneinfo_op = {
2318 .start = frag_start, /* iterate over all zones. The same as in
2319 * fragmentation. */
2320 .next = frag_next,
2321 .stop = frag_stop,
2322 .show = zoneinfo_show,
2323};
2324
1da177e4
LT
2325static char *vmstat_text[] = {
2326 "nr_dirty",
2327 "nr_writeback",
2328 "nr_unstable",
2329 "nr_page_table_pages",
2330 "nr_mapped",
2331 "nr_slab",
2332
2333 "pgpgin",
2334 "pgpgout",
2335 "pswpin",
2336 "pswpout",
1da177e4 2337
9328b8fa 2338 "pgalloc_high",
1da177e4 2339 "pgalloc_normal",
9328b8fa 2340 "pgalloc_dma32",
1da177e4 2341 "pgalloc_dma",
9328b8fa 2342
1da177e4
LT
2343 "pgfree",
2344 "pgactivate",
2345 "pgdeactivate",
2346
2347 "pgfault",
2348 "pgmajfault",
9328b8fa 2349
1da177e4
LT
2350 "pgrefill_high",
2351 "pgrefill_normal",
9328b8fa 2352 "pgrefill_dma32",
1da177e4
LT
2353 "pgrefill_dma",
2354
2355 "pgsteal_high",
2356 "pgsteal_normal",
9328b8fa 2357 "pgsteal_dma32",
1da177e4 2358 "pgsteal_dma",
9328b8fa 2359
1da177e4
LT
2360 "pgscan_kswapd_high",
2361 "pgscan_kswapd_normal",
9328b8fa 2362 "pgscan_kswapd_dma32",
1da177e4 2363 "pgscan_kswapd_dma",
9328b8fa 2364
1da177e4
LT
2365 "pgscan_direct_high",
2366 "pgscan_direct_normal",
9328b8fa 2367 "pgscan_direct_dma32",
1da177e4 2368 "pgscan_direct_dma",
1da177e4 2369
9328b8fa 2370 "pginodesteal",
1da177e4
LT
2371 "slabs_scanned",
2372 "kswapd_steal",
2373 "kswapd_inodesteal",
2374 "pageoutrun",
2375 "allocstall",
2376
2377 "pgrotated",
edfbe2b0 2378 "nr_bounce",
1da177e4
LT
2379};
2380
2381static void *vmstat_start(struct seq_file *m, loff_t *pos)
2382{
2383 struct page_state *ps;
2384
2385 if (*pos >= ARRAY_SIZE(vmstat_text))
2386 return NULL;
2387
2388 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2389 m->private = ps;
2390 if (!ps)
2391 return ERR_PTR(-ENOMEM);
2392 get_full_page_state(ps);
2393 ps->pgpgin /= 2; /* sectors -> kbytes */
2394 ps->pgpgout /= 2;
2395 return (unsigned long *)ps + *pos;
2396}
2397
2398static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2399{
2400 (*pos)++;
2401 if (*pos >= ARRAY_SIZE(vmstat_text))
2402 return NULL;
2403 return (unsigned long *)m->private + *pos;
2404}
2405
2406static int vmstat_show(struct seq_file *m, void *arg)
2407{
2408 unsigned long *l = arg;
2409 unsigned long off = l - (unsigned long *)m->private;
2410
2411 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2412 return 0;
2413}
2414
2415static void vmstat_stop(struct seq_file *m, void *arg)
2416{
2417 kfree(m->private);
2418 m->private = NULL;
2419}
2420
2421struct seq_operations vmstat_op = {
2422 .start = vmstat_start,
2423 .next = vmstat_next,
2424 .stop = vmstat_stop,
2425 .show = vmstat_show,
2426};
2427
2428#endif /* CONFIG_PROC_FS */
2429
2430#ifdef CONFIG_HOTPLUG_CPU
2431static int page_alloc_cpu_notify(struct notifier_block *self,
2432 unsigned long action, void *hcpu)
2433{
2434 int cpu = (unsigned long)hcpu;
2435 long *count;
2436 unsigned long *src, *dest;
2437
2438 if (action == CPU_DEAD) {
2439 int i;
2440
2441 /* Drain local pagecache count. */
2442 count = &per_cpu(nr_pagecache_local, cpu);
2443 atomic_add(*count, &nr_pagecache);
2444 *count = 0;
2445 local_irq_disable();
2446 __drain_pages(cpu);
2447
2448 /* Add dead cpu's page_states to our own. */
2449 dest = (unsigned long *)&__get_cpu_var(page_states);
2450 src = (unsigned long *)&per_cpu(page_states, cpu);
2451
2452 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2453 i++) {
2454 dest[i] += src[i];
2455 src[i] = 0;
2456 }
2457
2458 local_irq_enable();
2459 }
2460 return NOTIFY_OK;
2461}
2462#endif /* CONFIG_HOTPLUG_CPU */
2463
2464void __init page_alloc_init(void)
2465{
2466 hotcpu_notifier(page_alloc_cpu_notify, 0);
2467}
2468
2469/*
2470 * setup_per_zone_lowmem_reserve - called whenever
2471 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2472 * has a correct pages reserved value, so an adequate number of
2473 * pages are left in the zone after a successful __alloc_pages().
2474 */
2475static void setup_per_zone_lowmem_reserve(void)
2476{
2477 struct pglist_data *pgdat;
2478 int j, idx;
2479
2480 for_each_pgdat(pgdat) {
2481 for (j = 0; j < MAX_NR_ZONES; j++) {
2482 struct zone *zone = pgdat->node_zones + j;
2483 unsigned long present_pages = zone->present_pages;
2484
2485 zone->lowmem_reserve[j] = 0;
2486
2487 for (idx = j-1; idx >= 0; idx--) {
2488 struct zone *lower_zone;
2489
2490 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2491 sysctl_lowmem_reserve_ratio[idx] = 1;
2492
2493 lower_zone = pgdat->node_zones + idx;
2494 lower_zone->lowmem_reserve[j] = present_pages /
2495 sysctl_lowmem_reserve_ratio[idx];
2496 present_pages += lower_zone->present_pages;
2497 }
2498 }
2499 }
2500}
2501
2502/*
2503 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2504 * that the pages_{min,low,high} values for each zone are set correctly
2505 * with respect to min_free_kbytes.
2506 */
3947be19 2507void setup_per_zone_pages_min(void)
1da177e4
LT
2508{
2509 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2510 unsigned long lowmem_pages = 0;
2511 struct zone *zone;
2512 unsigned long flags;
2513
2514 /* Calculate total number of !ZONE_HIGHMEM pages */
2515 for_each_zone(zone) {
2516 if (!is_highmem(zone))
2517 lowmem_pages += zone->present_pages;
2518 }
2519
2520 for_each_zone(zone) {
669ed175 2521 unsigned long tmp;
1da177e4 2522 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2523 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2524 if (is_highmem(zone)) {
2525 /*
669ed175
NP
2526 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2527 * need highmem pages, so cap pages_min to a small
2528 * value here.
2529 *
2530 * The (pages_high-pages_low) and (pages_low-pages_min)
2531 * deltas controls asynch page reclaim, and so should
2532 * not be capped for highmem.
1da177e4
LT
2533 */
2534 int min_pages;
2535
2536 min_pages = zone->present_pages / 1024;
2537 if (min_pages < SWAP_CLUSTER_MAX)
2538 min_pages = SWAP_CLUSTER_MAX;
2539 if (min_pages > 128)
2540 min_pages = 128;
2541 zone->pages_min = min_pages;
2542 } else {
669ed175
NP
2543 /*
2544 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2545 * proportionate to the zone's size.
2546 */
669ed175 2547 zone->pages_min = tmp;
1da177e4
LT
2548 }
2549
669ed175
NP
2550 zone->pages_low = zone->pages_min + tmp / 4;
2551 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2552 spin_unlock_irqrestore(&zone->lru_lock, flags);
2553 }
2554}
2555
2556/*
2557 * Initialise min_free_kbytes.
2558 *
2559 * For small machines we want it small (128k min). For large machines
2560 * we want it large (64MB max). But it is not linear, because network
2561 * bandwidth does not increase linearly with machine size. We use
2562 *
2563 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2564 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2565 *
2566 * which yields
2567 *
2568 * 16MB: 512k
2569 * 32MB: 724k
2570 * 64MB: 1024k
2571 * 128MB: 1448k
2572 * 256MB: 2048k
2573 * 512MB: 2896k
2574 * 1024MB: 4096k
2575 * 2048MB: 5792k
2576 * 4096MB: 8192k
2577 * 8192MB: 11584k
2578 * 16384MB: 16384k
2579 */
2580static int __init init_per_zone_pages_min(void)
2581{
2582 unsigned long lowmem_kbytes;
2583
2584 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2585
2586 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2587 if (min_free_kbytes < 128)
2588 min_free_kbytes = 128;
2589 if (min_free_kbytes > 65536)
2590 min_free_kbytes = 65536;
2591 setup_per_zone_pages_min();
2592 setup_per_zone_lowmem_reserve();
2593 return 0;
2594}
2595module_init(init_per_zone_pages_min)
2596
2597/*
2598 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2599 * that we can call two helper functions whenever min_free_kbytes
2600 * changes.
2601 */
2602int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2603 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2604{
2605 proc_dointvec(table, write, file, buffer, length, ppos);
2606 setup_per_zone_pages_min();
2607 return 0;
2608}
2609
2610/*
2611 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2612 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2613 * whenever sysctl_lowmem_reserve_ratio changes.
2614 *
2615 * The reserve ratio obviously has absolutely no relation with the
2616 * pages_min watermarks. The lowmem reserve ratio can only make sense
2617 * if in function of the boot time zone sizes.
2618 */
2619int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2620 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2621{
2622 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2623 setup_per_zone_lowmem_reserve();
2624 return 0;
2625}
2626
8ad4b1fb
RS
2627/*
2628 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2629 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2630 * can have before it gets flushed back to buddy allocator.
2631 */
2632
2633int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2634 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2635{
2636 struct zone *zone;
2637 unsigned int cpu;
2638 int ret;
2639
2640 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2641 if (!write || (ret == -EINVAL))
2642 return ret;
2643 for_each_zone(zone) {
2644 for_each_online_cpu(cpu) {
2645 unsigned long high;
2646 high = zone->present_pages / percpu_pagelist_fraction;
2647 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2648 }
2649 }
2650 return 0;
2651}
2652
1da177e4
LT
2653__initdata int hashdist = HASHDIST_DEFAULT;
2654
2655#ifdef CONFIG_NUMA
2656static int __init set_hashdist(char *str)
2657{
2658 if (!str)
2659 return 0;
2660 hashdist = simple_strtoul(str, &str, 0);
2661 return 1;
2662}
2663__setup("hashdist=", set_hashdist);
2664#endif
2665
2666/*
2667 * allocate a large system hash table from bootmem
2668 * - it is assumed that the hash table must contain an exact power-of-2
2669 * quantity of entries
2670 * - limit is the number of hash buckets, not the total allocation size
2671 */
2672void *__init alloc_large_system_hash(const char *tablename,
2673 unsigned long bucketsize,
2674 unsigned long numentries,
2675 int scale,
2676 int flags,
2677 unsigned int *_hash_shift,
2678 unsigned int *_hash_mask,
2679 unsigned long limit)
2680{
2681 unsigned long long max = limit;
2682 unsigned long log2qty, size;
2683 void *table = NULL;
2684
2685 /* allow the kernel cmdline to have a say */
2686 if (!numentries) {
2687 /* round applicable memory size up to nearest megabyte */
2688 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2689 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2690 numentries >>= 20 - PAGE_SHIFT;
2691 numentries <<= 20 - PAGE_SHIFT;
2692
2693 /* limit to 1 bucket per 2^scale bytes of low memory */
2694 if (scale > PAGE_SHIFT)
2695 numentries >>= (scale - PAGE_SHIFT);
2696 else
2697 numentries <<= (PAGE_SHIFT - scale);
2698 }
2699 /* rounded up to nearest power of 2 in size */
2700 numentries = 1UL << (long_log2(numentries) + 1);
2701
2702 /* limit allocation size to 1/16 total memory by default */
2703 if (max == 0) {
2704 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2705 do_div(max, bucketsize);
2706 }
2707
2708 if (numentries > max)
2709 numentries = max;
2710
2711 log2qty = long_log2(numentries);
2712
2713 do {
2714 size = bucketsize << log2qty;
2715 if (flags & HASH_EARLY)
2716 table = alloc_bootmem(size);
2717 else if (hashdist)
2718 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2719 else {
2720 unsigned long order;
2721 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2722 ;
2723 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2724 }
2725 } while (!table && size > PAGE_SIZE && --log2qty);
2726
2727 if (!table)
2728 panic("Failed to allocate %s hash table\n", tablename);
2729
2730 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2731 tablename,
2732 (1U << log2qty),
2733 long_log2(size) - PAGE_SHIFT,
2734 size);
2735
2736 if (_hash_shift)
2737 *_hash_shift = log2qty;
2738 if (_hash_mask)
2739 *_hash_mask = (1 << log2qty) - 1;
2740
2741 return table;
2742}