mm: when stealing freepages, also take pages created by splitting buddy page
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
268bb0ce 56#include <linux/prefetch.h>
6e543d57 57#include <linux/mm_inline.h>
041d3a8c 58#include <linux/migrate.h>
e30825f1 59#include <linux/page_ext.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
48c96a36 62#include <linux/page_owner.h>
1da177e4 63
7ee3d4e8 64#include <asm/sections.h>
1da177e4 65#include <asm/tlbflush.h>
ac924c60 66#include <asm/div64.h>
1da177e4
LT
67#include "internal.h"
68
c8e251fa
CS
69/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 71#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 72
72812019
LS
73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74DEFINE_PER_CPU(int, numa_node);
75EXPORT_PER_CPU_SYMBOL(numa_node);
76#endif
77
7aac7898
LS
78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
79/*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 87int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
88#endif
89
1da177e4 90/*
13808910 91 * Array of node states.
1da177e4 92 */
13808910
CL
93nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96#ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98#ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
100#endif
101#ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
103#endif
104 [N_CPU] = { { [0] = 1UL } },
105#endif /* NUMA */
106};
107EXPORT_SYMBOL(node_states);
108
c3d5f5f0
JL
109/* Protect totalram_pages and zone->managed_pages */
110static DEFINE_SPINLOCK(managed_page_count_lock);
111
6c231b7b 112unsigned long totalram_pages __read_mostly;
cb45b0e9 113unsigned long totalreserve_pages __read_mostly;
e48322ab 114unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
115/*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121unsigned long dirty_balance_reserve __read_mostly;
122
1b76b02f 123int percpu_pagelist_fraction;
dcce284a 124gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 125
452aa699
RW
126#ifdef CONFIG_PM_SLEEP
127/*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
c9e664f1
RW
135
136static gfp_t saved_gfp_mask;
137
138void pm_restore_gfp_mask(void)
452aa699
RW
139{
140 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
452aa699
RW
145}
146
c9e664f1 147void pm_restrict_gfp_mask(void)
452aa699 148{
452aa699 149 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 153}
f90ac398
MG
154
155bool pm_suspended_storage(void)
156{
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160}
452aa699
RW
161#endif /* CONFIG_PM_SLEEP */
162
d9c23400
MG
163#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164int pageblock_order __read_mostly;
165#endif
166
d98c7a09 167static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 168
1da177e4
LT
169/*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
1da177e4 179 */
2f1b6248 180int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 256,
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 256,
fb0e7942 186#endif
e53ef38d 187#ifdef CONFIG_HIGHMEM
2a1e274a 188 32,
e53ef38d 189#endif
2a1e274a 190 32,
2f1b6248 191};
1da177e4
LT
192
193EXPORT_SYMBOL(totalram_pages);
1da177e4 194
15ad7cdc 195static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 "DMA",
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 "DMA32",
fb0e7942 201#endif
2f1b6248 202 "Normal",
e53ef38d 203#ifdef CONFIG_HIGHMEM
2a1e274a 204 "HighMem",
e53ef38d 205#endif
2a1e274a 206 "Movable",
2f1b6248
CL
207};
208
1da177e4 209int min_free_kbytes = 1024;
42aa83cb 210int user_min_free_kbytes = -1;
1da177e4 211
2c85f51d
JB
212static unsigned long __meminitdata nr_kernel_pages;
213static unsigned long __meminitdata nr_all_pages;
a3142c8e 214static unsigned long __meminitdata dma_reserve;
1da177e4 215
0ee332c1
TH
216#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __initdata required_kernelcore;
220static unsigned long __initdata required_movablecore;
221static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224int movable_zone;
225EXPORT_SYMBOL(movable_zone);
226#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 227
418508c1
MS
228#if MAX_NUMNODES > 1
229int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 230int nr_online_nodes __read_mostly = 1;
418508c1 231EXPORT_SYMBOL(nr_node_ids);
62bc62a8 232EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
233#endif
234
9ef9acb0
MG
235int page_group_by_mobility_disabled __read_mostly;
236
ee6f509c 237void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 238{
5d0f3f72
KM
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
241 migratetype = MIGRATE_UNMOVABLE;
242
b2a0ac88
MG
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245}
246
13e7444b 247#ifdef CONFIG_DEBUG_VM
c6a57e19 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 249{
bdc8cb98
DH
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 253 unsigned long sp, start_pfn;
c6a57e19 254
bdc8cb98
DH
255 do {
256 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
108bcc96 259 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
b5e6a5a2 263 if (ret)
613813e8
DH
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
b5e6a5a2 267
bdc8cb98 268 return ret;
c6a57e19
DH
269}
270
271static int page_is_consistent(struct zone *zone, struct page *page)
272{
14e07298 273 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 274 return 0;
1da177e4 275 if (zone != page_zone(page))
c6a57e19
DH
276 return 0;
277
278 return 1;
279}
280/*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283static int bad_range(struct zone *zone, struct page *page)
284{
285 if (page_outside_zone_boundaries(zone, page))
1da177e4 286 return 1;
c6a57e19
DH
287 if (!page_is_consistent(zone, page))
288 return 1;
289
1da177e4
LT
290 return 0;
291}
13e7444b
NP
292#else
293static inline int bad_range(struct zone *zone, struct page *page)
294{
295 return 0;
296}
297#endif
298
d230dec1
KS
299static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
1da177e4 301{
d936cf9b
HD
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
2a7684a2
WF
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
22b751c3 308 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
309 return;
310 }
311
d936cf9b
HD
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
1e9e6365
HD
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
1e9e6365 332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 333 current->comm, page_to_pfn(page));
f0b791a3 334 dump_page_badflags(page, reason, bad_flags);
3dc14741 335
4f31888c 336 print_modules();
1da177e4 337 dump_stack();
d936cf9b 338out:
8cc3b392 339 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 340 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
342}
343
1da177e4
LT
344/*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
6416b9fa
WSH
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
1da177e4 353 *
41d78ba5
HD
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
1da177e4 357 */
d98c7a09
HD
358
359static void free_compound_page(struct page *page)
360{
d85f3385 361 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
362}
363
01ad1c08 364void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
365{
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
58a84aa9 374 set_page_count(p, 0);
18229df5 375 p->first_page = page;
668f9abb
DR
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
18229df5
AW
379 }
380}
381
7aeb09f9
MG
382static inline void prep_zero_page(struct page *page, unsigned int order,
383 gfp_t gfp_flags)
17cf4406
NP
384{
385 int i;
386
6626c5d5
AM
387 /*
388 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
389 * and __GFP_HIGHMEM from hard or soft interrupt context.
390 */
725d704e 391 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
392 for (i = 0; i < (1 << order); i++)
393 clear_highpage(page + i);
394}
395
c0a32fc5
SG
396#ifdef CONFIG_DEBUG_PAGEALLOC
397unsigned int _debug_guardpage_minorder;
031bc574 398bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
399bool _debug_guardpage_enabled __read_mostly;
400
031bc574
JK
401static int __init early_debug_pagealloc(char *buf)
402{
403 if (!buf)
404 return -EINVAL;
405
406 if (strcmp(buf, "on") == 0)
407 _debug_pagealloc_enabled = true;
408
409 return 0;
410}
411early_param("debug_pagealloc", early_debug_pagealloc);
412
e30825f1
JK
413static bool need_debug_guardpage(void)
414{
031bc574
JK
415 /* If we don't use debug_pagealloc, we don't need guard page */
416 if (!debug_pagealloc_enabled())
417 return false;
418
e30825f1
JK
419 return true;
420}
421
422static void init_debug_guardpage(void)
423{
031bc574
JK
424 if (!debug_pagealloc_enabled())
425 return;
426
e30825f1
JK
427 _debug_guardpage_enabled = true;
428}
429
430struct page_ext_operations debug_guardpage_ops = {
431 .need = need_debug_guardpage,
432 .init = init_debug_guardpage,
433};
c0a32fc5
SG
434
435static int __init debug_guardpage_minorder_setup(char *buf)
436{
437 unsigned long res;
438
439 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
440 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
441 return 0;
442 }
443 _debug_guardpage_minorder = res;
444 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
445 return 0;
446}
447__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
448
2847cf95
JK
449static inline void set_page_guard(struct zone *zone, struct page *page,
450 unsigned int order, int migratetype)
c0a32fc5 451{
e30825f1
JK
452 struct page_ext *page_ext;
453
454 if (!debug_guardpage_enabled())
455 return;
456
457 page_ext = lookup_page_ext(page);
458 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
459
2847cf95
JK
460 INIT_LIST_HEAD(&page->lru);
461 set_page_private(page, order);
462 /* Guard pages are not available for any usage */
463 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
464}
465
2847cf95
JK
466static inline void clear_page_guard(struct zone *zone, struct page *page,
467 unsigned int order, int migratetype)
c0a32fc5 468{
e30825f1
JK
469 struct page_ext *page_ext;
470
471 if (!debug_guardpage_enabled())
472 return;
473
474 page_ext = lookup_page_ext(page);
475 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
476
2847cf95
JK
477 set_page_private(page, 0);
478 if (!is_migrate_isolate(migratetype))
479 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
480}
481#else
e30825f1 482struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
483static inline void set_page_guard(struct zone *zone, struct page *page,
484 unsigned int order, int migratetype) {}
485static inline void clear_page_guard(struct zone *zone, struct page *page,
486 unsigned int order, int migratetype) {}
c0a32fc5
SG
487#endif
488
7aeb09f9 489static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 490{
4c21e2f2 491 set_page_private(page, order);
676165a8 492 __SetPageBuddy(page);
1da177e4
LT
493}
494
495static inline void rmv_page_order(struct page *page)
496{
676165a8 497 __ClearPageBuddy(page);
4c21e2f2 498 set_page_private(page, 0);
1da177e4
LT
499}
500
1da177e4
LT
501/*
502 * This function checks whether a page is free && is the buddy
503 * we can do coalesce a page and its buddy if
13e7444b 504 * (a) the buddy is not in a hole &&
676165a8 505 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
506 * (c) a page and its buddy have the same order &&
507 * (d) a page and its buddy are in the same zone.
676165a8 508 *
cf6fe945
WSH
509 * For recording whether a page is in the buddy system, we set ->_mapcount
510 * PAGE_BUDDY_MAPCOUNT_VALUE.
511 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
512 * serialized by zone->lock.
1da177e4 513 *
676165a8 514 * For recording page's order, we use page_private(page).
1da177e4 515 */
cb2b95e1 516static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 517 unsigned int order)
1da177e4 518{
14e07298 519 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 520 return 0;
13e7444b 521
c0a32fc5 522 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
523 if (page_zone_id(page) != page_zone_id(buddy))
524 return 0;
525
4c5018ce
WY
526 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
527
c0a32fc5
SG
528 return 1;
529 }
530
cb2b95e1 531 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
532 /*
533 * zone check is done late to avoid uselessly
534 * calculating zone/node ids for pages that could
535 * never merge.
536 */
537 if (page_zone_id(page) != page_zone_id(buddy))
538 return 0;
539
4c5018ce
WY
540 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
541
6aa3001b 542 return 1;
676165a8 543 }
6aa3001b 544 return 0;
1da177e4
LT
545}
546
547/*
548 * Freeing function for a buddy system allocator.
549 *
550 * The concept of a buddy system is to maintain direct-mapped table
551 * (containing bit values) for memory blocks of various "orders".
552 * The bottom level table contains the map for the smallest allocatable
553 * units of memory (here, pages), and each level above it describes
554 * pairs of units from the levels below, hence, "buddies".
555 * At a high level, all that happens here is marking the table entry
556 * at the bottom level available, and propagating the changes upward
557 * as necessary, plus some accounting needed to play nicely with other
558 * parts of the VM system.
559 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
560 * free pages of length of (1 << order) and marked with _mapcount
561 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
562 * field.
1da177e4 563 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
564 * other. That is, if we allocate a small block, and both were
565 * free, the remainder of the region must be split into blocks.
1da177e4 566 * If a block is freed, and its buddy is also free, then this
5f63b720 567 * triggers coalescing into a block of larger size.
1da177e4 568 *
6d49e352 569 * -- nyc
1da177e4
LT
570 */
571
48db57f8 572static inline void __free_one_page(struct page *page,
dc4b0caf 573 unsigned long pfn,
ed0ae21d
MG
574 struct zone *zone, unsigned int order,
575 int migratetype)
1da177e4
LT
576{
577 unsigned long page_idx;
6dda9d55 578 unsigned long combined_idx;
43506fad 579 unsigned long uninitialized_var(buddy_idx);
6dda9d55 580 struct page *buddy;
3c605096 581 int max_order = MAX_ORDER;
1da177e4 582
d29bb978 583 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 584 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 585
ed0ae21d 586 VM_BUG_ON(migratetype == -1);
3c605096
JK
587 if (is_migrate_isolate(migratetype)) {
588 /*
589 * We restrict max order of merging to prevent merge
590 * between freepages on isolate pageblock and normal
591 * pageblock. Without this, pageblock isolation
592 * could cause incorrect freepage accounting.
593 */
594 max_order = min(MAX_ORDER, pageblock_order + 1);
595 } else {
8f82b55d 596 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 597 }
ed0ae21d 598
3c605096 599 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 600
309381fe
SL
601 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
602 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 603
3c605096 604 while (order < max_order - 1) {
43506fad
KC
605 buddy_idx = __find_buddy_index(page_idx, order);
606 buddy = page + (buddy_idx - page_idx);
cb2b95e1 607 if (!page_is_buddy(page, buddy, order))
3c82d0ce 608 break;
c0a32fc5
SG
609 /*
610 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
611 * merge with it and move up one order.
612 */
613 if (page_is_guard(buddy)) {
2847cf95 614 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
615 } else {
616 list_del(&buddy->lru);
617 zone->free_area[order].nr_free--;
618 rmv_page_order(buddy);
619 }
43506fad 620 combined_idx = buddy_idx & page_idx;
1da177e4
LT
621 page = page + (combined_idx - page_idx);
622 page_idx = combined_idx;
623 order++;
624 }
625 set_page_order(page, order);
6dda9d55
CZ
626
627 /*
628 * If this is not the largest possible page, check if the buddy
629 * of the next-highest order is free. If it is, it's possible
630 * that pages are being freed that will coalesce soon. In case,
631 * that is happening, add the free page to the tail of the list
632 * so it's less likely to be used soon and more likely to be merged
633 * as a higher order page
634 */
b7f50cfa 635 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 636 struct page *higher_page, *higher_buddy;
43506fad
KC
637 combined_idx = buddy_idx & page_idx;
638 higher_page = page + (combined_idx - page_idx);
639 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 640 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
641 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
642 list_add_tail(&page->lru,
643 &zone->free_area[order].free_list[migratetype]);
644 goto out;
645 }
646 }
647
648 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
649out:
1da177e4
LT
650 zone->free_area[order].nr_free++;
651}
652
224abf92 653static inline int free_pages_check(struct page *page)
1da177e4 654{
d230dec1 655 const char *bad_reason = NULL;
f0b791a3
DH
656 unsigned long bad_flags = 0;
657
658 if (unlikely(page_mapcount(page)))
659 bad_reason = "nonzero mapcount";
660 if (unlikely(page->mapping != NULL))
661 bad_reason = "non-NULL mapping";
662 if (unlikely(atomic_read(&page->_count) != 0))
663 bad_reason = "nonzero _count";
664 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
665 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
666 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
667 }
9edad6ea
JW
668#ifdef CONFIG_MEMCG
669 if (unlikely(page->mem_cgroup))
670 bad_reason = "page still charged to cgroup";
671#endif
f0b791a3
DH
672 if (unlikely(bad_reason)) {
673 bad_page(page, bad_reason, bad_flags);
79f4b7bf 674 return 1;
8cc3b392 675 }
90572890 676 page_cpupid_reset_last(page);
79f4b7bf
HD
677 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
678 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
679 return 0;
1da177e4
LT
680}
681
682/*
5f8dcc21 683 * Frees a number of pages from the PCP lists
1da177e4 684 * Assumes all pages on list are in same zone, and of same order.
207f36ee 685 * count is the number of pages to free.
1da177e4
LT
686 *
687 * If the zone was previously in an "all pages pinned" state then look to
688 * see if this freeing clears that state.
689 *
690 * And clear the zone's pages_scanned counter, to hold off the "all pages are
691 * pinned" detection logic.
692 */
5f8dcc21
MG
693static void free_pcppages_bulk(struct zone *zone, int count,
694 struct per_cpu_pages *pcp)
1da177e4 695{
5f8dcc21 696 int migratetype = 0;
a6f9edd6 697 int batch_free = 0;
72853e29 698 int to_free = count;
0d5d823a 699 unsigned long nr_scanned;
5f8dcc21 700
c54ad30c 701 spin_lock(&zone->lock);
0d5d823a
MG
702 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
703 if (nr_scanned)
704 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 705
72853e29 706 while (to_free) {
48db57f8 707 struct page *page;
5f8dcc21
MG
708 struct list_head *list;
709
710 /*
a6f9edd6
MG
711 * Remove pages from lists in a round-robin fashion. A
712 * batch_free count is maintained that is incremented when an
713 * empty list is encountered. This is so more pages are freed
714 * off fuller lists instead of spinning excessively around empty
715 * lists
5f8dcc21
MG
716 */
717 do {
a6f9edd6 718 batch_free++;
5f8dcc21
MG
719 if (++migratetype == MIGRATE_PCPTYPES)
720 migratetype = 0;
721 list = &pcp->lists[migratetype];
722 } while (list_empty(list));
48db57f8 723
1d16871d
NK
724 /* This is the only non-empty list. Free them all. */
725 if (batch_free == MIGRATE_PCPTYPES)
726 batch_free = to_free;
727
a6f9edd6 728 do {
770c8aaa
BZ
729 int mt; /* migratetype of the to-be-freed page */
730
a6f9edd6
MG
731 page = list_entry(list->prev, struct page, lru);
732 /* must delete as __free_one_page list manipulates */
733 list_del(&page->lru);
b12c4ad1 734 mt = get_freepage_migratetype(page);
8f82b55d 735 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 736 mt = get_pageblock_migratetype(page);
51bb1a40 737
a7016235 738 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 739 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 740 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 741 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 742 }
c54ad30c 743 spin_unlock(&zone->lock);
1da177e4
LT
744}
745
dc4b0caf
MG
746static void free_one_page(struct zone *zone,
747 struct page *page, unsigned long pfn,
7aeb09f9 748 unsigned int order,
ed0ae21d 749 int migratetype)
1da177e4 750{
0d5d823a 751 unsigned long nr_scanned;
006d22d9 752 spin_lock(&zone->lock);
0d5d823a
MG
753 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
754 if (nr_scanned)
755 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 756
ad53f92e
JK
757 if (unlikely(has_isolate_pageblock(zone) ||
758 is_migrate_isolate(migratetype))) {
759 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 760 }
dc4b0caf 761 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 762 spin_unlock(&zone->lock);
48db57f8
NP
763}
764
81422f29
KS
765static int free_tail_pages_check(struct page *head_page, struct page *page)
766{
767 if (!IS_ENABLED(CONFIG_DEBUG_VM))
768 return 0;
769 if (unlikely(!PageTail(page))) {
770 bad_page(page, "PageTail not set", 0);
771 return 1;
772 }
773 if (unlikely(page->first_page != head_page)) {
774 bad_page(page, "first_page not consistent", 0);
775 return 1;
776 }
777 return 0;
778}
779
ec95f53a 780static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 781{
81422f29
KS
782 bool compound = PageCompound(page);
783 int i, bad = 0;
1da177e4 784
ab1f306f 785 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 786 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 787
b413d48a 788 trace_mm_page_free(page, order);
b1eeab67
VN
789 kmemcheck_free_shadow(page, order);
790
8dd60a3a
AA
791 if (PageAnon(page))
792 page->mapping = NULL;
81422f29
KS
793 bad += free_pages_check(page);
794 for (i = 1; i < (1 << order); i++) {
795 if (compound)
796 bad += free_tail_pages_check(page, page + i);
8dd60a3a 797 bad += free_pages_check(page + i);
81422f29 798 }
8cc3b392 799 if (bad)
ec95f53a 800 return false;
689bcebf 801
48c96a36
JK
802 reset_page_owner(page, order);
803
3ac7fe5a 804 if (!PageHighMem(page)) {
b8af2941
PK
805 debug_check_no_locks_freed(page_address(page),
806 PAGE_SIZE << order);
3ac7fe5a
TG
807 debug_check_no_obj_freed(page_address(page),
808 PAGE_SIZE << order);
809 }
dafb1367 810 arch_free_page(page, order);
48db57f8 811 kernel_map_pages(page, 1 << order, 0);
dafb1367 812
ec95f53a
KM
813 return true;
814}
815
816static void __free_pages_ok(struct page *page, unsigned int order)
817{
818 unsigned long flags;
95e34412 819 int migratetype;
dc4b0caf 820 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
821
822 if (!free_pages_prepare(page, order))
823 return;
824
cfc47a28 825 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 826 local_irq_save(flags);
f8891e5e 827 __count_vm_events(PGFREE, 1 << order);
95e34412 828 set_freepage_migratetype(page, migratetype);
dc4b0caf 829 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 830 local_irq_restore(flags);
1da177e4
LT
831}
832
170a5a7e 833void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 834{
c3993076 835 unsigned int nr_pages = 1 << order;
e2d0bd2b 836 struct page *p = page;
c3993076 837 unsigned int loop;
a226f6c8 838
e2d0bd2b
YL
839 prefetchw(p);
840 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
841 prefetchw(p + 1);
c3993076
JW
842 __ClearPageReserved(p);
843 set_page_count(p, 0);
a226f6c8 844 }
e2d0bd2b
YL
845 __ClearPageReserved(p);
846 set_page_count(p, 0);
c3993076 847
e2d0bd2b 848 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
849 set_page_refcounted(page);
850 __free_pages(page, order);
a226f6c8
DH
851}
852
47118af0 853#ifdef CONFIG_CMA
9cf510a5 854/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
855void __init init_cma_reserved_pageblock(struct page *page)
856{
857 unsigned i = pageblock_nr_pages;
858 struct page *p = page;
859
860 do {
861 __ClearPageReserved(p);
862 set_page_count(p, 0);
863 } while (++p, --i);
864
47118af0 865 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
866
867 if (pageblock_order >= MAX_ORDER) {
868 i = pageblock_nr_pages;
869 p = page;
870 do {
871 set_page_refcounted(p);
872 __free_pages(p, MAX_ORDER - 1);
873 p += MAX_ORDER_NR_PAGES;
874 } while (i -= MAX_ORDER_NR_PAGES);
875 } else {
876 set_page_refcounted(page);
877 __free_pages(page, pageblock_order);
878 }
879
3dcc0571 880 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
881}
882#endif
1da177e4
LT
883
884/*
885 * The order of subdivision here is critical for the IO subsystem.
886 * Please do not alter this order without good reasons and regression
887 * testing. Specifically, as large blocks of memory are subdivided,
888 * the order in which smaller blocks are delivered depends on the order
889 * they're subdivided in this function. This is the primary factor
890 * influencing the order in which pages are delivered to the IO
891 * subsystem according to empirical testing, and this is also justified
892 * by considering the behavior of a buddy system containing a single
893 * large block of memory acted on by a series of small allocations.
894 * This behavior is a critical factor in sglist merging's success.
895 *
6d49e352 896 * -- nyc
1da177e4 897 */
085cc7d5 898static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
899 int low, int high, struct free_area *area,
900 int migratetype)
1da177e4
LT
901{
902 unsigned long size = 1 << high;
903
904 while (high > low) {
905 area--;
906 high--;
907 size >>= 1;
309381fe 908 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 909
2847cf95 910 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 911 debug_guardpage_enabled() &&
2847cf95 912 high < debug_guardpage_minorder()) {
c0a32fc5
SG
913 /*
914 * Mark as guard pages (or page), that will allow to
915 * merge back to allocator when buddy will be freed.
916 * Corresponding page table entries will not be touched,
917 * pages will stay not present in virtual address space
918 */
2847cf95 919 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
920 continue;
921 }
b2a0ac88 922 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
923 area->nr_free++;
924 set_page_order(&page[size], high);
925 }
1da177e4
LT
926}
927
1da177e4
LT
928/*
929 * This page is about to be returned from the page allocator
930 */
2a7684a2 931static inline int check_new_page(struct page *page)
1da177e4 932{
d230dec1 933 const char *bad_reason = NULL;
f0b791a3
DH
934 unsigned long bad_flags = 0;
935
936 if (unlikely(page_mapcount(page)))
937 bad_reason = "nonzero mapcount";
938 if (unlikely(page->mapping != NULL))
939 bad_reason = "non-NULL mapping";
940 if (unlikely(atomic_read(&page->_count) != 0))
941 bad_reason = "nonzero _count";
942 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
943 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
944 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
945 }
9edad6ea
JW
946#ifdef CONFIG_MEMCG
947 if (unlikely(page->mem_cgroup))
948 bad_reason = "page still charged to cgroup";
949#endif
f0b791a3
DH
950 if (unlikely(bad_reason)) {
951 bad_page(page, bad_reason, bad_flags);
689bcebf 952 return 1;
8cc3b392 953 }
2a7684a2
WF
954 return 0;
955}
956
75379191
VB
957static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
958 int alloc_flags)
2a7684a2
WF
959{
960 int i;
961
962 for (i = 0; i < (1 << order); i++) {
963 struct page *p = page + i;
964 if (unlikely(check_new_page(p)))
965 return 1;
966 }
689bcebf 967
4c21e2f2 968 set_page_private(page, 0);
7835e98b 969 set_page_refcounted(page);
cc102509
NP
970
971 arch_alloc_page(page, order);
1da177e4 972 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
973
974 if (gfp_flags & __GFP_ZERO)
975 prep_zero_page(page, order, gfp_flags);
976
977 if (order && (gfp_flags & __GFP_COMP))
978 prep_compound_page(page, order);
979
48c96a36
JK
980 set_page_owner(page, order, gfp_flags);
981
75379191
VB
982 /*
983 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
984 * allocate the page. The expectation is that the caller is taking
985 * steps that will free more memory. The caller should avoid the page
986 * being used for !PFMEMALLOC purposes.
987 */
988 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
989
689bcebf 990 return 0;
1da177e4
LT
991}
992
56fd56b8
MG
993/*
994 * Go through the free lists for the given migratetype and remove
995 * the smallest available page from the freelists
996 */
728ec980
MG
997static inline
998struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
999 int migratetype)
1000{
1001 unsigned int current_order;
b8af2941 1002 struct free_area *area;
56fd56b8
MG
1003 struct page *page;
1004
1005 /* Find a page of the appropriate size in the preferred list */
1006 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1007 area = &(zone->free_area[current_order]);
1008 if (list_empty(&area->free_list[migratetype]))
1009 continue;
1010
1011 page = list_entry(area->free_list[migratetype].next,
1012 struct page, lru);
1013 list_del(&page->lru);
1014 rmv_page_order(page);
1015 area->nr_free--;
56fd56b8 1016 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1017 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1018 return page;
1019 }
1020
1021 return NULL;
1022}
1023
1024
b2a0ac88
MG
1025/*
1026 * This array describes the order lists are fallen back to when
1027 * the free lists for the desirable migrate type are depleted
1028 */
47118af0
MN
1029static int fallbacks[MIGRATE_TYPES][4] = {
1030 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1031 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1032#ifdef CONFIG_CMA
1033 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1035#else
1036 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1037#endif
6d4a4916 1038 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1039#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1040 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1041#endif
b2a0ac88
MG
1042};
1043
c361be55
MG
1044/*
1045 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1046 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1047 * boundary. If alignment is required, use move_freepages_block()
1048 */
435b405c 1049int move_freepages(struct zone *zone,
b69a7288
AB
1050 struct page *start_page, struct page *end_page,
1051 int migratetype)
c361be55
MG
1052{
1053 struct page *page;
1054 unsigned long order;
d100313f 1055 int pages_moved = 0;
c361be55
MG
1056
1057#ifndef CONFIG_HOLES_IN_ZONE
1058 /*
1059 * page_zone is not safe to call in this context when
1060 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1061 * anyway as we check zone boundaries in move_freepages_block().
1062 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1063 * grouping pages by mobility
c361be55 1064 */
97ee4ba7 1065 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1066#endif
1067
1068 for (page = start_page; page <= end_page;) {
344c790e 1069 /* Make sure we are not inadvertently changing nodes */
309381fe 1070 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1071
c361be55
MG
1072 if (!pfn_valid_within(page_to_pfn(page))) {
1073 page++;
1074 continue;
1075 }
1076
1077 if (!PageBuddy(page)) {
1078 page++;
1079 continue;
1080 }
1081
1082 order = page_order(page);
84be48d8
KS
1083 list_move(&page->lru,
1084 &zone->free_area[order].free_list[migratetype]);
95e34412 1085 set_freepage_migratetype(page, migratetype);
c361be55 1086 page += 1 << order;
d100313f 1087 pages_moved += 1 << order;
c361be55
MG
1088 }
1089
d100313f 1090 return pages_moved;
c361be55
MG
1091}
1092
ee6f509c 1093int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1094 int migratetype)
c361be55
MG
1095{
1096 unsigned long start_pfn, end_pfn;
1097 struct page *start_page, *end_page;
1098
1099 start_pfn = page_to_pfn(page);
d9c23400 1100 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1101 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1102 end_page = start_page + pageblock_nr_pages - 1;
1103 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1104
1105 /* Do not cross zone boundaries */
108bcc96 1106 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1107 start_page = page;
108bcc96 1108 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1109 return 0;
1110
1111 return move_freepages(zone, start_page, end_page, migratetype);
1112}
1113
2f66a68f
MG
1114static void change_pageblock_range(struct page *pageblock_page,
1115 int start_order, int migratetype)
1116{
1117 int nr_pageblocks = 1 << (start_order - pageblock_order);
1118
1119 while (nr_pageblocks--) {
1120 set_pageblock_migratetype(pageblock_page, migratetype);
1121 pageblock_page += pageblock_nr_pages;
1122 }
1123}
1124
fef903ef
SB
1125/*
1126 * If breaking a large block of pages, move all free pages to the preferred
1127 * allocation list. If falling back for a reclaimable kernel allocation, be
1128 * more aggressive about taking ownership of free pages.
1129 *
1130 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1131 * nor move CMA pages to different free lists. We don't want unmovable pages
1132 * to be allocated from MIGRATE_CMA areas.
1133 *
99592d59
VB
1134 * Returns the allocation migratetype if free pages were stolen, or the
1135 * fallback migratetype if it was decided not to steal.
fef903ef
SB
1136 */
1137static int try_to_steal_freepages(struct zone *zone, struct page *page,
1138 int start_type, int fallback_type)
1139{
1140 int current_order = page_order(page);
1141
0cbef29a
KM
1142 /*
1143 * When borrowing from MIGRATE_CMA, we need to release the excess
5bcc9f86
VB
1144 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1145 * is set to CMA so it is returned to the correct freelist in case
1146 * the page ends up being not actually allocated from the pcp lists.
0cbef29a 1147 */
fef903ef
SB
1148 if (is_migrate_cma(fallback_type))
1149 return fallback_type;
1150
1151 /* Take ownership for orders >= pageblock_order */
1152 if (current_order >= pageblock_order) {
1153 change_pageblock_range(page, current_order, start_type);
1154 return start_type;
1155 }
1156
1157 if (current_order >= pageblock_order / 2 ||
1158 start_type == MIGRATE_RECLAIMABLE ||
1159 page_group_by_mobility_disabled) {
1160 int pages;
1161
1162 pages = move_freepages_block(zone, page, start_type);
1163
1164 /* Claim the whole block if over half of it is free */
1165 if (pages >= (1 << (pageblock_order-1)) ||
99592d59 1166 page_group_by_mobility_disabled)
fef903ef 1167 set_pageblock_migratetype(page, start_type);
fef903ef 1168
99592d59 1169 return start_type;
fef903ef
SB
1170 }
1171
1172 return fallback_type;
1173}
1174
b2a0ac88 1175/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1176static inline struct page *
7aeb09f9 1177__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1178{
b8af2941 1179 struct free_area *area;
7aeb09f9 1180 unsigned int current_order;
b2a0ac88 1181 struct page *page;
fef903ef 1182 int migratetype, new_type, i;
b2a0ac88
MG
1183
1184 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1185 for (current_order = MAX_ORDER-1;
1186 current_order >= order && current_order <= MAX_ORDER-1;
1187 --current_order) {
6d4a4916 1188 for (i = 0;; i++) {
b2a0ac88
MG
1189 migratetype = fallbacks[start_migratetype][i];
1190
56fd56b8
MG
1191 /* MIGRATE_RESERVE handled later if necessary */
1192 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1193 break;
e010487d 1194
b2a0ac88
MG
1195 area = &(zone->free_area[current_order]);
1196 if (list_empty(&area->free_list[migratetype]))
1197 continue;
1198
1199 page = list_entry(area->free_list[migratetype].next,
1200 struct page, lru);
1201 area->nr_free--;
1202
fef903ef
SB
1203 new_type = try_to_steal_freepages(zone, page,
1204 start_migratetype,
1205 migratetype);
b2a0ac88
MG
1206
1207 /* Remove the page from the freelists */
1208 list_del(&page->lru);
1209 rmv_page_order(page);
b2a0ac88 1210
47118af0 1211 expand(zone, page, order, current_order, area,
0cbef29a 1212 new_type);
5bcc9f86
VB
1213 /* The freepage_migratetype may differ from pageblock's
1214 * migratetype depending on the decisions in
1215 * try_to_steal_freepages. This is OK as long as it does
1216 * not differ for MIGRATE_CMA type.
1217 */
1218 set_freepage_migratetype(page, new_type);
e0fff1bd 1219
52c8f6a5 1220 trace_mm_page_alloc_extfrag(page, order, current_order,
99592d59 1221 start_migratetype, migratetype);
e0fff1bd 1222
b2a0ac88
MG
1223 return page;
1224 }
1225 }
1226
728ec980 1227 return NULL;
b2a0ac88
MG
1228}
1229
56fd56b8 1230/*
1da177e4
LT
1231 * Do the hard work of removing an element from the buddy allocator.
1232 * Call me with the zone->lock already held.
1233 */
b2a0ac88
MG
1234static struct page *__rmqueue(struct zone *zone, unsigned int order,
1235 int migratetype)
1da177e4 1236{
1da177e4
LT
1237 struct page *page;
1238
728ec980 1239retry_reserve:
56fd56b8 1240 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1241
728ec980 1242 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1243 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1244
728ec980
MG
1245 /*
1246 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1247 * is used because __rmqueue_smallest is an inline function
1248 * and we want just one call site
1249 */
1250 if (!page) {
1251 migratetype = MIGRATE_RESERVE;
1252 goto retry_reserve;
1253 }
1254 }
1255
0d3d062a 1256 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1257 return page;
1da177e4
LT
1258}
1259
5f63b720 1260/*
1da177e4
LT
1261 * Obtain a specified number of elements from the buddy allocator, all under
1262 * a single hold of the lock, for efficiency. Add them to the supplied list.
1263 * Returns the number of new pages which were placed at *list.
1264 */
5f63b720 1265static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1266 unsigned long count, struct list_head *list,
b745bc85 1267 int migratetype, bool cold)
1da177e4 1268{
5bcc9f86 1269 int i;
5f63b720 1270
c54ad30c 1271 spin_lock(&zone->lock);
1da177e4 1272 for (i = 0; i < count; ++i) {
b2a0ac88 1273 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1274 if (unlikely(page == NULL))
1da177e4 1275 break;
81eabcbe
MG
1276
1277 /*
1278 * Split buddy pages returned by expand() are received here
1279 * in physical page order. The page is added to the callers and
1280 * list and the list head then moves forward. From the callers
1281 * perspective, the linked list is ordered by page number in
1282 * some conditions. This is useful for IO devices that can
1283 * merge IO requests if the physical pages are ordered
1284 * properly.
1285 */
b745bc85 1286 if (likely(!cold))
e084b2d9
MG
1287 list_add(&page->lru, list);
1288 else
1289 list_add_tail(&page->lru, list);
81eabcbe 1290 list = &page->lru;
5bcc9f86 1291 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1292 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1293 -(1 << order));
1da177e4 1294 }
f2260e6b 1295 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1296 spin_unlock(&zone->lock);
085cc7d5 1297 return i;
1da177e4
LT
1298}
1299
4ae7c039 1300#ifdef CONFIG_NUMA
8fce4d8e 1301/*
4037d452
CL
1302 * Called from the vmstat counter updater to drain pagesets of this
1303 * currently executing processor on remote nodes after they have
1304 * expired.
1305 *
879336c3
CL
1306 * Note that this function must be called with the thread pinned to
1307 * a single processor.
8fce4d8e 1308 */
4037d452 1309void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1310{
4ae7c039 1311 unsigned long flags;
7be12fc9 1312 int to_drain, batch;
4ae7c039 1313
4037d452 1314 local_irq_save(flags);
998d39cb 1315 batch = ACCESS_ONCE(pcp->batch);
7be12fc9 1316 to_drain = min(pcp->count, batch);
2a13515c
KM
1317 if (to_drain > 0) {
1318 free_pcppages_bulk(zone, to_drain, pcp);
1319 pcp->count -= to_drain;
1320 }
4037d452 1321 local_irq_restore(flags);
4ae7c039
CL
1322}
1323#endif
1324
9f8f2172 1325/*
93481ff0 1326 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1327 *
1328 * The processor must either be the current processor and the
1329 * thread pinned to the current processor or a processor that
1330 * is not online.
1331 */
93481ff0 1332static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1333{
c54ad30c 1334 unsigned long flags;
93481ff0
VB
1335 struct per_cpu_pageset *pset;
1336 struct per_cpu_pages *pcp;
1da177e4 1337
93481ff0
VB
1338 local_irq_save(flags);
1339 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1340
93481ff0
VB
1341 pcp = &pset->pcp;
1342 if (pcp->count) {
1343 free_pcppages_bulk(zone, pcp->count, pcp);
1344 pcp->count = 0;
1345 }
1346 local_irq_restore(flags);
1347}
3dfa5721 1348
93481ff0
VB
1349/*
1350 * Drain pcplists of all zones on the indicated processor.
1351 *
1352 * The processor must either be the current processor and the
1353 * thread pinned to the current processor or a processor that
1354 * is not online.
1355 */
1356static void drain_pages(unsigned int cpu)
1357{
1358 struct zone *zone;
1359
1360 for_each_populated_zone(zone) {
1361 drain_pages_zone(cpu, zone);
1da177e4
LT
1362 }
1363}
1da177e4 1364
9f8f2172
CL
1365/*
1366 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1367 *
1368 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1369 * the single zone's pages.
9f8f2172 1370 */
93481ff0 1371void drain_local_pages(struct zone *zone)
9f8f2172 1372{
93481ff0
VB
1373 int cpu = smp_processor_id();
1374
1375 if (zone)
1376 drain_pages_zone(cpu, zone);
1377 else
1378 drain_pages(cpu);
9f8f2172
CL
1379}
1380
1381/*
74046494
GBY
1382 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1383 *
93481ff0
VB
1384 * When zone parameter is non-NULL, spill just the single zone's pages.
1385 *
74046494
GBY
1386 * Note that this code is protected against sending an IPI to an offline
1387 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1388 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1389 * nothing keeps CPUs from showing up after we populated the cpumask and
1390 * before the call to on_each_cpu_mask().
9f8f2172 1391 */
93481ff0 1392void drain_all_pages(struct zone *zone)
9f8f2172 1393{
74046494 1394 int cpu;
74046494
GBY
1395
1396 /*
1397 * Allocate in the BSS so we wont require allocation in
1398 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1399 */
1400 static cpumask_t cpus_with_pcps;
1401
1402 /*
1403 * We don't care about racing with CPU hotplug event
1404 * as offline notification will cause the notified
1405 * cpu to drain that CPU pcps and on_each_cpu_mask
1406 * disables preemption as part of its processing
1407 */
1408 for_each_online_cpu(cpu) {
93481ff0
VB
1409 struct per_cpu_pageset *pcp;
1410 struct zone *z;
74046494 1411 bool has_pcps = false;
93481ff0
VB
1412
1413 if (zone) {
74046494 1414 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1415 if (pcp->pcp.count)
74046494 1416 has_pcps = true;
93481ff0
VB
1417 } else {
1418 for_each_populated_zone(z) {
1419 pcp = per_cpu_ptr(z->pageset, cpu);
1420 if (pcp->pcp.count) {
1421 has_pcps = true;
1422 break;
1423 }
74046494
GBY
1424 }
1425 }
93481ff0 1426
74046494
GBY
1427 if (has_pcps)
1428 cpumask_set_cpu(cpu, &cpus_with_pcps);
1429 else
1430 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1431 }
93481ff0
VB
1432 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1433 zone, 1);
9f8f2172
CL
1434}
1435
296699de 1436#ifdef CONFIG_HIBERNATION
1da177e4
LT
1437
1438void mark_free_pages(struct zone *zone)
1439{
f623f0db
RW
1440 unsigned long pfn, max_zone_pfn;
1441 unsigned long flags;
7aeb09f9 1442 unsigned int order, t;
1da177e4
LT
1443 struct list_head *curr;
1444
8080fc03 1445 if (zone_is_empty(zone))
1da177e4
LT
1446 return;
1447
1448 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1449
108bcc96 1450 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1451 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1452 if (pfn_valid(pfn)) {
1453 struct page *page = pfn_to_page(pfn);
1454
7be98234
RW
1455 if (!swsusp_page_is_forbidden(page))
1456 swsusp_unset_page_free(page);
f623f0db 1457 }
1da177e4 1458
b2a0ac88
MG
1459 for_each_migratetype_order(order, t) {
1460 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1461 unsigned long i;
1da177e4 1462
f623f0db
RW
1463 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1464 for (i = 0; i < (1UL << order); i++)
7be98234 1465 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1466 }
b2a0ac88 1467 }
1da177e4
LT
1468 spin_unlock_irqrestore(&zone->lock, flags);
1469}
e2c55dc8 1470#endif /* CONFIG_PM */
1da177e4 1471
1da177e4
LT
1472/*
1473 * Free a 0-order page
b745bc85 1474 * cold == true ? free a cold page : free a hot page
1da177e4 1475 */
b745bc85 1476void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1477{
1478 struct zone *zone = page_zone(page);
1479 struct per_cpu_pages *pcp;
1480 unsigned long flags;
dc4b0caf 1481 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1482 int migratetype;
1da177e4 1483
ec95f53a 1484 if (!free_pages_prepare(page, 0))
689bcebf
HD
1485 return;
1486
dc4b0caf 1487 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1488 set_freepage_migratetype(page, migratetype);
1da177e4 1489 local_irq_save(flags);
f8891e5e 1490 __count_vm_event(PGFREE);
da456f14 1491
5f8dcc21
MG
1492 /*
1493 * We only track unmovable, reclaimable and movable on pcp lists.
1494 * Free ISOLATE pages back to the allocator because they are being
1495 * offlined but treat RESERVE as movable pages so we can get those
1496 * areas back if necessary. Otherwise, we may have to free
1497 * excessively into the page allocator
1498 */
1499 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1500 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1501 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1502 goto out;
1503 }
1504 migratetype = MIGRATE_MOVABLE;
1505 }
1506
99dcc3e5 1507 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1508 if (!cold)
5f8dcc21 1509 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1510 else
1511 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1512 pcp->count++;
48db57f8 1513 if (pcp->count >= pcp->high) {
998d39cb
CS
1514 unsigned long batch = ACCESS_ONCE(pcp->batch);
1515 free_pcppages_bulk(zone, batch, pcp);
1516 pcp->count -= batch;
48db57f8 1517 }
5f8dcc21
MG
1518
1519out:
1da177e4 1520 local_irq_restore(flags);
1da177e4
LT
1521}
1522
cc59850e
KK
1523/*
1524 * Free a list of 0-order pages
1525 */
b745bc85 1526void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1527{
1528 struct page *page, *next;
1529
1530 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1531 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1532 free_hot_cold_page(page, cold);
1533 }
1534}
1535
8dfcc9ba
NP
1536/*
1537 * split_page takes a non-compound higher-order page, and splits it into
1538 * n (1<<order) sub-pages: page[0..n]
1539 * Each sub-page must be freed individually.
1540 *
1541 * Note: this is probably too low level an operation for use in drivers.
1542 * Please consult with lkml before using this in your driver.
1543 */
1544void split_page(struct page *page, unsigned int order)
1545{
1546 int i;
1547
309381fe
SL
1548 VM_BUG_ON_PAGE(PageCompound(page), page);
1549 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1550
1551#ifdef CONFIG_KMEMCHECK
1552 /*
1553 * Split shadow pages too, because free(page[0]) would
1554 * otherwise free the whole shadow.
1555 */
1556 if (kmemcheck_page_is_tracked(page))
1557 split_page(virt_to_page(page[0].shadow), order);
1558#endif
1559
48c96a36
JK
1560 set_page_owner(page, 0, 0);
1561 for (i = 1; i < (1 << order); i++) {
7835e98b 1562 set_page_refcounted(page + i);
48c96a36
JK
1563 set_page_owner(page + i, 0, 0);
1564 }
8dfcc9ba 1565}
5853ff23 1566EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1567
3c605096 1568int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1569{
748446bb
MG
1570 unsigned long watermark;
1571 struct zone *zone;
2139cbe6 1572 int mt;
748446bb
MG
1573
1574 BUG_ON(!PageBuddy(page));
1575
1576 zone = page_zone(page);
2e30abd1 1577 mt = get_pageblock_migratetype(page);
748446bb 1578
194159fb 1579 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1580 /* Obey watermarks as if the page was being allocated */
1581 watermark = low_wmark_pages(zone) + (1 << order);
1582 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1583 return 0;
1584
8fb74b9f 1585 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1586 }
748446bb
MG
1587
1588 /* Remove page from free list */
1589 list_del(&page->lru);
1590 zone->free_area[order].nr_free--;
1591 rmv_page_order(page);
2139cbe6 1592
8fb74b9f 1593 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1594 if (order >= pageblock_order - 1) {
1595 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1596 for (; page < endpage; page += pageblock_nr_pages) {
1597 int mt = get_pageblock_migratetype(page);
194159fb 1598 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1599 set_pageblock_migratetype(page,
1600 MIGRATE_MOVABLE);
1601 }
748446bb
MG
1602 }
1603
48c96a36 1604 set_page_owner(page, order, 0);
8fb74b9f 1605 return 1UL << order;
1fb3f8ca
MG
1606}
1607
1608/*
1609 * Similar to split_page except the page is already free. As this is only
1610 * being used for migration, the migratetype of the block also changes.
1611 * As this is called with interrupts disabled, the caller is responsible
1612 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1613 * are enabled.
1614 *
1615 * Note: this is probably too low level an operation for use in drivers.
1616 * Please consult with lkml before using this in your driver.
1617 */
1618int split_free_page(struct page *page)
1619{
1620 unsigned int order;
1621 int nr_pages;
1622
1fb3f8ca
MG
1623 order = page_order(page);
1624
8fb74b9f 1625 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1626 if (!nr_pages)
1627 return 0;
1628
1629 /* Split into individual pages */
1630 set_page_refcounted(page);
1631 split_page(page, order);
1632 return nr_pages;
748446bb
MG
1633}
1634
1da177e4 1635/*
75379191 1636 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1637 */
0a15c3e9
MG
1638static inline
1639struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1640 struct zone *zone, unsigned int order,
1641 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1642{
1643 unsigned long flags;
689bcebf 1644 struct page *page;
b745bc85 1645 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1646
48db57f8 1647 if (likely(order == 0)) {
1da177e4 1648 struct per_cpu_pages *pcp;
5f8dcc21 1649 struct list_head *list;
1da177e4 1650
1da177e4 1651 local_irq_save(flags);
99dcc3e5
CL
1652 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1653 list = &pcp->lists[migratetype];
5f8dcc21 1654 if (list_empty(list)) {
535131e6 1655 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1656 pcp->batch, list,
e084b2d9 1657 migratetype, cold);
5f8dcc21 1658 if (unlikely(list_empty(list)))
6fb332fa 1659 goto failed;
535131e6 1660 }
b92a6edd 1661
5f8dcc21
MG
1662 if (cold)
1663 page = list_entry(list->prev, struct page, lru);
1664 else
1665 page = list_entry(list->next, struct page, lru);
1666
b92a6edd
MG
1667 list_del(&page->lru);
1668 pcp->count--;
7fb1d9fc 1669 } else {
dab48dab
AM
1670 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1671 /*
1672 * __GFP_NOFAIL is not to be used in new code.
1673 *
1674 * All __GFP_NOFAIL callers should be fixed so that they
1675 * properly detect and handle allocation failures.
1676 *
1677 * We most definitely don't want callers attempting to
4923abf9 1678 * allocate greater than order-1 page units with
dab48dab
AM
1679 * __GFP_NOFAIL.
1680 */
4923abf9 1681 WARN_ON_ONCE(order > 1);
dab48dab 1682 }
1da177e4 1683 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1684 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1685 spin_unlock(&zone->lock);
1686 if (!page)
1687 goto failed;
d1ce749a 1688 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 1689 get_freepage_migratetype(page));
1da177e4
LT
1690 }
1691
3a025760 1692 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 1693 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
1694 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1695 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 1696
f8891e5e 1697 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1698 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1699 local_irq_restore(flags);
1da177e4 1700
309381fe 1701 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 1702 return page;
a74609fa
NP
1703
1704failed:
1705 local_irq_restore(flags);
a74609fa 1706 return NULL;
1da177e4
LT
1707}
1708
933e312e
AM
1709#ifdef CONFIG_FAIL_PAGE_ALLOC
1710
b2588c4b 1711static struct {
933e312e
AM
1712 struct fault_attr attr;
1713
1714 u32 ignore_gfp_highmem;
1715 u32 ignore_gfp_wait;
54114994 1716 u32 min_order;
933e312e
AM
1717} fail_page_alloc = {
1718 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1719 .ignore_gfp_wait = 1,
1720 .ignore_gfp_highmem = 1,
54114994 1721 .min_order = 1,
933e312e
AM
1722};
1723
1724static int __init setup_fail_page_alloc(char *str)
1725{
1726 return setup_fault_attr(&fail_page_alloc.attr, str);
1727}
1728__setup("fail_page_alloc=", setup_fail_page_alloc);
1729
deaf386e 1730static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1731{
54114994 1732 if (order < fail_page_alloc.min_order)
deaf386e 1733 return false;
933e312e 1734 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1735 return false;
933e312e 1736 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1737 return false;
933e312e 1738 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1739 return false;
933e312e
AM
1740
1741 return should_fail(&fail_page_alloc.attr, 1 << order);
1742}
1743
1744#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1745
1746static int __init fail_page_alloc_debugfs(void)
1747{
f4ae40a6 1748 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1749 struct dentry *dir;
933e312e 1750
dd48c085
AM
1751 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1752 &fail_page_alloc.attr);
1753 if (IS_ERR(dir))
1754 return PTR_ERR(dir);
933e312e 1755
b2588c4b
AM
1756 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1757 &fail_page_alloc.ignore_gfp_wait))
1758 goto fail;
1759 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1760 &fail_page_alloc.ignore_gfp_highmem))
1761 goto fail;
1762 if (!debugfs_create_u32("min-order", mode, dir,
1763 &fail_page_alloc.min_order))
1764 goto fail;
1765
1766 return 0;
1767fail:
dd48c085 1768 debugfs_remove_recursive(dir);
933e312e 1769
b2588c4b 1770 return -ENOMEM;
933e312e
AM
1771}
1772
1773late_initcall(fail_page_alloc_debugfs);
1774
1775#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1776
1777#else /* CONFIG_FAIL_PAGE_ALLOC */
1778
deaf386e 1779static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1780{
deaf386e 1781 return false;
933e312e
AM
1782}
1783
1784#endif /* CONFIG_FAIL_PAGE_ALLOC */
1785
1da177e4 1786/*
88f5acf8 1787 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1788 * of the allocation.
1789 */
7aeb09f9
MG
1790static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1791 unsigned long mark, int classzone_idx, int alloc_flags,
1792 long free_pages)
1da177e4 1793{
26086de3 1794 /* free_pages may go negative - that's OK */
d23ad423 1795 long min = mark;
1da177e4 1796 int o;
026b0814 1797 long free_cma = 0;
1da177e4 1798
df0a6daa 1799 free_pages -= (1 << order) - 1;
7fb1d9fc 1800 if (alloc_flags & ALLOC_HIGH)
1da177e4 1801 min -= min / 2;
7fb1d9fc 1802 if (alloc_flags & ALLOC_HARDER)
1da177e4 1803 min -= min / 4;
d95ea5d1
BZ
1804#ifdef CONFIG_CMA
1805 /* If allocation can't use CMA areas don't use free CMA pages */
1806 if (!(alloc_flags & ALLOC_CMA))
026b0814 1807 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1808#endif
026b0814 1809
3484b2de 1810 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1811 return false;
1da177e4
LT
1812 for (o = 0; o < order; o++) {
1813 /* At the next order, this order's pages become unavailable */
1814 free_pages -= z->free_area[o].nr_free << o;
1815
1816 /* Require fewer higher order pages to be free */
1817 min >>= 1;
1818
1819 if (free_pages <= min)
88f5acf8 1820 return false;
1da177e4 1821 }
88f5acf8
MG
1822 return true;
1823}
1824
7aeb09f9 1825bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
1826 int classzone_idx, int alloc_flags)
1827{
1828 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1829 zone_page_state(z, NR_FREE_PAGES));
1830}
1831
7aeb09f9
MG
1832bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1833 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
1834{
1835 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1836
1837 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1838 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1839
1840 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1841 free_pages);
1da177e4
LT
1842}
1843
9276b1bc
PJ
1844#ifdef CONFIG_NUMA
1845/*
1846 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1847 * skip over zones that are not allowed by the cpuset, or that have
1848 * been recently (in last second) found to be nearly full. See further
1849 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1850 * that have to skip over a lot of full or unallowed zones.
9276b1bc 1851 *
a1aeb65a 1852 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 1853 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1854 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1855 *
1856 * If the zonelist cache is not available for this zonelist, does
1857 * nothing and returns NULL.
1858 *
1859 * If the fullzones BITMAP in the zonelist cache is stale (more than
1860 * a second since last zap'd) then we zap it out (clear its bits.)
1861 *
1862 * We hold off even calling zlc_setup, until after we've checked the
1863 * first zone in the zonelist, on the theory that most allocations will
1864 * be satisfied from that first zone, so best to examine that zone as
1865 * quickly as we can.
1866 */
1867static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1868{
1869 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1870 nodemask_t *allowednodes; /* zonelist_cache approximation */
1871
1872 zlc = zonelist->zlcache_ptr;
1873 if (!zlc)
1874 return NULL;
1875
f05111f5 1876 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1877 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1878 zlc->last_full_zap = jiffies;
1879 }
1880
1881 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1882 &cpuset_current_mems_allowed :
4b0ef1fe 1883 &node_states[N_MEMORY];
9276b1bc
PJ
1884 return allowednodes;
1885}
1886
1887/*
1888 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1889 * if it is worth looking at further for free memory:
1890 * 1) Check that the zone isn't thought to be full (doesn't have its
1891 * bit set in the zonelist_cache fullzones BITMAP).
1892 * 2) Check that the zones node (obtained from the zonelist_cache
1893 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1894 * Return true (non-zero) if zone is worth looking at further, or
1895 * else return false (zero) if it is not.
1896 *
1897 * This check -ignores- the distinction between various watermarks,
1898 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1899 * found to be full for any variation of these watermarks, it will
1900 * be considered full for up to one second by all requests, unless
1901 * we are so low on memory on all allowed nodes that we are forced
1902 * into the second scan of the zonelist.
1903 *
1904 * In the second scan we ignore this zonelist cache and exactly
1905 * apply the watermarks to all zones, even it is slower to do so.
1906 * We are low on memory in the second scan, and should leave no stone
1907 * unturned looking for a free page.
1908 */
dd1a239f 1909static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1910 nodemask_t *allowednodes)
1911{
1912 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1913 int i; /* index of *z in zonelist zones */
1914 int n; /* node that zone *z is on */
1915
1916 zlc = zonelist->zlcache_ptr;
1917 if (!zlc)
1918 return 1;
1919
dd1a239f 1920 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1921 n = zlc->z_to_n[i];
1922
1923 /* This zone is worth trying if it is allowed but not full */
1924 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1925}
1926
1927/*
1928 * Given 'z' scanning a zonelist, set the corresponding bit in
1929 * zlc->fullzones, so that subsequent attempts to allocate a page
1930 * from that zone don't waste time re-examining it.
1931 */
dd1a239f 1932static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1933{
1934 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1935 int i; /* index of *z in zonelist zones */
1936
1937 zlc = zonelist->zlcache_ptr;
1938 if (!zlc)
1939 return;
1940
dd1a239f 1941 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1942
1943 set_bit(i, zlc->fullzones);
1944}
1945
76d3fbf8
MG
1946/*
1947 * clear all zones full, called after direct reclaim makes progress so that
1948 * a zone that was recently full is not skipped over for up to a second
1949 */
1950static void zlc_clear_zones_full(struct zonelist *zonelist)
1951{
1952 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1953
1954 zlc = zonelist->zlcache_ptr;
1955 if (!zlc)
1956 return;
1957
1958 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1959}
1960
81c0a2bb
JW
1961static bool zone_local(struct zone *local_zone, struct zone *zone)
1962{
fff4068c 1963 return local_zone->node == zone->node;
81c0a2bb
JW
1964}
1965
957f822a
DR
1966static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1967{
5f7a75ac
MG
1968 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1969 RECLAIM_DISTANCE;
957f822a
DR
1970}
1971
9276b1bc
PJ
1972#else /* CONFIG_NUMA */
1973
1974static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1975{
1976 return NULL;
1977}
1978
dd1a239f 1979static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1980 nodemask_t *allowednodes)
1981{
1982 return 1;
1983}
1984
dd1a239f 1985static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1986{
1987}
76d3fbf8
MG
1988
1989static void zlc_clear_zones_full(struct zonelist *zonelist)
1990{
1991}
957f822a 1992
81c0a2bb
JW
1993static bool zone_local(struct zone *local_zone, struct zone *zone)
1994{
1995 return true;
1996}
1997
957f822a
DR
1998static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1999{
2000 return true;
2001}
2002
9276b1bc
PJ
2003#endif /* CONFIG_NUMA */
2004
4ffeaf35
MG
2005static void reset_alloc_batches(struct zone *preferred_zone)
2006{
2007 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2008
2009 do {
2010 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2011 high_wmark_pages(zone) - low_wmark_pages(zone) -
2012 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2013 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2014 } while (zone++ != preferred_zone);
2015}
2016
7fb1d9fc 2017/*
0798e519 2018 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2019 * a page.
2020 */
2021static struct page *
a9263751
VB
2022get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2023 const struct alloc_context *ac)
753ee728 2024{
a9263751 2025 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2026 struct zoneref *z;
7fb1d9fc 2027 struct page *page = NULL;
5117f45d 2028 struct zone *zone;
9276b1bc
PJ
2029 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2030 int zlc_active = 0; /* set if using zonelist_cache */
2031 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2032 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2033 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2034 int nr_fair_skipped = 0;
2035 bool zonelist_rescan;
54a6eb5c 2036
9276b1bc 2037zonelist_scan:
4ffeaf35
MG
2038 zonelist_rescan = false;
2039
7fb1d9fc 2040 /*
9276b1bc 2041 * Scan zonelist, looking for a zone with enough free.
344736f2 2042 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2043 */
a9263751
VB
2044 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2045 ac->nodemask) {
e085dbc5
JW
2046 unsigned long mark;
2047
e5adfffc 2048 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2049 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2050 continue;
664eedde
MG
2051 if (cpusets_enabled() &&
2052 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2053 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2054 continue;
81c0a2bb
JW
2055 /*
2056 * Distribute pages in proportion to the individual
2057 * zone size to ensure fair page aging. The zone a
2058 * page was allocated in should have no effect on the
2059 * time the page has in memory before being reclaimed.
81c0a2bb 2060 */
3a025760 2061 if (alloc_flags & ALLOC_FAIR) {
a9263751 2062 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2063 break;
57054651 2064 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2065 nr_fair_skipped++;
3a025760 2066 continue;
4ffeaf35 2067 }
81c0a2bb 2068 }
a756cf59
JW
2069 /*
2070 * When allocating a page cache page for writing, we
2071 * want to get it from a zone that is within its dirty
2072 * limit, such that no single zone holds more than its
2073 * proportional share of globally allowed dirty pages.
2074 * The dirty limits take into account the zone's
2075 * lowmem reserves and high watermark so that kswapd
2076 * should be able to balance it without having to
2077 * write pages from its LRU list.
2078 *
2079 * This may look like it could increase pressure on
2080 * lower zones by failing allocations in higher zones
2081 * before they are full. But the pages that do spill
2082 * over are limited as the lower zones are protected
2083 * by this very same mechanism. It should not become
2084 * a practical burden to them.
2085 *
2086 * XXX: For now, allow allocations to potentially
2087 * exceed the per-zone dirty limit in the slowpath
2088 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2089 * which is important when on a NUMA setup the allowed
2090 * zones are together not big enough to reach the
2091 * global limit. The proper fix for these situations
2092 * will require awareness of zones in the
2093 * dirty-throttling and the flusher threads.
2094 */
a6e21b14 2095 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2096 continue;
7fb1d9fc 2097
e085dbc5
JW
2098 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2099 if (!zone_watermark_ok(zone, order, mark,
a9263751 2100 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2101 int ret;
2102
5dab2911
MG
2103 /* Checked here to keep the fast path fast */
2104 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2105 if (alloc_flags & ALLOC_NO_WATERMARKS)
2106 goto try_this_zone;
2107
e5adfffc
KS
2108 if (IS_ENABLED(CONFIG_NUMA) &&
2109 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2110 /*
2111 * we do zlc_setup if there are multiple nodes
2112 * and before considering the first zone allowed
2113 * by the cpuset.
2114 */
2115 allowednodes = zlc_setup(zonelist, alloc_flags);
2116 zlc_active = 1;
2117 did_zlc_setup = 1;
2118 }
2119
957f822a 2120 if (zone_reclaim_mode == 0 ||
a9263751 2121 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2122 goto this_zone_full;
2123
cd38b115
MG
2124 /*
2125 * As we may have just activated ZLC, check if the first
2126 * eligible zone has failed zone_reclaim recently.
2127 */
e5adfffc 2128 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2129 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2130 continue;
2131
fa5e084e
MG
2132 ret = zone_reclaim(zone, gfp_mask, order);
2133 switch (ret) {
2134 case ZONE_RECLAIM_NOSCAN:
2135 /* did not scan */
cd38b115 2136 continue;
fa5e084e
MG
2137 case ZONE_RECLAIM_FULL:
2138 /* scanned but unreclaimable */
cd38b115 2139 continue;
fa5e084e
MG
2140 default:
2141 /* did we reclaim enough */
fed2719e 2142 if (zone_watermark_ok(zone, order, mark,
a9263751 2143 ac->classzone_idx, alloc_flags))
fed2719e
MG
2144 goto try_this_zone;
2145
2146 /*
2147 * Failed to reclaim enough to meet watermark.
2148 * Only mark the zone full if checking the min
2149 * watermark or if we failed to reclaim just
2150 * 1<<order pages or else the page allocator
2151 * fastpath will prematurely mark zones full
2152 * when the watermark is between the low and
2153 * min watermarks.
2154 */
2155 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2156 ret == ZONE_RECLAIM_SOME)
9276b1bc 2157 goto this_zone_full;
fed2719e
MG
2158
2159 continue;
0798e519 2160 }
7fb1d9fc
RS
2161 }
2162
fa5e084e 2163try_this_zone:
a9263751
VB
2164 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2165 gfp_mask, ac->migratetype);
75379191
VB
2166 if (page) {
2167 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2168 goto try_this_zone;
2169 return page;
2170 }
9276b1bc 2171this_zone_full:
65bb3719 2172 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2173 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2174 }
9276b1bc 2175
4ffeaf35
MG
2176 /*
2177 * The first pass makes sure allocations are spread fairly within the
2178 * local node. However, the local node might have free pages left
2179 * after the fairness batches are exhausted, and remote zones haven't
2180 * even been considered yet. Try once more without fairness, and
2181 * include remote zones now, before entering the slowpath and waking
2182 * kswapd: prefer spilling to a remote zone over swapping locally.
2183 */
2184 if (alloc_flags & ALLOC_FAIR) {
2185 alloc_flags &= ~ALLOC_FAIR;
2186 if (nr_fair_skipped) {
2187 zonelist_rescan = true;
a9263751 2188 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2189 }
2190 if (nr_online_nodes > 1)
2191 zonelist_rescan = true;
2192 }
2193
2194 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2195 /* Disable zlc cache for second zonelist scan */
2196 zlc_active = 0;
2197 zonelist_rescan = true;
2198 }
2199
2200 if (zonelist_rescan)
2201 goto zonelist_scan;
2202
2203 return NULL;
753ee728
MH
2204}
2205
29423e77
DR
2206/*
2207 * Large machines with many possible nodes should not always dump per-node
2208 * meminfo in irq context.
2209 */
2210static inline bool should_suppress_show_mem(void)
2211{
2212 bool ret = false;
2213
2214#if NODES_SHIFT > 8
2215 ret = in_interrupt();
2216#endif
2217 return ret;
2218}
2219
a238ab5b
DH
2220static DEFINE_RATELIMIT_STATE(nopage_rs,
2221 DEFAULT_RATELIMIT_INTERVAL,
2222 DEFAULT_RATELIMIT_BURST);
2223
2224void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2225{
a238ab5b
DH
2226 unsigned int filter = SHOW_MEM_FILTER_NODES;
2227
c0a32fc5
SG
2228 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2229 debug_guardpage_minorder() > 0)
a238ab5b
DH
2230 return;
2231
2232 /*
2233 * This documents exceptions given to allocations in certain
2234 * contexts that are allowed to allocate outside current's set
2235 * of allowed nodes.
2236 */
2237 if (!(gfp_mask & __GFP_NOMEMALLOC))
2238 if (test_thread_flag(TIF_MEMDIE) ||
2239 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2240 filter &= ~SHOW_MEM_FILTER_NODES;
2241 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2242 filter &= ~SHOW_MEM_FILTER_NODES;
2243
2244 if (fmt) {
3ee9a4f0
JP
2245 struct va_format vaf;
2246 va_list args;
2247
a238ab5b 2248 va_start(args, fmt);
3ee9a4f0
JP
2249
2250 vaf.fmt = fmt;
2251 vaf.va = &args;
2252
2253 pr_warn("%pV", &vaf);
2254
a238ab5b
DH
2255 va_end(args);
2256 }
2257
3ee9a4f0
JP
2258 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2259 current->comm, order, gfp_mask);
a238ab5b
DH
2260
2261 dump_stack();
2262 if (!should_suppress_show_mem())
2263 show_mem(filter);
2264}
2265
11e33f6a
MG
2266static inline int
2267should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2268 unsigned long did_some_progress,
11e33f6a 2269 unsigned long pages_reclaimed)
1da177e4 2270{
11e33f6a
MG
2271 /* Do not loop if specifically requested */
2272 if (gfp_mask & __GFP_NORETRY)
2273 return 0;
1da177e4 2274
f90ac398
MG
2275 /* Always retry if specifically requested */
2276 if (gfp_mask & __GFP_NOFAIL)
2277 return 1;
2278
2279 /*
2280 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2281 * making forward progress without invoking OOM. Suspend also disables
2282 * storage devices so kswapd will not help. Bail if we are suspending.
2283 */
2284 if (!did_some_progress && pm_suspended_storage())
2285 return 0;
2286
11e33f6a
MG
2287 /*
2288 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2289 * means __GFP_NOFAIL, but that may not be true in other
2290 * implementations.
2291 */
2292 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2293 return 1;
2294
2295 /*
2296 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2297 * specified, then we retry until we no longer reclaim any pages
2298 * (above), or we've reclaimed an order of pages at least as
2299 * large as the allocation's order. In both cases, if the
2300 * allocation still fails, we stop retrying.
2301 */
2302 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2303 return 1;
cf40bd16 2304
11e33f6a
MG
2305 return 0;
2306}
933e312e 2307
11e33f6a
MG
2308static inline struct page *
2309__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2310 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2311{
2312 struct page *page;
2313
9879de73
JW
2314 *did_some_progress = 0;
2315
9879de73
JW
2316 /*
2317 * Acquire the per-zone oom lock for each zone. If that
2318 * fails, somebody else is making progress for us.
2319 */
a9263751 2320 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
9879de73 2321 *did_some_progress = 1;
11e33f6a 2322 schedule_timeout_uninterruptible(1);
1da177e4
LT
2323 return NULL;
2324 }
6b1de916 2325
11e33f6a
MG
2326 /*
2327 * Go through the zonelist yet one more time, keep very high watermark
2328 * here, this is only to catch a parallel oom killing, we must fail if
2329 * we're still under heavy pressure.
2330 */
a9263751
VB
2331 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2332 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2333 if (page)
11e33f6a
MG
2334 goto out;
2335
4365a567 2336 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2337 /* Coredumps can quickly deplete all memory reserves */
2338 if (current->flags & PF_DUMPCORE)
2339 goto out;
4365a567
KH
2340 /* The OOM killer will not help higher order allocs */
2341 if (order > PAGE_ALLOC_COSTLY_ORDER)
2342 goto out;
03668b3c 2343 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2344 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2345 goto out;
9879de73
JW
2346 /* The OOM killer does not compensate for light reclaim */
2347 if (!(gfp_mask & __GFP_FS))
2348 goto out;
4365a567
KH
2349 /*
2350 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2351 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2352 * The caller should handle page allocation failure by itself if
2353 * it specifies __GFP_THISNODE.
2354 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2355 */
2356 if (gfp_mask & __GFP_THISNODE)
2357 goto out;
2358 }
11e33f6a 2359 /* Exhausted what can be done so it's blamo time */
c32b3cbe
MH
2360 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
2361 *did_some_progress = 1;
11e33f6a 2362out:
a9263751 2363 oom_zonelist_unlock(ac->zonelist, gfp_mask);
11e33f6a
MG
2364 return page;
2365}
2366
56de7263
MG
2367#ifdef CONFIG_COMPACTION
2368/* Try memory compaction for high-order allocations before reclaim */
2369static struct page *
2370__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2371 int alloc_flags, const struct alloc_context *ac,
2372 enum migrate_mode mode, int *contended_compaction,
2373 bool *deferred_compaction)
56de7263 2374{
53853e2d 2375 unsigned long compact_result;
98dd3b48 2376 struct page *page;
53853e2d
VB
2377
2378 if (!order)
66199712 2379 return NULL;
66199712 2380
c06b1fca 2381 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2382 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2383 mode, contended_compaction);
c06b1fca 2384 current->flags &= ~PF_MEMALLOC;
56de7263 2385
98dd3b48
VB
2386 switch (compact_result) {
2387 case COMPACT_DEFERRED:
53853e2d 2388 *deferred_compaction = true;
98dd3b48
VB
2389 /* fall-through */
2390 case COMPACT_SKIPPED:
2391 return NULL;
2392 default:
2393 break;
2394 }
53853e2d 2395
98dd3b48
VB
2396 /*
2397 * At least in one zone compaction wasn't deferred or skipped, so let's
2398 * count a compaction stall
2399 */
2400 count_vm_event(COMPACTSTALL);
8fb74b9f 2401
a9263751
VB
2402 page = get_page_from_freelist(gfp_mask, order,
2403 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2404
98dd3b48
VB
2405 if (page) {
2406 struct zone *zone = page_zone(page);
53853e2d 2407
98dd3b48
VB
2408 zone->compact_blockskip_flush = false;
2409 compaction_defer_reset(zone, order, true);
2410 count_vm_event(COMPACTSUCCESS);
2411 return page;
2412 }
56de7263 2413
98dd3b48
VB
2414 /*
2415 * It's bad if compaction run occurs and fails. The most likely reason
2416 * is that pages exist, but not enough to satisfy watermarks.
2417 */
2418 count_vm_event(COMPACTFAIL);
66199712 2419
98dd3b48 2420 cond_resched();
56de7263
MG
2421
2422 return NULL;
2423}
2424#else
2425static inline struct page *
2426__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2427 int alloc_flags, const struct alloc_context *ac,
2428 enum migrate_mode mode, int *contended_compaction,
2429 bool *deferred_compaction)
56de7263
MG
2430{
2431 return NULL;
2432}
2433#endif /* CONFIG_COMPACTION */
2434
bba90710
MS
2435/* Perform direct synchronous page reclaim */
2436static int
a9263751
VB
2437__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2438 const struct alloc_context *ac)
11e33f6a 2439{
11e33f6a 2440 struct reclaim_state reclaim_state;
bba90710 2441 int progress;
11e33f6a
MG
2442
2443 cond_resched();
2444
2445 /* We now go into synchronous reclaim */
2446 cpuset_memory_pressure_bump();
c06b1fca 2447 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2448 lockdep_set_current_reclaim_state(gfp_mask);
2449 reclaim_state.reclaimed_slab = 0;
c06b1fca 2450 current->reclaim_state = &reclaim_state;
11e33f6a 2451
a9263751
VB
2452 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2453 ac->nodemask);
11e33f6a 2454
c06b1fca 2455 current->reclaim_state = NULL;
11e33f6a 2456 lockdep_clear_current_reclaim_state();
c06b1fca 2457 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2458
2459 cond_resched();
2460
bba90710
MS
2461 return progress;
2462}
2463
2464/* The really slow allocator path where we enter direct reclaim */
2465static inline struct page *
2466__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2467 int alloc_flags, const struct alloc_context *ac,
2468 unsigned long *did_some_progress)
bba90710
MS
2469{
2470 struct page *page = NULL;
2471 bool drained = false;
2472
a9263751 2473 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2474 if (unlikely(!(*did_some_progress)))
2475 return NULL;
11e33f6a 2476
76d3fbf8 2477 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2478 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2479 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2480
9ee493ce 2481retry:
a9263751
VB
2482 page = get_page_from_freelist(gfp_mask, order,
2483 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2484
2485 /*
2486 * If an allocation failed after direct reclaim, it could be because
2487 * pages are pinned on the per-cpu lists. Drain them and try again
2488 */
2489 if (!page && !drained) {
93481ff0 2490 drain_all_pages(NULL);
9ee493ce
MG
2491 drained = true;
2492 goto retry;
2493 }
2494
11e33f6a
MG
2495 return page;
2496}
2497
1da177e4 2498/*
11e33f6a
MG
2499 * This is called in the allocator slow-path if the allocation request is of
2500 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2501 */
11e33f6a
MG
2502static inline struct page *
2503__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2504 const struct alloc_context *ac)
11e33f6a
MG
2505{
2506 struct page *page;
2507
2508 do {
a9263751
VB
2509 page = get_page_from_freelist(gfp_mask, order,
2510 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2511
2512 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2513 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2514 HZ/50);
11e33f6a
MG
2515 } while (!page && (gfp_mask & __GFP_NOFAIL));
2516
2517 return page;
2518}
2519
a9263751 2520static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2521{
2522 struct zoneref *z;
2523 struct zone *zone;
2524
a9263751
VB
2525 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2526 ac->high_zoneidx, ac->nodemask)
2527 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2528}
2529
341ce06f
PZ
2530static inline int
2531gfp_to_alloc_flags(gfp_t gfp_mask)
2532{
341ce06f 2533 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2534 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2535
a56f57ff 2536 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2537 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2538
341ce06f
PZ
2539 /*
2540 * The caller may dip into page reserves a bit more if the caller
2541 * cannot run direct reclaim, or if the caller has realtime scheduling
2542 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2543 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2544 */
e6223a3b 2545 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2546
b104a35d 2547 if (atomic) {
5c3240d9 2548 /*
b104a35d
DR
2549 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2550 * if it can't schedule.
5c3240d9 2551 */
b104a35d 2552 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2553 alloc_flags |= ALLOC_HARDER;
523b9458 2554 /*
b104a35d 2555 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2556 * comment for __cpuset_node_allowed().
523b9458 2557 */
341ce06f 2558 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2559 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2560 alloc_flags |= ALLOC_HARDER;
2561
b37f1dd0
MG
2562 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2563 if (gfp_mask & __GFP_MEMALLOC)
2564 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2565 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2566 alloc_flags |= ALLOC_NO_WATERMARKS;
2567 else if (!in_interrupt() &&
2568 ((current->flags & PF_MEMALLOC) ||
2569 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2570 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2571 }
d95ea5d1 2572#ifdef CONFIG_CMA
43e7a34d 2573 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2574 alloc_flags |= ALLOC_CMA;
2575#endif
341ce06f
PZ
2576 return alloc_flags;
2577}
2578
072bb0aa
MG
2579bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2580{
b37f1dd0 2581 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2582}
2583
11e33f6a
MG
2584static inline struct page *
2585__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2586 struct alloc_context *ac)
11e33f6a
MG
2587{
2588 const gfp_t wait = gfp_mask & __GFP_WAIT;
2589 struct page *page = NULL;
2590 int alloc_flags;
2591 unsigned long pages_reclaimed = 0;
2592 unsigned long did_some_progress;
e0b9daeb 2593 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2594 bool deferred_compaction = false;
1f9efdef 2595 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2596
72807a74
MG
2597 /*
2598 * In the slowpath, we sanity check order to avoid ever trying to
2599 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2600 * be using allocators in order of preference for an area that is
2601 * too large.
2602 */
1fc28b70
MG
2603 if (order >= MAX_ORDER) {
2604 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2605 return NULL;
1fc28b70 2606 }
1da177e4 2607
952f3b51
CL
2608 /*
2609 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2610 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2611 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2612 * using a larger set of nodes after it has established that the
2613 * allowed per node queues are empty and that nodes are
2614 * over allocated.
2615 */
3a025760
JW
2616 if (IS_ENABLED(CONFIG_NUMA) &&
2617 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2618 goto nopage;
2619
9879de73 2620retry:
3a025760 2621 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2622 wake_all_kswapds(order, ac);
1da177e4 2623
9bf2229f 2624 /*
7fb1d9fc
RS
2625 * OK, we're below the kswapd watermark and have kicked background
2626 * reclaim. Now things get more complex, so set up alloc_flags according
2627 * to how we want to proceed.
9bf2229f 2628 */
341ce06f 2629 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2630
f33261d7
DR
2631 /*
2632 * Find the true preferred zone if the allocation is unconstrained by
2633 * cpusets.
2634 */
a9263751 2635 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2636 struct zoneref *preferred_zoneref;
a9263751
VB
2637 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2638 ac->high_zoneidx, NULL, &ac->preferred_zone);
2639 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2640 }
f33261d7 2641
341ce06f 2642 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2643 page = get_page_from_freelist(gfp_mask, order,
2644 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2645 if (page)
2646 goto got_pg;
1da177e4 2647
11e33f6a 2648 /* Allocate without watermarks if the context allows */
341ce06f 2649 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2650 /*
2651 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2652 * the allocation is high priority and these type of
2653 * allocations are system rather than user orientated
2654 */
a9263751
VB
2655 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2656
2657 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2658
cfd19c5a 2659 if (page) {
341ce06f 2660 goto got_pg;
cfd19c5a 2661 }
1da177e4
LT
2662 }
2663
2664 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2665 if (!wait) {
2666 /*
2667 * All existing users of the deprecated __GFP_NOFAIL are
2668 * blockable, so warn of any new users that actually allow this
2669 * type of allocation to fail.
2670 */
2671 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2672 goto nopage;
aed0a0e3 2673 }
1da177e4 2674
341ce06f 2675 /* Avoid recursion of direct reclaim */
c06b1fca 2676 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2677 goto nopage;
2678
6583bb64
DR
2679 /* Avoid allocations with no watermarks from looping endlessly */
2680 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2681 goto nopage;
2682
77f1fe6b
MG
2683 /*
2684 * Try direct compaction. The first pass is asynchronous. Subsequent
2685 * attempts after direct reclaim are synchronous
2686 */
a9263751
VB
2687 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2688 migration_mode,
2689 &contended_compaction,
53853e2d 2690 &deferred_compaction);
56de7263
MG
2691 if (page)
2692 goto got_pg;
75f30861 2693
1f9efdef
VB
2694 /* Checks for THP-specific high-order allocations */
2695 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2696 /*
2697 * If compaction is deferred for high-order allocations, it is
2698 * because sync compaction recently failed. If this is the case
2699 * and the caller requested a THP allocation, we do not want
2700 * to heavily disrupt the system, so we fail the allocation
2701 * instead of entering direct reclaim.
2702 */
2703 if (deferred_compaction)
2704 goto nopage;
2705
2706 /*
2707 * In all zones where compaction was attempted (and not
2708 * deferred or skipped), lock contention has been detected.
2709 * For THP allocation we do not want to disrupt the others
2710 * so we fallback to base pages instead.
2711 */
2712 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2713 goto nopage;
2714
2715 /*
2716 * If compaction was aborted due to need_resched(), we do not
2717 * want to further increase allocation latency, unless it is
2718 * khugepaged trying to collapse.
2719 */
2720 if (contended_compaction == COMPACT_CONTENDED_SCHED
2721 && !(current->flags & PF_KTHREAD))
2722 goto nopage;
2723 }
66199712 2724
8fe78048
DR
2725 /*
2726 * It can become very expensive to allocate transparent hugepages at
2727 * fault, so use asynchronous memory compaction for THP unless it is
2728 * khugepaged trying to collapse.
2729 */
2730 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2731 (current->flags & PF_KTHREAD))
2732 migration_mode = MIGRATE_SYNC_LIGHT;
2733
11e33f6a 2734 /* Try direct reclaim and then allocating */
a9263751
VB
2735 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2736 &did_some_progress);
11e33f6a
MG
2737 if (page)
2738 goto got_pg;
1da177e4 2739
11e33f6a 2740 /* Check if we should retry the allocation */
a41f24ea 2741 pages_reclaimed += did_some_progress;
f90ac398
MG
2742 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2743 pages_reclaimed)) {
9879de73
JW
2744 /*
2745 * If we fail to make progress by freeing individual
2746 * pages, but the allocation wants us to keep going,
2747 * start OOM killing tasks.
2748 */
2749 if (!did_some_progress) {
a9263751
VB
2750 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2751 &did_some_progress);
9879de73
JW
2752 if (page)
2753 goto got_pg;
2754 if (!did_some_progress)
2755 goto nopage;
2756 }
11e33f6a 2757 /* Wait for some write requests to complete then retry */
a9263751 2758 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 2759 goto retry;
3e7d3449
MG
2760 } else {
2761 /*
2762 * High-order allocations do not necessarily loop after
2763 * direct reclaim and reclaim/compaction depends on compaction
2764 * being called after reclaim so call directly if necessary
2765 */
a9263751
VB
2766 page = __alloc_pages_direct_compact(gfp_mask, order,
2767 alloc_flags, ac, migration_mode,
2768 &contended_compaction,
53853e2d 2769 &deferred_compaction);
3e7d3449
MG
2770 if (page)
2771 goto got_pg;
1da177e4
LT
2772 }
2773
2774nopage:
a238ab5b 2775 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 2776got_pg:
072bb0aa 2777 return page;
1da177e4 2778}
11e33f6a
MG
2779
2780/*
2781 * This is the 'heart' of the zoned buddy allocator.
2782 */
2783struct page *
2784__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2785 struct zonelist *zonelist, nodemask_t *nodemask)
2786{
d8846374 2787 struct zoneref *preferred_zoneref;
cc9a6c87 2788 struct page *page = NULL;
cc9a6c87 2789 unsigned int cpuset_mems_cookie;
3a025760 2790 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 2791 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
2792 struct alloc_context ac = {
2793 .high_zoneidx = gfp_zone(gfp_mask),
2794 .nodemask = nodemask,
2795 .migratetype = gfpflags_to_migratetype(gfp_mask),
2796 };
11e33f6a 2797
dcce284a
BH
2798 gfp_mask &= gfp_allowed_mask;
2799
11e33f6a
MG
2800 lockdep_trace_alloc(gfp_mask);
2801
2802 might_sleep_if(gfp_mask & __GFP_WAIT);
2803
2804 if (should_fail_alloc_page(gfp_mask, order))
2805 return NULL;
2806
2807 /*
2808 * Check the zones suitable for the gfp_mask contain at least one
2809 * valid zone. It's possible to have an empty zonelist as a result
2810 * of GFP_THISNODE and a memoryless node
2811 */
2812 if (unlikely(!zonelist->_zonerefs->zone))
2813 return NULL;
2814
a9263751 2815 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
2816 alloc_flags |= ALLOC_CMA;
2817
cc9a6c87 2818retry_cpuset:
d26914d1 2819 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 2820
a9263751
VB
2821 /* We set it here, as __alloc_pages_slowpath might have changed it */
2822 ac.zonelist = zonelist;
5117f45d 2823 /* The preferred zone is used for statistics later */
a9263751
VB
2824 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2825 ac.nodemask ? : &cpuset_current_mems_allowed,
2826 &ac.preferred_zone);
2827 if (!ac.preferred_zone)
cc9a6c87 2828 goto out;
a9263751 2829 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
2830
2831 /* First allocation attempt */
91fbdc0f 2832 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 2833 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
2834 if (unlikely(!page)) {
2835 /*
2836 * Runtime PM, block IO and its error handling path
2837 * can deadlock because I/O on the device might not
2838 * complete.
2839 */
91fbdc0f
AM
2840 alloc_mask = memalloc_noio_flags(gfp_mask);
2841
a9263751 2842 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 2843 }
11e33f6a 2844
23f086f9
XQ
2845 if (kmemcheck_enabled && page)
2846 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2847
a9263751 2848 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
2849
2850out:
2851 /*
2852 * When updating a task's mems_allowed, it is possible to race with
2853 * parallel threads in such a way that an allocation can fail while
2854 * the mask is being updated. If a page allocation is about to fail,
2855 * check if the cpuset changed during allocation and if so, retry.
2856 */
d26914d1 2857 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
2858 goto retry_cpuset;
2859
11e33f6a 2860 return page;
1da177e4 2861}
d239171e 2862EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2863
2864/*
2865 * Common helper functions.
2866 */
920c7a5d 2867unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2868{
945a1113
AM
2869 struct page *page;
2870
2871 /*
2872 * __get_free_pages() returns a 32-bit address, which cannot represent
2873 * a highmem page
2874 */
2875 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2876
1da177e4
LT
2877 page = alloc_pages(gfp_mask, order);
2878 if (!page)
2879 return 0;
2880 return (unsigned long) page_address(page);
2881}
1da177e4
LT
2882EXPORT_SYMBOL(__get_free_pages);
2883
920c7a5d 2884unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2885{
945a1113 2886 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2887}
1da177e4
LT
2888EXPORT_SYMBOL(get_zeroed_page);
2889
920c7a5d 2890void __free_pages(struct page *page, unsigned int order)
1da177e4 2891{
b5810039 2892 if (put_page_testzero(page)) {
1da177e4 2893 if (order == 0)
b745bc85 2894 free_hot_cold_page(page, false);
1da177e4
LT
2895 else
2896 __free_pages_ok(page, order);
2897 }
2898}
2899
2900EXPORT_SYMBOL(__free_pages);
2901
920c7a5d 2902void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2903{
2904 if (addr != 0) {
725d704e 2905 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2906 __free_pages(virt_to_page((void *)addr), order);
2907 }
2908}
2909
2910EXPORT_SYMBOL(free_pages);
2911
6a1a0d3b 2912/*
52383431
VD
2913 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2914 * of the current memory cgroup.
6a1a0d3b 2915 *
52383431
VD
2916 * It should be used when the caller would like to use kmalloc, but since the
2917 * allocation is large, it has to fall back to the page allocator.
2918 */
2919struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2920{
2921 struct page *page;
2922 struct mem_cgroup *memcg = NULL;
2923
2924 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2925 return NULL;
2926 page = alloc_pages(gfp_mask, order);
2927 memcg_kmem_commit_charge(page, memcg, order);
2928 return page;
2929}
2930
2931struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2932{
2933 struct page *page;
2934 struct mem_cgroup *memcg = NULL;
2935
2936 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2937 return NULL;
2938 page = alloc_pages_node(nid, gfp_mask, order);
2939 memcg_kmem_commit_charge(page, memcg, order);
2940 return page;
2941}
2942
2943/*
2944 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2945 * alloc_kmem_pages.
6a1a0d3b 2946 */
52383431 2947void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
2948{
2949 memcg_kmem_uncharge_pages(page, order);
2950 __free_pages(page, order);
2951}
2952
52383431 2953void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
2954{
2955 if (addr != 0) {
2956 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 2957 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
2958 }
2959}
2960
ee85c2e1
AK
2961static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2962{
2963 if (addr) {
2964 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2965 unsigned long used = addr + PAGE_ALIGN(size);
2966
2967 split_page(virt_to_page((void *)addr), order);
2968 while (used < alloc_end) {
2969 free_page(used);
2970 used += PAGE_SIZE;
2971 }
2972 }
2973 return (void *)addr;
2974}
2975
2be0ffe2
TT
2976/**
2977 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2978 * @size: the number of bytes to allocate
2979 * @gfp_mask: GFP flags for the allocation
2980 *
2981 * This function is similar to alloc_pages(), except that it allocates the
2982 * minimum number of pages to satisfy the request. alloc_pages() can only
2983 * allocate memory in power-of-two pages.
2984 *
2985 * This function is also limited by MAX_ORDER.
2986 *
2987 * Memory allocated by this function must be released by free_pages_exact().
2988 */
2989void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2990{
2991 unsigned int order = get_order(size);
2992 unsigned long addr;
2993
2994 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2995 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2996}
2997EXPORT_SYMBOL(alloc_pages_exact);
2998
ee85c2e1
AK
2999/**
3000 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3001 * pages on a node.
b5e6ab58 3002 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3003 * @size: the number of bytes to allocate
3004 * @gfp_mask: GFP flags for the allocation
3005 *
3006 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3007 * back.
3008 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3009 * but is not exact.
3010 */
e1931811 3011void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3012{
3013 unsigned order = get_order(size);
3014 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3015 if (!p)
3016 return NULL;
3017 return make_alloc_exact((unsigned long)page_address(p), order, size);
3018}
ee85c2e1 3019
2be0ffe2
TT
3020/**
3021 * free_pages_exact - release memory allocated via alloc_pages_exact()
3022 * @virt: the value returned by alloc_pages_exact.
3023 * @size: size of allocation, same value as passed to alloc_pages_exact().
3024 *
3025 * Release the memory allocated by a previous call to alloc_pages_exact.
3026 */
3027void free_pages_exact(void *virt, size_t size)
3028{
3029 unsigned long addr = (unsigned long)virt;
3030 unsigned long end = addr + PAGE_ALIGN(size);
3031
3032 while (addr < end) {
3033 free_page(addr);
3034 addr += PAGE_SIZE;
3035 }
3036}
3037EXPORT_SYMBOL(free_pages_exact);
3038
e0fb5815
ZY
3039/**
3040 * nr_free_zone_pages - count number of pages beyond high watermark
3041 * @offset: The zone index of the highest zone
3042 *
3043 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3044 * high watermark within all zones at or below a given zone index. For each
3045 * zone, the number of pages is calculated as:
834405c3 3046 * managed_pages - high_pages
e0fb5815 3047 */
ebec3862 3048static unsigned long nr_free_zone_pages(int offset)
1da177e4 3049{
dd1a239f 3050 struct zoneref *z;
54a6eb5c
MG
3051 struct zone *zone;
3052
e310fd43 3053 /* Just pick one node, since fallback list is circular */
ebec3862 3054 unsigned long sum = 0;
1da177e4 3055
0e88460d 3056 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3057
54a6eb5c 3058 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3059 unsigned long size = zone->managed_pages;
41858966 3060 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3061 if (size > high)
3062 sum += size - high;
1da177e4
LT
3063 }
3064
3065 return sum;
3066}
3067
e0fb5815
ZY
3068/**
3069 * nr_free_buffer_pages - count number of pages beyond high watermark
3070 *
3071 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3072 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3073 */
ebec3862 3074unsigned long nr_free_buffer_pages(void)
1da177e4 3075{
af4ca457 3076 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3077}
c2f1a551 3078EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3079
e0fb5815
ZY
3080/**
3081 * nr_free_pagecache_pages - count number of pages beyond high watermark
3082 *
3083 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3084 * high watermark within all zones.
1da177e4 3085 */
ebec3862 3086unsigned long nr_free_pagecache_pages(void)
1da177e4 3087{
2a1e274a 3088 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3089}
08e0f6a9
CL
3090
3091static inline void show_node(struct zone *zone)
1da177e4 3092{
e5adfffc 3093 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3094 printk("Node %d ", zone_to_nid(zone));
1da177e4 3095}
1da177e4 3096
1da177e4
LT
3097void si_meminfo(struct sysinfo *val)
3098{
3099 val->totalram = totalram_pages;
cc7452b6 3100 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3101 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3102 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3103 val->totalhigh = totalhigh_pages;
3104 val->freehigh = nr_free_highpages();
1da177e4
LT
3105 val->mem_unit = PAGE_SIZE;
3106}
3107
3108EXPORT_SYMBOL(si_meminfo);
3109
3110#ifdef CONFIG_NUMA
3111void si_meminfo_node(struct sysinfo *val, int nid)
3112{
cdd91a77
JL
3113 int zone_type; /* needs to be signed */
3114 unsigned long managed_pages = 0;
1da177e4
LT
3115 pg_data_t *pgdat = NODE_DATA(nid);
3116
cdd91a77
JL
3117 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3118 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3119 val->totalram = managed_pages;
cc7452b6 3120 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3121 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3122#ifdef CONFIG_HIGHMEM
b40da049 3123 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3124 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3125 NR_FREE_PAGES);
98d2b0eb
CL
3126#else
3127 val->totalhigh = 0;
3128 val->freehigh = 0;
3129#endif
1da177e4
LT
3130 val->mem_unit = PAGE_SIZE;
3131}
3132#endif
3133
ddd588b5 3134/*
7bf02ea2
DR
3135 * Determine whether the node should be displayed or not, depending on whether
3136 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3137 */
7bf02ea2 3138bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3139{
3140 bool ret = false;
cc9a6c87 3141 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3142
3143 if (!(flags & SHOW_MEM_FILTER_NODES))
3144 goto out;
3145
cc9a6c87 3146 do {
d26914d1 3147 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3148 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3149 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3150out:
3151 return ret;
3152}
3153
1da177e4
LT
3154#define K(x) ((x) << (PAGE_SHIFT-10))
3155
377e4f16
RV
3156static void show_migration_types(unsigned char type)
3157{
3158 static const char types[MIGRATE_TYPES] = {
3159 [MIGRATE_UNMOVABLE] = 'U',
3160 [MIGRATE_RECLAIMABLE] = 'E',
3161 [MIGRATE_MOVABLE] = 'M',
3162 [MIGRATE_RESERVE] = 'R',
3163#ifdef CONFIG_CMA
3164 [MIGRATE_CMA] = 'C',
3165#endif
194159fb 3166#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3167 [MIGRATE_ISOLATE] = 'I',
194159fb 3168#endif
377e4f16
RV
3169 };
3170 char tmp[MIGRATE_TYPES + 1];
3171 char *p = tmp;
3172 int i;
3173
3174 for (i = 0; i < MIGRATE_TYPES; i++) {
3175 if (type & (1 << i))
3176 *p++ = types[i];
3177 }
3178
3179 *p = '\0';
3180 printk("(%s) ", tmp);
3181}
3182
1da177e4
LT
3183/*
3184 * Show free area list (used inside shift_scroll-lock stuff)
3185 * We also calculate the percentage fragmentation. We do this by counting the
3186 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
3187 * Suppresses nodes that are not allowed by current's cpuset if
3188 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 3189 */
7bf02ea2 3190void show_free_areas(unsigned int filter)
1da177e4 3191{
c7241913 3192 int cpu;
1da177e4
LT
3193 struct zone *zone;
3194
ee99c71c 3195 for_each_populated_zone(zone) {
7bf02ea2 3196 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3197 continue;
c7241913
JS
3198 show_node(zone);
3199 printk("%s per-cpu:\n", zone->name);
1da177e4 3200
6b482c67 3201 for_each_online_cpu(cpu) {
1da177e4
LT
3202 struct per_cpu_pageset *pageset;
3203
99dcc3e5 3204 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 3205
3dfa5721
CL
3206 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3207 cpu, pageset->pcp.high,
3208 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3209 }
3210 }
3211
a731286d
KM
3212 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3213 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3214 " unevictable:%lu"
b76146ed 3215 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3216 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3217 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3218 " free_cma:%lu\n",
4f98a2fe 3219 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3220 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3221 global_page_state(NR_ISOLATED_ANON),
3222 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3223 global_page_state(NR_INACTIVE_FILE),
a731286d 3224 global_page_state(NR_ISOLATED_FILE),
7b854121 3225 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3226 global_page_state(NR_FILE_DIRTY),
ce866b34 3227 global_page_state(NR_WRITEBACK),
fd39fc85 3228 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3229 global_page_state(NR_FREE_PAGES),
3701b033
KM
3230 global_page_state(NR_SLAB_RECLAIMABLE),
3231 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3232 global_page_state(NR_FILE_MAPPED),
4b02108a 3233 global_page_state(NR_SHMEM),
a25700a5 3234 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3235 global_page_state(NR_BOUNCE),
3236 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3237
ee99c71c 3238 for_each_populated_zone(zone) {
1da177e4
LT
3239 int i;
3240
7bf02ea2 3241 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3242 continue;
1da177e4
LT
3243 show_node(zone);
3244 printk("%s"
3245 " free:%lukB"
3246 " min:%lukB"
3247 " low:%lukB"
3248 " high:%lukB"
4f98a2fe
RR
3249 " active_anon:%lukB"
3250 " inactive_anon:%lukB"
3251 " active_file:%lukB"
3252 " inactive_file:%lukB"
7b854121 3253 " unevictable:%lukB"
a731286d
KM
3254 " isolated(anon):%lukB"
3255 " isolated(file):%lukB"
1da177e4 3256 " present:%lukB"
9feedc9d 3257 " managed:%lukB"
4a0aa73f
KM
3258 " mlocked:%lukB"
3259 " dirty:%lukB"
3260 " writeback:%lukB"
3261 " mapped:%lukB"
4b02108a 3262 " shmem:%lukB"
4a0aa73f
KM
3263 " slab_reclaimable:%lukB"
3264 " slab_unreclaimable:%lukB"
c6a7f572 3265 " kernel_stack:%lukB"
4a0aa73f
KM
3266 " pagetables:%lukB"
3267 " unstable:%lukB"
3268 " bounce:%lukB"
d1ce749a 3269 " free_cma:%lukB"
4a0aa73f 3270 " writeback_tmp:%lukB"
1da177e4
LT
3271 " pages_scanned:%lu"
3272 " all_unreclaimable? %s"
3273 "\n",
3274 zone->name,
88f5acf8 3275 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3276 K(min_wmark_pages(zone)),
3277 K(low_wmark_pages(zone)),
3278 K(high_wmark_pages(zone)),
4f98a2fe
RR
3279 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3280 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3281 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3282 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3283 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3284 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3285 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3286 K(zone->present_pages),
9feedc9d 3287 K(zone->managed_pages),
4a0aa73f
KM
3288 K(zone_page_state(zone, NR_MLOCK)),
3289 K(zone_page_state(zone, NR_FILE_DIRTY)),
3290 K(zone_page_state(zone, NR_WRITEBACK)),
3291 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3292 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3293 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3294 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3295 zone_page_state(zone, NR_KERNEL_STACK) *
3296 THREAD_SIZE / 1024,
4a0aa73f
KM
3297 K(zone_page_state(zone, NR_PAGETABLE)),
3298 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3299 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3300 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3301 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3302 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3303 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3304 );
3305 printk("lowmem_reserve[]:");
3306 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3307 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3308 printk("\n");
3309 }
3310
ee99c71c 3311 for_each_populated_zone(zone) {
b8af2941 3312 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3313 unsigned char types[MAX_ORDER];
1da177e4 3314
7bf02ea2 3315 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3316 continue;
1da177e4
LT
3317 show_node(zone);
3318 printk("%s: ", zone->name);
1da177e4
LT
3319
3320 spin_lock_irqsave(&zone->lock, flags);
3321 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3322 struct free_area *area = &zone->free_area[order];
3323 int type;
3324
3325 nr[order] = area->nr_free;
8f9de51a 3326 total += nr[order] << order;
377e4f16
RV
3327
3328 types[order] = 0;
3329 for (type = 0; type < MIGRATE_TYPES; type++) {
3330 if (!list_empty(&area->free_list[type]))
3331 types[order] |= 1 << type;
3332 }
1da177e4
LT
3333 }
3334 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3335 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3336 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3337 if (nr[order])
3338 show_migration_types(types[order]);
3339 }
1da177e4
LT
3340 printk("= %lukB\n", K(total));
3341 }
3342
949f7ec5
DR
3343 hugetlb_show_meminfo();
3344
e6f3602d
LW
3345 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3346
1da177e4
LT
3347 show_swap_cache_info();
3348}
3349
19770b32
MG
3350static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3351{
3352 zoneref->zone = zone;
3353 zoneref->zone_idx = zone_idx(zone);
3354}
3355
1da177e4
LT
3356/*
3357 * Builds allocation fallback zone lists.
1a93205b
CL
3358 *
3359 * Add all populated zones of a node to the zonelist.
1da177e4 3360 */
f0c0b2b8 3361static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3362 int nr_zones)
1da177e4 3363{
1a93205b 3364 struct zone *zone;
bc732f1d 3365 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3366
3367 do {
2f6726e5 3368 zone_type--;
070f8032 3369 zone = pgdat->node_zones + zone_type;
1a93205b 3370 if (populated_zone(zone)) {
dd1a239f
MG
3371 zoneref_set_zone(zone,
3372 &zonelist->_zonerefs[nr_zones++]);
070f8032 3373 check_highest_zone(zone_type);
1da177e4 3374 }
2f6726e5 3375 } while (zone_type);
bc732f1d 3376
070f8032 3377 return nr_zones;
1da177e4
LT
3378}
3379
f0c0b2b8
KH
3380
3381/*
3382 * zonelist_order:
3383 * 0 = automatic detection of better ordering.
3384 * 1 = order by ([node] distance, -zonetype)
3385 * 2 = order by (-zonetype, [node] distance)
3386 *
3387 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3388 * the same zonelist. So only NUMA can configure this param.
3389 */
3390#define ZONELIST_ORDER_DEFAULT 0
3391#define ZONELIST_ORDER_NODE 1
3392#define ZONELIST_ORDER_ZONE 2
3393
3394/* zonelist order in the kernel.
3395 * set_zonelist_order() will set this to NODE or ZONE.
3396 */
3397static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3398static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3399
3400
1da177e4 3401#ifdef CONFIG_NUMA
f0c0b2b8
KH
3402/* The value user specified ....changed by config */
3403static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3404/* string for sysctl */
3405#define NUMA_ZONELIST_ORDER_LEN 16
3406char numa_zonelist_order[16] = "default";
3407
3408/*
3409 * interface for configure zonelist ordering.
3410 * command line option "numa_zonelist_order"
3411 * = "[dD]efault - default, automatic configuration.
3412 * = "[nN]ode - order by node locality, then by zone within node
3413 * = "[zZ]one - order by zone, then by locality within zone
3414 */
3415
3416static int __parse_numa_zonelist_order(char *s)
3417{
3418 if (*s == 'd' || *s == 'D') {
3419 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3420 } else if (*s == 'n' || *s == 'N') {
3421 user_zonelist_order = ZONELIST_ORDER_NODE;
3422 } else if (*s == 'z' || *s == 'Z') {
3423 user_zonelist_order = ZONELIST_ORDER_ZONE;
3424 } else {
3425 printk(KERN_WARNING
3426 "Ignoring invalid numa_zonelist_order value: "
3427 "%s\n", s);
3428 return -EINVAL;
3429 }
3430 return 0;
3431}
3432
3433static __init int setup_numa_zonelist_order(char *s)
3434{
ecb256f8
VL
3435 int ret;
3436
3437 if (!s)
3438 return 0;
3439
3440 ret = __parse_numa_zonelist_order(s);
3441 if (ret == 0)
3442 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3443
3444 return ret;
f0c0b2b8
KH
3445}
3446early_param("numa_zonelist_order", setup_numa_zonelist_order);
3447
3448/*
3449 * sysctl handler for numa_zonelist_order
3450 */
cccad5b9 3451int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3452 void __user *buffer, size_t *length,
f0c0b2b8
KH
3453 loff_t *ppos)
3454{
3455 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3456 int ret;
443c6f14 3457 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3458
443c6f14 3459 mutex_lock(&zl_order_mutex);
dacbde09
CG
3460 if (write) {
3461 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3462 ret = -EINVAL;
3463 goto out;
3464 }
3465 strcpy(saved_string, (char *)table->data);
3466 }
8d65af78 3467 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3468 if (ret)
443c6f14 3469 goto out;
f0c0b2b8
KH
3470 if (write) {
3471 int oldval = user_zonelist_order;
dacbde09
CG
3472
3473 ret = __parse_numa_zonelist_order((char *)table->data);
3474 if (ret) {
f0c0b2b8
KH
3475 /*
3476 * bogus value. restore saved string
3477 */
dacbde09 3478 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3479 NUMA_ZONELIST_ORDER_LEN);
3480 user_zonelist_order = oldval;
4eaf3f64
HL
3481 } else if (oldval != user_zonelist_order) {
3482 mutex_lock(&zonelists_mutex);
9adb62a5 3483 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3484 mutex_unlock(&zonelists_mutex);
3485 }
f0c0b2b8 3486 }
443c6f14
AK
3487out:
3488 mutex_unlock(&zl_order_mutex);
3489 return ret;
f0c0b2b8
KH
3490}
3491
3492
62bc62a8 3493#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3494static int node_load[MAX_NUMNODES];
3495
1da177e4 3496/**
4dc3b16b 3497 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3498 * @node: node whose fallback list we're appending
3499 * @used_node_mask: nodemask_t of already used nodes
3500 *
3501 * We use a number of factors to determine which is the next node that should
3502 * appear on a given node's fallback list. The node should not have appeared
3503 * already in @node's fallback list, and it should be the next closest node
3504 * according to the distance array (which contains arbitrary distance values
3505 * from each node to each node in the system), and should also prefer nodes
3506 * with no CPUs, since presumably they'll have very little allocation pressure
3507 * on them otherwise.
3508 * It returns -1 if no node is found.
3509 */
f0c0b2b8 3510static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3511{
4cf808eb 3512 int n, val;
1da177e4 3513 int min_val = INT_MAX;
00ef2d2f 3514 int best_node = NUMA_NO_NODE;
a70f7302 3515 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3516
4cf808eb
LT
3517 /* Use the local node if we haven't already */
3518 if (!node_isset(node, *used_node_mask)) {
3519 node_set(node, *used_node_mask);
3520 return node;
3521 }
1da177e4 3522
4b0ef1fe 3523 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3524
3525 /* Don't want a node to appear more than once */
3526 if (node_isset(n, *used_node_mask))
3527 continue;
3528
1da177e4
LT
3529 /* Use the distance array to find the distance */
3530 val = node_distance(node, n);
3531
4cf808eb
LT
3532 /* Penalize nodes under us ("prefer the next node") */
3533 val += (n < node);
3534
1da177e4 3535 /* Give preference to headless and unused nodes */
a70f7302
RR
3536 tmp = cpumask_of_node(n);
3537 if (!cpumask_empty(tmp))
1da177e4
LT
3538 val += PENALTY_FOR_NODE_WITH_CPUS;
3539
3540 /* Slight preference for less loaded node */
3541 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3542 val += node_load[n];
3543
3544 if (val < min_val) {
3545 min_val = val;
3546 best_node = n;
3547 }
3548 }
3549
3550 if (best_node >= 0)
3551 node_set(best_node, *used_node_mask);
3552
3553 return best_node;
3554}
3555
f0c0b2b8
KH
3556
3557/*
3558 * Build zonelists ordered by node and zones within node.
3559 * This results in maximum locality--normal zone overflows into local
3560 * DMA zone, if any--but risks exhausting DMA zone.
3561 */
3562static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3563{
f0c0b2b8 3564 int j;
1da177e4 3565 struct zonelist *zonelist;
f0c0b2b8 3566
54a6eb5c 3567 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3568 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3569 ;
bc732f1d 3570 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3571 zonelist->_zonerefs[j].zone = NULL;
3572 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3573}
3574
523b9458
CL
3575/*
3576 * Build gfp_thisnode zonelists
3577 */
3578static void build_thisnode_zonelists(pg_data_t *pgdat)
3579{
523b9458
CL
3580 int j;
3581 struct zonelist *zonelist;
3582
54a6eb5c 3583 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3584 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3585 zonelist->_zonerefs[j].zone = NULL;
3586 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3587}
3588
f0c0b2b8
KH
3589/*
3590 * Build zonelists ordered by zone and nodes within zones.
3591 * This results in conserving DMA zone[s] until all Normal memory is
3592 * exhausted, but results in overflowing to remote node while memory
3593 * may still exist in local DMA zone.
3594 */
3595static int node_order[MAX_NUMNODES];
3596
3597static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3598{
f0c0b2b8
KH
3599 int pos, j, node;
3600 int zone_type; /* needs to be signed */
3601 struct zone *z;
3602 struct zonelist *zonelist;
3603
54a6eb5c
MG
3604 zonelist = &pgdat->node_zonelists[0];
3605 pos = 0;
3606 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3607 for (j = 0; j < nr_nodes; j++) {
3608 node = node_order[j];
3609 z = &NODE_DATA(node)->node_zones[zone_type];
3610 if (populated_zone(z)) {
dd1a239f
MG
3611 zoneref_set_zone(z,
3612 &zonelist->_zonerefs[pos++]);
54a6eb5c 3613 check_highest_zone(zone_type);
f0c0b2b8
KH
3614 }
3615 }
f0c0b2b8 3616 }
dd1a239f
MG
3617 zonelist->_zonerefs[pos].zone = NULL;
3618 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3619}
3620
3193913c
MG
3621#if defined(CONFIG_64BIT)
3622/*
3623 * Devices that require DMA32/DMA are relatively rare and do not justify a
3624 * penalty to every machine in case the specialised case applies. Default
3625 * to Node-ordering on 64-bit NUMA machines
3626 */
3627static int default_zonelist_order(void)
3628{
3629 return ZONELIST_ORDER_NODE;
3630}
3631#else
3632/*
3633 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3634 * by the kernel. If processes running on node 0 deplete the low memory zone
3635 * then reclaim will occur more frequency increasing stalls and potentially
3636 * be easier to OOM if a large percentage of the zone is under writeback or
3637 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3638 * Hence, default to zone ordering on 32-bit.
3639 */
f0c0b2b8
KH
3640static int default_zonelist_order(void)
3641{
f0c0b2b8
KH
3642 return ZONELIST_ORDER_ZONE;
3643}
3193913c 3644#endif /* CONFIG_64BIT */
f0c0b2b8
KH
3645
3646static void set_zonelist_order(void)
3647{
3648 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3649 current_zonelist_order = default_zonelist_order();
3650 else
3651 current_zonelist_order = user_zonelist_order;
3652}
3653
3654static void build_zonelists(pg_data_t *pgdat)
3655{
3656 int j, node, load;
3657 enum zone_type i;
1da177e4 3658 nodemask_t used_mask;
f0c0b2b8
KH
3659 int local_node, prev_node;
3660 struct zonelist *zonelist;
3661 int order = current_zonelist_order;
1da177e4
LT
3662
3663 /* initialize zonelists */
523b9458 3664 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3665 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3666 zonelist->_zonerefs[0].zone = NULL;
3667 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3668 }
3669
3670 /* NUMA-aware ordering of nodes */
3671 local_node = pgdat->node_id;
62bc62a8 3672 load = nr_online_nodes;
1da177e4
LT
3673 prev_node = local_node;
3674 nodes_clear(used_mask);
f0c0b2b8 3675
f0c0b2b8
KH
3676 memset(node_order, 0, sizeof(node_order));
3677 j = 0;
3678
1da177e4
LT
3679 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3680 /*
3681 * We don't want to pressure a particular node.
3682 * So adding penalty to the first node in same
3683 * distance group to make it round-robin.
3684 */
957f822a
DR
3685 if (node_distance(local_node, node) !=
3686 node_distance(local_node, prev_node))
f0c0b2b8
KH
3687 node_load[node] = load;
3688
1da177e4
LT
3689 prev_node = node;
3690 load--;
f0c0b2b8
KH
3691 if (order == ZONELIST_ORDER_NODE)
3692 build_zonelists_in_node_order(pgdat, node);
3693 else
3694 node_order[j++] = node; /* remember order */
3695 }
1da177e4 3696
f0c0b2b8
KH
3697 if (order == ZONELIST_ORDER_ZONE) {
3698 /* calculate node order -- i.e., DMA last! */
3699 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3700 }
523b9458
CL
3701
3702 build_thisnode_zonelists(pgdat);
1da177e4
LT
3703}
3704
9276b1bc 3705/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3706static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3707{
54a6eb5c
MG
3708 struct zonelist *zonelist;
3709 struct zonelist_cache *zlc;
dd1a239f 3710 struct zoneref *z;
9276b1bc 3711
54a6eb5c
MG
3712 zonelist = &pgdat->node_zonelists[0];
3713 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3714 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3715 for (z = zonelist->_zonerefs; z->zone; z++)
3716 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3717}
3718
7aac7898
LS
3719#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3720/*
3721 * Return node id of node used for "local" allocations.
3722 * I.e., first node id of first zone in arg node's generic zonelist.
3723 * Used for initializing percpu 'numa_mem', which is used primarily
3724 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3725 */
3726int local_memory_node(int node)
3727{
3728 struct zone *zone;
3729
3730 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3731 gfp_zone(GFP_KERNEL),
3732 NULL,
3733 &zone);
3734 return zone->node;
3735}
3736#endif
f0c0b2b8 3737
1da177e4
LT
3738#else /* CONFIG_NUMA */
3739
f0c0b2b8
KH
3740static void set_zonelist_order(void)
3741{
3742 current_zonelist_order = ZONELIST_ORDER_ZONE;
3743}
3744
3745static void build_zonelists(pg_data_t *pgdat)
1da177e4 3746{
19655d34 3747 int node, local_node;
54a6eb5c
MG
3748 enum zone_type j;
3749 struct zonelist *zonelist;
1da177e4
LT
3750
3751 local_node = pgdat->node_id;
1da177e4 3752
54a6eb5c 3753 zonelist = &pgdat->node_zonelists[0];
bc732f1d 3754 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 3755
54a6eb5c
MG
3756 /*
3757 * Now we build the zonelist so that it contains the zones
3758 * of all the other nodes.
3759 * We don't want to pressure a particular node, so when
3760 * building the zones for node N, we make sure that the
3761 * zones coming right after the local ones are those from
3762 * node N+1 (modulo N)
3763 */
3764 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3765 if (!node_online(node))
3766 continue;
bc732f1d 3767 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 3768 }
54a6eb5c
MG
3769 for (node = 0; node < local_node; node++) {
3770 if (!node_online(node))
3771 continue;
bc732f1d 3772 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
3773 }
3774
dd1a239f
MG
3775 zonelist->_zonerefs[j].zone = NULL;
3776 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3777}
3778
9276b1bc 3779/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3780static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3781{
54a6eb5c 3782 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3783}
3784
1da177e4
LT
3785#endif /* CONFIG_NUMA */
3786
99dcc3e5
CL
3787/*
3788 * Boot pageset table. One per cpu which is going to be used for all
3789 * zones and all nodes. The parameters will be set in such a way
3790 * that an item put on a list will immediately be handed over to
3791 * the buddy list. This is safe since pageset manipulation is done
3792 * with interrupts disabled.
3793 *
3794 * The boot_pagesets must be kept even after bootup is complete for
3795 * unused processors and/or zones. They do play a role for bootstrapping
3796 * hotplugged processors.
3797 *
3798 * zoneinfo_show() and maybe other functions do
3799 * not check if the processor is online before following the pageset pointer.
3800 * Other parts of the kernel may not check if the zone is available.
3801 */
3802static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3803static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3804static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3805
4eaf3f64
HL
3806/*
3807 * Global mutex to protect against size modification of zonelists
3808 * as well as to serialize pageset setup for the new populated zone.
3809 */
3810DEFINE_MUTEX(zonelists_mutex);
3811
9b1a4d38 3812/* return values int ....just for stop_machine() */
4ed7e022 3813static int __build_all_zonelists(void *data)
1da177e4 3814{
6811378e 3815 int nid;
99dcc3e5 3816 int cpu;
9adb62a5 3817 pg_data_t *self = data;
9276b1bc 3818
7f9cfb31
BL
3819#ifdef CONFIG_NUMA
3820 memset(node_load, 0, sizeof(node_load));
3821#endif
9adb62a5
JL
3822
3823 if (self && !node_online(self->node_id)) {
3824 build_zonelists(self);
3825 build_zonelist_cache(self);
3826 }
3827
9276b1bc 3828 for_each_online_node(nid) {
7ea1530a
CL
3829 pg_data_t *pgdat = NODE_DATA(nid);
3830
3831 build_zonelists(pgdat);
3832 build_zonelist_cache(pgdat);
9276b1bc 3833 }
99dcc3e5
CL
3834
3835 /*
3836 * Initialize the boot_pagesets that are going to be used
3837 * for bootstrapping processors. The real pagesets for
3838 * each zone will be allocated later when the per cpu
3839 * allocator is available.
3840 *
3841 * boot_pagesets are used also for bootstrapping offline
3842 * cpus if the system is already booted because the pagesets
3843 * are needed to initialize allocators on a specific cpu too.
3844 * F.e. the percpu allocator needs the page allocator which
3845 * needs the percpu allocator in order to allocate its pagesets
3846 * (a chicken-egg dilemma).
3847 */
7aac7898 3848 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3849 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3850
7aac7898
LS
3851#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3852 /*
3853 * We now know the "local memory node" for each node--
3854 * i.e., the node of the first zone in the generic zonelist.
3855 * Set up numa_mem percpu variable for on-line cpus. During
3856 * boot, only the boot cpu should be on-line; we'll init the
3857 * secondary cpus' numa_mem as they come on-line. During
3858 * node/memory hotplug, we'll fixup all on-line cpus.
3859 */
3860 if (cpu_online(cpu))
3861 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3862#endif
3863 }
3864
6811378e
YG
3865 return 0;
3866}
3867
4eaf3f64
HL
3868/*
3869 * Called with zonelists_mutex held always
3870 * unless system_state == SYSTEM_BOOTING.
3871 */
9adb62a5 3872void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3873{
f0c0b2b8
KH
3874 set_zonelist_order();
3875
6811378e 3876 if (system_state == SYSTEM_BOOTING) {
423b41d7 3877 __build_all_zonelists(NULL);
68ad8df4 3878 mminit_verify_zonelist();
6811378e
YG
3879 cpuset_init_current_mems_allowed();
3880 } else {
e9959f0f 3881#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3882 if (zone)
3883 setup_zone_pageset(zone);
e9959f0f 3884#endif
dd1895e2
CS
3885 /* we have to stop all cpus to guarantee there is no user
3886 of zonelist */
9adb62a5 3887 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3888 /* cpuset refresh routine should be here */
3889 }
bd1e22b8 3890 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3891 /*
3892 * Disable grouping by mobility if the number of pages in the
3893 * system is too low to allow the mechanism to work. It would be
3894 * more accurate, but expensive to check per-zone. This check is
3895 * made on memory-hotadd so a system can start with mobility
3896 * disabled and enable it later
3897 */
d9c23400 3898 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3899 page_group_by_mobility_disabled = 1;
3900 else
3901 page_group_by_mobility_disabled = 0;
3902
f88dfff5 3903 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 3904 "Total pages: %ld\n",
62bc62a8 3905 nr_online_nodes,
f0c0b2b8 3906 zonelist_order_name[current_zonelist_order],
9ef9acb0 3907 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3908 vm_total_pages);
3909#ifdef CONFIG_NUMA
f88dfff5 3910 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 3911#endif
1da177e4
LT
3912}
3913
3914/*
3915 * Helper functions to size the waitqueue hash table.
3916 * Essentially these want to choose hash table sizes sufficiently
3917 * large so that collisions trying to wait on pages are rare.
3918 * But in fact, the number of active page waitqueues on typical
3919 * systems is ridiculously low, less than 200. So this is even
3920 * conservative, even though it seems large.
3921 *
3922 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3923 * waitqueues, i.e. the size of the waitq table given the number of pages.
3924 */
3925#define PAGES_PER_WAITQUEUE 256
3926
cca448fe 3927#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3928static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3929{
3930 unsigned long size = 1;
3931
3932 pages /= PAGES_PER_WAITQUEUE;
3933
3934 while (size < pages)
3935 size <<= 1;
3936
3937 /*
3938 * Once we have dozens or even hundreds of threads sleeping
3939 * on IO we've got bigger problems than wait queue collision.
3940 * Limit the size of the wait table to a reasonable size.
3941 */
3942 size = min(size, 4096UL);
3943
3944 return max(size, 4UL);
3945}
cca448fe
YG
3946#else
3947/*
3948 * A zone's size might be changed by hot-add, so it is not possible to determine
3949 * a suitable size for its wait_table. So we use the maximum size now.
3950 *
3951 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3952 *
3953 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3954 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3955 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3956 *
3957 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3958 * or more by the traditional way. (See above). It equals:
3959 *
3960 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3961 * ia64(16K page size) : = ( 8G + 4M)byte.
3962 * powerpc (64K page size) : = (32G +16M)byte.
3963 */
3964static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3965{
3966 return 4096UL;
3967}
3968#endif
1da177e4
LT
3969
3970/*
3971 * This is an integer logarithm so that shifts can be used later
3972 * to extract the more random high bits from the multiplicative
3973 * hash function before the remainder is taken.
3974 */
3975static inline unsigned long wait_table_bits(unsigned long size)
3976{
3977 return ffz(~size);
3978}
3979
6d3163ce
AH
3980/*
3981 * Check if a pageblock contains reserved pages
3982 */
3983static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3984{
3985 unsigned long pfn;
3986
3987 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3988 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3989 return 1;
3990 }
3991 return 0;
3992}
3993
56fd56b8 3994/*
d9c23400 3995 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3996 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3997 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3998 * higher will lead to a bigger reserve which will get freed as contiguous
3999 * blocks as reclaim kicks in
4000 */
4001static void setup_zone_migrate_reserve(struct zone *zone)
4002{
6d3163ce 4003 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4004 struct page *page;
78986a67
MG
4005 unsigned long block_migratetype;
4006 int reserve;
943dca1a 4007 int old_reserve;
56fd56b8 4008
d0215638
MH
4009 /*
4010 * Get the start pfn, end pfn and the number of blocks to reserve
4011 * We have to be careful to be aligned to pageblock_nr_pages to
4012 * make sure that we always check pfn_valid for the first page in
4013 * the block.
4014 */
56fd56b8 4015 start_pfn = zone->zone_start_pfn;
108bcc96 4016 end_pfn = zone_end_pfn(zone);
d0215638 4017 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4018 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4019 pageblock_order;
56fd56b8 4020
78986a67
MG
4021 /*
4022 * Reserve blocks are generally in place to help high-order atomic
4023 * allocations that are short-lived. A min_free_kbytes value that
4024 * would result in more than 2 reserve blocks for atomic allocations
4025 * is assumed to be in place to help anti-fragmentation for the
4026 * future allocation of hugepages at runtime.
4027 */
4028 reserve = min(2, reserve);
943dca1a
YI
4029 old_reserve = zone->nr_migrate_reserve_block;
4030
4031 /* When memory hot-add, we almost always need to do nothing */
4032 if (reserve == old_reserve)
4033 return;
4034 zone->nr_migrate_reserve_block = reserve;
78986a67 4035
d9c23400 4036 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
4037 if (!pfn_valid(pfn))
4038 continue;
4039 page = pfn_to_page(pfn);
4040
344c790e
AL
4041 /* Watch out for overlapping nodes */
4042 if (page_to_nid(page) != zone_to_nid(zone))
4043 continue;
4044
56fd56b8
MG
4045 block_migratetype = get_pageblock_migratetype(page);
4046
938929f1
MG
4047 /* Only test what is necessary when the reserves are not met */
4048 if (reserve > 0) {
4049 /*
4050 * Blocks with reserved pages will never free, skip
4051 * them.
4052 */
4053 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4054 if (pageblock_is_reserved(pfn, block_end_pfn))
4055 continue;
56fd56b8 4056
938929f1
MG
4057 /* If this block is reserved, account for it */
4058 if (block_migratetype == MIGRATE_RESERVE) {
4059 reserve--;
4060 continue;
4061 }
4062
4063 /* Suitable for reserving if this block is movable */
4064 if (block_migratetype == MIGRATE_MOVABLE) {
4065 set_pageblock_migratetype(page,
4066 MIGRATE_RESERVE);
4067 move_freepages_block(zone, page,
4068 MIGRATE_RESERVE);
4069 reserve--;
4070 continue;
4071 }
943dca1a
YI
4072 } else if (!old_reserve) {
4073 /*
4074 * At boot time we don't need to scan the whole zone
4075 * for turning off MIGRATE_RESERVE.
4076 */
4077 break;
56fd56b8
MG
4078 }
4079
4080 /*
4081 * If the reserve is met and this is a previous reserved block,
4082 * take it back
4083 */
4084 if (block_migratetype == MIGRATE_RESERVE) {
4085 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4086 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4087 }
4088 }
4089}
ac0e5b7a 4090
1da177e4
LT
4091/*
4092 * Initially all pages are reserved - free ones are freed
4093 * up by free_all_bootmem() once the early boot process is
4094 * done. Non-atomic initialization, single-pass.
4095 */
c09b4240 4096void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4097 unsigned long start_pfn, enum memmap_context context)
1da177e4 4098{
1da177e4 4099 struct page *page;
29751f69
AW
4100 unsigned long end_pfn = start_pfn + size;
4101 unsigned long pfn;
86051ca5 4102 struct zone *z;
1da177e4 4103
22b31eec
HD
4104 if (highest_memmap_pfn < end_pfn - 1)
4105 highest_memmap_pfn = end_pfn - 1;
4106
86051ca5 4107 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 4108 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4109 /*
4110 * There can be holes in boot-time mem_map[]s
4111 * handed to this function. They do not
4112 * exist on hotplugged memory.
4113 */
4114 if (context == MEMMAP_EARLY) {
4115 if (!early_pfn_valid(pfn))
4116 continue;
4117 if (!early_pfn_in_nid(pfn, nid))
4118 continue;
4119 }
d41dee36
AW
4120 page = pfn_to_page(pfn);
4121 set_page_links(page, zone, nid, pfn);
708614e6 4122 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 4123 init_page_count(page);
22b751c3 4124 page_mapcount_reset(page);
90572890 4125 page_cpupid_reset_last(page);
1da177e4 4126 SetPageReserved(page);
b2a0ac88
MG
4127 /*
4128 * Mark the block movable so that blocks are reserved for
4129 * movable at startup. This will force kernel allocations
4130 * to reserve their blocks rather than leaking throughout
4131 * the address space during boot when many long-lived
56fd56b8
MG
4132 * kernel allocations are made. Later some blocks near
4133 * the start are marked MIGRATE_RESERVE by
4134 * setup_zone_migrate_reserve()
86051ca5
KH
4135 *
4136 * bitmap is created for zone's valid pfn range. but memmap
4137 * can be created for invalid pages (for alignment)
4138 * check here not to call set_pageblock_migratetype() against
4139 * pfn out of zone.
b2a0ac88 4140 */
86051ca5 4141 if ((z->zone_start_pfn <= pfn)
108bcc96 4142 && (pfn < zone_end_pfn(z))
86051ca5 4143 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 4144 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 4145
1da177e4
LT
4146 INIT_LIST_HEAD(&page->lru);
4147#ifdef WANT_PAGE_VIRTUAL
4148 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4149 if (!is_highmem_idx(zone))
3212c6be 4150 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 4151#endif
1da177e4
LT
4152 }
4153}
4154
1e548deb 4155static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4156{
7aeb09f9 4157 unsigned int order, t;
b2a0ac88
MG
4158 for_each_migratetype_order(order, t) {
4159 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4160 zone->free_area[order].nr_free = 0;
4161 }
4162}
4163
4164#ifndef __HAVE_ARCH_MEMMAP_INIT
4165#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4166 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4167#endif
4168
7cd2b0a3 4169static int zone_batchsize(struct zone *zone)
e7c8d5c9 4170{
3a6be87f 4171#ifdef CONFIG_MMU
e7c8d5c9
CL
4172 int batch;
4173
4174 /*
4175 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4176 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4177 *
4178 * OK, so we don't know how big the cache is. So guess.
4179 */
b40da049 4180 batch = zone->managed_pages / 1024;
ba56e91c
SR
4181 if (batch * PAGE_SIZE > 512 * 1024)
4182 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4183 batch /= 4; /* We effectively *= 4 below */
4184 if (batch < 1)
4185 batch = 1;
4186
4187 /*
0ceaacc9
NP
4188 * Clamp the batch to a 2^n - 1 value. Having a power
4189 * of 2 value was found to be more likely to have
4190 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4191 *
0ceaacc9
NP
4192 * For example if 2 tasks are alternately allocating
4193 * batches of pages, one task can end up with a lot
4194 * of pages of one half of the possible page colors
4195 * and the other with pages of the other colors.
e7c8d5c9 4196 */
9155203a 4197 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4198
e7c8d5c9 4199 return batch;
3a6be87f
DH
4200
4201#else
4202 /* The deferral and batching of frees should be suppressed under NOMMU
4203 * conditions.
4204 *
4205 * The problem is that NOMMU needs to be able to allocate large chunks
4206 * of contiguous memory as there's no hardware page translation to
4207 * assemble apparent contiguous memory from discontiguous pages.
4208 *
4209 * Queueing large contiguous runs of pages for batching, however,
4210 * causes the pages to actually be freed in smaller chunks. As there
4211 * can be a significant delay between the individual batches being
4212 * recycled, this leads to the once large chunks of space being
4213 * fragmented and becoming unavailable for high-order allocations.
4214 */
4215 return 0;
4216#endif
e7c8d5c9
CL
4217}
4218
8d7a8fa9
CS
4219/*
4220 * pcp->high and pcp->batch values are related and dependent on one another:
4221 * ->batch must never be higher then ->high.
4222 * The following function updates them in a safe manner without read side
4223 * locking.
4224 *
4225 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4226 * those fields changing asynchronously (acording the the above rule).
4227 *
4228 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4229 * outside of boot time (or some other assurance that no concurrent updaters
4230 * exist).
4231 */
4232static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4233 unsigned long batch)
4234{
4235 /* start with a fail safe value for batch */
4236 pcp->batch = 1;
4237 smp_wmb();
4238
4239 /* Update high, then batch, in order */
4240 pcp->high = high;
4241 smp_wmb();
4242
4243 pcp->batch = batch;
4244}
4245
3664033c 4246/* a companion to pageset_set_high() */
4008bab7
CS
4247static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4248{
8d7a8fa9 4249 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4250}
4251
88c90dbc 4252static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4253{
4254 struct per_cpu_pages *pcp;
5f8dcc21 4255 int migratetype;
2caaad41 4256
1c6fe946
MD
4257 memset(p, 0, sizeof(*p));
4258
3dfa5721 4259 pcp = &p->pcp;
2caaad41 4260 pcp->count = 0;
5f8dcc21
MG
4261 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4262 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4263}
4264
88c90dbc
CS
4265static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4266{
4267 pageset_init(p);
4268 pageset_set_batch(p, batch);
4269}
4270
8ad4b1fb 4271/*
3664033c 4272 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4273 * to the value high for the pageset p.
4274 */
3664033c 4275static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4276 unsigned long high)
4277{
8d7a8fa9
CS
4278 unsigned long batch = max(1UL, high / 4);
4279 if ((high / 4) > (PAGE_SHIFT * 8))
4280 batch = PAGE_SHIFT * 8;
8ad4b1fb 4281
8d7a8fa9 4282 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4283}
4284
7cd2b0a3
DR
4285static void pageset_set_high_and_batch(struct zone *zone,
4286 struct per_cpu_pageset *pcp)
56cef2b8 4287{
56cef2b8 4288 if (percpu_pagelist_fraction)
3664033c 4289 pageset_set_high(pcp,
56cef2b8
CS
4290 (zone->managed_pages /
4291 percpu_pagelist_fraction));
4292 else
4293 pageset_set_batch(pcp, zone_batchsize(zone));
4294}
4295
169f6c19
CS
4296static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4297{
4298 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4299
4300 pageset_init(pcp);
4301 pageset_set_high_and_batch(zone, pcp);
4302}
4303
4ed7e022 4304static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4305{
4306 int cpu;
319774e2 4307 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4308 for_each_possible_cpu(cpu)
4309 zone_pageset_init(zone, cpu);
319774e2
WF
4310}
4311
2caaad41 4312/*
99dcc3e5
CL
4313 * Allocate per cpu pagesets and initialize them.
4314 * Before this call only boot pagesets were available.
e7c8d5c9 4315 */
99dcc3e5 4316void __init setup_per_cpu_pageset(void)
e7c8d5c9 4317{
99dcc3e5 4318 struct zone *zone;
e7c8d5c9 4319
319774e2
WF
4320 for_each_populated_zone(zone)
4321 setup_zone_pageset(zone);
e7c8d5c9
CL
4322}
4323
577a32f6 4324static noinline __init_refok
cca448fe 4325int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4326{
4327 int i;
cca448fe 4328 size_t alloc_size;
ed8ece2e
DH
4329
4330 /*
4331 * The per-page waitqueue mechanism uses hashed waitqueues
4332 * per zone.
4333 */
02b694de
YG
4334 zone->wait_table_hash_nr_entries =
4335 wait_table_hash_nr_entries(zone_size_pages);
4336 zone->wait_table_bits =
4337 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4338 alloc_size = zone->wait_table_hash_nr_entries
4339 * sizeof(wait_queue_head_t);
4340
cd94b9db 4341 if (!slab_is_available()) {
cca448fe 4342 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4343 memblock_virt_alloc_node_nopanic(
4344 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4345 } else {
4346 /*
4347 * This case means that a zone whose size was 0 gets new memory
4348 * via memory hot-add.
4349 * But it may be the case that a new node was hot-added. In
4350 * this case vmalloc() will not be able to use this new node's
4351 * memory - this wait_table must be initialized to use this new
4352 * node itself as well.
4353 * To use this new node's memory, further consideration will be
4354 * necessary.
4355 */
8691f3a7 4356 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4357 }
4358 if (!zone->wait_table)
4359 return -ENOMEM;
ed8ece2e 4360
b8af2941 4361 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4362 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4363
4364 return 0;
ed8ece2e
DH
4365}
4366
c09b4240 4367static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4368{
99dcc3e5
CL
4369 /*
4370 * per cpu subsystem is not up at this point. The following code
4371 * relies on the ability of the linker to provide the
4372 * offset of a (static) per cpu variable into the per cpu area.
4373 */
4374 zone->pageset = &boot_pageset;
ed8ece2e 4375
b38a8725 4376 if (populated_zone(zone))
99dcc3e5
CL
4377 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4378 zone->name, zone->present_pages,
4379 zone_batchsize(zone));
ed8ece2e
DH
4380}
4381
4ed7e022 4382int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4383 unsigned long zone_start_pfn,
a2f3aa02
DH
4384 unsigned long size,
4385 enum memmap_context context)
ed8ece2e
DH
4386{
4387 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4388 int ret;
4389 ret = zone_wait_table_init(zone, size);
4390 if (ret)
4391 return ret;
ed8ece2e
DH
4392 pgdat->nr_zones = zone_idx(zone) + 1;
4393
ed8ece2e
DH
4394 zone->zone_start_pfn = zone_start_pfn;
4395
708614e6
MG
4396 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4397 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4398 pgdat->node_id,
4399 (unsigned long)zone_idx(zone),
4400 zone_start_pfn, (zone_start_pfn + size));
4401
1e548deb 4402 zone_init_free_lists(zone);
718127cc
YG
4403
4404 return 0;
ed8ece2e
DH
4405}
4406
0ee332c1 4407#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4408#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4409/*
4410 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4411 */
f2dbcfa7 4412int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4413{
c13291a5 4414 unsigned long start_pfn, end_pfn;
e76b63f8 4415 int nid;
7c243c71
RA
4416 /*
4417 * NOTE: The following SMP-unsafe globals are only used early in boot
4418 * when the kernel is running single-threaded.
4419 */
4420 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4421 static int __meminitdata last_nid;
4422
4423 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4424 return last_nid;
c713216d 4425
e76b63f8
YL
4426 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4427 if (nid != -1) {
4428 last_start_pfn = start_pfn;
4429 last_end_pfn = end_pfn;
4430 last_nid = nid;
4431 }
4432
4433 return nid;
c713216d
MG
4434}
4435#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4436
f2dbcfa7
KH
4437int __meminit early_pfn_to_nid(unsigned long pfn)
4438{
cc2559bc
KH
4439 int nid;
4440
4441 nid = __early_pfn_to_nid(pfn);
4442 if (nid >= 0)
4443 return nid;
4444 /* just returns 0 */
4445 return 0;
f2dbcfa7
KH
4446}
4447
cc2559bc
KH
4448#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4449bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4450{
4451 int nid;
4452
4453 nid = __early_pfn_to_nid(pfn);
4454 if (nid >= 0 && nid != node)
4455 return false;
4456 return true;
4457}
4458#endif
f2dbcfa7 4459
c713216d 4460/**
6782832e 4461 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4462 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4463 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4464 *
7d018176
ZZ
4465 * If an architecture guarantees that all ranges registered contain no holes
4466 * and may be freed, this this function may be used instead of calling
4467 * memblock_free_early_nid() manually.
c713216d 4468 */
c13291a5 4469void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4470{
c13291a5
TH
4471 unsigned long start_pfn, end_pfn;
4472 int i, this_nid;
edbe7d23 4473
c13291a5
TH
4474 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4475 start_pfn = min(start_pfn, max_low_pfn);
4476 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4477
c13291a5 4478 if (start_pfn < end_pfn)
6782832e
SS
4479 memblock_free_early_nid(PFN_PHYS(start_pfn),
4480 (end_pfn - start_pfn) << PAGE_SHIFT,
4481 this_nid);
edbe7d23 4482 }
edbe7d23 4483}
edbe7d23 4484
c713216d
MG
4485/**
4486 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4487 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4488 *
7d018176
ZZ
4489 * If an architecture guarantees that all ranges registered contain no holes and may
4490 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4491 */
4492void __init sparse_memory_present_with_active_regions(int nid)
4493{
c13291a5
TH
4494 unsigned long start_pfn, end_pfn;
4495 int i, this_nid;
c713216d 4496
c13291a5
TH
4497 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4498 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4499}
4500
4501/**
4502 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4503 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4504 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4505 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4506 *
4507 * It returns the start and end page frame of a node based on information
7d018176 4508 * provided by memblock_set_node(). If called for a node
c713216d 4509 * with no available memory, a warning is printed and the start and end
88ca3b94 4510 * PFNs will be 0.
c713216d 4511 */
a3142c8e 4512void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4513 unsigned long *start_pfn, unsigned long *end_pfn)
4514{
c13291a5 4515 unsigned long this_start_pfn, this_end_pfn;
c713216d 4516 int i;
c13291a5 4517
c713216d
MG
4518 *start_pfn = -1UL;
4519 *end_pfn = 0;
4520
c13291a5
TH
4521 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4522 *start_pfn = min(*start_pfn, this_start_pfn);
4523 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4524 }
4525
633c0666 4526 if (*start_pfn == -1UL)
c713216d 4527 *start_pfn = 0;
c713216d
MG
4528}
4529
2a1e274a
MG
4530/*
4531 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4532 * assumption is made that zones within a node are ordered in monotonic
4533 * increasing memory addresses so that the "highest" populated zone is used
4534 */
b69a7288 4535static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4536{
4537 int zone_index;
4538 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4539 if (zone_index == ZONE_MOVABLE)
4540 continue;
4541
4542 if (arch_zone_highest_possible_pfn[zone_index] >
4543 arch_zone_lowest_possible_pfn[zone_index])
4544 break;
4545 }
4546
4547 VM_BUG_ON(zone_index == -1);
4548 movable_zone = zone_index;
4549}
4550
4551/*
4552 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4553 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4554 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4555 * in each node depending on the size of each node and how evenly kernelcore
4556 * is distributed. This helper function adjusts the zone ranges
4557 * provided by the architecture for a given node by using the end of the
4558 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4559 * zones within a node are in order of monotonic increases memory addresses
4560 */
b69a7288 4561static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4562 unsigned long zone_type,
4563 unsigned long node_start_pfn,
4564 unsigned long node_end_pfn,
4565 unsigned long *zone_start_pfn,
4566 unsigned long *zone_end_pfn)
4567{
4568 /* Only adjust if ZONE_MOVABLE is on this node */
4569 if (zone_movable_pfn[nid]) {
4570 /* Size ZONE_MOVABLE */
4571 if (zone_type == ZONE_MOVABLE) {
4572 *zone_start_pfn = zone_movable_pfn[nid];
4573 *zone_end_pfn = min(node_end_pfn,
4574 arch_zone_highest_possible_pfn[movable_zone]);
4575
4576 /* Adjust for ZONE_MOVABLE starting within this range */
4577 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4578 *zone_end_pfn > zone_movable_pfn[nid]) {
4579 *zone_end_pfn = zone_movable_pfn[nid];
4580
4581 /* Check if this whole range is within ZONE_MOVABLE */
4582 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4583 *zone_start_pfn = *zone_end_pfn;
4584 }
4585}
4586
c713216d
MG
4587/*
4588 * Return the number of pages a zone spans in a node, including holes
4589 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4590 */
6ea6e688 4591static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4592 unsigned long zone_type,
7960aedd
ZY
4593 unsigned long node_start_pfn,
4594 unsigned long node_end_pfn,
c713216d
MG
4595 unsigned long *ignored)
4596{
c713216d
MG
4597 unsigned long zone_start_pfn, zone_end_pfn;
4598
7960aedd 4599 /* Get the start and end of the zone */
c713216d
MG
4600 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4601 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4602 adjust_zone_range_for_zone_movable(nid, zone_type,
4603 node_start_pfn, node_end_pfn,
4604 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4605
4606 /* Check that this node has pages within the zone's required range */
4607 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4608 return 0;
4609
4610 /* Move the zone boundaries inside the node if necessary */
4611 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4612 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4613
4614 /* Return the spanned pages */
4615 return zone_end_pfn - zone_start_pfn;
4616}
4617
4618/*
4619 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4620 * then all holes in the requested range will be accounted for.
c713216d 4621 */
32996250 4622unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4623 unsigned long range_start_pfn,
4624 unsigned long range_end_pfn)
4625{
96e907d1
TH
4626 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4627 unsigned long start_pfn, end_pfn;
4628 int i;
c713216d 4629
96e907d1
TH
4630 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4631 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4632 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4633 nr_absent -= end_pfn - start_pfn;
c713216d 4634 }
96e907d1 4635 return nr_absent;
c713216d
MG
4636}
4637
4638/**
4639 * absent_pages_in_range - Return number of page frames in holes within a range
4640 * @start_pfn: The start PFN to start searching for holes
4641 * @end_pfn: The end PFN to stop searching for holes
4642 *
88ca3b94 4643 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4644 */
4645unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4646 unsigned long end_pfn)
4647{
4648 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4649}
4650
4651/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4652static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4653 unsigned long zone_type,
7960aedd
ZY
4654 unsigned long node_start_pfn,
4655 unsigned long node_end_pfn,
c713216d
MG
4656 unsigned long *ignored)
4657{
96e907d1
TH
4658 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4659 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4660 unsigned long zone_start_pfn, zone_end_pfn;
4661
96e907d1
TH
4662 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4663 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4664
2a1e274a
MG
4665 adjust_zone_range_for_zone_movable(nid, zone_type,
4666 node_start_pfn, node_end_pfn,
4667 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4668 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4669}
0e0b864e 4670
0ee332c1 4671#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4672static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4673 unsigned long zone_type,
7960aedd
ZY
4674 unsigned long node_start_pfn,
4675 unsigned long node_end_pfn,
c713216d
MG
4676 unsigned long *zones_size)
4677{
4678 return zones_size[zone_type];
4679}
4680
6ea6e688 4681static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4682 unsigned long zone_type,
7960aedd
ZY
4683 unsigned long node_start_pfn,
4684 unsigned long node_end_pfn,
c713216d
MG
4685 unsigned long *zholes_size)
4686{
4687 if (!zholes_size)
4688 return 0;
4689
4690 return zholes_size[zone_type];
4691}
20e6926d 4692
0ee332c1 4693#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4694
a3142c8e 4695static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
4696 unsigned long node_start_pfn,
4697 unsigned long node_end_pfn,
4698 unsigned long *zones_size,
4699 unsigned long *zholes_size)
c713216d
MG
4700{
4701 unsigned long realtotalpages, totalpages = 0;
4702 enum zone_type i;
4703
4704 for (i = 0; i < MAX_NR_ZONES; i++)
4705 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4706 node_start_pfn,
4707 node_end_pfn,
4708 zones_size);
c713216d
MG
4709 pgdat->node_spanned_pages = totalpages;
4710
4711 realtotalpages = totalpages;
4712 for (i = 0; i < MAX_NR_ZONES; i++)
4713 realtotalpages -=
4714 zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
4715 node_start_pfn, node_end_pfn,
4716 zholes_size);
c713216d
MG
4717 pgdat->node_present_pages = realtotalpages;
4718 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4719 realtotalpages);
4720}
4721
835c134e
MG
4722#ifndef CONFIG_SPARSEMEM
4723/*
4724 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4725 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4726 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4727 * round what is now in bits to nearest long in bits, then return it in
4728 * bytes.
4729 */
7c45512d 4730static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4731{
4732 unsigned long usemapsize;
4733
7c45512d 4734 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4735 usemapsize = roundup(zonesize, pageblock_nr_pages);
4736 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4737 usemapsize *= NR_PAGEBLOCK_BITS;
4738 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4739
4740 return usemapsize / 8;
4741}
4742
4743static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4744 struct zone *zone,
4745 unsigned long zone_start_pfn,
4746 unsigned long zonesize)
835c134e 4747{
7c45512d 4748 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4749 zone->pageblock_flags = NULL;
58a01a45 4750 if (usemapsize)
6782832e
SS
4751 zone->pageblock_flags =
4752 memblock_virt_alloc_node_nopanic(usemapsize,
4753 pgdat->node_id);
835c134e
MG
4754}
4755#else
7c45512d
LT
4756static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4757 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4758#endif /* CONFIG_SPARSEMEM */
4759
d9c23400 4760#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4761
d9c23400 4762/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 4763void __paginginit set_pageblock_order(void)
d9c23400 4764{
955c1cd7
AM
4765 unsigned int order;
4766
d9c23400
MG
4767 /* Check that pageblock_nr_pages has not already been setup */
4768 if (pageblock_order)
4769 return;
4770
955c1cd7
AM
4771 if (HPAGE_SHIFT > PAGE_SHIFT)
4772 order = HUGETLB_PAGE_ORDER;
4773 else
4774 order = MAX_ORDER - 1;
4775
d9c23400
MG
4776 /*
4777 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4778 * This value may be variable depending on boot parameters on IA64 and
4779 * powerpc.
d9c23400
MG
4780 */
4781 pageblock_order = order;
4782}
4783#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4784
ba72cb8c
MG
4785/*
4786 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4787 * is unused as pageblock_order is set at compile-time. See
4788 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4789 * the kernel config
ba72cb8c 4790 */
15ca220e 4791void __paginginit set_pageblock_order(void)
ba72cb8c 4792{
ba72cb8c 4793}
d9c23400
MG
4794
4795#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4796
01cefaef
JL
4797static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4798 unsigned long present_pages)
4799{
4800 unsigned long pages = spanned_pages;
4801
4802 /*
4803 * Provide a more accurate estimation if there are holes within
4804 * the zone and SPARSEMEM is in use. If there are holes within the
4805 * zone, each populated memory region may cost us one or two extra
4806 * memmap pages due to alignment because memmap pages for each
4807 * populated regions may not naturally algined on page boundary.
4808 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4809 */
4810 if (spanned_pages > present_pages + (present_pages >> 4) &&
4811 IS_ENABLED(CONFIG_SPARSEMEM))
4812 pages = present_pages;
4813
4814 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4815}
4816
1da177e4
LT
4817/*
4818 * Set up the zone data structures:
4819 * - mark all pages reserved
4820 * - mark all memory queues empty
4821 * - clear the memory bitmaps
6527af5d
MK
4822 *
4823 * NOTE: pgdat should get zeroed by caller.
1da177e4 4824 */
b5a0e011 4825static void __paginginit free_area_init_core(struct pglist_data *pgdat,
7960aedd 4826 unsigned long node_start_pfn, unsigned long node_end_pfn,
1da177e4
LT
4827 unsigned long *zones_size, unsigned long *zholes_size)
4828{
2f1b6248 4829 enum zone_type j;
ed8ece2e 4830 int nid = pgdat->node_id;
1da177e4 4831 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4832 int ret;
1da177e4 4833
208d54e5 4834 pgdat_resize_init(pgdat);
8177a420
AA
4835#ifdef CONFIG_NUMA_BALANCING
4836 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4837 pgdat->numabalancing_migrate_nr_pages = 0;
4838 pgdat->numabalancing_migrate_next_window = jiffies;
4839#endif
1da177e4 4840 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4841 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 4842 pgdat_page_ext_init(pgdat);
5f63b720 4843
1da177e4
LT
4844 for (j = 0; j < MAX_NR_ZONES; j++) {
4845 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4846 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4847
7960aedd
ZY
4848 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4849 node_end_pfn, zones_size);
9feedc9d 4850 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
7960aedd
ZY
4851 node_start_pfn,
4852 node_end_pfn,
c713216d 4853 zholes_size);
1da177e4 4854
0e0b864e 4855 /*
9feedc9d 4856 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4857 * is used by this zone for memmap. This affects the watermark
4858 * and per-cpu initialisations
4859 */
01cefaef 4860 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
4861 if (!is_highmem_idx(j)) {
4862 if (freesize >= memmap_pages) {
4863 freesize -= memmap_pages;
4864 if (memmap_pages)
4865 printk(KERN_DEBUG
4866 " %s zone: %lu pages used for memmap\n",
4867 zone_names[j], memmap_pages);
4868 } else
4869 printk(KERN_WARNING
4870 " %s zone: %lu pages exceeds freesize %lu\n",
4871 zone_names[j], memmap_pages, freesize);
4872 }
0e0b864e 4873
6267276f 4874 /* Account for reserved pages */
9feedc9d
JL
4875 if (j == 0 && freesize > dma_reserve) {
4876 freesize -= dma_reserve;
d903ef9f 4877 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4878 zone_names[0], dma_reserve);
0e0b864e
MG
4879 }
4880
98d2b0eb 4881 if (!is_highmem_idx(j))
9feedc9d 4882 nr_kernel_pages += freesize;
01cefaef
JL
4883 /* Charge for highmem memmap if there are enough kernel pages */
4884 else if (nr_kernel_pages > memmap_pages * 2)
4885 nr_kernel_pages -= memmap_pages;
9feedc9d 4886 nr_all_pages += freesize;
1da177e4
LT
4887
4888 zone->spanned_pages = size;
306f2e9e 4889 zone->present_pages = realsize;
9feedc9d
JL
4890 /*
4891 * Set an approximate value for lowmem here, it will be adjusted
4892 * when the bootmem allocator frees pages into the buddy system.
4893 * And all highmem pages will be managed by the buddy system.
4894 */
4895 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4896#ifdef CONFIG_NUMA
d5f541ed 4897 zone->node = nid;
9feedc9d 4898 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4899 / 100;
9feedc9d 4900 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4901#endif
1da177e4
LT
4902 zone->name = zone_names[j];
4903 spin_lock_init(&zone->lock);
4904 spin_lock_init(&zone->lru_lock);
bdc8cb98 4905 zone_seqlock_init(zone);
1da177e4 4906 zone->zone_pgdat = pgdat;
ed8ece2e 4907 zone_pcp_init(zone);
81c0a2bb
JW
4908
4909 /* For bootup, initialized properly in watermark setup */
4910 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4911
bea8c150 4912 lruvec_init(&zone->lruvec);
1da177e4
LT
4913 if (!size)
4914 continue;
4915
955c1cd7 4916 set_pageblock_order();
7c45512d 4917 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4918 ret = init_currently_empty_zone(zone, zone_start_pfn,
4919 size, MEMMAP_EARLY);
718127cc 4920 BUG_ON(ret);
76cdd58e 4921 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4922 zone_start_pfn += size;
1da177e4
LT
4923 }
4924}
4925
577a32f6 4926static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4927{
1da177e4
LT
4928 /* Skip empty nodes */
4929 if (!pgdat->node_spanned_pages)
4930 return;
4931
d41dee36 4932#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4933 /* ia64 gets its own node_mem_map, before this, without bootmem */
4934 if (!pgdat->node_mem_map) {
e984bb43 4935 unsigned long size, start, end;
d41dee36
AW
4936 struct page *map;
4937
e984bb43
BP
4938 /*
4939 * The zone's endpoints aren't required to be MAX_ORDER
4940 * aligned but the node_mem_map endpoints must be in order
4941 * for the buddy allocator to function correctly.
4942 */
4943 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4944 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4945 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4946 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4947 map = alloc_remap(pgdat->node_id, size);
4948 if (!map)
6782832e
SS
4949 map = memblock_virt_alloc_node_nopanic(size,
4950 pgdat->node_id);
e984bb43 4951 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4952 }
12d810c1 4953#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4954 /*
4955 * With no DISCONTIG, the global mem_map is just set as node 0's
4956 */
c713216d 4957 if (pgdat == NODE_DATA(0)) {
1da177e4 4958 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4959#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4960 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4961 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4962#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4963 }
1da177e4 4964#endif
d41dee36 4965#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4966}
4967
9109fb7b
JW
4968void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4969 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4970{
9109fb7b 4971 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
4972 unsigned long start_pfn = 0;
4973 unsigned long end_pfn = 0;
9109fb7b 4974
88fdf75d 4975 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4976 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4977
1da177e4
LT
4978 pgdat->node_id = nid;
4979 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
4980#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4981 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
4982 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4983 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
4984#endif
4985 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4986 zones_size, zholes_size);
1da177e4
LT
4987
4988 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4989#ifdef CONFIG_FLAT_NODE_MEM_MAP
4990 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4991 nid, (unsigned long)pgdat,
4992 (unsigned long)pgdat->node_mem_map);
4993#endif
1da177e4 4994
7960aedd
ZY
4995 free_area_init_core(pgdat, start_pfn, end_pfn,
4996 zones_size, zholes_size);
1da177e4
LT
4997}
4998
0ee332c1 4999#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5000
5001#if MAX_NUMNODES > 1
5002/*
5003 * Figure out the number of possible node ids.
5004 */
f9872caf 5005void __init setup_nr_node_ids(void)
418508c1
MS
5006{
5007 unsigned int node;
5008 unsigned int highest = 0;
5009
5010 for_each_node_mask(node, node_possible_map)
5011 highest = node;
5012 nr_node_ids = highest + 1;
5013}
418508c1
MS
5014#endif
5015
1e01979c
TH
5016/**
5017 * node_map_pfn_alignment - determine the maximum internode alignment
5018 *
5019 * This function should be called after node map is populated and sorted.
5020 * It calculates the maximum power of two alignment which can distinguish
5021 * all the nodes.
5022 *
5023 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5024 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5025 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5026 * shifted, 1GiB is enough and this function will indicate so.
5027 *
5028 * This is used to test whether pfn -> nid mapping of the chosen memory
5029 * model has fine enough granularity to avoid incorrect mapping for the
5030 * populated node map.
5031 *
5032 * Returns the determined alignment in pfn's. 0 if there is no alignment
5033 * requirement (single node).
5034 */
5035unsigned long __init node_map_pfn_alignment(void)
5036{
5037 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5038 unsigned long start, end, mask;
1e01979c 5039 int last_nid = -1;
c13291a5 5040 int i, nid;
1e01979c 5041
c13291a5 5042 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5043 if (!start || last_nid < 0 || last_nid == nid) {
5044 last_nid = nid;
5045 last_end = end;
5046 continue;
5047 }
5048
5049 /*
5050 * Start with a mask granular enough to pin-point to the
5051 * start pfn and tick off bits one-by-one until it becomes
5052 * too coarse to separate the current node from the last.
5053 */
5054 mask = ~((1 << __ffs(start)) - 1);
5055 while (mask && last_end <= (start & (mask << 1)))
5056 mask <<= 1;
5057
5058 /* accumulate all internode masks */
5059 accl_mask |= mask;
5060 }
5061
5062 /* convert mask to number of pages */
5063 return ~accl_mask + 1;
5064}
5065
a6af2bc3 5066/* Find the lowest pfn for a node */
b69a7288 5067static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5068{
a6af2bc3 5069 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5070 unsigned long start_pfn;
5071 int i;
1abbfb41 5072
c13291a5
TH
5073 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5074 min_pfn = min(min_pfn, start_pfn);
c713216d 5075
a6af2bc3
MG
5076 if (min_pfn == ULONG_MAX) {
5077 printk(KERN_WARNING
2bc0d261 5078 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5079 return 0;
5080 }
5081
5082 return min_pfn;
c713216d
MG
5083}
5084
5085/**
5086 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5087 *
5088 * It returns the minimum PFN based on information provided via
7d018176 5089 * memblock_set_node().
c713216d
MG
5090 */
5091unsigned long __init find_min_pfn_with_active_regions(void)
5092{
5093 return find_min_pfn_for_node(MAX_NUMNODES);
5094}
5095
37b07e41
LS
5096/*
5097 * early_calculate_totalpages()
5098 * Sum pages in active regions for movable zone.
4b0ef1fe 5099 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5100 */
484f51f8 5101static unsigned long __init early_calculate_totalpages(void)
7e63efef 5102{
7e63efef 5103 unsigned long totalpages = 0;
c13291a5
TH
5104 unsigned long start_pfn, end_pfn;
5105 int i, nid;
5106
5107 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5108 unsigned long pages = end_pfn - start_pfn;
7e63efef 5109
37b07e41
LS
5110 totalpages += pages;
5111 if (pages)
4b0ef1fe 5112 node_set_state(nid, N_MEMORY);
37b07e41 5113 }
b8af2941 5114 return totalpages;
7e63efef
MG
5115}
5116
2a1e274a
MG
5117/*
5118 * Find the PFN the Movable zone begins in each node. Kernel memory
5119 * is spread evenly between nodes as long as the nodes have enough
5120 * memory. When they don't, some nodes will have more kernelcore than
5121 * others
5122 */
b224ef85 5123static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5124{
5125 int i, nid;
5126 unsigned long usable_startpfn;
5127 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5128 /* save the state before borrow the nodemask */
4b0ef1fe 5129 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5130 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5131 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5132 struct memblock_region *r;
b2f3eebe
TC
5133
5134 /* Need to find movable_zone earlier when movable_node is specified. */
5135 find_usable_zone_for_movable();
5136
5137 /*
5138 * If movable_node is specified, ignore kernelcore and movablecore
5139 * options.
5140 */
5141 if (movable_node_is_enabled()) {
136199f0
EM
5142 for_each_memblock(memory, r) {
5143 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5144 continue;
5145
136199f0 5146 nid = r->nid;
b2f3eebe 5147
136199f0 5148 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5149 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5150 min(usable_startpfn, zone_movable_pfn[nid]) :
5151 usable_startpfn;
5152 }
5153
5154 goto out2;
5155 }
2a1e274a 5156
7e63efef 5157 /*
b2f3eebe 5158 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5159 * kernelcore that corresponds so that memory usable for
5160 * any allocation type is evenly spread. If both kernelcore
5161 * and movablecore are specified, then the value of kernelcore
5162 * will be used for required_kernelcore if it's greater than
5163 * what movablecore would have allowed.
5164 */
5165 if (required_movablecore) {
7e63efef
MG
5166 unsigned long corepages;
5167
5168 /*
5169 * Round-up so that ZONE_MOVABLE is at least as large as what
5170 * was requested by the user
5171 */
5172 required_movablecore =
5173 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5174 corepages = totalpages - required_movablecore;
5175
5176 required_kernelcore = max(required_kernelcore, corepages);
5177 }
5178
20e6926d
YL
5179 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5180 if (!required_kernelcore)
66918dcd 5181 goto out;
2a1e274a
MG
5182
5183 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5184 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5185
5186restart:
5187 /* Spread kernelcore memory as evenly as possible throughout nodes */
5188 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5189 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5190 unsigned long start_pfn, end_pfn;
5191
2a1e274a
MG
5192 /*
5193 * Recalculate kernelcore_node if the division per node
5194 * now exceeds what is necessary to satisfy the requested
5195 * amount of memory for the kernel
5196 */
5197 if (required_kernelcore < kernelcore_node)
5198 kernelcore_node = required_kernelcore / usable_nodes;
5199
5200 /*
5201 * As the map is walked, we track how much memory is usable
5202 * by the kernel using kernelcore_remaining. When it is
5203 * 0, the rest of the node is usable by ZONE_MOVABLE
5204 */
5205 kernelcore_remaining = kernelcore_node;
5206
5207 /* Go through each range of PFNs within this node */
c13291a5 5208 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5209 unsigned long size_pages;
5210
c13291a5 5211 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5212 if (start_pfn >= end_pfn)
5213 continue;
5214
5215 /* Account for what is only usable for kernelcore */
5216 if (start_pfn < usable_startpfn) {
5217 unsigned long kernel_pages;
5218 kernel_pages = min(end_pfn, usable_startpfn)
5219 - start_pfn;
5220
5221 kernelcore_remaining -= min(kernel_pages,
5222 kernelcore_remaining);
5223 required_kernelcore -= min(kernel_pages,
5224 required_kernelcore);
5225
5226 /* Continue if range is now fully accounted */
5227 if (end_pfn <= usable_startpfn) {
5228
5229 /*
5230 * Push zone_movable_pfn to the end so
5231 * that if we have to rebalance
5232 * kernelcore across nodes, we will
5233 * not double account here
5234 */
5235 zone_movable_pfn[nid] = end_pfn;
5236 continue;
5237 }
5238 start_pfn = usable_startpfn;
5239 }
5240
5241 /*
5242 * The usable PFN range for ZONE_MOVABLE is from
5243 * start_pfn->end_pfn. Calculate size_pages as the
5244 * number of pages used as kernelcore
5245 */
5246 size_pages = end_pfn - start_pfn;
5247 if (size_pages > kernelcore_remaining)
5248 size_pages = kernelcore_remaining;
5249 zone_movable_pfn[nid] = start_pfn + size_pages;
5250
5251 /*
5252 * Some kernelcore has been met, update counts and
5253 * break if the kernelcore for this node has been
b8af2941 5254 * satisfied
2a1e274a
MG
5255 */
5256 required_kernelcore -= min(required_kernelcore,
5257 size_pages);
5258 kernelcore_remaining -= size_pages;
5259 if (!kernelcore_remaining)
5260 break;
5261 }
5262 }
5263
5264 /*
5265 * If there is still required_kernelcore, we do another pass with one
5266 * less node in the count. This will push zone_movable_pfn[nid] further
5267 * along on the nodes that still have memory until kernelcore is
b8af2941 5268 * satisfied
2a1e274a
MG
5269 */
5270 usable_nodes--;
5271 if (usable_nodes && required_kernelcore > usable_nodes)
5272 goto restart;
5273
b2f3eebe 5274out2:
2a1e274a
MG
5275 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5276 for (nid = 0; nid < MAX_NUMNODES; nid++)
5277 zone_movable_pfn[nid] =
5278 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5279
20e6926d 5280out:
66918dcd 5281 /* restore the node_state */
4b0ef1fe 5282 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5283}
5284
4b0ef1fe
LJ
5285/* Any regular or high memory on that node ? */
5286static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5287{
37b07e41
LS
5288 enum zone_type zone_type;
5289
4b0ef1fe
LJ
5290 if (N_MEMORY == N_NORMAL_MEMORY)
5291 return;
5292
5293 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5294 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5295 if (populated_zone(zone)) {
4b0ef1fe
LJ
5296 node_set_state(nid, N_HIGH_MEMORY);
5297 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5298 zone_type <= ZONE_NORMAL)
5299 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5300 break;
5301 }
37b07e41 5302 }
37b07e41
LS
5303}
5304
c713216d
MG
5305/**
5306 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5307 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5308 *
5309 * This will call free_area_init_node() for each active node in the system.
7d018176 5310 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5311 * zone in each node and their holes is calculated. If the maximum PFN
5312 * between two adjacent zones match, it is assumed that the zone is empty.
5313 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5314 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5315 * starts where the previous one ended. For example, ZONE_DMA32 starts
5316 * at arch_max_dma_pfn.
5317 */
5318void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5319{
c13291a5
TH
5320 unsigned long start_pfn, end_pfn;
5321 int i, nid;
a6af2bc3 5322
c713216d
MG
5323 /* Record where the zone boundaries are */
5324 memset(arch_zone_lowest_possible_pfn, 0,
5325 sizeof(arch_zone_lowest_possible_pfn));
5326 memset(arch_zone_highest_possible_pfn, 0,
5327 sizeof(arch_zone_highest_possible_pfn));
5328 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5329 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5330 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5331 if (i == ZONE_MOVABLE)
5332 continue;
c713216d
MG
5333 arch_zone_lowest_possible_pfn[i] =
5334 arch_zone_highest_possible_pfn[i-1];
5335 arch_zone_highest_possible_pfn[i] =
5336 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5337 }
2a1e274a
MG
5338 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5339 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5340
5341 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5342 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5343 find_zone_movable_pfns_for_nodes();
c713216d 5344
c713216d 5345 /* Print out the zone ranges */
f88dfff5 5346 pr_info("Zone ranges:\n");
2a1e274a
MG
5347 for (i = 0; i < MAX_NR_ZONES; i++) {
5348 if (i == ZONE_MOVABLE)
5349 continue;
f88dfff5 5350 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5351 if (arch_zone_lowest_possible_pfn[i] ==
5352 arch_zone_highest_possible_pfn[i])
f88dfff5 5353 pr_cont("empty\n");
72f0ba02 5354 else
8d29e18a
JG
5355 pr_cont("[mem %#018Lx-%#018Lx]\n",
5356 (u64)arch_zone_lowest_possible_pfn[i]
5357 << PAGE_SHIFT,
5358 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5359 << PAGE_SHIFT) - 1);
2a1e274a
MG
5360 }
5361
5362 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5363 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5364 for (i = 0; i < MAX_NUMNODES; i++) {
5365 if (zone_movable_pfn[i])
8d29e18a
JG
5366 pr_info(" Node %d: %#018Lx\n", i,
5367 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5368 }
c713216d 5369
f2d52fe5 5370 /* Print out the early node map */
f88dfff5 5371 pr_info("Early memory node ranges\n");
c13291a5 5372 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5373 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5374 (u64)start_pfn << PAGE_SHIFT,
5375 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5376
5377 /* Initialise every node */
708614e6 5378 mminit_verify_pageflags_layout();
8ef82866 5379 setup_nr_node_ids();
c713216d
MG
5380 for_each_online_node(nid) {
5381 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5382 free_area_init_node(nid, NULL,
c713216d 5383 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5384
5385 /* Any memory on that node */
5386 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5387 node_set_state(nid, N_MEMORY);
5388 check_for_memory(pgdat, nid);
c713216d
MG
5389 }
5390}
2a1e274a 5391
7e63efef 5392static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5393{
5394 unsigned long long coremem;
5395 if (!p)
5396 return -EINVAL;
5397
5398 coremem = memparse(p, &p);
7e63efef 5399 *core = coremem >> PAGE_SHIFT;
2a1e274a 5400
7e63efef 5401 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5402 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5403
5404 return 0;
5405}
ed7ed365 5406
7e63efef
MG
5407/*
5408 * kernelcore=size sets the amount of memory for use for allocations that
5409 * cannot be reclaimed or migrated.
5410 */
5411static int __init cmdline_parse_kernelcore(char *p)
5412{
5413 return cmdline_parse_core(p, &required_kernelcore);
5414}
5415
5416/*
5417 * movablecore=size sets the amount of memory for use for allocations that
5418 * can be reclaimed or migrated.
5419 */
5420static int __init cmdline_parse_movablecore(char *p)
5421{
5422 return cmdline_parse_core(p, &required_movablecore);
5423}
5424
ed7ed365 5425early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5426early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5427
0ee332c1 5428#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5429
c3d5f5f0
JL
5430void adjust_managed_page_count(struct page *page, long count)
5431{
5432 spin_lock(&managed_page_count_lock);
5433 page_zone(page)->managed_pages += count;
5434 totalram_pages += count;
3dcc0571
JL
5435#ifdef CONFIG_HIGHMEM
5436 if (PageHighMem(page))
5437 totalhigh_pages += count;
5438#endif
c3d5f5f0
JL
5439 spin_unlock(&managed_page_count_lock);
5440}
3dcc0571 5441EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5442
11199692 5443unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5444{
11199692
JL
5445 void *pos;
5446 unsigned long pages = 0;
69afade7 5447
11199692
JL
5448 start = (void *)PAGE_ALIGN((unsigned long)start);
5449 end = (void *)((unsigned long)end & PAGE_MASK);
5450 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5451 if ((unsigned int)poison <= 0xFF)
11199692
JL
5452 memset(pos, poison, PAGE_SIZE);
5453 free_reserved_page(virt_to_page(pos));
69afade7
JL
5454 }
5455
5456 if (pages && s)
11199692 5457 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5458 s, pages << (PAGE_SHIFT - 10), start, end);
5459
5460 return pages;
5461}
11199692 5462EXPORT_SYMBOL(free_reserved_area);
69afade7 5463
cfa11e08
JL
5464#ifdef CONFIG_HIGHMEM
5465void free_highmem_page(struct page *page)
5466{
5467 __free_reserved_page(page);
5468 totalram_pages++;
7b4b2a0d 5469 page_zone(page)->managed_pages++;
cfa11e08
JL
5470 totalhigh_pages++;
5471}
5472#endif
5473
7ee3d4e8
JL
5474
5475void __init mem_init_print_info(const char *str)
5476{
5477 unsigned long physpages, codesize, datasize, rosize, bss_size;
5478 unsigned long init_code_size, init_data_size;
5479
5480 physpages = get_num_physpages();
5481 codesize = _etext - _stext;
5482 datasize = _edata - _sdata;
5483 rosize = __end_rodata - __start_rodata;
5484 bss_size = __bss_stop - __bss_start;
5485 init_data_size = __init_end - __init_begin;
5486 init_code_size = _einittext - _sinittext;
5487
5488 /*
5489 * Detect special cases and adjust section sizes accordingly:
5490 * 1) .init.* may be embedded into .data sections
5491 * 2) .init.text.* may be out of [__init_begin, __init_end],
5492 * please refer to arch/tile/kernel/vmlinux.lds.S.
5493 * 3) .rodata.* may be embedded into .text or .data sections.
5494 */
5495#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5496 do { \
5497 if (start <= pos && pos < end && size > adj) \
5498 size -= adj; \
5499 } while (0)
7ee3d4e8
JL
5500
5501 adj_init_size(__init_begin, __init_end, init_data_size,
5502 _sinittext, init_code_size);
5503 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5504 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5505 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5506 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5507
5508#undef adj_init_size
5509
f88dfff5 5510 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5511 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5512 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5513#ifdef CONFIG_HIGHMEM
5514 ", %luK highmem"
5515#endif
5516 "%s%s)\n",
5517 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5518 codesize >> 10, datasize >> 10, rosize >> 10,
5519 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5520 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5521 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5522#ifdef CONFIG_HIGHMEM
5523 totalhigh_pages << (PAGE_SHIFT-10),
5524#endif
5525 str ? ", " : "", str ? str : "");
5526}
5527
0e0b864e 5528/**
88ca3b94
RD
5529 * set_dma_reserve - set the specified number of pages reserved in the first zone
5530 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5531 *
5532 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5533 * In the DMA zone, a significant percentage may be consumed by kernel image
5534 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5535 * function may optionally be used to account for unfreeable pages in the
5536 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5537 * smaller per-cpu batchsize.
0e0b864e
MG
5538 */
5539void __init set_dma_reserve(unsigned long new_dma_reserve)
5540{
5541 dma_reserve = new_dma_reserve;
5542}
5543
1da177e4
LT
5544void __init free_area_init(unsigned long *zones_size)
5545{
9109fb7b 5546 free_area_init_node(0, zones_size,
1da177e4
LT
5547 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5548}
1da177e4 5549
1da177e4
LT
5550static int page_alloc_cpu_notify(struct notifier_block *self,
5551 unsigned long action, void *hcpu)
5552{
5553 int cpu = (unsigned long)hcpu;
1da177e4 5554
8bb78442 5555 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5556 lru_add_drain_cpu(cpu);
9f8f2172
CL
5557 drain_pages(cpu);
5558
5559 /*
5560 * Spill the event counters of the dead processor
5561 * into the current processors event counters.
5562 * This artificially elevates the count of the current
5563 * processor.
5564 */
f8891e5e 5565 vm_events_fold_cpu(cpu);
9f8f2172
CL
5566
5567 /*
5568 * Zero the differential counters of the dead processor
5569 * so that the vm statistics are consistent.
5570 *
5571 * This is only okay since the processor is dead and cannot
5572 * race with what we are doing.
5573 */
2bb921e5 5574 cpu_vm_stats_fold(cpu);
1da177e4
LT
5575 }
5576 return NOTIFY_OK;
5577}
1da177e4
LT
5578
5579void __init page_alloc_init(void)
5580{
5581 hotcpu_notifier(page_alloc_cpu_notify, 0);
5582}
5583
cb45b0e9
HA
5584/*
5585 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5586 * or min_free_kbytes changes.
5587 */
5588static void calculate_totalreserve_pages(void)
5589{
5590 struct pglist_data *pgdat;
5591 unsigned long reserve_pages = 0;
2f6726e5 5592 enum zone_type i, j;
cb45b0e9
HA
5593
5594 for_each_online_pgdat(pgdat) {
5595 for (i = 0; i < MAX_NR_ZONES; i++) {
5596 struct zone *zone = pgdat->node_zones + i;
3484b2de 5597 long max = 0;
cb45b0e9
HA
5598
5599 /* Find valid and maximum lowmem_reserve in the zone */
5600 for (j = i; j < MAX_NR_ZONES; j++) {
5601 if (zone->lowmem_reserve[j] > max)
5602 max = zone->lowmem_reserve[j];
5603 }
5604
41858966
MG
5605 /* we treat the high watermark as reserved pages. */
5606 max += high_wmark_pages(zone);
cb45b0e9 5607
b40da049
JL
5608 if (max > zone->managed_pages)
5609 max = zone->managed_pages;
cb45b0e9 5610 reserve_pages += max;
ab8fabd4
JW
5611 /*
5612 * Lowmem reserves are not available to
5613 * GFP_HIGHUSER page cache allocations and
5614 * kswapd tries to balance zones to their high
5615 * watermark. As a result, neither should be
5616 * regarded as dirtyable memory, to prevent a
5617 * situation where reclaim has to clean pages
5618 * in order to balance the zones.
5619 */
5620 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5621 }
5622 }
ab8fabd4 5623 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5624 totalreserve_pages = reserve_pages;
5625}
5626
1da177e4
LT
5627/*
5628 * setup_per_zone_lowmem_reserve - called whenever
5629 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5630 * has a correct pages reserved value, so an adequate number of
5631 * pages are left in the zone after a successful __alloc_pages().
5632 */
5633static void setup_per_zone_lowmem_reserve(void)
5634{
5635 struct pglist_data *pgdat;
2f6726e5 5636 enum zone_type j, idx;
1da177e4 5637
ec936fc5 5638 for_each_online_pgdat(pgdat) {
1da177e4
LT
5639 for (j = 0; j < MAX_NR_ZONES; j++) {
5640 struct zone *zone = pgdat->node_zones + j;
b40da049 5641 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5642
5643 zone->lowmem_reserve[j] = 0;
5644
2f6726e5
CL
5645 idx = j;
5646 while (idx) {
1da177e4
LT
5647 struct zone *lower_zone;
5648
2f6726e5
CL
5649 idx--;
5650
1da177e4
LT
5651 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5652 sysctl_lowmem_reserve_ratio[idx] = 1;
5653
5654 lower_zone = pgdat->node_zones + idx;
b40da049 5655 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5656 sysctl_lowmem_reserve_ratio[idx];
b40da049 5657 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5658 }
5659 }
5660 }
cb45b0e9
HA
5661
5662 /* update totalreserve_pages */
5663 calculate_totalreserve_pages();
1da177e4
LT
5664}
5665
cfd3da1e 5666static void __setup_per_zone_wmarks(void)
1da177e4
LT
5667{
5668 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5669 unsigned long lowmem_pages = 0;
5670 struct zone *zone;
5671 unsigned long flags;
5672
5673 /* Calculate total number of !ZONE_HIGHMEM pages */
5674 for_each_zone(zone) {
5675 if (!is_highmem(zone))
b40da049 5676 lowmem_pages += zone->managed_pages;
1da177e4
LT
5677 }
5678
5679 for_each_zone(zone) {
ac924c60
AM
5680 u64 tmp;
5681
1125b4e3 5682 spin_lock_irqsave(&zone->lock, flags);
b40da049 5683 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5684 do_div(tmp, lowmem_pages);
1da177e4
LT
5685 if (is_highmem(zone)) {
5686 /*
669ed175
NP
5687 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5688 * need highmem pages, so cap pages_min to a small
5689 * value here.
5690 *
41858966 5691 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5692 * deltas controls asynch page reclaim, and so should
5693 * not be capped for highmem.
1da177e4 5694 */
90ae8d67 5695 unsigned long min_pages;
1da177e4 5696
b40da049 5697 min_pages = zone->managed_pages / 1024;
90ae8d67 5698 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5699 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5700 } else {
669ed175
NP
5701 /*
5702 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5703 * proportionate to the zone's size.
5704 */
41858966 5705 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5706 }
5707
41858966
MG
5708 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5709 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5710
81c0a2bb 5711 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
5712 high_wmark_pages(zone) - low_wmark_pages(zone) -
5713 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 5714
56fd56b8 5715 setup_zone_migrate_reserve(zone);
1125b4e3 5716 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5717 }
cb45b0e9
HA
5718
5719 /* update totalreserve_pages */
5720 calculate_totalreserve_pages();
1da177e4
LT
5721}
5722
cfd3da1e
MG
5723/**
5724 * setup_per_zone_wmarks - called when min_free_kbytes changes
5725 * or when memory is hot-{added|removed}
5726 *
5727 * Ensures that the watermark[min,low,high] values for each zone are set
5728 * correctly with respect to min_free_kbytes.
5729 */
5730void setup_per_zone_wmarks(void)
5731{
5732 mutex_lock(&zonelists_mutex);
5733 __setup_per_zone_wmarks();
5734 mutex_unlock(&zonelists_mutex);
5735}
5736
55a4462a 5737/*
556adecb
RR
5738 * The inactive anon list should be small enough that the VM never has to
5739 * do too much work, but large enough that each inactive page has a chance
5740 * to be referenced again before it is swapped out.
5741 *
5742 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5743 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5744 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5745 * the anonymous pages are kept on the inactive list.
5746 *
5747 * total target max
5748 * memory ratio inactive anon
5749 * -------------------------------------
5750 * 10MB 1 5MB
5751 * 100MB 1 50MB
5752 * 1GB 3 250MB
5753 * 10GB 10 0.9GB
5754 * 100GB 31 3GB
5755 * 1TB 101 10GB
5756 * 10TB 320 32GB
5757 */
1b79acc9 5758static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5759{
96cb4df5 5760 unsigned int gb, ratio;
556adecb 5761
96cb4df5 5762 /* Zone size in gigabytes */
b40da049 5763 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5764 if (gb)
556adecb 5765 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5766 else
5767 ratio = 1;
556adecb 5768
96cb4df5
MK
5769 zone->inactive_ratio = ratio;
5770}
556adecb 5771
839a4fcc 5772static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5773{
5774 struct zone *zone;
5775
5776 for_each_zone(zone)
5777 calculate_zone_inactive_ratio(zone);
556adecb
RR
5778}
5779
1da177e4
LT
5780/*
5781 * Initialise min_free_kbytes.
5782 *
5783 * For small machines we want it small (128k min). For large machines
5784 * we want it large (64MB max). But it is not linear, because network
5785 * bandwidth does not increase linearly with machine size. We use
5786 *
b8af2941 5787 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5788 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5789 *
5790 * which yields
5791 *
5792 * 16MB: 512k
5793 * 32MB: 724k
5794 * 64MB: 1024k
5795 * 128MB: 1448k
5796 * 256MB: 2048k
5797 * 512MB: 2896k
5798 * 1024MB: 4096k
5799 * 2048MB: 5792k
5800 * 4096MB: 8192k
5801 * 8192MB: 11584k
5802 * 16384MB: 16384k
5803 */
1b79acc9 5804int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5805{
5806 unsigned long lowmem_kbytes;
5f12733e 5807 int new_min_free_kbytes;
1da177e4
LT
5808
5809 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5810 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5811
5812 if (new_min_free_kbytes > user_min_free_kbytes) {
5813 min_free_kbytes = new_min_free_kbytes;
5814 if (min_free_kbytes < 128)
5815 min_free_kbytes = 128;
5816 if (min_free_kbytes > 65536)
5817 min_free_kbytes = 65536;
5818 } else {
5819 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5820 new_min_free_kbytes, user_min_free_kbytes);
5821 }
bc75d33f 5822 setup_per_zone_wmarks();
a6cccdc3 5823 refresh_zone_stat_thresholds();
1da177e4 5824 setup_per_zone_lowmem_reserve();
556adecb 5825 setup_per_zone_inactive_ratio();
1da177e4
LT
5826 return 0;
5827}
bc75d33f 5828module_init(init_per_zone_wmark_min)
1da177e4
LT
5829
5830/*
b8af2941 5831 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5832 * that we can call two helper functions whenever min_free_kbytes
5833 * changes.
5834 */
cccad5b9 5835int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5836 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5837{
da8c757b
HP
5838 int rc;
5839
5840 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5841 if (rc)
5842 return rc;
5843
5f12733e
MH
5844 if (write) {
5845 user_min_free_kbytes = min_free_kbytes;
bc75d33f 5846 setup_per_zone_wmarks();
5f12733e 5847 }
1da177e4
LT
5848 return 0;
5849}
5850
9614634f 5851#ifdef CONFIG_NUMA
cccad5b9 5852int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5853 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5854{
5855 struct zone *zone;
5856 int rc;
5857
8d65af78 5858 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5859 if (rc)
5860 return rc;
5861
5862 for_each_zone(zone)
b40da049 5863 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5864 sysctl_min_unmapped_ratio) / 100;
5865 return 0;
5866}
0ff38490 5867
cccad5b9 5868int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5869 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5870{
5871 struct zone *zone;
5872 int rc;
5873
8d65af78 5874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5875 if (rc)
5876 return rc;
5877
5878 for_each_zone(zone)
b40da049 5879 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5880 sysctl_min_slab_ratio) / 100;
5881 return 0;
5882}
9614634f
CL
5883#endif
5884
1da177e4
LT
5885/*
5886 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5887 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5888 * whenever sysctl_lowmem_reserve_ratio changes.
5889 *
5890 * The reserve ratio obviously has absolutely no relation with the
41858966 5891 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5892 * if in function of the boot time zone sizes.
5893 */
cccad5b9 5894int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5895 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5896{
8d65af78 5897 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5898 setup_per_zone_lowmem_reserve();
5899 return 0;
5900}
5901
8ad4b1fb
RS
5902/*
5903 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
5904 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5905 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 5906 */
cccad5b9 5907int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 5908 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5909{
5910 struct zone *zone;
7cd2b0a3 5911 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
5912 int ret;
5913
7cd2b0a3
DR
5914 mutex_lock(&pcp_batch_high_lock);
5915 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5916
8d65af78 5917 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
5918 if (!write || ret < 0)
5919 goto out;
5920
5921 /* Sanity checking to avoid pcp imbalance */
5922 if (percpu_pagelist_fraction &&
5923 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5924 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5925 ret = -EINVAL;
5926 goto out;
5927 }
5928
5929 /* No change? */
5930 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5931 goto out;
c8e251fa 5932
364df0eb 5933 for_each_populated_zone(zone) {
7cd2b0a3
DR
5934 unsigned int cpu;
5935
22a7f12b 5936 for_each_possible_cpu(cpu)
7cd2b0a3
DR
5937 pageset_set_high_and_batch(zone,
5938 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 5939 }
7cd2b0a3 5940out:
c8e251fa 5941 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 5942 return ret;
8ad4b1fb
RS
5943}
5944
f034b5d4 5945int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5946
5947#ifdef CONFIG_NUMA
5948static int __init set_hashdist(char *str)
5949{
5950 if (!str)
5951 return 0;
5952 hashdist = simple_strtoul(str, &str, 0);
5953 return 1;
5954}
5955__setup("hashdist=", set_hashdist);
5956#endif
5957
5958/*
5959 * allocate a large system hash table from bootmem
5960 * - it is assumed that the hash table must contain an exact power-of-2
5961 * quantity of entries
5962 * - limit is the number of hash buckets, not the total allocation size
5963 */
5964void *__init alloc_large_system_hash(const char *tablename,
5965 unsigned long bucketsize,
5966 unsigned long numentries,
5967 int scale,
5968 int flags,
5969 unsigned int *_hash_shift,
5970 unsigned int *_hash_mask,
31fe62b9
TB
5971 unsigned long low_limit,
5972 unsigned long high_limit)
1da177e4 5973{
31fe62b9 5974 unsigned long long max = high_limit;
1da177e4
LT
5975 unsigned long log2qty, size;
5976 void *table = NULL;
5977
5978 /* allow the kernel cmdline to have a say */
5979 if (!numentries) {
5980 /* round applicable memory size up to nearest megabyte */
04903664 5981 numentries = nr_kernel_pages;
a7e83318
JZ
5982
5983 /* It isn't necessary when PAGE_SIZE >= 1MB */
5984 if (PAGE_SHIFT < 20)
5985 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
5986
5987 /* limit to 1 bucket per 2^scale bytes of low memory */
5988 if (scale > PAGE_SHIFT)
5989 numentries >>= (scale - PAGE_SHIFT);
5990 else
5991 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5992
5993 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5994 if (unlikely(flags & HASH_SMALL)) {
5995 /* Makes no sense without HASH_EARLY */
5996 WARN_ON(!(flags & HASH_EARLY));
5997 if (!(numentries >> *_hash_shift)) {
5998 numentries = 1UL << *_hash_shift;
5999 BUG_ON(!numentries);
6000 }
6001 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6002 numentries = PAGE_SIZE / bucketsize;
1da177e4 6003 }
6e692ed3 6004 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6005
6006 /* limit allocation size to 1/16 total memory by default */
6007 if (max == 0) {
6008 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6009 do_div(max, bucketsize);
6010 }
074b8517 6011 max = min(max, 0x80000000ULL);
1da177e4 6012
31fe62b9
TB
6013 if (numentries < low_limit)
6014 numentries = low_limit;
1da177e4
LT
6015 if (numentries > max)
6016 numentries = max;
6017
f0d1b0b3 6018 log2qty = ilog2(numentries);
1da177e4
LT
6019
6020 do {
6021 size = bucketsize << log2qty;
6022 if (flags & HASH_EARLY)
6782832e 6023 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6024 else if (hashdist)
6025 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6026 else {
1037b83b
ED
6027 /*
6028 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6029 * some pages at the end of hash table which
6030 * alloc_pages_exact() automatically does
1037b83b 6031 */
264ef8a9 6032 if (get_order(size) < MAX_ORDER) {
a1dd268c 6033 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6034 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6035 }
1da177e4
LT
6036 }
6037 } while (!table && size > PAGE_SIZE && --log2qty);
6038
6039 if (!table)
6040 panic("Failed to allocate %s hash table\n", tablename);
6041
f241e660 6042 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6043 tablename,
f241e660 6044 (1UL << log2qty),
f0d1b0b3 6045 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6046 size);
6047
6048 if (_hash_shift)
6049 *_hash_shift = log2qty;
6050 if (_hash_mask)
6051 *_hash_mask = (1 << log2qty) - 1;
6052
6053 return table;
6054}
a117e66e 6055
835c134e
MG
6056/* Return a pointer to the bitmap storing bits affecting a block of pages */
6057static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6058 unsigned long pfn)
6059{
6060#ifdef CONFIG_SPARSEMEM
6061 return __pfn_to_section(pfn)->pageblock_flags;
6062#else
6063 return zone->pageblock_flags;
6064#endif /* CONFIG_SPARSEMEM */
6065}
6066
6067static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6068{
6069#ifdef CONFIG_SPARSEMEM
6070 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6071 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6072#else
c060f943 6073 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6074 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6075#endif /* CONFIG_SPARSEMEM */
6076}
6077
6078/**
1aab4d77 6079 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6080 * @page: The page within the block of interest
1aab4d77
RD
6081 * @pfn: The target page frame number
6082 * @end_bitidx: The last bit of interest to retrieve
6083 * @mask: mask of bits that the caller is interested in
6084 *
6085 * Return: pageblock_bits flags
835c134e 6086 */
dc4b0caf 6087unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6088 unsigned long end_bitidx,
6089 unsigned long mask)
835c134e
MG
6090{
6091 struct zone *zone;
6092 unsigned long *bitmap;
dc4b0caf 6093 unsigned long bitidx, word_bitidx;
e58469ba 6094 unsigned long word;
835c134e
MG
6095
6096 zone = page_zone(page);
835c134e
MG
6097 bitmap = get_pageblock_bitmap(zone, pfn);
6098 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6099 word_bitidx = bitidx / BITS_PER_LONG;
6100 bitidx &= (BITS_PER_LONG-1);
835c134e 6101
e58469ba
MG
6102 word = bitmap[word_bitidx];
6103 bitidx += end_bitidx;
6104 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6105}
6106
6107/**
dc4b0caf 6108 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6109 * @page: The page within the block of interest
835c134e 6110 * @flags: The flags to set
1aab4d77
RD
6111 * @pfn: The target page frame number
6112 * @end_bitidx: The last bit of interest
6113 * @mask: mask of bits that the caller is interested in
835c134e 6114 */
dc4b0caf
MG
6115void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6116 unsigned long pfn,
e58469ba
MG
6117 unsigned long end_bitidx,
6118 unsigned long mask)
835c134e
MG
6119{
6120 struct zone *zone;
6121 unsigned long *bitmap;
dc4b0caf 6122 unsigned long bitidx, word_bitidx;
e58469ba
MG
6123 unsigned long old_word, word;
6124
6125 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6126
6127 zone = page_zone(page);
835c134e
MG
6128 bitmap = get_pageblock_bitmap(zone, pfn);
6129 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6130 word_bitidx = bitidx / BITS_PER_LONG;
6131 bitidx &= (BITS_PER_LONG-1);
6132
309381fe 6133 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6134
e58469ba
MG
6135 bitidx += end_bitidx;
6136 mask <<= (BITS_PER_LONG - bitidx - 1);
6137 flags <<= (BITS_PER_LONG - bitidx - 1);
6138
6139 word = ACCESS_ONCE(bitmap[word_bitidx]);
6140 for (;;) {
6141 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6142 if (word == old_word)
6143 break;
6144 word = old_word;
6145 }
835c134e 6146}
a5d76b54
KH
6147
6148/*
80934513
MK
6149 * This function checks whether pageblock includes unmovable pages or not.
6150 * If @count is not zero, it is okay to include less @count unmovable pages
6151 *
b8af2941 6152 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6153 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6154 * expect this function should be exact.
a5d76b54 6155 */
b023f468
WC
6156bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6157 bool skip_hwpoisoned_pages)
49ac8255
KH
6158{
6159 unsigned long pfn, iter, found;
47118af0
MN
6160 int mt;
6161
49ac8255
KH
6162 /*
6163 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6164 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6165 */
6166 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6167 return false;
47118af0
MN
6168 mt = get_pageblock_migratetype(page);
6169 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6170 return false;
49ac8255
KH
6171
6172 pfn = page_to_pfn(page);
6173 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6174 unsigned long check = pfn + iter;
6175
29723fcc 6176 if (!pfn_valid_within(check))
49ac8255 6177 continue;
29723fcc 6178
49ac8255 6179 page = pfn_to_page(check);
c8721bbb
NH
6180
6181 /*
6182 * Hugepages are not in LRU lists, but they're movable.
6183 * We need not scan over tail pages bacause we don't
6184 * handle each tail page individually in migration.
6185 */
6186 if (PageHuge(page)) {
6187 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6188 continue;
6189 }
6190
97d255c8
MK
6191 /*
6192 * We can't use page_count without pin a page
6193 * because another CPU can free compound page.
6194 * This check already skips compound tails of THP
6195 * because their page->_count is zero at all time.
6196 */
6197 if (!atomic_read(&page->_count)) {
49ac8255
KH
6198 if (PageBuddy(page))
6199 iter += (1 << page_order(page)) - 1;
6200 continue;
6201 }
97d255c8 6202
b023f468
WC
6203 /*
6204 * The HWPoisoned page may be not in buddy system, and
6205 * page_count() is not 0.
6206 */
6207 if (skip_hwpoisoned_pages && PageHWPoison(page))
6208 continue;
6209
49ac8255
KH
6210 if (!PageLRU(page))
6211 found++;
6212 /*
6b4f7799
JW
6213 * If there are RECLAIMABLE pages, we need to check
6214 * it. But now, memory offline itself doesn't call
6215 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6216 */
6217 /*
6218 * If the page is not RAM, page_count()should be 0.
6219 * we don't need more check. This is an _used_ not-movable page.
6220 *
6221 * The problematic thing here is PG_reserved pages. PG_reserved
6222 * is set to both of a memory hole page and a _used_ kernel
6223 * page at boot.
6224 */
6225 if (found > count)
80934513 6226 return true;
49ac8255 6227 }
80934513 6228 return false;
49ac8255
KH
6229}
6230
6231bool is_pageblock_removable_nolock(struct page *page)
6232{
656a0706
MH
6233 struct zone *zone;
6234 unsigned long pfn;
687875fb
MH
6235
6236 /*
6237 * We have to be careful here because we are iterating over memory
6238 * sections which are not zone aware so we might end up outside of
6239 * the zone but still within the section.
656a0706
MH
6240 * We have to take care about the node as well. If the node is offline
6241 * its NODE_DATA will be NULL - see page_zone.
687875fb 6242 */
656a0706
MH
6243 if (!node_online(page_to_nid(page)))
6244 return false;
6245
6246 zone = page_zone(page);
6247 pfn = page_to_pfn(page);
108bcc96 6248 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6249 return false;
6250
b023f468 6251 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6252}
0c0e6195 6253
041d3a8c
MN
6254#ifdef CONFIG_CMA
6255
6256static unsigned long pfn_max_align_down(unsigned long pfn)
6257{
6258 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6259 pageblock_nr_pages) - 1);
6260}
6261
6262static unsigned long pfn_max_align_up(unsigned long pfn)
6263{
6264 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6265 pageblock_nr_pages));
6266}
6267
041d3a8c 6268/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6269static int __alloc_contig_migrate_range(struct compact_control *cc,
6270 unsigned long start, unsigned long end)
041d3a8c
MN
6271{
6272 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6273 unsigned long nr_reclaimed;
041d3a8c
MN
6274 unsigned long pfn = start;
6275 unsigned int tries = 0;
6276 int ret = 0;
6277
be49a6e1 6278 migrate_prep();
041d3a8c 6279
bb13ffeb 6280 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6281 if (fatal_signal_pending(current)) {
6282 ret = -EINTR;
6283 break;
6284 }
6285
bb13ffeb
MG
6286 if (list_empty(&cc->migratepages)) {
6287 cc->nr_migratepages = 0;
edc2ca61 6288 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6289 if (!pfn) {
6290 ret = -EINTR;
6291 break;
6292 }
6293 tries = 0;
6294 } else if (++tries == 5) {
6295 ret = ret < 0 ? ret : -EBUSY;
6296 break;
6297 }
6298
beb51eaa
MK
6299 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6300 &cc->migratepages);
6301 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6302
9c620e2b 6303 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6304 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6305 }
2a6f5124
SP
6306 if (ret < 0) {
6307 putback_movable_pages(&cc->migratepages);
6308 return ret;
6309 }
6310 return 0;
041d3a8c
MN
6311}
6312
6313/**
6314 * alloc_contig_range() -- tries to allocate given range of pages
6315 * @start: start PFN to allocate
6316 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6317 * @migratetype: migratetype of the underlaying pageblocks (either
6318 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6319 * in range must have the same migratetype and it must
6320 * be either of the two.
041d3a8c
MN
6321 *
6322 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6323 * aligned, however it's the caller's responsibility to guarantee that
6324 * we are the only thread that changes migrate type of pageblocks the
6325 * pages fall in.
6326 *
6327 * The PFN range must belong to a single zone.
6328 *
6329 * Returns zero on success or negative error code. On success all
6330 * pages which PFN is in [start, end) are allocated for the caller and
6331 * need to be freed with free_contig_range().
6332 */
0815f3d8
MN
6333int alloc_contig_range(unsigned long start, unsigned long end,
6334 unsigned migratetype)
041d3a8c 6335{
041d3a8c
MN
6336 unsigned long outer_start, outer_end;
6337 int ret = 0, order;
6338
bb13ffeb
MG
6339 struct compact_control cc = {
6340 .nr_migratepages = 0,
6341 .order = -1,
6342 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6343 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6344 .ignore_skip_hint = true,
6345 };
6346 INIT_LIST_HEAD(&cc.migratepages);
6347
041d3a8c
MN
6348 /*
6349 * What we do here is we mark all pageblocks in range as
6350 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6351 * have different sizes, and due to the way page allocator
6352 * work, we align the range to biggest of the two pages so
6353 * that page allocator won't try to merge buddies from
6354 * different pageblocks and change MIGRATE_ISOLATE to some
6355 * other migration type.
6356 *
6357 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6358 * migrate the pages from an unaligned range (ie. pages that
6359 * we are interested in). This will put all the pages in
6360 * range back to page allocator as MIGRATE_ISOLATE.
6361 *
6362 * When this is done, we take the pages in range from page
6363 * allocator removing them from the buddy system. This way
6364 * page allocator will never consider using them.
6365 *
6366 * This lets us mark the pageblocks back as
6367 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6368 * aligned range but not in the unaligned, original range are
6369 * put back to page allocator so that buddy can use them.
6370 */
6371
6372 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6373 pfn_max_align_up(end), migratetype,
6374 false);
041d3a8c 6375 if (ret)
86a595f9 6376 return ret;
041d3a8c 6377
bb13ffeb 6378 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6379 if (ret)
6380 goto done;
6381
6382 /*
6383 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6384 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6385 * more, all pages in [start, end) are free in page allocator.
6386 * What we are going to do is to allocate all pages from
6387 * [start, end) (that is remove them from page allocator).
6388 *
6389 * The only problem is that pages at the beginning and at the
6390 * end of interesting range may be not aligned with pages that
6391 * page allocator holds, ie. they can be part of higher order
6392 * pages. Because of this, we reserve the bigger range and
6393 * once this is done free the pages we are not interested in.
6394 *
6395 * We don't have to hold zone->lock here because the pages are
6396 * isolated thus they won't get removed from buddy.
6397 */
6398
6399 lru_add_drain_all();
510f5507 6400 drain_all_pages(cc.zone);
041d3a8c
MN
6401
6402 order = 0;
6403 outer_start = start;
6404 while (!PageBuddy(pfn_to_page(outer_start))) {
6405 if (++order >= MAX_ORDER) {
6406 ret = -EBUSY;
6407 goto done;
6408 }
6409 outer_start &= ~0UL << order;
6410 }
6411
6412 /* Make sure the range is really isolated. */
b023f468 6413 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6414 pr_info("%s: [%lx, %lx) PFNs busy\n",
6415 __func__, outer_start, end);
041d3a8c
MN
6416 ret = -EBUSY;
6417 goto done;
6418 }
6419
49f223a9 6420 /* Grab isolated pages from freelists. */
bb13ffeb 6421 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6422 if (!outer_end) {
6423 ret = -EBUSY;
6424 goto done;
6425 }
6426
6427 /* Free head and tail (if any) */
6428 if (start != outer_start)
6429 free_contig_range(outer_start, start - outer_start);
6430 if (end != outer_end)
6431 free_contig_range(end, outer_end - end);
6432
6433done:
6434 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6435 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6436 return ret;
6437}
6438
6439void free_contig_range(unsigned long pfn, unsigned nr_pages)
6440{
bcc2b02f
MS
6441 unsigned int count = 0;
6442
6443 for (; nr_pages--; pfn++) {
6444 struct page *page = pfn_to_page(pfn);
6445
6446 count += page_count(page) != 1;
6447 __free_page(page);
6448 }
6449 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6450}
6451#endif
6452
4ed7e022 6453#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6454/*
6455 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6456 * page high values need to be recalulated.
6457 */
4ed7e022
JL
6458void __meminit zone_pcp_update(struct zone *zone)
6459{
0a647f38 6460 unsigned cpu;
c8e251fa 6461 mutex_lock(&pcp_batch_high_lock);
0a647f38 6462 for_each_possible_cpu(cpu)
169f6c19
CS
6463 pageset_set_high_and_batch(zone,
6464 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6465 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6466}
6467#endif
6468
340175b7
JL
6469void zone_pcp_reset(struct zone *zone)
6470{
6471 unsigned long flags;
5a883813
MK
6472 int cpu;
6473 struct per_cpu_pageset *pset;
340175b7
JL
6474
6475 /* avoid races with drain_pages() */
6476 local_irq_save(flags);
6477 if (zone->pageset != &boot_pageset) {
5a883813
MK
6478 for_each_online_cpu(cpu) {
6479 pset = per_cpu_ptr(zone->pageset, cpu);
6480 drain_zonestat(zone, pset);
6481 }
340175b7
JL
6482 free_percpu(zone->pageset);
6483 zone->pageset = &boot_pageset;
6484 }
6485 local_irq_restore(flags);
6486}
6487
6dcd73d7 6488#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6489/*
6490 * All pages in the range must be isolated before calling this.
6491 */
6492void
6493__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6494{
6495 struct page *page;
6496 struct zone *zone;
7aeb09f9 6497 unsigned int order, i;
0c0e6195
KH
6498 unsigned long pfn;
6499 unsigned long flags;
6500 /* find the first valid pfn */
6501 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6502 if (pfn_valid(pfn))
6503 break;
6504 if (pfn == end_pfn)
6505 return;
6506 zone = page_zone(pfn_to_page(pfn));
6507 spin_lock_irqsave(&zone->lock, flags);
6508 pfn = start_pfn;
6509 while (pfn < end_pfn) {
6510 if (!pfn_valid(pfn)) {
6511 pfn++;
6512 continue;
6513 }
6514 page = pfn_to_page(pfn);
b023f468
WC
6515 /*
6516 * The HWPoisoned page may be not in buddy system, and
6517 * page_count() is not 0.
6518 */
6519 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6520 pfn++;
6521 SetPageReserved(page);
6522 continue;
6523 }
6524
0c0e6195
KH
6525 BUG_ON(page_count(page));
6526 BUG_ON(!PageBuddy(page));
6527 order = page_order(page);
6528#ifdef CONFIG_DEBUG_VM
6529 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6530 pfn, 1 << order, end_pfn);
6531#endif
6532 list_del(&page->lru);
6533 rmv_page_order(page);
6534 zone->free_area[order].nr_free--;
0c0e6195
KH
6535 for (i = 0; i < (1 << order); i++)
6536 SetPageReserved((page+i));
6537 pfn += (1 << order);
6538 }
6539 spin_unlock_irqrestore(&zone->lock, flags);
6540}
6541#endif
8d22ba1b
WF
6542
6543#ifdef CONFIG_MEMORY_FAILURE
6544bool is_free_buddy_page(struct page *page)
6545{
6546 struct zone *zone = page_zone(page);
6547 unsigned long pfn = page_to_pfn(page);
6548 unsigned long flags;
7aeb09f9 6549 unsigned int order;
8d22ba1b
WF
6550
6551 spin_lock_irqsave(&zone->lock, flags);
6552 for (order = 0; order < MAX_ORDER; order++) {
6553 struct page *page_head = page - (pfn & ((1 << order) - 1));
6554
6555 if (PageBuddy(page_head) && page_order(page_head) >= order)
6556 break;
6557 }
6558 spin_unlock_irqrestore(&zone->lock, flags);
6559
6560 return order < MAX_ORDER;
6561}
6562#endif