[PATCH] drop-pagecache
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4
LT
55long nr_swap_pages;
56
a226f6c8
DH
57static void fastcall free_hot_cold_page(struct page *page, int cold);
58
1da177e4
LT
59/*
60 * results with 256, 32 in the lowmem_reserve sysctl:
61 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62 * 1G machine -> (16M dma, 784M normal, 224M high)
63 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
66 *
67 * TBD: should special case ZONE_DMA32 machines here - in those we normally
68 * don't need any ZONE_NORMAL reservation
1da177e4 69 */
a2f1b424 70int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
71
72EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
73
74/*
75 * Used by page_zone() to look up the address of the struct zone whose
76 * id is encoded in the upper bits of page->flags
77 */
c3d8c141 78struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
79EXPORT_SYMBOL(zone_table);
80
a2f1b424 81static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
82int min_free_kbytes = 1024;
83
84unsigned long __initdata nr_kernel_pages;
85unsigned long __initdata nr_all_pages;
86
13e7444b 87#ifdef CONFIG_DEBUG_VM
c6a57e19 88static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 89{
bdc8cb98
DH
90 int ret = 0;
91 unsigned seq;
92 unsigned long pfn = page_to_pfn(page);
c6a57e19 93
bdc8cb98
DH
94 do {
95 seq = zone_span_seqbegin(zone);
96 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97 ret = 1;
98 else if (pfn < zone->zone_start_pfn)
99 ret = 1;
100 } while (zone_span_seqretry(zone, seq));
101
102 return ret;
c6a57e19
DH
103}
104
105static int page_is_consistent(struct zone *zone, struct page *page)
106{
1da177e4
LT
107#ifdef CONFIG_HOLES_IN_ZONE
108 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 109 return 0;
1da177e4
LT
110#endif
111 if (zone != page_zone(page))
c6a57e19
DH
112 return 0;
113
114 return 1;
115}
116/*
117 * Temporary debugging check for pages not lying within a given zone.
118 */
119static int bad_range(struct zone *zone, struct page *page)
120{
121 if (page_outside_zone_boundaries(zone, page))
1da177e4 122 return 1;
c6a57e19
DH
123 if (!page_is_consistent(zone, page))
124 return 1;
125
1da177e4
LT
126 return 0;
127}
128
13e7444b
NP
129#else
130static inline int bad_range(struct zone *zone, struct page *page)
131{
132 return 0;
133}
134#endif
135
224abf92 136static void bad_page(struct page *page)
1da177e4 137{
224abf92
NP
138 printk(KERN_EMERG "Bad page state in process '%s'\n"
139 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 "Trying to fix it up, but a reboot is needed\n"
141 "Backtrace:\n",
142 current->comm, page, (int)(2*sizeof(unsigned long)),
143 (unsigned long)page->flags, page->mapping,
144 page_mapcount(page), page_count(page));
1da177e4 145 dump_stack();
334795ec
HD
146 page->flags &= ~(1 << PG_lru |
147 1 << PG_private |
1da177e4 148 1 << PG_locked |
1da177e4
LT
149 1 << PG_active |
150 1 << PG_dirty |
334795ec
HD
151 1 << PG_reclaim |
152 1 << PG_slab |
1da177e4 153 1 << PG_swapcache |
689bcebf 154 1 << PG_writeback );
1da177e4
LT
155 set_page_count(page, 0);
156 reset_page_mapcount(page);
157 page->mapping = NULL;
9f158333 158 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
159}
160
1da177e4
LT
161/*
162 * Higher-order pages are called "compound pages". They are structured thusly:
163 *
164 * The first PAGE_SIZE page is called the "head page".
165 *
166 * The remaining PAGE_SIZE pages are called "tail pages".
167 *
168 * All pages have PG_compound set. All pages have their ->private pointing at
169 * the head page (even the head page has this).
170 *
171 * The first tail page's ->mapping, if non-zero, holds the address of the
172 * compound page's put_page() function.
173 *
174 * The order of the allocation is stored in the first tail page's ->index
175 * This is only for debug at present. This usage means that zero-order pages
176 * may not be compound.
177 */
178static void prep_compound_page(struct page *page, unsigned long order)
179{
180 int i;
181 int nr_pages = 1 << order;
182
183 page[1].mapping = NULL;
184 page[1].index = order;
185 for (i = 0; i < nr_pages; i++) {
186 struct page *p = page + i;
187
188 SetPageCompound(p);
4c21e2f2 189 set_page_private(p, (unsigned long)page);
1da177e4
LT
190 }
191}
192
193static void destroy_compound_page(struct page *page, unsigned long order)
194{
195 int i;
196 int nr_pages = 1 << order;
197
224abf92
NP
198 if (unlikely(page[1].index != order))
199 bad_page(page);
1da177e4
LT
200
201 for (i = 0; i < nr_pages; i++) {
202 struct page *p = page + i;
203
224abf92
NP
204 if (unlikely(!PageCompound(p) |
205 (page_private(p) != (unsigned long)page)))
206 bad_page(page);
1da177e4
LT
207 ClearPageCompound(p);
208 }
209}
1da177e4
LT
210
211/*
212 * function for dealing with page's order in buddy system.
213 * zone->lock is already acquired when we use these.
214 * So, we don't need atomic page->flags operations here.
215 */
216static inline unsigned long page_order(struct page *page) {
4c21e2f2 217 return page_private(page);
1da177e4
LT
218}
219
220static inline void set_page_order(struct page *page, int order) {
4c21e2f2 221 set_page_private(page, order);
1da177e4
LT
222 __SetPagePrivate(page);
223}
224
225static inline void rmv_page_order(struct page *page)
226{
227 __ClearPagePrivate(page);
4c21e2f2 228 set_page_private(page, 0);
1da177e4
LT
229}
230
231/*
232 * Locate the struct page for both the matching buddy in our
233 * pair (buddy1) and the combined O(n+1) page they form (page).
234 *
235 * 1) Any buddy B1 will have an order O twin B2 which satisfies
236 * the following equation:
237 * B2 = B1 ^ (1 << O)
238 * For example, if the starting buddy (buddy2) is #8 its order
239 * 1 buddy is #10:
240 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
241 *
242 * 2) Any buddy B will have an order O+1 parent P which
243 * satisfies the following equation:
244 * P = B & ~(1 << O)
245 *
246 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
247 */
248static inline struct page *
249__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
250{
251 unsigned long buddy_idx = page_idx ^ (1 << order);
252
253 return page + (buddy_idx - page_idx);
254}
255
256static inline unsigned long
257__find_combined_index(unsigned long page_idx, unsigned int order)
258{
259 return (page_idx & ~(1 << order));
260}
261
262/*
263 * This function checks whether a page is free && is the buddy
264 * we can do coalesce a page and its buddy if
13e7444b
NP
265 * (a) the buddy is not in a hole &&
266 * (b) the buddy is free &&
267 * (c) the buddy is on the buddy system &&
268 * (d) a page and its buddy have the same order.
4c21e2f2 269 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
270 *
271 */
272static inline int page_is_buddy(struct page *page, int order)
273{
13e7444b
NP
274#ifdef CONFIG_HOLES_IN_ZONE
275 if (!pfn_valid(page_to_pfn(page)))
276 return 0;
277#endif
278
1da177e4
LT
279 if (PagePrivate(page) &&
280 (page_order(page) == order) &&
1da177e4
LT
281 page_count(page) == 0)
282 return 1;
283 return 0;
284}
285
286/*
287 * Freeing function for a buddy system allocator.
288 *
289 * The concept of a buddy system is to maintain direct-mapped table
290 * (containing bit values) for memory blocks of various "orders".
291 * The bottom level table contains the map for the smallest allocatable
292 * units of memory (here, pages), and each level above it describes
293 * pairs of units from the levels below, hence, "buddies".
294 * At a high level, all that happens here is marking the table entry
295 * at the bottom level available, and propagating the changes upward
296 * as necessary, plus some accounting needed to play nicely with other
297 * parts of the VM system.
298 * At each level, we keep a list of pages, which are heads of continuous
299 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 300 * order is recorded in page_private(page) field.
1da177e4
LT
301 * So when we are allocating or freeing one, we can derive the state of the
302 * other. That is, if we allocate a small block, and both were
303 * free, the remainder of the region must be split into blocks.
304 * If a block is freed, and its buddy is also free, then this
305 * triggers coalescing into a block of larger size.
306 *
307 * -- wli
308 */
309
310static inline void __free_pages_bulk (struct page *page,
311 struct zone *zone, unsigned int order)
312{
313 unsigned long page_idx;
314 int order_size = 1 << order;
315
224abf92 316 if (unlikely(PageCompound(page)))
1da177e4
LT
317 destroy_compound_page(page, order);
318
319 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
320
321 BUG_ON(page_idx & (order_size - 1));
322 BUG_ON(bad_range(zone, page));
323
324 zone->free_pages += order_size;
325 while (order < MAX_ORDER-1) {
326 unsigned long combined_idx;
327 struct free_area *area;
328 struct page *buddy;
329
1da177e4 330 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
331 if (!page_is_buddy(buddy, order))
332 break; /* Move the buddy up one level. */
13e7444b 333
1da177e4
LT
334 list_del(&buddy->lru);
335 area = zone->free_area + order;
336 area->nr_free--;
337 rmv_page_order(buddy);
13e7444b 338 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
339 page = page + (combined_idx - page_idx);
340 page_idx = combined_idx;
341 order++;
342 }
343 set_page_order(page, order);
344 list_add(&page->lru, &zone->free_area[order].free_list);
345 zone->free_area[order].nr_free++;
346}
347
224abf92 348static inline int free_pages_check(struct page *page)
1da177e4 349{
92be2e33
NP
350 if (unlikely(page_mapcount(page) |
351 (page->mapping != NULL) |
352 (page_count(page) != 0) |
1da177e4
LT
353 (page->flags & (
354 1 << PG_lru |
355 1 << PG_private |
356 1 << PG_locked |
357 1 << PG_active |
358 1 << PG_reclaim |
359 1 << PG_slab |
360 1 << PG_swapcache |
b5810039 361 1 << PG_writeback |
92be2e33 362 1 << PG_reserved ))))
224abf92 363 bad_page(page);
1da177e4 364 if (PageDirty(page))
242e5468 365 __ClearPageDirty(page);
689bcebf
HD
366 /*
367 * For now, we report if PG_reserved was found set, but do not
368 * clear it, and do not free the page. But we shall soon need
369 * to do more, for when the ZERO_PAGE count wraps negative.
370 */
371 return PageReserved(page);
1da177e4
LT
372}
373
374/*
375 * Frees a list of pages.
376 * Assumes all pages on list are in same zone, and of same order.
207f36ee 377 * count is the number of pages to free.
1da177e4
LT
378 *
379 * If the zone was previously in an "all pages pinned" state then look to
380 * see if this freeing clears that state.
381 *
382 * And clear the zone's pages_scanned counter, to hold off the "all pages are
383 * pinned" detection logic.
384 */
385static int
386free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, unsigned int order)
388{
1da177e4
LT
389 struct page *page = NULL;
390 int ret = 0;
391
c54ad30c 392 spin_lock(&zone->lock);
1da177e4
LT
393 zone->all_unreclaimable = 0;
394 zone->pages_scanned = 0;
395 while (!list_empty(list) && count--) {
396 page = list_entry(list->prev, struct page, lru);
397 /* have to delete it as __free_pages_bulk list manipulates */
398 list_del(&page->lru);
399 __free_pages_bulk(page, zone, order);
400 ret++;
401 }
c54ad30c 402 spin_unlock(&zone->lock);
1da177e4
LT
403 return ret;
404}
405
406void __free_pages_ok(struct page *page, unsigned int order)
407{
c54ad30c 408 unsigned long flags;
1da177e4
LT
409 LIST_HEAD(list);
410 int i;
689bcebf 411 int reserved = 0;
1da177e4
LT
412
413 arch_free_page(page, order);
414
1da177e4
LT
415#ifndef CONFIG_MMU
416 if (order > 0)
417 for (i = 1 ; i < (1 << order) ; ++i)
418 __put_page(page + i);
419#endif
420
421 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 422 reserved += free_pages_check(page + i);
689bcebf
HD
423 if (reserved)
424 return;
425
1da177e4
LT
426 list_add(&page->lru, &list);
427 kernel_map_pages(page, 1<<order, 0);
c54ad30c 428 local_irq_save(flags);
a74609fa 429 __mod_page_state(pgfree, 1 << order);
1da177e4 430 free_pages_bulk(page_zone(page), 1, &list, order);
c54ad30c 431 local_irq_restore(flags);
1da177e4
LT
432}
433
a226f6c8
DH
434/*
435 * permit the bootmem allocator to evade page validation on high-order frees
436 */
437void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
438{
439 if (order == 0) {
440 __ClearPageReserved(page);
441 set_page_count(page, 0);
442
443 free_hot_cold_page(page, 0);
444 } else {
445 LIST_HEAD(list);
446 int loop;
447
448 for (loop = 0; loop < BITS_PER_LONG; loop++) {
449 struct page *p = &page[loop];
450
451 if (loop + 16 < BITS_PER_LONG)
452 prefetchw(p + 16);
453 __ClearPageReserved(p);
454 set_page_count(p, 0);
455 }
456
457 arch_free_page(page, order);
458
459 mod_page_state(pgfree, 1 << order);
460
461 list_add(&page->lru, &list);
462 kernel_map_pages(page, 1 << order, 0);
463 free_pages_bulk(page_zone(page), 1, &list, order);
464 }
465}
466
1da177e4
LT
467
468/*
469 * The order of subdivision here is critical for the IO subsystem.
470 * Please do not alter this order without good reasons and regression
471 * testing. Specifically, as large blocks of memory are subdivided,
472 * the order in which smaller blocks are delivered depends on the order
473 * they're subdivided in this function. This is the primary factor
474 * influencing the order in which pages are delivered to the IO
475 * subsystem according to empirical testing, and this is also justified
476 * by considering the behavior of a buddy system containing a single
477 * large block of memory acted on by a series of small allocations.
478 * This behavior is a critical factor in sglist merging's success.
479 *
480 * -- wli
481 */
085cc7d5 482static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
483 int low, int high, struct free_area *area)
484{
485 unsigned long size = 1 << high;
486
487 while (high > low) {
488 area--;
489 high--;
490 size >>= 1;
491 BUG_ON(bad_range(zone, &page[size]));
492 list_add(&page[size].lru, &area->free_list);
493 area->nr_free++;
494 set_page_order(&page[size], high);
495 }
1da177e4
LT
496}
497
1da177e4
LT
498/*
499 * This page is about to be returned from the page allocator
500 */
689bcebf 501static int prep_new_page(struct page *page, int order)
1da177e4 502{
92be2e33
NP
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
505 (page_count(page) != 0) |
334795ec
HD
506 (page->flags & (
507 1 << PG_lru |
1da177e4
LT
508 1 << PG_private |
509 1 << PG_locked |
1da177e4
LT
510 1 << PG_active |
511 1 << PG_dirty |
512 1 << PG_reclaim |
334795ec 513 1 << PG_slab |
1da177e4 514 1 << PG_swapcache |
b5810039 515 1 << PG_writeback |
92be2e33 516 1 << PG_reserved ))))
224abf92 517 bad_page(page);
1da177e4 518
689bcebf
HD
519 /*
520 * For now, we report if PG_reserved was found set, but do not
521 * clear it, and do not allocate the page: as a safety net.
522 */
523 if (PageReserved(page))
524 return 1;
525
1da177e4
LT
526 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
527 1 << PG_referenced | 1 << PG_arch_1 |
528 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 529 set_page_private(page, 0);
1da177e4
LT
530 set_page_refs(page, order);
531 kernel_map_pages(page, 1 << order, 1);
689bcebf 532 return 0;
1da177e4
LT
533}
534
535/*
536 * Do the hard work of removing an element from the buddy allocator.
537 * Call me with the zone->lock already held.
538 */
539static struct page *__rmqueue(struct zone *zone, unsigned int order)
540{
541 struct free_area * area;
542 unsigned int current_order;
543 struct page *page;
544
545 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
546 area = zone->free_area + current_order;
547 if (list_empty(&area->free_list))
548 continue;
549
550 page = list_entry(area->free_list.next, struct page, lru);
551 list_del(&page->lru);
552 rmv_page_order(page);
553 area->nr_free--;
554 zone->free_pages -= 1UL << order;
085cc7d5
NP
555 expand(zone, page, order, current_order, area);
556 return page;
1da177e4
LT
557 }
558
559 return NULL;
560}
561
562/*
563 * Obtain a specified number of elements from the buddy allocator, all under
564 * a single hold of the lock, for efficiency. Add them to the supplied list.
565 * Returns the number of new pages which were placed at *list.
566 */
567static int rmqueue_bulk(struct zone *zone, unsigned int order,
568 unsigned long count, struct list_head *list)
569{
1da177e4 570 int i;
1da177e4 571
c54ad30c 572 spin_lock(&zone->lock);
1da177e4 573 for (i = 0; i < count; ++i) {
085cc7d5
NP
574 struct page *page = __rmqueue(zone, order);
575 if (unlikely(page == NULL))
1da177e4 576 break;
1da177e4
LT
577 list_add_tail(&page->lru, list);
578 }
c54ad30c 579 spin_unlock(&zone->lock);
085cc7d5 580 return i;
1da177e4
LT
581}
582
4ae7c039
CL
583#ifdef CONFIG_NUMA
584/* Called from the slab reaper to drain remote pagesets */
585void drain_remote_pages(void)
586{
587 struct zone *zone;
588 int i;
589 unsigned long flags;
590
591 local_irq_save(flags);
592 for_each_zone(zone) {
593 struct per_cpu_pageset *pset;
594
595 /* Do not drain local pagesets */
596 if (zone->zone_pgdat->node_id == numa_node_id())
597 continue;
598
599 pset = zone->pageset[smp_processor_id()];
600 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
601 struct per_cpu_pages *pcp;
602
603 pcp = &pset->pcp[i];
604 if (pcp->count)
605 pcp->count -= free_pages_bulk(zone, pcp->count,
606 &pcp->list, 0);
607 }
608 }
609 local_irq_restore(flags);
610}
611#endif
612
1da177e4
LT
613#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
614static void __drain_pages(unsigned int cpu)
615{
c54ad30c 616 unsigned long flags;
1da177e4
LT
617 struct zone *zone;
618 int i;
619
620 for_each_zone(zone) {
621 struct per_cpu_pageset *pset;
622
e7c8d5c9 623 pset = zone_pcp(zone, cpu);
1da177e4
LT
624 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
625 struct per_cpu_pages *pcp;
626
627 pcp = &pset->pcp[i];
c54ad30c 628 local_irq_save(flags);
1da177e4
LT
629 pcp->count -= free_pages_bulk(zone, pcp->count,
630 &pcp->list, 0);
c54ad30c 631 local_irq_restore(flags);
1da177e4
LT
632 }
633 }
634}
635#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
636
637#ifdef CONFIG_PM
638
639void mark_free_pages(struct zone *zone)
640{
641 unsigned long zone_pfn, flags;
642 int order;
643 struct list_head *curr;
644
645 if (!zone->spanned_pages)
646 return;
647
648 spin_lock_irqsave(&zone->lock, flags);
649 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
650 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
651
652 for (order = MAX_ORDER - 1; order >= 0; --order)
653 list_for_each(curr, &zone->free_area[order].free_list) {
654 unsigned long start_pfn, i;
655
656 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
657
658 for (i=0; i < (1<<order); i++)
659 SetPageNosaveFree(pfn_to_page(start_pfn+i));
660 }
661 spin_unlock_irqrestore(&zone->lock, flags);
662}
663
664/*
665 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
666 */
667void drain_local_pages(void)
668{
669 unsigned long flags;
670
671 local_irq_save(flags);
672 __drain_pages(smp_processor_id());
673 local_irq_restore(flags);
674}
675#endif /* CONFIG_PM */
676
a74609fa 677static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
678{
679#ifdef CONFIG_NUMA
1da177e4
LT
680 pg_data_t *pg = z->zone_pgdat;
681 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
682 struct per_cpu_pageset *p;
683
a74609fa 684 p = zone_pcp(z, cpu);
1da177e4 685 if (pg == orig) {
e7c8d5c9 686 p->numa_hit++;
1da177e4
LT
687 } else {
688 p->numa_miss++;
e7c8d5c9 689 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
690 }
691 if (pg == NODE_DATA(numa_node_id()))
692 p->local_node++;
693 else
694 p->other_node++;
1da177e4
LT
695#endif
696}
697
698/*
699 * Free a 0-order page
700 */
1da177e4
LT
701static void fastcall free_hot_cold_page(struct page *page, int cold)
702{
703 struct zone *zone = page_zone(page);
704 struct per_cpu_pages *pcp;
705 unsigned long flags;
706
707 arch_free_page(page, 0);
708
1da177e4
LT
709 if (PageAnon(page))
710 page->mapping = NULL;
224abf92 711 if (free_pages_check(page))
689bcebf
HD
712 return;
713
689bcebf
HD
714 kernel_map_pages(page, 1, 0);
715
e7c8d5c9 716 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 717 local_irq_save(flags);
a74609fa 718 __inc_page_state(pgfree);
1da177e4
LT
719 list_add(&page->lru, &pcp->list);
720 pcp->count++;
2caaad41
CL
721 if (pcp->count >= pcp->high)
722 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1da177e4
LT
723 local_irq_restore(flags);
724 put_cpu();
725}
726
727void fastcall free_hot_page(struct page *page)
728{
729 free_hot_cold_page(page, 0);
730}
731
732void fastcall free_cold_page(struct page *page)
733{
734 free_hot_cold_page(page, 1);
735}
736
dd0fc66f 737static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
738{
739 int i;
740
741 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
742 for(i = 0; i < (1 << order); i++)
743 clear_highpage(page + i);
744}
745
746/*
747 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
748 * we cheat by calling it from here, in the order > 0 path. Saves a branch
749 * or two.
750 */
a74609fa
NP
751static struct page *buffered_rmqueue(struct zonelist *zonelist,
752 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
753{
754 unsigned long flags;
689bcebf 755 struct page *page;
1da177e4 756 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 757 int cpu;
1da177e4 758
689bcebf 759again:
a74609fa 760 cpu = get_cpu();
1da177e4
LT
761 if (order == 0) {
762 struct per_cpu_pages *pcp;
763
a74609fa 764 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 765 local_irq_save(flags);
a74609fa 766 if (!pcp->count) {
1da177e4
LT
767 pcp->count += rmqueue_bulk(zone, 0,
768 pcp->batch, &pcp->list);
a74609fa
NP
769 if (unlikely(!pcp->count))
770 goto failed;
1da177e4 771 }
a74609fa
NP
772 page = list_entry(pcp->list.next, struct page, lru);
773 list_del(&page->lru);
774 pcp->count--;
7fb1d9fc 775 } else {
1da177e4
LT
776 spin_lock_irqsave(&zone->lock, flags);
777 page = __rmqueue(zone, order);
a74609fa
NP
778 spin_unlock(&zone->lock);
779 if (!page)
780 goto failed;
1da177e4
LT
781 }
782
a74609fa
NP
783 __mod_page_state_zone(zone, pgalloc, 1 << order);
784 zone_statistics(zonelist, zone, cpu);
785 local_irq_restore(flags);
786 put_cpu();
1da177e4 787
a74609fa
NP
788 BUG_ON(bad_range(zone, page));
789 if (prep_new_page(page, order))
790 goto again;
1da177e4 791
a74609fa
NP
792 if (gfp_flags & __GFP_ZERO)
793 prep_zero_page(page, order, gfp_flags);
794
795 if (order && (gfp_flags & __GFP_COMP))
796 prep_compound_page(page, order);
1da177e4 797 return page;
a74609fa
NP
798
799failed:
800 local_irq_restore(flags);
801 put_cpu();
802 return NULL;
1da177e4
LT
803}
804
7fb1d9fc 805#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
806#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
807#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
808#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
809#define ALLOC_HARDER 0x10 /* try to alloc harder */
810#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
811#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 812
1da177e4
LT
813/*
814 * Return 1 if free pages are above 'mark'. This takes into account the order
815 * of the allocation.
816 */
817int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 818 int classzone_idx, int alloc_flags)
1da177e4
LT
819{
820 /* free_pages my go negative - that's OK */
821 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
822 int o;
823
7fb1d9fc 824 if (alloc_flags & ALLOC_HIGH)
1da177e4 825 min -= min / 2;
7fb1d9fc 826 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
827 min -= min / 4;
828
829 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
830 return 0;
831 for (o = 0; o < order; o++) {
832 /* At the next order, this order's pages become unavailable */
833 free_pages -= z->free_area[o].nr_free << o;
834
835 /* Require fewer higher order pages to be free */
836 min >>= 1;
837
838 if (free_pages <= min)
839 return 0;
840 }
841 return 1;
842}
843
7fb1d9fc
RS
844/*
845 * get_page_from_freeliest goes through the zonelist trying to allocate
846 * a page.
847 */
848static struct page *
849get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
850 struct zonelist *zonelist, int alloc_flags)
753ee728 851{
7fb1d9fc
RS
852 struct zone **z = zonelist->zones;
853 struct page *page = NULL;
854 int classzone_idx = zone_idx(*z);
855
856 /*
857 * Go through the zonelist once, looking for a zone with enough free.
858 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
859 */
860 do {
861 if ((alloc_flags & ALLOC_CPUSET) &&
862 !cpuset_zone_allowed(*z, gfp_mask))
863 continue;
864
865 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
866 unsigned long mark;
867 if (alloc_flags & ALLOC_WMARK_MIN)
868 mark = (*z)->pages_min;
869 else if (alloc_flags & ALLOC_WMARK_LOW)
870 mark = (*z)->pages_low;
871 else
872 mark = (*z)->pages_high;
873 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc
RS
874 classzone_idx, alloc_flags))
875 continue;
876 }
877
a74609fa 878 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 879 if (page) {
7fb1d9fc
RS
880 break;
881 }
882 } while (*(++z) != NULL);
883 return page;
753ee728
MH
884}
885
1da177e4
LT
886/*
887 * This is the 'heart' of the zoned buddy allocator.
888 */
889struct page * fastcall
dd0fc66f 890__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
891 struct zonelist *zonelist)
892{
260b2367 893 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 894 struct zone **z;
1da177e4
LT
895 struct page *page;
896 struct reclaim_state reclaim_state;
897 struct task_struct *p = current;
1da177e4 898 int do_retry;
7fb1d9fc 899 int alloc_flags;
1da177e4
LT
900 int did_some_progress;
901
902 might_sleep_if(wait);
903
6b1de916 904restart:
7fb1d9fc 905 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 906
7fb1d9fc 907 if (unlikely(*z == NULL)) {
1da177e4
LT
908 /* Should this ever happen?? */
909 return NULL;
910 }
6b1de916 911
7fb1d9fc 912 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 913 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
914 if (page)
915 goto got_pg;
1da177e4 916
6b1de916 917 do {
7fb1d9fc 918 wakeup_kswapd(*z, order);
6b1de916 919 } while (*(++z));
1da177e4 920
9bf2229f 921 /*
7fb1d9fc
RS
922 * OK, we're below the kswapd watermark and have kicked background
923 * reclaim. Now things get more complex, so set up alloc_flags according
924 * to how we want to proceed.
925 *
926 * The caller may dip into page reserves a bit more if the caller
927 * cannot run direct reclaim, or if the caller has realtime scheduling
928 * policy.
9bf2229f 929 */
3148890b 930 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
931 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
932 alloc_flags |= ALLOC_HARDER;
933 if (gfp_mask & __GFP_HIGH)
934 alloc_flags |= ALLOC_HIGH;
47f3a867 935 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
936
937 /*
938 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 939 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
940 *
941 * This is the last chance, in general, before the goto nopage.
942 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 943 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 944 */
7fb1d9fc
RS
945 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
946 if (page)
947 goto got_pg;
1da177e4
LT
948
949 /* This allocation should allow future memory freeing. */
b84a35be
NP
950
951 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
952 && !in_interrupt()) {
953 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 954nofail_alloc:
b84a35be 955 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 956 page = get_page_from_freelist(gfp_mask, order,
47f3a867 957 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
958 if (page)
959 goto got_pg;
885036d3
KK
960 if (gfp_mask & __GFP_NOFAIL) {
961 blk_congestion_wait(WRITE, HZ/50);
962 goto nofail_alloc;
963 }
1da177e4
LT
964 }
965 goto nopage;
966 }
967
968 /* Atomic allocations - we can't balance anything */
969 if (!wait)
970 goto nopage;
971
972rebalance:
973 cond_resched();
974
975 /* We now go into synchronous reclaim */
976 p->flags |= PF_MEMALLOC;
977 reclaim_state.reclaimed_slab = 0;
978 p->reclaim_state = &reclaim_state;
979
7fb1d9fc 980 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
981
982 p->reclaim_state = NULL;
983 p->flags &= ~PF_MEMALLOC;
984
985 cond_resched();
986
987 if (likely(did_some_progress)) {
7fb1d9fc
RS
988 page = get_page_from_freelist(gfp_mask, order,
989 zonelist, alloc_flags);
990 if (page)
991 goto got_pg;
1da177e4
LT
992 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
993 /*
994 * Go through the zonelist yet one more time, keep
995 * very high watermark here, this is only to catch
996 * a parallel oom killing, we must fail if we're still
997 * under heavy pressure.
998 */
7fb1d9fc 999 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1000 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1001 if (page)
1002 goto got_pg;
1da177e4 1003
79b9ce31 1004 out_of_memory(gfp_mask, order);
1da177e4
LT
1005 goto restart;
1006 }
1007
1008 /*
1009 * Don't let big-order allocations loop unless the caller explicitly
1010 * requests that. Wait for some write requests to complete then retry.
1011 *
1012 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1013 * <= 3, but that may not be true in other implementations.
1014 */
1015 do_retry = 0;
1016 if (!(gfp_mask & __GFP_NORETRY)) {
1017 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1018 do_retry = 1;
1019 if (gfp_mask & __GFP_NOFAIL)
1020 do_retry = 1;
1021 }
1022 if (do_retry) {
1023 blk_congestion_wait(WRITE, HZ/50);
1024 goto rebalance;
1025 }
1026
1027nopage:
1028 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1029 printk(KERN_WARNING "%s: page allocation failure."
1030 " order:%d, mode:0x%x\n",
1031 p->comm, order, gfp_mask);
1032 dump_stack();
578c2fd6 1033 show_mem();
1da177e4 1034 }
1da177e4 1035got_pg:
1da177e4
LT
1036 return page;
1037}
1038
1039EXPORT_SYMBOL(__alloc_pages);
1040
1041/*
1042 * Common helper functions.
1043 */
dd0fc66f 1044fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1045{
1046 struct page * page;
1047 page = alloc_pages(gfp_mask, order);
1048 if (!page)
1049 return 0;
1050 return (unsigned long) page_address(page);
1051}
1052
1053EXPORT_SYMBOL(__get_free_pages);
1054
dd0fc66f 1055fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1056{
1057 struct page * page;
1058
1059 /*
1060 * get_zeroed_page() returns a 32-bit address, which cannot represent
1061 * a highmem page
1062 */
260b2367 1063 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1064
1065 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1066 if (page)
1067 return (unsigned long) page_address(page);
1068 return 0;
1069}
1070
1071EXPORT_SYMBOL(get_zeroed_page);
1072
1073void __pagevec_free(struct pagevec *pvec)
1074{
1075 int i = pagevec_count(pvec);
1076
1077 while (--i >= 0)
1078 free_hot_cold_page(pvec->pages[i], pvec->cold);
1079}
1080
1081fastcall void __free_pages(struct page *page, unsigned int order)
1082{
b5810039 1083 if (put_page_testzero(page)) {
1da177e4
LT
1084 if (order == 0)
1085 free_hot_page(page);
1086 else
1087 __free_pages_ok(page, order);
1088 }
1089}
1090
1091EXPORT_SYMBOL(__free_pages);
1092
1093fastcall void free_pages(unsigned long addr, unsigned int order)
1094{
1095 if (addr != 0) {
1096 BUG_ON(!virt_addr_valid((void *)addr));
1097 __free_pages(virt_to_page((void *)addr), order);
1098 }
1099}
1100
1101EXPORT_SYMBOL(free_pages);
1102
1103/*
1104 * Total amount of free (allocatable) RAM:
1105 */
1106unsigned int nr_free_pages(void)
1107{
1108 unsigned int sum = 0;
1109 struct zone *zone;
1110
1111 for_each_zone(zone)
1112 sum += zone->free_pages;
1113
1114 return sum;
1115}
1116
1117EXPORT_SYMBOL(nr_free_pages);
1118
1119#ifdef CONFIG_NUMA
1120unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1121{
1122 unsigned int i, sum = 0;
1123
1124 for (i = 0; i < MAX_NR_ZONES; i++)
1125 sum += pgdat->node_zones[i].free_pages;
1126
1127 return sum;
1128}
1129#endif
1130
1131static unsigned int nr_free_zone_pages(int offset)
1132{
e310fd43
MB
1133 /* Just pick one node, since fallback list is circular */
1134 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1135 unsigned int sum = 0;
1136
e310fd43
MB
1137 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1138 struct zone **zonep = zonelist->zones;
1139 struct zone *zone;
1da177e4 1140
e310fd43
MB
1141 for (zone = *zonep++; zone; zone = *zonep++) {
1142 unsigned long size = zone->present_pages;
1143 unsigned long high = zone->pages_high;
1144 if (size > high)
1145 sum += size - high;
1da177e4
LT
1146 }
1147
1148 return sum;
1149}
1150
1151/*
1152 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1153 */
1154unsigned int nr_free_buffer_pages(void)
1155{
af4ca457 1156 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1157}
1158
1159/*
1160 * Amount of free RAM allocatable within all zones
1161 */
1162unsigned int nr_free_pagecache_pages(void)
1163{
af4ca457 1164 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1165}
1166
1167#ifdef CONFIG_HIGHMEM
1168unsigned int nr_free_highpages (void)
1169{
1170 pg_data_t *pgdat;
1171 unsigned int pages = 0;
1172
1173 for_each_pgdat(pgdat)
1174 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1175
1176 return pages;
1177}
1178#endif
1179
1180#ifdef CONFIG_NUMA
1181static void show_node(struct zone *zone)
1182{
1183 printk("Node %d ", zone->zone_pgdat->node_id);
1184}
1185#else
1186#define show_node(zone) do { } while (0)
1187#endif
1188
1189/*
1190 * Accumulate the page_state information across all CPUs.
1191 * The result is unavoidably approximate - it can change
1192 * during and after execution of this function.
1193 */
1194static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1195
1196atomic_t nr_pagecache = ATOMIC_INIT(0);
1197EXPORT_SYMBOL(nr_pagecache);
1198#ifdef CONFIG_SMP
1199DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1200#endif
1201
a86b1f53 1202static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1203{
1204 int cpu = 0;
1205
1206 memset(ret, 0, sizeof(*ret));
84c2008a 1207 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1208
c07e02db 1209 cpu = first_cpu(*cpumask);
1da177e4
LT
1210 while (cpu < NR_CPUS) {
1211 unsigned long *in, *out, off;
1212
1213 in = (unsigned long *)&per_cpu(page_states, cpu);
1214
c07e02db 1215 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1216
1217 if (cpu < NR_CPUS)
1218 prefetch(&per_cpu(page_states, cpu));
1219
1220 out = (unsigned long *)ret;
1221 for (off = 0; off < nr; off++)
1222 *out++ += *in++;
1223 }
1224}
1225
c07e02db
MH
1226void get_page_state_node(struct page_state *ret, int node)
1227{
1228 int nr;
1229 cpumask_t mask = node_to_cpumask(node);
1230
1231 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1232 nr /= sizeof(unsigned long);
1233
1234 __get_page_state(ret, nr+1, &mask);
1235}
1236
1da177e4
LT
1237void get_page_state(struct page_state *ret)
1238{
1239 int nr;
c07e02db 1240 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1241
1242 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1243 nr /= sizeof(unsigned long);
1244
c07e02db 1245 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1246}
1247
1248void get_full_page_state(struct page_state *ret)
1249{
c07e02db
MH
1250 cpumask_t mask = CPU_MASK_ALL;
1251
1252 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1253}
1254
a74609fa 1255unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1256{
1257 unsigned long ret = 0;
1258 int cpu;
1259
84c2008a 1260 for_each_online_cpu(cpu) {
1da177e4
LT
1261 unsigned long in;
1262
1263 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1264 ret += *((unsigned long *)in);
1265 }
1266 return ret;
1267}
1268
a74609fa
NP
1269void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1270{
1271 void *ptr;
1272
1273 ptr = &__get_cpu_var(page_states);
1274 *(unsigned long *)(ptr + offset) += delta;
1275}
1276EXPORT_SYMBOL(__mod_page_state_offset);
1277
1278void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1279{
1280 unsigned long flags;
a74609fa 1281 void *ptr;
1da177e4
LT
1282
1283 local_irq_save(flags);
1284 ptr = &__get_cpu_var(page_states);
a74609fa 1285 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1286 local_irq_restore(flags);
1287}
a74609fa 1288EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1289
1290void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1291 unsigned long *free, struct pglist_data *pgdat)
1292{
1293 struct zone *zones = pgdat->node_zones;
1294 int i;
1295
1296 *active = 0;
1297 *inactive = 0;
1298 *free = 0;
1299 for (i = 0; i < MAX_NR_ZONES; i++) {
1300 *active += zones[i].nr_active;
1301 *inactive += zones[i].nr_inactive;
1302 *free += zones[i].free_pages;
1303 }
1304}
1305
1306void get_zone_counts(unsigned long *active,
1307 unsigned long *inactive, unsigned long *free)
1308{
1309 struct pglist_data *pgdat;
1310
1311 *active = 0;
1312 *inactive = 0;
1313 *free = 0;
1314 for_each_pgdat(pgdat) {
1315 unsigned long l, m, n;
1316 __get_zone_counts(&l, &m, &n, pgdat);
1317 *active += l;
1318 *inactive += m;
1319 *free += n;
1320 }
1321}
1322
1323void si_meminfo(struct sysinfo *val)
1324{
1325 val->totalram = totalram_pages;
1326 val->sharedram = 0;
1327 val->freeram = nr_free_pages();
1328 val->bufferram = nr_blockdev_pages();
1329#ifdef CONFIG_HIGHMEM
1330 val->totalhigh = totalhigh_pages;
1331 val->freehigh = nr_free_highpages();
1332#else
1333 val->totalhigh = 0;
1334 val->freehigh = 0;
1335#endif
1336 val->mem_unit = PAGE_SIZE;
1337}
1338
1339EXPORT_SYMBOL(si_meminfo);
1340
1341#ifdef CONFIG_NUMA
1342void si_meminfo_node(struct sysinfo *val, int nid)
1343{
1344 pg_data_t *pgdat = NODE_DATA(nid);
1345
1346 val->totalram = pgdat->node_present_pages;
1347 val->freeram = nr_free_pages_pgdat(pgdat);
1348 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1349 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1350 val->mem_unit = PAGE_SIZE;
1351}
1352#endif
1353
1354#define K(x) ((x) << (PAGE_SHIFT-10))
1355
1356/*
1357 * Show free area list (used inside shift_scroll-lock stuff)
1358 * We also calculate the percentage fragmentation. We do this by counting the
1359 * memory on each free list with the exception of the first item on the list.
1360 */
1361void show_free_areas(void)
1362{
1363 struct page_state ps;
1364 int cpu, temperature;
1365 unsigned long active;
1366 unsigned long inactive;
1367 unsigned long free;
1368 struct zone *zone;
1369
1370 for_each_zone(zone) {
1371 show_node(zone);
1372 printk("%s per-cpu:", zone->name);
1373
f3fe6512 1374 if (!populated_zone(zone)) {
1da177e4
LT
1375 printk(" empty\n");
1376 continue;
1377 } else
1378 printk("\n");
1379
6b482c67 1380 for_each_online_cpu(cpu) {
1da177e4
LT
1381 struct per_cpu_pageset *pageset;
1382
e7c8d5c9 1383 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1384
1385 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1386 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1387 cpu,
1388 temperature ? "cold" : "hot",
1da177e4 1389 pageset->pcp[temperature].high,
4ae7c039
CL
1390 pageset->pcp[temperature].batch,
1391 pageset->pcp[temperature].count);
1da177e4
LT
1392 }
1393 }
1394
1395 get_page_state(&ps);
1396 get_zone_counts(&active, &inactive, &free);
1397
c0d62219 1398 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1399 K(nr_free_pages()),
1400 K(nr_free_highpages()));
1401
1402 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1403 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1404 active,
1405 inactive,
1406 ps.nr_dirty,
1407 ps.nr_writeback,
1408 ps.nr_unstable,
1409 nr_free_pages(),
1410 ps.nr_slab,
1411 ps.nr_mapped,
1412 ps.nr_page_table_pages);
1413
1414 for_each_zone(zone) {
1415 int i;
1416
1417 show_node(zone);
1418 printk("%s"
1419 " free:%lukB"
1420 " min:%lukB"
1421 " low:%lukB"
1422 " high:%lukB"
1423 " active:%lukB"
1424 " inactive:%lukB"
1425 " present:%lukB"
1426 " pages_scanned:%lu"
1427 " all_unreclaimable? %s"
1428 "\n",
1429 zone->name,
1430 K(zone->free_pages),
1431 K(zone->pages_min),
1432 K(zone->pages_low),
1433 K(zone->pages_high),
1434 K(zone->nr_active),
1435 K(zone->nr_inactive),
1436 K(zone->present_pages),
1437 zone->pages_scanned,
1438 (zone->all_unreclaimable ? "yes" : "no")
1439 );
1440 printk("lowmem_reserve[]:");
1441 for (i = 0; i < MAX_NR_ZONES; i++)
1442 printk(" %lu", zone->lowmem_reserve[i]);
1443 printk("\n");
1444 }
1445
1446 for_each_zone(zone) {
1447 unsigned long nr, flags, order, total = 0;
1448
1449 show_node(zone);
1450 printk("%s: ", zone->name);
f3fe6512 1451 if (!populated_zone(zone)) {
1da177e4
LT
1452 printk("empty\n");
1453 continue;
1454 }
1455
1456 spin_lock_irqsave(&zone->lock, flags);
1457 for (order = 0; order < MAX_ORDER; order++) {
1458 nr = zone->free_area[order].nr_free;
1459 total += nr << order;
1460 printk("%lu*%lukB ", nr, K(1UL) << order);
1461 }
1462 spin_unlock_irqrestore(&zone->lock, flags);
1463 printk("= %lukB\n", K(total));
1464 }
1465
1466 show_swap_cache_info();
1467}
1468
1469/*
1470 * Builds allocation fallback zone lists.
1a93205b
CL
1471 *
1472 * Add all populated zones of a node to the zonelist.
1da177e4 1473 */
1a93205b 1474static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1475 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1476{
1a93205b
CL
1477 struct zone *zone;
1478
070f8032 1479 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1480
1481 do {
070f8032 1482 zone = pgdat->node_zones + zone_type;
1a93205b 1483 if (populated_zone(zone)) {
1da177e4 1484#ifndef CONFIG_HIGHMEM
070f8032 1485 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1486#endif
070f8032
CL
1487 zonelist->zones[nr_zones++] = zone;
1488 check_highest_zone(zone_type);
1da177e4 1489 }
070f8032 1490 zone_type--;
02a68a5e 1491
070f8032
CL
1492 } while (zone_type >= 0);
1493 return nr_zones;
1da177e4
LT
1494}
1495
260b2367
AV
1496static inline int highest_zone(int zone_bits)
1497{
1498 int res = ZONE_NORMAL;
1499 if (zone_bits & (__force int)__GFP_HIGHMEM)
1500 res = ZONE_HIGHMEM;
a2f1b424
AK
1501 if (zone_bits & (__force int)__GFP_DMA32)
1502 res = ZONE_DMA32;
260b2367
AV
1503 if (zone_bits & (__force int)__GFP_DMA)
1504 res = ZONE_DMA;
1505 return res;
1506}
1507
1da177e4
LT
1508#ifdef CONFIG_NUMA
1509#define MAX_NODE_LOAD (num_online_nodes())
1510static int __initdata node_load[MAX_NUMNODES];
1511/**
4dc3b16b 1512 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1513 * @node: node whose fallback list we're appending
1514 * @used_node_mask: nodemask_t of already used nodes
1515 *
1516 * We use a number of factors to determine which is the next node that should
1517 * appear on a given node's fallback list. The node should not have appeared
1518 * already in @node's fallback list, and it should be the next closest node
1519 * according to the distance array (which contains arbitrary distance values
1520 * from each node to each node in the system), and should also prefer nodes
1521 * with no CPUs, since presumably they'll have very little allocation pressure
1522 * on them otherwise.
1523 * It returns -1 if no node is found.
1524 */
1525static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1526{
1527 int i, n, val;
1528 int min_val = INT_MAX;
1529 int best_node = -1;
1530
1531 for_each_online_node(i) {
1532 cpumask_t tmp;
1533
1534 /* Start from local node */
1535 n = (node+i) % num_online_nodes();
1536
1537 /* Don't want a node to appear more than once */
1538 if (node_isset(n, *used_node_mask))
1539 continue;
1540
1541 /* Use the local node if we haven't already */
1542 if (!node_isset(node, *used_node_mask)) {
1543 best_node = node;
1544 break;
1545 }
1546
1547 /* Use the distance array to find the distance */
1548 val = node_distance(node, n);
1549
1550 /* Give preference to headless and unused nodes */
1551 tmp = node_to_cpumask(n);
1552 if (!cpus_empty(tmp))
1553 val += PENALTY_FOR_NODE_WITH_CPUS;
1554
1555 /* Slight preference for less loaded node */
1556 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1557 val += node_load[n];
1558
1559 if (val < min_val) {
1560 min_val = val;
1561 best_node = n;
1562 }
1563 }
1564
1565 if (best_node >= 0)
1566 node_set(best_node, *used_node_mask);
1567
1568 return best_node;
1569}
1570
1571static void __init build_zonelists(pg_data_t *pgdat)
1572{
1573 int i, j, k, node, local_node;
1574 int prev_node, load;
1575 struct zonelist *zonelist;
1576 nodemask_t used_mask;
1577
1578 /* initialize zonelists */
1579 for (i = 0; i < GFP_ZONETYPES; i++) {
1580 zonelist = pgdat->node_zonelists + i;
1581 zonelist->zones[0] = NULL;
1582 }
1583
1584 /* NUMA-aware ordering of nodes */
1585 local_node = pgdat->node_id;
1586 load = num_online_nodes();
1587 prev_node = local_node;
1588 nodes_clear(used_mask);
1589 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1590 /*
1591 * We don't want to pressure a particular node.
1592 * So adding penalty to the first node in same
1593 * distance group to make it round-robin.
1594 */
1595 if (node_distance(local_node, node) !=
1596 node_distance(local_node, prev_node))
1597 node_load[node] += load;
1598 prev_node = node;
1599 load--;
1600 for (i = 0; i < GFP_ZONETYPES; i++) {
1601 zonelist = pgdat->node_zonelists + i;
1602 for (j = 0; zonelist->zones[j] != NULL; j++);
1603
260b2367 1604 k = highest_zone(i);
1da177e4
LT
1605
1606 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1607 zonelist->zones[j] = NULL;
1608 }
1609 }
1610}
1611
1612#else /* CONFIG_NUMA */
1613
1614static void __init build_zonelists(pg_data_t *pgdat)
1615{
1616 int i, j, k, node, local_node;
1617
1618 local_node = pgdat->node_id;
1619 for (i = 0; i < GFP_ZONETYPES; i++) {
1620 struct zonelist *zonelist;
1621
1622 zonelist = pgdat->node_zonelists + i;
1623
1624 j = 0;
260b2367 1625 k = highest_zone(i);
1da177e4
LT
1626 j = build_zonelists_node(pgdat, zonelist, j, k);
1627 /*
1628 * Now we build the zonelist so that it contains the zones
1629 * of all the other nodes.
1630 * We don't want to pressure a particular node, so when
1631 * building the zones for node N, we make sure that the
1632 * zones coming right after the local ones are those from
1633 * node N+1 (modulo N)
1634 */
1635 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1636 if (!node_online(node))
1637 continue;
1638 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1639 }
1640 for (node = 0; node < local_node; node++) {
1641 if (!node_online(node))
1642 continue;
1643 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1644 }
1645
1646 zonelist->zones[j] = NULL;
1647 }
1648}
1649
1650#endif /* CONFIG_NUMA */
1651
1652void __init build_all_zonelists(void)
1653{
1654 int i;
1655
1656 for_each_online_node(i)
1657 build_zonelists(NODE_DATA(i));
1658 printk("Built %i zonelists\n", num_online_nodes());
1659 cpuset_init_current_mems_allowed();
1660}
1661
1662/*
1663 * Helper functions to size the waitqueue hash table.
1664 * Essentially these want to choose hash table sizes sufficiently
1665 * large so that collisions trying to wait on pages are rare.
1666 * But in fact, the number of active page waitqueues on typical
1667 * systems is ridiculously low, less than 200. So this is even
1668 * conservative, even though it seems large.
1669 *
1670 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1671 * waitqueues, i.e. the size of the waitq table given the number of pages.
1672 */
1673#define PAGES_PER_WAITQUEUE 256
1674
1675static inline unsigned long wait_table_size(unsigned long pages)
1676{
1677 unsigned long size = 1;
1678
1679 pages /= PAGES_PER_WAITQUEUE;
1680
1681 while (size < pages)
1682 size <<= 1;
1683
1684 /*
1685 * Once we have dozens or even hundreds of threads sleeping
1686 * on IO we've got bigger problems than wait queue collision.
1687 * Limit the size of the wait table to a reasonable size.
1688 */
1689 size = min(size, 4096UL);
1690
1691 return max(size, 4UL);
1692}
1693
1694/*
1695 * This is an integer logarithm so that shifts can be used later
1696 * to extract the more random high bits from the multiplicative
1697 * hash function before the remainder is taken.
1698 */
1699static inline unsigned long wait_table_bits(unsigned long size)
1700{
1701 return ffz(~size);
1702}
1703
1704#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1705
1706static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1707 unsigned long *zones_size, unsigned long *zholes_size)
1708{
1709 unsigned long realtotalpages, totalpages = 0;
1710 int i;
1711
1712 for (i = 0; i < MAX_NR_ZONES; i++)
1713 totalpages += zones_size[i];
1714 pgdat->node_spanned_pages = totalpages;
1715
1716 realtotalpages = totalpages;
1717 if (zholes_size)
1718 for (i = 0; i < MAX_NR_ZONES; i++)
1719 realtotalpages -= zholes_size[i];
1720 pgdat->node_present_pages = realtotalpages;
1721 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1722}
1723
1724
1725/*
1726 * Initially all pages are reserved - free ones are freed
1727 * up by free_all_bootmem() once the early boot process is
1728 * done. Non-atomic initialization, single-pass.
1729 */
3947be19 1730void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1731 unsigned long start_pfn)
1732{
1da177e4 1733 struct page *page;
29751f69
AW
1734 unsigned long end_pfn = start_pfn + size;
1735 unsigned long pfn;
1da177e4 1736
d41dee36
AW
1737 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1738 if (!early_pfn_valid(pfn))
1739 continue;
1740 page = pfn_to_page(pfn);
1741 set_page_links(page, zone, nid, pfn);
b5810039 1742 set_page_count(page, 1);
1da177e4
LT
1743 reset_page_mapcount(page);
1744 SetPageReserved(page);
1745 INIT_LIST_HEAD(&page->lru);
1746#ifdef WANT_PAGE_VIRTUAL
1747 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1748 if (!is_highmem_idx(zone))
3212c6be 1749 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1750#endif
1da177e4
LT
1751 }
1752}
1753
1754void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1755 unsigned long size)
1756{
1757 int order;
1758 for (order = 0; order < MAX_ORDER ; order++) {
1759 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1760 zone->free_area[order].nr_free = 0;
1761 }
1762}
1763
d41dee36
AW
1764#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1765void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1766 unsigned long size)
1767{
1768 unsigned long snum = pfn_to_section_nr(pfn);
1769 unsigned long end = pfn_to_section_nr(pfn + size);
1770
1771 if (FLAGS_HAS_NODE)
1772 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1773 else
1774 for (; snum <= end; snum++)
1775 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1776}
1777
1da177e4
LT
1778#ifndef __HAVE_ARCH_MEMMAP_INIT
1779#define memmap_init(size, nid, zone, start_pfn) \
1780 memmap_init_zone((size), (nid), (zone), (start_pfn))
1781#endif
1782
e7c8d5c9
CL
1783static int __devinit zone_batchsize(struct zone *zone)
1784{
1785 int batch;
1786
1787 /*
1788 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1789 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1790 *
1791 * OK, so we don't know how big the cache is. So guess.
1792 */
1793 batch = zone->present_pages / 1024;
ba56e91c
SR
1794 if (batch * PAGE_SIZE > 512 * 1024)
1795 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1796 batch /= 4; /* We effectively *= 4 below */
1797 if (batch < 1)
1798 batch = 1;
1799
1800 /*
0ceaacc9
NP
1801 * Clamp the batch to a 2^n - 1 value. Having a power
1802 * of 2 value was found to be more likely to have
1803 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1804 *
0ceaacc9
NP
1805 * For example if 2 tasks are alternately allocating
1806 * batches of pages, one task can end up with a lot
1807 * of pages of one half of the possible page colors
1808 * and the other with pages of the other colors.
e7c8d5c9 1809 */
0ceaacc9 1810 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1811
e7c8d5c9
CL
1812 return batch;
1813}
1814
2caaad41
CL
1815inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1816{
1817 struct per_cpu_pages *pcp;
1818
1c6fe946
MD
1819 memset(p, 0, sizeof(*p));
1820
2caaad41
CL
1821 pcp = &p->pcp[0]; /* hot */
1822 pcp->count = 0;
2caaad41
CL
1823 pcp->high = 6 * batch;
1824 pcp->batch = max(1UL, 1 * batch);
1825 INIT_LIST_HEAD(&pcp->list);
1826
1827 pcp = &p->pcp[1]; /* cold*/
1828 pcp->count = 0;
2caaad41 1829 pcp->high = 2 * batch;
e46a5e28 1830 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1831 INIT_LIST_HEAD(&pcp->list);
1832}
1833
e7c8d5c9
CL
1834#ifdef CONFIG_NUMA
1835/*
2caaad41
CL
1836 * Boot pageset table. One per cpu which is going to be used for all
1837 * zones and all nodes. The parameters will be set in such a way
1838 * that an item put on a list will immediately be handed over to
1839 * the buddy list. This is safe since pageset manipulation is done
1840 * with interrupts disabled.
1841 *
1842 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1843 *
1844 * The boot_pagesets must be kept even after bootup is complete for
1845 * unused processors and/or zones. They do play a role for bootstrapping
1846 * hotplugged processors.
1847 *
1848 * zoneinfo_show() and maybe other functions do
1849 * not check if the processor is online before following the pageset pointer.
1850 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1851 */
1852static struct per_cpu_pageset
b7c84c6a 1853 boot_pageset[NR_CPUS];
2caaad41
CL
1854
1855/*
1856 * Dynamically allocate memory for the
e7c8d5c9
CL
1857 * per cpu pageset array in struct zone.
1858 */
1859static int __devinit process_zones(int cpu)
1860{
1861 struct zone *zone, *dzone;
e7c8d5c9
CL
1862
1863 for_each_zone(zone) {
e7c8d5c9 1864
2caaad41 1865 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1866 GFP_KERNEL, cpu_to_node(cpu));
2caaad41 1867 if (!zone->pageset[cpu])
e7c8d5c9 1868 goto bad;
e7c8d5c9 1869
2caaad41 1870 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
e7c8d5c9
CL
1871 }
1872
1873 return 0;
1874bad:
1875 for_each_zone(dzone) {
1876 if (dzone == zone)
1877 break;
1878 kfree(dzone->pageset[cpu]);
1879 dzone->pageset[cpu] = NULL;
1880 }
1881 return -ENOMEM;
1882}
1883
1884static inline void free_zone_pagesets(int cpu)
1885{
e7c8d5c9
CL
1886 struct zone *zone;
1887
1888 for_each_zone(zone) {
1889 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1890
1891 zone_pcp(zone, cpu) = NULL;
1892 kfree(pset);
1893 }
e7c8d5c9
CL
1894}
1895
1896static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1897 unsigned long action,
1898 void *hcpu)
1899{
1900 int cpu = (long)hcpu;
1901 int ret = NOTIFY_OK;
1902
1903 switch (action) {
1904 case CPU_UP_PREPARE:
1905 if (process_zones(cpu))
1906 ret = NOTIFY_BAD;
1907 break;
b0d41693 1908 case CPU_UP_CANCELED:
e7c8d5c9
CL
1909 case CPU_DEAD:
1910 free_zone_pagesets(cpu);
1911 break;
e7c8d5c9
CL
1912 default:
1913 break;
1914 }
1915 return ret;
1916}
1917
1918static struct notifier_block pageset_notifier =
1919 { &pageset_cpuup_callback, NULL, 0 };
1920
78d9955b 1921void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1922{
1923 int err;
1924
1925 /* Initialize per_cpu_pageset for cpu 0.
1926 * A cpuup callback will do this for every cpu
1927 * as it comes online
1928 */
1929 err = process_zones(smp_processor_id());
1930 BUG_ON(err);
1931 register_cpu_notifier(&pageset_notifier);
1932}
1933
1934#endif
1935
ed8ece2e
DH
1936static __devinit
1937void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1938{
1939 int i;
1940 struct pglist_data *pgdat = zone->zone_pgdat;
1941
1942 /*
1943 * The per-page waitqueue mechanism uses hashed waitqueues
1944 * per zone.
1945 */
1946 zone->wait_table_size = wait_table_size(zone_size_pages);
1947 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1948 zone->wait_table = (wait_queue_head_t *)
1949 alloc_bootmem_node(pgdat, zone->wait_table_size
1950 * sizeof(wait_queue_head_t));
1951
1952 for(i = 0; i < zone->wait_table_size; ++i)
1953 init_waitqueue_head(zone->wait_table + i);
1954}
1955
1956static __devinit void zone_pcp_init(struct zone *zone)
1957{
1958 int cpu;
1959 unsigned long batch = zone_batchsize(zone);
1960
1961 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1962#ifdef CONFIG_NUMA
1963 /* Early boot. Slab allocator not functional yet */
1964 zone->pageset[cpu] = &boot_pageset[cpu];
1965 setup_pageset(&boot_pageset[cpu],0);
1966#else
1967 setup_pageset(zone_pcp(zone,cpu), batch);
1968#endif
1969 }
1970 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1971 zone->name, zone->present_pages, batch);
1972}
1973
1974static __devinit void init_currently_empty_zone(struct zone *zone,
1975 unsigned long zone_start_pfn, unsigned long size)
1976{
1977 struct pglist_data *pgdat = zone->zone_pgdat;
1978
1979 zone_wait_table_init(zone, size);
1980 pgdat->nr_zones = zone_idx(zone) + 1;
1981
1982 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1983 zone->zone_start_pfn = zone_start_pfn;
1984
1985 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1986
1987 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1988}
1989
1da177e4
LT
1990/*
1991 * Set up the zone data structures:
1992 * - mark all pages reserved
1993 * - mark all memory queues empty
1994 * - clear the memory bitmaps
1995 */
1996static void __init free_area_init_core(struct pglist_data *pgdat,
1997 unsigned long *zones_size, unsigned long *zholes_size)
1998{
ed8ece2e
DH
1999 unsigned long j;
2000 int nid = pgdat->node_id;
1da177e4
LT
2001 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2002
208d54e5 2003 pgdat_resize_init(pgdat);
1da177e4
LT
2004 pgdat->nr_zones = 0;
2005 init_waitqueue_head(&pgdat->kswapd_wait);
2006 pgdat->kswapd_max_order = 0;
2007
2008 for (j = 0; j < MAX_NR_ZONES; j++) {
2009 struct zone *zone = pgdat->node_zones + j;
2010 unsigned long size, realsize;
1da177e4 2011
1da177e4
LT
2012 realsize = size = zones_size[j];
2013 if (zholes_size)
2014 realsize -= zholes_size[j];
2015
a2f1b424 2016 if (j < ZONE_HIGHMEM)
1da177e4
LT
2017 nr_kernel_pages += realsize;
2018 nr_all_pages += realsize;
2019
2020 zone->spanned_pages = size;
2021 zone->present_pages = realsize;
2022 zone->name = zone_names[j];
2023 spin_lock_init(&zone->lock);
2024 spin_lock_init(&zone->lru_lock);
bdc8cb98 2025 zone_seqlock_init(zone);
1da177e4
LT
2026 zone->zone_pgdat = pgdat;
2027 zone->free_pages = 0;
2028
2029 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2030
ed8ece2e 2031 zone_pcp_init(zone);
1da177e4
LT
2032 INIT_LIST_HEAD(&zone->active_list);
2033 INIT_LIST_HEAD(&zone->inactive_list);
2034 zone->nr_scan_active = 0;
2035 zone->nr_scan_inactive = 0;
2036 zone->nr_active = 0;
2037 zone->nr_inactive = 0;
53e9a615 2038 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2039 if (!size)
2040 continue;
2041
d41dee36 2042 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2043 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2044 zone_start_pfn += size;
1da177e4
LT
2045 }
2046}
2047
2048static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2049{
1da177e4
LT
2050 /* Skip empty nodes */
2051 if (!pgdat->node_spanned_pages)
2052 return;
2053
d41dee36 2054#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2055 /* ia64 gets its own node_mem_map, before this, without bootmem */
2056 if (!pgdat->node_mem_map) {
d41dee36
AW
2057 unsigned long size;
2058 struct page *map;
2059
1da177e4 2060 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2061 map = alloc_remap(pgdat->node_id, size);
2062 if (!map)
2063 map = alloc_bootmem_node(pgdat, size);
2064 pgdat->node_mem_map = map;
1da177e4 2065 }
d41dee36 2066#ifdef CONFIG_FLATMEM
1da177e4
LT
2067 /*
2068 * With no DISCONTIG, the global mem_map is just set as node 0's
2069 */
2070 if (pgdat == NODE_DATA(0))
2071 mem_map = NODE_DATA(0)->node_mem_map;
2072#endif
d41dee36 2073#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2074}
2075
2076void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2077 unsigned long *zones_size, unsigned long node_start_pfn,
2078 unsigned long *zholes_size)
2079{
2080 pgdat->node_id = nid;
2081 pgdat->node_start_pfn = node_start_pfn;
2082 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2083
2084 alloc_node_mem_map(pgdat);
2085
2086 free_area_init_core(pgdat, zones_size, zholes_size);
2087}
2088
93b7504e 2089#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2090static bootmem_data_t contig_bootmem_data;
2091struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2092
2093EXPORT_SYMBOL(contig_page_data);
93b7504e 2094#endif
1da177e4
LT
2095
2096void __init free_area_init(unsigned long *zones_size)
2097{
93b7504e 2098 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2099 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2100}
1da177e4
LT
2101
2102#ifdef CONFIG_PROC_FS
2103
2104#include <linux/seq_file.h>
2105
2106static void *frag_start(struct seq_file *m, loff_t *pos)
2107{
2108 pg_data_t *pgdat;
2109 loff_t node = *pos;
2110
2111 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2112 --node;
2113
2114 return pgdat;
2115}
2116
2117static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2118{
2119 pg_data_t *pgdat = (pg_data_t *)arg;
2120
2121 (*pos)++;
2122 return pgdat->pgdat_next;
2123}
2124
2125static void frag_stop(struct seq_file *m, void *arg)
2126{
2127}
2128
2129/*
2130 * This walks the free areas for each zone.
2131 */
2132static int frag_show(struct seq_file *m, void *arg)
2133{
2134 pg_data_t *pgdat = (pg_data_t *)arg;
2135 struct zone *zone;
2136 struct zone *node_zones = pgdat->node_zones;
2137 unsigned long flags;
2138 int order;
2139
2140 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2141 if (!populated_zone(zone))
1da177e4
LT
2142 continue;
2143
2144 spin_lock_irqsave(&zone->lock, flags);
2145 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2146 for (order = 0; order < MAX_ORDER; ++order)
2147 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2148 spin_unlock_irqrestore(&zone->lock, flags);
2149 seq_putc(m, '\n');
2150 }
2151 return 0;
2152}
2153
2154struct seq_operations fragmentation_op = {
2155 .start = frag_start,
2156 .next = frag_next,
2157 .stop = frag_stop,
2158 .show = frag_show,
2159};
2160
295ab934
ND
2161/*
2162 * Output information about zones in @pgdat.
2163 */
2164static int zoneinfo_show(struct seq_file *m, void *arg)
2165{
2166 pg_data_t *pgdat = arg;
2167 struct zone *zone;
2168 struct zone *node_zones = pgdat->node_zones;
2169 unsigned long flags;
2170
2171 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2172 int i;
2173
f3fe6512 2174 if (!populated_zone(zone))
295ab934
ND
2175 continue;
2176
2177 spin_lock_irqsave(&zone->lock, flags);
2178 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2179 seq_printf(m,
2180 "\n pages free %lu"
2181 "\n min %lu"
2182 "\n low %lu"
2183 "\n high %lu"
2184 "\n active %lu"
2185 "\n inactive %lu"
2186 "\n scanned %lu (a: %lu i: %lu)"
2187 "\n spanned %lu"
2188 "\n present %lu",
2189 zone->free_pages,
2190 zone->pages_min,
2191 zone->pages_low,
2192 zone->pages_high,
2193 zone->nr_active,
2194 zone->nr_inactive,
2195 zone->pages_scanned,
2196 zone->nr_scan_active, zone->nr_scan_inactive,
2197 zone->spanned_pages,
2198 zone->present_pages);
2199 seq_printf(m,
2200 "\n protection: (%lu",
2201 zone->lowmem_reserve[0]);
2202 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2203 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2204 seq_printf(m,
2205 ")"
2206 "\n pagesets");
2207 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2208 struct per_cpu_pageset *pageset;
2209 int j;
2210
e7c8d5c9 2211 pageset = zone_pcp(zone, i);
295ab934
ND
2212 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2213 if (pageset->pcp[j].count)
2214 break;
2215 }
2216 if (j == ARRAY_SIZE(pageset->pcp))
2217 continue;
2218 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2219 seq_printf(m,
2220 "\n cpu: %i pcp: %i"
2221 "\n count: %i"
295ab934
ND
2222 "\n high: %i"
2223 "\n batch: %i",
2224 i, j,
2225 pageset->pcp[j].count,
295ab934
ND
2226 pageset->pcp[j].high,
2227 pageset->pcp[j].batch);
2228 }
2229#ifdef CONFIG_NUMA
2230 seq_printf(m,
2231 "\n numa_hit: %lu"
2232 "\n numa_miss: %lu"
2233 "\n numa_foreign: %lu"
2234 "\n interleave_hit: %lu"
2235 "\n local_node: %lu"
2236 "\n other_node: %lu",
2237 pageset->numa_hit,
2238 pageset->numa_miss,
2239 pageset->numa_foreign,
2240 pageset->interleave_hit,
2241 pageset->local_node,
2242 pageset->other_node);
2243#endif
2244 }
2245 seq_printf(m,
2246 "\n all_unreclaimable: %u"
2247 "\n prev_priority: %i"
2248 "\n temp_priority: %i"
2249 "\n start_pfn: %lu",
2250 zone->all_unreclaimable,
2251 zone->prev_priority,
2252 zone->temp_priority,
2253 zone->zone_start_pfn);
2254 spin_unlock_irqrestore(&zone->lock, flags);
2255 seq_putc(m, '\n');
2256 }
2257 return 0;
2258}
2259
2260struct seq_operations zoneinfo_op = {
2261 .start = frag_start, /* iterate over all zones. The same as in
2262 * fragmentation. */
2263 .next = frag_next,
2264 .stop = frag_stop,
2265 .show = zoneinfo_show,
2266};
2267
1da177e4
LT
2268static char *vmstat_text[] = {
2269 "nr_dirty",
2270 "nr_writeback",
2271 "nr_unstable",
2272 "nr_page_table_pages",
2273 "nr_mapped",
2274 "nr_slab",
2275
2276 "pgpgin",
2277 "pgpgout",
2278 "pswpin",
2279 "pswpout",
1da177e4 2280
9328b8fa 2281 "pgalloc_high",
1da177e4 2282 "pgalloc_normal",
9328b8fa 2283 "pgalloc_dma32",
1da177e4 2284 "pgalloc_dma",
9328b8fa 2285
1da177e4
LT
2286 "pgfree",
2287 "pgactivate",
2288 "pgdeactivate",
2289
2290 "pgfault",
2291 "pgmajfault",
9328b8fa 2292
1da177e4
LT
2293 "pgrefill_high",
2294 "pgrefill_normal",
9328b8fa 2295 "pgrefill_dma32",
1da177e4
LT
2296 "pgrefill_dma",
2297
2298 "pgsteal_high",
2299 "pgsteal_normal",
9328b8fa 2300 "pgsteal_dma32",
1da177e4 2301 "pgsteal_dma",
9328b8fa 2302
1da177e4
LT
2303 "pgscan_kswapd_high",
2304 "pgscan_kswapd_normal",
9328b8fa 2305 "pgscan_kswapd_dma32",
1da177e4 2306 "pgscan_kswapd_dma",
9328b8fa 2307
1da177e4
LT
2308 "pgscan_direct_high",
2309 "pgscan_direct_normal",
9328b8fa 2310 "pgscan_direct_dma32",
1da177e4 2311 "pgscan_direct_dma",
1da177e4 2312
9328b8fa 2313 "pginodesteal",
1da177e4
LT
2314 "slabs_scanned",
2315 "kswapd_steal",
2316 "kswapd_inodesteal",
2317 "pageoutrun",
2318 "allocstall",
2319
2320 "pgrotated",
edfbe2b0 2321 "nr_bounce",
1da177e4
LT
2322};
2323
2324static void *vmstat_start(struct seq_file *m, loff_t *pos)
2325{
2326 struct page_state *ps;
2327
2328 if (*pos >= ARRAY_SIZE(vmstat_text))
2329 return NULL;
2330
2331 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2332 m->private = ps;
2333 if (!ps)
2334 return ERR_PTR(-ENOMEM);
2335 get_full_page_state(ps);
2336 ps->pgpgin /= 2; /* sectors -> kbytes */
2337 ps->pgpgout /= 2;
2338 return (unsigned long *)ps + *pos;
2339}
2340
2341static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2342{
2343 (*pos)++;
2344 if (*pos >= ARRAY_SIZE(vmstat_text))
2345 return NULL;
2346 return (unsigned long *)m->private + *pos;
2347}
2348
2349static int vmstat_show(struct seq_file *m, void *arg)
2350{
2351 unsigned long *l = arg;
2352 unsigned long off = l - (unsigned long *)m->private;
2353
2354 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2355 return 0;
2356}
2357
2358static void vmstat_stop(struct seq_file *m, void *arg)
2359{
2360 kfree(m->private);
2361 m->private = NULL;
2362}
2363
2364struct seq_operations vmstat_op = {
2365 .start = vmstat_start,
2366 .next = vmstat_next,
2367 .stop = vmstat_stop,
2368 .show = vmstat_show,
2369};
2370
2371#endif /* CONFIG_PROC_FS */
2372
2373#ifdef CONFIG_HOTPLUG_CPU
2374static int page_alloc_cpu_notify(struct notifier_block *self,
2375 unsigned long action, void *hcpu)
2376{
2377 int cpu = (unsigned long)hcpu;
2378 long *count;
2379 unsigned long *src, *dest;
2380
2381 if (action == CPU_DEAD) {
2382 int i;
2383
2384 /* Drain local pagecache count. */
2385 count = &per_cpu(nr_pagecache_local, cpu);
2386 atomic_add(*count, &nr_pagecache);
2387 *count = 0;
2388 local_irq_disable();
2389 __drain_pages(cpu);
2390
2391 /* Add dead cpu's page_states to our own. */
2392 dest = (unsigned long *)&__get_cpu_var(page_states);
2393 src = (unsigned long *)&per_cpu(page_states, cpu);
2394
2395 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2396 i++) {
2397 dest[i] += src[i];
2398 src[i] = 0;
2399 }
2400
2401 local_irq_enable();
2402 }
2403 return NOTIFY_OK;
2404}
2405#endif /* CONFIG_HOTPLUG_CPU */
2406
2407void __init page_alloc_init(void)
2408{
2409 hotcpu_notifier(page_alloc_cpu_notify, 0);
2410}
2411
2412/*
2413 * setup_per_zone_lowmem_reserve - called whenever
2414 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2415 * has a correct pages reserved value, so an adequate number of
2416 * pages are left in the zone after a successful __alloc_pages().
2417 */
2418static void setup_per_zone_lowmem_reserve(void)
2419{
2420 struct pglist_data *pgdat;
2421 int j, idx;
2422
2423 for_each_pgdat(pgdat) {
2424 for (j = 0; j < MAX_NR_ZONES; j++) {
2425 struct zone *zone = pgdat->node_zones + j;
2426 unsigned long present_pages = zone->present_pages;
2427
2428 zone->lowmem_reserve[j] = 0;
2429
2430 for (idx = j-1; idx >= 0; idx--) {
2431 struct zone *lower_zone;
2432
2433 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2434 sysctl_lowmem_reserve_ratio[idx] = 1;
2435
2436 lower_zone = pgdat->node_zones + idx;
2437 lower_zone->lowmem_reserve[j] = present_pages /
2438 sysctl_lowmem_reserve_ratio[idx];
2439 present_pages += lower_zone->present_pages;
2440 }
2441 }
2442 }
2443}
2444
2445/*
2446 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2447 * that the pages_{min,low,high} values for each zone are set correctly
2448 * with respect to min_free_kbytes.
2449 */
3947be19 2450void setup_per_zone_pages_min(void)
1da177e4
LT
2451{
2452 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2453 unsigned long lowmem_pages = 0;
2454 struct zone *zone;
2455 unsigned long flags;
2456
2457 /* Calculate total number of !ZONE_HIGHMEM pages */
2458 for_each_zone(zone) {
2459 if (!is_highmem(zone))
2460 lowmem_pages += zone->present_pages;
2461 }
2462
2463 for_each_zone(zone) {
669ed175 2464 unsigned long tmp;
1da177e4 2465 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2466 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2467 if (is_highmem(zone)) {
2468 /*
669ed175
NP
2469 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2470 * need highmem pages, so cap pages_min to a small
2471 * value here.
2472 *
2473 * The (pages_high-pages_low) and (pages_low-pages_min)
2474 * deltas controls asynch page reclaim, and so should
2475 * not be capped for highmem.
1da177e4
LT
2476 */
2477 int min_pages;
2478
2479 min_pages = zone->present_pages / 1024;
2480 if (min_pages < SWAP_CLUSTER_MAX)
2481 min_pages = SWAP_CLUSTER_MAX;
2482 if (min_pages > 128)
2483 min_pages = 128;
2484 zone->pages_min = min_pages;
2485 } else {
669ed175
NP
2486 /*
2487 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2488 * proportionate to the zone's size.
2489 */
669ed175 2490 zone->pages_min = tmp;
1da177e4
LT
2491 }
2492
669ed175
NP
2493 zone->pages_low = zone->pages_min + tmp / 4;
2494 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2495 spin_unlock_irqrestore(&zone->lru_lock, flags);
2496 }
2497}
2498
2499/*
2500 * Initialise min_free_kbytes.
2501 *
2502 * For small machines we want it small (128k min). For large machines
2503 * we want it large (64MB max). But it is not linear, because network
2504 * bandwidth does not increase linearly with machine size. We use
2505 *
2506 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2507 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2508 *
2509 * which yields
2510 *
2511 * 16MB: 512k
2512 * 32MB: 724k
2513 * 64MB: 1024k
2514 * 128MB: 1448k
2515 * 256MB: 2048k
2516 * 512MB: 2896k
2517 * 1024MB: 4096k
2518 * 2048MB: 5792k
2519 * 4096MB: 8192k
2520 * 8192MB: 11584k
2521 * 16384MB: 16384k
2522 */
2523static int __init init_per_zone_pages_min(void)
2524{
2525 unsigned long lowmem_kbytes;
2526
2527 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2528
2529 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2530 if (min_free_kbytes < 128)
2531 min_free_kbytes = 128;
2532 if (min_free_kbytes > 65536)
2533 min_free_kbytes = 65536;
2534 setup_per_zone_pages_min();
2535 setup_per_zone_lowmem_reserve();
2536 return 0;
2537}
2538module_init(init_per_zone_pages_min)
2539
2540/*
2541 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2542 * that we can call two helper functions whenever min_free_kbytes
2543 * changes.
2544 */
2545int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2546 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2547{
2548 proc_dointvec(table, write, file, buffer, length, ppos);
2549 setup_per_zone_pages_min();
2550 return 0;
2551}
2552
2553/*
2554 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2555 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2556 * whenever sysctl_lowmem_reserve_ratio changes.
2557 *
2558 * The reserve ratio obviously has absolutely no relation with the
2559 * pages_min watermarks. The lowmem reserve ratio can only make sense
2560 * if in function of the boot time zone sizes.
2561 */
2562int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2563 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2564{
2565 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2566 setup_per_zone_lowmem_reserve();
2567 return 0;
2568}
2569
2570__initdata int hashdist = HASHDIST_DEFAULT;
2571
2572#ifdef CONFIG_NUMA
2573static int __init set_hashdist(char *str)
2574{
2575 if (!str)
2576 return 0;
2577 hashdist = simple_strtoul(str, &str, 0);
2578 return 1;
2579}
2580__setup("hashdist=", set_hashdist);
2581#endif
2582
2583/*
2584 * allocate a large system hash table from bootmem
2585 * - it is assumed that the hash table must contain an exact power-of-2
2586 * quantity of entries
2587 * - limit is the number of hash buckets, not the total allocation size
2588 */
2589void *__init alloc_large_system_hash(const char *tablename,
2590 unsigned long bucketsize,
2591 unsigned long numentries,
2592 int scale,
2593 int flags,
2594 unsigned int *_hash_shift,
2595 unsigned int *_hash_mask,
2596 unsigned long limit)
2597{
2598 unsigned long long max = limit;
2599 unsigned long log2qty, size;
2600 void *table = NULL;
2601
2602 /* allow the kernel cmdline to have a say */
2603 if (!numentries) {
2604 /* round applicable memory size up to nearest megabyte */
2605 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2606 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2607 numentries >>= 20 - PAGE_SHIFT;
2608 numentries <<= 20 - PAGE_SHIFT;
2609
2610 /* limit to 1 bucket per 2^scale bytes of low memory */
2611 if (scale > PAGE_SHIFT)
2612 numentries >>= (scale - PAGE_SHIFT);
2613 else
2614 numentries <<= (PAGE_SHIFT - scale);
2615 }
2616 /* rounded up to nearest power of 2 in size */
2617 numentries = 1UL << (long_log2(numentries) + 1);
2618
2619 /* limit allocation size to 1/16 total memory by default */
2620 if (max == 0) {
2621 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2622 do_div(max, bucketsize);
2623 }
2624
2625 if (numentries > max)
2626 numentries = max;
2627
2628 log2qty = long_log2(numentries);
2629
2630 do {
2631 size = bucketsize << log2qty;
2632 if (flags & HASH_EARLY)
2633 table = alloc_bootmem(size);
2634 else if (hashdist)
2635 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2636 else {
2637 unsigned long order;
2638 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2639 ;
2640 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2641 }
2642 } while (!table && size > PAGE_SIZE && --log2qty);
2643
2644 if (!table)
2645 panic("Failed to allocate %s hash table\n", tablename);
2646
2647 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2648 tablename,
2649 (1U << log2qty),
2650 long_log2(size) - PAGE_SHIFT,
2651 size);
2652
2653 if (_hash_shift)
2654 *_hash_shift = log2qty;
2655 if (_hash_mask)
2656 *_hash_mask = (1 << log2qty) - 1;
2657
2658 return table;
2659}