mm: meminit: free pages in large chunks where possible
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
3a80a7fa
MG
238#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
239static inline void reset_deferred_meminit(pg_data_t *pgdat)
240{
241 pgdat->first_deferred_pfn = ULONG_MAX;
242}
243
244/* Returns true if the struct page for the pfn is uninitialised */
245static inline bool __defermem_init early_page_uninitialised(unsigned long pfn)
246{
247 int nid = early_pfn_to_nid(pfn);
248
249 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
250 return true;
251
252 return false;
253}
254
7e18adb4
MG
255static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256{
257 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 return true;
259
260 return false;
261}
262
3a80a7fa
MG
263/*
264 * Returns false when the remaining initialisation should be deferred until
265 * later in the boot cycle when it can be parallelised.
266 */
267static inline bool update_defer_init(pg_data_t *pgdat,
268 unsigned long pfn, unsigned long zone_end,
269 unsigned long *nr_initialised)
270{
271 /* Always populate low zones for address-contrained allocations */
272 if (zone_end < pgdat_end_pfn(pgdat))
273 return true;
274
275 /* Initialise at least 2G of the highest zone */
276 (*nr_initialised)++;
277 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 pgdat->first_deferred_pfn = pfn;
280 return false;
281 }
282
283 return true;
284}
285#else
286static inline void reset_deferred_meminit(pg_data_t *pgdat)
287{
288}
289
290static inline bool early_page_uninitialised(unsigned long pfn)
291{
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 return false;
298}
299
3a80a7fa
MG
300static inline bool update_defer_init(pg_data_t *pgdat,
301 unsigned long pfn, unsigned long zone_end,
302 unsigned long *nr_initialised)
303{
304 return true;
305}
306#endif
307
308
ee6f509c 309void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 310{
5d0f3f72
KM
311 if (unlikely(page_group_by_mobility_disabled &&
312 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
313 migratetype = MIGRATE_UNMOVABLE;
314
b2a0ac88
MG
315 set_pageblock_flags_group(page, (unsigned long)migratetype,
316 PB_migrate, PB_migrate_end);
317}
318
13e7444b 319#ifdef CONFIG_DEBUG_VM
c6a57e19 320static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 321{
bdc8cb98
DH
322 int ret = 0;
323 unsigned seq;
324 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 325 unsigned long sp, start_pfn;
c6a57e19 326
bdc8cb98
DH
327 do {
328 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
329 start_pfn = zone->zone_start_pfn;
330 sp = zone->spanned_pages;
108bcc96 331 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
332 ret = 1;
333 } while (zone_span_seqretry(zone, seq));
334
b5e6a5a2 335 if (ret)
613813e8
DH
336 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 pfn, zone_to_nid(zone), zone->name,
338 start_pfn, start_pfn + sp);
b5e6a5a2 339
bdc8cb98 340 return ret;
c6a57e19
DH
341}
342
343static int page_is_consistent(struct zone *zone, struct page *page)
344{
14e07298 345 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 346 return 0;
1da177e4 347 if (zone != page_zone(page))
c6a57e19
DH
348 return 0;
349
350 return 1;
351}
352/*
353 * Temporary debugging check for pages not lying within a given zone.
354 */
355static int bad_range(struct zone *zone, struct page *page)
356{
357 if (page_outside_zone_boundaries(zone, page))
1da177e4 358 return 1;
c6a57e19
DH
359 if (!page_is_consistent(zone, page))
360 return 1;
361
1da177e4
LT
362 return 0;
363}
13e7444b
NP
364#else
365static inline int bad_range(struct zone *zone, struct page *page)
366{
367 return 0;
368}
369#endif
370
d230dec1
KS
371static void bad_page(struct page *page, const char *reason,
372 unsigned long bad_flags)
1da177e4 373{
d936cf9b
HD
374 static unsigned long resume;
375 static unsigned long nr_shown;
376 static unsigned long nr_unshown;
377
2a7684a2
WF
378 /* Don't complain about poisoned pages */
379 if (PageHWPoison(page)) {
22b751c3 380 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
381 return;
382 }
383
d936cf9b
HD
384 /*
385 * Allow a burst of 60 reports, then keep quiet for that minute;
386 * or allow a steady drip of one report per second.
387 */
388 if (nr_shown == 60) {
389 if (time_before(jiffies, resume)) {
390 nr_unshown++;
391 goto out;
392 }
393 if (nr_unshown) {
1e9e6365
HD
394 printk(KERN_ALERT
395 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
396 nr_unshown);
397 nr_unshown = 0;
398 }
399 nr_shown = 0;
400 }
401 if (nr_shown++ == 0)
402 resume = jiffies + 60 * HZ;
403
1e9e6365 404 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 405 current->comm, page_to_pfn(page));
f0b791a3 406 dump_page_badflags(page, reason, bad_flags);
3dc14741 407
4f31888c 408 print_modules();
1da177e4 409 dump_stack();
d936cf9b 410out:
8cc3b392 411 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 412 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 413 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
414}
415
1da177e4
LT
416/*
417 * Higher-order pages are called "compound pages". They are structured thusly:
418 *
419 * The first PAGE_SIZE page is called the "head page".
420 *
421 * The remaining PAGE_SIZE pages are called "tail pages".
422 *
6416b9fa
WSH
423 * All pages have PG_compound set. All tail pages have their ->first_page
424 * pointing at the head page.
1da177e4 425 *
41d78ba5
HD
426 * The first tail page's ->lru.next holds the address of the compound page's
427 * put_page() function. Its ->lru.prev holds the order of allocation.
428 * This usage means that zero-order pages may not be compound.
1da177e4 429 */
d98c7a09
HD
430
431static void free_compound_page(struct page *page)
432{
d85f3385 433 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
434}
435
01ad1c08 436void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
437{
438 int i;
439 int nr_pages = 1 << order;
440
441 set_compound_page_dtor(page, free_compound_page);
442 set_compound_order(page, order);
443 __SetPageHead(page);
444 for (i = 1; i < nr_pages; i++) {
445 struct page *p = page + i;
58a84aa9 446 set_page_count(p, 0);
18229df5 447 p->first_page = page;
668f9abb
DR
448 /* Make sure p->first_page is always valid for PageTail() */
449 smp_wmb();
450 __SetPageTail(p);
18229df5
AW
451 }
452}
453
c0a32fc5
SG
454#ifdef CONFIG_DEBUG_PAGEALLOC
455unsigned int _debug_guardpage_minorder;
031bc574 456bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
457bool _debug_guardpage_enabled __read_mostly;
458
031bc574
JK
459static int __init early_debug_pagealloc(char *buf)
460{
461 if (!buf)
462 return -EINVAL;
463
464 if (strcmp(buf, "on") == 0)
465 _debug_pagealloc_enabled = true;
466
467 return 0;
468}
469early_param("debug_pagealloc", early_debug_pagealloc);
470
e30825f1
JK
471static bool need_debug_guardpage(void)
472{
031bc574
JK
473 /* If we don't use debug_pagealloc, we don't need guard page */
474 if (!debug_pagealloc_enabled())
475 return false;
476
e30825f1
JK
477 return true;
478}
479
480static void init_debug_guardpage(void)
481{
031bc574
JK
482 if (!debug_pagealloc_enabled())
483 return;
484
e30825f1
JK
485 _debug_guardpage_enabled = true;
486}
487
488struct page_ext_operations debug_guardpage_ops = {
489 .need = need_debug_guardpage,
490 .init = init_debug_guardpage,
491};
c0a32fc5
SG
492
493static int __init debug_guardpage_minorder_setup(char *buf)
494{
495 unsigned long res;
496
497 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
498 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 return 0;
500 }
501 _debug_guardpage_minorder = res;
502 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 return 0;
504}
505__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506
2847cf95
JK
507static inline void set_page_guard(struct zone *zone, struct page *page,
508 unsigned int order, int migratetype)
c0a32fc5 509{
e30825f1
JK
510 struct page_ext *page_ext;
511
512 if (!debug_guardpage_enabled())
513 return;
514
515 page_ext = lookup_page_ext(page);
516 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517
2847cf95
JK
518 INIT_LIST_HEAD(&page->lru);
519 set_page_private(page, order);
520 /* Guard pages are not available for any usage */
521 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
522}
523
2847cf95
JK
524static inline void clear_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
c0a32fc5 526{
e30825f1
JK
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
2847cf95
JK
535 set_page_private(page, 0);
536 if (!is_migrate_isolate(migratetype))
537 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
538}
539#else
e30825f1 540struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
541static inline void set_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype) {}
543static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
c0a32fc5
SG
545#endif
546
7aeb09f9 547static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 548{
4c21e2f2 549 set_page_private(page, order);
676165a8 550 __SetPageBuddy(page);
1da177e4
LT
551}
552
553static inline void rmv_page_order(struct page *page)
554{
676165a8 555 __ClearPageBuddy(page);
4c21e2f2 556 set_page_private(page, 0);
1da177e4
LT
557}
558
1da177e4
LT
559/*
560 * This function checks whether a page is free && is the buddy
561 * we can do coalesce a page and its buddy if
13e7444b 562 * (a) the buddy is not in a hole &&
676165a8 563 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
676165a8 566 *
cf6fe945
WSH
567 * For recording whether a page is in the buddy system, we set ->_mapcount
568 * PAGE_BUDDY_MAPCOUNT_VALUE.
569 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570 * serialized by zone->lock.
1da177e4 571 *
676165a8 572 * For recording page's order, we use page_private(page).
1da177e4 573 */
cb2b95e1 574static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 575 unsigned int order)
1da177e4 576{
14e07298 577 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 578 return 0;
13e7444b 579
c0a32fc5 580 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
581 if (page_zone_id(page) != page_zone_id(buddy))
582 return 0;
583
4c5018ce
WY
584 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585
c0a32fc5
SG
586 return 1;
587 }
588
cb2b95e1 589 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
590 /*
591 * zone check is done late to avoid uselessly
592 * calculating zone/node ids for pages that could
593 * never merge.
594 */
595 if (page_zone_id(page) != page_zone_id(buddy))
596 return 0;
597
4c5018ce
WY
598 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599
6aa3001b 600 return 1;
676165a8 601 }
6aa3001b 602 return 0;
1da177e4
LT
603}
604
605/*
606 * Freeing function for a buddy system allocator.
607 *
608 * The concept of a buddy system is to maintain direct-mapped table
609 * (containing bit values) for memory blocks of various "orders".
610 * The bottom level table contains the map for the smallest allocatable
611 * units of memory (here, pages), and each level above it describes
612 * pairs of units from the levels below, hence, "buddies".
613 * At a high level, all that happens here is marking the table entry
614 * at the bottom level available, and propagating the changes upward
615 * as necessary, plus some accounting needed to play nicely with other
616 * parts of the VM system.
617 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
618 * free pages of length of (1 << order) and marked with _mapcount
619 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620 * field.
1da177e4 621 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
622 * other. That is, if we allocate a small block, and both were
623 * free, the remainder of the region must be split into blocks.
1da177e4 624 * If a block is freed, and its buddy is also free, then this
5f63b720 625 * triggers coalescing into a block of larger size.
1da177e4 626 *
6d49e352 627 * -- nyc
1da177e4
LT
628 */
629
48db57f8 630static inline void __free_one_page(struct page *page,
dc4b0caf 631 unsigned long pfn,
ed0ae21d
MG
632 struct zone *zone, unsigned int order,
633 int migratetype)
1da177e4
LT
634{
635 unsigned long page_idx;
6dda9d55 636 unsigned long combined_idx;
43506fad 637 unsigned long uninitialized_var(buddy_idx);
6dda9d55 638 struct page *buddy;
3c605096 639 int max_order = MAX_ORDER;
1da177e4 640
d29bb978 641 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 642 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 643
ed0ae21d 644 VM_BUG_ON(migratetype == -1);
3c605096
JK
645 if (is_migrate_isolate(migratetype)) {
646 /*
647 * We restrict max order of merging to prevent merge
648 * between freepages on isolate pageblock and normal
649 * pageblock. Without this, pageblock isolation
650 * could cause incorrect freepage accounting.
651 */
652 max_order = min(MAX_ORDER, pageblock_order + 1);
653 } else {
8f82b55d 654 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 655 }
ed0ae21d 656
3c605096 657 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 658
309381fe
SL
659 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 661
3c605096 662 while (order < max_order - 1) {
43506fad
KC
663 buddy_idx = __find_buddy_index(page_idx, order);
664 buddy = page + (buddy_idx - page_idx);
cb2b95e1 665 if (!page_is_buddy(page, buddy, order))
3c82d0ce 666 break;
c0a32fc5
SG
667 /*
668 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 * merge with it and move up one order.
670 */
671 if (page_is_guard(buddy)) {
2847cf95 672 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
673 } else {
674 list_del(&buddy->lru);
675 zone->free_area[order].nr_free--;
676 rmv_page_order(buddy);
677 }
43506fad 678 combined_idx = buddy_idx & page_idx;
1da177e4
LT
679 page = page + (combined_idx - page_idx);
680 page_idx = combined_idx;
681 order++;
682 }
683 set_page_order(page, order);
6dda9d55
CZ
684
685 /*
686 * If this is not the largest possible page, check if the buddy
687 * of the next-highest order is free. If it is, it's possible
688 * that pages are being freed that will coalesce soon. In case,
689 * that is happening, add the free page to the tail of the list
690 * so it's less likely to be used soon and more likely to be merged
691 * as a higher order page
692 */
b7f50cfa 693 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 694 struct page *higher_page, *higher_buddy;
43506fad
KC
695 combined_idx = buddy_idx & page_idx;
696 higher_page = page + (combined_idx - page_idx);
697 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 698 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
699 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 list_add_tail(&page->lru,
701 &zone->free_area[order].free_list[migratetype]);
702 goto out;
703 }
704 }
705
706 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707out:
1da177e4
LT
708 zone->free_area[order].nr_free++;
709}
710
224abf92 711static inline int free_pages_check(struct page *page)
1da177e4 712{
d230dec1 713 const char *bad_reason = NULL;
f0b791a3
DH
714 unsigned long bad_flags = 0;
715
716 if (unlikely(page_mapcount(page)))
717 bad_reason = "nonzero mapcount";
718 if (unlikely(page->mapping != NULL))
719 bad_reason = "non-NULL mapping";
720 if (unlikely(atomic_read(&page->_count) != 0))
721 bad_reason = "nonzero _count";
722 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 }
9edad6ea
JW
726#ifdef CONFIG_MEMCG
727 if (unlikely(page->mem_cgroup))
728 bad_reason = "page still charged to cgroup";
729#endif
f0b791a3
DH
730 if (unlikely(bad_reason)) {
731 bad_page(page, bad_reason, bad_flags);
79f4b7bf 732 return 1;
8cc3b392 733 }
90572890 734 page_cpupid_reset_last(page);
79f4b7bf
HD
735 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 return 0;
1da177e4
LT
738}
739
740/*
5f8dcc21 741 * Frees a number of pages from the PCP lists
1da177e4 742 * Assumes all pages on list are in same zone, and of same order.
207f36ee 743 * count is the number of pages to free.
1da177e4
LT
744 *
745 * If the zone was previously in an "all pages pinned" state then look to
746 * see if this freeing clears that state.
747 *
748 * And clear the zone's pages_scanned counter, to hold off the "all pages are
749 * pinned" detection logic.
750 */
5f8dcc21
MG
751static void free_pcppages_bulk(struct zone *zone, int count,
752 struct per_cpu_pages *pcp)
1da177e4 753{
5f8dcc21 754 int migratetype = 0;
a6f9edd6 755 int batch_free = 0;
72853e29 756 int to_free = count;
0d5d823a 757 unsigned long nr_scanned;
5f8dcc21 758
c54ad30c 759 spin_lock(&zone->lock);
0d5d823a
MG
760 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 if (nr_scanned)
762 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 763
72853e29 764 while (to_free) {
48db57f8 765 struct page *page;
5f8dcc21
MG
766 struct list_head *list;
767
768 /*
a6f9edd6
MG
769 * Remove pages from lists in a round-robin fashion. A
770 * batch_free count is maintained that is incremented when an
771 * empty list is encountered. This is so more pages are freed
772 * off fuller lists instead of spinning excessively around empty
773 * lists
5f8dcc21
MG
774 */
775 do {
a6f9edd6 776 batch_free++;
5f8dcc21
MG
777 if (++migratetype == MIGRATE_PCPTYPES)
778 migratetype = 0;
779 list = &pcp->lists[migratetype];
780 } while (list_empty(list));
48db57f8 781
1d16871d
NK
782 /* This is the only non-empty list. Free them all. */
783 if (batch_free == MIGRATE_PCPTYPES)
784 batch_free = to_free;
785
a6f9edd6 786 do {
770c8aaa
BZ
787 int mt; /* migratetype of the to-be-freed page */
788
a6f9edd6
MG
789 page = list_entry(list->prev, struct page, lru);
790 /* must delete as __free_one_page list manipulates */
791 list_del(&page->lru);
b12c4ad1 792 mt = get_freepage_migratetype(page);
8f82b55d 793 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 794 mt = get_pageblock_migratetype(page);
51bb1a40 795
a7016235 796 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 797 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 798 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 799 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 800 }
c54ad30c 801 spin_unlock(&zone->lock);
1da177e4
LT
802}
803
dc4b0caf
MG
804static void free_one_page(struct zone *zone,
805 struct page *page, unsigned long pfn,
7aeb09f9 806 unsigned int order,
ed0ae21d 807 int migratetype)
1da177e4 808{
0d5d823a 809 unsigned long nr_scanned;
006d22d9 810 spin_lock(&zone->lock);
0d5d823a
MG
811 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 if (nr_scanned)
813 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 814
ad53f92e
JK
815 if (unlikely(has_isolate_pageblock(zone) ||
816 is_migrate_isolate(migratetype))) {
817 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 818 }
dc4b0caf 819 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 820 spin_unlock(&zone->lock);
48db57f8
NP
821}
822
81422f29
KS
823static int free_tail_pages_check(struct page *head_page, struct page *page)
824{
825 if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 return 0;
827 if (unlikely(!PageTail(page))) {
828 bad_page(page, "PageTail not set", 0);
829 return 1;
830 }
831 if (unlikely(page->first_page != head_page)) {
832 bad_page(page, "first_page not consistent", 0);
833 return 1;
834 }
835 return 0;
836}
837
1e8ce83c
RH
838static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 unsigned long zone, int nid)
840{
841 struct zone *z = &NODE_DATA(nid)->node_zones[zone];
842
843 set_page_links(page, zone, nid, pfn);
844 mminit_verify_page_links(page, zone, nid, pfn);
845 init_page_count(page);
846 page_mapcount_reset(page);
847 page_cpupid_reset_last(page);
1e8ce83c
RH
848
849 /*
850 * Mark the block movable so that blocks are reserved for
851 * movable at startup. This will force kernel allocations
852 * to reserve their blocks rather than leaking throughout
853 * the address space during boot when many long-lived
854 * kernel allocations are made. Later some blocks near
855 * the start are marked MIGRATE_RESERVE by
856 * setup_zone_migrate_reserve()
857 *
858 * bitmap is created for zone's valid pfn range. but memmap
859 * can be created for invalid pages (for alignment)
860 * check here not to call set_pageblock_migratetype() against
861 * pfn out of zone.
862 */
863 if ((z->zone_start_pfn <= pfn)
864 && (pfn < zone_end_pfn(z))
865 && !(pfn & (pageblock_nr_pages - 1)))
866 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
867
868 INIT_LIST_HEAD(&page->lru);
869#ifdef WANT_PAGE_VIRTUAL
870 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
871 if (!is_highmem_idx(zone))
872 set_page_address(page, __va(pfn << PAGE_SHIFT));
873#endif
874}
875
876static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
877 int nid)
878{
879 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
880}
881
7e18adb4
MG
882#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
883static void init_reserved_page(unsigned long pfn)
884{
885 pg_data_t *pgdat;
886 int nid, zid;
887
888 if (!early_page_uninitialised(pfn))
889 return;
890
891 nid = early_pfn_to_nid(pfn);
892 pgdat = NODE_DATA(nid);
893
894 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
895 struct zone *zone = &pgdat->node_zones[zid];
896
897 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
898 break;
899 }
900 __init_single_pfn(pfn, zid, nid);
901}
902#else
903static inline void init_reserved_page(unsigned long pfn)
904{
905}
906#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
907
92923ca3
NZ
908/*
909 * Initialised pages do not have PageReserved set. This function is
910 * called for each range allocated by the bootmem allocator and
911 * marks the pages PageReserved. The remaining valid pages are later
912 * sent to the buddy page allocator.
913 */
7e18adb4 914void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
915{
916 unsigned long start_pfn = PFN_DOWN(start);
917 unsigned long end_pfn = PFN_UP(end);
918
7e18adb4
MG
919 for (; start_pfn < end_pfn; start_pfn++) {
920 if (pfn_valid(start_pfn)) {
921 struct page *page = pfn_to_page(start_pfn);
922
923 init_reserved_page(start_pfn);
924 SetPageReserved(page);
925 }
926 }
92923ca3
NZ
927}
928
ec95f53a 929static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 930{
81422f29
KS
931 bool compound = PageCompound(page);
932 int i, bad = 0;
1da177e4 933
ab1f306f 934 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 935 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 936
b413d48a 937 trace_mm_page_free(page, order);
b1eeab67 938 kmemcheck_free_shadow(page, order);
b8c73fc2 939 kasan_free_pages(page, order);
b1eeab67 940
8dd60a3a
AA
941 if (PageAnon(page))
942 page->mapping = NULL;
81422f29
KS
943 bad += free_pages_check(page);
944 for (i = 1; i < (1 << order); i++) {
945 if (compound)
946 bad += free_tail_pages_check(page, page + i);
8dd60a3a 947 bad += free_pages_check(page + i);
81422f29 948 }
8cc3b392 949 if (bad)
ec95f53a 950 return false;
689bcebf 951
48c96a36
JK
952 reset_page_owner(page, order);
953
3ac7fe5a 954 if (!PageHighMem(page)) {
b8af2941
PK
955 debug_check_no_locks_freed(page_address(page),
956 PAGE_SIZE << order);
3ac7fe5a
TG
957 debug_check_no_obj_freed(page_address(page),
958 PAGE_SIZE << order);
959 }
dafb1367 960 arch_free_page(page, order);
48db57f8 961 kernel_map_pages(page, 1 << order, 0);
dafb1367 962
ec95f53a
KM
963 return true;
964}
965
966static void __free_pages_ok(struct page *page, unsigned int order)
967{
968 unsigned long flags;
95e34412 969 int migratetype;
dc4b0caf 970 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
971
972 if (!free_pages_prepare(page, order))
973 return;
974
cfc47a28 975 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 976 local_irq_save(flags);
f8891e5e 977 __count_vm_events(PGFREE, 1 << order);
95e34412 978 set_freepage_migratetype(page, migratetype);
dc4b0caf 979 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 980 local_irq_restore(flags);
1da177e4
LT
981}
982
3a80a7fa
MG
983static void __defer_init __free_pages_boot_core(struct page *page,
984 unsigned long pfn, unsigned int order)
a226f6c8 985{
c3993076 986 unsigned int nr_pages = 1 << order;
e2d0bd2b 987 struct page *p = page;
c3993076 988 unsigned int loop;
a226f6c8 989
e2d0bd2b
YL
990 prefetchw(p);
991 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
992 prefetchw(p + 1);
c3993076
JW
993 __ClearPageReserved(p);
994 set_page_count(p, 0);
a226f6c8 995 }
e2d0bd2b
YL
996 __ClearPageReserved(p);
997 set_page_count(p, 0);
c3993076 998
e2d0bd2b 999 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1000 set_page_refcounted(page);
1001 __free_pages(page, order);
a226f6c8
DH
1002}
1003
75a592a4
MG
1004#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1005 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1006/* Only safe to use early in boot when initialisation is single-threaded */
1007static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1008
1009int __meminit early_pfn_to_nid(unsigned long pfn)
1010{
1011 int nid;
1012
1013 /* The system will behave unpredictably otherwise */
1014 BUG_ON(system_state != SYSTEM_BOOTING);
1015
1016 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1017 if (nid >= 0)
1018 return nid;
1019 /* just returns 0 */
1020 return 0;
1021}
1022#endif
1023
1024#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1025static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027{
1028 int nid;
1029
1030 nid = __early_pfn_to_nid(pfn, state);
1031 if (nid >= 0 && nid != node)
1032 return false;
1033 return true;
1034}
1035
1036/* Only safe to use early in boot when initialisation is single-threaded */
1037static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1038{
1039 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1040}
1041
1042#else
1043
1044static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1045{
1046 return true;
1047}
1048static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 struct mminit_pfnnid_cache *state)
1050{
1051 return true;
1052}
1053#endif
1054
1055
3a80a7fa
MG
1056void __defer_init __free_pages_bootmem(struct page *page, unsigned long pfn,
1057 unsigned int order)
1058{
1059 if (early_page_uninitialised(pfn))
1060 return;
1061 return __free_pages_boot_core(page, pfn, order);
1062}
1063
7e18adb4 1064#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
a4de83dd
MG
1065static void __defermem_init deferred_free_range(struct page *page,
1066 unsigned long pfn, int nr_pages)
1067{
1068 int i;
1069
1070 if (!page)
1071 return;
1072
1073 /* Free a large naturally-aligned chunk if possible */
1074 if (nr_pages == MAX_ORDER_NR_PAGES &&
1075 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1076 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1077 return;
1078 }
1079
1080 for (i = 0; i < nr_pages; i++, page++, pfn++)
1081 __free_pages_boot_core(page, pfn, 0);
1082}
1083
7e18adb4
MG
1084/* Initialise remaining memory on a node */
1085void __defermem_init deferred_init_memmap(int nid)
1086{
1087 struct mminit_pfnnid_cache nid_init_state = { };
1088 unsigned long start = jiffies;
1089 unsigned long nr_pages = 0;
1090 unsigned long walk_start, walk_end;
1091 int i, zid;
1092 struct zone *zone;
1093 pg_data_t *pgdat = NODE_DATA(nid);
1094 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1095
1096 if (first_init_pfn == ULONG_MAX)
1097 return;
1098
1099 /* Sanity check boundaries */
1100 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1101 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1102 pgdat->first_deferred_pfn = ULONG_MAX;
1103
1104 /* Only the highest zone is deferred so find it */
1105 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1106 zone = pgdat->node_zones + zid;
1107 if (first_init_pfn < zone_end_pfn(zone))
1108 break;
1109 }
1110
1111 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1112 unsigned long pfn, end_pfn;
54608c3f 1113 struct page *page = NULL;
a4de83dd
MG
1114 struct page *free_base_page = NULL;
1115 unsigned long free_base_pfn = 0;
1116 int nr_to_free = 0;
7e18adb4
MG
1117
1118 end_pfn = min(walk_end, zone_end_pfn(zone));
1119 pfn = first_init_pfn;
1120 if (pfn < walk_start)
1121 pfn = walk_start;
1122 if (pfn < zone->zone_start_pfn)
1123 pfn = zone->zone_start_pfn;
1124
1125 for (; pfn < end_pfn; pfn++) {
54608c3f 1126 if (!pfn_valid_within(pfn))
a4de83dd 1127 goto free_range;
7e18adb4 1128
54608c3f
MG
1129 /*
1130 * Ensure pfn_valid is checked every
1131 * MAX_ORDER_NR_PAGES for memory holes
1132 */
1133 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1134 if (!pfn_valid(pfn)) {
1135 page = NULL;
a4de83dd 1136 goto free_range;
54608c3f
MG
1137 }
1138 }
1139
1140 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1141 page = NULL;
a4de83dd 1142 goto free_range;
54608c3f
MG
1143 }
1144
1145 /* Minimise pfn page lookups and scheduler checks */
1146 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1147 page++;
1148 } else {
a4de83dd
MG
1149 nr_pages += nr_to_free;
1150 deferred_free_range(free_base_page,
1151 free_base_pfn, nr_to_free);
1152 free_base_page = NULL;
1153 free_base_pfn = nr_to_free = 0;
1154
54608c3f
MG
1155 page = pfn_to_page(pfn);
1156 cond_resched();
1157 }
7e18adb4
MG
1158
1159 if (page->flags) {
1160 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1161 goto free_range;
7e18adb4
MG
1162 }
1163
1164 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1165 if (!free_base_page) {
1166 free_base_page = page;
1167 free_base_pfn = pfn;
1168 nr_to_free = 0;
1169 }
1170 nr_to_free++;
1171
1172 /* Where possible, batch up pages for a single free */
1173 continue;
1174free_range:
1175 /* Free the current block of pages to allocator */
1176 nr_pages += nr_to_free;
1177 deferred_free_range(free_base_page, free_base_pfn,
1178 nr_to_free);
1179 free_base_page = NULL;
1180 free_base_pfn = nr_to_free = 0;
7e18adb4 1181 }
a4de83dd 1182
7e18adb4
MG
1183 first_init_pfn = max(end_pfn, first_init_pfn);
1184 }
1185
1186 /* Sanity check that the next zone really is unpopulated */
1187 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1188
1189 pr_info("kswapd %d initialised %lu pages in %ums\n", nid, nr_pages,
1190 jiffies_to_msecs(jiffies - start));
1191}
1192#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1193
47118af0 1194#ifdef CONFIG_CMA
9cf510a5 1195/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1196void __init init_cma_reserved_pageblock(struct page *page)
1197{
1198 unsigned i = pageblock_nr_pages;
1199 struct page *p = page;
1200
1201 do {
1202 __ClearPageReserved(p);
1203 set_page_count(p, 0);
1204 } while (++p, --i);
1205
47118af0 1206 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1207
1208 if (pageblock_order >= MAX_ORDER) {
1209 i = pageblock_nr_pages;
1210 p = page;
1211 do {
1212 set_page_refcounted(p);
1213 __free_pages(p, MAX_ORDER - 1);
1214 p += MAX_ORDER_NR_PAGES;
1215 } while (i -= MAX_ORDER_NR_PAGES);
1216 } else {
1217 set_page_refcounted(page);
1218 __free_pages(page, pageblock_order);
1219 }
1220
3dcc0571 1221 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1222}
1223#endif
1da177e4
LT
1224
1225/*
1226 * The order of subdivision here is critical for the IO subsystem.
1227 * Please do not alter this order without good reasons and regression
1228 * testing. Specifically, as large blocks of memory are subdivided,
1229 * the order in which smaller blocks are delivered depends on the order
1230 * they're subdivided in this function. This is the primary factor
1231 * influencing the order in which pages are delivered to the IO
1232 * subsystem according to empirical testing, and this is also justified
1233 * by considering the behavior of a buddy system containing a single
1234 * large block of memory acted on by a series of small allocations.
1235 * This behavior is a critical factor in sglist merging's success.
1236 *
6d49e352 1237 * -- nyc
1da177e4 1238 */
085cc7d5 1239static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1240 int low, int high, struct free_area *area,
1241 int migratetype)
1da177e4
LT
1242{
1243 unsigned long size = 1 << high;
1244
1245 while (high > low) {
1246 area--;
1247 high--;
1248 size >>= 1;
309381fe 1249 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1250
2847cf95 1251 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1252 debug_guardpage_enabled() &&
2847cf95 1253 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1254 /*
1255 * Mark as guard pages (or page), that will allow to
1256 * merge back to allocator when buddy will be freed.
1257 * Corresponding page table entries will not be touched,
1258 * pages will stay not present in virtual address space
1259 */
2847cf95 1260 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1261 continue;
1262 }
b2a0ac88 1263 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1264 area->nr_free++;
1265 set_page_order(&page[size], high);
1266 }
1da177e4
LT
1267}
1268
1da177e4
LT
1269/*
1270 * This page is about to be returned from the page allocator
1271 */
2a7684a2 1272static inline int check_new_page(struct page *page)
1da177e4 1273{
d230dec1 1274 const char *bad_reason = NULL;
f0b791a3
DH
1275 unsigned long bad_flags = 0;
1276
1277 if (unlikely(page_mapcount(page)))
1278 bad_reason = "nonzero mapcount";
1279 if (unlikely(page->mapping != NULL))
1280 bad_reason = "non-NULL mapping";
1281 if (unlikely(atomic_read(&page->_count) != 0))
1282 bad_reason = "nonzero _count";
1283 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1284 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1285 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1286 }
9edad6ea
JW
1287#ifdef CONFIG_MEMCG
1288 if (unlikely(page->mem_cgroup))
1289 bad_reason = "page still charged to cgroup";
1290#endif
f0b791a3
DH
1291 if (unlikely(bad_reason)) {
1292 bad_page(page, bad_reason, bad_flags);
689bcebf 1293 return 1;
8cc3b392 1294 }
2a7684a2
WF
1295 return 0;
1296}
1297
75379191
VB
1298static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1299 int alloc_flags)
2a7684a2
WF
1300{
1301 int i;
1302
1303 for (i = 0; i < (1 << order); i++) {
1304 struct page *p = page + i;
1305 if (unlikely(check_new_page(p)))
1306 return 1;
1307 }
689bcebf 1308
4c21e2f2 1309 set_page_private(page, 0);
7835e98b 1310 set_page_refcounted(page);
cc102509
NP
1311
1312 arch_alloc_page(page, order);
1da177e4 1313 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1314 kasan_alloc_pages(page, order);
17cf4406
NP
1315
1316 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1317 for (i = 0; i < (1 << order); i++)
1318 clear_highpage(page + i);
17cf4406
NP
1319
1320 if (order && (gfp_flags & __GFP_COMP))
1321 prep_compound_page(page, order);
1322
48c96a36
JK
1323 set_page_owner(page, order, gfp_flags);
1324
75379191
VB
1325 /*
1326 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1327 * allocate the page. The expectation is that the caller is taking
1328 * steps that will free more memory. The caller should avoid the page
1329 * being used for !PFMEMALLOC purposes.
1330 */
1331 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1332
689bcebf 1333 return 0;
1da177e4
LT
1334}
1335
56fd56b8
MG
1336/*
1337 * Go through the free lists for the given migratetype and remove
1338 * the smallest available page from the freelists
1339 */
728ec980
MG
1340static inline
1341struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1342 int migratetype)
1343{
1344 unsigned int current_order;
b8af2941 1345 struct free_area *area;
56fd56b8
MG
1346 struct page *page;
1347
1348 /* Find a page of the appropriate size in the preferred list */
1349 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1350 area = &(zone->free_area[current_order]);
1351 if (list_empty(&area->free_list[migratetype]))
1352 continue;
1353
1354 page = list_entry(area->free_list[migratetype].next,
1355 struct page, lru);
1356 list_del(&page->lru);
1357 rmv_page_order(page);
1358 area->nr_free--;
56fd56b8 1359 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1360 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1361 return page;
1362 }
1363
1364 return NULL;
1365}
1366
1367
b2a0ac88
MG
1368/*
1369 * This array describes the order lists are fallen back to when
1370 * the free lists for the desirable migrate type are depleted
1371 */
47118af0
MN
1372static int fallbacks[MIGRATE_TYPES][4] = {
1373 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1374 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1375 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1376#ifdef CONFIG_CMA
47118af0 1377 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1378#endif
6d4a4916 1379 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1380#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1381 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1382#endif
b2a0ac88
MG
1383};
1384
dc67647b
JK
1385#ifdef CONFIG_CMA
1386static struct page *__rmqueue_cma_fallback(struct zone *zone,
1387 unsigned int order)
1388{
1389 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1390}
1391#else
1392static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1393 unsigned int order) { return NULL; }
1394#endif
1395
c361be55
MG
1396/*
1397 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1398 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1399 * boundary. If alignment is required, use move_freepages_block()
1400 */
435b405c 1401int move_freepages(struct zone *zone,
b69a7288
AB
1402 struct page *start_page, struct page *end_page,
1403 int migratetype)
c361be55
MG
1404{
1405 struct page *page;
1406 unsigned long order;
d100313f 1407 int pages_moved = 0;
c361be55
MG
1408
1409#ifndef CONFIG_HOLES_IN_ZONE
1410 /*
1411 * page_zone is not safe to call in this context when
1412 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1413 * anyway as we check zone boundaries in move_freepages_block().
1414 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1415 * grouping pages by mobility
c361be55 1416 */
97ee4ba7 1417 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1418#endif
1419
1420 for (page = start_page; page <= end_page;) {
344c790e 1421 /* Make sure we are not inadvertently changing nodes */
309381fe 1422 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1423
c361be55
MG
1424 if (!pfn_valid_within(page_to_pfn(page))) {
1425 page++;
1426 continue;
1427 }
1428
1429 if (!PageBuddy(page)) {
1430 page++;
1431 continue;
1432 }
1433
1434 order = page_order(page);
84be48d8
KS
1435 list_move(&page->lru,
1436 &zone->free_area[order].free_list[migratetype]);
95e34412 1437 set_freepage_migratetype(page, migratetype);
c361be55 1438 page += 1 << order;
d100313f 1439 pages_moved += 1 << order;
c361be55
MG
1440 }
1441
d100313f 1442 return pages_moved;
c361be55
MG
1443}
1444
ee6f509c 1445int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1446 int migratetype)
c361be55
MG
1447{
1448 unsigned long start_pfn, end_pfn;
1449 struct page *start_page, *end_page;
1450
1451 start_pfn = page_to_pfn(page);
d9c23400 1452 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1453 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1454 end_page = start_page + pageblock_nr_pages - 1;
1455 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1456
1457 /* Do not cross zone boundaries */
108bcc96 1458 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1459 start_page = page;
108bcc96 1460 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1461 return 0;
1462
1463 return move_freepages(zone, start_page, end_page, migratetype);
1464}
1465
2f66a68f
MG
1466static void change_pageblock_range(struct page *pageblock_page,
1467 int start_order, int migratetype)
1468{
1469 int nr_pageblocks = 1 << (start_order - pageblock_order);
1470
1471 while (nr_pageblocks--) {
1472 set_pageblock_migratetype(pageblock_page, migratetype);
1473 pageblock_page += pageblock_nr_pages;
1474 }
1475}
1476
fef903ef 1477/*
9c0415eb
VB
1478 * When we are falling back to another migratetype during allocation, try to
1479 * steal extra free pages from the same pageblocks to satisfy further
1480 * allocations, instead of polluting multiple pageblocks.
1481 *
1482 * If we are stealing a relatively large buddy page, it is likely there will
1483 * be more free pages in the pageblock, so try to steal them all. For
1484 * reclaimable and unmovable allocations, we steal regardless of page size,
1485 * as fragmentation caused by those allocations polluting movable pageblocks
1486 * is worse than movable allocations stealing from unmovable and reclaimable
1487 * pageblocks.
fef903ef 1488 */
4eb7dce6
JK
1489static bool can_steal_fallback(unsigned int order, int start_mt)
1490{
1491 /*
1492 * Leaving this order check is intended, although there is
1493 * relaxed order check in next check. The reason is that
1494 * we can actually steal whole pageblock if this condition met,
1495 * but, below check doesn't guarantee it and that is just heuristic
1496 * so could be changed anytime.
1497 */
1498 if (order >= pageblock_order)
1499 return true;
1500
1501 if (order >= pageblock_order / 2 ||
1502 start_mt == MIGRATE_RECLAIMABLE ||
1503 start_mt == MIGRATE_UNMOVABLE ||
1504 page_group_by_mobility_disabled)
1505 return true;
1506
1507 return false;
1508}
1509
1510/*
1511 * This function implements actual steal behaviour. If order is large enough,
1512 * we can steal whole pageblock. If not, we first move freepages in this
1513 * pageblock and check whether half of pages are moved or not. If half of
1514 * pages are moved, we can change migratetype of pageblock and permanently
1515 * use it's pages as requested migratetype in the future.
1516 */
1517static void steal_suitable_fallback(struct zone *zone, struct page *page,
1518 int start_type)
fef903ef
SB
1519{
1520 int current_order = page_order(page);
4eb7dce6 1521 int pages;
fef903ef 1522
fef903ef
SB
1523 /* Take ownership for orders >= pageblock_order */
1524 if (current_order >= pageblock_order) {
1525 change_pageblock_range(page, current_order, start_type);
3a1086fb 1526 return;
fef903ef
SB
1527 }
1528
4eb7dce6 1529 pages = move_freepages_block(zone, page, start_type);
fef903ef 1530
4eb7dce6
JK
1531 /* Claim the whole block if over half of it is free */
1532 if (pages >= (1 << (pageblock_order-1)) ||
1533 page_group_by_mobility_disabled)
1534 set_pageblock_migratetype(page, start_type);
1535}
1536
2149cdae
JK
1537/*
1538 * Check whether there is a suitable fallback freepage with requested order.
1539 * If only_stealable is true, this function returns fallback_mt only if
1540 * we can steal other freepages all together. This would help to reduce
1541 * fragmentation due to mixed migratetype pages in one pageblock.
1542 */
1543int find_suitable_fallback(struct free_area *area, unsigned int order,
1544 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1545{
1546 int i;
1547 int fallback_mt;
1548
1549 if (area->nr_free == 0)
1550 return -1;
1551
1552 *can_steal = false;
1553 for (i = 0;; i++) {
1554 fallback_mt = fallbacks[migratetype][i];
1555 if (fallback_mt == MIGRATE_RESERVE)
1556 break;
1557
1558 if (list_empty(&area->free_list[fallback_mt]))
1559 continue;
fef903ef 1560
4eb7dce6
JK
1561 if (can_steal_fallback(order, migratetype))
1562 *can_steal = true;
1563
2149cdae
JK
1564 if (!only_stealable)
1565 return fallback_mt;
1566
1567 if (*can_steal)
1568 return fallback_mt;
fef903ef 1569 }
4eb7dce6
JK
1570
1571 return -1;
fef903ef
SB
1572}
1573
b2a0ac88 1574/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1575static inline struct page *
7aeb09f9 1576__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1577{
b8af2941 1578 struct free_area *area;
7aeb09f9 1579 unsigned int current_order;
b2a0ac88 1580 struct page *page;
4eb7dce6
JK
1581 int fallback_mt;
1582 bool can_steal;
b2a0ac88
MG
1583
1584 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1585 for (current_order = MAX_ORDER-1;
1586 current_order >= order && current_order <= MAX_ORDER-1;
1587 --current_order) {
4eb7dce6
JK
1588 area = &(zone->free_area[current_order]);
1589 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1590 start_migratetype, false, &can_steal);
4eb7dce6
JK
1591 if (fallback_mt == -1)
1592 continue;
b2a0ac88 1593
4eb7dce6
JK
1594 page = list_entry(area->free_list[fallback_mt].next,
1595 struct page, lru);
1596 if (can_steal)
1597 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1598
4eb7dce6
JK
1599 /* Remove the page from the freelists */
1600 area->nr_free--;
1601 list_del(&page->lru);
1602 rmv_page_order(page);
3a1086fb 1603
4eb7dce6
JK
1604 expand(zone, page, order, current_order, area,
1605 start_migratetype);
1606 /*
1607 * The freepage_migratetype may differ from pageblock's
1608 * migratetype depending on the decisions in
1609 * try_to_steal_freepages(). This is OK as long as it
1610 * does not differ for MIGRATE_CMA pageblocks. For CMA
1611 * we need to make sure unallocated pages flushed from
1612 * pcp lists are returned to the correct freelist.
1613 */
1614 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1615
4eb7dce6
JK
1616 trace_mm_page_alloc_extfrag(page, order, current_order,
1617 start_migratetype, fallback_mt);
e0fff1bd 1618
4eb7dce6 1619 return page;
b2a0ac88
MG
1620 }
1621
728ec980 1622 return NULL;
b2a0ac88
MG
1623}
1624
56fd56b8 1625/*
1da177e4
LT
1626 * Do the hard work of removing an element from the buddy allocator.
1627 * Call me with the zone->lock already held.
1628 */
b2a0ac88
MG
1629static struct page *__rmqueue(struct zone *zone, unsigned int order,
1630 int migratetype)
1da177e4 1631{
1da177e4
LT
1632 struct page *page;
1633
728ec980 1634retry_reserve:
56fd56b8 1635 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1636
728ec980 1637 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1638 if (migratetype == MIGRATE_MOVABLE)
1639 page = __rmqueue_cma_fallback(zone, order);
1640
1641 if (!page)
1642 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1643
728ec980
MG
1644 /*
1645 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1646 * is used because __rmqueue_smallest is an inline function
1647 * and we want just one call site
1648 */
1649 if (!page) {
1650 migratetype = MIGRATE_RESERVE;
1651 goto retry_reserve;
1652 }
1653 }
1654
0d3d062a 1655 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1656 return page;
1da177e4
LT
1657}
1658
5f63b720 1659/*
1da177e4
LT
1660 * Obtain a specified number of elements from the buddy allocator, all under
1661 * a single hold of the lock, for efficiency. Add them to the supplied list.
1662 * Returns the number of new pages which were placed at *list.
1663 */
5f63b720 1664static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1665 unsigned long count, struct list_head *list,
b745bc85 1666 int migratetype, bool cold)
1da177e4 1667{
5bcc9f86 1668 int i;
5f63b720 1669
c54ad30c 1670 spin_lock(&zone->lock);
1da177e4 1671 for (i = 0; i < count; ++i) {
b2a0ac88 1672 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1673 if (unlikely(page == NULL))
1da177e4 1674 break;
81eabcbe
MG
1675
1676 /*
1677 * Split buddy pages returned by expand() are received here
1678 * in physical page order. The page is added to the callers and
1679 * list and the list head then moves forward. From the callers
1680 * perspective, the linked list is ordered by page number in
1681 * some conditions. This is useful for IO devices that can
1682 * merge IO requests if the physical pages are ordered
1683 * properly.
1684 */
b745bc85 1685 if (likely(!cold))
e084b2d9
MG
1686 list_add(&page->lru, list);
1687 else
1688 list_add_tail(&page->lru, list);
81eabcbe 1689 list = &page->lru;
5bcc9f86 1690 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1692 -(1 << order));
1da177e4 1693 }
f2260e6b 1694 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1695 spin_unlock(&zone->lock);
085cc7d5 1696 return i;
1da177e4
LT
1697}
1698
4ae7c039 1699#ifdef CONFIG_NUMA
8fce4d8e 1700/*
4037d452
CL
1701 * Called from the vmstat counter updater to drain pagesets of this
1702 * currently executing processor on remote nodes after they have
1703 * expired.
1704 *
879336c3
CL
1705 * Note that this function must be called with the thread pinned to
1706 * a single processor.
8fce4d8e 1707 */
4037d452 1708void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1709{
4ae7c039 1710 unsigned long flags;
7be12fc9 1711 int to_drain, batch;
4ae7c039 1712
4037d452 1713 local_irq_save(flags);
4db0c3c2 1714 batch = READ_ONCE(pcp->batch);
7be12fc9 1715 to_drain = min(pcp->count, batch);
2a13515c
KM
1716 if (to_drain > 0) {
1717 free_pcppages_bulk(zone, to_drain, pcp);
1718 pcp->count -= to_drain;
1719 }
4037d452 1720 local_irq_restore(flags);
4ae7c039
CL
1721}
1722#endif
1723
9f8f2172 1724/*
93481ff0 1725 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1726 *
1727 * The processor must either be the current processor and the
1728 * thread pinned to the current processor or a processor that
1729 * is not online.
1730 */
93481ff0 1731static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1732{
c54ad30c 1733 unsigned long flags;
93481ff0
VB
1734 struct per_cpu_pageset *pset;
1735 struct per_cpu_pages *pcp;
1da177e4 1736
93481ff0
VB
1737 local_irq_save(flags);
1738 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1739
93481ff0
VB
1740 pcp = &pset->pcp;
1741 if (pcp->count) {
1742 free_pcppages_bulk(zone, pcp->count, pcp);
1743 pcp->count = 0;
1744 }
1745 local_irq_restore(flags);
1746}
3dfa5721 1747
93481ff0
VB
1748/*
1749 * Drain pcplists of all zones on the indicated processor.
1750 *
1751 * The processor must either be the current processor and the
1752 * thread pinned to the current processor or a processor that
1753 * is not online.
1754 */
1755static void drain_pages(unsigned int cpu)
1756{
1757 struct zone *zone;
1758
1759 for_each_populated_zone(zone) {
1760 drain_pages_zone(cpu, zone);
1da177e4
LT
1761 }
1762}
1da177e4 1763
9f8f2172
CL
1764/*
1765 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1766 *
1767 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1768 * the single zone's pages.
9f8f2172 1769 */
93481ff0 1770void drain_local_pages(struct zone *zone)
9f8f2172 1771{
93481ff0
VB
1772 int cpu = smp_processor_id();
1773
1774 if (zone)
1775 drain_pages_zone(cpu, zone);
1776 else
1777 drain_pages(cpu);
9f8f2172
CL
1778}
1779
1780/*
74046494
GBY
1781 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1782 *
93481ff0
VB
1783 * When zone parameter is non-NULL, spill just the single zone's pages.
1784 *
74046494
GBY
1785 * Note that this code is protected against sending an IPI to an offline
1786 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1787 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1788 * nothing keeps CPUs from showing up after we populated the cpumask and
1789 * before the call to on_each_cpu_mask().
9f8f2172 1790 */
93481ff0 1791void drain_all_pages(struct zone *zone)
9f8f2172 1792{
74046494 1793 int cpu;
74046494
GBY
1794
1795 /*
1796 * Allocate in the BSS so we wont require allocation in
1797 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1798 */
1799 static cpumask_t cpus_with_pcps;
1800
1801 /*
1802 * We don't care about racing with CPU hotplug event
1803 * as offline notification will cause the notified
1804 * cpu to drain that CPU pcps and on_each_cpu_mask
1805 * disables preemption as part of its processing
1806 */
1807 for_each_online_cpu(cpu) {
93481ff0
VB
1808 struct per_cpu_pageset *pcp;
1809 struct zone *z;
74046494 1810 bool has_pcps = false;
93481ff0
VB
1811
1812 if (zone) {
74046494 1813 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1814 if (pcp->pcp.count)
74046494 1815 has_pcps = true;
93481ff0
VB
1816 } else {
1817 for_each_populated_zone(z) {
1818 pcp = per_cpu_ptr(z->pageset, cpu);
1819 if (pcp->pcp.count) {
1820 has_pcps = true;
1821 break;
1822 }
74046494
GBY
1823 }
1824 }
93481ff0 1825
74046494
GBY
1826 if (has_pcps)
1827 cpumask_set_cpu(cpu, &cpus_with_pcps);
1828 else
1829 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1830 }
93481ff0
VB
1831 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1832 zone, 1);
9f8f2172
CL
1833}
1834
296699de 1835#ifdef CONFIG_HIBERNATION
1da177e4
LT
1836
1837void mark_free_pages(struct zone *zone)
1838{
f623f0db
RW
1839 unsigned long pfn, max_zone_pfn;
1840 unsigned long flags;
7aeb09f9 1841 unsigned int order, t;
1da177e4
LT
1842 struct list_head *curr;
1843
8080fc03 1844 if (zone_is_empty(zone))
1da177e4
LT
1845 return;
1846
1847 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1848
108bcc96 1849 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1850 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1851 if (pfn_valid(pfn)) {
1852 struct page *page = pfn_to_page(pfn);
1853
7be98234
RW
1854 if (!swsusp_page_is_forbidden(page))
1855 swsusp_unset_page_free(page);
f623f0db 1856 }
1da177e4 1857
b2a0ac88
MG
1858 for_each_migratetype_order(order, t) {
1859 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1860 unsigned long i;
1da177e4 1861
f623f0db
RW
1862 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1863 for (i = 0; i < (1UL << order); i++)
7be98234 1864 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1865 }
b2a0ac88 1866 }
1da177e4
LT
1867 spin_unlock_irqrestore(&zone->lock, flags);
1868}
e2c55dc8 1869#endif /* CONFIG_PM */
1da177e4 1870
1da177e4
LT
1871/*
1872 * Free a 0-order page
b745bc85 1873 * cold == true ? free a cold page : free a hot page
1da177e4 1874 */
b745bc85 1875void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1876{
1877 struct zone *zone = page_zone(page);
1878 struct per_cpu_pages *pcp;
1879 unsigned long flags;
dc4b0caf 1880 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1881 int migratetype;
1da177e4 1882
ec95f53a 1883 if (!free_pages_prepare(page, 0))
689bcebf
HD
1884 return;
1885
dc4b0caf 1886 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1887 set_freepage_migratetype(page, migratetype);
1da177e4 1888 local_irq_save(flags);
f8891e5e 1889 __count_vm_event(PGFREE);
da456f14 1890
5f8dcc21
MG
1891 /*
1892 * We only track unmovable, reclaimable and movable on pcp lists.
1893 * Free ISOLATE pages back to the allocator because they are being
1894 * offlined but treat RESERVE as movable pages so we can get those
1895 * areas back if necessary. Otherwise, we may have to free
1896 * excessively into the page allocator
1897 */
1898 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1899 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1900 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1901 goto out;
1902 }
1903 migratetype = MIGRATE_MOVABLE;
1904 }
1905
99dcc3e5 1906 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1907 if (!cold)
5f8dcc21 1908 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1909 else
1910 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1911 pcp->count++;
48db57f8 1912 if (pcp->count >= pcp->high) {
4db0c3c2 1913 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1914 free_pcppages_bulk(zone, batch, pcp);
1915 pcp->count -= batch;
48db57f8 1916 }
5f8dcc21
MG
1917
1918out:
1da177e4 1919 local_irq_restore(flags);
1da177e4
LT
1920}
1921
cc59850e
KK
1922/*
1923 * Free a list of 0-order pages
1924 */
b745bc85 1925void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1926{
1927 struct page *page, *next;
1928
1929 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1930 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1931 free_hot_cold_page(page, cold);
1932 }
1933}
1934
8dfcc9ba
NP
1935/*
1936 * split_page takes a non-compound higher-order page, and splits it into
1937 * n (1<<order) sub-pages: page[0..n]
1938 * Each sub-page must be freed individually.
1939 *
1940 * Note: this is probably too low level an operation for use in drivers.
1941 * Please consult with lkml before using this in your driver.
1942 */
1943void split_page(struct page *page, unsigned int order)
1944{
1945 int i;
1946
309381fe
SL
1947 VM_BUG_ON_PAGE(PageCompound(page), page);
1948 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1949
1950#ifdef CONFIG_KMEMCHECK
1951 /*
1952 * Split shadow pages too, because free(page[0]) would
1953 * otherwise free the whole shadow.
1954 */
1955 if (kmemcheck_page_is_tracked(page))
1956 split_page(virt_to_page(page[0].shadow), order);
1957#endif
1958
48c96a36
JK
1959 set_page_owner(page, 0, 0);
1960 for (i = 1; i < (1 << order); i++) {
7835e98b 1961 set_page_refcounted(page + i);
48c96a36
JK
1962 set_page_owner(page + i, 0, 0);
1963 }
8dfcc9ba 1964}
5853ff23 1965EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1966
3c605096 1967int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1968{
748446bb
MG
1969 unsigned long watermark;
1970 struct zone *zone;
2139cbe6 1971 int mt;
748446bb
MG
1972
1973 BUG_ON(!PageBuddy(page));
1974
1975 zone = page_zone(page);
2e30abd1 1976 mt = get_pageblock_migratetype(page);
748446bb 1977
194159fb 1978 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1979 /* Obey watermarks as if the page was being allocated */
1980 watermark = low_wmark_pages(zone) + (1 << order);
1981 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1982 return 0;
1983
8fb74b9f 1984 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1985 }
748446bb
MG
1986
1987 /* Remove page from free list */
1988 list_del(&page->lru);
1989 zone->free_area[order].nr_free--;
1990 rmv_page_order(page);
2139cbe6 1991
8fb74b9f 1992 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1993 if (order >= pageblock_order - 1) {
1994 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1995 for (; page < endpage; page += pageblock_nr_pages) {
1996 int mt = get_pageblock_migratetype(page);
194159fb 1997 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1998 set_pageblock_migratetype(page,
1999 MIGRATE_MOVABLE);
2000 }
748446bb
MG
2001 }
2002
48c96a36 2003 set_page_owner(page, order, 0);
8fb74b9f 2004 return 1UL << order;
1fb3f8ca
MG
2005}
2006
2007/*
2008 * Similar to split_page except the page is already free. As this is only
2009 * being used for migration, the migratetype of the block also changes.
2010 * As this is called with interrupts disabled, the caller is responsible
2011 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2012 * are enabled.
2013 *
2014 * Note: this is probably too low level an operation for use in drivers.
2015 * Please consult with lkml before using this in your driver.
2016 */
2017int split_free_page(struct page *page)
2018{
2019 unsigned int order;
2020 int nr_pages;
2021
1fb3f8ca
MG
2022 order = page_order(page);
2023
8fb74b9f 2024 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2025 if (!nr_pages)
2026 return 0;
2027
2028 /* Split into individual pages */
2029 set_page_refcounted(page);
2030 split_page(page, order);
2031 return nr_pages;
748446bb
MG
2032}
2033
1da177e4 2034/*
75379191 2035 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2036 */
0a15c3e9
MG
2037static inline
2038struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
2039 struct zone *zone, unsigned int order,
2040 gfp_t gfp_flags, int migratetype)
1da177e4
LT
2041{
2042 unsigned long flags;
689bcebf 2043 struct page *page;
b745bc85 2044 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2045
48db57f8 2046 if (likely(order == 0)) {
1da177e4 2047 struct per_cpu_pages *pcp;
5f8dcc21 2048 struct list_head *list;
1da177e4 2049
1da177e4 2050 local_irq_save(flags);
99dcc3e5
CL
2051 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2052 list = &pcp->lists[migratetype];
5f8dcc21 2053 if (list_empty(list)) {
535131e6 2054 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2055 pcp->batch, list,
e084b2d9 2056 migratetype, cold);
5f8dcc21 2057 if (unlikely(list_empty(list)))
6fb332fa 2058 goto failed;
535131e6 2059 }
b92a6edd 2060
5f8dcc21
MG
2061 if (cold)
2062 page = list_entry(list->prev, struct page, lru);
2063 else
2064 page = list_entry(list->next, struct page, lru);
2065
b92a6edd
MG
2066 list_del(&page->lru);
2067 pcp->count--;
7fb1d9fc 2068 } else {
dab48dab
AM
2069 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2070 /*
2071 * __GFP_NOFAIL is not to be used in new code.
2072 *
2073 * All __GFP_NOFAIL callers should be fixed so that they
2074 * properly detect and handle allocation failures.
2075 *
2076 * We most definitely don't want callers attempting to
4923abf9 2077 * allocate greater than order-1 page units with
dab48dab
AM
2078 * __GFP_NOFAIL.
2079 */
4923abf9 2080 WARN_ON_ONCE(order > 1);
dab48dab 2081 }
1da177e4 2082 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2083 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2084 spin_unlock(&zone->lock);
2085 if (!page)
2086 goto failed;
d1ce749a 2087 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 2088 get_freepage_migratetype(page));
1da177e4
LT
2089 }
2090
3a025760 2091 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2092 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2093 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2094 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2095
f8891e5e 2096 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2097 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2098 local_irq_restore(flags);
1da177e4 2099
309381fe 2100 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2101 return page;
a74609fa
NP
2102
2103failed:
2104 local_irq_restore(flags);
a74609fa 2105 return NULL;
1da177e4
LT
2106}
2107
933e312e
AM
2108#ifdef CONFIG_FAIL_PAGE_ALLOC
2109
b2588c4b 2110static struct {
933e312e
AM
2111 struct fault_attr attr;
2112
2113 u32 ignore_gfp_highmem;
2114 u32 ignore_gfp_wait;
54114994 2115 u32 min_order;
933e312e
AM
2116} fail_page_alloc = {
2117 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2118 .ignore_gfp_wait = 1,
2119 .ignore_gfp_highmem = 1,
54114994 2120 .min_order = 1,
933e312e
AM
2121};
2122
2123static int __init setup_fail_page_alloc(char *str)
2124{
2125 return setup_fault_attr(&fail_page_alloc.attr, str);
2126}
2127__setup("fail_page_alloc=", setup_fail_page_alloc);
2128
deaf386e 2129static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2130{
54114994 2131 if (order < fail_page_alloc.min_order)
deaf386e 2132 return false;
933e312e 2133 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2134 return false;
933e312e 2135 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2136 return false;
933e312e 2137 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2138 return false;
933e312e
AM
2139
2140 return should_fail(&fail_page_alloc.attr, 1 << order);
2141}
2142
2143#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2144
2145static int __init fail_page_alloc_debugfs(void)
2146{
f4ae40a6 2147 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2148 struct dentry *dir;
933e312e 2149
dd48c085
AM
2150 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2151 &fail_page_alloc.attr);
2152 if (IS_ERR(dir))
2153 return PTR_ERR(dir);
933e312e 2154
b2588c4b
AM
2155 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2156 &fail_page_alloc.ignore_gfp_wait))
2157 goto fail;
2158 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2159 &fail_page_alloc.ignore_gfp_highmem))
2160 goto fail;
2161 if (!debugfs_create_u32("min-order", mode, dir,
2162 &fail_page_alloc.min_order))
2163 goto fail;
2164
2165 return 0;
2166fail:
dd48c085 2167 debugfs_remove_recursive(dir);
933e312e 2168
b2588c4b 2169 return -ENOMEM;
933e312e
AM
2170}
2171
2172late_initcall(fail_page_alloc_debugfs);
2173
2174#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2175
2176#else /* CONFIG_FAIL_PAGE_ALLOC */
2177
deaf386e 2178static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2179{
deaf386e 2180 return false;
933e312e
AM
2181}
2182
2183#endif /* CONFIG_FAIL_PAGE_ALLOC */
2184
1da177e4 2185/*
88f5acf8 2186 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2187 * of the allocation.
2188 */
7aeb09f9
MG
2189static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2190 unsigned long mark, int classzone_idx, int alloc_flags,
2191 long free_pages)
1da177e4 2192{
26086de3 2193 /* free_pages may go negative - that's OK */
d23ad423 2194 long min = mark;
1da177e4 2195 int o;
026b0814 2196 long free_cma = 0;
1da177e4 2197
df0a6daa 2198 free_pages -= (1 << order) - 1;
7fb1d9fc 2199 if (alloc_flags & ALLOC_HIGH)
1da177e4 2200 min -= min / 2;
7fb1d9fc 2201 if (alloc_flags & ALLOC_HARDER)
1da177e4 2202 min -= min / 4;
d95ea5d1
BZ
2203#ifdef CONFIG_CMA
2204 /* If allocation can't use CMA areas don't use free CMA pages */
2205 if (!(alloc_flags & ALLOC_CMA))
026b0814 2206 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2207#endif
026b0814 2208
3484b2de 2209 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2210 return false;
1da177e4
LT
2211 for (o = 0; o < order; o++) {
2212 /* At the next order, this order's pages become unavailable */
2213 free_pages -= z->free_area[o].nr_free << o;
2214
2215 /* Require fewer higher order pages to be free */
2216 min >>= 1;
2217
2218 if (free_pages <= min)
88f5acf8 2219 return false;
1da177e4 2220 }
88f5acf8
MG
2221 return true;
2222}
2223
7aeb09f9 2224bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2225 int classzone_idx, int alloc_flags)
2226{
2227 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2228 zone_page_state(z, NR_FREE_PAGES));
2229}
2230
7aeb09f9
MG
2231bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2232 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2233{
2234 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2235
2236 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2237 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2238
2239 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2240 free_pages);
1da177e4
LT
2241}
2242
9276b1bc
PJ
2243#ifdef CONFIG_NUMA
2244/*
2245 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2246 * skip over zones that are not allowed by the cpuset, or that have
2247 * been recently (in last second) found to be nearly full. See further
2248 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2249 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2250 *
a1aeb65a 2251 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2252 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2253 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2254 *
2255 * If the zonelist cache is not available for this zonelist, does
2256 * nothing and returns NULL.
2257 *
2258 * If the fullzones BITMAP in the zonelist cache is stale (more than
2259 * a second since last zap'd) then we zap it out (clear its bits.)
2260 *
2261 * We hold off even calling zlc_setup, until after we've checked the
2262 * first zone in the zonelist, on the theory that most allocations will
2263 * be satisfied from that first zone, so best to examine that zone as
2264 * quickly as we can.
2265 */
2266static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2267{
2268 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2269 nodemask_t *allowednodes; /* zonelist_cache approximation */
2270
2271 zlc = zonelist->zlcache_ptr;
2272 if (!zlc)
2273 return NULL;
2274
f05111f5 2275 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2276 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2277 zlc->last_full_zap = jiffies;
2278 }
2279
2280 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2281 &cpuset_current_mems_allowed :
4b0ef1fe 2282 &node_states[N_MEMORY];
9276b1bc
PJ
2283 return allowednodes;
2284}
2285
2286/*
2287 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2288 * if it is worth looking at further for free memory:
2289 * 1) Check that the zone isn't thought to be full (doesn't have its
2290 * bit set in the zonelist_cache fullzones BITMAP).
2291 * 2) Check that the zones node (obtained from the zonelist_cache
2292 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2293 * Return true (non-zero) if zone is worth looking at further, or
2294 * else return false (zero) if it is not.
2295 *
2296 * This check -ignores- the distinction between various watermarks,
2297 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2298 * found to be full for any variation of these watermarks, it will
2299 * be considered full for up to one second by all requests, unless
2300 * we are so low on memory on all allowed nodes that we are forced
2301 * into the second scan of the zonelist.
2302 *
2303 * In the second scan we ignore this zonelist cache and exactly
2304 * apply the watermarks to all zones, even it is slower to do so.
2305 * We are low on memory in the second scan, and should leave no stone
2306 * unturned looking for a free page.
2307 */
dd1a239f 2308static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2309 nodemask_t *allowednodes)
2310{
2311 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2312 int i; /* index of *z in zonelist zones */
2313 int n; /* node that zone *z is on */
2314
2315 zlc = zonelist->zlcache_ptr;
2316 if (!zlc)
2317 return 1;
2318
dd1a239f 2319 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2320 n = zlc->z_to_n[i];
2321
2322 /* This zone is worth trying if it is allowed but not full */
2323 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2324}
2325
2326/*
2327 * Given 'z' scanning a zonelist, set the corresponding bit in
2328 * zlc->fullzones, so that subsequent attempts to allocate a page
2329 * from that zone don't waste time re-examining it.
2330 */
dd1a239f 2331static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2332{
2333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2334 int i; /* index of *z in zonelist zones */
2335
2336 zlc = zonelist->zlcache_ptr;
2337 if (!zlc)
2338 return;
2339
dd1a239f 2340 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2341
2342 set_bit(i, zlc->fullzones);
2343}
2344
76d3fbf8
MG
2345/*
2346 * clear all zones full, called after direct reclaim makes progress so that
2347 * a zone that was recently full is not skipped over for up to a second
2348 */
2349static void zlc_clear_zones_full(struct zonelist *zonelist)
2350{
2351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2352
2353 zlc = zonelist->zlcache_ptr;
2354 if (!zlc)
2355 return;
2356
2357 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2358}
2359
81c0a2bb
JW
2360static bool zone_local(struct zone *local_zone, struct zone *zone)
2361{
fff4068c 2362 return local_zone->node == zone->node;
81c0a2bb
JW
2363}
2364
957f822a
DR
2365static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2366{
5f7a75ac
MG
2367 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2368 RECLAIM_DISTANCE;
957f822a
DR
2369}
2370
9276b1bc
PJ
2371#else /* CONFIG_NUMA */
2372
2373static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2374{
2375 return NULL;
2376}
2377
dd1a239f 2378static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2379 nodemask_t *allowednodes)
2380{
2381 return 1;
2382}
2383
dd1a239f 2384static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2385{
2386}
76d3fbf8
MG
2387
2388static void zlc_clear_zones_full(struct zonelist *zonelist)
2389{
2390}
957f822a 2391
81c0a2bb
JW
2392static bool zone_local(struct zone *local_zone, struct zone *zone)
2393{
2394 return true;
2395}
2396
957f822a
DR
2397static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2398{
2399 return true;
2400}
2401
9276b1bc
PJ
2402#endif /* CONFIG_NUMA */
2403
4ffeaf35
MG
2404static void reset_alloc_batches(struct zone *preferred_zone)
2405{
2406 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2407
2408 do {
2409 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2410 high_wmark_pages(zone) - low_wmark_pages(zone) -
2411 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2412 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2413 } while (zone++ != preferred_zone);
2414}
2415
7fb1d9fc 2416/*
0798e519 2417 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2418 * a page.
2419 */
2420static struct page *
a9263751
VB
2421get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2422 const struct alloc_context *ac)
753ee728 2423{
a9263751 2424 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2425 struct zoneref *z;
7fb1d9fc 2426 struct page *page = NULL;
5117f45d 2427 struct zone *zone;
9276b1bc
PJ
2428 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2429 int zlc_active = 0; /* set if using zonelist_cache */
2430 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2431 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2432 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2433 int nr_fair_skipped = 0;
2434 bool zonelist_rescan;
54a6eb5c 2435
9276b1bc 2436zonelist_scan:
4ffeaf35
MG
2437 zonelist_rescan = false;
2438
7fb1d9fc 2439 /*
9276b1bc 2440 * Scan zonelist, looking for a zone with enough free.
344736f2 2441 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2442 */
a9263751
VB
2443 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2444 ac->nodemask) {
e085dbc5
JW
2445 unsigned long mark;
2446
e5adfffc 2447 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2448 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2449 continue;
664eedde
MG
2450 if (cpusets_enabled() &&
2451 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2452 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2453 continue;
81c0a2bb
JW
2454 /*
2455 * Distribute pages in proportion to the individual
2456 * zone size to ensure fair page aging. The zone a
2457 * page was allocated in should have no effect on the
2458 * time the page has in memory before being reclaimed.
81c0a2bb 2459 */
3a025760 2460 if (alloc_flags & ALLOC_FAIR) {
a9263751 2461 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2462 break;
57054651 2463 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2464 nr_fair_skipped++;
3a025760 2465 continue;
4ffeaf35 2466 }
81c0a2bb 2467 }
a756cf59
JW
2468 /*
2469 * When allocating a page cache page for writing, we
2470 * want to get it from a zone that is within its dirty
2471 * limit, such that no single zone holds more than its
2472 * proportional share of globally allowed dirty pages.
2473 * The dirty limits take into account the zone's
2474 * lowmem reserves and high watermark so that kswapd
2475 * should be able to balance it without having to
2476 * write pages from its LRU list.
2477 *
2478 * This may look like it could increase pressure on
2479 * lower zones by failing allocations in higher zones
2480 * before they are full. But the pages that do spill
2481 * over are limited as the lower zones are protected
2482 * by this very same mechanism. It should not become
2483 * a practical burden to them.
2484 *
2485 * XXX: For now, allow allocations to potentially
2486 * exceed the per-zone dirty limit in the slowpath
2487 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2488 * which is important when on a NUMA setup the allowed
2489 * zones are together not big enough to reach the
2490 * global limit. The proper fix for these situations
2491 * will require awareness of zones in the
2492 * dirty-throttling and the flusher threads.
2493 */
a6e21b14 2494 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2495 continue;
7fb1d9fc 2496
e085dbc5
JW
2497 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2498 if (!zone_watermark_ok(zone, order, mark,
a9263751 2499 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2500 int ret;
2501
5dab2911
MG
2502 /* Checked here to keep the fast path fast */
2503 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2504 if (alloc_flags & ALLOC_NO_WATERMARKS)
2505 goto try_this_zone;
2506
e5adfffc
KS
2507 if (IS_ENABLED(CONFIG_NUMA) &&
2508 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2509 /*
2510 * we do zlc_setup if there are multiple nodes
2511 * and before considering the first zone allowed
2512 * by the cpuset.
2513 */
2514 allowednodes = zlc_setup(zonelist, alloc_flags);
2515 zlc_active = 1;
2516 did_zlc_setup = 1;
2517 }
2518
957f822a 2519 if (zone_reclaim_mode == 0 ||
a9263751 2520 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2521 goto this_zone_full;
2522
cd38b115
MG
2523 /*
2524 * As we may have just activated ZLC, check if the first
2525 * eligible zone has failed zone_reclaim recently.
2526 */
e5adfffc 2527 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2528 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2529 continue;
2530
fa5e084e
MG
2531 ret = zone_reclaim(zone, gfp_mask, order);
2532 switch (ret) {
2533 case ZONE_RECLAIM_NOSCAN:
2534 /* did not scan */
cd38b115 2535 continue;
fa5e084e
MG
2536 case ZONE_RECLAIM_FULL:
2537 /* scanned but unreclaimable */
cd38b115 2538 continue;
fa5e084e
MG
2539 default:
2540 /* did we reclaim enough */
fed2719e 2541 if (zone_watermark_ok(zone, order, mark,
a9263751 2542 ac->classzone_idx, alloc_flags))
fed2719e
MG
2543 goto try_this_zone;
2544
2545 /*
2546 * Failed to reclaim enough to meet watermark.
2547 * Only mark the zone full if checking the min
2548 * watermark or if we failed to reclaim just
2549 * 1<<order pages or else the page allocator
2550 * fastpath will prematurely mark zones full
2551 * when the watermark is between the low and
2552 * min watermarks.
2553 */
2554 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2555 ret == ZONE_RECLAIM_SOME)
9276b1bc 2556 goto this_zone_full;
fed2719e
MG
2557
2558 continue;
0798e519 2559 }
7fb1d9fc
RS
2560 }
2561
fa5e084e 2562try_this_zone:
a9263751
VB
2563 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2564 gfp_mask, ac->migratetype);
75379191
VB
2565 if (page) {
2566 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2567 goto try_this_zone;
2568 return page;
2569 }
9276b1bc 2570this_zone_full:
65bb3719 2571 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2572 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2573 }
9276b1bc 2574
4ffeaf35
MG
2575 /*
2576 * The first pass makes sure allocations are spread fairly within the
2577 * local node. However, the local node might have free pages left
2578 * after the fairness batches are exhausted, and remote zones haven't
2579 * even been considered yet. Try once more without fairness, and
2580 * include remote zones now, before entering the slowpath and waking
2581 * kswapd: prefer spilling to a remote zone over swapping locally.
2582 */
2583 if (alloc_flags & ALLOC_FAIR) {
2584 alloc_flags &= ~ALLOC_FAIR;
2585 if (nr_fair_skipped) {
2586 zonelist_rescan = true;
a9263751 2587 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2588 }
2589 if (nr_online_nodes > 1)
2590 zonelist_rescan = true;
2591 }
2592
2593 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2594 /* Disable zlc cache for second zonelist scan */
2595 zlc_active = 0;
2596 zonelist_rescan = true;
2597 }
2598
2599 if (zonelist_rescan)
2600 goto zonelist_scan;
2601
2602 return NULL;
753ee728
MH
2603}
2604
29423e77
DR
2605/*
2606 * Large machines with many possible nodes should not always dump per-node
2607 * meminfo in irq context.
2608 */
2609static inline bool should_suppress_show_mem(void)
2610{
2611 bool ret = false;
2612
2613#if NODES_SHIFT > 8
2614 ret = in_interrupt();
2615#endif
2616 return ret;
2617}
2618
a238ab5b
DH
2619static DEFINE_RATELIMIT_STATE(nopage_rs,
2620 DEFAULT_RATELIMIT_INTERVAL,
2621 DEFAULT_RATELIMIT_BURST);
2622
2623void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2624{
a238ab5b
DH
2625 unsigned int filter = SHOW_MEM_FILTER_NODES;
2626
c0a32fc5
SG
2627 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2628 debug_guardpage_minorder() > 0)
a238ab5b
DH
2629 return;
2630
2631 /*
2632 * This documents exceptions given to allocations in certain
2633 * contexts that are allowed to allocate outside current's set
2634 * of allowed nodes.
2635 */
2636 if (!(gfp_mask & __GFP_NOMEMALLOC))
2637 if (test_thread_flag(TIF_MEMDIE) ||
2638 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2639 filter &= ~SHOW_MEM_FILTER_NODES;
2640 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2641 filter &= ~SHOW_MEM_FILTER_NODES;
2642
2643 if (fmt) {
3ee9a4f0
JP
2644 struct va_format vaf;
2645 va_list args;
2646
a238ab5b 2647 va_start(args, fmt);
3ee9a4f0
JP
2648
2649 vaf.fmt = fmt;
2650 vaf.va = &args;
2651
2652 pr_warn("%pV", &vaf);
2653
a238ab5b
DH
2654 va_end(args);
2655 }
2656
3ee9a4f0
JP
2657 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2658 current->comm, order, gfp_mask);
a238ab5b
DH
2659
2660 dump_stack();
2661 if (!should_suppress_show_mem())
2662 show_mem(filter);
2663}
2664
11e33f6a
MG
2665static inline struct page *
2666__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2667 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2668{
2669 struct page *page;
2670
9879de73
JW
2671 *did_some_progress = 0;
2672
9879de73 2673 /*
dc56401f
JW
2674 * Acquire the oom lock. If that fails, somebody else is
2675 * making progress for us.
9879de73 2676 */
dc56401f 2677 if (!mutex_trylock(&oom_lock)) {
9879de73 2678 *did_some_progress = 1;
11e33f6a 2679 schedule_timeout_uninterruptible(1);
1da177e4
LT
2680 return NULL;
2681 }
6b1de916 2682
11e33f6a
MG
2683 /*
2684 * Go through the zonelist yet one more time, keep very high watermark
2685 * here, this is only to catch a parallel oom killing, we must fail if
2686 * we're still under heavy pressure.
2687 */
a9263751
VB
2688 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2689 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2690 if (page)
11e33f6a
MG
2691 goto out;
2692
4365a567 2693 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2694 /* Coredumps can quickly deplete all memory reserves */
2695 if (current->flags & PF_DUMPCORE)
2696 goto out;
4365a567
KH
2697 /* The OOM killer will not help higher order allocs */
2698 if (order > PAGE_ALLOC_COSTLY_ORDER)
2699 goto out;
03668b3c 2700 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2701 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2702 goto out;
9083905a 2703 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2704 if (!(gfp_mask & __GFP_FS)) {
2705 /*
2706 * XXX: Page reclaim didn't yield anything,
2707 * and the OOM killer can't be invoked, but
9083905a 2708 * keep looping as per tradition.
cc873177
JW
2709 */
2710 *did_some_progress = 1;
9879de73 2711 goto out;
cc873177 2712 }
9083905a
JW
2713 if (pm_suspended_storage())
2714 goto out;
4167e9b2 2715 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2716 if (gfp_mask & __GFP_THISNODE)
2717 goto out;
2718 }
11e33f6a 2719 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2720 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2721 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2722 *did_some_progress = 1;
11e33f6a 2723out:
dc56401f 2724 mutex_unlock(&oom_lock);
11e33f6a
MG
2725 return page;
2726}
2727
56de7263
MG
2728#ifdef CONFIG_COMPACTION
2729/* Try memory compaction for high-order allocations before reclaim */
2730static struct page *
2731__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2732 int alloc_flags, const struct alloc_context *ac,
2733 enum migrate_mode mode, int *contended_compaction,
2734 bool *deferred_compaction)
56de7263 2735{
53853e2d 2736 unsigned long compact_result;
98dd3b48 2737 struct page *page;
53853e2d
VB
2738
2739 if (!order)
66199712 2740 return NULL;
66199712 2741
c06b1fca 2742 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2743 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2744 mode, contended_compaction);
c06b1fca 2745 current->flags &= ~PF_MEMALLOC;
56de7263 2746
98dd3b48
VB
2747 switch (compact_result) {
2748 case COMPACT_DEFERRED:
53853e2d 2749 *deferred_compaction = true;
98dd3b48
VB
2750 /* fall-through */
2751 case COMPACT_SKIPPED:
2752 return NULL;
2753 default:
2754 break;
2755 }
53853e2d 2756
98dd3b48
VB
2757 /*
2758 * At least in one zone compaction wasn't deferred or skipped, so let's
2759 * count a compaction stall
2760 */
2761 count_vm_event(COMPACTSTALL);
8fb74b9f 2762
a9263751
VB
2763 page = get_page_from_freelist(gfp_mask, order,
2764 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2765
98dd3b48
VB
2766 if (page) {
2767 struct zone *zone = page_zone(page);
53853e2d 2768
98dd3b48
VB
2769 zone->compact_blockskip_flush = false;
2770 compaction_defer_reset(zone, order, true);
2771 count_vm_event(COMPACTSUCCESS);
2772 return page;
2773 }
56de7263 2774
98dd3b48
VB
2775 /*
2776 * It's bad if compaction run occurs and fails. The most likely reason
2777 * is that pages exist, but not enough to satisfy watermarks.
2778 */
2779 count_vm_event(COMPACTFAIL);
66199712 2780
98dd3b48 2781 cond_resched();
56de7263
MG
2782
2783 return NULL;
2784}
2785#else
2786static inline struct page *
2787__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2788 int alloc_flags, const struct alloc_context *ac,
2789 enum migrate_mode mode, int *contended_compaction,
2790 bool *deferred_compaction)
56de7263
MG
2791{
2792 return NULL;
2793}
2794#endif /* CONFIG_COMPACTION */
2795
bba90710
MS
2796/* Perform direct synchronous page reclaim */
2797static int
a9263751
VB
2798__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2799 const struct alloc_context *ac)
11e33f6a 2800{
11e33f6a 2801 struct reclaim_state reclaim_state;
bba90710 2802 int progress;
11e33f6a
MG
2803
2804 cond_resched();
2805
2806 /* We now go into synchronous reclaim */
2807 cpuset_memory_pressure_bump();
c06b1fca 2808 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2809 lockdep_set_current_reclaim_state(gfp_mask);
2810 reclaim_state.reclaimed_slab = 0;
c06b1fca 2811 current->reclaim_state = &reclaim_state;
11e33f6a 2812
a9263751
VB
2813 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2814 ac->nodemask);
11e33f6a 2815
c06b1fca 2816 current->reclaim_state = NULL;
11e33f6a 2817 lockdep_clear_current_reclaim_state();
c06b1fca 2818 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2819
2820 cond_resched();
2821
bba90710
MS
2822 return progress;
2823}
2824
2825/* The really slow allocator path where we enter direct reclaim */
2826static inline struct page *
2827__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2828 int alloc_flags, const struct alloc_context *ac,
2829 unsigned long *did_some_progress)
bba90710
MS
2830{
2831 struct page *page = NULL;
2832 bool drained = false;
2833
a9263751 2834 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2835 if (unlikely(!(*did_some_progress)))
2836 return NULL;
11e33f6a 2837
76d3fbf8 2838 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2839 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2840 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2841
9ee493ce 2842retry:
a9263751
VB
2843 page = get_page_from_freelist(gfp_mask, order,
2844 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2845
2846 /*
2847 * If an allocation failed after direct reclaim, it could be because
2848 * pages are pinned on the per-cpu lists. Drain them and try again
2849 */
2850 if (!page && !drained) {
93481ff0 2851 drain_all_pages(NULL);
9ee493ce
MG
2852 drained = true;
2853 goto retry;
2854 }
2855
11e33f6a
MG
2856 return page;
2857}
2858
1da177e4 2859/*
11e33f6a
MG
2860 * This is called in the allocator slow-path if the allocation request is of
2861 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2862 */
11e33f6a
MG
2863static inline struct page *
2864__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2865 const struct alloc_context *ac)
11e33f6a
MG
2866{
2867 struct page *page;
2868
2869 do {
a9263751
VB
2870 page = get_page_from_freelist(gfp_mask, order,
2871 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2872
2873 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2874 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2875 HZ/50);
11e33f6a
MG
2876 } while (!page && (gfp_mask & __GFP_NOFAIL));
2877
2878 return page;
2879}
2880
a9263751 2881static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2882{
2883 struct zoneref *z;
2884 struct zone *zone;
2885
a9263751
VB
2886 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2887 ac->high_zoneidx, ac->nodemask)
2888 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2889}
2890
341ce06f
PZ
2891static inline int
2892gfp_to_alloc_flags(gfp_t gfp_mask)
2893{
341ce06f 2894 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2895 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2896
a56f57ff 2897 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2898 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2899
341ce06f
PZ
2900 /*
2901 * The caller may dip into page reserves a bit more if the caller
2902 * cannot run direct reclaim, or if the caller has realtime scheduling
2903 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2904 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2905 */
e6223a3b 2906 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2907
b104a35d 2908 if (atomic) {
5c3240d9 2909 /*
b104a35d
DR
2910 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2911 * if it can't schedule.
5c3240d9 2912 */
b104a35d 2913 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2914 alloc_flags |= ALLOC_HARDER;
523b9458 2915 /*
b104a35d 2916 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2917 * comment for __cpuset_node_allowed().
523b9458 2918 */
341ce06f 2919 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2920 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2921 alloc_flags |= ALLOC_HARDER;
2922
b37f1dd0
MG
2923 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2924 if (gfp_mask & __GFP_MEMALLOC)
2925 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2926 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2927 alloc_flags |= ALLOC_NO_WATERMARKS;
2928 else if (!in_interrupt() &&
2929 ((current->flags & PF_MEMALLOC) ||
2930 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2931 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2932 }
d95ea5d1 2933#ifdef CONFIG_CMA
43e7a34d 2934 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2935 alloc_flags |= ALLOC_CMA;
2936#endif
341ce06f
PZ
2937 return alloc_flags;
2938}
2939
072bb0aa
MG
2940bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2941{
b37f1dd0 2942 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2943}
2944
11e33f6a
MG
2945static inline struct page *
2946__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2947 struct alloc_context *ac)
11e33f6a
MG
2948{
2949 const gfp_t wait = gfp_mask & __GFP_WAIT;
2950 struct page *page = NULL;
2951 int alloc_flags;
2952 unsigned long pages_reclaimed = 0;
2953 unsigned long did_some_progress;
e0b9daeb 2954 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2955 bool deferred_compaction = false;
1f9efdef 2956 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2957
72807a74
MG
2958 /*
2959 * In the slowpath, we sanity check order to avoid ever trying to
2960 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2961 * be using allocators in order of preference for an area that is
2962 * too large.
2963 */
1fc28b70
MG
2964 if (order >= MAX_ORDER) {
2965 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2966 return NULL;
1fc28b70 2967 }
1da177e4 2968
952f3b51 2969 /*
4167e9b2
DR
2970 * If this allocation cannot block and it is for a specific node, then
2971 * fail early. There's no need to wakeup kswapd or retry for a
2972 * speculative node-specific allocation.
952f3b51 2973 */
4167e9b2 2974 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2975 goto nopage;
2976
9879de73 2977retry:
3a025760 2978 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2979 wake_all_kswapds(order, ac);
1da177e4 2980
9bf2229f 2981 /*
7fb1d9fc
RS
2982 * OK, we're below the kswapd watermark and have kicked background
2983 * reclaim. Now things get more complex, so set up alloc_flags according
2984 * to how we want to proceed.
9bf2229f 2985 */
341ce06f 2986 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2987
f33261d7
DR
2988 /*
2989 * Find the true preferred zone if the allocation is unconstrained by
2990 * cpusets.
2991 */
a9263751 2992 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2993 struct zoneref *preferred_zoneref;
a9263751
VB
2994 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2995 ac->high_zoneidx, NULL, &ac->preferred_zone);
2996 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2997 }
f33261d7 2998
341ce06f 2999 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3000 page = get_page_from_freelist(gfp_mask, order,
3001 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3002 if (page)
3003 goto got_pg;
1da177e4 3004
11e33f6a 3005 /* Allocate without watermarks if the context allows */
341ce06f 3006 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3007 /*
3008 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3009 * the allocation is high priority and these type of
3010 * allocations are system rather than user orientated
3011 */
a9263751
VB
3012 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3013
3014 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 3015
cfd19c5a 3016 if (page) {
341ce06f 3017 goto got_pg;
cfd19c5a 3018 }
1da177e4
LT
3019 }
3020
3021 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
3022 if (!wait) {
3023 /*
3024 * All existing users of the deprecated __GFP_NOFAIL are
3025 * blockable, so warn of any new users that actually allow this
3026 * type of allocation to fail.
3027 */
3028 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3029 goto nopage;
aed0a0e3 3030 }
1da177e4 3031
341ce06f 3032 /* Avoid recursion of direct reclaim */
c06b1fca 3033 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3034 goto nopage;
3035
6583bb64
DR
3036 /* Avoid allocations with no watermarks from looping endlessly */
3037 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3038 goto nopage;
3039
77f1fe6b
MG
3040 /*
3041 * Try direct compaction. The first pass is asynchronous. Subsequent
3042 * attempts after direct reclaim are synchronous
3043 */
a9263751
VB
3044 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3045 migration_mode,
3046 &contended_compaction,
53853e2d 3047 &deferred_compaction);
56de7263
MG
3048 if (page)
3049 goto got_pg;
75f30861 3050
1f9efdef
VB
3051 /* Checks for THP-specific high-order allocations */
3052 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3053 /*
3054 * If compaction is deferred for high-order allocations, it is
3055 * because sync compaction recently failed. If this is the case
3056 * and the caller requested a THP allocation, we do not want
3057 * to heavily disrupt the system, so we fail the allocation
3058 * instead of entering direct reclaim.
3059 */
3060 if (deferred_compaction)
3061 goto nopage;
3062
3063 /*
3064 * In all zones where compaction was attempted (and not
3065 * deferred or skipped), lock contention has been detected.
3066 * For THP allocation we do not want to disrupt the others
3067 * so we fallback to base pages instead.
3068 */
3069 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3070 goto nopage;
3071
3072 /*
3073 * If compaction was aborted due to need_resched(), we do not
3074 * want to further increase allocation latency, unless it is
3075 * khugepaged trying to collapse.
3076 */
3077 if (contended_compaction == COMPACT_CONTENDED_SCHED
3078 && !(current->flags & PF_KTHREAD))
3079 goto nopage;
3080 }
66199712 3081
8fe78048
DR
3082 /*
3083 * It can become very expensive to allocate transparent hugepages at
3084 * fault, so use asynchronous memory compaction for THP unless it is
3085 * khugepaged trying to collapse.
3086 */
3087 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3088 (current->flags & PF_KTHREAD))
3089 migration_mode = MIGRATE_SYNC_LIGHT;
3090
11e33f6a 3091 /* Try direct reclaim and then allocating */
a9263751
VB
3092 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3093 &did_some_progress);
11e33f6a
MG
3094 if (page)
3095 goto got_pg;
1da177e4 3096
9083905a
JW
3097 /* Do not loop if specifically requested */
3098 if (gfp_mask & __GFP_NORETRY)
3099 goto noretry;
3100
3101 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3102 pages_reclaimed += did_some_progress;
9083905a
JW
3103 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3104 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3105 /* Wait for some write requests to complete then retry */
a9263751 3106 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3107 goto retry;
1da177e4
LT
3108 }
3109
9083905a
JW
3110 /* Reclaim has failed us, start killing things */
3111 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3112 if (page)
3113 goto got_pg;
3114
3115 /* Retry as long as the OOM killer is making progress */
3116 if (did_some_progress)
3117 goto retry;
3118
3119noretry:
3120 /*
3121 * High-order allocations do not necessarily loop after
3122 * direct reclaim and reclaim/compaction depends on compaction
3123 * being called after reclaim so call directly if necessary
3124 */
3125 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3126 ac, migration_mode,
3127 &contended_compaction,
3128 &deferred_compaction);
3129 if (page)
3130 goto got_pg;
1da177e4 3131nopage:
a238ab5b 3132 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3133got_pg:
072bb0aa 3134 return page;
1da177e4 3135}
11e33f6a
MG
3136
3137/*
3138 * This is the 'heart' of the zoned buddy allocator.
3139 */
3140struct page *
3141__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3142 struct zonelist *zonelist, nodemask_t *nodemask)
3143{
d8846374 3144 struct zoneref *preferred_zoneref;
cc9a6c87 3145 struct page *page = NULL;
cc9a6c87 3146 unsigned int cpuset_mems_cookie;
3a025760 3147 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3148 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3149 struct alloc_context ac = {
3150 .high_zoneidx = gfp_zone(gfp_mask),
3151 .nodemask = nodemask,
3152 .migratetype = gfpflags_to_migratetype(gfp_mask),
3153 };
11e33f6a 3154
dcce284a
BH
3155 gfp_mask &= gfp_allowed_mask;
3156
11e33f6a
MG
3157 lockdep_trace_alloc(gfp_mask);
3158
3159 might_sleep_if(gfp_mask & __GFP_WAIT);
3160
3161 if (should_fail_alloc_page(gfp_mask, order))
3162 return NULL;
3163
3164 /*
3165 * Check the zones suitable for the gfp_mask contain at least one
3166 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3167 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3168 */
3169 if (unlikely(!zonelist->_zonerefs->zone))
3170 return NULL;
3171
a9263751 3172 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3173 alloc_flags |= ALLOC_CMA;
3174
cc9a6c87 3175retry_cpuset:
d26914d1 3176 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3177
a9263751
VB
3178 /* We set it here, as __alloc_pages_slowpath might have changed it */
3179 ac.zonelist = zonelist;
5117f45d 3180 /* The preferred zone is used for statistics later */
a9263751
VB
3181 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3182 ac.nodemask ? : &cpuset_current_mems_allowed,
3183 &ac.preferred_zone);
3184 if (!ac.preferred_zone)
cc9a6c87 3185 goto out;
a9263751 3186 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3187
3188 /* First allocation attempt */
91fbdc0f 3189 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3190 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3191 if (unlikely(!page)) {
3192 /*
3193 * Runtime PM, block IO and its error handling path
3194 * can deadlock because I/O on the device might not
3195 * complete.
3196 */
91fbdc0f
AM
3197 alloc_mask = memalloc_noio_flags(gfp_mask);
3198
a9263751 3199 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3200 }
11e33f6a 3201
23f086f9
XQ
3202 if (kmemcheck_enabled && page)
3203 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3204
a9263751 3205 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3206
3207out:
3208 /*
3209 * When updating a task's mems_allowed, it is possible to race with
3210 * parallel threads in such a way that an allocation can fail while
3211 * the mask is being updated. If a page allocation is about to fail,
3212 * check if the cpuset changed during allocation and if so, retry.
3213 */
d26914d1 3214 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3215 goto retry_cpuset;
3216
11e33f6a 3217 return page;
1da177e4 3218}
d239171e 3219EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3220
3221/*
3222 * Common helper functions.
3223 */
920c7a5d 3224unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3225{
945a1113
AM
3226 struct page *page;
3227
3228 /*
3229 * __get_free_pages() returns a 32-bit address, which cannot represent
3230 * a highmem page
3231 */
3232 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3233
1da177e4
LT
3234 page = alloc_pages(gfp_mask, order);
3235 if (!page)
3236 return 0;
3237 return (unsigned long) page_address(page);
3238}
1da177e4
LT
3239EXPORT_SYMBOL(__get_free_pages);
3240
920c7a5d 3241unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3242{
945a1113 3243 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3244}
1da177e4
LT
3245EXPORT_SYMBOL(get_zeroed_page);
3246
920c7a5d 3247void __free_pages(struct page *page, unsigned int order)
1da177e4 3248{
b5810039 3249 if (put_page_testzero(page)) {
1da177e4 3250 if (order == 0)
b745bc85 3251 free_hot_cold_page(page, false);
1da177e4
LT
3252 else
3253 __free_pages_ok(page, order);
3254 }
3255}
3256
3257EXPORT_SYMBOL(__free_pages);
3258
920c7a5d 3259void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3260{
3261 if (addr != 0) {
725d704e 3262 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3263 __free_pages(virt_to_page((void *)addr), order);
3264 }
3265}
3266
3267EXPORT_SYMBOL(free_pages);
3268
b63ae8ca
AD
3269/*
3270 * Page Fragment:
3271 * An arbitrary-length arbitrary-offset area of memory which resides
3272 * within a 0 or higher order page. Multiple fragments within that page
3273 * are individually refcounted, in the page's reference counter.
3274 *
3275 * The page_frag functions below provide a simple allocation framework for
3276 * page fragments. This is used by the network stack and network device
3277 * drivers to provide a backing region of memory for use as either an
3278 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3279 */
3280static struct page *__page_frag_refill(struct page_frag_cache *nc,
3281 gfp_t gfp_mask)
3282{
3283 struct page *page = NULL;
3284 gfp_t gfp = gfp_mask;
3285
3286#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3287 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3288 __GFP_NOMEMALLOC;
3289 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3290 PAGE_FRAG_CACHE_MAX_ORDER);
3291 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3292#endif
3293 if (unlikely(!page))
3294 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3295
3296 nc->va = page ? page_address(page) : NULL;
3297
3298 return page;
3299}
3300
3301void *__alloc_page_frag(struct page_frag_cache *nc,
3302 unsigned int fragsz, gfp_t gfp_mask)
3303{
3304 unsigned int size = PAGE_SIZE;
3305 struct page *page;
3306 int offset;
3307
3308 if (unlikely(!nc->va)) {
3309refill:
3310 page = __page_frag_refill(nc, gfp_mask);
3311 if (!page)
3312 return NULL;
3313
3314#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3315 /* if size can vary use size else just use PAGE_SIZE */
3316 size = nc->size;
3317#endif
3318 /* Even if we own the page, we do not use atomic_set().
3319 * This would break get_page_unless_zero() users.
3320 */
3321 atomic_add(size - 1, &page->_count);
3322
3323 /* reset page count bias and offset to start of new frag */
3324 nc->pfmemalloc = page->pfmemalloc;
3325 nc->pagecnt_bias = size;
3326 nc->offset = size;
3327 }
3328
3329 offset = nc->offset - fragsz;
3330 if (unlikely(offset < 0)) {
3331 page = virt_to_page(nc->va);
3332
3333 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3334 goto refill;
3335
3336#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3337 /* if size can vary use size else just use PAGE_SIZE */
3338 size = nc->size;
3339#endif
3340 /* OK, page count is 0, we can safely set it */
3341 atomic_set(&page->_count, size);
3342
3343 /* reset page count bias and offset to start of new frag */
3344 nc->pagecnt_bias = size;
3345 offset = size - fragsz;
3346 }
3347
3348 nc->pagecnt_bias--;
3349 nc->offset = offset;
3350
3351 return nc->va + offset;
3352}
3353EXPORT_SYMBOL(__alloc_page_frag);
3354
3355/*
3356 * Frees a page fragment allocated out of either a compound or order 0 page.
3357 */
3358void __free_page_frag(void *addr)
3359{
3360 struct page *page = virt_to_head_page(addr);
3361
3362 if (unlikely(put_page_testzero(page)))
3363 __free_pages_ok(page, compound_order(page));
3364}
3365EXPORT_SYMBOL(__free_page_frag);
3366
6a1a0d3b 3367/*
52383431
VD
3368 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3369 * of the current memory cgroup.
6a1a0d3b 3370 *
52383431
VD
3371 * It should be used when the caller would like to use kmalloc, but since the
3372 * allocation is large, it has to fall back to the page allocator.
3373 */
3374struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3375{
3376 struct page *page;
3377 struct mem_cgroup *memcg = NULL;
3378
3379 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3380 return NULL;
3381 page = alloc_pages(gfp_mask, order);
3382 memcg_kmem_commit_charge(page, memcg, order);
3383 return page;
3384}
3385
3386struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3387{
3388 struct page *page;
3389 struct mem_cgroup *memcg = NULL;
3390
3391 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3392 return NULL;
3393 page = alloc_pages_node(nid, gfp_mask, order);
3394 memcg_kmem_commit_charge(page, memcg, order);
3395 return page;
3396}
3397
3398/*
3399 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3400 * alloc_kmem_pages.
6a1a0d3b 3401 */
52383431 3402void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3403{
3404 memcg_kmem_uncharge_pages(page, order);
3405 __free_pages(page, order);
3406}
3407
52383431 3408void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3409{
3410 if (addr != 0) {
3411 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3412 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3413 }
3414}
3415
ee85c2e1
AK
3416static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3417{
3418 if (addr) {
3419 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3420 unsigned long used = addr + PAGE_ALIGN(size);
3421
3422 split_page(virt_to_page((void *)addr), order);
3423 while (used < alloc_end) {
3424 free_page(used);
3425 used += PAGE_SIZE;
3426 }
3427 }
3428 return (void *)addr;
3429}
3430
2be0ffe2
TT
3431/**
3432 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3433 * @size: the number of bytes to allocate
3434 * @gfp_mask: GFP flags for the allocation
3435 *
3436 * This function is similar to alloc_pages(), except that it allocates the
3437 * minimum number of pages to satisfy the request. alloc_pages() can only
3438 * allocate memory in power-of-two pages.
3439 *
3440 * This function is also limited by MAX_ORDER.
3441 *
3442 * Memory allocated by this function must be released by free_pages_exact().
3443 */
3444void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3445{
3446 unsigned int order = get_order(size);
3447 unsigned long addr;
3448
3449 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3450 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3451}
3452EXPORT_SYMBOL(alloc_pages_exact);
3453
ee85c2e1
AK
3454/**
3455 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3456 * pages on a node.
b5e6ab58 3457 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3458 * @size: the number of bytes to allocate
3459 * @gfp_mask: GFP flags for the allocation
3460 *
3461 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3462 * back.
3463 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3464 * but is not exact.
3465 */
e1931811 3466void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3467{
3468 unsigned order = get_order(size);
3469 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3470 if (!p)
3471 return NULL;
3472 return make_alloc_exact((unsigned long)page_address(p), order, size);
3473}
ee85c2e1 3474
2be0ffe2
TT
3475/**
3476 * free_pages_exact - release memory allocated via alloc_pages_exact()
3477 * @virt: the value returned by alloc_pages_exact.
3478 * @size: size of allocation, same value as passed to alloc_pages_exact().
3479 *
3480 * Release the memory allocated by a previous call to alloc_pages_exact.
3481 */
3482void free_pages_exact(void *virt, size_t size)
3483{
3484 unsigned long addr = (unsigned long)virt;
3485 unsigned long end = addr + PAGE_ALIGN(size);
3486
3487 while (addr < end) {
3488 free_page(addr);
3489 addr += PAGE_SIZE;
3490 }
3491}
3492EXPORT_SYMBOL(free_pages_exact);
3493
e0fb5815
ZY
3494/**
3495 * nr_free_zone_pages - count number of pages beyond high watermark
3496 * @offset: The zone index of the highest zone
3497 *
3498 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3499 * high watermark within all zones at or below a given zone index. For each
3500 * zone, the number of pages is calculated as:
834405c3 3501 * managed_pages - high_pages
e0fb5815 3502 */
ebec3862 3503static unsigned long nr_free_zone_pages(int offset)
1da177e4 3504{
dd1a239f 3505 struct zoneref *z;
54a6eb5c
MG
3506 struct zone *zone;
3507
e310fd43 3508 /* Just pick one node, since fallback list is circular */
ebec3862 3509 unsigned long sum = 0;
1da177e4 3510
0e88460d 3511 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3512
54a6eb5c 3513 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3514 unsigned long size = zone->managed_pages;
41858966 3515 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3516 if (size > high)
3517 sum += size - high;
1da177e4
LT
3518 }
3519
3520 return sum;
3521}
3522
e0fb5815
ZY
3523/**
3524 * nr_free_buffer_pages - count number of pages beyond high watermark
3525 *
3526 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3527 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3528 */
ebec3862 3529unsigned long nr_free_buffer_pages(void)
1da177e4 3530{
af4ca457 3531 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3532}
c2f1a551 3533EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3534
e0fb5815
ZY
3535/**
3536 * nr_free_pagecache_pages - count number of pages beyond high watermark
3537 *
3538 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3539 * high watermark within all zones.
1da177e4 3540 */
ebec3862 3541unsigned long nr_free_pagecache_pages(void)
1da177e4 3542{
2a1e274a 3543 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3544}
08e0f6a9
CL
3545
3546static inline void show_node(struct zone *zone)
1da177e4 3547{
e5adfffc 3548 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3549 printk("Node %d ", zone_to_nid(zone));
1da177e4 3550}
1da177e4 3551
1da177e4
LT
3552void si_meminfo(struct sysinfo *val)
3553{
3554 val->totalram = totalram_pages;
cc7452b6 3555 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3556 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3557 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3558 val->totalhigh = totalhigh_pages;
3559 val->freehigh = nr_free_highpages();
1da177e4
LT
3560 val->mem_unit = PAGE_SIZE;
3561}
3562
3563EXPORT_SYMBOL(si_meminfo);
3564
3565#ifdef CONFIG_NUMA
3566void si_meminfo_node(struct sysinfo *val, int nid)
3567{
cdd91a77
JL
3568 int zone_type; /* needs to be signed */
3569 unsigned long managed_pages = 0;
1da177e4
LT
3570 pg_data_t *pgdat = NODE_DATA(nid);
3571
cdd91a77
JL
3572 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3573 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3574 val->totalram = managed_pages;
cc7452b6 3575 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3576 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3577#ifdef CONFIG_HIGHMEM
b40da049 3578 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3579 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3580 NR_FREE_PAGES);
98d2b0eb
CL
3581#else
3582 val->totalhigh = 0;
3583 val->freehigh = 0;
3584#endif
1da177e4
LT
3585 val->mem_unit = PAGE_SIZE;
3586}
3587#endif
3588
ddd588b5 3589/*
7bf02ea2
DR
3590 * Determine whether the node should be displayed or not, depending on whether
3591 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3592 */
7bf02ea2 3593bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3594{
3595 bool ret = false;
cc9a6c87 3596 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3597
3598 if (!(flags & SHOW_MEM_FILTER_NODES))
3599 goto out;
3600
cc9a6c87 3601 do {
d26914d1 3602 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3603 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3604 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3605out:
3606 return ret;
3607}
3608
1da177e4
LT
3609#define K(x) ((x) << (PAGE_SHIFT-10))
3610
377e4f16
RV
3611static void show_migration_types(unsigned char type)
3612{
3613 static const char types[MIGRATE_TYPES] = {
3614 [MIGRATE_UNMOVABLE] = 'U',
3615 [MIGRATE_RECLAIMABLE] = 'E',
3616 [MIGRATE_MOVABLE] = 'M',
3617 [MIGRATE_RESERVE] = 'R',
3618#ifdef CONFIG_CMA
3619 [MIGRATE_CMA] = 'C',
3620#endif
194159fb 3621#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3622 [MIGRATE_ISOLATE] = 'I',
194159fb 3623#endif
377e4f16
RV
3624 };
3625 char tmp[MIGRATE_TYPES + 1];
3626 char *p = tmp;
3627 int i;
3628
3629 for (i = 0; i < MIGRATE_TYPES; i++) {
3630 if (type & (1 << i))
3631 *p++ = types[i];
3632 }
3633
3634 *p = '\0';
3635 printk("(%s) ", tmp);
3636}
3637
1da177e4
LT
3638/*
3639 * Show free area list (used inside shift_scroll-lock stuff)
3640 * We also calculate the percentage fragmentation. We do this by counting the
3641 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3642 *
3643 * Bits in @filter:
3644 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3645 * cpuset.
1da177e4 3646 */
7bf02ea2 3647void show_free_areas(unsigned int filter)
1da177e4 3648{
d1bfcdb8 3649 unsigned long free_pcp = 0;
c7241913 3650 int cpu;
1da177e4
LT
3651 struct zone *zone;
3652
ee99c71c 3653 for_each_populated_zone(zone) {
7bf02ea2 3654 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3655 continue;
d1bfcdb8 3656
761b0677
KK
3657 for_each_online_cpu(cpu)
3658 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3659 }
3660
a731286d
KM
3661 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3662 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3663 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3664 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3665 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3666 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3667 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3668 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3669 global_page_state(NR_ISOLATED_ANON),
3670 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3671 global_page_state(NR_INACTIVE_FILE),
a731286d 3672 global_page_state(NR_ISOLATED_FILE),
7b854121 3673 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3674 global_page_state(NR_FILE_DIRTY),
ce866b34 3675 global_page_state(NR_WRITEBACK),
fd39fc85 3676 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3677 global_page_state(NR_SLAB_RECLAIMABLE),
3678 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3679 global_page_state(NR_FILE_MAPPED),
4b02108a 3680 global_page_state(NR_SHMEM),
a25700a5 3681 global_page_state(NR_PAGETABLE),
d1ce749a 3682 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3683 global_page_state(NR_FREE_PAGES),
3684 free_pcp,
d1ce749a 3685 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3686
ee99c71c 3687 for_each_populated_zone(zone) {
1da177e4
LT
3688 int i;
3689
7bf02ea2 3690 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3691 continue;
d1bfcdb8
KK
3692
3693 free_pcp = 0;
3694 for_each_online_cpu(cpu)
3695 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3696
1da177e4
LT
3697 show_node(zone);
3698 printk("%s"
3699 " free:%lukB"
3700 " min:%lukB"
3701 " low:%lukB"
3702 " high:%lukB"
4f98a2fe
RR
3703 " active_anon:%lukB"
3704 " inactive_anon:%lukB"
3705 " active_file:%lukB"
3706 " inactive_file:%lukB"
7b854121 3707 " unevictable:%lukB"
a731286d
KM
3708 " isolated(anon):%lukB"
3709 " isolated(file):%lukB"
1da177e4 3710 " present:%lukB"
9feedc9d 3711 " managed:%lukB"
4a0aa73f
KM
3712 " mlocked:%lukB"
3713 " dirty:%lukB"
3714 " writeback:%lukB"
3715 " mapped:%lukB"
4b02108a 3716 " shmem:%lukB"
4a0aa73f
KM
3717 " slab_reclaimable:%lukB"
3718 " slab_unreclaimable:%lukB"
c6a7f572 3719 " kernel_stack:%lukB"
4a0aa73f
KM
3720 " pagetables:%lukB"
3721 " unstable:%lukB"
3722 " bounce:%lukB"
d1bfcdb8
KK
3723 " free_pcp:%lukB"
3724 " local_pcp:%ukB"
d1ce749a 3725 " free_cma:%lukB"
4a0aa73f 3726 " writeback_tmp:%lukB"
1da177e4
LT
3727 " pages_scanned:%lu"
3728 " all_unreclaimable? %s"
3729 "\n",
3730 zone->name,
88f5acf8 3731 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3732 K(min_wmark_pages(zone)),
3733 K(low_wmark_pages(zone)),
3734 K(high_wmark_pages(zone)),
4f98a2fe
RR
3735 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3736 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3737 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3738 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3739 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3740 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3741 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3742 K(zone->present_pages),
9feedc9d 3743 K(zone->managed_pages),
4a0aa73f
KM
3744 K(zone_page_state(zone, NR_MLOCK)),
3745 K(zone_page_state(zone, NR_FILE_DIRTY)),
3746 K(zone_page_state(zone, NR_WRITEBACK)),
3747 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3748 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3749 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3750 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3751 zone_page_state(zone, NR_KERNEL_STACK) *
3752 THREAD_SIZE / 1024,
4a0aa73f
KM
3753 K(zone_page_state(zone, NR_PAGETABLE)),
3754 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3755 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3756 K(free_pcp),
3757 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3758 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3759 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3760 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3761 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3762 );
3763 printk("lowmem_reserve[]:");
3764 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3765 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3766 printk("\n");
3767 }
3768
ee99c71c 3769 for_each_populated_zone(zone) {
b8af2941 3770 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3771 unsigned char types[MAX_ORDER];
1da177e4 3772
7bf02ea2 3773 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3774 continue;
1da177e4
LT
3775 show_node(zone);
3776 printk("%s: ", zone->name);
1da177e4
LT
3777
3778 spin_lock_irqsave(&zone->lock, flags);
3779 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3780 struct free_area *area = &zone->free_area[order];
3781 int type;
3782
3783 nr[order] = area->nr_free;
8f9de51a 3784 total += nr[order] << order;
377e4f16
RV
3785
3786 types[order] = 0;
3787 for (type = 0; type < MIGRATE_TYPES; type++) {
3788 if (!list_empty(&area->free_list[type]))
3789 types[order] |= 1 << type;
3790 }
1da177e4
LT
3791 }
3792 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3793 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3794 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3795 if (nr[order])
3796 show_migration_types(types[order]);
3797 }
1da177e4
LT
3798 printk("= %lukB\n", K(total));
3799 }
3800
949f7ec5
DR
3801 hugetlb_show_meminfo();
3802
e6f3602d
LW
3803 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3804
1da177e4
LT
3805 show_swap_cache_info();
3806}
3807
19770b32
MG
3808static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3809{
3810 zoneref->zone = zone;
3811 zoneref->zone_idx = zone_idx(zone);
3812}
3813
1da177e4
LT
3814/*
3815 * Builds allocation fallback zone lists.
1a93205b
CL
3816 *
3817 * Add all populated zones of a node to the zonelist.
1da177e4 3818 */
f0c0b2b8 3819static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3820 int nr_zones)
1da177e4 3821{
1a93205b 3822 struct zone *zone;
bc732f1d 3823 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3824
3825 do {
2f6726e5 3826 zone_type--;
070f8032 3827 zone = pgdat->node_zones + zone_type;
1a93205b 3828 if (populated_zone(zone)) {
dd1a239f
MG
3829 zoneref_set_zone(zone,
3830 &zonelist->_zonerefs[nr_zones++]);
070f8032 3831 check_highest_zone(zone_type);
1da177e4 3832 }
2f6726e5 3833 } while (zone_type);
bc732f1d 3834
070f8032 3835 return nr_zones;
1da177e4
LT
3836}
3837
f0c0b2b8
KH
3838
3839/*
3840 * zonelist_order:
3841 * 0 = automatic detection of better ordering.
3842 * 1 = order by ([node] distance, -zonetype)
3843 * 2 = order by (-zonetype, [node] distance)
3844 *
3845 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3846 * the same zonelist. So only NUMA can configure this param.
3847 */
3848#define ZONELIST_ORDER_DEFAULT 0
3849#define ZONELIST_ORDER_NODE 1
3850#define ZONELIST_ORDER_ZONE 2
3851
3852/* zonelist order in the kernel.
3853 * set_zonelist_order() will set this to NODE or ZONE.
3854 */
3855static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3856static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3857
3858
1da177e4 3859#ifdef CONFIG_NUMA
f0c0b2b8
KH
3860/* The value user specified ....changed by config */
3861static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3862/* string for sysctl */
3863#define NUMA_ZONELIST_ORDER_LEN 16
3864char numa_zonelist_order[16] = "default";
3865
3866/*
3867 * interface for configure zonelist ordering.
3868 * command line option "numa_zonelist_order"
3869 * = "[dD]efault - default, automatic configuration.
3870 * = "[nN]ode - order by node locality, then by zone within node
3871 * = "[zZ]one - order by zone, then by locality within zone
3872 */
3873
3874static int __parse_numa_zonelist_order(char *s)
3875{
3876 if (*s == 'd' || *s == 'D') {
3877 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3878 } else if (*s == 'n' || *s == 'N') {
3879 user_zonelist_order = ZONELIST_ORDER_NODE;
3880 } else if (*s == 'z' || *s == 'Z') {
3881 user_zonelist_order = ZONELIST_ORDER_ZONE;
3882 } else {
3883 printk(KERN_WARNING
3884 "Ignoring invalid numa_zonelist_order value: "
3885 "%s\n", s);
3886 return -EINVAL;
3887 }
3888 return 0;
3889}
3890
3891static __init int setup_numa_zonelist_order(char *s)
3892{
ecb256f8
VL
3893 int ret;
3894
3895 if (!s)
3896 return 0;
3897
3898 ret = __parse_numa_zonelist_order(s);
3899 if (ret == 0)
3900 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3901
3902 return ret;
f0c0b2b8
KH
3903}
3904early_param("numa_zonelist_order", setup_numa_zonelist_order);
3905
3906/*
3907 * sysctl handler for numa_zonelist_order
3908 */
cccad5b9 3909int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3910 void __user *buffer, size_t *length,
f0c0b2b8
KH
3911 loff_t *ppos)
3912{
3913 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3914 int ret;
443c6f14 3915 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3916
443c6f14 3917 mutex_lock(&zl_order_mutex);
dacbde09
CG
3918 if (write) {
3919 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3920 ret = -EINVAL;
3921 goto out;
3922 }
3923 strcpy(saved_string, (char *)table->data);
3924 }
8d65af78 3925 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3926 if (ret)
443c6f14 3927 goto out;
f0c0b2b8
KH
3928 if (write) {
3929 int oldval = user_zonelist_order;
dacbde09
CG
3930
3931 ret = __parse_numa_zonelist_order((char *)table->data);
3932 if (ret) {
f0c0b2b8
KH
3933 /*
3934 * bogus value. restore saved string
3935 */
dacbde09 3936 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3937 NUMA_ZONELIST_ORDER_LEN);
3938 user_zonelist_order = oldval;
4eaf3f64
HL
3939 } else if (oldval != user_zonelist_order) {
3940 mutex_lock(&zonelists_mutex);
9adb62a5 3941 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3942 mutex_unlock(&zonelists_mutex);
3943 }
f0c0b2b8 3944 }
443c6f14
AK
3945out:
3946 mutex_unlock(&zl_order_mutex);
3947 return ret;
f0c0b2b8
KH
3948}
3949
3950
62bc62a8 3951#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3952static int node_load[MAX_NUMNODES];
3953
1da177e4 3954/**
4dc3b16b 3955 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3956 * @node: node whose fallback list we're appending
3957 * @used_node_mask: nodemask_t of already used nodes
3958 *
3959 * We use a number of factors to determine which is the next node that should
3960 * appear on a given node's fallback list. The node should not have appeared
3961 * already in @node's fallback list, and it should be the next closest node
3962 * according to the distance array (which contains arbitrary distance values
3963 * from each node to each node in the system), and should also prefer nodes
3964 * with no CPUs, since presumably they'll have very little allocation pressure
3965 * on them otherwise.
3966 * It returns -1 if no node is found.
3967 */
f0c0b2b8 3968static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3969{
4cf808eb 3970 int n, val;
1da177e4 3971 int min_val = INT_MAX;
00ef2d2f 3972 int best_node = NUMA_NO_NODE;
a70f7302 3973 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3974
4cf808eb
LT
3975 /* Use the local node if we haven't already */
3976 if (!node_isset(node, *used_node_mask)) {
3977 node_set(node, *used_node_mask);
3978 return node;
3979 }
1da177e4 3980
4b0ef1fe 3981 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3982
3983 /* Don't want a node to appear more than once */
3984 if (node_isset(n, *used_node_mask))
3985 continue;
3986
1da177e4
LT
3987 /* Use the distance array to find the distance */
3988 val = node_distance(node, n);
3989
4cf808eb
LT
3990 /* Penalize nodes under us ("prefer the next node") */
3991 val += (n < node);
3992
1da177e4 3993 /* Give preference to headless and unused nodes */
a70f7302
RR
3994 tmp = cpumask_of_node(n);
3995 if (!cpumask_empty(tmp))
1da177e4
LT
3996 val += PENALTY_FOR_NODE_WITH_CPUS;
3997
3998 /* Slight preference for less loaded node */
3999 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4000 val += node_load[n];
4001
4002 if (val < min_val) {
4003 min_val = val;
4004 best_node = n;
4005 }
4006 }
4007
4008 if (best_node >= 0)
4009 node_set(best_node, *used_node_mask);
4010
4011 return best_node;
4012}
4013
f0c0b2b8
KH
4014
4015/*
4016 * Build zonelists ordered by node and zones within node.
4017 * This results in maximum locality--normal zone overflows into local
4018 * DMA zone, if any--but risks exhausting DMA zone.
4019 */
4020static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4021{
f0c0b2b8 4022 int j;
1da177e4 4023 struct zonelist *zonelist;
f0c0b2b8 4024
54a6eb5c 4025 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4026 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4027 ;
bc732f1d 4028 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4029 zonelist->_zonerefs[j].zone = NULL;
4030 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4031}
4032
523b9458
CL
4033/*
4034 * Build gfp_thisnode zonelists
4035 */
4036static void build_thisnode_zonelists(pg_data_t *pgdat)
4037{
523b9458
CL
4038 int j;
4039 struct zonelist *zonelist;
4040
54a6eb5c 4041 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4042 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4043 zonelist->_zonerefs[j].zone = NULL;
4044 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4045}
4046
f0c0b2b8
KH
4047/*
4048 * Build zonelists ordered by zone and nodes within zones.
4049 * This results in conserving DMA zone[s] until all Normal memory is
4050 * exhausted, but results in overflowing to remote node while memory
4051 * may still exist in local DMA zone.
4052 */
4053static int node_order[MAX_NUMNODES];
4054
4055static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4056{
f0c0b2b8
KH
4057 int pos, j, node;
4058 int zone_type; /* needs to be signed */
4059 struct zone *z;
4060 struct zonelist *zonelist;
4061
54a6eb5c
MG
4062 zonelist = &pgdat->node_zonelists[0];
4063 pos = 0;
4064 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4065 for (j = 0; j < nr_nodes; j++) {
4066 node = node_order[j];
4067 z = &NODE_DATA(node)->node_zones[zone_type];
4068 if (populated_zone(z)) {
dd1a239f
MG
4069 zoneref_set_zone(z,
4070 &zonelist->_zonerefs[pos++]);
54a6eb5c 4071 check_highest_zone(zone_type);
f0c0b2b8
KH
4072 }
4073 }
f0c0b2b8 4074 }
dd1a239f
MG
4075 zonelist->_zonerefs[pos].zone = NULL;
4076 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4077}
4078
3193913c
MG
4079#if defined(CONFIG_64BIT)
4080/*
4081 * Devices that require DMA32/DMA are relatively rare and do not justify a
4082 * penalty to every machine in case the specialised case applies. Default
4083 * to Node-ordering on 64-bit NUMA machines
4084 */
4085static int default_zonelist_order(void)
4086{
4087 return ZONELIST_ORDER_NODE;
4088}
4089#else
4090/*
4091 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4092 * by the kernel. If processes running on node 0 deplete the low memory zone
4093 * then reclaim will occur more frequency increasing stalls and potentially
4094 * be easier to OOM if a large percentage of the zone is under writeback or
4095 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4096 * Hence, default to zone ordering on 32-bit.
4097 */
f0c0b2b8
KH
4098static int default_zonelist_order(void)
4099{
f0c0b2b8
KH
4100 return ZONELIST_ORDER_ZONE;
4101}
3193913c 4102#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4103
4104static void set_zonelist_order(void)
4105{
4106 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4107 current_zonelist_order = default_zonelist_order();
4108 else
4109 current_zonelist_order = user_zonelist_order;
4110}
4111
4112static void build_zonelists(pg_data_t *pgdat)
4113{
4114 int j, node, load;
4115 enum zone_type i;
1da177e4 4116 nodemask_t used_mask;
f0c0b2b8
KH
4117 int local_node, prev_node;
4118 struct zonelist *zonelist;
4119 int order = current_zonelist_order;
1da177e4
LT
4120
4121 /* initialize zonelists */
523b9458 4122 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4123 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4124 zonelist->_zonerefs[0].zone = NULL;
4125 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4126 }
4127
4128 /* NUMA-aware ordering of nodes */
4129 local_node = pgdat->node_id;
62bc62a8 4130 load = nr_online_nodes;
1da177e4
LT
4131 prev_node = local_node;
4132 nodes_clear(used_mask);
f0c0b2b8 4133
f0c0b2b8
KH
4134 memset(node_order, 0, sizeof(node_order));
4135 j = 0;
4136
1da177e4
LT
4137 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4138 /*
4139 * We don't want to pressure a particular node.
4140 * So adding penalty to the first node in same
4141 * distance group to make it round-robin.
4142 */
957f822a
DR
4143 if (node_distance(local_node, node) !=
4144 node_distance(local_node, prev_node))
f0c0b2b8
KH
4145 node_load[node] = load;
4146
1da177e4
LT
4147 prev_node = node;
4148 load--;
f0c0b2b8
KH
4149 if (order == ZONELIST_ORDER_NODE)
4150 build_zonelists_in_node_order(pgdat, node);
4151 else
4152 node_order[j++] = node; /* remember order */
4153 }
1da177e4 4154
f0c0b2b8
KH
4155 if (order == ZONELIST_ORDER_ZONE) {
4156 /* calculate node order -- i.e., DMA last! */
4157 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4158 }
523b9458
CL
4159
4160 build_thisnode_zonelists(pgdat);
1da177e4
LT
4161}
4162
9276b1bc 4163/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4164static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4165{
54a6eb5c
MG
4166 struct zonelist *zonelist;
4167 struct zonelist_cache *zlc;
dd1a239f 4168 struct zoneref *z;
9276b1bc 4169
54a6eb5c
MG
4170 zonelist = &pgdat->node_zonelists[0];
4171 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4172 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4173 for (z = zonelist->_zonerefs; z->zone; z++)
4174 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4175}
4176
7aac7898
LS
4177#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4178/*
4179 * Return node id of node used for "local" allocations.
4180 * I.e., first node id of first zone in arg node's generic zonelist.
4181 * Used for initializing percpu 'numa_mem', which is used primarily
4182 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4183 */
4184int local_memory_node(int node)
4185{
4186 struct zone *zone;
4187
4188 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4189 gfp_zone(GFP_KERNEL),
4190 NULL,
4191 &zone);
4192 return zone->node;
4193}
4194#endif
f0c0b2b8 4195
1da177e4
LT
4196#else /* CONFIG_NUMA */
4197
f0c0b2b8
KH
4198static void set_zonelist_order(void)
4199{
4200 current_zonelist_order = ZONELIST_ORDER_ZONE;
4201}
4202
4203static void build_zonelists(pg_data_t *pgdat)
1da177e4 4204{
19655d34 4205 int node, local_node;
54a6eb5c
MG
4206 enum zone_type j;
4207 struct zonelist *zonelist;
1da177e4
LT
4208
4209 local_node = pgdat->node_id;
1da177e4 4210
54a6eb5c 4211 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4212 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4213
54a6eb5c
MG
4214 /*
4215 * Now we build the zonelist so that it contains the zones
4216 * of all the other nodes.
4217 * We don't want to pressure a particular node, so when
4218 * building the zones for node N, we make sure that the
4219 * zones coming right after the local ones are those from
4220 * node N+1 (modulo N)
4221 */
4222 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4223 if (!node_online(node))
4224 continue;
bc732f1d 4225 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4226 }
54a6eb5c
MG
4227 for (node = 0; node < local_node; node++) {
4228 if (!node_online(node))
4229 continue;
bc732f1d 4230 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4231 }
4232
dd1a239f
MG
4233 zonelist->_zonerefs[j].zone = NULL;
4234 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4235}
4236
9276b1bc 4237/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4238static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4239{
54a6eb5c 4240 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4241}
4242
1da177e4
LT
4243#endif /* CONFIG_NUMA */
4244
99dcc3e5
CL
4245/*
4246 * Boot pageset table. One per cpu which is going to be used for all
4247 * zones and all nodes. The parameters will be set in such a way
4248 * that an item put on a list will immediately be handed over to
4249 * the buddy list. This is safe since pageset manipulation is done
4250 * with interrupts disabled.
4251 *
4252 * The boot_pagesets must be kept even after bootup is complete for
4253 * unused processors and/or zones. They do play a role for bootstrapping
4254 * hotplugged processors.
4255 *
4256 * zoneinfo_show() and maybe other functions do
4257 * not check if the processor is online before following the pageset pointer.
4258 * Other parts of the kernel may not check if the zone is available.
4259 */
4260static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4261static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4262static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4263
4eaf3f64
HL
4264/*
4265 * Global mutex to protect against size modification of zonelists
4266 * as well as to serialize pageset setup for the new populated zone.
4267 */
4268DEFINE_MUTEX(zonelists_mutex);
4269
9b1a4d38 4270/* return values int ....just for stop_machine() */
4ed7e022 4271static int __build_all_zonelists(void *data)
1da177e4 4272{
6811378e 4273 int nid;
99dcc3e5 4274 int cpu;
9adb62a5 4275 pg_data_t *self = data;
9276b1bc 4276
7f9cfb31
BL
4277#ifdef CONFIG_NUMA
4278 memset(node_load, 0, sizeof(node_load));
4279#endif
9adb62a5
JL
4280
4281 if (self && !node_online(self->node_id)) {
4282 build_zonelists(self);
4283 build_zonelist_cache(self);
4284 }
4285
9276b1bc 4286 for_each_online_node(nid) {
7ea1530a
CL
4287 pg_data_t *pgdat = NODE_DATA(nid);
4288
4289 build_zonelists(pgdat);
4290 build_zonelist_cache(pgdat);
9276b1bc 4291 }
99dcc3e5
CL
4292
4293 /*
4294 * Initialize the boot_pagesets that are going to be used
4295 * for bootstrapping processors. The real pagesets for
4296 * each zone will be allocated later when the per cpu
4297 * allocator is available.
4298 *
4299 * boot_pagesets are used also for bootstrapping offline
4300 * cpus if the system is already booted because the pagesets
4301 * are needed to initialize allocators on a specific cpu too.
4302 * F.e. the percpu allocator needs the page allocator which
4303 * needs the percpu allocator in order to allocate its pagesets
4304 * (a chicken-egg dilemma).
4305 */
7aac7898 4306 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4307 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4308
7aac7898
LS
4309#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4310 /*
4311 * We now know the "local memory node" for each node--
4312 * i.e., the node of the first zone in the generic zonelist.
4313 * Set up numa_mem percpu variable for on-line cpus. During
4314 * boot, only the boot cpu should be on-line; we'll init the
4315 * secondary cpus' numa_mem as they come on-line. During
4316 * node/memory hotplug, we'll fixup all on-line cpus.
4317 */
4318 if (cpu_online(cpu))
4319 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4320#endif
4321 }
4322
6811378e
YG
4323 return 0;
4324}
4325
061f67bc
RV
4326static noinline void __init
4327build_all_zonelists_init(void)
4328{
4329 __build_all_zonelists(NULL);
4330 mminit_verify_zonelist();
4331 cpuset_init_current_mems_allowed();
4332}
4333
4eaf3f64
HL
4334/*
4335 * Called with zonelists_mutex held always
4336 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4337 *
4338 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4339 * [we're only called with non-NULL zone through __meminit paths] and
4340 * (2) call of __init annotated helper build_all_zonelists_init
4341 * [protected by SYSTEM_BOOTING].
4eaf3f64 4342 */
9adb62a5 4343void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4344{
f0c0b2b8
KH
4345 set_zonelist_order();
4346
6811378e 4347 if (system_state == SYSTEM_BOOTING) {
061f67bc 4348 build_all_zonelists_init();
6811378e 4349 } else {
e9959f0f 4350#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4351 if (zone)
4352 setup_zone_pageset(zone);
e9959f0f 4353#endif
dd1895e2
CS
4354 /* we have to stop all cpus to guarantee there is no user
4355 of zonelist */
9adb62a5 4356 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4357 /* cpuset refresh routine should be here */
4358 }
bd1e22b8 4359 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4360 /*
4361 * Disable grouping by mobility if the number of pages in the
4362 * system is too low to allow the mechanism to work. It would be
4363 * more accurate, but expensive to check per-zone. This check is
4364 * made on memory-hotadd so a system can start with mobility
4365 * disabled and enable it later
4366 */
d9c23400 4367 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4368 page_group_by_mobility_disabled = 1;
4369 else
4370 page_group_by_mobility_disabled = 0;
4371
f88dfff5 4372 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4373 "Total pages: %ld\n",
62bc62a8 4374 nr_online_nodes,
f0c0b2b8 4375 zonelist_order_name[current_zonelist_order],
9ef9acb0 4376 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4377 vm_total_pages);
4378#ifdef CONFIG_NUMA
f88dfff5 4379 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4380#endif
1da177e4
LT
4381}
4382
4383/*
4384 * Helper functions to size the waitqueue hash table.
4385 * Essentially these want to choose hash table sizes sufficiently
4386 * large so that collisions trying to wait on pages are rare.
4387 * But in fact, the number of active page waitqueues on typical
4388 * systems is ridiculously low, less than 200. So this is even
4389 * conservative, even though it seems large.
4390 *
4391 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4392 * waitqueues, i.e. the size of the waitq table given the number of pages.
4393 */
4394#define PAGES_PER_WAITQUEUE 256
4395
cca448fe 4396#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4397static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4398{
4399 unsigned long size = 1;
4400
4401 pages /= PAGES_PER_WAITQUEUE;
4402
4403 while (size < pages)
4404 size <<= 1;
4405
4406 /*
4407 * Once we have dozens or even hundreds of threads sleeping
4408 * on IO we've got bigger problems than wait queue collision.
4409 * Limit the size of the wait table to a reasonable size.
4410 */
4411 size = min(size, 4096UL);
4412
4413 return max(size, 4UL);
4414}
cca448fe
YG
4415#else
4416/*
4417 * A zone's size might be changed by hot-add, so it is not possible to determine
4418 * a suitable size for its wait_table. So we use the maximum size now.
4419 *
4420 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4421 *
4422 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4423 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4424 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4425 *
4426 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4427 * or more by the traditional way. (See above). It equals:
4428 *
4429 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4430 * ia64(16K page size) : = ( 8G + 4M)byte.
4431 * powerpc (64K page size) : = (32G +16M)byte.
4432 */
4433static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4434{
4435 return 4096UL;
4436}
4437#endif
1da177e4
LT
4438
4439/*
4440 * This is an integer logarithm so that shifts can be used later
4441 * to extract the more random high bits from the multiplicative
4442 * hash function before the remainder is taken.
4443 */
4444static inline unsigned long wait_table_bits(unsigned long size)
4445{
4446 return ffz(~size);
4447}
4448
6d3163ce
AH
4449/*
4450 * Check if a pageblock contains reserved pages
4451 */
4452static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4453{
4454 unsigned long pfn;
4455
4456 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4457 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4458 return 1;
4459 }
4460 return 0;
4461}
4462
56fd56b8 4463/*
d9c23400 4464 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4465 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4466 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4467 * higher will lead to a bigger reserve which will get freed as contiguous
4468 * blocks as reclaim kicks in
4469 */
4470static void setup_zone_migrate_reserve(struct zone *zone)
4471{
6d3163ce 4472 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4473 struct page *page;
78986a67
MG
4474 unsigned long block_migratetype;
4475 int reserve;
943dca1a 4476 int old_reserve;
56fd56b8 4477
d0215638
MH
4478 /*
4479 * Get the start pfn, end pfn and the number of blocks to reserve
4480 * We have to be careful to be aligned to pageblock_nr_pages to
4481 * make sure that we always check pfn_valid for the first page in
4482 * the block.
4483 */
56fd56b8 4484 start_pfn = zone->zone_start_pfn;
108bcc96 4485 end_pfn = zone_end_pfn(zone);
d0215638 4486 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4487 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4488 pageblock_order;
56fd56b8 4489
78986a67
MG
4490 /*
4491 * Reserve blocks are generally in place to help high-order atomic
4492 * allocations that are short-lived. A min_free_kbytes value that
4493 * would result in more than 2 reserve blocks for atomic allocations
4494 * is assumed to be in place to help anti-fragmentation for the
4495 * future allocation of hugepages at runtime.
4496 */
4497 reserve = min(2, reserve);
943dca1a
YI
4498 old_reserve = zone->nr_migrate_reserve_block;
4499
4500 /* When memory hot-add, we almost always need to do nothing */
4501 if (reserve == old_reserve)
4502 return;
4503 zone->nr_migrate_reserve_block = reserve;
78986a67 4504
d9c23400 4505 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4506 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4507 return;
4508
56fd56b8
MG
4509 if (!pfn_valid(pfn))
4510 continue;
4511 page = pfn_to_page(pfn);
4512
344c790e
AL
4513 /* Watch out for overlapping nodes */
4514 if (page_to_nid(page) != zone_to_nid(zone))
4515 continue;
4516
56fd56b8
MG
4517 block_migratetype = get_pageblock_migratetype(page);
4518
938929f1
MG
4519 /* Only test what is necessary when the reserves are not met */
4520 if (reserve > 0) {
4521 /*
4522 * Blocks with reserved pages will never free, skip
4523 * them.
4524 */
4525 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4526 if (pageblock_is_reserved(pfn, block_end_pfn))
4527 continue;
56fd56b8 4528
938929f1
MG
4529 /* If this block is reserved, account for it */
4530 if (block_migratetype == MIGRATE_RESERVE) {
4531 reserve--;
4532 continue;
4533 }
4534
4535 /* Suitable for reserving if this block is movable */
4536 if (block_migratetype == MIGRATE_MOVABLE) {
4537 set_pageblock_migratetype(page,
4538 MIGRATE_RESERVE);
4539 move_freepages_block(zone, page,
4540 MIGRATE_RESERVE);
4541 reserve--;
4542 continue;
4543 }
943dca1a
YI
4544 } else if (!old_reserve) {
4545 /*
4546 * At boot time we don't need to scan the whole zone
4547 * for turning off MIGRATE_RESERVE.
4548 */
4549 break;
56fd56b8
MG
4550 }
4551
4552 /*
4553 * If the reserve is met and this is a previous reserved block,
4554 * take it back
4555 */
4556 if (block_migratetype == MIGRATE_RESERVE) {
4557 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4558 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4559 }
4560 }
4561}
ac0e5b7a 4562
1da177e4
LT
4563/*
4564 * Initially all pages are reserved - free ones are freed
4565 * up by free_all_bootmem() once the early boot process is
4566 * done. Non-atomic initialization, single-pass.
4567 */
c09b4240 4568void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4569 unsigned long start_pfn, enum memmap_context context)
1da177e4 4570{
3a80a7fa 4571 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4572 unsigned long end_pfn = start_pfn + size;
4573 unsigned long pfn;
86051ca5 4574 struct zone *z;
3a80a7fa 4575 unsigned long nr_initialised = 0;
1da177e4 4576
22b31eec
HD
4577 if (highest_memmap_pfn < end_pfn - 1)
4578 highest_memmap_pfn = end_pfn - 1;
4579
3a80a7fa 4580 z = &pgdat->node_zones[zone];
cbe8dd4a 4581 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4582 /*
4583 * There can be holes in boot-time mem_map[]s
4584 * handed to this function. They do not
4585 * exist on hotplugged memory.
4586 */
4587 if (context == MEMMAP_EARLY) {
4588 if (!early_pfn_valid(pfn))
4589 continue;
4590 if (!early_pfn_in_nid(pfn, nid))
4591 continue;
3a80a7fa
MG
4592 if (!update_defer_init(pgdat, pfn, end_pfn,
4593 &nr_initialised))
4594 break;
a2f3aa02 4595 }
1e8ce83c 4596 __init_single_pfn(pfn, zone, nid);
1da177e4
LT
4597 }
4598}
4599
1e548deb 4600static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4601{
7aeb09f9 4602 unsigned int order, t;
b2a0ac88
MG
4603 for_each_migratetype_order(order, t) {
4604 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4605 zone->free_area[order].nr_free = 0;
4606 }
4607}
4608
4609#ifndef __HAVE_ARCH_MEMMAP_INIT
4610#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4611 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4612#endif
4613
7cd2b0a3 4614static int zone_batchsize(struct zone *zone)
e7c8d5c9 4615{
3a6be87f 4616#ifdef CONFIG_MMU
e7c8d5c9
CL
4617 int batch;
4618
4619 /*
4620 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4621 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4622 *
4623 * OK, so we don't know how big the cache is. So guess.
4624 */
b40da049 4625 batch = zone->managed_pages / 1024;
ba56e91c
SR
4626 if (batch * PAGE_SIZE > 512 * 1024)
4627 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4628 batch /= 4; /* We effectively *= 4 below */
4629 if (batch < 1)
4630 batch = 1;
4631
4632 /*
0ceaacc9
NP
4633 * Clamp the batch to a 2^n - 1 value. Having a power
4634 * of 2 value was found to be more likely to have
4635 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4636 *
0ceaacc9
NP
4637 * For example if 2 tasks are alternately allocating
4638 * batches of pages, one task can end up with a lot
4639 * of pages of one half of the possible page colors
4640 * and the other with pages of the other colors.
e7c8d5c9 4641 */
9155203a 4642 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4643
e7c8d5c9 4644 return batch;
3a6be87f
DH
4645
4646#else
4647 /* The deferral and batching of frees should be suppressed under NOMMU
4648 * conditions.
4649 *
4650 * The problem is that NOMMU needs to be able to allocate large chunks
4651 * of contiguous memory as there's no hardware page translation to
4652 * assemble apparent contiguous memory from discontiguous pages.
4653 *
4654 * Queueing large contiguous runs of pages for batching, however,
4655 * causes the pages to actually be freed in smaller chunks. As there
4656 * can be a significant delay between the individual batches being
4657 * recycled, this leads to the once large chunks of space being
4658 * fragmented and becoming unavailable for high-order allocations.
4659 */
4660 return 0;
4661#endif
e7c8d5c9
CL
4662}
4663
8d7a8fa9
CS
4664/*
4665 * pcp->high and pcp->batch values are related and dependent on one another:
4666 * ->batch must never be higher then ->high.
4667 * The following function updates them in a safe manner without read side
4668 * locking.
4669 *
4670 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4671 * those fields changing asynchronously (acording the the above rule).
4672 *
4673 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4674 * outside of boot time (or some other assurance that no concurrent updaters
4675 * exist).
4676 */
4677static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4678 unsigned long batch)
4679{
4680 /* start with a fail safe value for batch */
4681 pcp->batch = 1;
4682 smp_wmb();
4683
4684 /* Update high, then batch, in order */
4685 pcp->high = high;
4686 smp_wmb();
4687
4688 pcp->batch = batch;
4689}
4690
3664033c 4691/* a companion to pageset_set_high() */
4008bab7
CS
4692static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4693{
8d7a8fa9 4694 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4695}
4696
88c90dbc 4697static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4698{
4699 struct per_cpu_pages *pcp;
5f8dcc21 4700 int migratetype;
2caaad41 4701
1c6fe946
MD
4702 memset(p, 0, sizeof(*p));
4703
3dfa5721 4704 pcp = &p->pcp;
2caaad41 4705 pcp->count = 0;
5f8dcc21
MG
4706 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4707 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4708}
4709
88c90dbc
CS
4710static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4711{
4712 pageset_init(p);
4713 pageset_set_batch(p, batch);
4714}
4715
8ad4b1fb 4716/*
3664033c 4717 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4718 * to the value high for the pageset p.
4719 */
3664033c 4720static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4721 unsigned long high)
4722{
8d7a8fa9
CS
4723 unsigned long batch = max(1UL, high / 4);
4724 if ((high / 4) > (PAGE_SHIFT * 8))
4725 batch = PAGE_SHIFT * 8;
8ad4b1fb 4726
8d7a8fa9 4727 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4728}
4729
7cd2b0a3
DR
4730static void pageset_set_high_and_batch(struct zone *zone,
4731 struct per_cpu_pageset *pcp)
56cef2b8 4732{
56cef2b8 4733 if (percpu_pagelist_fraction)
3664033c 4734 pageset_set_high(pcp,
56cef2b8
CS
4735 (zone->managed_pages /
4736 percpu_pagelist_fraction));
4737 else
4738 pageset_set_batch(pcp, zone_batchsize(zone));
4739}
4740
169f6c19
CS
4741static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4742{
4743 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4744
4745 pageset_init(pcp);
4746 pageset_set_high_and_batch(zone, pcp);
4747}
4748
4ed7e022 4749static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4750{
4751 int cpu;
319774e2 4752 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4753 for_each_possible_cpu(cpu)
4754 zone_pageset_init(zone, cpu);
319774e2
WF
4755}
4756
2caaad41 4757/*
99dcc3e5
CL
4758 * Allocate per cpu pagesets and initialize them.
4759 * Before this call only boot pagesets were available.
e7c8d5c9 4760 */
99dcc3e5 4761void __init setup_per_cpu_pageset(void)
e7c8d5c9 4762{
99dcc3e5 4763 struct zone *zone;
e7c8d5c9 4764
319774e2
WF
4765 for_each_populated_zone(zone)
4766 setup_zone_pageset(zone);
e7c8d5c9
CL
4767}
4768
577a32f6 4769static noinline __init_refok
cca448fe 4770int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4771{
4772 int i;
cca448fe 4773 size_t alloc_size;
ed8ece2e
DH
4774
4775 /*
4776 * The per-page waitqueue mechanism uses hashed waitqueues
4777 * per zone.
4778 */
02b694de
YG
4779 zone->wait_table_hash_nr_entries =
4780 wait_table_hash_nr_entries(zone_size_pages);
4781 zone->wait_table_bits =
4782 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4783 alloc_size = zone->wait_table_hash_nr_entries
4784 * sizeof(wait_queue_head_t);
4785
cd94b9db 4786 if (!slab_is_available()) {
cca448fe 4787 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4788 memblock_virt_alloc_node_nopanic(
4789 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4790 } else {
4791 /*
4792 * This case means that a zone whose size was 0 gets new memory
4793 * via memory hot-add.
4794 * But it may be the case that a new node was hot-added. In
4795 * this case vmalloc() will not be able to use this new node's
4796 * memory - this wait_table must be initialized to use this new
4797 * node itself as well.
4798 * To use this new node's memory, further consideration will be
4799 * necessary.
4800 */
8691f3a7 4801 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4802 }
4803 if (!zone->wait_table)
4804 return -ENOMEM;
ed8ece2e 4805
b8af2941 4806 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4807 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4808
4809 return 0;
ed8ece2e
DH
4810}
4811
c09b4240 4812static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4813{
99dcc3e5
CL
4814 /*
4815 * per cpu subsystem is not up at this point. The following code
4816 * relies on the ability of the linker to provide the
4817 * offset of a (static) per cpu variable into the per cpu area.
4818 */
4819 zone->pageset = &boot_pageset;
ed8ece2e 4820
b38a8725 4821 if (populated_zone(zone))
99dcc3e5
CL
4822 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4823 zone->name, zone->present_pages,
4824 zone_batchsize(zone));
ed8ece2e
DH
4825}
4826
4ed7e022 4827int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4828 unsigned long zone_start_pfn,
a2f3aa02
DH
4829 unsigned long size,
4830 enum memmap_context context)
ed8ece2e
DH
4831{
4832 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4833 int ret;
4834 ret = zone_wait_table_init(zone, size);
4835 if (ret)
4836 return ret;
ed8ece2e
DH
4837 pgdat->nr_zones = zone_idx(zone) + 1;
4838
ed8ece2e
DH
4839 zone->zone_start_pfn = zone_start_pfn;
4840
708614e6
MG
4841 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4842 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4843 pgdat->node_id,
4844 (unsigned long)zone_idx(zone),
4845 zone_start_pfn, (zone_start_pfn + size));
4846
1e548deb 4847 zone_init_free_lists(zone);
718127cc
YG
4848
4849 return 0;
ed8ece2e
DH
4850}
4851
0ee332c1 4852#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4853#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4854
c713216d
MG
4855/*
4856 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4857 */
8a942fde
MG
4858int __meminit __early_pfn_to_nid(unsigned long pfn,
4859 struct mminit_pfnnid_cache *state)
c713216d 4860{
c13291a5 4861 unsigned long start_pfn, end_pfn;
e76b63f8 4862 int nid;
7c243c71 4863
8a942fde
MG
4864 if (state->last_start <= pfn && pfn < state->last_end)
4865 return state->last_nid;
c713216d 4866
e76b63f8
YL
4867 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4868 if (nid != -1) {
8a942fde
MG
4869 state->last_start = start_pfn;
4870 state->last_end = end_pfn;
4871 state->last_nid = nid;
e76b63f8
YL
4872 }
4873
4874 return nid;
c713216d
MG
4875}
4876#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4877
c713216d 4878/**
6782832e 4879 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4880 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4881 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4882 *
7d018176
ZZ
4883 * If an architecture guarantees that all ranges registered contain no holes
4884 * and may be freed, this this function may be used instead of calling
4885 * memblock_free_early_nid() manually.
c713216d 4886 */
c13291a5 4887void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4888{
c13291a5
TH
4889 unsigned long start_pfn, end_pfn;
4890 int i, this_nid;
edbe7d23 4891
c13291a5
TH
4892 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4893 start_pfn = min(start_pfn, max_low_pfn);
4894 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4895
c13291a5 4896 if (start_pfn < end_pfn)
6782832e
SS
4897 memblock_free_early_nid(PFN_PHYS(start_pfn),
4898 (end_pfn - start_pfn) << PAGE_SHIFT,
4899 this_nid);
edbe7d23 4900 }
edbe7d23 4901}
edbe7d23 4902
c713216d
MG
4903/**
4904 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4905 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4906 *
7d018176
ZZ
4907 * If an architecture guarantees that all ranges registered contain no holes and may
4908 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4909 */
4910void __init sparse_memory_present_with_active_regions(int nid)
4911{
c13291a5
TH
4912 unsigned long start_pfn, end_pfn;
4913 int i, this_nid;
c713216d 4914
c13291a5
TH
4915 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4916 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4917}
4918
4919/**
4920 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4921 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4922 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4923 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4924 *
4925 * It returns the start and end page frame of a node based on information
7d018176 4926 * provided by memblock_set_node(). If called for a node
c713216d 4927 * with no available memory, a warning is printed and the start and end
88ca3b94 4928 * PFNs will be 0.
c713216d 4929 */
a3142c8e 4930void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4931 unsigned long *start_pfn, unsigned long *end_pfn)
4932{
c13291a5 4933 unsigned long this_start_pfn, this_end_pfn;
c713216d 4934 int i;
c13291a5 4935
c713216d
MG
4936 *start_pfn = -1UL;
4937 *end_pfn = 0;
4938
c13291a5
TH
4939 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4940 *start_pfn = min(*start_pfn, this_start_pfn);
4941 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4942 }
4943
633c0666 4944 if (*start_pfn == -1UL)
c713216d 4945 *start_pfn = 0;
c713216d
MG
4946}
4947
2a1e274a
MG
4948/*
4949 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4950 * assumption is made that zones within a node are ordered in monotonic
4951 * increasing memory addresses so that the "highest" populated zone is used
4952 */
b69a7288 4953static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4954{
4955 int zone_index;
4956 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4957 if (zone_index == ZONE_MOVABLE)
4958 continue;
4959
4960 if (arch_zone_highest_possible_pfn[zone_index] >
4961 arch_zone_lowest_possible_pfn[zone_index])
4962 break;
4963 }
4964
4965 VM_BUG_ON(zone_index == -1);
4966 movable_zone = zone_index;
4967}
4968
4969/*
4970 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4971 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4972 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4973 * in each node depending on the size of each node and how evenly kernelcore
4974 * is distributed. This helper function adjusts the zone ranges
4975 * provided by the architecture for a given node by using the end of the
4976 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4977 * zones within a node are in order of monotonic increases memory addresses
4978 */
b69a7288 4979static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4980 unsigned long zone_type,
4981 unsigned long node_start_pfn,
4982 unsigned long node_end_pfn,
4983 unsigned long *zone_start_pfn,
4984 unsigned long *zone_end_pfn)
4985{
4986 /* Only adjust if ZONE_MOVABLE is on this node */
4987 if (zone_movable_pfn[nid]) {
4988 /* Size ZONE_MOVABLE */
4989 if (zone_type == ZONE_MOVABLE) {
4990 *zone_start_pfn = zone_movable_pfn[nid];
4991 *zone_end_pfn = min(node_end_pfn,
4992 arch_zone_highest_possible_pfn[movable_zone]);
4993
4994 /* Adjust for ZONE_MOVABLE starting within this range */
4995 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4996 *zone_end_pfn > zone_movable_pfn[nid]) {
4997 *zone_end_pfn = zone_movable_pfn[nid];
4998
4999 /* Check if this whole range is within ZONE_MOVABLE */
5000 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5001 *zone_start_pfn = *zone_end_pfn;
5002 }
5003}
5004
c713216d
MG
5005/*
5006 * Return the number of pages a zone spans in a node, including holes
5007 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5008 */
6ea6e688 5009static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5010 unsigned long zone_type,
7960aedd
ZY
5011 unsigned long node_start_pfn,
5012 unsigned long node_end_pfn,
c713216d
MG
5013 unsigned long *ignored)
5014{
c713216d
MG
5015 unsigned long zone_start_pfn, zone_end_pfn;
5016
7960aedd 5017 /* Get the start and end of the zone */
c713216d
MG
5018 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5019 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5020 adjust_zone_range_for_zone_movable(nid, zone_type,
5021 node_start_pfn, node_end_pfn,
5022 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5023
5024 /* Check that this node has pages within the zone's required range */
5025 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5026 return 0;
5027
5028 /* Move the zone boundaries inside the node if necessary */
5029 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5030 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5031
5032 /* Return the spanned pages */
5033 return zone_end_pfn - zone_start_pfn;
5034}
5035
5036/*
5037 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5038 * then all holes in the requested range will be accounted for.
c713216d 5039 */
32996250 5040unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5041 unsigned long range_start_pfn,
5042 unsigned long range_end_pfn)
5043{
96e907d1
TH
5044 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5045 unsigned long start_pfn, end_pfn;
5046 int i;
c713216d 5047
96e907d1
TH
5048 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5049 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5050 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5051 nr_absent -= end_pfn - start_pfn;
c713216d 5052 }
96e907d1 5053 return nr_absent;
c713216d
MG
5054}
5055
5056/**
5057 * absent_pages_in_range - Return number of page frames in holes within a range
5058 * @start_pfn: The start PFN to start searching for holes
5059 * @end_pfn: The end PFN to stop searching for holes
5060 *
88ca3b94 5061 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5062 */
5063unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5064 unsigned long end_pfn)
5065{
5066 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5067}
5068
5069/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5070static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5071 unsigned long zone_type,
7960aedd
ZY
5072 unsigned long node_start_pfn,
5073 unsigned long node_end_pfn,
c713216d
MG
5074 unsigned long *ignored)
5075{
96e907d1
TH
5076 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5077 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5078 unsigned long zone_start_pfn, zone_end_pfn;
5079
96e907d1
TH
5080 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5081 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5082
2a1e274a
MG
5083 adjust_zone_range_for_zone_movable(nid, zone_type,
5084 node_start_pfn, node_end_pfn,
5085 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5086 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5087}
0e0b864e 5088
0ee332c1 5089#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5090static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5091 unsigned long zone_type,
7960aedd
ZY
5092 unsigned long node_start_pfn,
5093 unsigned long node_end_pfn,
c713216d
MG
5094 unsigned long *zones_size)
5095{
5096 return zones_size[zone_type];
5097}
5098
6ea6e688 5099static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5100 unsigned long zone_type,
7960aedd
ZY
5101 unsigned long node_start_pfn,
5102 unsigned long node_end_pfn,
c713216d
MG
5103 unsigned long *zholes_size)
5104{
5105 if (!zholes_size)
5106 return 0;
5107
5108 return zholes_size[zone_type];
5109}
20e6926d 5110
0ee332c1 5111#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5112
a3142c8e 5113static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5114 unsigned long node_start_pfn,
5115 unsigned long node_end_pfn,
5116 unsigned long *zones_size,
5117 unsigned long *zholes_size)
c713216d 5118{
febd5949 5119 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5120 enum zone_type i;
5121
febd5949
GZ
5122 for (i = 0; i < MAX_NR_ZONES; i++) {
5123 struct zone *zone = pgdat->node_zones + i;
5124 unsigned long size, real_size;
c713216d 5125
febd5949
GZ
5126 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5127 node_start_pfn,
5128 node_end_pfn,
5129 zones_size);
5130 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5131 node_start_pfn, node_end_pfn,
5132 zholes_size);
febd5949
GZ
5133 zone->spanned_pages = size;
5134 zone->present_pages = real_size;
5135
5136 totalpages += size;
5137 realtotalpages += real_size;
5138 }
5139
5140 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5141 pgdat->node_present_pages = realtotalpages;
5142 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5143 realtotalpages);
5144}
5145
835c134e
MG
5146#ifndef CONFIG_SPARSEMEM
5147/*
5148 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5149 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5150 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5151 * round what is now in bits to nearest long in bits, then return it in
5152 * bytes.
5153 */
7c45512d 5154static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5155{
5156 unsigned long usemapsize;
5157
7c45512d 5158 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5159 usemapsize = roundup(zonesize, pageblock_nr_pages);
5160 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5161 usemapsize *= NR_PAGEBLOCK_BITS;
5162 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5163
5164 return usemapsize / 8;
5165}
5166
5167static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5168 struct zone *zone,
5169 unsigned long zone_start_pfn,
5170 unsigned long zonesize)
835c134e 5171{
7c45512d 5172 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5173 zone->pageblock_flags = NULL;
58a01a45 5174 if (usemapsize)
6782832e
SS
5175 zone->pageblock_flags =
5176 memblock_virt_alloc_node_nopanic(usemapsize,
5177 pgdat->node_id);
835c134e
MG
5178}
5179#else
7c45512d
LT
5180static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5181 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5182#endif /* CONFIG_SPARSEMEM */
5183
d9c23400 5184#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5185
d9c23400 5186/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5187void __paginginit set_pageblock_order(void)
d9c23400 5188{
955c1cd7
AM
5189 unsigned int order;
5190
d9c23400
MG
5191 /* Check that pageblock_nr_pages has not already been setup */
5192 if (pageblock_order)
5193 return;
5194
955c1cd7
AM
5195 if (HPAGE_SHIFT > PAGE_SHIFT)
5196 order = HUGETLB_PAGE_ORDER;
5197 else
5198 order = MAX_ORDER - 1;
5199
d9c23400
MG
5200 /*
5201 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5202 * This value may be variable depending on boot parameters on IA64 and
5203 * powerpc.
d9c23400
MG
5204 */
5205 pageblock_order = order;
5206}
5207#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5208
ba72cb8c
MG
5209/*
5210 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5211 * is unused as pageblock_order is set at compile-time. See
5212 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5213 * the kernel config
ba72cb8c 5214 */
15ca220e 5215void __paginginit set_pageblock_order(void)
ba72cb8c 5216{
ba72cb8c 5217}
d9c23400
MG
5218
5219#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5220
01cefaef
JL
5221static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5222 unsigned long present_pages)
5223{
5224 unsigned long pages = spanned_pages;
5225
5226 /*
5227 * Provide a more accurate estimation if there are holes within
5228 * the zone and SPARSEMEM is in use. If there are holes within the
5229 * zone, each populated memory region may cost us one or two extra
5230 * memmap pages due to alignment because memmap pages for each
5231 * populated regions may not naturally algined on page boundary.
5232 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5233 */
5234 if (spanned_pages > present_pages + (present_pages >> 4) &&
5235 IS_ENABLED(CONFIG_SPARSEMEM))
5236 pages = present_pages;
5237
5238 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5239}
5240
1da177e4
LT
5241/*
5242 * Set up the zone data structures:
5243 * - mark all pages reserved
5244 * - mark all memory queues empty
5245 * - clear the memory bitmaps
6527af5d
MK
5246 *
5247 * NOTE: pgdat should get zeroed by caller.
1da177e4 5248 */
b5a0e011 5249static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 5250 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 5251{
2f1b6248 5252 enum zone_type j;
ed8ece2e 5253 int nid = pgdat->node_id;
1da177e4 5254 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5255 int ret;
1da177e4 5256
208d54e5 5257 pgdat_resize_init(pgdat);
8177a420
AA
5258#ifdef CONFIG_NUMA_BALANCING
5259 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5260 pgdat->numabalancing_migrate_nr_pages = 0;
5261 pgdat->numabalancing_migrate_next_window = jiffies;
5262#endif
1da177e4 5263 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5264 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5265 pgdat_page_ext_init(pgdat);
5f63b720 5266
1da177e4
LT
5267 for (j = 0; j < MAX_NR_ZONES; j++) {
5268 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5269 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5270
febd5949
GZ
5271 size = zone->spanned_pages;
5272 realsize = freesize = zone->present_pages;
1da177e4 5273
0e0b864e 5274 /*
9feedc9d 5275 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5276 * is used by this zone for memmap. This affects the watermark
5277 * and per-cpu initialisations
5278 */
01cefaef 5279 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5280 if (!is_highmem_idx(j)) {
5281 if (freesize >= memmap_pages) {
5282 freesize -= memmap_pages;
5283 if (memmap_pages)
5284 printk(KERN_DEBUG
5285 " %s zone: %lu pages used for memmap\n",
5286 zone_names[j], memmap_pages);
5287 } else
5288 printk(KERN_WARNING
5289 " %s zone: %lu pages exceeds freesize %lu\n",
5290 zone_names[j], memmap_pages, freesize);
5291 }
0e0b864e 5292
6267276f 5293 /* Account for reserved pages */
9feedc9d
JL
5294 if (j == 0 && freesize > dma_reserve) {
5295 freesize -= dma_reserve;
d903ef9f 5296 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5297 zone_names[0], dma_reserve);
0e0b864e
MG
5298 }
5299
98d2b0eb 5300 if (!is_highmem_idx(j))
9feedc9d 5301 nr_kernel_pages += freesize;
01cefaef
JL
5302 /* Charge for highmem memmap if there are enough kernel pages */
5303 else if (nr_kernel_pages > memmap_pages * 2)
5304 nr_kernel_pages -= memmap_pages;
9feedc9d 5305 nr_all_pages += freesize;
1da177e4 5306
9feedc9d
JL
5307 /*
5308 * Set an approximate value for lowmem here, it will be adjusted
5309 * when the bootmem allocator frees pages into the buddy system.
5310 * And all highmem pages will be managed by the buddy system.
5311 */
5312 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5313#ifdef CONFIG_NUMA
d5f541ed 5314 zone->node = nid;
9feedc9d 5315 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5316 / 100;
9feedc9d 5317 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5318#endif
1da177e4
LT
5319 zone->name = zone_names[j];
5320 spin_lock_init(&zone->lock);
5321 spin_lock_init(&zone->lru_lock);
bdc8cb98 5322 zone_seqlock_init(zone);
1da177e4 5323 zone->zone_pgdat = pgdat;
ed8ece2e 5324 zone_pcp_init(zone);
81c0a2bb
JW
5325
5326 /* For bootup, initialized properly in watermark setup */
5327 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5328
bea8c150 5329 lruvec_init(&zone->lruvec);
1da177e4
LT
5330 if (!size)
5331 continue;
5332
955c1cd7 5333 set_pageblock_order();
7c45512d 5334 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5335 ret = init_currently_empty_zone(zone, zone_start_pfn,
5336 size, MEMMAP_EARLY);
718127cc 5337 BUG_ON(ret);
76cdd58e 5338 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5339 zone_start_pfn += size;
1da177e4
LT
5340 }
5341}
5342
577a32f6 5343static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5344{
1da177e4
LT
5345 /* Skip empty nodes */
5346 if (!pgdat->node_spanned_pages)
5347 return;
5348
d41dee36 5349#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5350 /* ia64 gets its own node_mem_map, before this, without bootmem */
5351 if (!pgdat->node_mem_map) {
e984bb43 5352 unsigned long size, start, end;
d41dee36
AW
5353 struct page *map;
5354
e984bb43
BP
5355 /*
5356 * The zone's endpoints aren't required to be MAX_ORDER
5357 * aligned but the node_mem_map endpoints must be in order
5358 * for the buddy allocator to function correctly.
5359 */
5360 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5361 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5362 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5363 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5364 map = alloc_remap(pgdat->node_id, size);
5365 if (!map)
6782832e
SS
5366 map = memblock_virt_alloc_node_nopanic(size,
5367 pgdat->node_id);
e984bb43 5368 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5369 }
12d810c1 5370#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5371 /*
5372 * With no DISCONTIG, the global mem_map is just set as node 0's
5373 */
c713216d 5374 if (pgdat == NODE_DATA(0)) {
1da177e4 5375 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5376#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5377 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5378 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5379#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5380 }
1da177e4 5381#endif
d41dee36 5382#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5383}
5384
9109fb7b
JW
5385void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5386 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5387{
9109fb7b 5388 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5389 unsigned long start_pfn = 0;
5390 unsigned long end_pfn = 0;
9109fb7b 5391
88fdf75d 5392 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5393 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5394
3a80a7fa 5395 reset_deferred_meminit(pgdat);
1da177e4
LT
5396 pgdat->node_id = nid;
5397 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5398#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5399 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5400 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5401 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5402#endif
5403 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5404 zones_size, zholes_size);
1da177e4
LT
5405
5406 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5407#ifdef CONFIG_FLAT_NODE_MEM_MAP
5408 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5409 nid, (unsigned long)pgdat,
5410 (unsigned long)pgdat->node_mem_map);
5411#endif
1da177e4 5412
febd5949 5413 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5414}
5415
0ee332c1 5416#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5417
5418#if MAX_NUMNODES > 1
5419/*
5420 * Figure out the number of possible node ids.
5421 */
f9872caf 5422void __init setup_nr_node_ids(void)
418508c1
MS
5423{
5424 unsigned int node;
5425 unsigned int highest = 0;
5426
5427 for_each_node_mask(node, node_possible_map)
5428 highest = node;
5429 nr_node_ids = highest + 1;
5430}
418508c1
MS
5431#endif
5432
1e01979c
TH
5433/**
5434 * node_map_pfn_alignment - determine the maximum internode alignment
5435 *
5436 * This function should be called after node map is populated and sorted.
5437 * It calculates the maximum power of two alignment which can distinguish
5438 * all the nodes.
5439 *
5440 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5441 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5442 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5443 * shifted, 1GiB is enough and this function will indicate so.
5444 *
5445 * This is used to test whether pfn -> nid mapping of the chosen memory
5446 * model has fine enough granularity to avoid incorrect mapping for the
5447 * populated node map.
5448 *
5449 * Returns the determined alignment in pfn's. 0 if there is no alignment
5450 * requirement (single node).
5451 */
5452unsigned long __init node_map_pfn_alignment(void)
5453{
5454 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5455 unsigned long start, end, mask;
1e01979c 5456 int last_nid = -1;
c13291a5 5457 int i, nid;
1e01979c 5458
c13291a5 5459 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5460 if (!start || last_nid < 0 || last_nid == nid) {
5461 last_nid = nid;
5462 last_end = end;
5463 continue;
5464 }
5465
5466 /*
5467 * Start with a mask granular enough to pin-point to the
5468 * start pfn and tick off bits one-by-one until it becomes
5469 * too coarse to separate the current node from the last.
5470 */
5471 mask = ~((1 << __ffs(start)) - 1);
5472 while (mask && last_end <= (start & (mask << 1)))
5473 mask <<= 1;
5474
5475 /* accumulate all internode masks */
5476 accl_mask |= mask;
5477 }
5478
5479 /* convert mask to number of pages */
5480 return ~accl_mask + 1;
5481}
5482
a6af2bc3 5483/* Find the lowest pfn for a node */
b69a7288 5484static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5485{
a6af2bc3 5486 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5487 unsigned long start_pfn;
5488 int i;
1abbfb41 5489
c13291a5
TH
5490 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5491 min_pfn = min(min_pfn, start_pfn);
c713216d 5492
a6af2bc3
MG
5493 if (min_pfn == ULONG_MAX) {
5494 printk(KERN_WARNING
2bc0d261 5495 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5496 return 0;
5497 }
5498
5499 return min_pfn;
c713216d
MG
5500}
5501
5502/**
5503 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5504 *
5505 * It returns the minimum PFN based on information provided via
7d018176 5506 * memblock_set_node().
c713216d
MG
5507 */
5508unsigned long __init find_min_pfn_with_active_regions(void)
5509{
5510 return find_min_pfn_for_node(MAX_NUMNODES);
5511}
5512
37b07e41
LS
5513/*
5514 * early_calculate_totalpages()
5515 * Sum pages in active regions for movable zone.
4b0ef1fe 5516 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5517 */
484f51f8 5518static unsigned long __init early_calculate_totalpages(void)
7e63efef 5519{
7e63efef 5520 unsigned long totalpages = 0;
c13291a5
TH
5521 unsigned long start_pfn, end_pfn;
5522 int i, nid;
5523
5524 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5525 unsigned long pages = end_pfn - start_pfn;
7e63efef 5526
37b07e41
LS
5527 totalpages += pages;
5528 if (pages)
4b0ef1fe 5529 node_set_state(nid, N_MEMORY);
37b07e41 5530 }
b8af2941 5531 return totalpages;
7e63efef
MG
5532}
5533
2a1e274a
MG
5534/*
5535 * Find the PFN the Movable zone begins in each node. Kernel memory
5536 * is spread evenly between nodes as long as the nodes have enough
5537 * memory. When they don't, some nodes will have more kernelcore than
5538 * others
5539 */
b224ef85 5540static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5541{
5542 int i, nid;
5543 unsigned long usable_startpfn;
5544 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5545 /* save the state before borrow the nodemask */
4b0ef1fe 5546 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5547 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5548 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5549 struct memblock_region *r;
b2f3eebe
TC
5550
5551 /* Need to find movable_zone earlier when movable_node is specified. */
5552 find_usable_zone_for_movable();
5553
5554 /*
5555 * If movable_node is specified, ignore kernelcore and movablecore
5556 * options.
5557 */
5558 if (movable_node_is_enabled()) {
136199f0
EM
5559 for_each_memblock(memory, r) {
5560 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5561 continue;
5562
136199f0 5563 nid = r->nid;
b2f3eebe 5564
136199f0 5565 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5566 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5567 min(usable_startpfn, zone_movable_pfn[nid]) :
5568 usable_startpfn;
5569 }
5570
5571 goto out2;
5572 }
2a1e274a 5573
7e63efef 5574 /*
b2f3eebe 5575 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5576 * kernelcore that corresponds so that memory usable for
5577 * any allocation type is evenly spread. If both kernelcore
5578 * and movablecore are specified, then the value of kernelcore
5579 * will be used for required_kernelcore if it's greater than
5580 * what movablecore would have allowed.
5581 */
5582 if (required_movablecore) {
7e63efef
MG
5583 unsigned long corepages;
5584
5585 /*
5586 * Round-up so that ZONE_MOVABLE is at least as large as what
5587 * was requested by the user
5588 */
5589 required_movablecore =
5590 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5591 corepages = totalpages - required_movablecore;
5592
5593 required_kernelcore = max(required_kernelcore, corepages);
5594 }
5595
20e6926d
YL
5596 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5597 if (!required_kernelcore)
66918dcd 5598 goto out;
2a1e274a
MG
5599
5600 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5601 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5602
5603restart:
5604 /* Spread kernelcore memory as evenly as possible throughout nodes */
5605 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5606 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5607 unsigned long start_pfn, end_pfn;
5608
2a1e274a
MG
5609 /*
5610 * Recalculate kernelcore_node if the division per node
5611 * now exceeds what is necessary to satisfy the requested
5612 * amount of memory for the kernel
5613 */
5614 if (required_kernelcore < kernelcore_node)
5615 kernelcore_node = required_kernelcore / usable_nodes;
5616
5617 /*
5618 * As the map is walked, we track how much memory is usable
5619 * by the kernel using kernelcore_remaining. When it is
5620 * 0, the rest of the node is usable by ZONE_MOVABLE
5621 */
5622 kernelcore_remaining = kernelcore_node;
5623
5624 /* Go through each range of PFNs within this node */
c13291a5 5625 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5626 unsigned long size_pages;
5627
c13291a5 5628 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5629 if (start_pfn >= end_pfn)
5630 continue;
5631
5632 /* Account for what is only usable for kernelcore */
5633 if (start_pfn < usable_startpfn) {
5634 unsigned long kernel_pages;
5635 kernel_pages = min(end_pfn, usable_startpfn)
5636 - start_pfn;
5637
5638 kernelcore_remaining -= min(kernel_pages,
5639 kernelcore_remaining);
5640 required_kernelcore -= min(kernel_pages,
5641 required_kernelcore);
5642
5643 /* Continue if range is now fully accounted */
5644 if (end_pfn <= usable_startpfn) {
5645
5646 /*
5647 * Push zone_movable_pfn to the end so
5648 * that if we have to rebalance
5649 * kernelcore across nodes, we will
5650 * not double account here
5651 */
5652 zone_movable_pfn[nid] = end_pfn;
5653 continue;
5654 }
5655 start_pfn = usable_startpfn;
5656 }
5657
5658 /*
5659 * The usable PFN range for ZONE_MOVABLE is from
5660 * start_pfn->end_pfn. Calculate size_pages as the
5661 * number of pages used as kernelcore
5662 */
5663 size_pages = end_pfn - start_pfn;
5664 if (size_pages > kernelcore_remaining)
5665 size_pages = kernelcore_remaining;
5666 zone_movable_pfn[nid] = start_pfn + size_pages;
5667
5668 /*
5669 * Some kernelcore has been met, update counts and
5670 * break if the kernelcore for this node has been
b8af2941 5671 * satisfied
2a1e274a
MG
5672 */
5673 required_kernelcore -= min(required_kernelcore,
5674 size_pages);
5675 kernelcore_remaining -= size_pages;
5676 if (!kernelcore_remaining)
5677 break;
5678 }
5679 }
5680
5681 /*
5682 * If there is still required_kernelcore, we do another pass with one
5683 * less node in the count. This will push zone_movable_pfn[nid] further
5684 * along on the nodes that still have memory until kernelcore is
b8af2941 5685 * satisfied
2a1e274a
MG
5686 */
5687 usable_nodes--;
5688 if (usable_nodes && required_kernelcore > usable_nodes)
5689 goto restart;
5690
b2f3eebe 5691out2:
2a1e274a
MG
5692 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5693 for (nid = 0; nid < MAX_NUMNODES; nid++)
5694 zone_movable_pfn[nid] =
5695 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5696
20e6926d 5697out:
66918dcd 5698 /* restore the node_state */
4b0ef1fe 5699 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5700}
5701
4b0ef1fe
LJ
5702/* Any regular or high memory on that node ? */
5703static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5704{
37b07e41
LS
5705 enum zone_type zone_type;
5706
4b0ef1fe
LJ
5707 if (N_MEMORY == N_NORMAL_MEMORY)
5708 return;
5709
5710 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5711 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5712 if (populated_zone(zone)) {
4b0ef1fe
LJ
5713 node_set_state(nid, N_HIGH_MEMORY);
5714 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5715 zone_type <= ZONE_NORMAL)
5716 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5717 break;
5718 }
37b07e41 5719 }
37b07e41
LS
5720}
5721
c713216d
MG
5722/**
5723 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5724 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5725 *
5726 * This will call free_area_init_node() for each active node in the system.
7d018176 5727 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5728 * zone in each node and their holes is calculated. If the maximum PFN
5729 * between two adjacent zones match, it is assumed that the zone is empty.
5730 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5731 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5732 * starts where the previous one ended. For example, ZONE_DMA32 starts
5733 * at arch_max_dma_pfn.
5734 */
5735void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5736{
c13291a5
TH
5737 unsigned long start_pfn, end_pfn;
5738 int i, nid;
a6af2bc3 5739
c713216d
MG
5740 /* Record where the zone boundaries are */
5741 memset(arch_zone_lowest_possible_pfn, 0,
5742 sizeof(arch_zone_lowest_possible_pfn));
5743 memset(arch_zone_highest_possible_pfn, 0,
5744 sizeof(arch_zone_highest_possible_pfn));
5745 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5746 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5747 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5748 if (i == ZONE_MOVABLE)
5749 continue;
c713216d
MG
5750 arch_zone_lowest_possible_pfn[i] =
5751 arch_zone_highest_possible_pfn[i-1];
5752 arch_zone_highest_possible_pfn[i] =
5753 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5754 }
2a1e274a
MG
5755 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5756 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5757
5758 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5759 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5760 find_zone_movable_pfns_for_nodes();
c713216d 5761
c713216d 5762 /* Print out the zone ranges */
f88dfff5 5763 pr_info("Zone ranges:\n");
2a1e274a
MG
5764 for (i = 0; i < MAX_NR_ZONES; i++) {
5765 if (i == ZONE_MOVABLE)
5766 continue;
f88dfff5 5767 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5768 if (arch_zone_lowest_possible_pfn[i] ==
5769 arch_zone_highest_possible_pfn[i])
f88dfff5 5770 pr_cont("empty\n");
72f0ba02 5771 else
8d29e18a
JG
5772 pr_cont("[mem %#018Lx-%#018Lx]\n",
5773 (u64)arch_zone_lowest_possible_pfn[i]
5774 << PAGE_SHIFT,
5775 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5776 << PAGE_SHIFT) - 1);
2a1e274a
MG
5777 }
5778
5779 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5780 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5781 for (i = 0; i < MAX_NUMNODES; i++) {
5782 if (zone_movable_pfn[i])
8d29e18a
JG
5783 pr_info(" Node %d: %#018Lx\n", i,
5784 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5785 }
c713216d 5786
f2d52fe5 5787 /* Print out the early node map */
f88dfff5 5788 pr_info("Early memory node ranges\n");
c13291a5 5789 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5790 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5791 (u64)start_pfn << PAGE_SHIFT,
5792 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5793
5794 /* Initialise every node */
708614e6 5795 mminit_verify_pageflags_layout();
8ef82866 5796 setup_nr_node_ids();
c713216d
MG
5797 for_each_online_node(nid) {
5798 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5799 free_area_init_node(nid, NULL,
c713216d 5800 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5801
5802 /* Any memory on that node */
5803 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5804 node_set_state(nid, N_MEMORY);
5805 check_for_memory(pgdat, nid);
c713216d
MG
5806 }
5807}
2a1e274a 5808
7e63efef 5809static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5810{
5811 unsigned long long coremem;
5812 if (!p)
5813 return -EINVAL;
5814
5815 coremem = memparse(p, &p);
7e63efef 5816 *core = coremem >> PAGE_SHIFT;
2a1e274a 5817
7e63efef 5818 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5819 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5820
5821 return 0;
5822}
ed7ed365 5823
7e63efef
MG
5824/*
5825 * kernelcore=size sets the amount of memory for use for allocations that
5826 * cannot be reclaimed or migrated.
5827 */
5828static int __init cmdline_parse_kernelcore(char *p)
5829{
5830 return cmdline_parse_core(p, &required_kernelcore);
5831}
5832
5833/*
5834 * movablecore=size sets the amount of memory for use for allocations that
5835 * can be reclaimed or migrated.
5836 */
5837static int __init cmdline_parse_movablecore(char *p)
5838{
5839 return cmdline_parse_core(p, &required_movablecore);
5840}
5841
ed7ed365 5842early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5843early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5844
0ee332c1 5845#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5846
c3d5f5f0
JL
5847void adjust_managed_page_count(struct page *page, long count)
5848{
5849 spin_lock(&managed_page_count_lock);
5850 page_zone(page)->managed_pages += count;
5851 totalram_pages += count;
3dcc0571
JL
5852#ifdef CONFIG_HIGHMEM
5853 if (PageHighMem(page))
5854 totalhigh_pages += count;
5855#endif
c3d5f5f0
JL
5856 spin_unlock(&managed_page_count_lock);
5857}
3dcc0571 5858EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5859
11199692 5860unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5861{
11199692
JL
5862 void *pos;
5863 unsigned long pages = 0;
69afade7 5864
11199692
JL
5865 start = (void *)PAGE_ALIGN((unsigned long)start);
5866 end = (void *)((unsigned long)end & PAGE_MASK);
5867 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5868 if ((unsigned int)poison <= 0xFF)
11199692
JL
5869 memset(pos, poison, PAGE_SIZE);
5870 free_reserved_page(virt_to_page(pos));
69afade7
JL
5871 }
5872
5873 if (pages && s)
11199692 5874 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5875 s, pages << (PAGE_SHIFT - 10), start, end);
5876
5877 return pages;
5878}
11199692 5879EXPORT_SYMBOL(free_reserved_area);
69afade7 5880
cfa11e08
JL
5881#ifdef CONFIG_HIGHMEM
5882void free_highmem_page(struct page *page)
5883{
5884 __free_reserved_page(page);
5885 totalram_pages++;
7b4b2a0d 5886 page_zone(page)->managed_pages++;
cfa11e08
JL
5887 totalhigh_pages++;
5888}
5889#endif
5890
7ee3d4e8
JL
5891
5892void __init mem_init_print_info(const char *str)
5893{
5894 unsigned long physpages, codesize, datasize, rosize, bss_size;
5895 unsigned long init_code_size, init_data_size;
5896
5897 physpages = get_num_physpages();
5898 codesize = _etext - _stext;
5899 datasize = _edata - _sdata;
5900 rosize = __end_rodata - __start_rodata;
5901 bss_size = __bss_stop - __bss_start;
5902 init_data_size = __init_end - __init_begin;
5903 init_code_size = _einittext - _sinittext;
5904
5905 /*
5906 * Detect special cases and adjust section sizes accordingly:
5907 * 1) .init.* may be embedded into .data sections
5908 * 2) .init.text.* may be out of [__init_begin, __init_end],
5909 * please refer to arch/tile/kernel/vmlinux.lds.S.
5910 * 3) .rodata.* may be embedded into .text or .data sections.
5911 */
5912#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5913 do { \
5914 if (start <= pos && pos < end && size > adj) \
5915 size -= adj; \
5916 } while (0)
7ee3d4e8
JL
5917
5918 adj_init_size(__init_begin, __init_end, init_data_size,
5919 _sinittext, init_code_size);
5920 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5921 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5922 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5923 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5924
5925#undef adj_init_size
5926
f88dfff5 5927 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5928 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5929 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5930#ifdef CONFIG_HIGHMEM
5931 ", %luK highmem"
5932#endif
5933 "%s%s)\n",
5934 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5935 codesize >> 10, datasize >> 10, rosize >> 10,
5936 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5937 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5938 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5939#ifdef CONFIG_HIGHMEM
5940 totalhigh_pages << (PAGE_SHIFT-10),
5941#endif
5942 str ? ", " : "", str ? str : "");
5943}
5944
0e0b864e 5945/**
88ca3b94
RD
5946 * set_dma_reserve - set the specified number of pages reserved in the first zone
5947 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5948 *
5949 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5950 * In the DMA zone, a significant percentage may be consumed by kernel image
5951 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5952 * function may optionally be used to account for unfreeable pages in the
5953 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5954 * smaller per-cpu batchsize.
0e0b864e
MG
5955 */
5956void __init set_dma_reserve(unsigned long new_dma_reserve)
5957{
5958 dma_reserve = new_dma_reserve;
5959}
5960
1da177e4
LT
5961void __init free_area_init(unsigned long *zones_size)
5962{
9109fb7b 5963 free_area_init_node(0, zones_size,
1da177e4
LT
5964 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5965}
1da177e4 5966
1da177e4
LT
5967static int page_alloc_cpu_notify(struct notifier_block *self,
5968 unsigned long action, void *hcpu)
5969{
5970 int cpu = (unsigned long)hcpu;
1da177e4 5971
8bb78442 5972 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5973 lru_add_drain_cpu(cpu);
9f8f2172
CL
5974 drain_pages(cpu);
5975
5976 /*
5977 * Spill the event counters of the dead processor
5978 * into the current processors event counters.
5979 * This artificially elevates the count of the current
5980 * processor.
5981 */
f8891e5e 5982 vm_events_fold_cpu(cpu);
9f8f2172
CL
5983
5984 /*
5985 * Zero the differential counters of the dead processor
5986 * so that the vm statistics are consistent.
5987 *
5988 * This is only okay since the processor is dead and cannot
5989 * race with what we are doing.
5990 */
2bb921e5 5991 cpu_vm_stats_fold(cpu);
1da177e4
LT
5992 }
5993 return NOTIFY_OK;
5994}
1da177e4
LT
5995
5996void __init page_alloc_init(void)
5997{
5998 hotcpu_notifier(page_alloc_cpu_notify, 0);
5999}
6000
cb45b0e9
HA
6001/*
6002 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6003 * or min_free_kbytes changes.
6004 */
6005static void calculate_totalreserve_pages(void)
6006{
6007 struct pglist_data *pgdat;
6008 unsigned long reserve_pages = 0;
2f6726e5 6009 enum zone_type i, j;
cb45b0e9
HA
6010
6011 for_each_online_pgdat(pgdat) {
6012 for (i = 0; i < MAX_NR_ZONES; i++) {
6013 struct zone *zone = pgdat->node_zones + i;
3484b2de 6014 long max = 0;
cb45b0e9
HA
6015
6016 /* Find valid and maximum lowmem_reserve in the zone */
6017 for (j = i; j < MAX_NR_ZONES; j++) {
6018 if (zone->lowmem_reserve[j] > max)
6019 max = zone->lowmem_reserve[j];
6020 }
6021
41858966
MG
6022 /* we treat the high watermark as reserved pages. */
6023 max += high_wmark_pages(zone);
cb45b0e9 6024
b40da049
JL
6025 if (max > zone->managed_pages)
6026 max = zone->managed_pages;
cb45b0e9 6027 reserve_pages += max;
ab8fabd4
JW
6028 /*
6029 * Lowmem reserves are not available to
6030 * GFP_HIGHUSER page cache allocations and
6031 * kswapd tries to balance zones to their high
6032 * watermark. As a result, neither should be
6033 * regarded as dirtyable memory, to prevent a
6034 * situation where reclaim has to clean pages
6035 * in order to balance the zones.
6036 */
6037 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6038 }
6039 }
ab8fabd4 6040 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6041 totalreserve_pages = reserve_pages;
6042}
6043
1da177e4
LT
6044/*
6045 * setup_per_zone_lowmem_reserve - called whenever
6046 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6047 * has a correct pages reserved value, so an adequate number of
6048 * pages are left in the zone after a successful __alloc_pages().
6049 */
6050static void setup_per_zone_lowmem_reserve(void)
6051{
6052 struct pglist_data *pgdat;
2f6726e5 6053 enum zone_type j, idx;
1da177e4 6054
ec936fc5 6055 for_each_online_pgdat(pgdat) {
1da177e4
LT
6056 for (j = 0; j < MAX_NR_ZONES; j++) {
6057 struct zone *zone = pgdat->node_zones + j;
b40da049 6058 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6059
6060 zone->lowmem_reserve[j] = 0;
6061
2f6726e5
CL
6062 idx = j;
6063 while (idx) {
1da177e4
LT
6064 struct zone *lower_zone;
6065
2f6726e5
CL
6066 idx--;
6067
1da177e4
LT
6068 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6069 sysctl_lowmem_reserve_ratio[idx] = 1;
6070
6071 lower_zone = pgdat->node_zones + idx;
b40da049 6072 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6073 sysctl_lowmem_reserve_ratio[idx];
b40da049 6074 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6075 }
6076 }
6077 }
cb45b0e9
HA
6078
6079 /* update totalreserve_pages */
6080 calculate_totalreserve_pages();
1da177e4
LT
6081}
6082
cfd3da1e 6083static void __setup_per_zone_wmarks(void)
1da177e4
LT
6084{
6085 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6086 unsigned long lowmem_pages = 0;
6087 struct zone *zone;
6088 unsigned long flags;
6089
6090 /* Calculate total number of !ZONE_HIGHMEM pages */
6091 for_each_zone(zone) {
6092 if (!is_highmem(zone))
b40da049 6093 lowmem_pages += zone->managed_pages;
1da177e4
LT
6094 }
6095
6096 for_each_zone(zone) {
ac924c60
AM
6097 u64 tmp;
6098
1125b4e3 6099 spin_lock_irqsave(&zone->lock, flags);
b40da049 6100 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6101 do_div(tmp, lowmem_pages);
1da177e4
LT
6102 if (is_highmem(zone)) {
6103 /*
669ed175
NP
6104 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6105 * need highmem pages, so cap pages_min to a small
6106 * value here.
6107 *
41858966 6108 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6109 * deltas control asynch page reclaim, and so should
669ed175 6110 * not be capped for highmem.
1da177e4 6111 */
90ae8d67 6112 unsigned long min_pages;
1da177e4 6113
b40da049 6114 min_pages = zone->managed_pages / 1024;
90ae8d67 6115 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6116 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6117 } else {
669ed175
NP
6118 /*
6119 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6120 * proportionate to the zone's size.
6121 */
41858966 6122 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6123 }
6124
41858966
MG
6125 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6126 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6127
81c0a2bb 6128 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6129 high_wmark_pages(zone) - low_wmark_pages(zone) -
6130 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6131
56fd56b8 6132 setup_zone_migrate_reserve(zone);
1125b4e3 6133 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6134 }
cb45b0e9
HA
6135
6136 /* update totalreserve_pages */
6137 calculate_totalreserve_pages();
1da177e4
LT
6138}
6139
cfd3da1e
MG
6140/**
6141 * setup_per_zone_wmarks - called when min_free_kbytes changes
6142 * or when memory is hot-{added|removed}
6143 *
6144 * Ensures that the watermark[min,low,high] values for each zone are set
6145 * correctly with respect to min_free_kbytes.
6146 */
6147void setup_per_zone_wmarks(void)
6148{
6149 mutex_lock(&zonelists_mutex);
6150 __setup_per_zone_wmarks();
6151 mutex_unlock(&zonelists_mutex);
6152}
6153
55a4462a 6154/*
556adecb
RR
6155 * The inactive anon list should be small enough that the VM never has to
6156 * do too much work, but large enough that each inactive page has a chance
6157 * to be referenced again before it is swapped out.
6158 *
6159 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6160 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6161 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6162 * the anonymous pages are kept on the inactive list.
6163 *
6164 * total target max
6165 * memory ratio inactive anon
6166 * -------------------------------------
6167 * 10MB 1 5MB
6168 * 100MB 1 50MB
6169 * 1GB 3 250MB
6170 * 10GB 10 0.9GB
6171 * 100GB 31 3GB
6172 * 1TB 101 10GB
6173 * 10TB 320 32GB
6174 */
1b79acc9 6175static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6176{
96cb4df5 6177 unsigned int gb, ratio;
556adecb 6178
96cb4df5 6179 /* Zone size in gigabytes */
b40da049 6180 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6181 if (gb)
556adecb 6182 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6183 else
6184 ratio = 1;
556adecb 6185
96cb4df5
MK
6186 zone->inactive_ratio = ratio;
6187}
556adecb 6188
839a4fcc 6189static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6190{
6191 struct zone *zone;
6192
6193 for_each_zone(zone)
6194 calculate_zone_inactive_ratio(zone);
556adecb
RR
6195}
6196
1da177e4
LT
6197/*
6198 * Initialise min_free_kbytes.
6199 *
6200 * For small machines we want it small (128k min). For large machines
6201 * we want it large (64MB max). But it is not linear, because network
6202 * bandwidth does not increase linearly with machine size. We use
6203 *
b8af2941 6204 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6205 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6206 *
6207 * which yields
6208 *
6209 * 16MB: 512k
6210 * 32MB: 724k
6211 * 64MB: 1024k
6212 * 128MB: 1448k
6213 * 256MB: 2048k
6214 * 512MB: 2896k
6215 * 1024MB: 4096k
6216 * 2048MB: 5792k
6217 * 4096MB: 8192k
6218 * 8192MB: 11584k
6219 * 16384MB: 16384k
6220 */
1b79acc9 6221int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6222{
6223 unsigned long lowmem_kbytes;
5f12733e 6224 int new_min_free_kbytes;
1da177e4
LT
6225
6226 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6227 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6228
6229 if (new_min_free_kbytes > user_min_free_kbytes) {
6230 min_free_kbytes = new_min_free_kbytes;
6231 if (min_free_kbytes < 128)
6232 min_free_kbytes = 128;
6233 if (min_free_kbytes > 65536)
6234 min_free_kbytes = 65536;
6235 } else {
6236 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6237 new_min_free_kbytes, user_min_free_kbytes);
6238 }
bc75d33f 6239 setup_per_zone_wmarks();
a6cccdc3 6240 refresh_zone_stat_thresholds();
1da177e4 6241 setup_per_zone_lowmem_reserve();
556adecb 6242 setup_per_zone_inactive_ratio();
1da177e4
LT
6243 return 0;
6244}
bc75d33f 6245module_init(init_per_zone_wmark_min)
1da177e4
LT
6246
6247/*
b8af2941 6248 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6249 * that we can call two helper functions whenever min_free_kbytes
6250 * changes.
6251 */
cccad5b9 6252int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6253 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6254{
da8c757b
HP
6255 int rc;
6256
6257 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6258 if (rc)
6259 return rc;
6260
5f12733e
MH
6261 if (write) {
6262 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6263 setup_per_zone_wmarks();
5f12733e 6264 }
1da177e4
LT
6265 return 0;
6266}
6267
9614634f 6268#ifdef CONFIG_NUMA
cccad5b9 6269int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6270 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6271{
6272 struct zone *zone;
6273 int rc;
6274
8d65af78 6275 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6276 if (rc)
6277 return rc;
6278
6279 for_each_zone(zone)
b40da049 6280 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6281 sysctl_min_unmapped_ratio) / 100;
6282 return 0;
6283}
0ff38490 6284
cccad5b9 6285int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6286 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6287{
6288 struct zone *zone;
6289 int rc;
6290
8d65af78 6291 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6292 if (rc)
6293 return rc;
6294
6295 for_each_zone(zone)
b40da049 6296 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6297 sysctl_min_slab_ratio) / 100;
6298 return 0;
6299}
9614634f
CL
6300#endif
6301
1da177e4
LT
6302/*
6303 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6304 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6305 * whenever sysctl_lowmem_reserve_ratio changes.
6306 *
6307 * The reserve ratio obviously has absolutely no relation with the
41858966 6308 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6309 * if in function of the boot time zone sizes.
6310 */
cccad5b9 6311int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6312 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6313{
8d65af78 6314 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6315 setup_per_zone_lowmem_reserve();
6316 return 0;
6317}
6318
8ad4b1fb
RS
6319/*
6320 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6321 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6322 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6323 */
cccad5b9 6324int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6325 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6326{
6327 struct zone *zone;
7cd2b0a3 6328 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6329 int ret;
6330
7cd2b0a3
DR
6331 mutex_lock(&pcp_batch_high_lock);
6332 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6333
8d65af78 6334 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6335 if (!write || ret < 0)
6336 goto out;
6337
6338 /* Sanity checking to avoid pcp imbalance */
6339 if (percpu_pagelist_fraction &&
6340 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6341 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6342 ret = -EINVAL;
6343 goto out;
6344 }
6345
6346 /* No change? */
6347 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6348 goto out;
c8e251fa 6349
364df0eb 6350 for_each_populated_zone(zone) {
7cd2b0a3
DR
6351 unsigned int cpu;
6352
22a7f12b 6353 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6354 pageset_set_high_and_batch(zone,
6355 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6356 }
7cd2b0a3 6357out:
c8e251fa 6358 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6359 return ret;
8ad4b1fb
RS
6360}
6361
a9919c79 6362#ifdef CONFIG_NUMA
f034b5d4 6363int hashdist = HASHDIST_DEFAULT;
1da177e4 6364
1da177e4
LT
6365static int __init set_hashdist(char *str)
6366{
6367 if (!str)
6368 return 0;
6369 hashdist = simple_strtoul(str, &str, 0);
6370 return 1;
6371}
6372__setup("hashdist=", set_hashdist);
6373#endif
6374
6375/*
6376 * allocate a large system hash table from bootmem
6377 * - it is assumed that the hash table must contain an exact power-of-2
6378 * quantity of entries
6379 * - limit is the number of hash buckets, not the total allocation size
6380 */
6381void *__init alloc_large_system_hash(const char *tablename,
6382 unsigned long bucketsize,
6383 unsigned long numentries,
6384 int scale,
6385 int flags,
6386 unsigned int *_hash_shift,
6387 unsigned int *_hash_mask,
31fe62b9
TB
6388 unsigned long low_limit,
6389 unsigned long high_limit)
1da177e4 6390{
31fe62b9 6391 unsigned long long max = high_limit;
1da177e4
LT
6392 unsigned long log2qty, size;
6393 void *table = NULL;
6394
6395 /* allow the kernel cmdline to have a say */
6396 if (!numentries) {
6397 /* round applicable memory size up to nearest megabyte */
04903664 6398 numentries = nr_kernel_pages;
a7e83318
JZ
6399
6400 /* It isn't necessary when PAGE_SIZE >= 1MB */
6401 if (PAGE_SHIFT < 20)
6402 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6403
6404 /* limit to 1 bucket per 2^scale bytes of low memory */
6405 if (scale > PAGE_SHIFT)
6406 numentries >>= (scale - PAGE_SHIFT);
6407 else
6408 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6409
6410 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6411 if (unlikely(flags & HASH_SMALL)) {
6412 /* Makes no sense without HASH_EARLY */
6413 WARN_ON(!(flags & HASH_EARLY));
6414 if (!(numentries >> *_hash_shift)) {
6415 numentries = 1UL << *_hash_shift;
6416 BUG_ON(!numentries);
6417 }
6418 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6419 numentries = PAGE_SIZE / bucketsize;
1da177e4 6420 }
6e692ed3 6421 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6422
6423 /* limit allocation size to 1/16 total memory by default */
6424 if (max == 0) {
6425 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6426 do_div(max, bucketsize);
6427 }
074b8517 6428 max = min(max, 0x80000000ULL);
1da177e4 6429
31fe62b9
TB
6430 if (numentries < low_limit)
6431 numentries = low_limit;
1da177e4
LT
6432 if (numentries > max)
6433 numentries = max;
6434
f0d1b0b3 6435 log2qty = ilog2(numentries);
1da177e4
LT
6436
6437 do {
6438 size = bucketsize << log2qty;
6439 if (flags & HASH_EARLY)
6782832e 6440 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6441 else if (hashdist)
6442 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6443 else {
1037b83b
ED
6444 /*
6445 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6446 * some pages at the end of hash table which
6447 * alloc_pages_exact() automatically does
1037b83b 6448 */
264ef8a9 6449 if (get_order(size) < MAX_ORDER) {
a1dd268c 6450 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6451 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6452 }
1da177e4
LT
6453 }
6454 } while (!table && size > PAGE_SIZE && --log2qty);
6455
6456 if (!table)
6457 panic("Failed to allocate %s hash table\n", tablename);
6458
f241e660 6459 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6460 tablename,
f241e660 6461 (1UL << log2qty),
f0d1b0b3 6462 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6463 size);
6464
6465 if (_hash_shift)
6466 *_hash_shift = log2qty;
6467 if (_hash_mask)
6468 *_hash_mask = (1 << log2qty) - 1;
6469
6470 return table;
6471}
a117e66e 6472
835c134e
MG
6473/* Return a pointer to the bitmap storing bits affecting a block of pages */
6474static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6475 unsigned long pfn)
6476{
6477#ifdef CONFIG_SPARSEMEM
6478 return __pfn_to_section(pfn)->pageblock_flags;
6479#else
6480 return zone->pageblock_flags;
6481#endif /* CONFIG_SPARSEMEM */
6482}
6483
6484static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6485{
6486#ifdef CONFIG_SPARSEMEM
6487 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6488 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6489#else
c060f943 6490 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6491 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6492#endif /* CONFIG_SPARSEMEM */
6493}
6494
6495/**
1aab4d77 6496 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6497 * @page: The page within the block of interest
1aab4d77
RD
6498 * @pfn: The target page frame number
6499 * @end_bitidx: The last bit of interest to retrieve
6500 * @mask: mask of bits that the caller is interested in
6501 *
6502 * Return: pageblock_bits flags
835c134e 6503 */
dc4b0caf 6504unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6505 unsigned long end_bitidx,
6506 unsigned long mask)
835c134e
MG
6507{
6508 struct zone *zone;
6509 unsigned long *bitmap;
dc4b0caf 6510 unsigned long bitidx, word_bitidx;
e58469ba 6511 unsigned long word;
835c134e
MG
6512
6513 zone = page_zone(page);
835c134e
MG
6514 bitmap = get_pageblock_bitmap(zone, pfn);
6515 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6516 word_bitidx = bitidx / BITS_PER_LONG;
6517 bitidx &= (BITS_PER_LONG-1);
835c134e 6518
e58469ba
MG
6519 word = bitmap[word_bitidx];
6520 bitidx += end_bitidx;
6521 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6522}
6523
6524/**
dc4b0caf 6525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6526 * @page: The page within the block of interest
835c134e 6527 * @flags: The flags to set
1aab4d77
RD
6528 * @pfn: The target page frame number
6529 * @end_bitidx: The last bit of interest
6530 * @mask: mask of bits that the caller is interested in
835c134e 6531 */
dc4b0caf
MG
6532void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6533 unsigned long pfn,
e58469ba
MG
6534 unsigned long end_bitidx,
6535 unsigned long mask)
835c134e
MG
6536{
6537 struct zone *zone;
6538 unsigned long *bitmap;
dc4b0caf 6539 unsigned long bitidx, word_bitidx;
e58469ba
MG
6540 unsigned long old_word, word;
6541
6542 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6543
6544 zone = page_zone(page);
835c134e
MG
6545 bitmap = get_pageblock_bitmap(zone, pfn);
6546 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6547 word_bitidx = bitidx / BITS_PER_LONG;
6548 bitidx &= (BITS_PER_LONG-1);
6549
309381fe 6550 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6551
e58469ba
MG
6552 bitidx += end_bitidx;
6553 mask <<= (BITS_PER_LONG - bitidx - 1);
6554 flags <<= (BITS_PER_LONG - bitidx - 1);
6555
4db0c3c2 6556 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6557 for (;;) {
6558 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6559 if (word == old_word)
6560 break;
6561 word = old_word;
6562 }
835c134e 6563}
a5d76b54
KH
6564
6565/*
80934513
MK
6566 * This function checks whether pageblock includes unmovable pages or not.
6567 * If @count is not zero, it is okay to include less @count unmovable pages
6568 *
b8af2941 6569 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6570 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6571 * expect this function should be exact.
a5d76b54 6572 */
b023f468
WC
6573bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6574 bool skip_hwpoisoned_pages)
49ac8255
KH
6575{
6576 unsigned long pfn, iter, found;
47118af0
MN
6577 int mt;
6578
49ac8255
KH
6579 /*
6580 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6581 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6582 */
6583 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6584 return false;
47118af0
MN
6585 mt = get_pageblock_migratetype(page);
6586 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6587 return false;
49ac8255
KH
6588
6589 pfn = page_to_pfn(page);
6590 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6591 unsigned long check = pfn + iter;
6592
29723fcc 6593 if (!pfn_valid_within(check))
49ac8255 6594 continue;
29723fcc 6595
49ac8255 6596 page = pfn_to_page(check);
c8721bbb
NH
6597
6598 /*
6599 * Hugepages are not in LRU lists, but they're movable.
6600 * We need not scan over tail pages bacause we don't
6601 * handle each tail page individually in migration.
6602 */
6603 if (PageHuge(page)) {
6604 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6605 continue;
6606 }
6607
97d255c8
MK
6608 /*
6609 * We can't use page_count without pin a page
6610 * because another CPU can free compound page.
6611 * This check already skips compound tails of THP
6612 * because their page->_count is zero at all time.
6613 */
6614 if (!atomic_read(&page->_count)) {
49ac8255
KH
6615 if (PageBuddy(page))
6616 iter += (1 << page_order(page)) - 1;
6617 continue;
6618 }
97d255c8 6619
b023f468
WC
6620 /*
6621 * The HWPoisoned page may be not in buddy system, and
6622 * page_count() is not 0.
6623 */
6624 if (skip_hwpoisoned_pages && PageHWPoison(page))
6625 continue;
6626
49ac8255
KH
6627 if (!PageLRU(page))
6628 found++;
6629 /*
6b4f7799
JW
6630 * If there are RECLAIMABLE pages, we need to check
6631 * it. But now, memory offline itself doesn't call
6632 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6633 */
6634 /*
6635 * If the page is not RAM, page_count()should be 0.
6636 * we don't need more check. This is an _used_ not-movable page.
6637 *
6638 * The problematic thing here is PG_reserved pages. PG_reserved
6639 * is set to both of a memory hole page and a _used_ kernel
6640 * page at boot.
6641 */
6642 if (found > count)
80934513 6643 return true;
49ac8255 6644 }
80934513 6645 return false;
49ac8255
KH
6646}
6647
6648bool is_pageblock_removable_nolock(struct page *page)
6649{
656a0706
MH
6650 struct zone *zone;
6651 unsigned long pfn;
687875fb
MH
6652
6653 /*
6654 * We have to be careful here because we are iterating over memory
6655 * sections which are not zone aware so we might end up outside of
6656 * the zone but still within the section.
656a0706
MH
6657 * We have to take care about the node as well. If the node is offline
6658 * its NODE_DATA will be NULL - see page_zone.
687875fb 6659 */
656a0706
MH
6660 if (!node_online(page_to_nid(page)))
6661 return false;
6662
6663 zone = page_zone(page);
6664 pfn = page_to_pfn(page);
108bcc96 6665 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6666 return false;
6667
b023f468 6668 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6669}
0c0e6195 6670
041d3a8c
MN
6671#ifdef CONFIG_CMA
6672
6673static unsigned long pfn_max_align_down(unsigned long pfn)
6674{
6675 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6676 pageblock_nr_pages) - 1);
6677}
6678
6679static unsigned long pfn_max_align_up(unsigned long pfn)
6680{
6681 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6682 pageblock_nr_pages));
6683}
6684
041d3a8c 6685/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6686static int __alloc_contig_migrate_range(struct compact_control *cc,
6687 unsigned long start, unsigned long end)
041d3a8c
MN
6688{
6689 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6690 unsigned long nr_reclaimed;
041d3a8c
MN
6691 unsigned long pfn = start;
6692 unsigned int tries = 0;
6693 int ret = 0;
6694
be49a6e1 6695 migrate_prep();
041d3a8c 6696
bb13ffeb 6697 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6698 if (fatal_signal_pending(current)) {
6699 ret = -EINTR;
6700 break;
6701 }
6702
bb13ffeb
MG
6703 if (list_empty(&cc->migratepages)) {
6704 cc->nr_migratepages = 0;
edc2ca61 6705 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6706 if (!pfn) {
6707 ret = -EINTR;
6708 break;
6709 }
6710 tries = 0;
6711 } else if (++tries == 5) {
6712 ret = ret < 0 ? ret : -EBUSY;
6713 break;
6714 }
6715
beb51eaa
MK
6716 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6717 &cc->migratepages);
6718 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6719
9c620e2b 6720 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6721 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6722 }
2a6f5124
SP
6723 if (ret < 0) {
6724 putback_movable_pages(&cc->migratepages);
6725 return ret;
6726 }
6727 return 0;
041d3a8c
MN
6728}
6729
6730/**
6731 * alloc_contig_range() -- tries to allocate given range of pages
6732 * @start: start PFN to allocate
6733 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6734 * @migratetype: migratetype of the underlaying pageblocks (either
6735 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6736 * in range must have the same migratetype and it must
6737 * be either of the two.
041d3a8c
MN
6738 *
6739 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6740 * aligned, however it's the caller's responsibility to guarantee that
6741 * we are the only thread that changes migrate type of pageblocks the
6742 * pages fall in.
6743 *
6744 * The PFN range must belong to a single zone.
6745 *
6746 * Returns zero on success or negative error code. On success all
6747 * pages which PFN is in [start, end) are allocated for the caller and
6748 * need to be freed with free_contig_range().
6749 */
0815f3d8
MN
6750int alloc_contig_range(unsigned long start, unsigned long end,
6751 unsigned migratetype)
041d3a8c 6752{
041d3a8c
MN
6753 unsigned long outer_start, outer_end;
6754 int ret = 0, order;
6755
bb13ffeb
MG
6756 struct compact_control cc = {
6757 .nr_migratepages = 0,
6758 .order = -1,
6759 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6760 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6761 .ignore_skip_hint = true,
6762 };
6763 INIT_LIST_HEAD(&cc.migratepages);
6764
041d3a8c
MN
6765 /*
6766 * What we do here is we mark all pageblocks in range as
6767 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6768 * have different sizes, and due to the way page allocator
6769 * work, we align the range to biggest of the two pages so
6770 * that page allocator won't try to merge buddies from
6771 * different pageblocks and change MIGRATE_ISOLATE to some
6772 * other migration type.
6773 *
6774 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6775 * migrate the pages from an unaligned range (ie. pages that
6776 * we are interested in). This will put all the pages in
6777 * range back to page allocator as MIGRATE_ISOLATE.
6778 *
6779 * When this is done, we take the pages in range from page
6780 * allocator removing them from the buddy system. This way
6781 * page allocator will never consider using them.
6782 *
6783 * This lets us mark the pageblocks back as
6784 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6785 * aligned range but not in the unaligned, original range are
6786 * put back to page allocator so that buddy can use them.
6787 */
6788
6789 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6790 pfn_max_align_up(end), migratetype,
6791 false);
041d3a8c 6792 if (ret)
86a595f9 6793 return ret;
041d3a8c 6794
bb13ffeb 6795 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6796 if (ret)
6797 goto done;
6798
6799 /*
6800 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6801 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6802 * more, all pages in [start, end) are free in page allocator.
6803 * What we are going to do is to allocate all pages from
6804 * [start, end) (that is remove them from page allocator).
6805 *
6806 * The only problem is that pages at the beginning and at the
6807 * end of interesting range may be not aligned with pages that
6808 * page allocator holds, ie. they can be part of higher order
6809 * pages. Because of this, we reserve the bigger range and
6810 * once this is done free the pages we are not interested in.
6811 *
6812 * We don't have to hold zone->lock here because the pages are
6813 * isolated thus they won't get removed from buddy.
6814 */
6815
6816 lru_add_drain_all();
510f5507 6817 drain_all_pages(cc.zone);
041d3a8c
MN
6818
6819 order = 0;
6820 outer_start = start;
6821 while (!PageBuddy(pfn_to_page(outer_start))) {
6822 if (++order >= MAX_ORDER) {
6823 ret = -EBUSY;
6824 goto done;
6825 }
6826 outer_start &= ~0UL << order;
6827 }
6828
6829 /* Make sure the range is really isolated. */
b023f468 6830 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6831 pr_info("%s: [%lx, %lx) PFNs busy\n",
6832 __func__, outer_start, end);
041d3a8c
MN
6833 ret = -EBUSY;
6834 goto done;
6835 }
6836
49f223a9 6837 /* Grab isolated pages from freelists. */
bb13ffeb 6838 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6839 if (!outer_end) {
6840 ret = -EBUSY;
6841 goto done;
6842 }
6843
6844 /* Free head and tail (if any) */
6845 if (start != outer_start)
6846 free_contig_range(outer_start, start - outer_start);
6847 if (end != outer_end)
6848 free_contig_range(end, outer_end - end);
6849
6850done:
6851 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6852 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6853 return ret;
6854}
6855
6856void free_contig_range(unsigned long pfn, unsigned nr_pages)
6857{
bcc2b02f
MS
6858 unsigned int count = 0;
6859
6860 for (; nr_pages--; pfn++) {
6861 struct page *page = pfn_to_page(pfn);
6862
6863 count += page_count(page) != 1;
6864 __free_page(page);
6865 }
6866 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6867}
6868#endif
6869
4ed7e022 6870#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6871/*
6872 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6873 * page high values need to be recalulated.
6874 */
4ed7e022
JL
6875void __meminit zone_pcp_update(struct zone *zone)
6876{
0a647f38 6877 unsigned cpu;
c8e251fa 6878 mutex_lock(&pcp_batch_high_lock);
0a647f38 6879 for_each_possible_cpu(cpu)
169f6c19
CS
6880 pageset_set_high_and_batch(zone,
6881 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6882 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6883}
6884#endif
6885
340175b7
JL
6886void zone_pcp_reset(struct zone *zone)
6887{
6888 unsigned long flags;
5a883813
MK
6889 int cpu;
6890 struct per_cpu_pageset *pset;
340175b7
JL
6891
6892 /* avoid races with drain_pages() */
6893 local_irq_save(flags);
6894 if (zone->pageset != &boot_pageset) {
5a883813
MK
6895 for_each_online_cpu(cpu) {
6896 pset = per_cpu_ptr(zone->pageset, cpu);
6897 drain_zonestat(zone, pset);
6898 }
340175b7
JL
6899 free_percpu(zone->pageset);
6900 zone->pageset = &boot_pageset;
6901 }
6902 local_irq_restore(flags);
6903}
6904
6dcd73d7 6905#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6906/*
6907 * All pages in the range must be isolated before calling this.
6908 */
6909void
6910__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6911{
6912 struct page *page;
6913 struct zone *zone;
7aeb09f9 6914 unsigned int order, i;
0c0e6195
KH
6915 unsigned long pfn;
6916 unsigned long flags;
6917 /* find the first valid pfn */
6918 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6919 if (pfn_valid(pfn))
6920 break;
6921 if (pfn == end_pfn)
6922 return;
6923 zone = page_zone(pfn_to_page(pfn));
6924 spin_lock_irqsave(&zone->lock, flags);
6925 pfn = start_pfn;
6926 while (pfn < end_pfn) {
6927 if (!pfn_valid(pfn)) {
6928 pfn++;
6929 continue;
6930 }
6931 page = pfn_to_page(pfn);
b023f468
WC
6932 /*
6933 * The HWPoisoned page may be not in buddy system, and
6934 * page_count() is not 0.
6935 */
6936 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6937 pfn++;
6938 SetPageReserved(page);
6939 continue;
6940 }
6941
0c0e6195
KH
6942 BUG_ON(page_count(page));
6943 BUG_ON(!PageBuddy(page));
6944 order = page_order(page);
6945#ifdef CONFIG_DEBUG_VM
6946 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6947 pfn, 1 << order, end_pfn);
6948#endif
6949 list_del(&page->lru);
6950 rmv_page_order(page);
6951 zone->free_area[order].nr_free--;
0c0e6195
KH
6952 for (i = 0; i < (1 << order); i++)
6953 SetPageReserved((page+i));
6954 pfn += (1 << order);
6955 }
6956 spin_unlock_irqrestore(&zone->lock, flags);
6957}
6958#endif
8d22ba1b
WF
6959
6960#ifdef CONFIG_MEMORY_FAILURE
6961bool is_free_buddy_page(struct page *page)
6962{
6963 struct zone *zone = page_zone(page);
6964 unsigned long pfn = page_to_pfn(page);
6965 unsigned long flags;
7aeb09f9 6966 unsigned int order;
8d22ba1b
WF
6967
6968 spin_lock_irqsave(&zone->lock, flags);
6969 for (order = 0; order < MAX_ORDER; order++) {
6970 struct page *page_head = page - (pfn & ((1 << order) - 1));
6971
6972 if (PageBuddy(page_head) && page_order(page_head) >= order)
6973 break;
6974 }
6975 spin_unlock_irqrestore(&zone->lock, flags);
6976
6977 return order < MAX_ORDER;
6978}
6979#endif