[PATCH] protect ext2 ioctl modifying append_only immutable etc with i_mutex
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
ac924c60 45#include <asm/div64.h>
1da177e4
LT
46#include "internal.h"
47
48/*
49 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
50 * initializer cleaner
51 */
c3d8c141 52nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 53EXPORT_SYMBOL(node_online_map);
c3d8c141 54nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 55EXPORT_SYMBOL(node_possible_map);
6c231b7b 56unsigned long totalram_pages __read_mostly;
cb45b0e9 57unsigned long totalreserve_pages __read_mostly;
1da177e4 58long nr_swap_pages;
8ad4b1fb 59int percpu_pagelist_fraction;
1da177e4 60
d98c7a09 61static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 62
1da177e4
LT
63/*
64 * results with 256, 32 in the lowmem_reserve sysctl:
65 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
66 * 1G machine -> (16M dma, 784M normal, 224M high)
67 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
68 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
69 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
70 *
71 * TBD: should special case ZONE_DMA32 machines here - in those we normally
72 * don't need any ZONE_NORMAL reservation
1da177e4 73 */
2f1b6248
CL
74int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
75 256,
fb0e7942 76#ifdef CONFIG_ZONE_DMA32
2f1b6248 77 256,
fb0e7942 78#endif
e53ef38d 79#ifdef CONFIG_HIGHMEM
2f1b6248 80 32
e53ef38d 81#endif
2f1b6248 82};
1da177e4
LT
83
84EXPORT_SYMBOL(totalram_pages);
1da177e4 85
2f1b6248
CL
86static char *zone_names[MAX_NR_ZONES] = {
87 "DMA",
fb0e7942 88#ifdef CONFIG_ZONE_DMA32
2f1b6248 89 "DMA32",
fb0e7942 90#endif
2f1b6248 91 "Normal",
e53ef38d 92#ifdef CONFIG_HIGHMEM
2f1b6248 93 "HighMem"
e53ef38d 94#endif
2f1b6248
CL
95};
96
1da177e4
LT
97int min_free_kbytes = 1024;
98
86356ab1
YG
99unsigned long __meminitdata nr_kernel_pages;
100unsigned long __meminitdata nr_all_pages;
0e0b864e 101static unsigned long __initdata dma_reserve;
1da177e4 102
c713216d
MG
103#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
104 /*
105 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
106 * ranges of memory (RAM) that may be registered with add_active_range().
107 * Ranges passed to add_active_range() will be merged if possible
108 * so the number of times add_active_range() can be called is
109 * related to the number of nodes and the number of holes
110 */
111 #ifdef CONFIG_MAX_ACTIVE_REGIONS
112 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
113 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
114 #else
115 #if MAX_NUMNODES >= 32
116 /* If there can be many nodes, allow up to 50 holes per node */
117 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
118 #else
119 /* By default, allow up to 256 distinct regions */
120 #define MAX_ACTIVE_REGIONS 256
121 #endif
122 #endif
123
124 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
125 int __initdata nr_nodemap_entries;
126 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
127 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c
MG
128#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
129 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
130 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
131#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
132#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
133
13e7444b 134#ifdef CONFIG_DEBUG_VM
c6a57e19 135static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 136{
bdc8cb98
DH
137 int ret = 0;
138 unsigned seq;
139 unsigned long pfn = page_to_pfn(page);
c6a57e19 140
bdc8cb98
DH
141 do {
142 seq = zone_span_seqbegin(zone);
143 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
144 ret = 1;
145 else if (pfn < zone->zone_start_pfn)
146 ret = 1;
147 } while (zone_span_seqretry(zone, seq));
148
149 return ret;
c6a57e19
DH
150}
151
152static int page_is_consistent(struct zone *zone, struct page *page)
153{
1da177e4
LT
154#ifdef CONFIG_HOLES_IN_ZONE
155 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 156 return 0;
1da177e4
LT
157#endif
158 if (zone != page_zone(page))
c6a57e19
DH
159 return 0;
160
161 return 1;
162}
163/*
164 * Temporary debugging check for pages not lying within a given zone.
165 */
166static int bad_range(struct zone *zone, struct page *page)
167{
168 if (page_outside_zone_boundaries(zone, page))
1da177e4 169 return 1;
c6a57e19
DH
170 if (!page_is_consistent(zone, page))
171 return 1;
172
1da177e4
LT
173 return 0;
174}
13e7444b
NP
175#else
176static inline int bad_range(struct zone *zone, struct page *page)
177{
178 return 0;
179}
180#endif
181
224abf92 182static void bad_page(struct page *page)
1da177e4 183{
224abf92 184 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
185 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
186 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
187 KERN_EMERG "Backtrace:\n",
224abf92
NP
188 current->comm, page, (int)(2*sizeof(unsigned long)),
189 (unsigned long)page->flags, page->mapping,
190 page_mapcount(page), page_count(page));
1da177e4 191 dump_stack();
334795ec
HD
192 page->flags &= ~(1 << PG_lru |
193 1 << PG_private |
1da177e4 194 1 << PG_locked |
1da177e4
LT
195 1 << PG_active |
196 1 << PG_dirty |
334795ec
HD
197 1 << PG_reclaim |
198 1 << PG_slab |
1da177e4 199 1 << PG_swapcache |
676165a8
NP
200 1 << PG_writeback |
201 1 << PG_buddy );
1da177e4
LT
202 set_page_count(page, 0);
203 reset_page_mapcount(page);
204 page->mapping = NULL;
9f158333 205 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
206}
207
1da177e4
LT
208/*
209 * Higher-order pages are called "compound pages". They are structured thusly:
210 *
211 * The first PAGE_SIZE page is called the "head page".
212 *
213 * The remaining PAGE_SIZE pages are called "tail pages".
214 *
215 * All pages have PG_compound set. All pages have their ->private pointing at
216 * the head page (even the head page has this).
217 *
41d78ba5
HD
218 * The first tail page's ->lru.next holds the address of the compound page's
219 * put_page() function. Its ->lru.prev holds the order of allocation.
220 * This usage means that zero-order pages may not be compound.
1da177e4 221 */
d98c7a09
HD
222
223static void free_compound_page(struct page *page)
224{
225 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
226}
227
1da177e4
LT
228static void prep_compound_page(struct page *page, unsigned long order)
229{
230 int i;
231 int nr_pages = 1 << order;
232
33f2ef89 233 set_compound_page_dtor(page, free_compound_page);
41d78ba5 234 page[1].lru.prev = (void *)order;
1da177e4
LT
235 for (i = 0; i < nr_pages; i++) {
236 struct page *p = page + i;
237
5e9dace8 238 __SetPageCompound(p);
4c21e2f2 239 set_page_private(p, (unsigned long)page);
1da177e4
LT
240 }
241}
242
243static void destroy_compound_page(struct page *page, unsigned long order)
244{
245 int i;
246 int nr_pages = 1 << order;
247
41d78ba5 248 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 249 bad_page(page);
1da177e4
LT
250
251 for (i = 0; i < nr_pages; i++) {
252 struct page *p = page + i;
253
224abf92
NP
254 if (unlikely(!PageCompound(p) |
255 (page_private(p) != (unsigned long)page)))
256 bad_page(page);
5e9dace8 257 __ClearPageCompound(p);
1da177e4
LT
258 }
259}
1da177e4 260
17cf4406
NP
261static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
262{
263 int i;
264
725d704e 265 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
266 /*
267 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
268 * and __GFP_HIGHMEM from hard or soft interrupt context.
269 */
725d704e 270 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
271 for (i = 0; i < (1 << order); i++)
272 clear_highpage(page + i);
273}
274
1da177e4
LT
275/*
276 * function for dealing with page's order in buddy system.
277 * zone->lock is already acquired when we use these.
278 * So, we don't need atomic page->flags operations here.
279 */
6aa3001b
AM
280static inline unsigned long page_order(struct page *page)
281{
4c21e2f2 282 return page_private(page);
1da177e4
LT
283}
284
6aa3001b
AM
285static inline void set_page_order(struct page *page, int order)
286{
4c21e2f2 287 set_page_private(page, order);
676165a8 288 __SetPageBuddy(page);
1da177e4
LT
289}
290
291static inline void rmv_page_order(struct page *page)
292{
676165a8 293 __ClearPageBuddy(page);
4c21e2f2 294 set_page_private(page, 0);
1da177e4
LT
295}
296
297/*
298 * Locate the struct page for both the matching buddy in our
299 * pair (buddy1) and the combined O(n+1) page they form (page).
300 *
301 * 1) Any buddy B1 will have an order O twin B2 which satisfies
302 * the following equation:
303 * B2 = B1 ^ (1 << O)
304 * For example, if the starting buddy (buddy2) is #8 its order
305 * 1 buddy is #10:
306 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
307 *
308 * 2) Any buddy B will have an order O+1 parent P which
309 * satisfies the following equation:
310 * P = B & ~(1 << O)
311 *
d6e05edc 312 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
313 */
314static inline struct page *
315__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
316{
317 unsigned long buddy_idx = page_idx ^ (1 << order);
318
319 return page + (buddy_idx - page_idx);
320}
321
322static inline unsigned long
323__find_combined_index(unsigned long page_idx, unsigned int order)
324{
325 return (page_idx & ~(1 << order));
326}
327
328/*
329 * This function checks whether a page is free && is the buddy
330 * we can do coalesce a page and its buddy if
13e7444b 331 * (a) the buddy is not in a hole &&
676165a8 332 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
333 * (c) a page and its buddy have the same order &&
334 * (d) a page and its buddy are in the same zone.
676165a8
NP
335 *
336 * For recording whether a page is in the buddy system, we use PG_buddy.
337 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 338 *
676165a8 339 * For recording page's order, we use page_private(page).
1da177e4 340 */
cb2b95e1
AW
341static inline int page_is_buddy(struct page *page, struct page *buddy,
342 int order)
1da177e4 343{
13e7444b 344#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 345 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
346 return 0;
347#endif
348
cb2b95e1
AW
349 if (page_zone_id(page) != page_zone_id(buddy))
350 return 0;
351
352 if (PageBuddy(buddy) && page_order(buddy) == order) {
353 BUG_ON(page_count(buddy) != 0);
6aa3001b 354 return 1;
676165a8 355 }
6aa3001b 356 return 0;
1da177e4
LT
357}
358
359/*
360 * Freeing function for a buddy system allocator.
361 *
362 * The concept of a buddy system is to maintain direct-mapped table
363 * (containing bit values) for memory blocks of various "orders".
364 * The bottom level table contains the map for the smallest allocatable
365 * units of memory (here, pages), and each level above it describes
366 * pairs of units from the levels below, hence, "buddies".
367 * At a high level, all that happens here is marking the table entry
368 * at the bottom level available, and propagating the changes upward
369 * as necessary, plus some accounting needed to play nicely with other
370 * parts of the VM system.
371 * At each level, we keep a list of pages, which are heads of continuous
676165a8 372 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 373 * order is recorded in page_private(page) field.
1da177e4
LT
374 * So when we are allocating or freeing one, we can derive the state of the
375 * other. That is, if we allocate a small block, and both were
376 * free, the remainder of the region must be split into blocks.
377 * If a block is freed, and its buddy is also free, then this
378 * triggers coalescing into a block of larger size.
379 *
380 * -- wli
381 */
382
48db57f8 383static inline void __free_one_page(struct page *page,
1da177e4
LT
384 struct zone *zone, unsigned int order)
385{
386 unsigned long page_idx;
387 int order_size = 1 << order;
388
224abf92 389 if (unlikely(PageCompound(page)))
1da177e4
LT
390 destroy_compound_page(page, order);
391
392 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
393
725d704e
NP
394 VM_BUG_ON(page_idx & (order_size - 1));
395 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
396
397 zone->free_pages += order_size;
398 while (order < MAX_ORDER-1) {
399 unsigned long combined_idx;
400 struct free_area *area;
401 struct page *buddy;
402
1da177e4 403 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 404 if (!page_is_buddy(page, buddy, order))
1da177e4 405 break; /* Move the buddy up one level. */
13e7444b 406
1da177e4
LT
407 list_del(&buddy->lru);
408 area = zone->free_area + order;
409 area->nr_free--;
410 rmv_page_order(buddy);
13e7444b 411 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
412 page = page + (combined_idx - page_idx);
413 page_idx = combined_idx;
414 order++;
415 }
416 set_page_order(page, order);
417 list_add(&page->lru, &zone->free_area[order].free_list);
418 zone->free_area[order].nr_free++;
419}
420
224abf92 421static inline int free_pages_check(struct page *page)
1da177e4 422{
92be2e33
NP
423 if (unlikely(page_mapcount(page) |
424 (page->mapping != NULL) |
425 (page_count(page) != 0) |
1da177e4
LT
426 (page->flags & (
427 1 << PG_lru |
428 1 << PG_private |
429 1 << PG_locked |
430 1 << PG_active |
431 1 << PG_reclaim |
432 1 << PG_slab |
433 1 << PG_swapcache |
b5810039 434 1 << PG_writeback |
676165a8
NP
435 1 << PG_reserved |
436 1 << PG_buddy ))))
224abf92 437 bad_page(page);
1da177e4 438 if (PageDirty(page))
242e5468 439 __ClearPageDirty(page);
689bcebf
HD
440 /*
441 * For now, we report if PG_reserved was found set, but do not
442 * clear it, and do not free the page. But we shall soon need
443 * to do more, for when the ZERO_PAGE count wraps negative.
444 */
445 return PageReserved(page);
1da177e4
LT
446}
447
448/*
449 * Frees a list of pages.
450 * Assumes all pages on list are in same zone, and of same order.
207f36ee 451 * count is the number of pages to free.
1da177e4
LT
452 *
453 * If the zone was previously in an "all pages pinned" state then look to
454 * see if this freeing clears that state.
455 *
456 * And clear the zone's pages_scanned counter, to hold off the "all pages are
457 * pinned" detection logic.
458 */
48db57f8
NP
459static void free_pages_bulk(struct zone *zone, int count,
460 struct list_head *list, int order)
1da177e4 461{
c54ad30c 462 spin_lock(&zone->lock);
1da177e4
LT
463 zone->all_unreclaimable = 0;
464 zone->pages_scanned = 0;
48db57f8
NP
465 while (count--) {
466 struct page *page;
467
725d704e 468 VM_BUG_ON(list_empty(list));
1da177e4 469 page = list_entry(list->prev, struct page, lru);
48db57f8 470 /* have to delete it as __free_one_page list manipulates */
1da177e4 471 list_del(&page->lru);
48db57f8 472 __free_one_page(page, zone, order);
1da177e4 473 }
c54ad30c 474 spin_unlock(&zone->lock);
1da177e4
LT
475}
476
48db57f8 477static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 478{
006d22d9
CL
479 spin_lock(&zone->lock);
480 zone->all_unreclaimable = 0;
481 zone->pages_scanned = 0;
0798e519 482 __free_one_page(page, zone, order);
006d22d9 483 spin_unlock(&zone->lock);
48db57f8
NP
484}
485
486static void __free_pages_ok(struct page *page, unsigned int order)
487{
488 unsigned long flags;
1da177e4 489 int i;
689bcebf 490 int reserved = 0;
1da177e4 491
1da177e4 492 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 493 reserved += free_pages_check(page + i);
689bcebf
HD
494 if (reserved)
495 return;
496
9858db50
NP
497 if (!PageHighMem(page))
498 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 499 arch_free_page(page, order);
48db57f8 500 kernel_map_pages(page, 1 << order, 0);
dafb1367 501
c54ad30c 502 local_irq_save(flags);
f8891e5e 503 __count_vm_events(PGFREE, 1 << order);
48db57f8 504 free_one_page(page_zone(page), page, order);
c54ad30c 505 local_irq_restore(flags);
1da177e4
LT
506}
507
a226f6c8
DH
508/*
509 * permit the bootmem allocator to evade page validation on high-order frees
510 */
511void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
512{
513 if (order == 0) {
514 __ClearPageReserved(page);
515 set_page_count(page, 0);
7835e98b 516 set_page_refcounted(page);
545b1ea9 517 __free_page(page);
a226f6c8 518 } else {
a226f6c8
DH
519 int loop;
520
545b1ea9 521 prefetchw(page);
a226f6c8
DH
522 for (loop = 0; loop < BITS_PER_LONG; loop++) {
523 struct page *p = &page[loop];
524
545b1ea9
NP
525 if (loop + 1 < BITS_PER_LONG)
526 prefetchw(p + 1);
a226f6c8
DH
527 __ClearPageReserved(p);
528 set_page_count(p, 0);
529 }
530
7835e98b 531 set_page_refcounted(page);
545b1ea9 532 __free_pages(page, order);
a226f6c8
DH
533 }
534}
535
1da177e4
LT
536
537/*
538 * The order of subdivision here is critical for the IO subsystem.
539 * Please do not alter this order without good reasons and regression
540 * testing. Specifically, as large blocks of memory are subdivided,
541 * the order in which smaller blocks are delivered depends on the order
542 * they're subdivided in this function. This is the primary factor
543 * influencing the order in which pages are delivered to the IO
544 * subsystem according to empirical testing, and this is also justified
545 * by considering the behavior of a buddy system containing a single
546 * large block of memory acted on by a series of small allocations.
547 * This behavior is a critical factor in sglist merging's success.
548 *
549 * -- wli
550 */
085cc7d5 551static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
552 int low, int high, struct free_area *area)
553{
554 unsigned long size = 1 << high;
555
556 while (high > low) {
557 area--;
558 high--;
559 size >>= 1;
725d704e 560 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
561 list_add(&page[size].lru, &area->free_list);
562 area->nr_free++;
563 set_page_order(&page[size], high);
564 }
1da177e4
LT
565}
566
1da177e4
LT
567/*
568 * This page is about to be returned from the page allocator
569 */
17cf4406 570static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 571{
92be2e33
NP
572 if (unlikely(page_mapcount(page) |
573 (page->mapping != NULL) |
574 (page_count(page) != 0) |
334795ec
HD
575 (page->flags & (
576 1 << PG_lru |
1da177e4
LT
577 1 << PG_private |
578 1 << PG_locked |
1da177e4
LT
579 1 << PG_active |
580 1 << PG_dirty |
581 1 << PG_reclaim |
334795ec 582 1 << PG_slab |
1da177e4 583 1 << PG_swapcache |
b5810039 584 1 << PG_writeback |
676165a8
NP
585 1 << PG_reserved |
586 1 << PG_buddy ))))
224abf92 587 bad_page(page);
1da177e4 588
689bcebf
HD
589 /*
590 * For now, we report if PG_reserved was found set, but do not
591 * clear it, and do not allocate the page: as a safety net.
592 */
593 if (PageReserved(page))
594 return 1;
595
1da177e4
LT
596 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
597 1 << PG_referenced | 1 << PG_arch_1 |
598 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 599 set_page_private(page, 0);
7835e98b 600 set_page_refcounted(page);
cc102509
NP
601
602 arch_alloc_page(page, order);
1da177e4 603 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
604
605 if (gfp_flags & __GFP_ZERO)
606 prep_zero_page(page, order, gfp_flags);
607
608 if (order && (gfp_flags & __GFP_COMP))
609 prep_compound_page(page, order);
610
689bcebf 611 return 0;
1da177e4
LT
612}
613
614/*
615 * Do the hard work of removing an element from the buddy allocator.
616 * Call me with the zone->lock already held.
617 */
618static struct page *__rmqueue(struct zone *zone, unsigned int order)
619{
620 struct free_area * area;
621 unsigned int current_order;
622 struct page *page;
623
624 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
625 area = zone->free_area + current_order;
626 if (list_empty(&area->free_list))
627 continue;
628
629 page = list_entry(area->free_list.next, struct page, lru);
630 list_del(&page->lru);
631 rmv_page_order(page);
632 area->nr_free--;
633 zone->free_pages -= 1UL << order;
085cc7d5
NP
634 expand(zone, page, order, current_order, area);
635 return page;
1da177e4
LT
636 }
637
638 return NULL;
639}
640
641/*
642 * Obtain a specified number of elements from the buddy allocator, all under
643 * a single hold of the lock, for efficiency. Add them to the supplied list.
644 * Returns the number of new pages which were placed at *list.
645 */
646static int rmqueue_bulk(struct zone *zone, unsigned int order,
647 unsigned long count, struct list_head *list)
648{
1da177e4 649 int i;
1da177e4 650
c54ad30c 651 spin_lock(&zone->lock);
1da177e4 652 for (i = 0; i < count; ++i) {
085cc7d5
NP
653 struct page *page = __rmqueue(zone, order);
654 if (unlikely(page == NULL))
1da177e4 655 break;
1da177e4
LT
656 list_add_tail(&page->lru, list);
657 }
c54ad30c 658 spin_unlock(&zone->lock);
085cc7d5 659 return i;
1da177e4
LT
660}
661
4ae7c039 662#ifdef CONFIG_NUMA
8fce4d8e
CL
663/*
664 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 665 * belongs to the currently executing processor.
879336c3
CL
666 * Note that this function must be called with the thread pinned to
667 * a single processor.
8fce4d8e
CL
668 */
669void drain_node_pages(int nodeid)
4ae7c039 670{
2f6726e5
CL
671 int i;
672 enum zone_type z;
4ae7c039
CL
673 unsigned long flags;
674
8fce4d8e
CL
675 for (z = 0; z < MAX_NR_ZONES; z++) {
676 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
677 struct per_cpu_pageset *pset;
678
39bbcb8f
CL
679 if (!populated_zone(zone))
680 continue;
681
23316bc8 682 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
683 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
684 struct per_cpu_pages *pcp;
685
686 pcp = &pset->pcp[i];
879336c3 687 if (pcp->count) {
bc4ba393
CL
688 int to_drain;
689
879336c3 690 local_irq_save(flags);
bc4ba393
CL
691 if (pcp->count >= pcp->batch)
692 to_drain = pcp->batch;
693 else
694 to_drain = pcp->count;
695 free_pages_bulk(zone, to_drain, &pcp->list, 0);
696 pcp->count -= to_drain;
879336c3
CL
697 local_irq_restore(flags);
698 }
4ae7c039
CL
699 }
700 }
4ae7c039
CL
701}
702#endif
703
1da177e4
LT
704#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
705static void __drain_pages(unsigned int cpu)
706{
c54ad30c 707 unsigned long flags;
1da177e4
LT
708 struct zone *zone;
709 int i;
710
711 for_each_zone(zone) {
712 struct per_cpu_pageset *pset;
713
e7c8d5c9 714 pset = zone_pcp(zone, cpu);
1da177e4
LT
715 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716 struct per_cpu_pages *pcp;
717
718 pcp = &pset->pcp[i];
c54ad30c 719 local_irq_save(flags);
48db57f8
NP
720 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721 pcp->count = 0;
c54ad30c 722 local_irq_restore(flags);
1da177e4
LT
723 }
724 }
725}
726#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
727
728#ifdef CONFIG_PM
729
730void mark_free_pages(struct zone *zone)
731{
f623f0db
RW
732 unsigned long pfn, max_zone_pfn;
733 unsigned long flags;
1da177e4
LT
734 int order;
735 struct list_head *curr;
736
737 if (!zone->spanned_pages)
738 return;
739
740 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
741
742 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
743 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
744 if (pfn_valid(pfn)) {
745 struct page *page = pfn_to_page(pfn);
746
747 if (!PageNosave(page))
748 ClearPageNosaveFree(page);
749 }
1da177e4
LT
750
751 for (order = MAX_ORDER - 1; order >= 0; --order)
752 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 753 unsigned long i;
1da177e4 754
f623f0db
RW
755 pfn = page_to_pfn(list_entry(curr, struct page, lru));
756 for (i = 0; i < (1UL << order); i++)
757 SetPageNosaveFree(pfn_to_page(pfn + i));
758 }
1da177e4 759
1da177e4
LT
760 spin_unlock_irqrestore(&zone->lock, flags);
761}
762
763/*
764 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
765 */
766void drain_local_pages(void)
767{
768 unsigned long flags;
769
770 local_irq_save(flags);
771 __drain_pages(smp_processor_id());
772 local_irq_restore(flags);
773}
774#endif /* CONFIG_PM */
775
1da177e4
LT
776/*
777 * Free a 0-order page
778 */
1da177e4
LT
779static void fastcall free_hot_cold_page(struct page *page, int cold)
780{
781 struct zone *zone = page_zone(page);
782 struct per_cpu_pages *pcp;
783 unsigned long flags;
784
1da177e4
LT
785 if (PageAnon(page))
786 page->mapping = NULL;
224abf92 787 if (free_pages_check(page))
689bcebf
HD
788 return;
789
9858db50
NP
790 if (!PageHighMem(page))
791 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 792 arch_free_page(page, 0);
689bcebf
HD
793 kernel_map_pages(page, 1, 0);
794
e7c8d5c9 795 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 796 local_irq_save(flags);
f8891e5e 797 __count_vm_event(PGFREE);
1da177e4
LT
798 list_add(&page->lru, &pcp->list);
799 pcp->count++;
48db57f8
NP
800 if (pcp->count >= pcp->high) {
801 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
802 pcp->count -= pcp->batch;
803 }
1da177e4
LT
804 local_irq_restore(flags);
805 put_cpu();
806}
807
808void fastcall free_hot_page(struct page *page)
809{
810 free_hot_cold_page(page, 0);
811}
812
813void fastcall free_cold_page(struct page *page)
814{
815 free_hot_cold_page(page, 1);
816}
817
8dfcc9ba
NP
818/*
819 * split_page takes a non-compound higher-order page, and splits it into
820 * n (1<<order) sub-pages: page[0..n]
821 * Each sub-page must be freed individually.
822 *
823 * Note: this is probably too low level an operation for use in drivers.
824 * Please consult with lkml before using this in your driver.
825 */
826void split_page(struct page *page, unsigned int order)
827{
828 int i;
829
725d704e
NP
830 VM_BUG_ON(PageCompound(page));
831 VM_BUG_ON(!page_count(page));
7835e98b
NP
832 for (i = 1; i < (1 << order); i++)
833 set_page_refcounted(page + i);
8dfcc9ba 834}
8dfcc9ba 835
1da177e4
LT
836/*
837 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
838 * we cheat by calling it from here, in the order > 0 path. Saves a branch
839 * or two.
840 */
a74609fa
NP
841static struct page *buffered_rmqueue(struct zonelist *zonelist,
842 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
843{
844 unsigned long flags;
689bcebf 845 struct page *page;
1da177e4 846 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 847 int cpu;
1da177e4 848
689bcebf 849again:
a74609fa 850 cpu = get_cpu();
48db57f8 851 if (likely(order == 0)) {
1da177e4
LT
852 struct per_cpu_pages *pcp;
853
a74609fa 854 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 855 local_irq_save(flags);
a74609fa 856 if (!pcp->count) {
941c7105 857 pcp->count = rmqueue_bulk(zone, 0,
1da177e4 858 pcp->batch, &pcp->list);
a74609fa
NP
859 if (unlikely(!pcp->count))
860 goto failed;
1da177e4 861 }
a74609fa
NP
862 page = list_entry(pcp->list.next, struct page, lru);
863 list_del(&page->lru);
864 pcp->count--;
7fb1d9fc 865 } else {
1da177e4
LT
866 spin_lock_irqsave(&zone->lock, flags);
867 page = __rmqueue(zone, order);
a74609fa
NP
868 spin_unlock(&zone->lock);
869 if (!page)
870 goto failed;
1da177e4
LT
871 }
872
f8891e5e 873 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 874 zone_statistics(zonelist, zone);
a74609fa
NP
875 local_irq_restore(flags);
876 put_cpu();
1da177e4 877
725d704e 878 VM_BUG_ON(bad_range(zone, page));
17cf4406 879 if (prep_new_page(page, order, gfp_flags))
a74609fa 880 goto again;
1da177e4 881 return page;
a74609fa
NP
882
883failed:
884 local_irq_restore(flags);
885 put_cpu();
886 return NULL;
1da177e4
LT
887}
888
7fb1d9fc 889#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
890#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
891#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
892#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
893#define ALLOC_HARDER 0x10 /* try to alloc harder */
894#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
895#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 896
1da177e4
LT
897/*
898 * Return 1 if free pages are above 'mark'. This takes into account the order
899 * of the allocation.
900 */
901int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 902 int classzone_idx, int alloc_flags)
1da177e4
LT
903{
904 /* free_pages my go negative - that's OK */
e80ee884
NP
905 unsigned long min = mark;
906 long free_pages = z->free_pages - (1 << order) + 1;
1da177e4
LT
907 int o;
908
7fb1d9fc 909 if (alloc_flags & ALLOC_HIGH)
1da177e4 910 min -= min / 2;
7fb1d9fc 911 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
912 min -= min / 4;
913
914 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
915 return 0;
916 for (o = 0; o < order; o++) {
917 /* At the next order, this order's pages become unavailable */
918 free_pages -= z->free_area[o].nr_free << o;
919
920 /* Require fewer higher order pages to be free */
921 min >>= 1;
922
923 if (free_pages <= min)
924 return 0;
925 }
926 return 1;
927}
928
9276b1bc
PJ
929#ifdef CONFIG_NUMA
930/*
931 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
932 * skip over zones that are not allowed by the cpuset, or that have
933 * been recently (in last second) found to be nearly full. See further
934 * comments in mmzone.h. Reduces cache footprint of zonelist scans
935 * that have to skip over alot of full or unallowed zones.
936 *
937 * If the zonelist cache is present in the passed in zonelist, then
938 * returns a pointer to the allowed node mask (either the current
939 * tasks mems_allowed, or node_online_map.)
940 *
941 * If the zonelist cache is not available for this zonelist, does
942 * nothing and returns NULL.
943 *
944 * If the fullzones BITMAP in the zonelist cache is stale (more than
945 * a second since last zap'd) then we zap it out (clear its bits.)
946 *
947 * We hold off even calling zlc_setup, until after we've checked the
948 * first zone in the zonelist, on the theory that most allocations will
949 * be satisfied from that first zone, so best to examine that zone as
950 * quickly as we can.
951 */
952static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
953{
954 struct zonelist_cache *zlc; /* cached zonelist speedup info */
955 nodemask_t *allowednodes; /* zonelist_cache approximation */
956
957 zlc = zonelist->zlcache_ptr;
958 if (!zlc)
959 return NULL;
960
961 if (jiffies - zlc->last_full_zap > 1 * HZ) {
962 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
963 zlc->last_full_zap = jiffies;
964 }
965
966 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
967 &cpuset_current_mems_allowed :
968 &node_online_map;
969 return allowednodes;
970}
971
972/*
973 * Given 'z' scanning a zonelist, run a couple of quick checks to see
974 * if it is worth looking at further for free memory:
975 * 1) Check that the zone isn't thought to be full (doesn't have its
976 * bit set in the zonelist_cache fullzones BITMAP).
977 * 2) Check that the zones node (obtained from the zonelist_cache
978 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
979 * Return true (non-zero) if zone is worth looking at further, or
980 * else return false (zero) if it is not.
981 *
982 * This check -ignores- the distinction between various watermarks,
983 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
984 * found to be full for any variation of these watermarks, it will
985 * be considered full for up to one second by all requests, unless
986 * we are so low on memory on all allowed nodes that we are forced
987 * into the second scan of the zonelist.
988 *
989 * In the second scan we ignore this zonelist cache and exactly
990 * apply the watermarks to all zones, even it is slower to do so.
991 * We are low on memory in the second scan, and should leave no stone
992 * unturned looking for a free page.
993 */
994static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
995 nodemask_t *allowednodes)
996{
997 struct zonelist_cache *zlc; /* cached zonelist speedup info */
998 int i; /* index of *z in zonelist zones */
999 int n; /* node that zone *z is on */
1000
1001 zlc = zonelist->zlcache_ptr;
1002 if (!zlc)
1003 return 1;
1004
1005 i = z - zonelist->zones;
1006 n = zlc->z_to_n[i];
1007
1008 /* This zone is worth trying if it is allowed but not full */
1009 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1010}
1011
1012/*
1013 * Given 'z' scanning a zonelist, set the corresponding bit in
1014 * zlc->fullzones, so that subsequent attempts to allocate a page
1015 * from that zone don't waste time re-examining it.
1016 */
1017static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1018{
1019 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1020 int i; /* index of *z in zonelist zones */
1021
1022 zlc = zonelist->zlcache_ptr;
1023 if (!zlc)
1024 return;
1025
1026 i = z - zonelist->zones;
1027
1028 set_bit(i, zlc->fullzones);
1029}
1030
1031#else /* CONFIG_NUMA */
1032
1033static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1034{
1035 return NULL;
1036}
1037
1038static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1039 nodemask_t *allowednodes)
1040{
1041 return 1;
1042}
1043
1044static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1045{
1046}
1047#endif /* CONFIG_NUMA */
1048
7fb1d9fc 1049/*
0798e519 1050 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1051 * a page.
1052 */
1053static struct page *
1054get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1055 struct zonelist *zonelist, int alloc_flags)
753ee728 1056{
9276b1bc 1057 struct zone **z;
7fb1d9fc 1058 struct page *page = NULL;
9276b1bc 1059 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1060 struct zone *zone;
9276b1bc
PJ
1061 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1062 int zlc_active = 0; /* set if using zonelist_cache */
1063 int did_zlc_setup = 0; /* just call zlc_setup() one time */
7fb1d9fc 1064
9276b1bc 1065zonelist_scan:
7fb1d9fc 1066 /*
9276b1bc 1067 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1068 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1069 */
9276b1bc
PJ
1070 z = zonelist->zones;
1071
7fb1d9fc 1072 do {
9276b1bc
PJ
1073 if (NUMA_BUILD && zlc_active &&
1074 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1075 continue;
1192d526 1076 zone = *z;
08e0f6a9 1077 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1192d526 1078 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 1079 break;
7fb1d9fc 1080 if ((alloc_flags & ALLOC_CPUSET) &&
0798e519 1081 !cpuset_zone_allowed(zone, gfp_mask))
9276b1bc 1082 goto try_next_zone;
7fb1d9fc
RS
1083
1084 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1085 unsigned long mark;
1086 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1087 mark = zone->pages_min;
3148890b 1088 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1089 mark = zone->pages_low;
3148890b 1090 else
1192d526 1091 mark = zone->pages_high;
0798e519
PJ
1092 if (!zone_watermark_ok(zone, order, mark,
1093 classzone_idx, alloc_flags)) {
9eeff239 1094 if (!zone_reclaim_mode ||
1192d526 1095 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1096 goto this_zone_full;
0798e519 1097 }
7fb1d9fc
RS
1098 }
1099
1192d526 1100 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1101 if (page)
7fb1d9fc 1102 break;
9276b1bc
PJ
1103this_zone_full:
1104 if (NUMA_BUILD)
1105 zlc_mark_zone_full(zonelist, z);
1106try_next_zone:
1107 if (NUMA_BUILD && !did_zlc_setup) {
1108 /* we do zlc_setup after the first zone is tried */
1109 allowednodes = zlc_setup(zonelist, alloc_flags);
1110 zlc_active = 1;
1111 did_zlc_setup = 1;
1112 }
7fb1d9fc 1113 } while (*(++z) != NULL);
9276b1bc
PJ
1114
1115 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1116 /* Disable zlc cache for second zonelist scan */
1117 zlc_active = 0;
1118 goto zonelist_scan;
1119 }
7fb1d9fc 1120 return page;
753ee728
MH
1121}
1122
1da177e4
LT
1123/*
1124 * This is the 'heart' of the zoned buddy allocator.
1125 */
1126struct page * fastcall
dd0fc66f 1127__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1128 struct zonelist *zonelist)
1129{
260b2367 1130 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1131 struct zone **z;
1da177e4
LT
1132 struct page *page;
1133 struct reclaim_state reclaim_state;
1134 struct task_struct *p = current;
1da177e4 1135 int do_retry;
7fb1d9fc 1136 int alloc_flags;
1da177e4
LT
1137 int did_some_progress;
1138
1139 might_sleep_if(wait);
1140
6b1de916 1141restart:
7fb1d9fc 1142 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1143
7fb1d9fc 1144 if (unlikely(*z == NULL)) {
1da177e4
LT
1145 /* Should this ever happen?? */
1146 return NULL;
1147 }
6b1de916 1148
7fb1d9fc 1149 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1150 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1151 if (page)
1152 goto got_pg;
1da177e4 1153
952f3b51
CL
1154 /*
1155 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1156 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1157 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1158 * using a larger set of nodes after it has established that the
1159 * allowed per node queues are empty and that nodes are
1160 * over allocated.
1161 */
1162 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1163 goto nopage;
1164
0798e519 1165 for (z = zonelist->zones; *z; z++)
43b0bc00 1166 wakeup_kswapd(*z, order);
1da177e4 1167
9bf2229f 1168 /*
7fb1d9fc
RS
1169 * OK, we're below the kswapd watermark and have kicked background
1170 * reclaim. Now things get more complex, so set up alloc_flags according
1171 * to how we want to proceed.
1172 *
1173 * The caller may dip into page reserves a bit more if the caller
1174 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1175 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1176 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1177 */
3148890b 1178 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1179 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1180 alloc_flags |= ALLOC_HARDER;
1181 if (gfp_mask & __GFP_HIGH)
1182 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1183 if (wait)
1184 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1185
1186 /*
1187 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1188 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1189 *
1190 * This is the last chance, in general, before the goto nopage.
1191 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1192 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1193 */
7fb1d9fc
RS
1194 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1195 if (page)
1196 goto got_pg;
1da177e4
LT
1197
1198 /* This allocation should allow future memory freeing. */
b84a35be 1199
b43a57bb 1200rebalance:
b84a35be
NP
1201 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1202 && !in_interrupt()) {
1203 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1204nofail_alloc:
b84a35be 1205 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1206 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1207 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1208 if (page)
1209 goto got_pg;
885036d3 1210 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1211 congestion_wait(WRITE, HZ/50);
885036d3
KK
1212 goto nofail_alloc;
1213 }
1da177e4
LT
1214 }
1215 goto nopage;
1216 }
1217
1218 /* Atomic allocations - we can't balance anything */
1219 if (!wait)
1220 goto nopage;
1221
1da177e4
LT
1222 cond_resched();
1223
1224 /* We now go into synchronous reclaim */
3e0d98b9 1225 cpuset_memory_pressure_bump();
1da177e4
LT
1226 p->flags |= PF_MEMALLOC;
1227 reclaim_state.reclaimed_slab = 0;
1228 p->reclaim_state = &reclaim_state;
1229
7fb1d9fc 1230 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1231
1232 p->reclaim_state = NULL;
1233 p->flags &= ~PF_MEMALLOC;
1234
1235 cond_resched();
1236
1237 if (likely(did_some_progress)) {
7fb1d9fc
RS
1238 page = get_page_from_freelist(gfp_mask, order,
1239 zonelist, alloc_flags);
1240 if (page)
1241 goto got_pg;
1da177e4
LT
1242 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1243 /*
1244 * Go through the zonelist yet one more time, keep
1245 * very high watermark here, this is only to catch
1246 * a parallel oom killing, we must fail if we're still
1247 * under heavy pressure.
1248 */
7fb1d9fc 1249 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1250 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1251 if (page)
1252 goto got_pg;
1da177e4 1253
9b0f8b04 1254 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1255 goto restart;
1256 }
1257
1258 /*
1259 * Don't let big-order allocations loop unless the caller explicitly
1260 * requests that. Wait for some write requests to complete then retry.
1261 *
1262 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1263 * <= 3, but that may not be true in other implementations.
1264 */
1265 do_retry = 0;
1266 if (!(gfp_mask & __GFP_NORETRY)) {
1267 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1268 do_retry = 1;
1269 if (gfp_mask & __GFP_NOFAIL)
1270 do_retry = 1;
1271 }
1272 if (do_retry) {
3fcfab16 1273 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1274 goto rebalance;
1275 }
1276
1277nopage:
1278 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1279 printk(KERN_WARNING "%s: page allocation failure."
1280 " order:%d, mode:0x%x\n",
1281 p->comm, order, gfp_mask);
1282 dump_stack();
578c2fd6 1283 show_mem();
1da177e4 1284 }
1da177e4 1285got_pg:
1da177e4
LT
1286 return page;
1287}
1288
1289EXPORT_SYMBOL(__alloc_pages);
1290
1291/*
1292 * Common helper functions.
1293 */
dd0fc66f 1294fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1295{
1296 struct page * page;
1297 page = alloc_pages(gfp_mask, order);
1298 if (!page)
1299 return 0;
1300 return (unsigned long) page_address(page);
1301}
1302
1303EXPORT_SYMBOL(__get_free_pages);
1304
dd0fc66f 1305fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1306{
1307 struct page * page;
1308
1309 /*
1310 * get_zeroed_page() returns a 32-bit address, which cannot represent
1311 * a highmem page
1312 */
725d704e 1313 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1314
1315 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1316 if (page)
1317 return (unsigned long) page_address(page);
1318 return 0;
1319}
1320
1321EXPORT_SYMBOL(get_zeroed_page);
1322
1323void __pagevec_free(struct pagevec *pvec)
1324{
1325 int i = pagevec_count(pvec);
1326
1327 while (--i >= 0)
1328 free_hot_cold_page(pvec->pages[i], pvec->cold);
1329}
1330
1331fastcall void __free_pages(struct page *page, unsigned int order)
1332{
b5810039 1333 if (put_page_testzero(page)) {
1da177e4
LT
1334 if (order == 0)
1335 free_hot_page(page);
1336 else
1337 __free_pages_ok(page, order);
1338 }
1339}
1340
1341EXPORT_SYMBOL(__free_pages);
1342
1343fastcall void free_pages(unsigned long addr, unsigned int order)
1344{
1345 if (addr != 0) {
725d704e 1346 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1347 __free_pages(virt_to_page((void *)addr), order);
1348 }
1349}
1350
1351EXPORT_SYMBOL(free_pages);
1352
1353/*
1354 * Total amount of free (allocatable) RAM:
1355 */
1356unsigned int nr_free_pages(void)
1357{
1358 unsigned int sum = 0;
1359 struct zone *zone;
1360
1361 for_each_zone(zone)
1362 sum += zone->free_pages;
1363
1364 return sum;
1365}
1366
1367EXPORT_SYMBOL(nr_free_pages);
1368
1369#ifdef CONFIG_NUMA
1370unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1371{
2f6726e5
CL
1372 unsigned int sum = 0;
1373 enum zone_type i;
1da177e4
LT
1374
1375 for (i = 0; i < MAX_NR_ZONES; i++)
1376 sum += pgdat->node_zones[i].free_pages;
1377
1378 return sum;
1379}
1380#endif
1381
1382static unsigned int nr_free_zone_pages(int offset)
1383{
e310fd43
MB
1384 /* Just pick one node, since fallback list is circular */
1385 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1386 unsigned int sum = 0;
1387
e310fd43
MB
1388 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1389 struct zone **zonep = zonelist->zones;
1390 struct zone *zone;
1da177e4 1391
e310fd43
MB
1392 for (zone = *zonep++; zone; zone = *zonep++) {
1393 unsigned long size = zone->present_pages;
1394 unsigned long high = zone->pages_high;
1395 if (size > high)
1396 sum += size - high;
1da177e4
LT
1397 }
1398
1399 return sum;
1400}
1401
1402/*
1403 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1404 */
1405unsigned int nr_free_buffer_pages(void)
1406{
af4ca457 1407 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1408}
1409
1410/*
1411 * Amount of free RAM allocatable within all zones
1412 */
1413unsigned int nr_free_pagecache_pages(void)
1414{
af4ca457 1415 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1416}
08e0f6a9
CL
1417
1418static inline void show_node(struct zone *zone)
1da177e4 1419{
08e0f6a9 1420 if (NUMA_BUILD)
25ba77c1 1421 printk("Node %d ", zone_to_nid(zone));
1da177e4 1422}
1da177e4 1423
1da177e4
LT
1424void si_meminfo(struct sysinfo *val)
1425{
1426 val->totalram = totalram_pages;
1427 val->sharedram = 0;
1428 val->freeram = nr_free_pages();
1429 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1430 val->totalhigh = totalhigh_pages;
1431 val->freehigh = nr_free_highpages();
1da177e4
LT
1432 val->mem_unit = PAGE_SIZE;
1433}
1434
1435EXPORT_SYMBOL(si_meminfo);
1436
1437#ifdef CONFIG_NUMA
1438void si_meminfo_node(struct sysinfo *val, int nid)
1439{
1440 pg_data_t *pgdat = NODE_DATA(nid);
1441
1442 val->totalram = pgdat->node_present_pages;
1443 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1444#ifdef CONFIG_HIGHMEM
1da177e4
LT
1445 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1446 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1447#else
1448 val->totalhigh = 0;
1449 val->freehigh = 0;
1450#endif
1da177e4
LT
1451 val->mem_unit = PAGE_SIZE;
1452}
1453#endif
1454
1455#define K(x) ((x) << (PAGE_SHIFT-10))
1456
1457/*
1458 * Show free area list (used inside shift_scroll-lock stuff)
1459 * We also calculate the percentage fragmentation. We do this by counting the
1460 * memory on each free list with the exception of the first item on the list.
1461 */
1462void show_free_areas(void)
1463{
c7241913 1464 int cpu;
1da177e4
LT
1465 unsigned long active;
1466 unsigned long inactive;
1467 unsigned long free;
1468 struct zone *zone;
1469
1470 for_each_zone(zone) {
c7241913 1471 if (!populated_zone(zone))
1da177e4 1472 continue;
c7241913
JS
1473
1474 show_node(zone);
1475 printk("%s per-cpu:\n", zone->name);
1da177e4 1476
6b482c67 1477 for_each_online_cpu(cpu) {
1da177e4
LT
1478 struct per_cpu_pageset *pageset;
1479
e7c8d5c9 1480 pageset = zone_pcp(zone, cpu);
1da177e4 1481
c7241913
JS
1482 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1483 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1484 cpu, pageset->pcp[0].high,
1485 pageset->pcp[0].batch, pageset->pcp[0].count,
1486 pageset->pcp[1].high, pageset->pcp[1].batch,
1487 pageset->pcp[1].count);
1da177e4
LT
1488 }
1489 }
1490
1da177e4
LT
1491 get_zone_counts(&active, &inactive, &free);
1492
1da177e4
LT
1493 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1494 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1495 active,
1496 inactive,
b1e7a8fd 1497 global_page_state(NR_FILE_DIRTY),
ce866b34 1498 global_page_state(NR_WRITEBACK),
fd39fc85 1499 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1500 nr_free_pages(),
972d1a7b
CL
1501 global_page_state(NR_SLAB_RECLAIMABLE) +
1502 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1503 global_page_state(NR_FILE_MAPPED),
df849a15 1504 global_page_state(NR_PAGETABLE));
1da177e4
LT
1505
1506 for_each_zone(zone) {
1507 int i;
1508
c7241913
JS
1509 if (!populated_zone(zone))
1510 continue;
1511
1da177e4
LT
1512 show_node(zone);
1513 printk("%s"
1514 " free:%lukB"
1515 " min:%lukB"
1516 " low:%lukB"
1517 " high:%lukB"
1518 " active:%lukB"
1519 " inactive:%lukB"
1520 " present:%lukB"
1521 " pages_scanned:%lu"
1522 " all_unreclaimable? %s"
1523 "\n",
1524 zone->name,
1525 K(zone->free_pages),
1526 K(zone->pages_min),
1527 K(zone->pages_low),
1528 K(zone->pages_high),
1529 K(zone->nr_active),
1530 K(zone->nr_inactive),
1531 K(zone->present_pages),
1532 zone->pages_scanned,
1533 (zone->all_unreclaimable ? "yes" : "no")
1534 );
1535 printk("lowmem_reserve[]:");
1536 for (i = 0; i < MAX_NR_ZONES; i++)
1537 printk(" %lu", zone->lowmem_reserve[i]);
1538 printk("\n");
1539 }
1540
1541 for_each_zone(zone) {
8f9de51a 1542 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1543
c7241913
JS
1544 if (!populated_zone(zone))
1545 continue;
1546
1da177e4
LT
1547 show_node(zone);
1548 printk("%s: ", zone->name);
1da177e4
LT
1549
1550 spin_lock_irqsave(&zone->lock, flags);
1551 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1552 nr[order] = zone->free_area[order].nr_free;
1553 total += nr[order] << order;
1da177e4
LT
1554 }
1555 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1556 for (order = 0; order < MAX_ORDER; order++)
1557 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1558 printk("= %lukB\n", K(total));
1559 }
1560
1561 show_swap_cache_info();
1562}
1563
1564/*
1565 * Builds allocation fallback zone lists.
1a93205b
CL
1566 *
1567 * Add all populated zones of a node to the zonelist.
1da177e4 1568 */
86356ab1 1569static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1570 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1571{
1a93205b
CL
1572 struct zone *zone;
1573
98d2b0eb 1574 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1575 zone_type++;
02a68a5e
CL
1576
1577 do {
2f6726e5 1578 zone_type--;
070f8032 1579 zone = pgdat->node_zones + zone_type;
1a93205b 1580 if (populated_zone(zone)) {
070f8032
CL
1581 zonelist->zones[nr_zones++] = zone;
1582 check_highest_zone(zone_type);
1da177e4 1583 }
02a68a5e 1584
2f6726e5 1585 } while (zone_type);
070f8032 1586 return nr_zones;
1da177e4
LT
1587}
1588
1589#ifdef CONFIG_NUMA
1590#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1591static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1592/**
4dc3b16b 1593 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1594 * @node: node whose fallback list we're appending
1595 * @used_node_mask: nodemask_t of already used nodes
1596 *
1597 * We use a number of factors to determine which is the next node that should
1598 * appear on a given node's fallback list. The node should not have appeared
1599 * already in @node's fallback list, and it should be the next closest node
1600 * according to the distance array (which contains arbitrary distance values
1601 * from each node to each node in the system), and should also prefer nodes
1602 * with no CPUs, since presumably they'll have very little allocation pressure
1603 * on them otherwise.
1604 * It returns -1 if no node is found.
1605 */
86356ab1 1606static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1607{
4cf808eb 1608 int n, val;
1da177e4
LT
1609 int min_val = INT_MAX;
1610 int best_node = -1;
1611
4cf808eb
LT
1612 /* Use the local node if we haven't already */
1613 if (!node_isset(node, *used_node_mask)) {
1614 node_set(node, *used_node_mask);
1615 return node;
1616 }
1da177e4 1617
4cf808eb
LT
1618 for_each_online_node(n) {
1619 cpumask_t tmp;
1da177e4
LT
1620
1621 /* Don't want a node to appear more than once */
1622 if (node_isset(n, *used_node_mask))
1623 continue;
1624
1da177e4
LT
1625 /* Use the distance array to find the distance */
1626 val = node_distance(node, n);
1627
4cf808eb
LT
1628 /* Penalize nodes under us ("prefer the next node") */
1629 val += (n < node);
1630
1da177e4
LT
1631 /* Give preference to headless and unused nodes */
1632 tmp = node_to_cpumask(n);
1633 if (!cpus_empty(tmp))
1634 val += PENALTY_FOR_NODE_WITH_CPUS;
1635
1636 /* Slight preference for less loaded node */
1637 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1638 val += node_load[n];
1639
1640 if (val < min_val) {
1641 min_val = val;
1642 best_node = n;
1643 }
1644 }
1645
1646 if (best_node >= 0)
1647 node_set(best_node, *used_node_mask);
1648
1649 return best_node;
1650}
1651
86356ab1 1652static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1653{
19655d34
CL
1654 int j, node, local_node;
1655 enum zone_type i;
1da177e4
LT
1656 int prev_node, load;
1657 struct zonelist *zonelist;
1658 nodemask_t used_mask;
1659
1660 /* initialize zonelists */
19655d34 1661 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1662 zonelist = pgdat->node_zonelists + i;
1663 zonelist->zones[0] = NULL;
1664 }
1665
1666 /* NUMA-aware ordering of nodes */
1667 local_node = pgdat->node_id;
1668 load = num_online_nodes();
1669 prev_node = local_node;
1670 nodes_clear(used_mask);
1671 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1672 int distance = node_distance(local_node, node);
1673
1674 /*
1675 * If another node is sufficiently far away then it is better
1676 * to reclaim pages in a zone before going off node.
1677 */
1678 if (distance > RECLAIM_DISTANCE)
1679 zone_reclaim_mode = 1;
1680
1da177e4
LT
1681 /*
1682 * We don't want to pressure a particular node.
1683 * So adding penalty to the first node in same
1684 * distance group to make it round-robin.
1685 */
9eeff239
CL
1686
1687 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1688 node_load[node] += load;
1689 prev_node = node;
1690 load--;
19655d34 1691 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1692 zonelist = pgdat->node_zonelists + i;
1693 for (j = 0; zonelist->zones[j] != NULL; j++);
1694
19655d34 1695 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1696 zonelist->zones[j] = NULL;
1697 }
1698 }
1699}
1700
9276b1bc
PJ
1701/* Construct the zonelist performance cache - see further mmzone.h */
1702static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1703{
1704 int i;
1705
1706 for (i = 0; i < MAX_NR_ZONES; i++) {
1707 struct zonelist *zonelist;
1708 struct zonelist_cache *zlc;
1709 struct zone **z;
1710
1711 zonelist = pgdat->node_zonelists + i;
1712 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1713 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1714 for (z = zonelist->zones; *z; z++)
1715 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1716 }
1717}
1718
1da177e4
LT
1719#else /* CONFIG_NUMA */
1720
86356ab1 1721static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1722{
19655d34
CL
1723 int node, local_node;
1724 enum zone_type i,j;
1da177e4
LT
1725
1726 local_node = pgdat->node_id;
19655d34 1727 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1728 struct zonelist *zonelist;
1729
1730 zonelist = pgdat->node_zonelists + i;
1731
19655d34 1732 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1733 /*
1734 * Now we build the zonelist so that it contains the zones
1735 * of all the other nodes.
1736 * We don't want to pressure a particular node, so when
1737 * building the zones for node N, we make sure that the
1738 * zones coming right after the local ones are those from
1739 * node N+1 (modulo N)
1740 */
1741 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1742 if (!node_online(node))
1743 continue;
19655d34 1744 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1745 }
1746 for (node = 0; node < local_node; node++) {
1747 if (!node_online(node))
1748 continue;
19655d34 1749 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1750 }
1751
1752 zonelist->zones[j] = NULL;
1753 }
1754}
1755
9276b1bc
PJ
1756/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1757static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1758{
1759 int i;
1760
1761 for (i = 0; i < MAX_NR_ZONES; i++)
1762 pgdat->node_zonelists[i].zlcache_ptr = NULL;
1763}
1764
1da177e4
LT
1765#endif /* CONFIG_NUMA */
1766
6811378e
YG
1767/* return values int ....just for stop_machine_run() */
1768static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1769{
6811378e 1770 int nid;
9276b1bc
PJ
1771
1772 for_each_online_node(nid) {
6811378e 1773 build_zonelists(NODE_DATA(nid));
9276b1bc
PJ
1774 build_zonelist_cache(NODE_DATA(nid));
1775 }
6811378e
YG
1776 return 0;
1777}
1778
1779void __meminit build_all_zonelists(void)
1780{
1781 if (system_state == SYSTEM_BOOTING) {
423b41d7 1782 __build_all_zonelists(NULL);
6811378e
YG
1783 cpuset_init_current_mems_allowed();
1784 } else {
1785 /* we have to stop all cpus to guaranntee there is no user
1786 of zonelist */
1787 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1788 /* cpuset refresh routine should be here */
1789 }
bd1e22b8
AM
1790 vm_total_pages = nr_free_pagecache_pages();
1791 printk("Built %i zonelists. Total pages: %ld\n",
1792 num_online_nodes(), vm_total_pages);
1da177e4
LT
1793}
1794
1795/*
1796 * Helper functions to size the waitqueue hash table.
1797 * Essentially these want to choose hash table sizes sufficiently
1798 * large so that collisions trying to wait on pages are rare.
1799 * But in fact, the number of active page waitqueues on typical
1800 * systems is ridiculously low, less than 200. So this is even
1801 * conservative, even though it seems large.
1802 *
1803 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1804 * waitqueues, i.e. the size of the waitq table given the number of pages.
1805 */
1806#define PAGES_PER_WAITQUEUE 256
1807
cca448fe 1808#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1809static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1810{
1811 unsigned long size = 1;
1812
1813 pages /= PAGES_PER_WAITQUEUE;
1814
1815 while (size < pages)
1816 size <<= 1;
1817
1818 /*
1819 * Once we have dozens or even hundreds of threads sleeping
1820 * on IO we've got bigger problems than wait queue collision.
1821 * Limit the size of the wait table to a reasonable size.
1822 */
1823 size = min(size, 4096UL);
1824
1825 return max(size, 4UL);
1826}
cca448fe
YG
1827#else
1828/*
1829 * A zone's size might be changed by hot-add, so it is not possible to determine
1830 * a suitable size for its wait_table. So we use the maximum size now.
1831 *
1832 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1833 *
1834 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1835 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1836 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1837 *
1838 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1839 * or more by the traditional way. (See above). It equals:
1840 *
1841 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1842 * ia64(16K page size) : = ( 8G + 4M)byte.
1843 * powerpc (64K page size) : = (32G +16M)byte.
1844 */
1845static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1846{
1847 return 4096UL;
1848}
1849#endif
1da177e4
LT
1850
1851/*
1852 * This is an integer logarithm so that shifts can be used later
1853 * to extract the more random high bits from the multiplicative
1854 * hash function before the remainder is taken.
1855 */
1856static inline unsigned long wait_table_bits(unsigned long size)
1857{
1858 return ffz(~size);
1859}
1860
1861#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1862
1da177e4
LT
1863/*
1864 * Initially all pages are reserved - free ones are freed
1865 * up by free_all_bootmem() once the early boot process is
1866 * done. Non-atomic initialization, single-pass.
1867 */
c09b4240 1868void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1869 unsigned long start_pfn)
1870{
1da177e4 1871 struct page *page;
29751f69
AW
1872 unsigned long end_pfn = start_pfn + size;
1873 unsigned long pfn;
1da177e4 1874
cbe8dd4a 1875 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1876 if (!early_pfn_valid(pfn))
1877 continue;
75167957
AW
1878 if (!early_pfn_in_nid(pfn, nid))
1879 continue;
d41dee36
AW
1880 page = pfn_to_page(pfn);
1881 set_page_links(page, zone, nid, pfn);
7835e98b 1882 init_page_count(page);
1da177e4
LT
1883 reset_page_mapcount(page);
1884 SetPageReserved(page);
1885 INIT_LIST_HEAD(&page->lru);
1886#ifdef WANT_PAGE_VIRTUAL
1887 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1888 if (!is_highmem_idx(zone))
3212c6be 1889 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1890#endif
1da177e4
LT
1891 }
1892}
1893
1894void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1895 unsigned long size)
1896{
1897 int order;
1898 for (order = 0; order < MAX_ORDER ; order++) {
1899 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1900 zone->free_area[order].nr_free = 0;
1901 }
1902}
1903
1904#ifndef __HAVE_ARCH_MEMMAP_INIT
1905#define memmap_init(size, nid, zone, start_pfn) \
1906 memmap_init_zone((size), (nid), (zone), (start_pfn))
1907#endif
1908
6292d9aa 1909static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1910{
1911 int batch;
1912
1913 /*
1914 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1915 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1916 *
1917 * OK, so we don't know how big the cache is. So guess.
1918 */
1919 batch = zone->present_pages / 1024;
ba56e91c
SR
1920 if (batch * PAGE_SIZE > 512 * 1024)
1921 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1922 batch /= 4; /* We effectively *= 4 below */
1923 if (batch < 1)
1924 batch = 1;
1925
1926 /*
0ceaacc9
NP
1927 * Clamp the batch to a 2^n - 1 value. Having a power
1928 * of 2 value was found to be more likely to have
1929 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1930 *
0ceaacc9
NP
1931 * For example if 2 tasks are alternately allocating
1932 * batches of pages, one task can end up with a lot
1933 * of pages of one half of the possible page colors
1934 * and the other with pages of the other colors.
e7c8d5c9 1935 */
0ceaacc9 1936 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1937
e7c8d5c9
CL
1938 return batch;
1939}
1940
2caaad41
CL
1941inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1942{
1943 struct per_cpu_pages *pcp;
1944
1c6fe946
MD
1945 memset(p, 0, sizeof(*p));
1946
2caaad41
CL
1947 pcp = &p->pcp[0]; /* hot */
1948 pcp->count = 0;
2caaad41
CL
1949 pcp->high = 6 * batch;
1950 pcp->batch = max(1UL, 1 * batch);
1951 INIT_LIST_HEAD(&pcp->list);
1952
1953 pcp = &p->pcp[1]; /* cold*/
1954 pcp->count = 0;
2caaad41 1955 pcp->high = 2 * batch;
e46a5e28 1956 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1957 INIT_LIST_HEAD(&pcp->list);
1958}
1959
8ad4b1fb
RS
1960/*
1961 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1962 * to the value high for the pageset p.
1963 */
1964
1965static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1966 unsigned long high)
1967{
1968 struct per_cpu_pages *pcp;
1969
1970 pcp = &p->pcp[0]; /* hot list */
1971 pcp->high = high;
1972 pcp->batch = max(1UL, high/4);
1973 if ((high/4) > (PAGE_SHIFT * 8))
1974 pcp->batch = PAGE_SHIFT * 8;
1975}
1976
1977
e7c8d5c9
CL
1978#ifdef CONFIG_NUMA
1979/*
2caaad41
CL
1980 * Boot pageset table. One per cpu which is going to be used for all
1981 * zones and all nodes. The parameters will be set in such a way
1982 * that an item put on a list will immediately be handed over to
1983 * the buddy list. This is safe since pageset manipulation is done
1984 * with interrupts disabled.
1985 *
1986 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1987 *
1988 * The boot_pagesets must be kept even after bootup is complete for
1989 * unused processors and/or zones. They do play a role for bootstrapping
1990 * hotplugged processors.
1991 *
1992 * zoneinfo_show() and maybe other functions do
1993 * not check if the processor is online before following the pageset pointer.
1994 * Other parts of the kernel may not check if the zone is available.
2caaad41 1995 */
88a2a4ac 1996static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1997
1998/*
1999 * Dynamically allocate memory for the
e7c8d5c9
CL
2000 * per cpu pageset array in struct zone.
2001 */
6292d9aa 2002static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2003{
2004 struct zone *zone, *dzone;
e7c8d5c9
CL
2005
2006 for_each_zone(zone) {
e7c8d5c9 2007
66a55030
CL
2008 if (!populated_zone(zone))
2009 continue;
2010
23316bc8 2011 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 2012 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 2013 if (!zone_pcp(zone, cpu))
e7c8d5c9 2014 goto bad;
e7c8d5c9 2015
23316bc8 2016 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2017
2018 if (percpu_pagelist_fraction)
2019 setup_pagelist_highmark(zone_pcp(zone, cpu),
2020 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2021 }
2022
2023 return 0;
2024bad:
2025 for_each_zone(dzone) {
2026 if (dzone == zone)
2027 break;
23316bc8
NP
2028 kfree(zone_pcp(dzone, cpu));
2029 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2030 }
2031 return -ENOMEM;
2032}
2033
2034static inline void free_zone_pagesets(int cpu)
2035{
e7c8d5c9
CL
2036 struct zone *zone;
2037
2038 for_each_zone(zone) {
2039 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2040
f3ef9ead
DR
2041 /* Free per_cpu_pageset if it is slab allocated */
2042 if (pset != &boot_pageset[cpu])
2043 kfree(pset);
e7c8d5c9 2044 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2045 }
e7c8d5c9
CL
2046}
2047
9c7b216d 2048static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2049 unsigned long action,
2050 void *hcpu)
2051{
2052 int cpu = (long)hcpu;
2053 int ret = NOTIFY_OK;
2054
2055 switch (action) {
ce421c79
AW
2056 case CPU_UP_PREPARE:
2057 if (process_zones(cpu))
2058 ret = NOTIFY_BAD;
2059 break;
2060 case CPU_UP_CANCELED:
2061 case CPU_DEAD:
2062 free_zone_pagesets(cpu);
2063 break;
2064 default:
2065 break;
e7c8d5c9
CL
2066 }
2067 return ret;
2068}
2069
74b85f37 2070static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2071 { &pageset_cpuup_callback, NULL, 0 };
2072
78d9955b 2073void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2074{
2075 int err;
2076
2077 /* Initialize per_cpu_pageset for cpu 0.
2078 * A cpuup callback will do this for every cpu
2079 * as it comes online
2080 */
2081 err = process_zones(smp_processor_id());
2082 BUG_ON(err);
2083 register_cpu_notifier(&pageset_notifier);
2084}
2085
2086#endif
2087
c09b4240 2088static __meminit
cca448fe 2089int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2090{
2091 int i;
2092 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2093 size_t alloc_size;
ed8ece2e
DH
2094
2095 /*
2096 * The per-page waitqueue mechanism uses hashed waitqueues
2097 * per zone.
2098 */
02b694de
YG
2099 zone->wait_table_hash_nr_entries =
2100 wait_table_hash_nr_entries(zone_size_pages);
2101 zone->wait_table_bits =
2102 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2103 alloc_size = zone->wait_table_hash_nr_entries
2104 * sizeof(wait_queue_head_t);
2105
2106 if (system_state == SYSTEM_BOOTING) {
2107 zone->wait_table = (wait_queue_head_t *)
2108 alloc_bootmem_node(pgdat, alloc_size);
2109 } else {
2110 /*
2111 * This case means that a zone whose size was 0 gets new memory
2112 * via memory hot-add.
2113 * But it may be the case that a new node was hot-added. In
2114 * this case vmalloc() will not be able to use this new node's
2115 * memory - this wait_table must be initialized to use this new
2116 * node itself as well.
2117 * To use this new node's memory, further consideration will be
2118 * necessary.
2119 */
2120 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2121 }
2122 if (!zone->wait_table)
2123 return -ENOMEM;
ed8ece2e 2124
02b694de 2125 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2126 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2127
2128 return 0;
ed8ece2e
DH
2129}
2130
c09b4240 2131static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2132{
2133 int cpu;
2134 unsigned long batch = zone_batchsize(zone);
2135
2136 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2137#ifdef CONFIG_NUMA
2138 /* Early boot. Slab allocator not functional yet */
23316bc8 2139 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2140 setup_pageset(&boot_pageset[cpu],0);
2141#else
2142 setup_pageset(zone_pcp(zone,cpu), batch);
2143#endif
2144 }
f5335c0f
AB
2145 if (zone->present_pages)
2146 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2147 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2148}
2149
718127cc
YG
2150__meminit int init_currently_empty_zone(struct zone *zone,
2151 unsigned long zone_start_pfn,
2152 unsigned long size)
ed8ece2e
DH
2153{
2154 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2155 int ret;
2156 ret = zone_wait_table_init(zone, size);
2157 if (ret)
2158 return ret;
ed8ece2e
DH
2159 pgdat->nr_zones = zone_idx(zone) + 1;
2160
ed8ece2e
DH
2161 zone->zone_start_pfn = zone_start_pfn;
2162
2163 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2164
2165 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2166
2167 return 0;
ed8ece2e
DH
2168}
2169
c713216d
MG
2170#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2171/*
2172 * Basic iterator support. Return the first range of PFNs for a node
2173 * Note: nid == MAX_NUMNODES returns first region regardless of node
2174 */
2175static int __init first_active_region_index_in_nid(int nid)
2176{
2177 int i;
2178
2179 for (i = 0; i < nr_nodemap_entries; i++)
2180 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2181 return i;
2182
2183 return -1;
2184}
2185
2186/*
2187 * Basic iterator support. Return the next active range of PFNs for a node
2188 * Note: nid == MAX_NUMNODES returns next region regardles of node
2189 */
2190static int __init next_active_region_index_in_nid(int index, int nid)
2191{
2192 for (index = index + 1; index < nr_nodemap_entries; index++)
2193 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2194 return index;
2195
2196 return -1;
2197}
2198
2199#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2200/*
2201 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2202 * Architectures may implement their own version but if add_active_range()
2203 * was used and there are no special requirements, this is a convenient
2204 * alternative
2205 */
2206int __init early_pfn_to_nid(unsigned long pfn)
2207{
2208 int i;
2209
2210 for (i = 0; i < nr_nodemap_entries; i++) {
2211 unsigned long start_pfn = early_node_map[i].start_pfn;
2212 unsigned long end_pfn = early_node_map[i].end_pfn;
2213
2214 if (start_pfn <= pfn && pfn < end_pfn)
2215 return early_node_map[i].nid;
2216 }
2217
2218 return 0;
2219}
2220#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2221
2222/* Basic iterator support to walk early_node_map[] */
2223#define for_each_active_range_index_in_nid(i, nid) \
2224 for (i = first_active_region_index_in_nid(nid); i != -1; \
2225 i = next_active_region_index_in_nid(i, nid))
2226
2227/**
2228 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2229 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2230 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2231 *
2232 * If an architecture guarantees that all ranges registered with
2233 * add_active_ranges() contain no holes and may be freed, this
2234 * this function may be used instead of calling free_bootmem() manually.
2235 */
2236void __init free_bootmem_with_active_regions(int nid,
2237 unsigned long max_low_pfn)
2238{
2239 int i;
2240
2241 for_each_active_range_index_in_nid(i, nid) {
2242 unsigned long size_pages = 0;
2243 unsigned long end_pfn = early_node_map[i].end_pfn;
2244
2245 if (early_node_map[i].start_pfn >= max_low_pfn)
2246 continue;
2247
2248 if (end_pfn > max_low_pfn)
2249 end_pfn = max_low_pfn;
2250
2251 size_pages = end_pfn - early_node_map[i].start_pfn;
2252 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2253 PFN_PHYS(early_node_map[i].start_pfn),
2254 size_pages << PAGE_SHIFT);
2255 }
2256}
2257
2258/**
2259 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2260 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2261 *
2262 * If an architecture guarantees that all ranges registered with
2263 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2264 * function may be used instead of calling memory_present() manually.
c713216d
MG
2265 */
2266void __init sparse_memory_present_with_active_regions(int nid)
2267{
2268 int i;
2269
2270 for_each_active_range_index_in_nid(i, nid)
2271 memory_present(early_node_map[i].nid,
2272 early_node_map[i].start_pfn,
2273 early_node_map[i].end_pfn);
2274}
2275
fb01439c
MG
2276/**
2277 * push_node_boundaries - Push node boundaries to at least the requested boundary
2278 * @nid: The nid of the node to push the boundary for
2279 * @start_pfn: The start pfn of the node
2280 * @end_pfn: The end pfn of the node
2281 *
2282 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2283 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2284 * be hotplugged even though no physical memory exists. This function allows
2285 * an arch to push out the node boundaries so mem_map is allocated that can
2286 * be used later.
2287 */
2288#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2289void __init push_node_boundaries(unsigned int nid,
2290 unsigned long start_pfn, unsigned long end_pfn)
2291{
2292 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2293 nid, start_pfn, end_pfn);
2294
2295 /* Initialise the boundary for this node if necessary */
2296 if (node_boundary_end_pfn[nid] == 0)
2297 node_boundary_start_pfn[nid] = -1UL;
2298
2299 /* Update the boundaries */
2300 if (node_boundary_start_pfn[nid] > start_pfn)
2301 node_boundary_start_pfn[nid] = start_pfn;
2302 if (node_boundary_end_pfn[nid] < end_pfn)
2303 node_boundary_end_pfn[nid] = end_pfn;
2304}
2305
2306/* If necessary, push the node boundary out for reserve hotadd */
2307static void __init account_node_boundary(unsigned int nid,
2308 unsigned long *start_pfn, unsigned long *end_pfn)
2309{
2310 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2311 nid, *start_pfn, *end_pfn);
2312
2313 /* Return if boundary information has not been provided */
2314 if (node_boundary_end_pfn[nid] == 0)
2315 return;
2316
2317 /* Check the boundaries and update if necessary */
2318 if (node_boundary_start_pfn[nid] < *start_pfn)
2319 *start_pfn = node_boundary_start_pfn[nid];
2320 if (node_boundary_end_pfn[nid] > *end_pfn)
2321 *end_pfn = node_boundary_end_pfn[nid];
2322}
2323#else
2324void __init push_node_boundaries(unsigned int nid,
2325 unsigned long start_pfn, unsigned long end_pfn) {}
2326
2327static void __init account_node_boundary(unsigned int nid,
2328 unsigned long *start_pfn, unsigned long *end_pfn) {}
2329#endif
2330
2331
c713216d
MG
2332/**
2333 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2334 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2335 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2336 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2337 *
2338 * It returns the start and end page frame of a node based on information
2339 * provided by an arch calling add_active_range(). If called for a node
2340 * with no available memory, a warning is printed and the start and end
88ca3b94 2341 * PFNs will be 0.
c713216d
MG
2342 */
2343void __init get_pfn_range_for_nid(unsigned int nid,
2344 unsigned long *start_pfn, unsigned long *end_pfn)
2345{
2346 int i;
2347 *start_pfn = -1UL;
2348 *end_pfn = 0;
2349
2350 for_each_active_range_index_in_nid(i, nid) {
2351 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2352 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2353 }
2354
2355 if (*start_pfn == -1UL) {
2356 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2357 *start_pfn = 0;
2358 }
fb01439c
MG
2359
2360 /* Push the node boundaries out if requested */
2361 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2362}
2363
2364/*
2365 * Return the number of pages a zone spans in a node, including holes
2366 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2367 */
2368unsigned long __init zone_spanned_pages_in_node(int nid,
2369 unsigned long zone_type,
2370 unsigned long *ignored)
2371{
2372 unsigned long node_start_pfn, node_end_pfn;
2373 unsigned long zone_start_pfn, zone_end_pfn;
2374
2375 /* Get the start and end of the node and zone */
2376 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2377 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2378 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2379
2380 /* Check that this node has pages within the zone's required range */
2381 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2382 return 0;
2383
2384 /* Move the zone boundaries inside the node if necessary */
2385 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2386 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2387
2388 /* Return the spanned pages */
2389 return zone_end_pfn - zone_start_pfn;
2390}
2391
2392/*
2393 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2394 * then all holes in the requested range will be accounted for.
c713216d
MG
2395 */
2396unsigned long __init __absent_pages_in_range(int nid,
2397 unsigned long range_start_pfn,
2398 unsigned long range_end_pfn)
2399{
2400 int i = 0;
2401 unsigned long prev_end_pfn = 0, hole_pages = 0;
2402 unsigned long start_pfn;
2403
2404 /* Find the end_pfn of the first active range of pfns in the node */
2405 i = first_active_region_index_in_nid(nid);
2406 if (i == -1)
2407 return 0;
2408
9c7cd687
MG
2409 /* Account for ranges before physical memory on this node */
2410 if (early_node_map[i].start_pfn > range_start_pfn)
2411 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2412
c713216d
MG
2413 prev_end_pfn = early_node_map[i].start_pfn;
2414
2415 /* Find all holes for the zone within the node */
2416 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2417
2418 /* No need to continue if prev_end_pfn is outside the zone */
2419 if (prev_end_pfn >= range_end_pfn)
2420 break;
2421
2422 /* Make sure the end of the zone is not within the hole */
2423 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2424 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2425
2426 /* Update the hole size cound and move on */
2427 if (start_pfn > range_start_pfn) {
2428 BUG_ON(prev_end_pfn > start_pfn);
2429 hole_pages += start_pfn - prev_end_pfn;
2430 }
2431 prev_end_pfn = early_node_map[i].end_pfn;
2432 }
2433
9c7cd687
MG
2434 /* Account for ranges past physical memory on this node */
2435 if (range_end_pfn > prev_end_pfn)
0c6cb974 2436 hole_pages += range_end_pfn -
9c7cd687
MG
2437 max(range_start_pfn, prev_end_pfn);
2438
c713216d
MG
2439 return hole_pages;
2440}
2441
2442/**
2443 * absent_pages_in_range - Return number of page frames in holes within a range
2444 * @start_pfn: The start PFN to start searching for holes
2445 * @end_pfn: The end PFN to stop searching for holes
2446 *
88ca3b94 2447 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
2448 */
2449unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2450 unsigned long end_pfn)
2451{
2452 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2453}
2454
2455/* Return the number of page frames in holes in a zone on a node */
2456unsigned long __init zone_absent_pages_in_node(int nid,
2457 unsigned long zone_type,
2458 unsigned long *ignored)
2459{
9c7cd687
MG
2460 unsigned long node_start_pfn, node_end_pfn;
2461 unsigned long zone_start_pfn, zone_end_pfn;
2462
2463 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2464 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2465 node_start_pfn);
2466 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2467 node_end_pfn);
2468
2469 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 2470}
0e0b864e 2471
c713216d
MG
2472#else
2473static inline unsigned long zone_spanned_pages_in_node(int nid,
2474 unsigned long zone_type,
2475 unsigned long *zones_size)
2476{
2477 return zones_size[zone_type];
2478}
2479
2480static inline unsigned long zone_absent_pages_in_node(int nid,
2481 unsigned long zone_type,
2482 unsigned long *zholes_size)
2483{
2484 if (!zholes_size)
2485 return 0;
2486
2487 return zholes_size[zone_type];
2488}
0e0b864e 2489
c713216d
MG
2490#endif
2491
2492static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2493 unsigned long *zones_size, unsigned long *zholes_size)
2494{
2495 unsigned long realtotalpages, totalpages = 0;
2496 enum zone_type i;
2497
2498 for (i = 0; i < MAX_NR_ZONES; i++)
2499 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2500 zones_size);
2501 pgdat->node_spanned_pages = totalpages;
2502
2503 realtotalpages = totalpages;
2504 for (i = 0; i < MAX_NR_ZONES; i++)
2505 realtotalpages -=
2506 zone_absent_pages_in_node(pgdat->node_id, i,
2507 zholes_size);
2508 pgdat->node_present_pages = realtotalpages;
2509 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2510 realtotalpages);
2511}
2512
1da177e4
LT
2513/*
2514 * Set up the zone data structures:
2515 * - mark all pages reserved
2516 * - mark all memory queues empty
2517 * - clear the memory bitmaps
2518 */
86356ab1 2519static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2520 unsigned long *zones_size, unsigned long *zholes_size)
2521{
2f1b6248 2522 enum zone_type j;
ed8ece2e 2523 int nid = pgdat->node_id;
1da177e4 2524 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2525 int ret;
1da177e4 2526
208d54e5 2527 pgdat_resize_init(pgdat);
1da177e4
LT
2528 pgdat->nr_zones = 0;
2529 init_waitqueue_head(&pgdat->kswapd_wait);
2530 pgdat->kswapd_max_order = 0;
2531
2532 for (j = 0; j < MAX_NR_ZONES; j++) {
2533 struct zone *zone = pgdat->node_zones + j;
0e0b864e 2534 unsigned long size, realsize, memmap_pages;
1da177e4 2535
c713216d
MG
2536 size = zone_spanned_pages_in_node(nid, j, zones_size);
2537 realsize = size - zone_absent_pages_in_node(nid, j,
2538 zholes_size);
1da177e4 2539
0e0b864e
MG
2540 /*
2541 * Adjust realsize so that it accounts for how much memory
2542 * is used by this zone for memmap. This affects the watermark
2543 * and per-cpu initialisations
2544 */
2545 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2546 if (realsize >= memmap_pages) {
2547 realsize -= memmap_pages;
2548 printk(KERN_DEBUG
2549 " %s zone: %lu pages used for memmap\n",
2550 zone_names[j], memmap_pages);
2551 } else
2552 printk(KERN_WARNING
2553 " %s zone: %lu pages exceeds realsize %lu\n",
2554 zone_names[j], memmap_pages, realsize);
2555
2556 /* Account for reserved DMA pages */
2557 if (j == ZONE_DMA && realsize > dma_reserve) {
2558 realsize -= dma_reserve;
2559 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2560 dma_reserve);
2561 }
2562
98d2b0eb 2563 if (!is_highmem_idx(j))
1da177e4
LT
2564 nr_kernel_pages += realsize;
2565 nr_all_pages += realsize;
2566
2567 zone->spanned_pages = size;
2568 zone->present_pages = realsize;
9614634f 2569#ifdef CONFIG_NUMA
d5f541ed 2570 zone->node = nid;
8417bba4 2571 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2572 / 100;
0ff38490 2573 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2574#endif
1da177e4
LT
2575 zone->name = zone_names[j];
2576 spin_lock_init(&zone->lock);
2577 spin_lock_init(&zone->lru_lock);
bdc8cb98 2578 zone_seqlock_init(zone);
1da177e4
LT
2579 zone->zone_pgdat = pgdat;
2580 zone->free_pages = 0;
2581
3bb1a852 2582 zone->prev_priority = DEF_PRIORITY;
1da177e4 2583
ed8ece2e 2584 zone_pcp_init(zone);
1da177e4
LT
2585 INIT_LIST_HEAD(&zone->active_list);
2586 INIT_LIST_HEAD(&zone->inactive_list);
2587 zone->nr_scan_active = 0;
2588 zone->nr_scan_inactive = 0;
2589 zone->nr_active = 0;
2590 zone->nr_inactive = 0;
2244b95a 2591 zap_zone_vm_stats(zone);
53e9a615 2592 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2593 if (!size)
2594 continue;
2595
718127cc
YG
2596 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2597 BUG_ON(ret);
1da177e4 2598 zone_start_pfn += size;
1da177e4
LT
2599 }
2600}
2601
2602static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2603{
1da177e4
LT
2604 /* Skip empty nodes */
2605 if (!pgdat->node_spanned_pages)
2606 return;
2607
d41dee36 2608#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2609 /* ia64 gets its own node_mem_map, before this, without bootmem */
2610 if (!pgdat->node_mem_map) {
e984bb43 2611 unsigned long size, start, end;
d41dee36
AW
2612 struct page *map;
2613
e984bb43
BP
2614 /*
2615 * The zone's endpoints aren't required to be MAX_ORDER
2616 * aligned but the node_mem_map endpoints must be in order
2617 * for the buddy allocator to function correctly.
2618 */
2619 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2620 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2621 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2622 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2623 map = alloc_remap(pgdat->node_id, size);
2624 if (!map)
2625 map = alloc_bootmem_node(pgdat, size);
e984bb43 2626 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2627 }
d41dee36 2628#ifdef CONFIG_FLATMEM
1da177e4
LT
2629 /*
2630 * With no DISCONTIG, the global mem_map is just set as node 0's
2631 */
c713216d 2632 if (pgdat == NODE_DATA(0)) {
1da177e4 2633 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
2634#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2635 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2636 mem_map -= pgdat->node_start_pfn;
2637#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2638 }
1da177e4 2639#endif
d41dee36 2640#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2641}
2642
86356ab1 2643void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2644 unsigned long *zones_size, unsigned long node_start_pfn,
2645 unsigned long *zholes_size)
2646{
2647 pgdat->node_id = nid;
2648 pgdat->node_start_pfn = node_start_pfn;
c713216d 2649 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
2650
2651 alloc_node_mem_map(pgdat);
2652
2653 free_area_init_core(pgdat, zones_size, zholes_size);
2654}
2655
c713216d
MG
2656#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2657/**
2658 * add_active_range - Register a range of PFNs backed by physical memory
2659 * @nid: The node ID the range resides on
2660 * @start_pfn: The start PFN of the available physical memory
2661 * @end_pfn: The end PFN of the available physical memory
2662 *
2663 * These ranges are stored in an early_node_map[] and later used by
2664 * free_area_init_nodes() to calculate zone sizes and holes. If the
2665 * range spans a memory hole, it is up to the architecture to ensure
2666 * the memory is not freed by the bootmem allocator. If possible
2667 * the range being registered will be merged with existing ranges.
2668 */
2669void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2670 unsigned long end_pfn)
2671{
2672 int i;
2673
2674 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2675 "%d entries of %d used\n",
2676 nid, start_pfn, end_pfn,
2677 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2678
2679 /* Merge with existing active regions if possible */
2680 for (i = 0; i < nr_nodemap_entries; i++) {
2681 if (early_node_map[i].nid != nid)
2682 continue;
2683
2684 /* Skip if an existing region covers this new one */
2685 if (start_pfn >= early_node_map[i].start_pfn &&
2686 end_pfn <= early_node_map[i].end_pfn)
2687 return;
2688
2689 /* Merge forward if suitable */
2690 if (start_pfn <= early_node_map[i].end_pfn &&
2691 end_pfn > early_node_map[i].end_pfn) {
2692 early_node_map[i].end_pfn = end_pfn;
2693 return;
2694 }
2695
2696 /* Merge backward if suitable */
2697 if (start_pfn < early_node_map[i].end_pfn &&
2698 end_pfn >= early_node_map[i].start_pfn) {
2699 early_node_map[i].start_pfn = start_pfn;
2700 return;
2701 }
2702 }
2703
2704 /* Check that early_node_map is large enough */
2705 if (i >= MAX_ACTIVE_REGIONS) {
2706 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2707 MAX_ACTIVE_REGIONS);
2708 return;
2709 }
2710
2711 early_node_map[i].nid = nid;
2712 early_node_map[i].start_pfn = start_pfn;
2713 early_node_map[i].end_pfn = end_pfn;
2714 nr_nodemap_entries = i + 1;
2715}
2716
2717/**
2718 * shrink_active_range - Shrink an existing registered range of PFNs
2719 * @nid: The node id the range is on that should be shrunk
2720 * @old_end_pfn: The old end PFN of the range
2721 * @new_end_pfn: The new PFN of the range
2722 *
2723 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2724 * The map is kept at the end physical page range that has already been
2725 * registered with add_active_range(). This function allows an arch to shrink
2726 * an existing registered range.
2727 */
2728void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2729 unsigned long new_end_pfn)
2730{
2731 int i;
2732
2733 /* Find the old active region end and shrink */
2734 for_each_active_range_index_in_nid(i, nid)
2735 if (early_node_map[i].end_pfn == old_end_pfn) {
2736 early_node_map[i].end_pfn = new_end_pfn;
2737 break;
2738 }
2739}
2740
2741/**
2742 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 2743 *
c713216d
MG
2744 * During discovery, it may be found that a table like SRAT is invalid
2745 * and an alternative discovery method must be used. This function removes
2746 * all currently registered regions.
2747 */
88ca3b94 2748void __init remove_all_active_ranges(void)
c713216d
MG
2749{
2750 memset(early_node_map, 0, sizeof(early_node_map));
2751 nr_nodemap_entries = 0;
fb01439c
MG
2752#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2753 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2754 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2755#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
2756}
2757
2758/* Compare two active node_active_regions */
2759static int __init cmp_node_active_region(const void *a, const void *b)
2760{
2761 struct node_active_region *arange = (struct node_active_region *)a;
2762 struct node_active_region *brange = (struct node_active_region *)b;
2763
2764 /* Done this way to avoid overflows */
2765 if (arange->start_pfn > brange->start_pfn)
2766 return 1;
2767 if (arange->start_pfn < brange->start_pfn)
2768 return -1;
2769
2770 return 0;
2771}
2772
2773/* sort the node_map by start_pfn */
2774static void __init sort_node_map(void)
2775{
2776 sort(early_node_map, (size_t)nr_nodemap_entries,
2777 sizeof(struct node_active_region),
2778 cmp_node_active_region, NULL);
2779}
2780
2781/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2782unsigned long __init find_min_pfn_for_node(unsigned long nid)
2783{
2784 int i;
2785
1abbfb41
MG
2786 /* Regions in the early_node_map can be in any order */
2787 sort_node_map();
2788
c713216d
MG
2789 /* Assuming a sorted map, the first range found has the starting pfn */
2790 for_each_active_range_index_in_nid(i, nid)
2791 return early_node_map[i].start_pfn;
2792
2793 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2794 return 0;
2795}
2796
2797/**
2798 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2799 *
2800 * It returns the minimum PFN based on information provided via
88ca3b94 2801 * add_active_range().
c713216d
MG
2802 */
2803unsigned long __init find_min_pfn_with_active_regions(void)
2804{
2805 return find_min_pfn_for_node(MAX_NUMNODES);
2806}
2807
2808/**
2809 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2810 *
2811 * It returns the maximum PFN based on information provided via
88ca3b94 2812 * add_active_range().
c713216d
MG
2813 */
2814unsigned long __init find_max_pfn_with_active_regions(void)
2815{
2816 int i;
2817 unsigned long max_pfn = 0;
2818
2819 for (i = 0; i < nr_nodemap_entries; i++)
2820 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2821
2822 return max_pfn;
2823}
2824
2825/**
2826 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 2827 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
2828 *
2829 * This will call free_area_init_node() for each active node in the system.
2830 * Using the page ranges provided by add_active_range(), the size of each
2831 * zone in each node and their holes is calculated. If the maximum PFN
2832 * between two adjacent zones match, it is assumed that the zone is empty.
2833 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2834 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2835 * starts where the previous one ended. For example, ZONE_DMA32 starts
2836 * at arch_max_dma_pfn.
2837 */
2838void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2839{
2840 unsigned long nid;
2841 enum zone_type i;
2842
2843 /* Record where the zone boundaries are */
2844 memset(arch_zone_lowest_possible_pfn, 0,
2845 sizeof(arch_zone_lowest_possible_pfn));
2846 memset(arch_zone_highest_possible_pfn, 0,
2847 sizeof(arch_zone_highest_possible_pfn));
2848 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2849 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2850 for (i = 1; i < MAX_NR_ZONES; i++) {
2851 arch_zone_lowest_possible_pfn[i] =
2852 arch_zone_highest_possible_pfn[i-1];
2853 arch_zone_highest_possible_pfn[i] =
2854 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2855 }
2856
c713216d
MG
2857 /* Print out the zone ranges */
2858 printk("Zone PFN ranges:\n");
2859 for (i = 0; i < MAX_NR_ZONES; i++)
2860 printk(" %-8s %8lu -> %8lu\n",
2861 zone_names[i],
2862 arch_zone_lowest_possible_pfn[i],
2863 arch_zone_highest_possible_pfn[i]);
2864
2865 /* Print out the early_node_map[] */
2866 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2867 for (i = 0; i < nr_nodemap_entries; i++)
2868 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2869 early_node_map[i].start_pfn,
2870 early_node_map[i].end_pfn);
2871
2872 /* Initialise every node */
2873 for_each_online_node(nid) {
2874 pg_data_t *pgdat = NODE_DATA(nid);
2875 free_area_init_node(nid, pgdat, NULL,
2876 find_min_pfn_for_node(nid), NULL);
2877 }
2878}
2879#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2880
0e0b864e 2881/**
88ca3b94
RD
2882 * set_dma_reserve - set the specified number of pages reserved in the first zone
2883 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
2884 *
2885 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2886 * In the DMA zone, a significant percentage may be consumed by kernel image
2887 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
2888 * function may optionally be used to account for unfreeable pages in the
2889 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2890 * smaller per-cpu batchsize.
0e0b864e
MG
2891 */
2892void __init set_dma_reserve(unsigned long new_dma_reserve)
2893{
2894 dma_reserve = new_dma_reserve;
2895}
2896
93b7504e 2897#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2898static bootmem_data_t contig_bootmem_data;
2899struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2900
2901EXPORT_SYMBOL(contig_page_data);
93b7504e 2902#endif
1da177e4
LT
2903
2904void __init free_area_init(unsigned long *zones_size)
2905{
93b7504e 2906 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2907 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2908}
1da177e4 2909
1da177e4
LT
2910#ifdef CONFIG_HOTPLUG_CPU
2911static int page_alloc_cpu_notify(struct notifier_block *self,
2912 unsigned long action, void *hcpu)
2913{
2914 int cpu = (unsigned long)hcpu;
1da177e4
LT
2915
2916 if (action == CPU_DEAD) {
1da177e4
LT
2917 local_irq_disable();
2918 __drain_pages(cpu);
f8891e5e 2919 vm_events_fold_cpu(cpu);
1da177e4 2920 local_irq_enable();
2244b95a 2921 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2922 }
2923 return NOTIFY_OK;
2924}
2925#endif /* CONFIG_HOTPLUG_CPU */
2926
2927void __init page_alloc_init(void)
2928{
2929 hotcpu_notifier(page_alloc_cpu_notify, 0);
2930}
2931
cb45b0e9
HA
2932/*
2933 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2934 * or min_free_kbytes changes.
2935 */
2936static void calculate_totalreserve_pages(void)
2937{
2938 struct pglist_data *pgdat;
2939 unsigned long reserve_pages = 0;
2f6726e5 2940 enum zone_type i, j;
cb45b0e9
HA
2941
2942 for_each_online_pgdat(pgdat) {
2943 for (i = 0; i < MAX_NR_ZONES; i++) {
2944 struct zone *zone = pgdat->node_zones + i;
2945 unsigned long max = 0;
2946
2947 /* Find valid and maximum lowmem_reserve in the zone */
2948 for (j = i; j < MAX_NR_ZONES; j++) {
2949 if (zone->lowmem_reserve[j] > max)
2950 max = zone->lowmem_reserve[j];
2951 }
2952
2953 /* we treat pages_high as reserved pages. */
2954 max += zone->pages_high;
2955
2956 if (max > zone->present_pages)
2957 max = zone->present_pages;
2958 reserve_pages += max;
2959 }
2960 }
2961 totalreserve_pages = reserve_pages;
2962}
2963
1da177e4
LT
2964/*
2965 * setup_per_zone_lowmem_reserve - called whenever
2966 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2967 * has a correct pages reserved value, so an adequate number of
2968 * pages are left in the zone after a successful __alloc_pages().
2969 */
2970static void setup_per_zone_lowmem_reserve(void)
2971{
2972 struct pglist_data *pgdat;
2f6726e5 2973 enum zone_type j, idx;
1da177e4 2974
ec936fc5 2975 for_each_online_pgdat(pgdat) {
1da177e4
LT
2976 for (j = 0; j < MAX_NR_ZONES; j++) {
2977 struct zone *zone = pgdat->node_zones + j;
2978 unsigned long present_pages = zone->present_pages;
2979
2980 zone->lowmem_reserve[j] = 0;
2981
2f6726e5
CL
2982 idx = j;
2983 while (idx) {
1da177e4
LT
2984 struct zone *lower_zone;
2985
2f6726e5
CL
2986 idx--;
2987
1da177e4
LT
2988 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2989 sysctl_lowmem_reserve_ratio[idx] = 1;
2990
2991 lower_zone = pgdat->node_zones + idx;
2992 lower_zone->lowmem_reserve[j] = present_pages /
2993 sysctl_lowmem_reserve_ratio[idx];
2994 present_pages += lower_zone->present_pages;
2995 }
2996 }
2997 }
cb45b0e9
HA
2998
2999 /* update totalreserve_pages */
3000 calculate_totalreserve_pages();
1da177e4
LT
3001}
3002
88ca3b94
RD
3003/**
3004 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3005 *
3006 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3007 * with respect to min_free_kbytes.
1da177e4 3008 */
3947be19 3009void setup_per_zone_pages_min(void)
1da177e4
LT
3010{
3011 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3012 unsigned long lowmem_pages = 0;
3013 struct zone *zone;
3014 unsigned long flags;
3015
3016 /* Calculate total number of !ZONE_HIGHMEM pages */
3017 for_each_zone(zone) {
3018 if (!is_highmem(zone))
3019 lowmem_pages += zone->present_pages;
3020 }
3021
3022 for_each_zone(zone) {
ac924c60
AM
3023 u64 tmp;
3024
1da177e4 3025 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3026 tmp = (u64)pages_min * zone->present_pages;
3027 do_div(tmp, lowmem_pages);
1da177e4
LT
3028 if (is_highmem(zone)) {
3029 /*
669ed175
NP
3030 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3031 * need highmem pages, so cap pages_min to a small
3032 * value here.
3033 *
3034 * The (pages_high-pages_low) and (pages_low-pages_min)
3035 * deltas controls asynch page reclaim, and so should
3036 * not be capped for highmem.
1da177e4
LT
3037 */
3038 int min_pages;
3039
3040 min_pages = zone->present_pages / 1024;
3041 if (min_pages < SWAP_CLUSTER_MAX)
3042 min_pages = SWAP_CLUSTER_MAX;
3043 if (min_pages > 128)
3044 min_pages = 128;
3045 zone->pages_min = min_pages;
3046 } else {
669ed175
NP
3047 /*
3048 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3049 * proportionate to the zone's size.
3050 */
669ed175 3051 zone->pages_min = tmp;
1da177e4
LT
3052 }
3053
ac924c60
AM
3054 zone->pages_low = zone->pages_min + (tmp >> 2);
3055 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3056 spin_unlock_irqrestore(&zone->lru_lock, flags);
3057 }
cb45b0e9
HA
3058
3059 /* update totalreserve_pages */
3060 calculate_totalreserve_pages();
1da177e4
LT
3061}
3062
3063/*
3064 * Initialise min_free_kbytes.
3065 *
3066 * For small machines we want it small (128k min). For large machines
3067 * we want it large (64MB max). But it is not linear, because network
3068 * bandwidth does not increase linearly with machine size. We use
3069 *
3070 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3071 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3072 *
3073 * which yields
3074 *
3075 * 16MB: 512k
3076 * 32MB: 724k
3077 * 64MB: 1024k
3078 * 128MB: 1448k
3079 * 256MB: 2048k
3080 * 512MB: 2896k
3081 * 1024MB: 4096k
3082 * 2048MB: 5792k
3083 * 4096MB: 8192k
3084 * 8192MB: 11584k
3085 * 16384MB: 16384k
3086 */
3087static int __init init_per_zone_pages_min(void)
3088{
3089 unsigned long lowmem_kbytes;
3090
3091 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3092
3093 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3094 if (min_free_kbytes < 128)
3095 min_free_kbytes = 128;
3096 if (min_free_kbytes > 65536)
3097 min_free_kbytes = 65536;
3098 setup_per_zone_pages_min();
3099 setup_per_zone_lowmem_reserve();
3100 return 0;
3101}
3102module_init(init_per_zone_pages_min)
3103
3104/*
3105 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3106 * that we can call two helper functions whenever min_free_kbytes
3107 * changes.
3108 */
3109int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3110 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3111{
3112 proc_dointvec(table, write, file, buffer, length, ppos);
3113 setup_per_zone_pages_min();
3114 return 0;
3115}
3116
9614634f
CL
3117#ifdef CONFIG_NUMA
3118int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3119 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3120{
3121 struct zone *zone;
3122 int rc;
3123
3124 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3125 if (rc)
3126 return rc;
3127
3128 for_each_zone(zone)
8417bba4 3129 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
3130 sysctl_min_unmapped_ratio) / 100;
3131 return 0;
3132}
0ff38490
CL
3133
3134int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3135 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3136{
3137 struct zone *zone;
3138 int rc;
3139
3140 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3141 if (rc)
3142 return rc;
3143
3144 for_each_zone(zone)
3145 zone->min_slab_pages = (zone->present_pages *
3146 sysctl_min_slab_ratio) / 100;
3147 return 0;
3148}
9614634f
CL
3149#endif
3150
1da177e4
LT
3151/*
3152 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3153 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3154 * whenever sysctl_lowmem_reserve_ratio changes.
3155 *
3156 * The reserve ratio obviously has absolutely no relation with the
3157 * pages_min watermarks. The lowmem reserve ratio can only make sense
3158 * if in function of the boot time zone sizes.
3159 */
3160int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3161 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3162{
3163 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3164 setup_per_zone_lowmem_reserve();
3165 return 0;
3166}
3167
8ad4b1fb
RS
3168/*
3169 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3170 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3171 * can have before it gets flushed back to buddy allocator.
3172 */
3173
3174int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3175 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3176{
3177 struct zone *zone;
3178 unsigned int cpu;
3179 int ret;
3180
3181 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3182 if (!write || (ret == -EINVAL))
3183 return ret;
3184 for_each_zone(zone) {
3185 for_each_online_cpu(cpu) {
3186 unsigned long high;
3187 high = zone->present_pages / percpu_pagelist_fraction;
3188 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3189 }
3190 }
3191 return 0;
3192}
3193
f034b5d4 3194int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
3195
3196#ifdef CONFIG_NUMA
3197static int __init set_hashdist(char *str)
3198{
3199 if (!str)
3200 return 0;
3201 hashdist = simple_strtoul(str, &str, 0);
3202 return 1;
3203}
3204__setup("hashdist=", set_hashdist);
3205#endif
3206
3207/*
3208 * allocate a large system hash table from bootmem
3209 * - it is assumed that the hash table must contain an exact power-of-2
3210 * quantity of entries
3211 * - limit is the number of hash buckets, not the total allocation size
3212 */
3213void *__init alloc_large_system_hash(const char *tablename,
3214 unsigned long bucketsize,
3215 unsigned long numentries,
3216 int scale,
3217 int flags,
3218 unsigned int *_hash_shift,
3219 unsigned int *_hash_mask,
3220 unsigned long limit)
3221{
3222 unsigned long long max = limit;
3223 unsigned long log2qty, size;
3224 void *table = NULL;
3225
3226 /* allow the kernel cmdline to have a say */
3227 if (!numentries) {
3228 /* round applicable memory size up to nearest megabyte */
3229 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
3230 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3231 numentries >>= 20 - PAGE_SHIFT;
3232 numentries <<= 20 - PAGE_SHIFT;
3233
3234 /* limit to 1 bucket per 2^scale bytes of low memory */
3235 if (scale > PAGE_SHIFT)
3236 numentries >>= (scale - PAGE_SHIFT);
3237 else
3238 numentries <<= (PAGE_SHIFT - scale);
3239 }
6e692ed3 3240 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
3241
3242 /* limit allocation size to 1/16 total memory by default */
3243 if (max == 0) {
3244 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3245 do_div(max, bucketsize);
3246 }
3247
3248 if (numentries > max)
3249 numentries = max;
3250
3251 log2qty = long_log2(numentries);
3252
3253 do {
3254 size = bucketsize << log2qty;
3255 if (flags & HASH_EARLY)
3256 table = alloc_bootmem(size);
3257 else if (hashdist)
3258 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3259 else {
3260 unsigned long order;
3261 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3262 ;
3263 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3264 }
3265 } while (!table && size > PAGE_SIZE && --log2qty);
3266
3267 if (!table)
3268 panic("Failed to allocate %s hash table\n", tablename);
3269
3270 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3271 tablename,
3272 (1U << log2qty),
3273 long_log2(size) - PAGE_SHIFT,
3274 size);
3275
3276 if (_hash_shift)
3277 *_hash_shift = log2qty;
3278 if (_hash_mask)
3279 *_hash_mask = (1 << log2qty) - 1;
3280
3281 return table;
3282}
a117e66e
KH
3283
3284#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
3285struct page *pfn_to_page(unsigned long pfn)
3286{
67de6482 3287 return __pfn_to_page(pfn);
a117e66e
KH
3288}
3289unsigned long page_to_pfn(struct page *page)
3290{
67de6482 3291 return __page_to_pfn(page);
a117e66e 3292}
a117e66e
KH
3293EXPORT_SYMBOL(pfn_to_page);
3294EXPORT_SYMBOL(page_to_pfn);
3295#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78
AM
3296
3297#if MAX_NUMNODES > 1
3298/*
3299 * Find the highest possible node id.
3300 */
3301int highest_possible_node_id(void)
3302{
3303 unsigned int node;
3304 unsigned int highest = 0;
3305
3306 for_each_node_mask(node, node_possible_map)
3307 highest = node;
3308 return highest;
3309}
3310EXPORT_SYMBOL(highest_possible_node_id);
3311#endif