kmemcheck: add hooks for page- and sg-dma-mappings
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
173}
174
13e7444b 175#ifdef CONFIG_DEBUG_VM
c6a57e19 176static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 177{
bdc8cb98
DH
178 int ret = 0;
179 unsigned seq;
180 unsigned long pfn = page_to_pfn(page);
c6a57e19 181
bdc8cb98
DH
182 do {
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 ret = 1;
186 else if (pfn < zone->zone_start_pfn)
187 ret = 1;
188 } while (zone_span_seqretry(zone, seq));
189
190 return ret;
c6a57e19
DH
191}
192
193static int page_is_consistent(struct zone *zone, struct page *page)
194{
14e07298 195 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 196 return 0;
1da177e4 197 if (zone != page_zone(page))
c6a57e19
DH
198 return 0;
199
200 return 1;
201}
202/*
203 * Temporary debugging check for pages not lying within a given zone.
204 */
205static int bad_range(struct zone *zone, struct page *page)
206{
207 if (page_outside_zone_boundaries(zone, page))
1da177e4 208 return 1;
c6a57e19
DH
209 if (!page_is_consistent(zone, page))
210 return 1;
211
1da177e4
LT
212 return 0;
213}
13e7444b
NP
214#else
215static inline int bad_range(struct zone *zone, struct page *page)
216{
217 return 0;
218}
219#endif
220
224abf92 221static void bad_page(struct page *page)
1da177e4 222{
d936cf9b
HD
223 static unsigned long resume;
224 static unsigned long nr_shown;
225 static unsigned long nr_unshown;
226
227 /*
228 * Allow a burst of 60 reports, then keep quiet for that minute;
229 * or allow a steady drip of one report per second.
230 */
231 if (nr_shown == 60) {
232 if (time_before(jiffies, resume)) {
233 nr_unshown++;
234 goto out;
235 }
236 if (nr_unshown) {
1e9e6365
HD
237 printk(KERN_ALERT
238 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
239 nr_unshown);
240 nr_unshown = 0;
241 }
242 nr_shown = 0;
243 }
244 if (nr_shown++ == 0)
245 resume = jiffies + 60 * HZ;
246
1e9e6365 247 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 248 current->comm, page_to_pfn(page));
1e9e6365 249 printk(KERN_ALERT
3dc14741
HD
250 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
251 page, (void *)page->flags, page_count(page),
252 page_mapcount(page), page->mapping, page->index);
3dc14741 253
1da177e4 254 dump_stack();
d936cf9b 255out:
8cc3b392
HD
256 /* Leave bad fields for debug, except PageBuddy could make trouble */
257 __ClearPageBuddy(page);
9f158333 258 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
259}
260
1da177e4
LT
261/*
262 * Higher-order pages are called "compound pages". They are structured thusly:
263 *
264 * The first PAGE_SIZE page is called the "head page".
265 *
266 * The remaining PAGE_SIZE pages are called "tail pages".
267 *
268 * All pages have PG_compound set. All pages have their ->private pointing at
269 * the head page (even the head page has this).
270 *
41d78ba5
HD
271 * The first tail page's ->lru.next holds the address of the compound page's
272 * put_page() function. Its ->lru.prev holds the order of allocation.
273 * This usage means that zero-order pages may not be compound.
1da177e4 274 */
d98c7a09
HD
275
276static void free_compound_page(struct page *page)
277{
d85f3385 278 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
279}
280
01ad1c08 281void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
282{
283 int i;
284 int nr_pages = 1 << order;
285
286 set_compound_page_dtor(page, free_compound_page);
287 set_compound_order(page, order);
288 __SetPageHead(page);
289 for (i = 1; i < nr_pages; i++) {
290 struct page *p = page + i;
291
292 __SetPageTail(p);
293 p->first_page = page;
294 }
295}
296
297#ifdef CONFIG_HUGETLBFS
298void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
299{
300 int i;
301 int nr_pages = 1 << order;
6babc32c 302 struct page *p = page + 1;
1da177e4 303
33f2ef89 304 set_compound_page_dtor(page, free_compound_page);
d85f3385 305 set_compound_order(page, order);
6d777953 306 __SetPageHead(page);
18229df5 307 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 308 __SetPageTail(p);
d85f3385 309 p->first_page = page;
1da177e4
LT
310 }
311}
18229df5 312#endif
1da177e4 313
8cc3b392 314static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
315{
316 int i;
317 int nr_pages = 1 << order;
8cc3b392 318 int bad = 0;
1da177e4 319
8cc3b392
HD
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
224abf92 322 bad_page(page);
8cc3b392
HD
323 bad++;
324 }
1da177e4 325
6d777953 326 __ClearPageHead(page);
8cc3b392 327
18229df5
AW
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
1da177e4 330
e713a21d 331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 332 bad_page(page);
8cc3b392
HD
333 bad++;
334 }
d85f3385 335 __ClearPageTail(p);
1da177e4 336 }
8cc3b392
HD
337
338 return bad;
1da177e4 339}
1da177e4 340
17cf4406
NP
341static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342{
343 int i;
344
6626c5d5
AM
345 /*
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 */
725d704e 349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
352}
353
6aa3001b
AM
354static inline void set_page_order(struct page *page, int order)
355{
4c21e2f2 356 set_page_private(page, order);
676165a8 357 __SetPageBuddy(page);
1da177e4
LT
358}
359
360static inline void rmv_page_order(struct page *page)
361{
676165a8 362 __ClearPageBuddy(page);
4c21e2f2 363 set_page_private(page, 0);
1da177e4
LT
364}
365
366/*
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
369 *
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 *
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
380 *
d6e05edc 381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
382 */
383static inline struct page *
384__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385{
386 unsigned long buddy_idx = page_idx ^ (1 << order);
387
388 return page + (buddy_idx - page_idx);
389}
390
391static inline unsigned long
392__find_combined_index(unsigned long page_idx, unsigned int order)
393{
394 return (page_idx & ~(1 << order));
395}
396
397/*
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
13e7444b 400 * (a) the buddy is not in a hole &&
676165a8 401 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
676165a8
NP
404 *
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 407 *
676165a8 408 * For recording page's order, we use page_private(page).
1da177e4 409 */
cb2b95e1
AW
410static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
1da177e4 412{
14e07298 413 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 414 return 0;
13e7444b 415
cb2b95e1
AW
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
418
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 BUG_ON(page_count(buddy) != 0);
6aa3001b 421 return 1;
676165a8 422 }
6aa3001b 423 return 0;
1da177e4
LT
424}
425
426/*
427 * Freeing function for a buddy system allocator.
428 *
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
676165a8 439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 440 * order is recorded in page_private(page) field.
1da177e4
LT
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
446 *
447 * -- wli
448 */
449
48db57f8 450static inline void __free_one_page(struct page *page,
1da177e4
LT
451 struct zone *zone, unsigned int order)
452{
453 unsigned long page_idx;
454 int order_size = 1 << order;
b2a0ac88 455 int migratetype = get_pageblock_migratetype(page);
1da177e4 456
224abf92 457 if (unlikely(PageCompound(page)))
8cc3b392
HD
458 if (unlikely(destroy_compound_page(page, order)))
459 return;
1da177e4
LT
460
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
462
725d704e
NP
463 VM_BUG_ON(page_idx & (order_size - 1));
464 VM_BUG_ON(bad_range(zone, page));
1da177e4 465
d23ad423 466 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
1da177e4
LT
469 struct page *buddy;
470
1da177e4 471 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 472 if (!page_is_buddy(page, buddy, order))
3c82d0ce 473 break;
13e7444b 474
3c82d0ce 475 /* Our buddy is free, merge with it and move up one order. */
1da177e4 476 list_del(&buddy->lru);
b2a0ac88 477 zone->free_area[order].nr_free--;
1da177e4 478 rmv_page_order(buddy);
13e7444b 479 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
483 }
484 set_page_order(page, order);
b2a0ac88
MG
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
487 zone->free_area[order].nr_free++;
488}
489
224abf92 490static inline int free_pages_check(struct page *page)
1da177e4 491{
985737cf 492 free_page_mlock(page);
92be2e33
NP
493 if (unlikely(page_mapcount(page) |
494 (page->mapping != NULL) |
495 (page_count(page) != 0) |
8cc3b392 496 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 497 bad_page(page);
79f4b7bf 498 return 1;
8cc3b392 499 }
79f4b7bf
HD
500 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
501 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
502 return 0;
1da177e4
LT
503}
504
505/*
506 * Frees a list of pages.
507 * Assumes all pages on list are in same zone, and of same order.
207f36ee 508 * count is the number of pages to free.
1da177e4
LT
509 *
510 * If the zone was previously in an "all pages pinned" state then look to
511 * see if this freeing clears that state.
512 *
513 * And clear the zone's pages_scanned counter, to hold off the "all pages are
514 * pinned" detection logic.
515 */
48db57f8
NP
516static void free_pages_bulk(struct zone *zone, int count,
517 struct list_head *list, int order)
1da177e4 518{
c54ad30c 519 spin_lock(&zone->lock);
e815af95 520 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 521 zone->pages_scanned = 0;
48db57f8
NP
522 while (count--) {
523 struct page *page;
524
725d704e 525 VM_BUG_ON(list_empty(list));
1da177e4 526 page = list_entry(list->prev, struct page, lru);
48db57f8 527 /* have to delete it as __free_one_page list manipulates */
1da177e4 528 list_del(&page->lru);
48db57f8 529 __free_one_page(page, zone, order);
1da177e4 530 }
c54ad30c 531 spin_unlock(&zone->lock);
1da177e4
LT
532}
533
48db57f8 534static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 535{
006d22d9 536 spin_lock(&zone->lock);
e815af95 537 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 538 zone->pages_scanned = 0;
0798e519 539 __free_one_page(page, zone, order);
006d22d9 540 spin_unlock(&zone->lock);
48db57f8
NP
541}
542
543static void __free_pages_ok(struct page *page, unsigned int order)
544{
545 unsigned long flags;
1da177e4 546 int i;
8cc3b392 547 int bad = 0;
1da177e4 548
1da177e4 549 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
550 bad += free_pages_check(page + i);
551 if (bad)
689bcebf
HD
552 return;
553
3ac7fe5a 554 if (!PageHighMem(page)) {
9858db50 555 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
556 debug_check_no_obj_freed(page_address(page),
557 PAGE_SIZE << order);
558 }
dafb1367 559 arch_free_page(page, order);
48db57f8 560 kernel_map_pages(page, 1 << order, 0);
dafb1367 561
c54ad30c 562 local_irq_save(flags);
f8891e5e 563 __count_vm_events(PGFREE, 1 << order);
48db57f8 564 free_one_page(page_zone(page), page, order);
c54ad30c 565 local_irq_restore(flags);
1da177e4
LT
566}
567
a226f6c8
DH
568/*
569 * permit the bootmem allocator to evade page validation on high-order frees
570 */
af370fb8 571void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
572{
573 if (order == 0) {
574 __ClearPageReserved(page);
575 set_page_count(page, 0);
7835e98b 576 set_page_refcounted(page);
545b1ea9 577 __free_page(page);
a226f6c8 578 } else {
a226f6c8
DH
579 int loop;
580
545b1ea9 581 prefetchw(page);
a226f6c8
DH
582 for (loop = 0; loop < BITS_PER_LONG; loop++) {
583 struct page *p = &page[loop];
584
545b1ea9
NP
585 if (loop + 1 < BITS_PER_LONG)
586 prefetchw(p + 1);
a226f6c8
DH
587 __ClearPageReserved(p);
588 set_page_count(p, 0);
589 }
590
7835e98b 591 set_page_refcounted(page);
545b1ea9 592 __free_pages(page, order);
a226f6c8
DH
593 }
594}
595
1da177e4
LT
596
597/*
598 * The order of subdivision here is critical for the IO subsystem.
599 * Please do not alter this order without good reasons and regression
600 * testing. Specifically, as large blocks of memory are subdivided,
601 * the order in which smaller blocks are delivered depends on the order
602 * they're subdivided in this function. This is the primary factor
603 * influencing the order in which pages are delivered to the IO
604 * subsystem according to empirical testing, and this is also justified
605 * by considering the behavior of a buddy system containing a single
606 * large block of memory acted on by a series of small allocations.
607 * This behavior is a critical factor in sglist merging's success.
608 *
609 * -- wli
610 */
085cc7d5 611static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
612 int low, int high, struct free_area *area,
613 int migratetype)
1da177e4
LT
614{
615 unsigned long size = 1 << high;
616
617 while (high > low) {
618 area--;
619 high--;
620 size >>= 1;
725d704e 621 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 622 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
623 area->nr_free++;
624 set_page_order(&page[size], high);
625 }
1da177e4
LT
626}
627
1da177e4
LT
628/*
629 * This page is about to be returned from the page allocator
630 */
17cf4406 631static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 632{
92be2e33
NP
633 if (unlikely(page_mapcount(page) |
634 (page->mapping != NULL) |
635 (page_count(page) != 0) |
8cc3b392 636 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 637 bad_page(page);
689bcebf 638 return 1;
8cc3b392 639 }
689bcebf 640
4c21e2f2 641 set_page_private(page, 0);
7835e98b 642 set_page_refcounted(page);
cc102509
NP
643
644 arch_alloc_page(page, order);
1da177e4 645 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
646
647 if (gfp_flags & __GFP_ZERO)
648 prep_zero_page(page, order, gfp_flags);
649
650 if (order && (gfp_flags & __GFP_COMP))
651 prep_compound_page(page, order);
652
689bcebf 653 return 0;
1da177e4
LT
654}
655
56fd56b8
MG
656/*
657 * Go through the free lists for the given migratetype and remove
658 * the smallest available page from the freelists
659 */
660static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
661 int migratetype)
662{
663 unsigned int current_order;
664 struct free_area * area;
665 struct page *page;
666
667 /* Find a page of the appropriate size in the preferred list */
668 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
669 area = &(zone->free_area[current_order]);
670 if (list_empty(&area->free_list[migratetype]))
671 continue;
672
673 page = list_entry(area->free_list[migratetype].next,
674 struct page, lru);
675 list_del(&page->lru);
676 rmv_page_order(page);
677 area->nr_free--;
678 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
679 expand(zone, page, order, current_order, area, migratetype);
680 return page;
681 }
682
683 return NULL;
684}
685
686
b2a0ac88
MG
687/*
688 * This array describes the order lists are fallen back to when
689 * the free lists for the desirable migrate type are depleted
690 */
691static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
692 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
693 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
694 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
695 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
696};
697
c361be55
MG
698/*
699 * Move the free pages in a range to the free lists of the requested type.
d9c23400 700 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
701 * boundary. If alignment is required, use move_freepages_block()
702 */
b69a7288
AB
703static int move_freepages(struct zone *zone,
704 struct page *start_page, struct page *end_page,
705 int migratetype)
c361be55
MG
706{
707 struct page *page;
708 unsigned long order;
d100313f 709 int pages_moved = 0;
c361be55
MG
710
711#ifndef CONFIG_HOLES_IN_ZONE
712 /*
713 * page_zone is not safe to call in this context when
714 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
715 * anyway as we check zone boundaries in move_freepages_block().
716 * Remove at a later date when no bug reports exist related to
ac0e5b7a 717 * grouping pages by mobility
c361be55
MG
718 */
719 BUG_ON(page_zone(start_page) != page_zone(end_page));
720#endif
721
722 for (page = start_page; page <= end_page;) {
344c790e
AL
723 /* Make sure we are not inadvertently changing nodes */
724 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
725
c361be55
MG
726 if (!pfn_valid_within(page_to_pfn(page))) {
727 page++;
728 continue;
729 }
730
731 if (!PageBuddy(page)) {
732 page++;
733 continue;
734 }
735
736 order = page_order(page);
737 list_del(&page->lru);
738 list_add(&page->lru,
739 &zone->free_area[order].free_list[migratetype]);
740 page += 1 << order;
d100313f 741 pages_moved += 1 << order;
c361be55
MG
742 }
743
d100313f 744 return pages_moved;
c361be55
MG
745}
746
b69a7288
AB
747static int move_freepages_block(struct zone *zone, struct page *page,
748 int migratetype)
c361be55
MG
749{
750 unsigned long start_pfn, end_pfn;
751 struct page *start_page, *end_page;
752
753 start_pfn = page_to_pfn(page);
d9c23400 754 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 755 start_page = pfn_to_page(start_pfn);
d9c23400
MG
756 end_page = start_page + pageblock_nr_pages - 1;
757 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
758
759 /* Do not cross zone boundaries */
760 if (start_pfn < zone->zone_start_pfn)
761 start_page = page;
762 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
763 return 0;
764
765 return move_freepages(zone, start_page, end_page, migratetype);
766}
767
b2a0ac88
MG
768/* Remove an element from the buddy allocator from the fallback list */
769static struct page *__rmqueue_fallback(struct zone *zone, int order,
770 int start_migratetype)
771{
772 struct free_area * area;
773 int current_order;
774 struct page *page;
775 int migratetype, i;
776
777 /* Find the largest possible block of pages in the other list */
778 for (current_order = MAX_ORDER-1; current_order >= order;
779 --current_order) {
780 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
781 migratetype = fallbacks[start_migratetype][i];
782
56fd56b8
MG
783 /* MIGRATE_RESERVE handled later if necessary */
784 if (migratetype == MIGRATE_RESERVE)
785 continue;
e010487d 786
b2a0ac88
MG
787 area = &(zone->free_area[current_order]);
788 if (list_empty(&area->free_list[migratetype]))
789 continue;
790
791 page = list_entry(area->free_list[migratetype].next,
792 struct page, lru);
793 area->nr_free--;
794
795 /*
c361be55 796 * If breaking a large block of pages, move all free
46dafbca
MG
797 * pages to the preferred allocation list. If falling
798 * back for a reclaimable kernel allocation, be more
799 * agressive about taking ownership of free pages
b2a0ac88 800 */
d9c23400 801 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
802 start_migratetype == MIGRATE_RECLAIMABLE) {
803 unsigned long pages;
804 pages = move_freepages_block(zone, page,
805 start_migratetype);
806
807 /* Claim the whole block if over half of it is free */
d9c23400 808 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
809 set_pageblock_migratetype(page,
810 start_migratetype);
811
b2a0ac88 812 migratetype = start_migratetype;
c361be55 813 }
b2a0ac88
MG
814
815 /* Remove the page from the freelists */
816 list_del(&page->lru);
817 rmv_page_order(page);
818 __mod_zone_page_state(zone, NR_FREE_PAGES,
819 -(1UL << order));
820
d9c23400 821 if (current_order == pageblock_order)
b2a0ac88
MG
822 set_pageblock_migratetype(page,
823 start_migratetype);
824
825 expand(zone, page, order, current_order, area, migratetype);
826 return page;
827 }
828 }
829
56fd56b8
MG
830 /* Use MIGRATE_RESERVE rather than fail an allocation */
831 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
832}
833
56fd56b8 834/*
1da177e4
LT
835 * Do the hard work of removing an element from the buddy allocator.
836 * Call me with the zone->lock already held.
837 */
b2a0ac88
MG
838static struct page *__rmqueue(struct zone *zone, unsigned int order,
839 int migratetype)
1da177e4 840{
1da177e4
LT
841 struct page *page;
842
56fd56b8 843 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 844
56fd56b8
MG
845 if (unlikely(!page))
846 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
847
848 return page;
1da177e4
LT
849}
850
851/*
852 * Obtain a specified number of elements from the buddy allocator, all under
853 * a single hold of the lock, for efficiency. Add them to the supplied list.
854 * Returns the number of new pages which were placed at *list.
855 */
856static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
857 unsigned long count, struct list_head *list,
858 int migratetype)
1da177e4 859{
1da177e4 860 int i;
1da177e4 861
c54ad30c 862 spin_lock(&zone->lock);
1da177e4 863 for (i = 0; i < count; ++i) {
b2a0ac88 864 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 865 if (unlikely(page == NULL))
1da177e4 866 break;
81eabcbe
MG
867
868 /*
869 * Split buddy pages returned by expand() are received here
870 * in physical page order. The page is added to the callers and
871 * list and the list head then moves forward. From the callers
872 * perspective, the linked list is ordered by page number in
873 * some conditions. This is useful for IO devices that can
874 * merge IO requests if the physical pages are ordered
875 * properly.
876 */
535131e6
MG
877 list_add(&page->lru, list);
878 set_page_private(page, migratetype);
81eabcbe 879 list = &page->lru;
1da177e4 880 }
c54ad30c 881 spin_unlock(&zone->lock);
085cc7d5 882 return i;
1da177e4
LT
883}
884
4ae7c039 885#ifdef CONFIG_NUMA
8fce4d8e 886/*
4037d452
CL
887 * Called from the vmstat counter updater to drain pagesets of this
888 * currently executing processor on remote nodes after they have
889 * expired.
890 *
879336c3
CL
891 * Note that this function must be called with the thread pinned to
892 * a single processor.
8fce4d8e 893 */
4037d452 894void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 895{
4ae7c039 896 unsigned long flags;
4037d452 897 int to_drain;
4ae7c039 898
4037d452
CL
899 local_irq_save(flags);
900 if (pcp->count >= pcp->batch)
901 to_drain = pcp->batch;
902 else
903 to_drain = pcp->count;
904 free_pages_bulk(zone, to_drain, &pcp->list, 0);
905 pcp->count -= to_drain;
906 local_irq_restore(flags);
4ae7c039
CL
907}
908#endif
909
9f8f2172
CL
910/*
911 * Drain pages of the indicated processor.
912 *
913 * The processor must either be the current processor and the
914 * thread pinned to the current processor or a processor that
915 * is not online.
916 */
917static void drain_pages(unsigned int cpu)
1da177e4 918{
c54ad30c 919 unsigned long flags;
1da177e4 920 struct zone *zone;
1da177e4 921
ee99c71c 922 for_each_populated_zone(zone) {
1da177e4 923 struct per_cpu_pageset *pset;
3dfa5721 924 struct per_cpu_pages *pcp;
1da177e4 925
e7c8d5c9 926 pset = zone_pcp(zone, cpu);
3dfa5721
CL
927
928 pcp = &pset->pcp;
929 local_irq_save(flags);
930 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
931 pcp->count = 0;
932 local_irq_restore(flags);
1da177e4
LT
933 }
934}
1da177e4 935
9f8f2172
CL
936/*
937 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
938 */
939void drain_local_pages(void *arg)
940{
941 drain_pages(smp_processor_id());
942}
943
944/*
945 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
946 */
947void drain_all_pages(void)
948{
15c8b6c1 949 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
950}
951
296699de 952#ifdef CONFIG_HIBERNATION
1da177e4
LT
953
954void mark_free_pages(struct zone *zone)
955{
f623f0db
RW
956 unsigned long pfn, max_zone_pfn;
957 unsigned long flags;
b2a0ac88 958 int order, t;
1da177e4
LT
959 struct list_head *curr;
960
961 if (!zone->spanned_pages)
962 return;
963
964 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
965
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
970
7be98234
RW
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
f623f0db 973 }
1da177e4 974
b2a0ac88
MG
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 977 unsigned long i;
1da177e4 978
f623f0db
RW
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
7be98234 981 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 982 }
b2a0ac88 983 }
1da177e4
LT
984 spin_unlock_irqrestore(&zone->lock, flags);
985}
e2c55dc8 986#endif /* CONFIG_PM */
1da177e4 987
1da177e4
LT
988/*
989 * Free a 0-order page
990 */
920c7a5d 991static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
992{
993 struct zone *zone = page_zone(page);
994 struct per_cpu_pages *pcp;
995 unsigned long flags;
996
1da177e4
LT
997 if (PageAnon(page))
998 page->mapping = NULL;
224abf92 999 if (free_pages_check(page))
689bcebf
HD
1000 return;
1001
3ac7fe5a 1002 if (!PageHighMem(page)) {
9858db50 1003 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1004 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1005 }
dafb1367 1006 arch_free_page(page, 0);
689bcebf
HD
1007 kernel_map_pages(page, 1, 0);
1008
3dfa5721 1009 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1010 local_irq_save(flags);
f8891e5e 1011 __count_vm_event(PGFREE);
3dfa5721
CL
1012 if (cold)
1013 list_add_tail(&page->lru, &pcp->list);
1014 else
1015 list_add(&page->lru, &pcp->list);
535131e6 1016 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1017 pcp->count++;
48db57f8
NP
1018 if (pcp->count >= pcp->high) {
1019 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1020 pcp->count -= pcp->batch;
1021 }
1da177e4
LT
1022 local_irq_restore(flags);
1023 put_cpu();
1024}
1025
920c7a5d 1026void free_hot_page(struct page *page)
1da177e4
LT
1027{
1028 free_hot_cold_page(page, 0);
1029}
1030
920c7a5d 1031void free_cold_page(struct page *page)
1da177e4
LT
1032{
1033 free_hot_cold_page(page, 1);
1034}
1035
8dfcc9ba
NP
1036/*
1037 * split_page takes a non-compound higher-order page, and splits it into
1038 * n (1<<order) sub-pages: page[0..n]
1039 * Each sub-page must be freed individually.
1040 *
1041 * Note: this is probably too low level an operation for use in drivers.
1042 * Please consult with lkml before using this in your driver.
1043 */
1044void split_page(struct page *page, unsigned int order)
1045{
1046 int i;
1047
725d704e
NP
1048 VM_BUG_ON(PageCompound(page));
1049 VM_BUG_ON(!page_count(page));
7835e98b
NP
1050 for (i = 1; i < (1 << order); i++)
1051 set_page_refcounted(page + i);
8dfcc9ba 1052}
8dfcc9ba 1053
1da177e4
LT
1054/*
1055 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1056 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1057 * or two.
1058 */
18ea7e71 1059static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1060 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1061{
1062 unsigned long flags;
689bcebf 1063 struct page *page;
1da177e4 1064 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1065 int cpu;
64c5e135 1066 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1067
689bcebf 1068again:
a74609fa 1069 cpu = get_cpu();
48db57f8 1070 if (likely(order == 0)) {
1da177e4
LT
1071 struct per_cpu_pages *pcp;
1072
3dfa5721 1073 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1074 local_irq_save(flags);
a74609fa 1075 if (!pcp->count) {
941c7105 1076 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1077 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1078 if (unlikely(!pcp->count))
1079 goto failed;
1da177e4 1080 }
b92a6edd 1081
535131e6 1082 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1083 if (cold) {
1084 list_for_each_entry_reverse(page, &pcp->list, lru)
1085 if (page_private(page) == migratetype)
1086 break;
1087 } else {
1088 list_for_each_entry(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 }
535131e6 1092
b92a6edd
MG
1093 /* Allocate more to the pcp list if necessary */
1094 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1095 pcp->count += rmqueue_bulk(zone, 0,
1096 pcp->batch, &pcp->list, migratetype);
1097 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1098 }
b92a6edd
MG
1099
1100 list_del(&page->lru);
1101 pcp->count--;
7fb1d9fc 1102 } else {
1da177e4 1103 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1104 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1105 spin_unlock(&zone->lock);
1106 if (!page)
1107 goto failed;
1da177e4
LT
1108 }
1109
f8891e5e 1110 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1111 zone_statistics(preferred_zone, zone);
a74609fa
NP
1112 local_irq_restore(flags);
1113 put_cpu();
1da177e4 1114
725d704e 1115 VM_BUG_ON(bad_range(zone, page));
17cf4406 1116 if (prep_new_page(page, order, gfp_flags))
a74609fa 1117 goto again;
1da177e4 1118 return page;
a74609fa
NP
1119
1120failed:
1121 local_irq_restore(flags);
1122 put_cpu();
1123 return NULL;
1da177e4
LT
1124}
1125
7fb1d9fc 1126#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1127#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1128#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1129#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1130#define ALLOC_HARDER 0x10 /* try to alloc harder */
1131#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1132#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1133
933e312e
AM
1134#ifdef CONFIG_FAIL_PAGE_ALLOC
1135
1136static struct fail_page_alloc_attr {
1137 struct fault_attr attr;
1138
1139 u32 ignore_gfp_highmem;
1140 u32 ignore_gfp_wait;
54114994 1141 u32 min_order;
933e312e
AM
1142
1143#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1144
1145 struct dentry *ignore_gfp_highmem_file;
1146 struct dentry *ignore_gfp_wait_file;
54114994 1147 struct dentry *min_order_file;
933e312e
AM
1148
1149#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1150
1151} fail_page_alloc = {
1152 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1153 .ignore_gfp_wait = 1,
1154 .ignore_gfp_highmem = 1,
54114994 1155 .min_order = 1,
933e312e
AM
1156};
1157
1158static int __init setup_fail_page_alloc(char *str)
1159{
1160 return setup_fault_attr(&fail_page_alloc.attr, str);
1161}
1162__setup("fail_page_alloc=", setup_fail_page_alloc);
1163
1164static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1165{
54114994
AM
1166 if (order < fail_page_alloc.min_order)
1167 return 0;
933e312e
AM
1168 if (gfp_mask & __GFP_NOFAIL)
1169 return 0;
1170 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1171 return 0;
1172 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1173 return 0;
1174
1175 return should_fail(&fail_page_alloc.attr, 1 << order);
1176}
1177
1178#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1179
1180static int __init fail_page_alloc_debugfs(void)
1181{
1182 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1183 struct dentry *dir;
1184 int err;
1185
1186 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1187 "fail_page_alloc");
1188 if (err)
1189 return err;
1190 dir = fail_page_alloc.attr.dentries.dir;
1191
1192 fail_page_alloc.ignore_gfp_wait_file =
1193 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1194 &fail_page_alloc.ignore_gfp_wait);
1195
1196 fail_page_alloc.ignore_gfp_highmem_file =
1197 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1198 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1199 fail_page_alloc.min_order_file =
1200 debugfs_create_u32("min-order", mode, dir,
1201 &fail_page_alloc.min_order);
933e312e
AM
1202
1203 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1204 !fail_page_alloc.ignore_gfp_highmem_file ||
1205 !fail_page_alloc.min_order_file) {
933e312e
AM
1206 err = -ENOMEM;
1207 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1208 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1209 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1210 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1211 }
1212
1213 return err;
1214}
1215
1216late_initcall(fail_page_alloc_debugfs);
1217
1218#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219
1220#else /* CONFIG_FAIL_PAGE_ALLOC */
1221
1222static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1223{
1224 return 0;
1225}
1226
1227#endif /* CONFIG_FAIL_PAGE_ALLOC */
1228
1da177e4
LT
1229/*
1230 * Return 1 if free pages are above 'mark'. This takes into account the order
1231 * of the allocation.
1232 */
1233int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1234 int classzone_idx, int alloc_flags)
1da177e4
LT
1235{
1236 /* free_pages my go negative - that's OK */
d23ad423
CL
1237 long min = mark;
1238 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1239 int o;
1240
7fb1d9fc 1241 if (alloc_flags & ALLOC_HIGH)
1da177e4 1242 min -= min / 2;
7fb1d9fc 1243 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1244 min -= min / 4;
1245
1246 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1247 return 0;
1248 for (o = 0; o < order; o++) {
1249 /* At the next order, this order's pages become unavailable */
1250 free_pages -= z->free_area[o].nr_free << o;
1251
1252 /* Require fewer higher order pages to be free */
1253 min >>= 1;
1254
1255 if (free_pages <= min)
1256 return 0;
1257 }
1258 return 1;
1259}
1260
9276b1bc
PJ
1261#ifdef CONFIG_NUMA
1262/*
1263 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1264 * skip over zones that are not allowed by the cpuset, or that have
1265 * been recently (in last second) found to be nearly full. See further
1266 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1267 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1268 *
1269 * If the zonelist cache is present in the passed in zonelist, then
1270 * returns a pointer to the allowed node mask (either the current
37b07e41 1271 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1272 *
1273 * If the zonelist cache is not available for this zonelist, does
1274 * nothing and returns NULL.
1275 *
1276 * If the fullzones BITMAP in the zonelist cache is stale (more than
1277 * a second since last zap'd) then we zap it out (clear its bits.)
1278 *
1279 * We hold off even calling zlc_setup, until after we've checked the
1280 * first zone in the zonelist, on the theory that most allocations will
1281 * be satisfied from that first zone, so best to examine that zone as
1282 * quickly as we can.
1283 */
1284static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1285{
1286 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1287 nodemask_t *allowednodes; /* zonelist_cache approximation */
1288
1289 zlc = zonelist->zlcache_ptr;
1290 if (!zlc)
1291 return NULL;
1292
f05111f5 1293 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1294 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1295 zlc->last_full_zap = jiffies;
1296 }
1297
1298 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1299 &cpuset_current_mems_allowed :
37b07e41 1300 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1301 return allowednodes;
1302}
1303
1304/*
1305 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1306 * if it is worth looking at further for free memory:
1307 * 1) Check that the zone isn't thought to be full (doesn't have its
1308 * bit set in the zonelist_cache fullzones BITMAP).
1309 * 2) Check that the zones node (obtained from the zonelist_cache
1310 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1311 * Return true (non-zero) if zone is worth looking at further, or
1312 * else return false (zero) if it is not.
1313 *
1314 * This check -ignores- the distinction between various watermarks,
1315 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1316 * found to be full for any variation of these watermarks, it will
1317 * be considered full for up to one second by all requests, unless
1318 * we are so low on memory on all allowed nodes that we are forced
1319 * into the second scan of the zonelist.
1320 *
1321 * In the second scan we ignore this zonelist cache and exactly
1322 * apply the watermarks to all zones, even it is slower to do so.
1323 * We are low on memory in the second scan, and should leave no stone
1324 * unturned looking for a free page.
1325 */
dd1a239f 1326static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1327 nodemask_t *allowednodes)
1328{
1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1330 int i; /* index of *z in zonelist zones */
1331 int n; /* node that zone *z is on */
1332
1333 zlc = zonelist->zlcache_ptr;
1334 if (!zlc)
1335 return 1;
1336
dd1a239f 1337 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1338 n = zlc->z_to_n[i];
1339
1340 /* This zone is worth trying if it is allowed but not full */
1341 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1342}
1343
1344/*
1345 * Given 'z' scanning a zonelist, set the corresponding bit in
1346 * zlc->fullzones, so that subsequent attempts to allocate a page
1347 * from that zone don't waste time re-examining it.
1348 */
dd1a239f 1349static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1350{
1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1352 int i; /* index of *z in zonelist zones */
1353
1354 zlc = zonelist->zlcache_ptr;
1355 if (!zlc)
1356 return;
1357
dd1a239f 1358 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1359
1360 set_bit(i, zlc->fullzones);
1361}
1362
1363#else /* CONFIG_NUMA */
1364
1365static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366{
1367 return NULL;
1368}
1369
dd1a239f 1370static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1371 nodemask_t *allowednodes)
1372{
1373 return 1;
1374}
1375
dd1a239f 1376static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1377{
1378}
1379#endif /* CONFIG_NUMA */
1380
7fb1d9fc 1381/*
0798e519 1382 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1383 * a page.
1384 */
1385static struct page *
19770b32 1386get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1387 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1388{
dd1a239f 1389 struct zoneref *z;
7fb1d9fc 1390 struct page *page = NULL;
54a6eb5c 1391 int classzone_idx;
18ea7e71 1392 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1393 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1394 int zlc_active = 0; /* set if using zonelist_cache */
1395 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1396
19770b32
MG
1397 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1398 &preferred_zone);
7eb54824
AW
1399 if (!preferred_zone)
1400 return NULL;
1401
19770b32 1402 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1403
9276b1bc 1404zonelist_scan:
7fb1d9fc 1405 /*
9276b1bc 1406 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1407 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1408 */
19770b32
MG
1409 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1410 high_zoneidx, nodemask) {
9276b1bc
PJ
1411 if (NUMA_BUILD && zlc_active &&
1412 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1413 continue;
7fb1d9fc 1414 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1415 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1416 goto try_next_zone;
7fb1d9fc
RS
1417
1418 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1419 unsigned long mark;
1420 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1421 mark = zone->pages_min;
3148890b 1422 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1423 mark = zone->pages_low;
3148890b 1424 else
1192d526 1425 mark = zone->pages_high;
0798e519
PJ
1426 if (!zone_watermark_ok(zone, order, mark,
1427 classzone_idx, alloc_flags)) {
9eeff239 1428 if (!zone_reclaim_mode ||
1192d526 1429 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1430 goto this_zone_full;
0798e519 1431 }
7fb1d9fc
RS
1432 }
1433
18ea7e71 1434 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1435 if (page)
7fb1d9fc 1436 break;
9276b1bc
PJ
1437this_zone_full:
1438 if (NUMA_BUILD)
1439 zlc_mark_zone_full(zonelist, z);
1440try_next_zone:
1441 if (NUMA_BUILD && !did_zlc_setup) {
1442 /* we do zlc_setup after the first zone is tried */
1443 allowednodes = zlc_setup(zonelist, alloc_flags);
1444 zlc_active = 1;
1445 did_zlc_setup = 1;
1446 }
54a6eb5c 1447 }
9276b1bc
PJ
1448
1449 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1450 /* Disable zlc cache for second zonelist scan */
1451 zlc_active = 0;
1452 goto zonelist_scan;
1453 }
7fb1d9fc 1454 return page;
753ee728
MH
1455}
1456
1da177e4
LT
1457/*
1458 * This is the 'heart' of the zoned buddy allocator.
1459 */
e4048e5d 1460struct page *
19770b32
MG
1461__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1462 struct zonelist *zonelist, nodemask_t *nodemask)
1da177e4 1463{
260b2367 1464 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1465 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
dd1a239f
MG
1466 struct zoneref *z;
1467 struct zone *zone;
1da177e4
LT
1468 struct page *page;
1469 struct reclaim_state reclaim_state;
1470 struct task_struct *p = current;
1da177e4 1471 int do_retry;
7fb1d9fc 1472 int alloc_flags;
a41f24ea
NA
1473 unsigned long did_some_progress;
1474 unsigned long pages_reclaimed = 0;
1da177e4 1475
cf40bd16
NP
1476 lockdep_trace_alloc(gfp_mask);
1477
1da177e4
LT
1478 might_sleep_if(wait);
1479
933e312e
AM
1480 if (should_fail_alloc_page(gfp_mask, order))
1481 return NULL;
1482
6b1de916 1483restart:
dd1a239f 1484 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1da177e4 1485
dd1a239f 1486 if (unlikely(!z->zone)) {
523b9458
CL
1487 /*
1488 * Happens if we have an empty zonelist as a result of
1489 * GFP_THISNODE being used on a memoryless node
1490 */
1da177e4
LT
1491 return NULL;
1492 }
6b1de916 1493
19770b32 1494 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
54a6eb5c 1495 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1496 if (page)
1497 goto got_pg;
1da177e4 1498
952f3b51
CL
1499 /*
1500 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1501 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1502 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1503 * using a larger set of nodes after it has established that the
1504 * allowed per node queues are empty and that nodes are
1505 * over allocated.
1506 */
1507 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1508 goto nopage;
1509
dd1a239f
MG
1510 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1511 wakeup_kswapd(zone, order);
1da177e4 1512
9bf2229f 1513 /*
7fb1d9fc
RS
1514 * OK, we're below the kswapd watermark and have kicked background
1515 * reclaim. Now things get more complex, so set up alloc_flags according
1516 * to how we want to proceed.
1517 *
1518 * The caller may dip into page reserves a bit more if the caller
1519 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1520 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1521 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1522 */
3148890b 1523 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1524 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1525 alloc_flags |= ALLOC_HARDER;
1526 if (gfp_mask & __GFP_HIGH)
1527 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1528 if (wait)
1529 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1530
1531 /*
1532 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1533 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1534 *
1535 * This is the last chance, in general, before the goto nopage.
1536 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1537 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1538 */
19770b32 1539 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1540 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1541 if (page)
1542 goto got_pg;
1da177e4
LT
1543
1544 /* This allocation should allow future memory freeing. */
b84a35be 1545
b43a57bb 1546rebalance:
b84a35be
NP
1547 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1548 && !in_interrupt()) {
1549 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1550nofail_alloc:
b84a35be 1551 /* go through the zonelist yet again, ignoring mins */
19770b32 1552 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1553 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1554 if (page)
1555 goto got_pg;
885036d3 1556 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1557 congestion_wait(WRITE, HZ/50);
885036d3
KK
1558 goto nofail_alloc;
1559 }
1da177e4
LT
1560 }
1561 goto nopage;
1562 }
1563
1564 /* Atomic allocations - we can't balance anything */
1565 if (!wait)
1566 goto nopage;
1567
1da177e4
LT
1568 cond_resched();
1569
1570 /* We now go into synchronous reclaim */
3e0d98b9 1571 cpuset_memory_pressure_bump();
e33c3b5e
DR
1572 /*
1573 * The task's cpuset might have expanded its set of allowable nodes
1574 */
1575 cpuset_update_task_memory_state();
1da177e4 1576 p->flags |= PF_MEMALLOC;
cf40bd16
NP
1577
1578 lockdep_set_current_reclaim_state(gfp_mask);
1da177e4
LT
1579 reclaim_state.reclaimed_slab = 0;
1580 p->reclaim_state = &reclaim_state;
1581
327c0e96
KH
1582 did_some_progress = try_to_free_pages(zonelist, order,
1583 gfp_mask, nodemask);
1da177e4
LT
1584
1585 p->reclaim_state = NULL;
cf40bd16 1586 lockdep_clear_current_reclaim_state();
1da177e4
LT
1587 p->flags &= ~PF_MEMALLOC;
1588
1589 cond_resched();
1590
e2c55dc8 1591 if (order != 0)
9f8f2172 1592 drain_all_pages();
e2c55dc8 1593
1da177e4 1594 if (likely(did_some_progress)) {
19770b32 1595 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1596 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1597 if (page)
1598 goto got_pg;
1da177e4 1599 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
dd1a239f 1600 if (!try_set_zone_oom(zonelist, gfp_mask)) {
ff0ceb9d
DR
1601 schedule_timeout_uninterruptible(1);
1602 goto restart;
1603 }
1604
1da177e4
LT
1605 /*
1606 * Go through the zonelist yet one more time, keep
1607 * very high watermark here, this is only to catch
1608 * a parallel oom killing, we must fail if we're still
1609 * under heavy pressure.
1610 */
19770b32
MG
1611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1612 order, zonelist, high_zoneidx,
1613 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d 1614 if (page) {
dd1a239f 1615 clear_zonelist_oom(zonelist, gfp_mask);
7fb1d9fc 1616 goto got_pg;
ff0ceb9d 1617 }
1da177e4 1618
a8bbf72a 1619 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d 1620 if (order > PAGE_ALLOC_COSTLY_ORDER) {
dd1a239f 1621 clear_zonelist_oom(zonelist, gfp_mask);
a8bbf72a 1622 goto nopage;
ff0ceb9d 1623 }
a8bbf72a 1624
9b0f8b04 1625 out_of_memory(zonelist, gfp_mask, order);
dd1a239f 1626 clear_zonelist_oom(zonelist, gfp_mask);
1da177e4
LT
1627 goto restart;
1628 }
1629
1630 /*
1631 * Don't let big-order allocations loop unless the caller explicitly
1632 * requests that. Wait for some write requests to complete then retry.
1633 *
a41f24ea
NA
1634 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1635 * means __GFP_NOFAIL, but that may not be true in other
ab857d09 1636 * implementations.
a41f24ea
NA
1637 *
1638 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1639 * specified, then we retry until we no longer reclaim any pages
1640 * (above), or we've reclaimed an order of pages at least as
1641 * large as the allocation's order. In both cases, if the
1642 * allocation still fails, we stop retrying.
1da177e4 1643 */
a41f24ea 1644 pages_reclaimed += did_some_progress;
1da177e4
LT
1645 do_retry = 0;
1646 if (!(gfp_mask & __GFP_NORETRY)) {
a41f24ea 1647 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1da177e4 1648 do_retry = 1;
a41f24ea
NA
1649 } else {
1650 if (gfp_mask & __GFP_REPEAT &&
1651 pages_reclaimed < (1 << order))
1652 do_retry = 1;
1653 }
1da177e4
LT
1654 if (gfp_mask & __GFP_NOFAIL)
1655 do_retry = 1;
1656 }
1657 if (do_retry) {
3fcfab16 1658 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1659 goto rebalance;
1660 }
1661
1662nopage:
1663 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1664 printk(KERN_WARNING "%s: page allocation failure."
1665 " order:%d, mode:0x%x\n",
1666 p->comm, order, gfp_mask);
1667 dump_stack();
578c2fd6 1668 show_mem();
1da177e4 1669 }
1da177e4 1670got_pg:
1da177e4
LT
1671 return page;
1672}
e4048e5d 1673EXPORT_SYMBOL(__alloc_pages_internal);
1da177e4
LT
1674
1675/*
1676 * Common helper functions.
1677 */
920c7a5d 1678unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1679{
1680 struct page * page;
1681 page = alloc_pages(gfp_mask, order);
1682 if (!page)
1683 return 0;
1684 return (unsigned long) page_address(page);
1685}
1686
1687EXPORT_SYMBOL(__get_free_pages);
1688
920c7a5d 1689unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1690{
1691 struct page * page;
1692
1693 /*
1694 * get_zeroed_page() returns a 32-bit address, which cannot represent
1695 * a highmem page
1696 */
725d704e 1697 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1698
1699 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1700 if (page)
1701 return (unsigned long) page_address(page);
1702 return 0;
1703}
1704
1705EXPORT_SYMBOL(get_zeroed_page);
1706
1707void __pagevec_free(struct pagevec *pvec)
1708{
1709 int i = pagevec_count(pvec);
1710
1711 while (--i >= 0)
1712 free_hot_cold_page(pvec->pages[i], pvec->cold);
1713}
1714
920c7a5d 1715void __free_pages(struct page *page, unsigned int order)
1da177e4 1716{
b5810039 1717 if (put_page_testzero(page)) {
1da177e4
LT
1718 if (order == 0)
1719 free_hot_page(page);
1720 else
1721 __free_pages_ok(page, order);
1722 }
1723}
1724
1725EXPORT_SYMBOL(__free_pages);
1726
920c7a5d 1727void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1728{
1729 if (addr != 0) {
725d704e 1730 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1731 __free_pages(virt_to_page((void *)addr), order);
1732 }
1733}
1734
1735EXPORT_SYMBOL(free_pages);
1736
2be0ffe2
TT
1737/**
1738 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1739 * @size: the number of bytes to allocate
1740 * @gfp_mask: GFP flags for the allocation
1741 *
1742 * This function is similar to alloc_pages(), except that it allocates the
1743 * minimum number of pages to satisfy the request. alloc_pages() can only
1744 * allocate memory in power-of-two pages.
1745 *
1746 * This function is also limited by MAX_ORDER.
1747 *
1748 * Memory allocated by this function must be released by free_pages_exact().
1749 */
1750void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1751{
1752 unsigned int order = get_order(size);
1753 unsigned long addr;
1754
1755 addr = __get_free_pages(gfp_mask, order);
1756 if (addr) {
1757 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1758 unsigned long used = addr + PAGE_ALIGN(size);
1759
1760 split_page(virt_to_page(addr), order);
1761 while (used < alloc_end) {
1762 free_page(used);
1763 used += PAGE_SIZE;
1764 }
1765 }
1766
1767 return (void *)addr;
1768}
1769EXPORT_SYMBOL(alloc_pages_exact);
1770
1771/**
1772 * free_pages_exact - release memory allocated via alloc_pages_exact()
1773 * @virt: the value returned by alloc_pages_exact.
1774 * @size: size of allocation, same value as passed to alloc_pages_exact().
1775 *
1776 * Release the memory allocated by a previous call to alloc_pages_exact.
1777 */
1778void free_pages_exact(void *virt, size_t size)
1779{
1780 unsigned long addr = (unsigned long)virt;
1781 unsigned long end = addr + PAGE_ALIGN(size);
1782
1783 while (addr < end) {
1784 free_page(addr);
1785 addr += PAGE_SIZE;
1786 }
1787}
1788EXPORT_SYMBOL(free_pages_exact);
1789
1da177e4
LT
1790static unsigned int nr_free_zone_pages(int offset)
1791{
dd1a239f 1792 struct zoneref *z;
54a6eb5c
MG
1793 struct zone *zone;
1794
e310fd43 1795 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1796 unsigned int sum = 0;
1797
0e88460d 1798 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1799
54a6eb5c 1800 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1801 unsigned long size = zone->present_pages;
1802 unsigned long high = zone->pages_high;
1803 if (size > high)
1804 sum += size - high;
1da177e4
LT
1805 }
1806
1807 return sum;
1808}
1809
1810/*
1811 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1812 */
1813unsigned int nr_free_buffer_pages(void)
1814{
af4ca457 1815 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1816}
c2f1a551 1817EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1818
1819/*
1820 * Amount of free RAM allocatable within all zones
1821 */
1822unsigned int nr_free_pagecache_pages(void)
1823{
2a1e274a 1824 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1825}
08e0f6a9
CL
1826
1827static inline void show_node(struct zone *zone)
1da177e4 1828{
08e0f6a9 1829 if (NUMA_BUILD)
25ba77c1 1830 printk("Node %d ", zone_to_nid(zone));
1da177e4 1831}
1da177e4 1832
1da177e4
LT
1833void si_meminfo(struct sysinfo *val)
1834{
1835 val->totalram = totalram_pages;
1836 val->sharedram = 0;
d23ad423 1837 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1838 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1839 val->totalhigh = totalhigh_pages;
1840 val->freehigh = nr_free_highpages();
1da177e4
LT
1841 val->mem_unit = PAGE_SIZE;
1842}
1843
1844EXPORT_SYMBOL(si_meminfo);
1845
1846#ifdef CONFIG_NUMA
1847void si_meminfo_node(struct sysinfo *val, int nid)
1848{
1849 pg_data_t *pgdat = NODE_DATA(nid);
1850
1851 val->totalram = pgdat->node_present_pages;
d23ad423 1852 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1853#ifdef CONFIG_HIGHMEM
1da177e4 1854 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1855 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1856 NR_FREE_PAGES);
98d2b0eb
CL
1857#else
1858 val->totalhigh = 0;
1859 val->freehigh = 0;
1860#endif
1da177e4
LT
1861 val->mem_unit = PAGE_SIZE;
1862}
1863#endif
1864
1865#define K(x) ((x) << (PAGE_SHIFT-10))
1866
1867/*
1868 * Show free area list (used inside shift_scroll-lock stuff)
1869 * We also calculate the percentage fragmentation. We do this by counting the
1870 * memory on each free list with the exception of the first item on the list.
1871 */
1872void show_free_areas(void)
1873{
c7241913 1874 int cpu;
1da177e4
LT
1875 struct zone *zone;
1876
ee99c71c 1877 for_each_populated_zone(zone) {
c7241913
JS
1878 show_node(zone);
1879 printk("%s per-cpu:\n", zone->name);
1da177e4 1880
6b482c67 1881 for_each_online_cpu(cpu) {
1da177e4
LT
1882 struct per_cpu_pageset *pageset;
1883
e7c8d5c9 1884 pageset = zone_pcp(zone, cpu);
1da177e4 1885
3dfa5721
CL
1886 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1887 cpu, pageset->pcp.high,
1888 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1889 }
1890 }
1891
7b854121
LS
1892 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1893 " inactive_file:%lu"
1894//TODO: check/adjust line lengths
1895#ifdef CONFIG_UNEVICTABLE_LRU
1896 " unevictable:%lu"
1897#endif
1898 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1899 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
1900 global_page_state(NR_ACTIVE_ANON),
1901 global_page_state(NR_ACTIVE_FILE),
1902 global_page_state(NR_INACTIVE_ANON),
1903 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
1904#ifdef CONFIG_UNEVICTABLE_LRU
1905 global_page_state(NR_UNEVICTABLE),
1906#endif
b1e7a8fd 1907 global_page_state(NR_FILE_DIRTY),
ce866b34 1908 global_page_state(NR_WRITEBACK),
fd39fc85 1909 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1910 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1911 global_page_state(NR_SLAB_RECLAIMABLE) +
1912 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1913 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1914 global_page_state(NR_PAGETABLE),
1915 global_page_state(NR_BOUNCE));
1da177e4 1916
ee99c71c 1917 for_each_populated_zone(zone) {
1da177e4
LT
1918 int i;
1919
1920 show_node(zone);
1921 printk("%s"
1922 " free:%lukB"
1923 " min:%lukB"
1924 " low:%lukB"
1925 " high:%lukB"
4f98a2fe
RR
1926 " active_anon:%lukB"
1927 " inactive_anon:%lukB"
1928 " active_file:%lukB"
1929 " inactive_file:%lukB"
7b854121
LS
1930#ifdef CONFIG_UNEVICTABLE_LRU
1931 " unevictable:%lukB"
1932#endif
1da177e4
LT
1933 " present:%lukB"
1934 " pages_scanned:%lu"
1935 " all_unreclaimable? %s"
1936 "\n",
1937 zone->name,
d23ad423 1938 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1939 K(zone->pages_min),
1940 K(zone->pages_low),
1941 K(zone->pages_high),
4f98a2fe
RR
1942 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1943 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1944 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1945 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
1946#ifdef CONFIG_UNEVICTABLE_LRU
1947 K(zone_page_state(zone, NR_UNEVICTABLE)),
1948#endif
1da177e4
LT
1949 K(zone->present_pages),
1950 zone->pages_scanned,
e815af95 1951 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1952 );
1953 printk("lowmem_reserve[]:");
1954 for (i = 0; i < MAX_NR_ZONES; i++)
1955 printk(" %lu", zone->lowmem_reserve[i]);
1956 printk("\n");
1957 }
1958
ee99c71c 1959 for_each_populated_zone(zone) {
8f9de51a 1960 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1961
1962 show_node(zone);
1963 printk("%s: ", zone->name);
1da177e4
LT
1964
1965 spin_lock_irqsave(&zone->lock, flags);
1966 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1967 nr[order] = zone->free_area[order].nr_free;
1968 total += nr[order] << order;
1da177e4
LT
1969 }
1970 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1971 for (order = 0; order < MAX_ORDER; order++)
1972 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1973 printk("= %lukB\n", K(total));
1974 }
1975
e6f3602d
LW
1976 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1977
1da177e4
LT
1978 show_swap_cache_info();
1979}
1980
19770b32
MG
1981static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1982{
1983 zoneref->zone = zone;
1984 zoneref->zone_idx = zone_idx(zone);
1985}
1986
1da177e4
LT
1987/*
1988 * Builds allocation fallback zone lists.
1a93205b
CL
1989 *
1990 * Add all populated zones of a node to the zonelist.
1da177e4 1991 */
f0c0b2b8
KH
1992static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1993 int nr_zones, enum zone_type zone_type)
1da177e4 1994{
1a93205b
CL
1995 struct zone *zone;
1996
98d2b0eb 1997 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1998 zone_type++;
02a68a5e
CL
1999
2000 do {
2f6726e5 2001 zone_type--;
070f8032 2002 zone = pgdat->node_zones + zone_type;
1a93205b 2003 if (populated_zone(zone)) {
dd1a239f
MG
2004 zoneref_set_zone(zone,
2005 &zonelist->_zonerefs[nr_zones++]);
070f8032 2006 check_highest_zone(zone_type);
1da177e4 2007 }
02a68a5e 2008
2f6726e5 2009 } while (zone_type);
070f8032 2010 return nr_zones;
1da177e4
LT
2011}
2012
f0c0b2b8
KH
2013
2014/*
2015 * zonelist_order:
2016 * 0 = automatic detection of better ordering.
2017 * 1 = order by ([node] distance, -zonetype)
2018 * 2 = order by (-zonetype, [node] distance)
2019 *
2020 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2021 * the same zonelist. So only NUMA can configure this param.
2022 */
2023#define ZONELIST_ORDER_DEFAULT 0
2024#define ZONELIST_ORDER_NODE 1
2025#define ZONELIST_ORDER_ZONE 2
2026
2027/* zonelist order in the kernel.
2028 * set_zonelist_order() will set this to NODE or ZONE.
2029 */
2030static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2031static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2032
2033
1da177e4 2034#ifdef CONFIG_NUMA
f0c0b2b8
KH
2035/* The value user specified ....changed by config */
2036static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2037/* string for sysctl */
2038#define NUMA_ZONELIST_ORDER_LEN 16
2039char numa_zonelist_order[16] = "default";
2040
2041/*
2042 * interface for configure zonelist ordering.
2043 * command line option "numa_zonelist_order"
2044 * = "[dD]efault - default, automatic configuration.
2045 * = "[nN]ode - order by node locality, then by zone within node
2046 * = "[zZ]one - order by zone, then by locality within zone
2047 */
2048
2049static int __parse_numa_zonelist_order(char *s)
2050{
2051 if (*s == 'd' || *s == 'D') {
2052 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2053 } else if (*s == 'n' || *s == 'N') {
2054 user_zonelist_order = ZONELIST_ORDER_NODE;
2055 } else if (*s == 'z' || *s == 'Z') {
2056 user_zonelist_order = ZONELIST_ORDER_ZONE;
2057 } else {
2058 printk(KERN_WARNING
2059 "Ignoring invalid numa_zonelist_order value: "
2060 "%s\n", s);
2061 return -EINVAL;
2062 }
2063 return 0;
2064}
2065
2066static __init int setup_numa_zonelist_order(char *s)
2067{
2068 if (s)
2069 return __parse_numa_zonelist_order(s);
2070 return 0;
2071}
2072early_param("numa_zonelist_order", setup_numa_zonelist_order);
2073
2074/*
2075 * sysctl handler for numa_zonelist_order
2076 */
2077int numa_zonelist_order_handler(ctl_table *table, int write,
2078 struct file *file, void __user *buffer, size_t *length,
2079 loff_t *ppos)
2080{
2081 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2082 int ret;
2083
2084 if (write)
2085 strncpy(saved_string, (char*)table->data,
2086 NUMA_ZONELIST_ORDER_LEN);
2087 ret = proc_dostring(table, write, file, buffer, length, ppos);
2088 if (ret)
2089 return ret;
2090 if (write) {
2091 int oldval = user_zonelist_order;
2092 if (__parse_numa_zonelist_order((char*)table->data)) {
2093 /*
2094 * bogus value. restore saved string
2095 */
2096 strncpy((char*)table->data, saved_string,
2097 NUMA_ZONELIST_ORDER_LEN);
2098 user_zonelist_order = oldval;
2099 } else if (oldval != user_zonelist_order)
2100 build_all_zonelists();
2101 }
2102 return 0;
2103}
2104
2105
1da177e4 2106#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2107static int node_load[MAX_NUMNODES];
2108
1da177e4 2109/**
4dc3b16b 2110 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2111 * @node: node whose fallback list we're appending
2112 * @used_node_mask: nodemask_t of already used nodes
2113 *
2114 * We use a number of factors to determine which is the next node that should
2115 * appear on a given node's fallback list. The node should not have appeared
2116 * already in @node's fallback list, and it should be the next closest node
2117 * according to the distance array (which contains arbitrary distance values
2118 * from each node to each node in the system), and should also prefer nodes
2119 * with no CPUs, since presumably they'll have very little allocation pressure
2120 * on them otherwise.
2121 * It returns -1 if no node is found.
2122 */
f0c0b2b8 2123static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2124{
4cf808eb 2125 int n, val;
1da177e4
LT
2126 int min_val = INT_MAX;
2127 int best_node = -1;
a70f7302 2128 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2129
4cf808eb
LT
2130 /* Use the local node if we haven't already */
2131 if (!node_isset(node, *used_node_mask)) {
2132 node_set(node, *used_node_mask);
2133 return node;
2134 }
1da177e4 2135
37b07e41 2136 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2137
2138 /* Don't want a node to appear more than once */
2139 if (node_isset(n, *used_node_mask))
2140 continue;
2141
1da177e4
LT
2142 /* Use the distance array to find the distance */
2143 val = node_distance(node, n);
2144
4cf808eb
LT
2145 /* Penalize nodes under us ("prefer the next node") */
2146 val += (n < node);
2147
1da177e4 2148 /* Give preference to headless and unused nodes */
a70f7302
RR
2149 tmp = cpumask_of_node(n);
2150 if (!cpumask_empty(tmp))
1da177e4
LT
2151 val += PENALTY_FOR_NODE_WITH_CPUS;
2152
2153 /* Slight preference for less loaded node */
2154 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2155 val += node_load[n];
2156
2157 if (val < min_val) {
2158 min_val = val;
2159 best_node = n;
2160 }
2161 }
2162
2163 if (best_node >= 0)
2164 node_set(best_node, *used_node_mask);
2165
2166 return best_node;
2167}
2168
f0c0b2b8
KH
2169
2170/*
2171 * Build zonelists ordered by node and zones within node.
2172 * This results in maximum locality--normal zone overflows into local
2173 * DMA zone, if any--but risks exhausting DMA zone.
2174 */
2175static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2176{
f0c0b2b8 2177 int j;
1da177e4 2178 struct zonelist *zonelist;
f0c0b2b8 2179
54a6eb5c 2180 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2181 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2182 ;
2183 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2184 MAX_NR_ZONES - 1);
dd1a239f
MG
2185 zonelist->_zonerefs[j].zone = NULL;
2186 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2187}
2188
523b9458
CL
2189/*
2190 * Build gfp_thisnode zonelists
2191 */
2192static void build_thisnode_zonelists(pg_data_t *pgdat)
2193{
523b9458
CL
2194 int j;
2195 struct zonelist *zonelist;
2196
54a6eb5c
MG
2197 zonelist = &pgdat->node_zonelists[1];
2198 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2199 zonelist->_zonerefs[j].zone = NULL;
2200 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2201}
2202
f0c0b2b8
KH
2203/*
2204 * Build zonelists ordered by zone and nodes within zones.
2205 * This results in conserving DMA zone[s] until all Normal memory is
2206 * exhausted, but results in overflowing to remote node while memory
2207 * may still exist in local DMA zone.
2208 */
2209static int node_order[MAX_NUMNODES];
2210
2211static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2212{
f0c0b2b8
KH
2213 int pos, j, node;
2214 int zone_type; /* needs to be signed */
2215 struct zone *z;
2216 struct zonelist *zonelist;
2217
54a6eb5c
MG
2218 zonelist = &pgdat->node_zonelists[0];
2219 pos = 0;
2220 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2221 for (j = 0; j < nr_nodes; j++) {
2222 node = node_order[j];
2223 z = &NODE_DATA(node)->node_zones[zone_type];
2224 if (populated_zone(z)) {
dd1a239f
MG
2225 zoneref_set_zone(z,
2226 &zonelist->_zonerefs[pos++]);
54a6eb5c 2227 check_highest_zone(zone_type);
f0c0b2b8
KH
2228 }
2229 }
f0c0b2b8 2230 }
dd1a239f
MG
2231 zonelist->_zonerefs[pos].zone = NULL;
2232 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2233}
2234
2235static int default_zonelist_order(void)
2236{
2237 int nid, zone_type;
2238 unsigned long low_kmem_size,total_size;
2239 struct zone *z;
2240 int average_size;
2241 /*
2242 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2243 * If they are really small and used heavily, the system can fall
2244 * into OOM very easily.
2245 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2246 */
2247 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2248 low_kmem_size = 0;
2249 total_size = 0;
2250 for_each_online_node(nid) {
2251 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2252 z = &NODE_DATA(nid)->node_zones[zone_type];
2253 if (populated_zone(z)) {
2254 if (zone_type < ZONE_NORMAL)
2255 low_kmem_size += z->present_pages;
2256 total_size += z->present_pages;
2257 }
2258 }
2259 }
2260 if (!low_kmem_size || /* there are no DMA area. */
2261 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2262 return ZONELIST_ORDER_NODE;
2263 /*
2264 * look into each node's config.
2265 * If there is a node whose DMA/DMA32 memory is very big area on
2266 * local memory, NODE_ORDER may be suitable.
2267 */
37b07e41
LS
2268 average_size = total_size /
2269 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2270 for_each_online_node(nid) {
2271 low_kmem_size = 0;
2272 total_size = 0;
2273 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2274 z = &NODE_DATA(nid)->node_zones[zone_type];
2275 if (populated_zone(z)) {
2276 if (zone_type < ZONE_NORMAL)
2277 low_kmem_size += z->present_pages;
2278 total_size += z->present_pages;
2279 }
2280 }
2281 if (low_kmem_size &&
2282 total_size > average_size && /* ignore small node */
2283 low_kmem_size > total_size * 70/100)
2284 return ZONELIST_ORDER_NODE;
2285 }
2286 return ZONELIST_ORDER_ZONE;
2287}
2288
2289static void set_zonelist_order(void)
2290{
2291 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2292 current_zonelist_order = default_zonelist_order();
2293 else
2294 current_zonelist_order = user_zonelist_order;
2295}
2296
2297static void build_zonelists(pg_data_t *pgdat)
2298{
2299 int j, node, load;
2300 enum zone_type i;
1da177e4 2301 nodemask_t used_mask;
f0c0b2b8
KH
2302 int local_node, prev_node;
2303 struct zonelist *zonelist;
2304 int order = current_zonelist_order;
1da177e4
LT
2305
2306 /* initialize zonelists */
523b9458 2307 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2308 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2309 zonelist->_zonerefs[0].zone = NULL;
2310 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2311 }
2312
2313 /* NUMA-aware ordering of nodes */
2314 local_node = pgdat->node_id;
2315 load = num_online_nodes();
2316 prev_node = local_node;
2317 nodes_clear(used_mask);
f0c0b2b8
KH
2318
2319 memset(node_load, 0, sizeof(node_load));
2320 memset(node_order, 0, sizeof(node_order));
2321 j = 0;
2322
1da177e4 2323 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2324 int distance = node_distance(local_node, node);
2325
2326 /*
2327 * If another node is sufficiently far away then it is better
2328 * to reclaim pages in a zone before going off node.
2329 */
2330 if (distance > RECLAIM_DISTANCE)
2331 zone_reclaim_mode = 1;
2332
1da177e4
LT
2333 /*
2334 * We don't want to pressure a particular node.
2335 * So adding penalty to the first node in same
2336 * distance group to make it round-robin.
2337 */
9eeff239 2338 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2339 node_load[node] = load;
2340
1da177e4
LT
2341 prev_node = node;
2342 load--;
f0c0b2b8
KH
2343 if (order == ZONELIST_ORDER_NODE)
2344 build_zonelists_in_node_order(pgdat, node);
2345 else
2346 node_order[j++] = node; /* remember order */
2347 }
1da177e4 2348
f0c0b2b8
KH
2349 if (order == ZONELIST_ORDER_ZONE) {
2350 /* calculate node order -- i.e., DMA last! */
2351 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2352 }
523b9458
CL
2353
2354 build_thisnode_zonelists(pgdat);
1da177e4
LT
2355}
2356
9276b1bc 2357/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2358static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2359{
54a6eb5c
MG
2360 struct zonelist *zonelist;
2361 struct zonelist_cache *zlc;
dd1a239f 2362 struct zoneref *z;
9276b1bc 2363
54a6eb5c
MG
2364 zonelist = &pgdat->node_zonelists[0];
2365 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2366 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2367 for (z = zonelist->_zonerefs; z->zone; z++)
2368 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2369}
2370
f0c0b2b8 2371
1da177e4
LT
2372#else /* CONFIG_NUMA */
2373
f0c0b2b8
KH
2374static void set_zonelist_order(void)
2375{
2376 current_zonelist_order = ZONELIST_ORDER_ZONE;
2377}
2378
2379static void build_zonelists(pg_data_t *pgdat)
1da177e4 2380{
19655d34 2381 int node, local_node;
54a6eb5c
MG
2382 enum zone_type j;
2383 struct zonelist *zonelist;
1da177e4
LT
2384
2385 local_node = pgdat->node_id;
1da177e4 2386
54a6eb5c
MG
2387 zonelist = &pgdat->node_zonelists[0];
2388 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2389
54a6eb5c
MG
2390 /*
2391 * Now we build the zonelist so that it contains the zones
2392 * of all the other nodes.
2393 * We don't want to pressure a particular node, so when
2394 * building the zones for node N, we make sure that the
2395 * zones coming right after the local ones are those from
2396 * node N+1 (modulo N)
2397 */
2398 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2399 if (!node_online(node))
2400 continue;
2401 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2402 MAX_NR_ZONES - 1);
1da177e4 2403 }
54a6eb5c
MG
2404 for (node = 0; node < local_node; node++) {
2405 if (!node_online(node))
2406 continue;
2407 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2408 MAX_NR_ZONES - 1);
2409 }
2410
dd1a239f
MG
2411 zonelist->_zonerefs[j].zone = NULL;
2412 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2413}
2414
9276b1bc 2415/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2416static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2417{
54a6eb5c 2418 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2419}
2420
1da177e4
LT
2421#endif /* CONFIG_NUMA */
2422
9b1a4d38 2423/* return values int ....just for stop_machine() */
f0c0b2b8 2424static int __build_all_zonelists(void *dummy)
1da177e4 2425{
6811378e 2426 int nid;
9276b1bc
PJ
2427
2428 for_each_online_node(nid) {
7ea1530a
CL
2429 pg_data_t *pgdat = NODE_DATA(nid);
2430
2431 build_zonelists(pgdat);
2432 build_zonelist_cache(pgdat);
9276b1bc 2433 }
6811378e
YG
2434 return 0;
2435}
2436
f0c0b2b8 2437void build_all_zonelists(void)
6811378e 2438{
f0c0b2b8
KH
2439 set_zonelist_order();
2440
6811378e 2441 if (system_state == SYSTEM_BOOTING) {
423b41d7 2442 __build_all_zonelists(NULL);
68ad8df4 2443 mminit_verify_zonelist();
6811378e
YG
2444 cpuset_init_current_mems_allowed();
2445 } else {
183ff22b 2446 /* we have to stop all cpus to guarantee there is no user
6811378e 2447 of zonelist */
9b1a4d38 2448 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2449 /* cpuset refresh routine should be here */
2450 }
bd1e22b8 2451 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2452 /*
2453 * Disable grouping by mobility if the number of pages in the
2454 * system is too low to allow the mechanism to work. It would be
2455 * more accurate, but expensive to check per-zone. This check is
2456 * made on memory-hotadd so a system can start with mobility
2457 * disabled and enable it later
2458 */
d9c23400 2459 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2460 page_group_by_mobility_disabled = 1;
2461 else
2462 page_group_by_mobility_disabled = 0;
2463
2464 printk("Built %i zonelists in %s order, mobility grouping %s. "
2465 "Total pages: %ld\n",
f0c0b2b8
KH
2466 num_online_nodes(),
2467 zonelist_order_name[current_zonelist_order],
9ef9acb0 2468 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2469 vm_total_pages);
2470#ifdef CONFIG_NUMA
2471 printk("Policy zone: %s\n", zone_names[policy_zone]);
2472#endif
1da177e4
LT
2473}
2474
2475/*
2476 * Helper functions to size the waitqueue hash table.
2477 * Essentially these want to choose hash table sizes sufficiently
2478 * large so that collisions trying to wait on pages are rare.
2479 * But in fact, the number of active page waitqueues on typical
2480 * systems is ridiculously low, less than 200. So this is even
2481 * conservative, even though it seems large.
2482 *
2483 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2484 * waitqueues, i.e. the size of the waitq table given the number of pages.
2485 */
2486#define PAGES_PER_WAITQUEUE 256
2487
cca448fe 2488#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2489static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2490{
2491 unsigned long size = 1;
2492
2493 pages /= PAGES_PER_WAITQUEUE;
2494
2495 while (size < pages)
2496 size <<= 1;
2497
2498 /*
2499 * Once we have dozens or even hundreds of threads sleeping
2500 * on IO we've got bigger problems than wait queue collision.
2501 * Limit the size of the wait table to a reasonable size.
2502 */
2503 size = min(size, 4096UL);
2504
2505 return max(size, 4UL);
2506}
cca448fe
YG
2507#else
2508/*
2509 * A zone's size might be changed by hot-add, so it is not possible to determine
2510 * a suitable size for its wait_table. So we use the maximum size now.
2511 *
2512 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2513 *
2514 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2515 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2516 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2517 *
2518 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2519 * or more by the traditional way. (See above). It equals:
2520 *
2521 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2522 * ia64(16K page size) : = ( 8G + 4M)byte.
2523 * powerpc (64K page size) : = (32G +16M)byte.
2524 */
2525static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2526{
2527 return 4096UL;
2528}
2529#endif
1da177e4
LT
2530
2531/*
2532 * This is an integer logarithm so that shifts can be used later
2533 * to extract the more random high bits from the multiplicative
2534 * hash function before the remainder is taken.
2535 */
2536static inline unsigned long wait_table_bits(unsigned long size)
2537{
2538 return ffz(~size);
2539}
2540
2541#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2542
56fd56b8 2543/*
d9c23400 2544 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2545 * of blocks reserved is based on zone->pages_min. The memory within the
2546 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2547 * higher will lead to a bigger reserve which will get freed as contiguous
2548 * blocks as reclaim kicks in
2549 */
2550static void setup_zone_migrate_reserve(struct zone *zone)
2551{
2552 unsigned long start_pfn, pfn, end_pfn;
2553 struct page *page;
2554 unsigned long reserve, block_migratetype;
2555
2556 /* Get the start pfn, end pfn and the number of blocks to reserve */
2557 start_pfn = zone->zone_start_pfn;
2558 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2559 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2560 pageblock_order;
56fd56b8 2561
d9c23400 2562 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2563 if (!pfn_valid(pfn))
2564 continue;
2565 page = pfn_to_page(pfn);
2566
344c790e
AL
2567 /* Watch out for overlapping nodes */
2568 if (page_to_nid(page) != zone_to_nid(zone))
2569 continue;
2570
56fd56b8
MG
2571 /* Blocks with reserved pages will never free, skip them. */
2572 if (PageReserved(page))
2573 continue;
2574
2575 block_migratetype = get_pageblock_migratetype(page);
2576
2577 /* If this block is reserved, account for it */
2578 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2579 reserve--;
2580 continue;
2581 }
2582
2583 /* Suitable for reserving if this block is movable */
2584 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2585 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2586 move_freepages_block(zone, page, MIGRATE_RESERVE);
2587 reserve--;
2588 continue;
2589 }
2590
2591 /*
2592 * If the reserve is met and this is a previous reserved block,
2593 * take it back
2594 */
2595 if (block_migratetype == MIGRATE_RESERVE) {
2596 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2597 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2598 }
2599 }
2600}
ac0e5b7a 2601
1da177e4
LT
2602/*
2603 * Initially all pages are reserved - free ones are freed
2604 * up by free_all_bootmem() once the early boot process is
2605 * done. Non-atomic initialization, single-pass.
2606 */
c09b4240 2607void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2608 unsigned long start_pfn, enum memmap_context context)
1da177e4 2609{
1da177e4 2610 struct page *page;
29751f69
AW
2611 unsigned long end_pfn = start_pfn + size;
2612 unsigned long pfn;
86051ca5 2613 struct zone *z;
1da177e4 2614
22b31eec
HD
2615 if (highest_memmap_pfn < end_pfn - 1)
2616 highest_memmap_pfn = end_pfn - 1;
2617
86051ca5 2618 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2619 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2620 /*
2621 * There can be holes in boot-time mem_map[]s
2622 * handed to this function. They do not
2623 * exist on hotplugged memory.
2624 */
2625 if (context == MEMMAP_EARLY) {
2626 if (!early_pfn_valid(pfn))
2627 continue;
2628 if (!early_pfn_in_nid(pfn, nid))
2629 continue;
2630 }
d41dee36
AW
2631 page = pfn_to_page(pfn);
2632 set_page_links(page, zone, nid, pfn);
708614e6 2633 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2634 init_page_count(page);
1da177e4
LT
2635 reset_page_mapcount(page);
2636 SetPageReserved(page);
b2a0ac88
MG
2637 /*
2638 * Mark the block movable so that blocks are reserved for
2639 * movable at startup. This will force kernel allocations
2640 * to reserve their blocks rather than leaking throughout
2641 * the address space during boot when many long-lived
56fd56b8
MG
2642 * kernel allocations are made. Later some blocks near
2643 * the start are marked MIGRATE_RESERVE by
2644 * setup_zone_migrate_reserve()
86051ca5
KH
2645 *
2646 * bitmap is created for zone's valid pfn range. but memmap
2647 * can be created for invalid pages (for alignment)
2648 * check here not to call set_pageblock_migratetype() against
2649 * pfn out of zone.
b2a0ac88 2650 */
86051ca5
KH
2651 if ((z->zone_start_pfn <= pfn)
2652 && (pfn < z->zone_start_pfn + z->spanned_pages)
2653 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2654 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2655
1da177e4
LT
2656 INIT_LIST_HEAD(&page->lru);
2657#ifdef WANT_PAGE_VIRTUAL
2658 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2659 if (!is_highmem_idx(zone))
3212c6be 2660 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2661#endif
1da177e4
LT
2662 }
2663}
2664
1e548deb 2665static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2666{
b2a0ac88
MG
2667 int order, t;
2668 for_each_migratetype_order(order, t) {
2669 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2670 zone->free_area[order].nr_free = 0;
2671 }
2672}
2673
2674#ifndef __HAVE_ARCH_MEMMAP_INIT
2675#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2676 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2677#endif
2678
1d6f4e60 2679static int zone_batchsize(struct zone *zone)
e7c8d5c9 2680{
3a6be87f 2681#ifdef CONFIG_MMU
e7c8d5c9
CL
2682 int batch;
2683
2684 /*
2685 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2686 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2687 *
2688 * OK, so we don't know how big the cache is. So guess.
2689 */
2690 batch = zone->present_pages / 1024;
ba56e91c
SR
2691 if (batch * PAGE_SIZE > 512 * 1024)
2692 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2693 batch /= 4; /* We effectively *= 4 below */
2694 if (batch < 1)
2695 batch = 1;
2696
2697 /*
0ceaacc9
NP
2698 * Clamp the batch to a 2^n - 1 value. Having a power
2699 * of 2 value was found to be more likely to have
2700 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2701 *
0ceaacc9
NP
2702 * For example if 2 tasks are alternately allocating
2703 * batches of pages, one task can end up with a lot
2704 * of pages of one half of the possible page colors
2705 * and the other with pages of the other colors.
e7c8d5c9 2706 */
9155203a 2707 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2708
e7c8d5c9 2709 return batch;
3a6be87f
DH
2710
2711#else
2712 /* The deferral and batching of frees should be suppressed under NOMMU
2713 * conditions.
2714 *
2715 * The problem is that NOMMU needs to be able to allocate large chunks
2716 * of contiguous memory as there's no hardware page translation to
2717 * assemble apparent contiguous memory from discontiguous pages.
2718 *
2719 * Queueing large contiguous runs of pages for batching, however,
2720 * causes the pages to actually be freed in smaller chunks. As there
2721 * can be a significant delay between the individual batches being
2722 * recycled, this leads to the once large chunks of space being
2723 * fragmented and becoming unavailable for high-order allocations.
2724 */
2725 return 0;
2726#endif
e7c8d5c9
CL
2727}
2728
b69a7288 2729static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2730{
2731 struct per_cpu_pages *pcp;
2732
1c6fe946
MD
2733 memset(p, 0, sizeof(*p));
2734
3dfa5721 2735 pcp = &p->pcp;
2caaad41 2736 pcp->count = 0;
2caaad41
CL
2737 pcp->high = 6 * batch;
2738 pcp->batch = max(1UL, 1 * batch);
2739 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2740}
2741
8ad4b1fb
RS
2742/*
2743 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2744 * to the value high for the pageset p.
2745 */
2746
2747static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2748 unsigned long high)
2749{
2750 struct per_cpu_pages *pcp;
2751
3dfa5721 2752 pcp = &p->pcp;
8ad4b1fb
RS
2753 pcp->high = high;
2754 pcp->batch = max(1UL, high/4);
2755 if ((high/4) > (PAGE_SHIFT * 8))
2756 pcp->batch = PAGE_SHIFT * 8;
2757}
2758
2759
e7c8d5c9
CL
2760#ifdef CONFIG_NUMA
2761/*
2caaad41
CL
2762 * Boot pageset table. One per cpu which is going to be used for all
2763 * zones and all nodes. The parameters will be set in such a way
2764 * that an item put on a list will immediately be handed over to
2765 * the buddy list. This is safe since pageset manipulation is done
2766 * with interrupts disabled.
2767 *
2768 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2769 *
2770 * The boot_pagesets must be kept even after bootup is complete for
2771 * unused processors and/or zones. They do play a role for bootstrapping
2772 * hotplugged processors.
2773 *
2774 * zoneinfo_show() and maybe other functions do
2775 * not check if the processor is online before following the pageset pointer.
2776 * Other parts of the kernel may not check if the zone is available.
2caaad41 2777 */
88a2a4ac 2778static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2779
2780/*
2781 * Dynamically allocate memory for the
e7c8d5c9
CL
2782 * per cpu pageset array in struct zone.
2783 */
6292d9aa 2784static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2785{
2786 struct zone *zone, *dzone;
37c0708d
CL
2787 int node = cpu_to_node(cpu);
2788
2789 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2790
ee99c71c 2791 for_each_populated_zone(zone) {
23316bc8 2792 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2793 GFP_KERNEL, node);
23316bc8 2794 if (!zone_pcp(zone, cpu))
e7c8d5c9 2795 goto bad;
e7c8d5c9 2796
23316bc8 2797 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2798
2799 if (percpu_pagelist_fraction)
2800 setup_pagelist_highmark(zone_pcp(zone, cpu),
2801 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2802 }
2803
2804 return 0;
2805bad:
2806 for_each_zone(dzone) {
64191688
AM
2807 if (!populated_zone(dzone))
2808 continue;
e7c8d5c9
CL
2809 if (dzone == zone)
2810 break;
23316bc8
NP
2811 kfree(zone_pcp(dzone, cpu));
2812 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2813 }
2814 return -ENOMEM;
2815}
2816
2817static inline void free_zone_pagesets(int cpu)
2818{
e7c8d5c9
CL
2819 struct zone *zone;
2820
2821 for_each_zone(zone) {
2822 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2823
f3ef9ead
DR
2824 /* Free per_cpu_pageset if it is slab allocated */
2825 if (pset != &boot_pageset[cpu])
2826 kfree(pset);
e7c8d5c9 2827 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2828 }
e7c8d5c9
CL
2829}
2830
9c7b216d 2831static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2832 unsigned long action,
2833 void *hcpu)
2834{
2835 int cpu = (long)hcpu;
2836 int ret = NOTIFY_OK;
2837
2838 switch (action) {
ce421c79 2839 case CPU_UP_PREPARE:
8bb78442 2840 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2841 if (process_zones(cpu))
2842 ret = NOTIFY_BAD;
2843 break;
2844 case CPU_UP_CANCELED:
8bb78442 2845 case CPU_UP_CANCELED_FROZEN:
ce421c79 2846 case CPU_DEAD:
8bb78442 2847 case CPU_DEAD_FROZEN:
ce421c79
AW
2848 free_zone_pagesets(cpu);
2849 break;
2850 default:
2851 break;
e7c8d5c9
CL
2852 }
2853 return ret;
2854}
2855
74b85f37 2856static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2857 { &pageset_cpuup_callback, NULL, 0 };
2858
78d9955b 2859void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2860{
2861 int err;
2862
2863 /* Initialize per_cpu_pageset for cpu 0.
2864 * A cpuup callback will do this for every cpu
2865 * as it comes online
2866 */
2867 err = process_zones(smp_processor_id());
2868 BUG_ON(err);
2869 register_cpu_notifier(&pageset_notifier);
2870}
2871
2872#endif
2873
577a32f6 2874static noinline __init_refok
cca448fe 2875int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2876{
2877 int i;
2878 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2879 size_t alloc_size;
ed8ece2e
DH
2880
2881 /*
2882 * The per-page waitqueue mechanism uses hashed waitqueues
2883 * per zone.
2884 */
02b694de
YG
2885 zone->wait_table_hash_nr_entries =
2886 wait_table_hash_nr_entries(zone_size_pages);
2887 zone->wait_table_bits =
2888 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2889 alloc_size = zone->wait_table_hash_nr_entries
2890 * sizeof(wait_queue_head_t);
2891
cd94b9db 2892 if (!slab_is_available()) {
cca448fe
YG
2893 zone->wait_table = (wait_queue_head_t *)
2894 alloc_bootmem_node(pgdat, alloc_size);
2895 } else {
2896 /*
2897 * This case means that a zone whose size was 0 gets new memory
2898 * via memory hot-add.
2899 * But it may be the case that a new node was hot-added. In
2900 * this case vmalloc() will not be able to use this new node's
2901 * memory - this wait_table must be initialized to use this new
2902 * node itself as well.
2903 * To use this new node's memory, further consideration will be
2904 * necessary.
2905 */
8691f3a7 2906 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2907 }
2908 if (!zone->wait_table)
2909 return -ENOMEM;
ed8ece2e 2910
02b694de 2911 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2912 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2913
2914 return 0;
ed8ece2e
DH
2915}
2916
c09b4240 2917static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2918{
2919 int cpu;
2920 unsigned long batch = zone_batchsize(zone);
2921
2922 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2923#ifdef CONFIG_NUMA
2924 /* Early boot. Slab allocator not functional yet */
23316bc8 2925 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2926 setup_pageset(&boot_pageset[cpu],0);
2927#else
2928 setup_pageset(zone_pcp(zone,cpu), batch);
2929#endif
2930 }
f5335c0f
AB
2931 if (zone->present_pages)
2932 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2933 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2934}
2935
718127cc
YG
2936__meminit int init_currently_empty_zone(struct zone *zone,
2937 unsigned long zone_start_pfn,
a2f3aa02
DH
2938 unsigned long size,
2939 enum memmap_context context)
ed8ece2e
DH
2940{
2941 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2942 int ret;
2943 ret = zone_wait_table_init(zone, size);
2944 if (ret)
2945 return ret;
ed8ece2e
DH
2946 pgdat->nr_zones = zone_idx(zone) + 1;
2947
ed8ece2e
DH
2948 zone->zone_start_pfn = zone_start_pfn;
2949
708614e6
MG
2950 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2951 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2952 pgdat->node_id,
2953 (unsigned long)zone_idx(zone),
2954 zone_start_pfn, (zone_start_pfn + size));
2955
1e548deb 2956 zone_init_free_lists(zone);
718127cc
YG
2957
2958 return 0;
ed8ece2e
DH
2959}
2960
c713216d
MG
2961#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2962/*
2963 * Basic iterator support. Return the first range of PFNs for a node
2964 * Note: nid == MAX_NUMNODES returns first region regardless of node
2965 */
a3142c8e 2966static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2967{
2968 int i;
2969
2970 for (i = 0; i < nr_nodemap_entries; i++)
2971 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2972 return i;
2973
2974 return -1;
2975}
2976
2977/*
2978 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2979 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2980 */
a3142c8e 2981static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2982{
2983 for (index = index + 1; index < nr_nodemap_entries; index++)
2984 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2985 return index;
2986
2987 return -1;
2988}
2989
2990#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2991/*
2992 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2993 * Architectures may implement their own version but if add_active_range()
2994 * was used and there are no special requirements, this is a convenient
2995 * alternative
2996 */
f2dbcfa7 2997int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2998{
2999 int i;
3000
3001 for (i = 0; i < nr_nodemap_entries; i++) {
3002 unsigned long start_pfn = early_node_map[i].start_pfn;
3003 unsigned long end_pfn = early_node_map[i].end_pfn;
3004
3005 if (start_pfn <= pfn && pfn < end_pfn)
3006 return early_node_map[i].nid;
3007 }
cc2559bc
KH
3008 /* This is a memory hole */
3009 return -1;
c713216d
MG
3010}
3011#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3012
f2dbcfa7
KH
3013int __meminit early_pfn_to_nid(unsigned long pfn)
3014{
cc2559bc
KH
3015 int nid;
3016
3017 nid = __early_pfn_to_nid(pfn);
3018 if (nid >= 0)
3019 return nid;
3020 /* just returns 0 */
3021 return 0;
f2dbcfa7
KH
3022}
3023
cc2559bc
KH
3024#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3025bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3026{
3027 int nid;
3028
3029 nid = __early_pfn_to_nid(pfn);
3030 if (nid >= 0 && nid != node)
3031 return false;
3032 return true;
3033}
3034#endif
f2dbcfa7 3035
c713216d
MG
3036/* Basic iterator support to walk early_node_map[] */
3037#define for_each_active_range_index_in_nid(i, nid) \
3038 for (i = first_active_region_index_in_nid(nid); i != -1; \
3039 i = next_active_region_index_in_nid(i, nid))
3040
3041/**
3042 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3043 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3044 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3045 *
3046 * If an architecture guarantees that all ranges registered with
3047 * add_active_ranges() contain no holes and may be freed, this
3048 * this function may be used instead of calling free_bootmem() manually.
3049 */
3050void __init free_bootmem_with_active_regions(int nid,
3051 unsigned long max_low_pfn)
3052{
3053 int i;
3054
3055 for_each_active_range_index_in_nid(i, nid) {
3056 unsigned long size_pages = 0;
3057 unsigned long end_pfn = early_node_map[i].end_pfn;
3058
3059 if (early_node_map[i].start_pfn >= max_low_pfn)
3060 continue;
3061
3062 if (end_pfn > max_low_pfn)
3063 end_pfn = max_low_pfn;
3064
3065 size_pages = end_pfn - early_node_map[i].start_pfn;
3066 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3067 PFN_PHYS(early_node_map[i].start_pfn),
3068 size_pages << PAGE_SHIFT);
3069 }
3070}
3071
b5bc6c0e
YL
3072void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3073{
3074 int i;
d52d53b8 3075 int ret;
b5bc6c0e 3076
d52d53b8
YL
3077 for_each_active_range_index_in_nid(i, nid) {
3078 ret = work_fn(early_node_map[i].start_pfn,
3079 early_node_map[i].end_pfn, data);
3080 if (ret)
3081 break;
3082 }
b5bc6c0e 3083}
c713216d
MG
3084/**
3085 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3086 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3087 *
3088 * If an architecture guarantees that all ranges registered with
3089 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3090 * function may be used instead of calling memory_present() manually.
c713216d
MG
3091 */
3092void __init sparse_memory_present_with_active_regions(int nid)
3093{
3094 int i;
3095
3096 for_each_active_range_index_in_nid(i, nid)
3097 memory_present(early_node_map[i].nid,
3098 early_node_map[i].start_pfn,
3099 early_node_map[i].end_pfn);
3100}
3101
3102/**
3103 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3104 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3105 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3106 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3107 *
3108 * It returns the start and end page frame of a node based on information
3109 * provided by an arch calling add_active_range(). If called for a node
3110 * with no available memory, a warning is printed and the start and end
88ca3b94 3111 * PFNs will be 0.
c713216d 3112 */
a3142c8e 3113void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3114 unsigned long *start_pfn, unsigned long *end_pfn)
3115{
3116 int i;
3117 *start_pfn = -1UL;
3118 *end_pfn = 0;
3119
3120 for_each_active_range_index_in_nid(i, nid) {
3121 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3122 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3123 }
3124
633c0666 3125 if (*start_pfn == -1UL)
c713216d 3126 *start_pfn = 0;
c713216d
MG
3127}
3128
2a1e274a
MG
3129/*
3130 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3131 * assumption is made that zones within a node are ordered in monotonic
3132 * increasing memory addresses so that the "highest" populated zone is used
3133 */
b69a7288 3134static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3135{
3136 int zone_index;
3137 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3138 if (zone_index == ZONE_MOVABLE)
3139 continue;
3140
3141 if (arch_zone_highest_possible_pfn[zone_index] >
3142 arch_zone_lowest_possible_pfn[zone_index])
3143 break;
3144 }
3145
3146 VM_BUG_ON(zone_index == -1);
3147 movable_zone = zone_index;
3148}
3149
3150/*
3151 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3152 * because it is sized independant of architecture. Unlike the other zones,
3153 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3154 * in each node depending on the size of each node and how evenly kernelcore
3155 * is distributed. This helper function adjusts the zone ranges
3156 * provided by the architecture for a given node by using the end of the
3157 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3158 * zones within a node are in order of monotonic increases memory addresses
3159 */
b69a7288 3160static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3161 unsigned long zone_type,
3162 unsigned long node_start_pfn,
3163 unsigned long node_end_pfn,
3164 unsigned long *zone_start_pfn,
3165 unsigned long *zone_end_pfn)
3166{
3167 /* Only adjust if ZONE_MOVABLE is on this node */
3168 if (zone_movable_pfn[nid]) {
3169 /* Size ZONE_MOVABLE */
3170 if (zone_type == ZONE_MOVABLE) {
3171 *zone_start_pfn = zone_movable_pfn[nid];
3172 *zone_end_pfn = min(node_end_pfn,
3173 arch_zone_highest_possible_pfn[movable_zone]);
3174
3175 /* Adjust for ZONE_MOVABLE starting within this range */
3176 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3177 *zone_end_pfn > zone_movable_pfn[nid]) {
3178 *zone_end_pfn = zone_movable_pfn[nid];
3179
3180 /* Check if this whole range is within ZONE_MOVABLE */
3181 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3182 *zone_start_pfn = *zone_end_pfn;
3183 }
3184}
3185
c713216d
MG
3186/*
3187 * Return the number of pages a zone spans in a node, including holes
3188 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3189 */
6ea6e688 3190static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3191 unsigned long zone_type,
3192 unsigned long *ignored)
3193{
3194 unsigned long node_start_pfn, node_end_pfn;
3195 unsigned long zone_start_pfn, zone_end_pfn;
3196
3197 /* Get the start and end of the node and zone */
3198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3199 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3200 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3201 adjust_zone_range_for_zone_movable(nid, zone_type,
3202 node_start_pfn, node_end_pfn,
3203 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3204
3205 /* Check that this node has pages within the zone's required range */
3206 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3207 return 0;
3208
3209 /* Move the zone boundaries inside the node if necessary */
3210 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3211 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3212
3213 /* Return the spanned pages */
3214 return zone_end_pfn - zone_start_pfn;
3215}
3216
3217/*
3218 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3219 * then all holes in the requested range will be accounted for.
c713216d 3220 */
b69a7288 3221static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3222 unsigned long range_start_pfn,
3223 unsigned long range_end_pfn)
3224{
3225 int i = 0;
3226 unsigned long prev_end_pfn = 0, hole_pages = 0;
3227 unsigned long start_pfn;
3228
3229 /* Find the end_pfn of the first active range of pfns in the node */
3230 i = first_active_region_index_in_nid(nid);
3231 if (i == -1)
3232 return 0;
3233
b5445f95
MG
3234 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3235
9c7cd687
MG
3236 /* Account for ranges before physical memory on this node */
3237 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3238 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3239
3240 /* Find all holes for the zone within the node */
3241 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3242
3243 /* No need to continue if prev_end_pfn is outside the zone */
3244 if (prev_end_pfn >= range_end_pfn)
3245 break;
3246
3247 /* Make sure the end of the zone is not within the hole */
3248 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3249 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3250
3251 /* Update the hole size cound and move on */
3252 if (start_pfn > range_start_pfn) {
3253 BUG_ON(prev_end_pfn > start_pfn);
3254 hole_pages += start_pfn - prev_end_pfn;
3255 }
3256 prev_end_pfn = early_node_map[i].end_pfn;
3257 }
3258
9c7cd687
MG
3259 /* Account for ranges past physical memory on this node */
3260 if (range_end_pfn > prev_end_pfn)
0c6cb974 3261 hole_pages += range_end_pfn -
9c7cd687
MG
3262 max(range_start_pfn, prev_end_pfn);
3263
c713216d
MG
3264 return hole_pages;
3265}
3266
3267/**
3268 * absent_pages_in_range - Return number of page frames in holes within a range
3269 * @start_pfn: The start PFN to start searching for holes
3270 * @end_pfn: The end PFN to stop searching for holes
3271 *
88ca3b94 3272 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3273 */
3274unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3275 unsigned long end_pfn)
3276{
3277 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3278}
3279
3280/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3281static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3282 unsigned long zone_type,
3283 unsigned long *ignored)
3284{
9c7cd687
MG
3285 unsigned long node_start_pfn, node_end_pfn;
3286 unsigned long zone_start_pfn, zone_end_pfn;
3287
3288 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3289 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3290 node_start_pfn);
3291 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3292 node_end_pfn);
3293
2a1e274a
MG
3294 adjust_zone_range_for_zone_movable(nid, zone_type,
3295 node_start_pfn, node_end_pfn,
3296 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3297 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3298}
0e0b864e 3299
c713216d 3300#else
6ea6e688 3301static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3302 unsigned long zone_type,
3303 unsigned long *zones_size)
3304{
3305 return zones_size[zone_type];
3306}
3307
6ea6e688 3308static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3309 unsigned long zone_type,
3310 unsigned long *zholes_size)
3311{
3312 if (!zholes_size)
3313 return 0;
3314
3315 return zholes_size[zone_type];
3316}
0e0b864e 3317
c713216d
MG
3318#endif
3319
a3142c8e 3320static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3321 unsigned long *zones_size, unsigned long *zholes_size)
3322{
3323 unsigned long realtotalpages, totalpages = 0;
3324 enum zone_type i;
3325
3326 for (i = 0; i < MAX_NR_ZONES; i++)
3327 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3328 zones_size);
3329 pgdat->node_spanned_pages = totalpages;
3330
3331 realtotalpages = totalpages;
3332 for (i = 0; i < MAX_NR_ZONES; i++)
3333 realtotalpages -=
3334 zone_absent_pages_in_node(pgdat->node_id, i,
3335 zholes_size);
3336 pgdat->node_present_pages = realtotalpages;
3337 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3338 realtotalpages);
3339}
3340
835c134e
MG
3341#ifndef CONFIG_SPARSEMEM
3342/*
3343 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3344 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3345 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3346 * round what is now in bits to nearest long in bits, then return it in
3347 * bytes.
3348 */
3349static unsigned long __init usemap_size(unsigned long zonesize)
3350{
3351 unsigned long usemapsize;
3352
d9c23400
MG
3353 usemapsize = roundup(zonesize, pageblock_nr_pages);
3354 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3355 usemapsize *= NR_PAGEBLOCK_BITS;
3356 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3357
3358 return usemapsize / 8;
3359}
3360
3361static void __init setup_usemap(struct pglist_data *pgdat,
3362 struct zone *zone, unsigned long zonesize)
3363{
3364 unsigned long usemapsize = usemap_size(zonesize);
3365 zone->pageblock_flags = NULL;
58a01a45 3366 if (usemapsize)
835c134e 3367 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3368}
3369#else
3370static void inline setup_usemap(struct pglist_data *pgdat,
3371 struct zone *zone, unsigned long zonesize) {}
3372#endif /* CONFIG_SPARSEMEM */
3373
d9c23400 3374#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3375
3376/* Return a sensible default order for the pageblock size. */
3377static inline int pageblock_default_order(void)
3378{
3379 if (HPAGE_SHIFT > PAGE_SHIFT)
3380 return HUGETLB_PAGE_ORDER;
3381
3382 return MAX_ORDER-1;
3383}
3384
d9c23400
MG
3385/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3386static inline void __init set_pageblock_order(unsigned int order)
3387{
3388 /* Check that pageblock_nr_pages has not already been setup */
3389 if (pageblock_order)
3390 return;
3391
3392 /*
3393 * Assume the largest contiguous order of interest is a huge page.
3394 * This value may be variable depending on boot parameters on IA64
3395 */
3396 pageblock_order = order;
3397}
3398#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3399
ba72cb8c
MG
3400/*
3401 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3402 * and pageblock_default_order() are unused as pageblock_order is set
3403 * at compile-time. See include/linux/pageblock-flags.h for the values of
3404 * pageblock_order based on the kernel config
3405 */
3406static inline int pageblock_default_order(unsigned int order)
3407{
3408 return MAX_ORDER-1;
3409}
d9c23400
MG
3410#define set_pageblock_order(x) do {} while (0)
3411
3412#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3413
1da177e4
LT
3414/*
3415 * Set up the zone data structures:
3416 * - mark all pages reserved
3417 * - mark all memory queues empty
3418 * - clear the memory bitmaps
3419 */
b5a0e011 3420static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3421 unsigned long *zones_size, unsigned long *zholes_size)
3422{
2f1b6248 3423 enum zone_type j;
ed8ece2e 3424 int nid = pgdat->node_id;
1da177e4 3425 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3426 int ret;
1da177e4 3427
208d54e5 3428 pgdat_resize_init(pgdat);
1da177e4
LT
3429 pgdat->nr_zones = 0;
3430 init_waitqueue_head(&pgdat->kswapd_wait);
3431 pgdat->kswapd_max_order = 0;
52d4b9ac 3432 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3433
3434 for (j = 0; j < MAX_NR_ZONES; j++) {
3435 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3436 unsigned long size, realsize, memmap_pages;
b69408e8 3437 enum lru_list l;
1da177e4 3438
c713216d
MG
3439 size = zone_spanned_pages_in_node(nid, j, zones_size);
3440 realsize = size - zone_absent_pages_in_node(nid, j,
3441 zholes_size);
1da177e4 3442
0e0b864e
MG
3443 /*
3444 * Adjust realsize so that it accounts for how much memory
3445 * is used by this zone for memmap. This affects the watermark
3446 * and per-cpu initialisations
3447 */
f7232154
JW
3448 memmap_pages =
3449 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3450 if (realsize >= memmap_pages) {
3451 realsize -= memmap_pages;
5594c8c8
YL
3452 if (memmap_pages)
3453 printk(KERN_DEBUG
3454 " %s zone: %lu pages used for memmap\n",
3455 zone_names[j], memmap_pages);
0e0b864e
MG
3456 } else
3457 printk(KERN_WARNING
3458 " %s zone: %lu pages exceeds realsize %lu\n",
3459 zone_names[j], memmap_pages, realsize);
3460
6267276f
CL
3461 /* Account for reserved pages */
3462 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3463 realsize -= dma_reserve;
d903ef9f 3464 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3465 zone_names[0], dma_reserve);
0e0b864e
MG
3466 }
3467
98d2b0eb 3468 if (!is_highmem_idx(j))
1da177e4
LT
3469 nr_kernel_pages += realsize;
3470 nr_all_pages += realsize;
3471
3472 zone->spanned_pages = size;
3473 zone->present_pages = realsize;
9614634f 3474#ifdef CONFIG_NUMA
d5f541ed 3475 zone->node = nid;
8417bba4 3476 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3477 / 100;
0ff38490 3478 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3479#endif
1da177e4
LT
3480 zone->name = zone_names[j];
3481 spin_lock_init(&zone->lock);
3482 spin_lock_init(&zone->lru_lock);
bdc8cb98 3483 zone_seqlock_init(zone);
1da177e4 3484 zone->zone_pgdat = pgdat;
1da177e4 3485
3bb1a852 3486 zone->prev_priority = DEF_PRIORITY;
1da177e4 3487
ed8ece2e 3488 zone_pcp_init(zone);
b69408e8
CL
3489 for_each_lru(l) {
3490 INIT_LIST_HEAD(&zone->lru[l].list);
3491 zone->lru[l].nr_scan = 0;
3492 }
6e901571
KM
3493 zone->reclaim_stat.recent_rotated[0] = 0;
3494 zone->reclaim_stat.recent_rotated[1] = 0;
3495 zone->reclaim_stat.recent_scanned[0] = 0;
3496 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3497 zap_zone_vm_stats(zone);
e815af95 3498 zone->flags = 0;
1da177e4
LT
3499 if (!size)
3500 continue;
3501
ba72cb8c 3502 set_pageblock_order(pageblock_default_order());
835c134e 3503 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3504 ret = init_currently_empty_zone(zone, zone_start_pfn,
3505 size, MEMMAP_EARLY);
718127cc 3506 BUG_ON(ret);
76cdd58e 3507 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3508 zone_start_pfn += size;
1da177e4
LT
3509 }
3510}
3511
577a32f6 3512static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3513{
1da177e4
LT
3514 /* Skip empty nodes */
3515 if (!pgdat->node_spanned_pages)
3516 return;
3517
d41dee36 3518#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3519 /* ia64 gets its own node_mem_map, before this, without bootmem */
3520 if (!pgdat->node_mem_map) {
e984bb43 3521 unsigned long size, start, end;
d41dee36
AW
3522 struct page *map;
3523
e984bb43
BP
3524 /*
3525 * The zone's endpoints aren't required to be MAX_ORDER
3526 * aligned but the node_mem_map endpoints must be in order
3527 * for the buddy allocator to function correctly.
3528 */
3529 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3530 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3531 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3532 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3533 map = alloc_remap(pgdat->node_id, size);
3534 if (!map)
3535 map = alloc_bootmem_node(pgdat, size);
e984bb43 3536 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3537 }
12d810c1 3538#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3539 /*
3540 * With no DISCONTIG, the global mem_map is just set as node 0's
3541 */
c713216d 3542 if (pgdat == NODE_DATA(0)) {
1da177e4 3543 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3544#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3545 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3546 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3547#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3548 }
1da177e4 3549#endif
d41dee36 3550#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3551}
3552
9109fb7b
JW
3553void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3554 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3555{
9109fb7b
JW
3556 pg_data_t *pgdat = NODE_DATA(nid);
3557
1da177e4
LT
3558 pgdat->node_id = nid;
3559 pgdat->node_start_pfn = node_start_pfn;
c713216d 3560 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3561
3562 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3563#ifdef CONFIG_FLAT_NODE_MEM_MAP
3564 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3565 nid, (unsigned long)pgdat,
3566 (unsigned long)pgdat->node_mem_map);
3567#endif
1da177e4
LT
3568
3569 free_area_init_core(pgdat, zones_size, zholes_size);
3570}
3571
c713216d 3572#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3573
3574#if MAX_NUMNODES > 1
3575/*
3576 * Figure out the number of possible node ids.
3577 */
3578static void __init setup_nr_node_ids(void)
3579{
3580 unsigned int node;
3581 unsigned int highest = 0;
3582
3583 for_each_node_mask(node, node_possible_map)
3584 highest = node;
3585 nr_node_ids = highest + 1;
3586}
3587#else
3588static inline void setup_nr_node_ids(void)
3589{
3590}
3591#endif
3592
c713216d
MG
3593/**
3594 * add_active_range - Register a range of PFNs backed by physical memory
3595 * @nid: The node ID the range resides on
3596 * @start_pfn: The start PFN of the available physical memory
3597 * @end_pfn: The end PFN of the available physical memory
3598 *
3599 * These ranges are stored in an early_node_map[] and later used by
3600 * free_area_init_nodes() to calculate zone sizes and holes. If the
3601 * range spans a memory hole, it is up to the architecture to ensure
3602 * the memory is not freed by the bootmem allocator. If possible
3603 * the range being registered will be merged with existing ranges.
3604 */
3605void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3606 unsigned long end_pfn)
3607{
3608 int i;
3609
6b74ab97
MG
3610 mminit_dprintk(MMINIT_TRACE, "memory_register",
3611 "Entering add_active_range(%d, %#lx, %#lx) "
3612 "%d entries of %d used\n",
3613 nid, start_pfn, end_pfn,
3614 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3615
2dbb51c4
MG
3616 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3617
c713216d
MG
3618 /* Merge with existing active regions if possible */
3619 for (i = 0; i < nr_nodemap_entries; i++) {
3620 if (early_node_map[i].nid != nid)
3621 continue;
3622
3623 /* Skip if an existing region covers this new one */
3624 if (start_pfn >= early_node_map[i].start_pfn &&
3625 end_pfn <= early_node_map[i].end_pfn)
3626 return;
3627
3628 /* Merge forward if suitable */
3629 if (start_pfn <= early_node_map[i].end_pfn &&
3630 end_pfn > early_node_map[i].end_pfn) {
3631 early_node_map[i].end_pfn = end_pfn;
3632 return;
3633 }
3634
3635 /* Merge backward if suitable */
3636 if (start_pfn < early_node_map[i].end_pfn &&
3637 end_pfn >= early_node_map[i].start_pfn) {
3638 early_node_map[i].start_pfn = start_pfn;
3639 return;
3640 }
3641 }
3642
3643 /* Check that early_node_map is large enough */
3644 if (i >= MAX_ACTIVE_REGIONS) {
3645 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3646 MAX_ACTIVE_REGIONS);
3647 return;
3648 }
3649
3650 early_node_map[i].nid = nid;
3651 early_node_map[i].start_pfn = start_pfn;
3652 early_node_map[i].end_pfn = end_pfn;
3653 nr_nodemap_entries = i + 1;
3654}
3655
3656/**
cc1050ba 3657 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3658 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3659 * @start_pfn: The new PFN of the range
3660 * @end_pfn: The new PFN of the range
c713216d
MG
3661 *
3662 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3663 * The map is kept near the end physical page range that has already been
3664 * registered. This function allows an arch to shrink an existing registered
3665 * range.
c713216d 3666 */
cc1050ba
YL
3667void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3668 unsigned long end_pfn)
c713216d 3669{
cc1a9d86
YL
3670 int i, j;
3671 int removed = 0;
c713216d 3672
cc1050ba
YL
3673 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3674 nid, start_pfn, end_pfn);
3675
c713216d 3676 /* Find the old active region end and shrink */
cc1a9d86 3677 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3678 if (early_node_map[i].start_pfn >= start_pfn &&
3679 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3680 /* clear it */
cc1050ba 3681 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3682 early_node_map[i].end_pfn = 0;
3683 removed = 1;
3684 continue;
3685 }
cc1050ba
YL
3686 if (early_node_map[i].start_pfn < start_pfn &&
3687 early_node_map[i].end_pfn > start_pfn) {
3688 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3689 early_node_map[i].end_pfn = start_pfn;
3690 if (temp_end_pfn > end_pfn)
3691 add_active_range(nid, end_pfn, temp_end_pfn);
3692 continue;
3693 }
3694 if (early_node_map[i].start_pfn >= start_pfn &&
3695 early_node_map[i].end_pfn > end_pfn &&
3696 early_node_map[i].start_pfn < end_pfn) {
3697 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3698 continue;
c713216d 3699 }
cc1a9d86
YL
3700 }
3701
3702 if (!removed)
3703 return;
3704
3705 /* remove the blank ones */
3706 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3707 if (early_node_map[i].nid != nid)
3708 continue;
3709 if (early_node_map[i].end_pfn)
3710 continue;
3711 /* we found it, get rid of it */
3712 for (j = i; j < nr_nodemap_entries - 1; j++)
3713 memcpy(&early_node_map[j], &early_node_map[j+1],
3714 sizeof(early_node_map[j]));
3715 j = nr_nodemap_entries - 1;
3716 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3717 nr_nodemap_entries--;
3718 }
c713216d
MG
3719}
3720
3721/**
3722 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3723 *
c713216d
MG
3724 * During discovery, it may be found that a table like SRAT is invalid
3725 * and an alternative discovery method must be used. This function removes
3726 * all currently registered regions.
3727 */
88ca3b94 3728void __init remove_all_active_ranges(void)
c713216d
MG
3729{
3730 memset(early_node_map, 0, sizeof(early_node_map));
3731 nr_nodemap_entries = 0;
3732}
3733
3734/* Compare two active node_active_regions */
3735static int __init cmp_node_active_region(const void *a, const void *b)
3736{
3737 struct node_active_region *arange = (struct node_active_region *)a;
3738 struct node_active_region *brange = (struct node_active_region *)b;
3739
3740 /* Done this way to avoid overflows */
3741 if (arange->start_pfn > brange->start_pfn)
3742 return 1;
3743 if (arange->start_pfn < brange->start_pfn)
3744 return -1;
3745
3746 return 0;
3747}
3748
3749/* sort the node_map by start_pfn */
3750static void __init sort_node_map(void)
3751{
3752 sort(early_node_map, (size_t)nr_nodemap_entries,
3753 sizeof(struct node_active_region),
3754 cmp_node_active_region, NULL);
3755}
3756
a6af2bc3 3757/* Find the lowest pfn for a node */
b69a7288 3758static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3759{
3760 int i;
a6af2bc3 3761 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3762
c713216d
MG
3763 /* Assuming a sorted map, the first range found has the starting pfn */
3764 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3765 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3766
a6af2bc3
MG
3767 if (min_pfn == ULONG_MAX) {
3768 printk(KERN_WARNING
2bc0d261 3769 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3770 return 0;
3771 }
3772
3773 return min_pfn;
c713216d
MG
3774}
3775
3776/**
3777 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3778 *
3779 * It returns the minimum PFN based on information provided via
88ca3b94 3780 * add_active_range().
c713216d
MG
3781 */
3782unsigned long __init find_min_pfn_with_active_regions(void)
3783{
3784 return find_min_pfn_for_node(MAX_NUMNODES);
3785}
3786
37b07e41
LS
3787/*
3788 * early_calculate_totalpages()
3789 * Sum pages in active regions for movable zone.
3790 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3791 */
484f51f8 3792static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3793{
3794 int i;
3795 unsigned long totalpages = 0;
3796
37b07e41
LS
3797 for (i = 0; i < nr_nodemap_entries; i++) {
3798 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3799 early_node_map[i].start_pfn;
37b07e41
LS
3800 totalpages += pages;
3801 if (pages)
3802 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3803 }
3804 return totalpages;
7e63efef
MG
3805}
3806
2a1e274a
MG
3807/*
3808 * Find the PFN the Movable zone begins in each node. Kernel memory
3809 * is spread evenly between nodes as long as the nodes have enough
3810 * memory. When they don't, some nodes will have more kernelcore than
3811 * others
3812 */
b69a7288 3813static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3814{
3815 int i, nid;
3816 unsigned long usable_startpfn;
3817 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3818 unsigned long totalpages = early_calculate_totalpages();
3819 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3820
7e63efef
MG
3821 /*
3822 * If movablecore was specified, calculate what size of
3823 * kernelcore that corresponds so that memory usable for
3824 * any allocation type is evenly spread. If both kernelcore
3825 * and movablecore are specified, then the value of kernelcore
3826 * will be used for required_kernelcore if it's greater than
3827 * what movablecore would have allowed.
3828 */
3829 if (required_movablecore) {
7e63efef
MG
3830 unsigned long corepages;
3831
3832 /*
3833 * Round-up so that ZONE_MOVABLE is at least as large as what
3834 * was requested by the user
3835 */
3836 required_movablecore =
3837 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3838 corepages = totalpages - required_movablecore;
3839
3840 required_kernelcore = max(required_kernelcore, corepages);
3841 }
3842
2a1e274a
MG
3843 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3844 if (!required_kernelcore)
3845 return;
3846
3847 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3848 find_usable_zone_for_movable();
3849 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3850
3851restart:
3852 /* Spread kernelcore memory as evenly as possible throughout nodes */
3853 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3854 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3855 /*
3856 * Recalculate kernelcore_node if the division per node
3857 * now exceeds what is necessary to satisfy the requested
3858 * amount of memory for the kernel
3859 */
3860 if (required_kernelcore < kernelcore_node)
3861 kernelcore_node = required_kernelcore / usable_nodes;
3862
3863 /*
3864 * As the map is walked, we track how much memory is usable
3865 * by the kernel using kernelcore_remaining. When it is
3866 * 0, the rest of the node is usable by ZONE_MOVABLE
3867 */
3868 kernelcore_remaining = kernelcore_node;
3869
3870 /* Go through each range of PFNs within this node */
3871 for_each_active_range_index_in_nid(i, nid) {
3872 unsigned long start_pfn, end_pfn;
3873 unsigned long size_pages;
3874
3875 start_pfn = max(early_node_map[i].start_pfn,
3876 zone_movable_pfn[nid]);
3877 end_pfn = early_node_map[i].end_pfn;
3878 if (start_pfn >= end_pfn)
3879 continue;
3880
3881 /* Account for what is only usable for kernelcore */
3882 if (start_pfn < usable_startpfn) {
3883 unsigned long kernel_pages;
3884 kernel_pages = min(end_pfn, usable_startpfn)
3885 - start_pfn;
3886
3887 kernelcore_remaining -= min(kernel_pages,
3888 kernelcore_remaining);
3889 required_kernelcore -= min(kernel_pages,
3890 required_kernelcore);
3891
3892 /* Continue if range is now fully accounted */
3893 if (end_pfn <= usable_startpfn) {
3894
3895 /*
3896 * Push zone_movable_pfn to the end so
3897 * that if we have to rebalance
3898 * kernelcore across nodes, we will
3899 * not double account here
3900 */
3901 zone_movable_pfn[nid] = end_pfn;
3902 continue;
3903 }
3904 start_pfn = usable_startpfn;
3905 }
3906
3907 /*
3908 * The usable PFN range for ZONE_MOVABLE is from
3909 * start_pfn->end_pfn. Calculate size_pages as the
3910 * number of pages used as kernelcore
3911 */
3912 size_pages = end_pfn - start_pfn;
3913 if (size_pages > kernelcore_remaining)
3914 size_pages = kernelcore_remaining;
3915 zone_movable_pfn[nid] = start_pfn + size_pages;
3916
3917 /*
3918 * Some kernelcore has been met, update counts and
3919 * break if the kernelcore for this node has been
3920 * satisified
3921 */
3922 required_kernelcore -= min(required_kernelcore,
3923 size_pages);
3924 kernelcore_remaining -= size_pages;
3925 if (!kernelcore_remaining)
3926 break;
3927 }
3928 }
3929
3930 /*
3931 * If there is still required_kernelcore, we do another pass with one
3932 * less node in the count. This will push zone_movable_pfn[nid] further
3933 * along on the nodes that still have memory until kernelcore is
3934 * satisified
3935 */
3936 usable_nodes--;
3937 if (usable_nodes && required_kernelcore > usable_nodes)
3938 goto restart;
3939
3940 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3941 for (nid = 0; nid < MAX_NUMNODES; nid++)
3942 zone_movable_pfn[nid] =
3943 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3944}
3945
37b07e41
LS
3946/* Any regular memory on that node ? */
3947static void check_for_regular_memory(pg_data_t *pgdat)
3948{
3949#ifdef CONFIG_HIGHMEM
3950 enum zone_type zone_type;
3951
3952 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3953 struct zone *zone = &pgdat->node_zones[zone_type];
3954 if (zone->present_pages)
3955 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3956 }
3957#endif
3958}
3959
c713216d
MG
3960/**
3961 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3962 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3963 *
3964 * This will call free_area_init_node() for each active node in the system.
3965 * Using the page ranges provided by add_active_range(), the size of each
3966 * zone in each node and their holes is calculated. If the maximum PFN
3967 * between two adjacent zones match, it is assumed that the zone is empty.
3968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3970 * starts where the previous one ended. For example, ZONE_DMA32 starts
3971 * at arch_max_dma_pfn.
3972 */
3973void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3974{
3975 unsigned long nid;
db99100d 3976 int i;
c713216d 3977
a6af2bc3
MG
3978 /* Sort early_node_map as initialisation assumes it is sorted */
3979 sort_node_map();
3980
c713216d
MG
3981 /* Record where the zone boundaries are */
3982 memset(arch_zone_lowest_possible_pfn, 0,
3983 sizeof(arch_zone_lowest_possible_pfn));
3984 memset(arch_zone_highest_possible_pfn, 0,
3985 sizeof(arch_zone_highest_possible_pfn));
3986 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3987 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3988 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3989 if (i == ZONE_MOVABLE)
3990 continue;
c713216d
MG
3991 arch_zone_lowest_possible_pfn[i] =
3992 arch_zone_highest_possible_pfn[i-1];
3993 arch_zone_highest_possible_pfn[i] =
3994 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3995 }
2a1e274a
MG
3996 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3997 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3998
3999 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4000 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4001 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4002
c713216d
MG
4003 /* Print out the zone ranges */
4004 printk("Zone PFN ranges:\n");
2a1e274a
MG
4005 for (i = 0; i < MAX_NR_ZONES; i++) {
4006 if (i == ZONE_MOVABLE)
4007 continue;
5dab8ec1 4008 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4009 zone_names[i],
4010 arch_zone_lowest_possible_pfn[i],
4011 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4012 }
4013
4014 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4015 printk("Movable zone start PFN for each node\n");
4016 for (i = 0; i < MAX_NUMNODES; i++) {
4017 if (zone_movable_pfn[i])
4018 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4019 }
c713216d
MG
4020
4021 /* Print out the early_node_map[] */
4022 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4023 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4024 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4025 early_node_map[i].start_pfn,
4026 early_node_map[i].end_pfn);
4027
4028 /* Initialise every node */
708614e6 4029 mminit_verify_pageflags_layout();
8ef82866 4030 setup_nr_node_ids();
c713216d
MG
4031 for_each_online_node(nid) {
4032 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4033 free_area_init_node(nid, NULL,
c713216d 4034 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4035
4036 /* Any memory on that node */
4037 if (pgdat->node_present_pages)
4038 node_set_state(nid, N_HIGH_MEMORY);
4039 check_for_regular_memory(pgdat);
c713216d
MG
4040 }
4041}
2a1e274a 4042
7e63efef 4043static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4044{
4045 unsigned long long coremem;
4046 if (!p)
4047 return -EINVAL;
4048
4049 coremem = memparse(p, &p);
7e63efef 4050 *core = coremem >> PAGE_SHIFT;
2a1e274a 4051
7e63efef 4052 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4053 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4054
4055 return 0;
4056}
ed7ed365 4057
7e63efef
MG
4058/*
4059 * kernelcore=size sets the amount of memory for use for allocations that
4060 * cannot be reclaimed or migrated.
4061 */
4062static int __init cmdline_parse_kernelcore(char *p)
4063{
4064 return cmdline_parse_core(p, &required_kernelcore);
4065}
4066
4067/*
4068 * movablecore=size sets the amount of memory for use for allocations that
4069 * can be reclaimed or migrated.
4070 */
4071static int __init cmdline_parse_movablecore(char *p)
4072{
4073 return cmdline_parse_core(p, &required_movablecore);
4074}
4075
ed7ed365 4076early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4077early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4078
c713216d
MG
4079#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4080
0e0b864e 4081/**
88ca3b94
RD
4082 * set_dma_reserve - set the specified number of pages reserved in the first zone
4083 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4084 *
4085 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4086 * In the DMA zone, a significant percentage may be consumed by kernel image
4087 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4088 * function may optionally be used to account for unfreeable pages in the
4089 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4090 * smaller per-cpu batchsize.
0e0b864e
MG
4091 */
4092void __init set_dma_reserve(unsigned long new_dma_reserve)
4093{
4094 dma_reserve = new_dma_reserve;
4095}
4096
93b7504e 4097#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4098struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4099EXPORT_SYMBOL(contig_page_data);
93b7504e 4100#endif
1da177e4
LT
4101
4102void __init free_area_init(unsigned long *zones_size)
4103{
9109fb7b 4104 free_area_init_node(0, zones_size,
1da177e4
LT
4105 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4106}
1da177e4 4107
1da177e4
LT
4108static int page_alloc_cpu_notify(struct notifier_block *self,
4109 unsigned long action, void *hcpu)
4110{
4111 int cpu = (unsigned long)hcpu;
1da177e4 4112
8bb78442 4113 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4114 drain_pages(cpu);
4115
4116 /*
4117 * Spill the event counters of the dead processor
4118 * into the current processors event counters.
4119 * This artificially elevates the count of the current
4120 * processor.
4121 */
f8891e5e 4122 vm_events_fold_cpu(cpu);
9f8f2172
CL
4123
4124 /*
4125 * Zero the differential counters of the dead processor
4126 * so that the vm statistics are consistent.
4127 *
4128 * This is only okay since the processor is dead and cannot
4129 * race with what we are doing.
4130 */
2244b95a 4131 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4132 }
4133 return NOTIFY_OK;
4134}
1da177e4
LT
4135
4136void __init page_alloc_init(void)
4137{
4138 hotcpu_notifier(page_alloc_cpu_notify, 0);
4139}
4140
cb45b0e9
HA
4141/*
4142 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4143 * or min_free_kbytes changes.
4144 */
4145static void calculate_totalreserve_pages(void)
4146{
4147 struct pglist_data *pgdat;
4148 unsigned long reserve_pages = 0;
2f6726e5 4149 enum zone_type i, j;
cb45b0e9
HA
4150
4151 for_each_online_pgdat(pgdat) {
4152 for (i = 0; i < MAX_NR_ZONES; i++) {
4153 struct zone *zone = pgdat->node_zones + i;
4154 unsigned long max = 0;
4155
4156 /* Find valid and maximum lowmem_reserve in the zone */
4157 for (j = i; j < MAX_NR_ZONES; j++) {
4158 if (zone->lowmem_reserve[j] > max)
4159 max = zone->lowmem_reserve[j];
4160 }
4161
4162 /* we treat pages_high as reserved pages. */
4163 max += zone->pages_high;
4164
4165 if (max > zone->present_pages)
4166 max = zone->present_pages;
4167 reserve_pages += max;
4168 }
4169 }
4170 totalreserve_pages = reserve_pages;
4171}
4172
1da177e4
LT
4173/*
4174 * setup_per_zone_lowmem_reserve - called whenever
4175 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4176 * has a correct pages reserved value, so an adequate number of
4177 * pages are left in the zone after a successful __alloc_pages().
4178 */
4179static void setup_per_zone_lowmem_reserve(void)
4180{
4181 struct pglist_data *pgdat;
2f6726e5 4182 enum zone_type j, idx;
1da177e4 4183
ec936fc5 4184 for_each_online_pgdat(pgdat) {
1da177e4
LT
4185 for (j = 0; j < MAX_NR_ZONES; j++) {
4186 struct zone *zone = pgdat->node_zones + j;
4187 unsigned long present_pages = zone->present_pages;
4188
4189 zone->lowmem_reserve[j] = 0;
4190
2f6726e5
CL
4191 idx = j;
4192 while (idx) {
1da177e4
LT
4193 struct zone *lower_zone;
4194
2f6726e5
CL
4195 idx--;
4196
1da177e4
LT
4197 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4198 sysctl_lowmem_reserve_ratio[idx] = 1;
4199
4200 lower_zone = pgdat->node_zones + idx;
4201 lower_zone->lowmem_reserve[j] = present_pages /
4202 sysctl_lowmem_reserve_ratio[idx];
4203 present_pages += lower_zone->present_pages;
4204 }
4205 }
4206 }
cb45b0e9
HA
4207
4208 /* update totalreserve_pages */
4209 calculate_totalreserve_pages();
1da177e4
LT
4210}
4211
88ca3b94
RD
4212/**
4213 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4214 *
4215 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4216 * with respect to min_free_kbytes.
1da177e4 4217 */
3947be19 4218void setup_per_zone_pages_min(void)
1da177e4
LT
4219{
4220 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4221 unsigned long lowmem_pages = 0;
4222 struct zone *zone;
4223 unsigned long flags;
4224
4225 /* Calculate total number of !ZONE_HIGHMEM pages */
4226 for_each_zone(zone) {
4227 if (!is_highmem(zone))
4228 lowmem_pages += zone->present_pages;
4229 }
4230
4231 for_each_zone(zone) {
ac924c60
AM
4232 u64 tmp;
4233
1125b4e3 4234 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4235 tmp = (u64)pages_min * zone->present_pages;
4236 do_div(tmp, lowmem_pages);
1da177e4
LT
4237 if (is_highmem(zone)) {
4238 /*
669ed175
NP
4239 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4240 * need highmem pages, so cap pages_min to a small
4241 * value here.
4242 *
4243 * The (pages_high-pages_low) and (pages_low-pages_min)
4244 * deltas controls asynch page reclaim, and so should
4245 * not be capped for highmem.
1da177e4
LT
4246 */
4247 int min_pages;
4248
4249 min_pages = zone->present_pages / 1024;
4250 if (min_pages < SWAP_CLUSTER_MAX)
4251 min_pages = SWAP_CLUSTER_MAX;
4252 if (min_pages > 128)
4253 min_pages = 128;
4254 zone->pages_min = min_pages;
4255 } else {
669ed175
NP
4256 /*
4257 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4258 * proportionate to the zone's size.
4259 */
669ed175 4260 zone->pages_min = tmp;
1da177e4
LT
4261 }
4262
ac924c60
AM
4263 zone->pages_low = zone->pages_min + (tmp >> 2);
4264 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4265 setup_zone_migrate_reserve(zone);
1125b4e3 4266 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4267 }
cb45b0e9
HA
4268
4269 /* update totalreserve_pages */
4270 calculate_totalreserve_pages();
1da177e4
LT
4271}
4272
556adecb
RR
4273/**
4274 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4275 *
4276 * The inactive anon list should be small enough that the VM never has to
4277 * do too much work, but large enough that each inactive page has a chance
4278 * to be referenced again before it is swapped out.
4279 *
4280 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4281 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4282 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4283 * the anonymous pages are kept on the inactive list.
4284 *
4285 * total target max
4286 * memory ratio inactive anon
4287 * -------------------------------------
4288 * 10MB 1 5MB
4289 * 100MB 1 50MB
4290 * 1GB 3 250MB
4291 * 10GB 10 0.9GB
4292 * 100GB 31 3GB
4293 * 1TB 101 10GB
4294 * 10TB 320 32GB
4295 */
efab8186 4296static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4297{
4298 struct zone *zone;
4299
4300 for_each_zone(zone) {
4301 unsigned int gb, ratio;
4302
4303 /* Zone size in gigabytes */
4304 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4305 ratio = int_sqrt(10 * gb);
4306 if (!ratio)
4307 ratio = 1;
4308
4309 zone->inactive_ratio = ratio;
4310 }
4311}
4312
1da177e4
LT
4313/*
4314 * Initialise min_free_kbytes.
4315 *
4316 * For small machines we want it small (128k min). For large machines
4317 * we want it large (64MB max). But it is not linear, because network
4318 * bandwidth does not increase linearly with machine size. We use
4319 *
4320 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4321 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4322 *
4323 * which yields
4324 *
4325 * 16MB: 512k
4326 * 32MB: 724k
4327 * 64MB: 1024k
4328 * 128MB: 1448k
4329 * 256MB: 2048k
4330 * 512MB: 2896k
4331 * 1024MB: 4096k
4332 * 2048MB: 5792k
4333 * 4096MB: 8192k
4334 * 8192MB: 11584k
4335 * 16384MB: 16384k
4336 */
4337static int __init init_per_zone_pages_min(void)
4338{
4339 unsigned long lowmem_kbytes;
4340
4341 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4342
4343 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4344 if (min_free_kbytes < 128)
4345 min_free_kbytes = 128;
4346 if (min_free_kbytes > 65536)
4347 min_free_kbytes = 65536;
4348 setup_per_zone_pages_min();
4349 setup_per_zone_lowmem_reserve();
556adecb 4350 setup_per_zone_inactive_ratio();
1da177e4
LT
4351 return 0;
4352}
4353module_init(init_per_zone_pages_min)
4354
4355/*
4356 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4357 * that we can call two helper functions whenever min_free_kbytes
4358 * changes.
4359 */
4360int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4361 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4362{
4363 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4364 if (write)
4365 setup_per_zone_pages_min();
1da177e4
LT
4366 return 0;
4367}
4368
9614634f
CL
4369#ifdef CONFIG_NUMA
4370int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4371 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4372{
4373 struct zone *zone;
4374 int rc;
4375
4376 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4377 if (rc)
4378 return rc;
4379
4380 for_each_zone(zone)
8417bba4 4381 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4382 sysctl_min_unmapped_ratio) / 100;
4383 return 0;
4384}
0ff38490
CL
4385
4386int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4387 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4388{
4389 struct zone *zone;
4390 int rc;
4391
4392 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4393 if (rc)
4394 return rc;
4395
4396 for_each_zone(zone)
4397 zone->min_slab_pages = (zone->present_pages *
4398 sysctl_min_slab_ratio) / 100;
4399 return 0;
4400}
9614634f
CL
4401#endif
4402
1da177e4
LT
4403/*
4404 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4405 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4406 * whenever sysctl_lowmem_reserve_ratio changes.
4407 *
4408 * The reserve ratio obviously has absolutely no relation with the
4409 * pages_min watermarks. The lowmem reserve ratio can only make sense
4410 * if in function of the boot time zone sizes.
4411 */
4412int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4413 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4414{
4415 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4416 setup_per_zone_lowmem_reserve();
4417 return 0;
4418}
4419
8ad4b1fb
RS
4420/*
4421 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4422 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4423 * can have before it gets flushed back to buddy allocator.
4424 */
4425
4426int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4427 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4428{
4429 struct zone *zone;
4430 unsigned int cpu;
4431 int ret;
4432
4433 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4434 if (!write || (ret == -EINVAL))
4435 return ret;
4436 for_each_zone(zone) {
4437 for_each_online_cpu(cpu) {
4438 unsigned long high;
4439 high = zone->present_pages / percpu_pagelist_fraction;
4440 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4441 }
4442 }
4443 return 0;
4444}
4445
f034b5d4 4446int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4447
4448#ifdef CONFIG_NUMA
4449static int __init set_hashdist(char *str)
4450{
4451 if (!str)
4452 return 0;
4453 hashdist = simple_strtoul(str, &str, 0);
4454 return 1;
4455}
4456__setup("hashdist=", set_hashdist);
4457#endif
4458
4459/*
4460 * allocate a large system hash table from bootmem
4461 * - it is assumed that the hash table must contain an exact power-of-2
4462 * quantity of entries
4463 * - limit is the number of hash buckets, not the total allocation size
4464 */
4465void *__init alloc_large_system_hash(const char *tablename,
4466 unsigned long bucketsize,
4467 unsigned long numentries,
4468 int scale,
4469 int flags,
4470 unsigned int *_hash_shift,
4471 unsigned int *_hash_mask,
4472 unsigned long limit)
4473{
4474 unsigned long long max = limit;
4475 unsigned long log2qty, size;
4476 void *table = NULL;
4477
4478 /* allow the kernel cmdline to have a say */
4479 if (!numentries) {
4480 /* round applicable memory size up to nearest megabyte */
04903664 4481 numentries = nr_kernel_pages;
1da177e4
LT
4482 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4483 numentries >>= 20 - PAGE_SHIFT;
4484 numentries <<= 20 - PAGE_SHIFT;
4485
4486 /* limit to 1 bucket per 2^scale bytes of low memory */
4487 if (scale > PAGE_SHIFT)
4488 numentries >>= (scale - PAGE_SHIFT);
4489 else
4490 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4491
4492 /* Make sure we've got at least a 0-order allocation.. */
4493 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4494 numentries = PAGE_SIZE / bucketsize;
1da177e4 4495 }
6e692ed3 4496 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4497
4498 /* limit allocation size to 1/16 total memory by default */
4499 if (max == 0) {
4500 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4501 do_div(max, bucketsize);
4502 }
4503
4504 if (numentries > max)
4505 numentries = max;
4506
f0d1b0b3 4507 log2qty = ilog2(numentries);
1da177e4
LT
4508
4509 do {
4510 size = bucketsize << log2qty;
4511 if (flags & HASH_EARLY)
74768ed8 4512 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4513 else if (hashdist)
4514 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4515 else {
2309f9e6 4516 unsigned long order = get_order(size);
1da177e4 4517 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4518 /*
4519 * If bucketsize is not a power-of-two, we may free
4520 * some pages at the end of hash table.
4521 */
4522 if (table) {
4523 unsigned long alloc_end = (unsigned long)table +
4524 (PAGE_SIZE << order);
4525 unsigned long used = (unsigned long)table +
4526 PAGE_ALIGN(size);
4527 split_page(virt_to_page(table), order);
4528 while (used < alloc_end) {
4529 free_page(used);
4530 used += PAGE_SIZE;
4531 }
4532 }
1da177e4
LT
4533 }
4534 } while (!table && size > PAGE_SIZE && --log2qty);
4535
4536 if (!table)
4537 panic("Failed to allocate %s hash table\n", tablename);
4538
b49ad484 4539 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4540 tablename,
4541 (1U << log2qty),
f0d1b0b3 4542 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4543 size);
4544
4545 if (_hash_shift)
4546 *_hash_shift = log2qty;
4547 if (_hash_mask)
4548 *_hash_mask = (1 << log2qty) - 1;
4549
dbb1f81c
CM
4550 /*
4551 * If hashdist is set, the table allocation is done with __vmalloc()
4552 * which invokes the kmemleak_alloc() callback. This function may also
4553 * be called before the slab and kmemleak are initialised when
4554 * kmemleak simply buffers the request to be executed later
4555 * (GFP_ATOMIC flag ignored in this case).
4556 */
4557 if (!hashdist)
4558 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4559
1da177e4
LT
4560 return table;
4561}
a117e66e 4562
835c134e
MG
4563/* Return a pointer to the bitmap storing bits affecting a block of pages */
4564static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4565 unsigned long pfn)
4566{
4567#ifdef CONFIG_SPARSEMEM
4568 return __pfn_to_section(pfn)->pageblock_flags;
4569#else
4570 return zone->pageblock_flags;
4571#endif /* CONFIG_SPARSEMEM */
4572}
4573
4574static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4575{
4576#ifdef CONFIG_SPARSEMEM
4577 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4578 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4579#else
4580 pfn = pfn - zone->zone_start_pfn;
d9c23400 4581 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4582#endif /* CONFIG_SPARSEMEM */
4583}
4584
4585/**
d9c23400 4586 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4587 * @page: The page within the block of interest
4588 * @start_bitidx: The first bit of interest to retrieve
4589 * @end_bitidx: The last bit of interest
4590 * returns pageblock_bits flags
4591 */
4592unsigned long get_pageblock_flags_group(struct page *page,
4593 int start_bitidx, int end_bitidx)
4594{
4595 struct zone *zone;
4596 unsigned long *bitmap;
4597 unsigned long pfn, bitidx;
4598 unsigned long flags = 0;
4599 unsigned long value = 1;
4600
4601 zone = page_zone(page);
4602 pfn = page_to_pfn(page);
4603 bitmap = get_pageblock_bitmap(zone, pfn);
4604 bitidx = pfn_to_bitidx(zone, pfn);
4605
4606 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4607 if (test_bit(bitidx + start_bitidx, bitmap))
4608 flags |= value;
6220ec78 4609
835c134e
MG
4610 return flags;
4611}
4612
4613/**
d9c23400 4614 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4615 * @page: The page within the block of interest
4616 * @start_bitidx: The first bit of interest
4617 * @end_bitidx: The last bit of interest
4618 * @flags: The flags to set
4619 */
4620void set_pageblock_flags_group(struct page *page, unsigned long flags,
4621 int start_bitidx, int end_bitidx)
4622{
4623 struct zone *zone;
4624 unsigned long *bitmap;
4625 unsigned long pfn, bitidx;
4626 unsigned long value = 1;
4627
4628 zone = page_zone(page);
4629 pfn = page_to_pfn(page);
4630 bitmap = get_pageblock_bitmap(zone, pfn);
4631 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4632 VM_BUG_ON(pfn < zone->zone_start_pfn);
4633 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4634
4635 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4636 if (flags & value)
4637 __set_bit(bitidx + start_bitidx, bitmap);
4638 else
4639 __clear_bit(bitidx + start_bitidx, bitmap);
4640}
a5d76b54
KH
4641
4642/*
4643 * This is designed as sub function...plz see page_isolation.c also.
4644 * set/clear page block's type to be ISOLATE.
4645 * page allocater never alloc memory from ISOLATE block.
4646 */
4647
4648int set_migratetype_isolate(struct page *page)
4649{
4650 struct zone *zone;
4651 unsigned long flags;
4652 int ret = -EBUSY;
4653
4654 zone = page_zone(page);
4655 spin_lock_irqsave(&zone->lock, flags);
4656 /*
4657 * In future, more migrate types will be able to be isolation target.
4658 */
4659 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4660 goto out;
4661 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4662 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4663 ret = 0;
4664out:
4665 spin_unlock_irqrestore(&zone->lock, flags);
4666 if (!ret)
9f8f2172 4667 drain_all_pages();
a5d76b54
KH
4668 return ret;
4669}
4670
4671void unset_migratetype_isolate(struct page *page)
4672{
4673 struct zone *zone;
4674 unsigned long flags;
4675 zone = page_zone(page);
4676 spin_lock_irqsave(&zone->lock, flags);
4677 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4678 goto out;
4679 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4680 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4681out:
4682 spin_unlock_irqrestore(&zone->lock, flags);
4683}
0c0e6195
KH
4684
4685#ifdef CONFIG_MEMORY_HOTREMOVE
4686/*
4687 * All pages in the range must be isolated before calling this.
4688 */
4689void
4690__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4691{
4692 struct page *page;
4693 struct zone *zone;
4694 int order, i;
4695 unsigned long pfn;
4696 unsigned long flags;
4697 /* find the first valid pfn */
4698 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4699 if (pfn_valid(pfn))
4700 break;
4701 if (pfn == end_pfn)
4702 return;
4703 zone = page_zone(pfn_to_page(pfn));
4704 spin_lock_irqsave(&zone->lock, flags);
4705 pfn = start_pfn;
4706 while (pfn < end_pfn) {
4707 if (!pfn_valid(pfn)) {
4708 pfn++;
4709 continue;
4710 }
4711 page = pfn_to_page(pfn);
4712 BUG_ON(page_count(page));
4713 BUG_ON(!PageBuddy(page));
4714 order = page_order(page);
4715#ifdef CONFIG_DEBUG_VM
4716 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4717 pfn, 1 << order, end_pfn);
4718#endif
4719 list_del(&page->lru);
4720 rmv_page_order(page);
4721 zone->free_area[order].nr_free--;
4722 __mod_zone_page_state(zone, NR_FREE_PAGES,
4723 - (1UL << order));
4724 for (i = 0; i < (1 << order); i++)
4725 SetPageReserved((page+i));
4726 pfn += (1 << order);
4727 }
4728 spin_unlock_irqrestore(&zone->lock, flags);
4729}
4730#endif