vmscan: properly account for the number of page cache pages zone_reclaim() can reclaim
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 164int nr_online_nodes __read_mostly = 1;
418508c1 165EXPORT_SYMBOL(nr_node_ids);
62bc62a8 166EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
167#endif
168
9ef9acb0
MG
169int page_group_by_mobility_disabled __read_mostly;
170
b2a0ac88
MG
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
49255c61
MG
173
174 if (unlikely(page_group_by_mobility_disabled))
175 migratetype = MIGRATE_UNMOVABLE;
176
b2a0ac88
MG
177 set_pageblock_flags_group(page, (unsigned long)migratetype,
178 PB_migrate, PB_migrate_end);
179}
180
7f33d49a
RW
181bool oom_killer_disabled __read_mostly;
182
13e7444b 183#ifdef CONFIG_DEBUG_VM
c6a57e19 184static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 185{
bdc8cb98
DH
186 int ret = 0;
187 unsigned seq;
188 unsigned long pfn = page_to_pfn(page);
c6a57e19 189
bdc8cb98
DH
190 do {
191 seq = zone_span_seqbegin(zone);
192 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
193 ret = 1;
194 else if (pfn < zone->zone_start_pfn)
195 ret = 1;
196 } while (zone_span_seqretry(zone, seq));
197
198 return ret;
c6a57e19
DH
199}
200
201static int page_is_consistent(struct zone *zone, struct page *page)
202{
14e07298 203 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 204 return 0;
1da177e4 205 if (zone != page_zone(page))
c6a57e19
DH
206 return 0;
207
208 return 1;
209}
210/*
211 * Temporary debugging check for pages not lying within a given zone.
212 */
213static int bad_range(struct zone *zone, struct page *page)
214{
215 if (page_outside_zone_boundaries(zone, page))
1da177e4 216 return 1;
c6a57e19
DH
217 if (!page_is_consistent(zone, page))
218 return 1;
219
1da177e4
LT
220 return 0;
221}
13e7444b
NP
222#else
223static inline int bad_range(struct zone *zone, struct page *page)
224{
225 return 0;
226}
227#endif
228
224abf92 229static void bad_page(struct page *page)
1da177e4 230{
d936cf9b
HD
231 static unsigned long resume;
232 static unsigned long nr_shown;
233 static unsigned long nr_unshown;
234
235 /*
236 * Allow a burst of 60 reports, then keep quiet for that minute;
237 * or allow a steady drip of one report per second.
238 */
239 if (nr_shown == 60) {
240 if (time_before(jiffies, resume)) {
241 nr_unshown++;
242 goto out;
243 }
244 if (nr_unshown) {
1e9e6365
HD
245 printk(KERN_ALERT
246 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
247 nr_unshown);
248 nr_unshown = 0;
249 }
250 nr_shown = 0;
251 }
252 if (nr_shown++ == 0)
253 resume = jiffies + 60 * HZ;
254
1e9e6365 255 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 256 current->comm, page_to_pfn(page));
1e9e6365 257 printk(KERN_ALERT
3dc14741
HD
258 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
259 page, (void *)page->flags, page_count(page),
260 page_mapcount(page), page->mapping, page->index);
3dc14741 261
1da177e4 262 dump_stack();
d936cf9b 263out:
8cc3b392
HD
264 /* Leave bad fields for debug, except PageBuddy could make trouble */
265 __ClearPageBuddy(page);
9f158333 266 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
267}
268
1da177e4
LT
269/*
270 * Higher-order pages are called "compound pages". They are structured thusly:
271 *
272 * The first PAGE_SIZE page is called the "head page".
273 *
274 * The remaining PAGE_SIZE pages are called "tail pages".
275 *
276 * All pages have PG_compound set. All pages have their ->private pointing at
277 * the head page (even the head page has this).
278 *
41d78ba5
HD
279 * The first tail page's ->lru.next holds the address of the compound page's
280 * put_page() function. Its ->lru.prev holds the order of allocation.
281 * This usage means that zero-order pages may not be compound.
1da177e4 282 */
d98c7a09
HD
283
284static void free_compound_page(struct page *page)
285{
d85f3385 286 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
287}
288
01ad1c08 289void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
290{
291 int i;
292 int nr_pages = 1 << order;
293
294 set_compound_page_dtor(page, free_compound_page);
295 set_compound_order(page, order);
296 __SetPageHead(page);
297 for (i = 1; i < nr_pages; i++) {
298 struct page *p = page + i;
299
300 __SetPageTail(p);
301 p->first_page = page;
302 }
303}
304
8cc3b392 305static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
306{
307 int i;
308 int nr_pages = 1 << order;
8cc3b392 309 int bad = 0;
1da177e4 310
8cc3b392
HD
311 if (unlikely(compound_order(page) != order) ||
312 unlikely(!PageHead(page))) {
224abf92 313 bad_page(page);
8cc3b392
HD
314 bad++;
315 }
1da177e4 316
6d777953 317 __ClearPageHead(page);
8cc3b392 318
18229df5
AW
319 for (i = 1; i < nr_pages; i++) {
320 struct page *p = page + i;
1da177e4 321
e713a21d 322 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 323 bad_page(page);
8cc3b392
HD
324 bad++;
325 }
d85f3385 326 __ClearPageTail(p);
1da177e4 327 }
8cc3b392
HD
328
329 return bad;
1da177e4 330}
1da177e4 331
17cf4406
NP
332static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
333{
334 int i;
335
6626c5d5
AM
336 /*
337 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
338 * and __GFP_HIGHMEM from hard or soft interrupt context.
339 */
725d704e 340 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
341 for (i = 0; i < (1 << order); i++)
342 clear_highpage(page + i);
343}
344
6aa3001b
AM
345static inline void set_page_order(struct page *page, int order)
346{
4c21e2f2 347 set_page_private(page, order);
676165a8 348 __SetPageBuddy(page);
1da177e4
LT
349}
350
351static inline void rmv_page_order(struct page *page)
352{
676165a8 353 __ClearPageBuddy(page);
4c21e2f2 354 set_page_private(page, 0);
1da177e4
LT
355}
356
357/*
358 * Locate the struct page for both the matching buddy in our
359 * pair (buddy1) and the combined O(n+1) page they form (page).
360 *
361 * 1) Any buddy B1 will have an order O twin B2 which satisfies
362 * the following equation:
363 * B2 = B1 ^ (1 << O)
364 * For example, if the starting buddy (buddy2) is #8 its order
365 * 1 buddy is #10:
366 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
367 *
368 * 2) Any buddy B will have an order O+1 parent P which
369 * satisfies the following equation:
370 * P = B & ~(1 << O)
371 *
d6e05edc 372 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
373 */
374static inline struct page *
375__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
376{
377 unsigned long buddy_idx = page_idx ^ (1 << order);
378
379 return page + (buddy_idx - page_idx);
380}
381
382static inline unsigned long
383__find_combined_index(unsigned long page_idx, unsigned int order)
384{
385 return (page_idx & ~(1 << order));
386}
387
388/*
389 * This function checks whether a page is free && is the buddy
390 * we can do coalesce a page and its buddy if
13e7444b 391 * (a) the buddy is not in a hole &&
676165a8 392 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
393 * (c) a page and its buddy have the same order &&
394 * (d) a page and its buddy are in the same zone.
676165a8
NP
395 *
396 * For recording whether a page is in the buddy system, we use PG_buddy.
397 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 398 *
676165a8 399 * For recording page's order, we use page_private(page).
1da177e4 400 */
cb2b95e1
AW
401static inline int page_is_buddy(struct page *page, struct page *buddy,
402 int order)
1da177e4 403{
14e07298 404 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 405 return 0;
13e7444b 406
cb2b95e1
AW
407 if (page_zone_id(page) != page_zone_id(buddy))
408 return 0;
409
410 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 411 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 412 return 1;
676165a8 413 }
6aa3001b 414 return 0;
1da177e4
LT
415}
416
417/*
418 * Freeing function for a buddy system allocator.
419 *
420 * The concept of a buddy system is to maintain direct-mapped table
421 * (containing bit values) for memory blocks of various "orders".
422 * The bottom level table contains the map for the smallest allocatable
423 * units of memory (here, pages), and each level above it describes
424 * pairs of units from the levels below, hence, "buddies".
425 * At a high level, all that happens here is marking the table entry
426 * at the bottom level available, and propagating the changes upward
427 * as necessary, plus some accounting needed to play nicely with other
428 * parts of the VM system.
429 * At each level, we keep a list of pages, which are heads of continuous
676165a8 430 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 431 * order is recorded in page_private(page) field.
1da177e4
LT
432 * So when we are allocating or freeing one, we can derive the state of the
433 * other. That is, if we allocate a small block, and both were
434 * free, the remainder of the region must be split into blocks.
435 * If a block is freed, and its buddy is also free, then this
436 * triggers coalescing into a block of larger size.
437 *
438 * -- wli
439 */
440
48db57f8 441static inline void __free_one_page(struct page *page,
ed0ae21d
MG
442 struct zone *zone, unsigned int order,
443 int migratetype)
1da177e4
LT
444{
445 unsigned long page_idx;
1da177e4 446
224abf92 447 if (unlikely(PageCompound(page)))
8cc3b392
HD
448 if (unlikely(destroy_compound_page(page, order)))
449 return;
1da177e4 450
ed0ae21d
MG
451 VM_BUG_ON(migratetype == -1);
452
1da177e4
LT
453 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
454
f2260e6b 455 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 456 VM_BUG_ON(bad_range(zone, page));
1da177e4 457
1da177e4
LT
458 while (order < MAX_ORDER-1) {
459 unsigned long combined_idx;
1da177e4
LT
460 struct page *buddy;
461
1da177e4 462 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 463 if (!page_is_buddy(page, buddy, order))
3c82d0ce 464 break;
13e7444b 465
3c82d0ce 466 /* Our buddy is free, merge with it and move up one order. */
1da177e4 467 list_del(&buddy->lru);
b2a0ac88 468 zone->free_area[order].nr_free--;
1da177e4 469 rmv_page_order(buddy);
13e7444b 470 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
471 page = page + (combined_idx - page_idx);
472 page_idx = combined_idx;
473 order++;
474 }
475 set_page_order(page, order);
b2a0ac88
MG
476 list_add(&page->lru,
477 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
478 zone->free_area[order].nr_free++;
479}
480
092cead6
KM
481#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
482/*
483 * free_page_mlock() -- clean up attempts to free and mlocked() page.
484 * Page should not be on lru, so no need to fix that up.
485 * free_pages_check() will verify...
486 */
487static inline void free_page_mlock(struct page *page)
488{
489 __ClearPageMlocked(page);
490 __dec_zone_page_state(page, NR_MLOCK);
491 __count_vm_event(UNEVICTABLE_MLOCKFREED);
492}
493#else
494static void free_page_mlock(struct page *page) { }
495#endif
496
224abf92 497static inline int free_pages_check(struct page *page)
1da177e4 498{
92be2e33
NP
499 if (unlikely(page_mapcount(page) |
500 (page->mapping != NULL) |
a3af9c38 501 (atomic_read(&page->_count) != 0) |
8cc3b392 502 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 503 bad_page(page);
79f4b7bf 504 return 1;
8cc3b392 505 }
79f4b7bf
HD
506 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
507 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
508 return 0;
1da177e4
LT
509}
510
511/*
512 * Frees a list of pages.
513 * Assumes all pages on list are in same zone, and of same order.
207f36ee 514 * count is the number of pages to free.
1da177e4
LT
515 *
516 * If the zone was previously in an "all pages pinned" state then look to
517 * see if this freeing clears that state.
518 *
519 * And clear the zone's pages_scanned counter, to hold off the "all pages are
520 * pinned" detection logic.
521 */
48db57f8
NP
522static void free_pages_bulk(struct zone *zone, int count,
523 struct list_head *list, int order)
1da177e4 524{
c54ad30c 525 spin_lock(&zone->lock);
e815af95 526 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 527 zone->pages_scanned = 0;
f2260e6b
MG
528
529 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
530 while (count--) {
531 struct page *page;
532
725d704e 533 VM_BUG_ON(list_empty(list));
1da177e4 534 page = list_entry(list->prev, struct page, lru);
48db57f8 535 /* have to delete it as __free_one_page list manipulates */
1da177e4 536 list_del(&page->lru);
ed0ae21d 537 __free_one_page(page, zone, order, page_private(page));
1da177e4 538 }
c54ad30c 539 spin_unlock(&zone->lock);
1da177e4
LT
540}
541
ed0ae21d
MG
542static void free_one_page(struct zone *zone, struct page *page, int order,
543 int migratetype)
1da177e4 544{
006d22d9 545 spin_lock(&zone->lock);
e815af95 546 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 547 zone->pages_scanned = 0;
f2260e6b
MG
548
549 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 550 __free_one_page(page, zone, order, migratetype);
006d22d9 551 spin_unlock(&zone->lock);
48db57f8
NP
552}
553
554static void __free_pages_ok(struct page *page, unsigned int order)
555{
556 unsigned long flags;
1da177e4 557 int i;
8cc3b392 558 int bad = 0;
da456f14 559 int clearMlocked = PageMlocked(page);
1da177e4 560
1da177e4 561 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
562 bad += free_pages_check(page + i);
563 if (bad)
689bcebf
HD
564 return;
565
3ac7fe5a 566 if (!PageHighMem(page)) {
9858db50 567 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
568 debug_check_no_obj_freed(page_address(page),
569 PAGE_SIZE << order);
570 }
dafb1367 571 arch_free_page(page, order);
48db57f8 572 kernel_map_pages(page, 1 << order, 0);
dafb1367 573
c54ad30c 574 local_irq_save(flags);
da456f14
MG
575 if (unlikely(clearMlocked))
576 free_page_mlock(page);
f8891e5e 577 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
578 free_one_page(page_zone(page), page, order,
579 get_pageblock_migratetype(page));
c54ad30c 580 local_irq_restore(flags);
1da177e4
LT
581}
582
a226f6c8
DH
583/*
584 * permit the bootmem allocator to evade page validation on high-order frees
585 */
af370fb8 586void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
587{
588 if (order == 0) {
589 __ClearPageReserved(page);
590 set_page_count(page, 0);
7835e98b 591 set_page_refcounted(page);
545b1ea9 592 __free_page(page);
a226f6c8 593 } else {
a226f6c8
DH
594 int loop;
595
545b1ea9 596 prefetchw(page);
a226f6c8
DH
597 for (loop = 0; loop < BITS_PER_LONG; loop++) {
598 struct page *p = &page[loop];
599
545b1ea9
NP
600 if (loop + 1 < BITS_PER_LONG)
601 prefetchw(p + 1);
a226f6c8
DH
602 __ClearPageReserved(p);
603 set_page_count(p, 0);
604 }
605
7835e98b 606 set_page_refcounted(page);
545b1ea9 607 __free_pages(page, order);
a226f6c8
DH
608 }
609}
610
1da177e4
LT
611
612/*
613 * The order of subdivision here is critical for the IO subsystem.
614 * Please do not alter this order without good reasons and regression
615 * testing. Specifically, as large blocks of memory are subdivided,
616 * the order in which smaller blocks are delivered depends on the order
617 * they're subdivided in this function. This is the primary factor
618 * influencing the order in which pages are delivered to the IO
619 * subsystem according to empirical testing, and this is also justified
620 * by considering the behavior of a buddy system containing a single
621 * large block of memory acted on by a series of small allocations.
622 * This behavior is a critical factor in sglist merging's success.
623 *
624 * -- wli
625 */
085cc7d5 626static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
627 int low, int high, struct free_area *area,
628 int migratetype)
1da177e4
LT
629{
630 unsigned long size = 1 << high;
631
632 while (high > low) {
633 area--;
634 high--;
635 size >>= 1;
725d704e 636 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 637 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
638 area->nr_free++;
639 set_page_order(&page[size], high);
640 }
1da177e4
LT
641}
642
1da177e4
LT
643/*
644 * This page is about to be returned from the page allocator
645 */
17cf4406 646static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 647{
92be2e33
NP
648 if (unlikely(page_mapcount(page) |
649 (page->mapping != NULL) |
a3af9c38 650 (atomic_read(&page->_count) != 0) |
8cc3b392 651 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 652 bad_page(page);
689bcebf 653 return 1;
8cc3b392 654 }
689bcebf 655
4c21e2f2 656 set_page_private(page, 0);
7835e98b 657 set_page_refcounted(page);
cc102509
NP
658
659 arch_alloc_page(page, order);
1da177e4 660 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
661
662 if (gfp_flags & __GFP_ZERO)
663 prep_zero_page(page, order, gfp_flags);
664
665 if (order && (gfp_flags & __GFP_COMP))
666 prep_compound_page(page, order);
667
689bcebf 668 return 0;
1da177e4
LT
669}
670
56fd56b8
MG
671/*
672 * Go through the free lists for the given migratetype and remove
673 * the smallest available page from the freelists
674 */
728ec980
MG
675static inline
676struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
677 int migratetype)
678{
679 unsigned int current_order;
680 struct free_area * area;
681 struct page *page;
682
683 /* Find a page of the appropriate size in the preferred list */
684 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
685 area = &(zone->free_area[current_order]);
686 if (list_empty(&area->free_list[migratetype]))
687 continue;
688
689 page = list_entry(area->free_list[migratetype].next,
690 struct page, lru);
691 list_del(&page->lru);
692 rmv_page_order(page);
693 area->nr_free--;
56fd56b8
MG
694 expand(zone, page, order, current_order, area, migratetype);
695 return page;
696 }
697
698 return NULL;
699}
700
701
b2a0ac88
MG
702/*
703 * This array describes the order lists are fallen back to when
704 * the free lists for the desirable migrate type are depleted
705 */
706static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
707 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
708 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
709 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
710 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
711};
712
c361be55
MG
713/*
714 * Move the free pages in a range to the free lists of the requested type.
d9c23400 715 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
716 * boundary. If alignment is required, use move_freepages_block()
717 */
b69a7288
AB
718static int move_freepages(struct zone *zone,
719 struct page *start_page, struct page *end_page,
720 int migratetype)
c361be55
MG
721{
722 struct page *page;
723 unsigned long order;
d100313f 724 int pages_moved = 0;
c361be55
MG
725
726#ifndef CONFIG_HOLES_IN_ZONE
727 /*
728 * page_zone is not safe to call in this context when
729 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
730 * anyway as we check zone boundaries in move_freepages_block().
731 * Remove at a later date when no bug reports exist related to
ac0e5b7a 732 * grouping pages by mobility
c361be55
MG
733 */
734 BUG_ON(page_zone(start_page) != page_zone(end_page));
735#endif
736
737 for (page = start_page; page <= end_page;) {
344c790e
AL
738 /* Make sure we are not inadvertently changing nodes */
739 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
740
c361be55
MG
741 if (!pfn_valid_within(page_to_pfn(page))) {
742 page++;
743 continue;
744 }
745
746 if (!PageBuddy(page)) {
747 page++;
748 continue;
749 }
750
751 order = page_order(page);
752 list_del(&page->lru);
753 list_add(&page->lru,
754 &zone->free_area[order].free_list[migratetype]);
755 page += 1 << order;
d100313f 756 pages_moved += 1 << order;
c361be55
MG
757 }
758
d100313f 759 return pages_moved;
c361be55
MG
760}
761
b69a7288
AB
762static int move_freepages_block(struct zone *zone, struct page *page,
763 int migratetype)
c361be55
MG
764{
765 unsigned long start_pfn, end_pfn;
766 struct page *start_page, *end_page;
767
768 start_pfn = page_to_pfn(page);
d9c23400 769 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 770 start_page = pfn_to_page(start_pfn);
d9c23400
MG
771 end_page = start_page + pageblock_nr_pages - 1;
772 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
773
774 /* Do not cross zone boundaries */
775 if (start_pfn < zone->zone_start_pfn)
776 start_page = page;
777 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
778 return 0;
779
780 return move_freepages(zone, start_page, end_page, migratetype);
781}
782
b2a0ac88 783/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
784static inline struct page *
785__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
786{
787 struct free_area * area;
788 int current_order;
789 struct page *page;
790 int migratetype, i;
791
792 /* Find the largest possible block of pages in the other list */
793 for (current_order = MAX_ORDER-1; current_order >= order;
794 --current_order) {
795 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
796 migratetype = fallbacks[start_migratetype][i];
797
56fd56b8
MG
798 /* MIGRATE_RESERVE handled later if necessary */
799 if (migratetype == MIGRATE_RESERVE)
800 continue;
e010487d 801
b2a0ac88
MG
802 area = &(zone->free_area[current_order]);
803 if (list_empty(&area->free_list[migratetype]))
804 continue;
805
806 page = list_entry(area->free_list[migratetype].next,
807 struct page, lru);
808 area->nr_free--;
809
810 /*
c361be55 811 * If breaking a large block of pages, move all free
46dafbca
MG
812 * pages to the preferred allocation list. If falling
813 * back for a reclaimable kernel allocation, be more
814 * agressive about taking ownership of free pages
b2a0ac88 815 */
d9c23400 816 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
817 start_migratetype == MIGRATE_RECLAIMABLE) {
818 unsigned long pages;
819 pages = move_freepages_block(zone, page,
820 start_migratetype);
821
822 /* Claim the whole block if over half of it is free */
d9c23400 823 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
824 set_pageblock_migratetype(page,
825 start_migratetype);
826
b2a0ac88 827 migratetype = start_migratetype;
c361be55 828 }
b2a0ac88
MG
829
830 /* Remove the page from the freelists */
831 list_del(&page->lru);
832 rmv_page_order(page);
b2a0ac88 833
d9c23400 834 if (current_order == pageblock_order)
b2a0ac88
MG
835 set_pageblock_migratetype(page,
836 start_migratetype);
837
838 expand(zone, page, order, current_order, area, migratetype);
839 return page;
840 }
841 }
842
728ec980 843 return NULL;
b2a0ac88
MG
844}
845
56fd56b8 846/*
1da177e4
LT
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
849 */
b2a0ac88
MG
850static struct page *__rmqueue(struct zone *zone, unsigned int order,
851 int migratetype)
1da177e4 852{
1da177e4
LT
853 struct page *page;
854
728ec980 855retry_reserve:
56fd56b8 856 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 857
728ec980 858 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 859 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 860
728ec980
MG
861 /*
862 * Use MIGRATE_RESERVE rather than fail an allocation. goto
863 * is used because __rmqueue_smallest is an inline function
864 * and we want just one call site
865 */
866 if (!page) {
867 migratetype = MIGRATE_RESERVE;
868 goto retry_reserve;
869 }
870 }
871
b2a0ac88 872 return page;
1da177e4
LT
873}
874
875/*
876 * Obtain a specified number of elements from the buddy allocator, all under
877 * a single hold of the lock, for efficiency. Add them to the supplied list.
878 * Returns the number of new pages which were placed at *list.
879 */
880static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
881 unsigned long count, struct list_head *list,
882 int migratetype)
1da177e4 883{
1da177e4 884 int i;
1da177e4 885
c54ad30c 886 spin_lock(&zone->lock);
1da177e4 887 for (i = 0; i < count; ++i) {
b2a0ac88 888 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 889 if (unlikely(page == NULL))
1da177e4 890 break;
81eabcbe
MG
891
892 /*
893 * Split buddy pages returned by expand() are received here
894 * in physical page order. The page is added to the callers and
895 * list and the list head then moves forward. From the callers
896 * perspective, the linked list is ordered by page number in
897 * some conditions. This is useful for IO devices that can
898 * merge IO requests if the physical pages are ordered
899 * properly.
900 */
535131e6
MG
901 list_add(&page->lru, list);
902 set_page_private(page, migratetype);
81eabcbe 903 list = &page->lru;
1da177e4 904 }
f2260e6b 905 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 906 spin_unlock(&zone->lock);
085cc7d5 907 return i;
1da177e4
LT
908}
909
4ae7c039 910#ifdef CONFIG_NUMA
8fce4d8e 911/*
4037d452
CL
912 * Called from the vmstat counter updater to drain pagesets of this
913 * currently executing processor on remote nodes after they have
914 * expired.
915 *
879336c3
CL
916 * Note that this function must be called with the thread pinned to
917 * a single processor.
8fce4d8e 918 */
4037d452 919void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 920{
4ae7c039 921 unsigned long flags;
4037d452 922 int to_drain;
4ae7c039 923
4037d452
CL
924 local_irq_save(flags);
925 if (pcp->count >= pcp->batch)
926 to_drain = pcp->batch;
927 else
928 to_drain = pcp->count;
929 free_pages_bulk(zone, to_drain, &pcp->list, 0);
930 pcp->count -= to_drain;
931 local_irq_restore(flags);
4ae7c039
CL
932}
933#endif
934
9f8f2172
CL
935/*
936 * Drain pages of the indicated processor.
937 *
938 * The processor must either be the current processor and the
939 * thread pinned to the current processor or a processor that
940 * is not online.
941 */
942static void drain_pages(unsigned int cpu)
1da177e4 943{
c54ad30c 944 unsigned long flags;
1da177e4 945 struct zone *zone;
1da177e4 946
ee99c71c 947 for_each_populated_zone(zone) {
1da177e4 948 struct per_cpu_pageset *pset;
3dfa5721 949 struct per_cpu_pages *pcp;
1da177e4 950
e7c8d5c9 951 pset = zone_pcp(zone, cpu);
3dfa5721
CL
952
953 pcp = &pset->pcp;
954 local_irq_save(flags);
955 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
956 pcp->count = 0;
957 local_irq_restore(flags);
1da177e4
LT
958 }
959}
1da177e4 960
9f8f2172
CL
961/*
962 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
963 */
964void drain_local_pages(void *arg)
965{
966 drain_pages(smp_processor_id());
967}
968
969/*
970 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
971 */
972void drain_all_pages(void)
973{
15c8b6c1 974 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
975}
976
296699de 977#ifdef CONFIG_HIBERNATION
1da177e4
LT
978
979void mark_free_pages(struct zone *zone)
980{
f623f0db
RW
981 unsigned long pfn, max_zone_pfn;
982 unsigned long flags;
b2a0ac88 983 int order, t;
1da177e4
LT
984 struct list_head *curr;
985
986 if (!zone->spanned_pages)
987 return;
988
989 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
990
991 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
992 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
993 if (pfn_valid(pfn)) {
994 struct page *page = pfn_to_page(pfn);
995
7be98234
RW
996 if (!swsusp_page_is_forbidden(page))
997 swsusp_unset_page_free(page);
f623f0db 998 }
1da177e4 999
b2a0ac88
MG
1000 for_each_migratetype_order(order, t) {
1001 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1002 unsigned long i;
1da177e4 1003
f623f0db
RW
1004 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1005 for (i = 0; i < (1UL << order); i++)
7be98234 1006 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1007 }
b2a0ac88 1008 }
1da177e4
LT
1009 spin_unlock_irqrestore(&zone->lock, flags);
1010}
e2c55dc8 1011#endif /* CONFIG_PM */
1da177e4 1012
1da177e4
LT
1013/*
1014 * Free a 0-order page
1015 */
920c7a5d 1016static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1017{
1018 struct zone *zone = page_zone(page);
1019 struct per_cpu_pages *pcp;
1020 unsigned long flags;
da456f14 1021 int clearMlocked = PageMlocked(page);
1da177e4 1022
1da177e4
LT
1023 if (PageAnon(page))
1024 page->mapping = NULL;
224abf92 1025 if (free_pages_check(page))
689bcebf
HD
1026 return;
1027
3ac7fe5a 1028 if (!PageHighMem(page)) {
9858db50 1029 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1030 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1031 }
dafb1367 1032 arch_free_page(page, 0);
689bcebf
HD
1033 kernel_map_pages(page, 1, 0);
1034
3dfa5721 1035 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1036 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1037 local_irq_save(flags);
da456f14
MG
1038 if (unlikely(clearMlocked))
1039 free_page_mlock(page);
f8891e5e 1040 __count_vm_event(PGFREE);
da456f14 1041
3dfa5721
CL
1042 if (cold)
1043 list_add_tail(&page->lru, &pcp->list);
1044 else
1045 list_add(&page->lru, &pcp->list);
1da177e4 1046 pcp->count++;
48db57f8
NP
1047 if (pcp->count >= pcp->high) {
1048 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1049 pcp->count -= pcp->batch;
1050 }
1da177e4
LT
1051 local_irq_restore(flags);
1052 put_cpu();
1053}
1054
920c7a5d 1055void free_hot_page(struct page *page)
1da177e4
LT
1056{
1057 free_hot_cold_page(page, 0);
1058}
1059
920c7a5d 1060void free_cold_page(struct page *page)
1da177e4
LT
1061{
1062 free_hot_cold_page(page, 1);
1063}
1064
8dfcc9ba
NP
1065/*
1066 * split_page takes a non-compound higher-order page, and splits it into
1067 * n (1<<order) sub-pages: page[0..n]
1068 * Each sub-page must be freed individually.
1069 *
1070 * Note: this is probably too low level an operation for use in drivers.
1071 * Please consult with lkml before using this in your driver.
1072 */
1073void split_page(struct page *page, unsigned int order)
1074{
1075 int i;
1076
725d704e
NP
1077 VM_BUG_ON(PageCompound(page));
1078 VM_BUG_ON(!page_count(page));
7835e98b
NP
1079 for (i = 1; i < (1 << order); i++)
1080 set_page_refcounted(page + i);
8dfcc9ba 1081}
8dfcc9ba 1082
1da177e4
LT
1083/*
1084 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1085 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1086 * or two.
1087 */
0a15c3e9
MG
1088static inline
1089struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1090 struct zone *zone, int order, gfp_t gfp_flags,
1091 int migratetype)
1da177e4
LT
1092{
1093 unsigned long flags;
689bcebf 1094 struct page *page;
1da177e4 1095 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1096 int cpu;
1da177e4 1097
689bcebf 1098again:
a74609fa 1099 cpu = get_cpu();
48db57f8 1100 if (likely(order == 0)) {
1da177e4
LT
1101 struct per_cpu_pages *pcp;
1102
3dfa5721 1103 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1104 local_irq_save(flags);
a74609fa 1105 if (!pcp->count) {
941c7105 1106 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1107 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1108 if (unlikely(!pcp->count))
1109 goto failed;
1da177e4 1110 }
b92a6edd 1111
535131e6 1112 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1113 if (cold) {
1114 list_for_each_entry_reverse(page, &pcp->list, lru)
1115 if (page_private(page) == migratetype)
1116 break;
1117 } else {
1118 list_for_each_entry(page, &pcp->list, lru)
1119 if (page_private(page) == migratetype)
1120 break;
1121 }
535131e6 1122
b92a6edd
MG
1123 /* Allocate more to the pcp list if necessary */
1124 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1125 pcp->count += rmqueue_bulk(zone, 0,
1126 pcp->batch, &pcp->list, migratetype);
1127 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1128 }
b92a6edd
MG
1129
1130 list_del(&page->lru);
1131 pcp->count--;
7fb1d9fc 1132 } else {
dab48dab
AM
1133 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1134 /*
1135 * __GFP_NOFAIL is not to be used in new code.
1136 *
1137 * All __GFP_NOFAIL callers should be fixed so that they
1138 * properly detect and handle allocation failures.
1139 *
1140 * We most definitely don't want callers attempting to
1141 * allocate greater than single-page units with
1142 * __GFP_NOFAIL.
1143 */
1144 WARN_ON_ONCE(order > 0);
1145 }
1da177e4 1146 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1147 page = __rmqueue(zone, order, migratetype);
f2260e6b 1148 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1149 spin_unlock(&zone->lock);
1150 if (!page)
1151 goto failed;
1da177e4
LT
1152 }
1153
f8891e5e 1154 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1155 zone_statistics(preferred_zone, zone);
a74609fa
NP
1156 local_irq_restore(flags);
1157 put_cpu();
1da177e4 1158
725d704e 1159 VM_BUG_ON(bad_range(zone, page));
17cf4406 1160 if (prep_new_page(page, order, gfp_flags))
a74609fa 1161 goto again;
1da177e4 1162 return page;
a74609fa
NP
1163
1164failed:
1165 local_irq_restore(flags);
1166 put_cpu();
1167 return NULL;
1da177e4
LT
1168}
1169
41858966
MG
1170/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1171#define ALLOC_WMARK_MIN WMARK_MIN
1172#define ALLOC_WMARK_LOW WMARK_LOW
1173#define ALLOC_WMARK_HIGH WMARK_HIGH
1174#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1175
1176/* Mask to get the watermark bits */
1177#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1178
3148890b
NP
1179#define ALLOC_HARDER 0x10 /* try to alloc harder */
1180#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1181#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1182
933e312e
AM
1183#ifdef CONFIG_FAIL_PAGE_ALLOC
1184
1185static struct fail_page_alloc_attr {
1186 struct fault_attr attr;
1187
1188 u32 ignore_gfp_highmem;
1189 u32 ignore_gfp_wait;
54114994 1190 u32 min_order;
933e312e
AM
1191
1192#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1193
1194 struct dentry *ignore_gfp_highmem_file;
1195 struct dentry *ignore_gfp_wait_file;
54114994 1196 struct dentry *min_order_file;
933e312e
AM
1197
1198#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1199
1200} fail_page_alloc = {
1201 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1202 .ignore_gfp_wait = 1,
1203 .ignore_gfp_highmem = 1,
54114994 1204 .min_order = 1,
933e312e
AM
1205};
1206
1207static int __init setup_fail_page_alloc(char *str)
1208{
1209 return setup_fault_attr(&fail_page_alloc.attr, str);
1210}
1211__setup("fail_page_alloc=", setup_fail_page_alloc);
1212
1213static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1214{
54114994
AM
1215 if (order < fail_page_alloc.min_order)
1216 return 0;
933e312e
AM
1217 if (gfp_mask & __GFP_NOFAIL)
1218 return 0;
1219 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1220 return 0;
1221 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1222 return 0;
1223
1224 return should_fail(&fail_page_alloc.attr, 1 << order);
1225}
1226
1227#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1228
1229static int __init fail_page_alloc_debugfs(void)
1230{
1231 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1232 struct dentry *dir;
1233 int err;
1234
1235 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1236 "fail_page_alloc");
1237 if (err)
1238 return err;
1239 dir = fail_page_alloc.attr.dentries.dir;
1240
1241 fail_page_alloc.ignore_gfp_wait_file =
1242 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1243 &fail_page_alloc.ignore_gfp_wait);
1244
1245 fail_page_alloc.ignore_gfp_highmem_file =
1246 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1247 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1248 fail_page_alloc.min_order_file =
1249 debugfs_create_u32("min-order", mode, dir,
1250 &fail_page_alloc.min_order);
933e312e
AM
1251
1252 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1253 !fail_page_alloc.ignore_gfp_highmem_file ||
1254 !fail_page_alloc.min_order_file) {
933e312e
AM
1255 err = -ENOMEM;
1256 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1257 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1258 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1259 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1260 }
1261
1262 return err;
1263}
1264
1265late_initcall(fail_page_alloc_debugfs);
1266
1267#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1268
1269#else /* CONFIG_FAIL_PAGE_ALLOC */
1270
1271static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1272{
1273 return 0;
1274}
1275
1276#endif /* CONFIG_FAIL_PAGE_ALLOC */
1277
1da177e4
LT
1278/*
1279 * Return 1 if free pages are above 'mark'. This takes into account the order
1280 * of the allocation.
1281 */
1282int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1283 int classzone_idx, int alloc_flags)
1da177e4
LT
1284{
1285 /* free_pages my go negative - that's OK */
d23ad423
CL
1286 long min = mark;
1287 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1288 int o;
1289
7fb1d9fc 1290 if (alloc_flags & ALLOC_HIGH)
1da177e4 1291 min -= min / 2;
7fb1d9fc 1292 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1293 min -= min / 4;
1294
1295 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1296 return 0;
1297 for (o = 0; o < order; o++) {
1298 /* At the next order, this order's pages become unavailable */
1299 free_pages -= z->free_area[o].nr_free << o;
1300
1301 /* Require fewer higher order pages to be free */
1302 min >>= 1;
1303
1304 if (free_pages <= min)
1305 return 0;
1306 }
1307 return 1;
1308}
1309
9276b1bc
PJ
1310#ifdef CONFIG_NUMA
1311/*
1312 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1313 * skip over zones that are not allowed by the cpuset, or that have
1314 * been recently (in last second) found to be nearly full. See further
1315 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1316 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1317 *
1318 * If the zonelist cache is present in the passed in zonelist, then
1319 * returns a pointer to the allowed node mask (either the current
37b07e41 1320 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1321 *
1322 * If the zonelist cache is not available for this zonelist, does
1323 * nothing and returns NULL.
1324 *
1325 * If the fullzones BITMAP in the zonelist cache is stale (more than
1326 * a second since last zap'd) then we zap it out (clear its bits.)
1327 *
1328 * We hold off even calling zlc_setup, until after we've checked the
1329 * first zone in the zonelist, on the theory that most allocations will
1330 * be satisfied from that first zone, so best to examine that zone as
1331 * quickly as we can.
1332 */
1333static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1334{
1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1336 nodemask_t *allowednodes; /* zonelist_cache approximation */
1337
1338 zlc = zonelist->zlcache_ptr;
1339 if (!zlc)
1340 return NULL;
1341
f05111f5 1342 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1343 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1344 zlc->last_full_zap = jiffies;
1345 }
1346
1347 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1348 &cpuset_current_mems_allowed :
37b07e41 1349 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1350 return allowednodes;
1351}
1352
1353/*
1354 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1355 * if it is worth looking at further for free memory:
1356 * 1) Check that the zone isn't thought to be full (doesn't have its
1357 * bit set in the zonelist_cache fullzones BITMAP).
1358 * 2) Check that the zones node (obtained from the zonelist_cache
1359 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1360 * Return true (non-zero) if zone is worth looking at further, or
1361 * else return false (zero) if it is not.
1362 *
1363 * This check -ignores- the distinction between various watermarks,
1364 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1365 * found to be full for any variation of these watermarks, it will
1366 * be considered full for up to one second by all requests, unless
1367 * we are so low on memory on all allowed nodes that we are forced
1368 * into the second scan of the zonelist.
1369 *
1370 * In the second scan we ignore this zonelist cache and exactly
1371 * apply the watermarks to all zones, even it is slower to do so.
1372 * We are low on memory in the second scan, and should leave no stone
1373 * unturned looking for a free page.
1374 */
dd1a239f 1375static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1376 nodemask_t *allowednodes)
1377{
1378 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1379 int i; /* index of *z in zonelist zones */
1380 int n; /* node that zone *z is on */
1381
1382 zlc = zonelist->zlcache_ptr;
1383 if (!zlc)
1384 return 1;
1385
dd1a239f 1386 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1387 n = zlc->z_to_n[i];
1388
1389 /* This zone is worth trying if it is allowed but not full */
1390 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1391}
1392
1393/*
1394 * Given 'z' scanning a zonelist, set the corresponding bit in
1395 * zlc->fullzones, so that subsequent attempts to allocate a page
1396 * from that zone don't waste time re-examining it.
1397 */
dd1a239f 1398static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1399{
1400 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1401 int i; /* index of *z in zonelist zones */
1402
1403 zlc = zonelist->zlcache_ptr;
1404 if (!zlc)
1405 return;
1406
dd1a239f 1407 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1408
1409 set_bit(i, zlc->fullzones);
1410}
1411
1412#else /* CONFIG_NUMA */
1413
1414static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1415{
1416 return NULL;
1417}
1418
dd1a239f 1419static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1420 nodemask_t *allowednodes)
1421{
1422 return 1;
1423}
1424
dd1a239f 1425static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1426{
1427}
1428#endif /* CONFIG_NUMA */
1429
7fb1d9fc 1430/*
0798e519 1431 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1432 * a page.
1433 */
1434static struct page *
19770b32 1435get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1436 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1437 struct zone *preferred_zone, int migratetype)
753ee728 1438{
dd1a239f 1439 struct zoneref *z;
7fb1d9fc 1440 struct page *page = NULL;
54a6eb5c 1441 int classzone_idx;
5117f45d 1442 struct zone *zone;
9276b1bc
PJ
1443 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1444 int zlc_active = 0; /* set if using zonelist_cache */
1445 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1446
5117f45d 1447 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1448zonelist_scan:
7fb1d9fc 1449 /*
9276b1bc 1450 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1451 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1452 */
19770b32
MG
1453 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1454 high_zoneidx, nodemask) {
9276b1bc
PJ
1455 if (NUMA_BUILD && zlc_active &&
1456 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1457 continue;
7fb1d9fc 1458 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1459 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1460 goto try_next_zone;
7fb1d9fc 1461
41858966 1462 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1463 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1464 unsigned long mark;
41858966 1465 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
0798e519
PJ
1466 if (!zone_watermark_ok(zone, order, mark,
1467 classzone_idx, alloc_flags)) {
9eeff239 1468 if (!zone_reclaim_mode ||
1192d526 1469 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1470 goto this_zone_full;
0798e519 1471 }
7fb1d9fc
RS
1472 }
1473
3dd28266
MG
1474 page = buffered_rmqueue(preferred_zone, zone, order,
1475 gfp_mask, migratetype);
0798e519 1476 if (page)
7fb1d9fc 1477 break;
9276b1bc
PJ
1478this_zone_full:
1479 if (NUMA_BUILD)
1480 zlc_mark_zone_full(zonelist, z);
1481try_next_zone:
62bc62a8 1482 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1483 /*
1484 * we do zlc_setup after the first zone is tried but only
1485 * if there are multiple nodes make it worthwhile
1486 */
9276b1bc
PJ
1487 allowednodes = zlc_setup(zonelist, alloc_flags);
1488 zlc_active = 1;
1489 did_zlc_setup = 1;
1490 }
54a6eb5c 1491 }
9276b1bc
PJ
1492
1493 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1494 /* Disable zlc cache for second zonelist scan */
1495 zlc_active = 0;
1496 goto zonelist_scan;
1497 }
7fb1d9fc 1498 return page;
753ee728
MH
1499}
1500
11e33f6a
MG
1501static inline int
1502should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1503 unsigned long pages_reclaimed)
1da177e4 1504{
11e33f6a
MG
1505 /* Do not loop if specifically requested */
1506 if (gfp_mask & __GFP_NORETRY)
1507 return 0;
1da177e4 1508
11e33f6a
MG
1509 /*
1510 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1511 * means __GFP_NOFAIL, but that may not be true in other
1512 * implementations.
1513 */
1514 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1515 return 1;
1516
1517 /*
1518 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1519 * specified, then we retry until we no longer reclaim any pages
1520 * (above), or we've reclaimed an order of pages at least as
1521 * large as the allocation's order. In both cases, if the
1522 * allocation still fails, we stop retrying.
1523 */
1524 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1525 return 1;
cf40bd16 1526
11e33f6a
MG
1527 /*
1528 * Don't let big-order allocations loop unless the caller
1529 * explicitly requests that.
1530 */
1531 if (gfp_mask & __GFP_NOFAIL)
1532 return 1;
1da177e4 1533
11e33f6a
MG
1534 return 0;
1535}
933e312e 1536
11e33f6a
MG
1537static inline struct page *
1538__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1539 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1540 nodemask_t *nodemask, struct zone *preferred_zone,
1541 int migratetype)
11e33f6a
MG
1542{
1543 struct page *page;
1544
1545 /* Acquire the OOM killer lock for the zones in zonelist */
1546 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1547 schedule_timeout_uninterruptible(1);
1da177e4
LT
1548 return NULL;
1549 }
6b1de916 1550
11e33f6a
MG
1551 /*
1552 * Go through the zonelist yet one more time, keep very high watermark
1553 * here, this is only to catch a parallel oom killing, we must fail if
1554 * we're still under heavy pressure.
1555 */
1556 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1557 order, zonelist, high_zoneidx,
5117f45d 1558 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1559 preferred_zone, migratetype);
7fb1d9fc 1560 if (page)
11e33f6a
MG
1561 goto out;
1562
1563 /* The OOM killer will not help higher order allocs */
82553a93 1564 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1565 goto out;
1566
1567 /* Exhausted what can be done so it's blamo time */
1568 out_of_memory(zonelist, gfp_mask, order);
1569
1570out:
1571 clear_zonelist_oom(zonelist, gfp_mask);
1572 return page;
1573}
1574
1575/* The really slow allocator path where we enter direct reclaim */
1576static inline struct page *
1577__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1578 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1579 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1580 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1581{
1582 struct page *page = NULL;
1583 struct reclaim_state reclaim_state;
1584 struct task_struct *p = current;
1585
1586 cond_resched();
1587
1588 /* We now go into synchronous reclaim */
1589 cpuset_memory_pressure_bump();
1590
1591 /*
1592 * The task's cpuset might have expanded its set of allowable nodes
1593 */
1594 p->flags |= PF_MEMALLOC;
1595 lockdep_set_current_reclaim_state(gfp_mask);
1596 reclaim_state.reclaimed_slab = 0;
1597 p->reclaim_state = &reclaim_state;
1598
1599 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1600
1601 p->reclaim_state = NULL;
1602 lockdep_clear_current_reclaim_state();
1603 p->flags &= ~PF_MEMALLOC;
1604
1605 cond_resched();
1606
1607 if (order != 0)
1608 drain_all_pages();
1609
1610 if (likely(*did_some_progress))
1611 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1612 zonelist, high_zoneidx,
3dd28266
MG
1613 alloc_flags, preferred_zone,
1614 migratetype);
11e33f6a
MG
1615 return page;
1616}
1617
11e33f6a
MG
1618/*
1619 * This is called in the allocator slow-path if the allocation request is of
1620 * sufficient urgency to ignore watermarks and take other desperate measures
1621 */
1622static inline struct page *
1623__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1624 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1625 nodemask_t *nodemask, struct zone *preferred_zone,
1626 int migratetype)
11e33f6a
MG
1627{
1628 struct page *page;
1629
1630 do {
1631 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1632 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1633 preferred_zone, migratetype);
11e33f6a
MG
1634
1635 if (!page && gfp_mask & __GFP_NOFAIL)
1636 congestion_wait(WRITE, HZ/50);
1637 } while (!page && (gfp_mask & __GFP_NOFAIL));
1638
1639 return page;
1640}
1641
1642static inline
1643void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1644 enum zone_type high_zoneidx)
1645{
1646 struct zoneref *z;
1647 struct zone *zone;
1648
1649 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1650 wakeup_kswapd(zone, order);
1651}
1652
341ce06f
PZ
1653static inline int
1654gfp_to_alloc_flags(gfp_t gfp_mask)
1655{
1656 struct task_struct *p = current;
1657 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1658 const gfp_t wait = gfp_mask & __GFP_WAIT;
1659
a56f57ff
MG
1660 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1661 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1662
341ce06f
PZ
1663 /*
1664 * The caller may dip into page reserves a bit more if the caller
1665 * cannot run direct reclaim, or if the caller has realtime scheduling
1666 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1667 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1668 */
a56f57ff 1669 alloc_flags |= (gfp_mask & __GFP_HIGH);
341ce06f
PZ
1670
1671 if (!wait) {
1672 alloc_flags |= ALLOC_HARDER;
1673 /*
1674 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1675 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1676 */
1677 alloc_flags &= ~ALLOC_CPUSET;
1678 } else if (unlikely(rt_task(p)))
1679 alloc_flags |= ALLOC_HARDER;
1680
1681 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1682 if (!in_interrupt() &&
1683 ((p->flags & PF_MEMALLOC) ||
1684 unlikely(test_thread_flag(TIF_MEMDIE))))
1685 alloc_flags |= ALLOC_NO_WATERMARKS;
1686 }
1687
1688 return alloc_flags;
1689}
1690
11e33f6a
MG
1691static inline struct page *
1692__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1693 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1694 nodemask_t *nodemask, struct zone *preferred_zone,
1695 int migratetype)
11e33f6a
MG
1696{
1697 const gfp_t wait = gfp_mask & __GFP_WAIT;
1698 struct page *page = NULL;
1699 int alloc_flags;
1700 unsigned long pages_reclaimed = 0;
1701 unsigned long did_some_progress;
1702 struct task_struct *p = current;
1da177e4 1703
72807a74
MG
1704 /*
1705 * In the slowpath, we sanity check order to avoid ever trying to
1706 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1707 * be using allocators in order of preference for an area that is
1708 * too large.
1709 */
1710 if (WARN_ON_ONCE(order >= MAX_ORDER))
1711 return NULL;
1712
952f3b51
CL
1713 /*
1714 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1715 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1716 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1717 * using a larger set of nodes after it has established that the
1718 * allowed per node queues are empty and that nodes are
1719 * over allocated.
1720 */
1721 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1722 goto nopage;
1723
11e33f6a 1724 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1725
9bf2229f 1726 /*
7fb1d9fc
RS
1727 * OK, we're below the kswapd watermark and have kicked background
1728 * reclaim. Now things get more complex, so set up alloc_flags according
1729 * to how we want to proceed.
9bf2229f 1730 */
341ce06f 1731 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1732
11e33f6a 1733restart:
341ce06f 1734 /* This is the last chance, in general, before the goto nopage. */
19770b32 1735 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1736 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1737 preferred_zone, migratetype);
7fb1d9fc
RS
1738 if (page)
1739 goto got_pg;
1da177e4 1740
b43a57bb 1741rebalance:
11e33f6a 1742 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1743 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1744 page = __alloc_pages_high_priority(gfp_mask, order,
1745 zonelist, high_zoneidx, nodemask,
1746 preferred_zone, migratetype);
1747 if (page)
1748 goto got_pg;
1da177e4
LT
1749 }
1750
1751 /* Atomic allocations - we can't balance anything */
1752 if (!wait)
1753 goto nopage;
1754
341ce06f
PZ
1755 /* Avoid recursion of direct reclaim */
1756 if (p->flags & PF_MEMALLOC)
1757 goto nopage;
1758
11e33f6a
MG
1759 /* Try direct reclaim and then allocating */
1760 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1761 zonelist, high_zoneidx,
1762 nodemask,
5117f45d 1763 alloc_flags, preferred_zone,
3dd28266 1764 migratetype, &did_some_progress);
11e33f6a
MG
1765 if (page)
1766 goto got_pg;
1da177e4 1767
11e33f6a
MG
1768 /*
1769 * If we failed to make any progress reclaiming, then we are
1770 * running out of options and have to consider going OOM
1771 */
1772 if (!did_some_progress) {
1773 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1774 if (oom_killer_disabled)
1775 goto nopage;
11e33f6a
MG
1776 page = __alloc_pages_may_oom(gfp_mask, order,
1777 zonelist, high_zoneidx,
3dd28266
MG
1778 nodemask, preferred_zone,
1779 migratetype);
11e33f6a
MG
1780 if (page)
1781 goto got_pg;
1da177e4 1782
11e33f6a 1783 /*
82553a93
DR
1784 * The OOM killer does not trigger for high-order
1785 * ~__GFP_NOFAIL allocations so if no progress is being
1786 * made, there are no other options and retrying is
1787 * unlikely to help.
11e33f6a 1788 */
82553a93
DR
1789 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1790 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1791 goto nopage;
e2c55dc8 1792
ff0ceb9d
DR
1793 goto restart;
1794 }
1da177e4
LT
1795 }
1796
11e33f6a 1797 /* Check if we should retry the allocation */
a41f24ea 1798 pages_reclaimed += did_some_progress;
11e33f6a
MG
1799 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1800 /* Wait for some write requests to complete then retry */
3fcfab16 1801 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1802 goto rebalance;
1803 }
1804
1805nopage:
1806 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1807 printk(KERN_WARNING "%s: page allocation failure."
1808 " order:%d, mode:0x%x\n",
1809 p->comm, order, gfp_mask);
1810 dump_stack();
578c2fd6 1811 show_mem();
1da177e4 1812 }
1da177e4 1813got_pg:
1da177e4 1814 return page;
11e33f6a
MG
1815
1816}
1817
1818/*
1819 * This is the 'heart' of the zoned buddy allocator.
1820 */
1821struct page *
1822__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1823 struct zonelist *zonelist, nodemask_t *nodemask)
1824{
1825 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1826 struct zone *preferred_zone;
11e33f6a 1827 struct page *page;
3dd28266 1828 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1829
1830 lockdep_trace_alloc(gfp_mask);
1831
1832 might_sleep_if(gfp_mask & __GFP_WAIT);
1833
1834 if (should_fail_alloc_page(gfp_mask, order))
1835 return NULL;
1836
1837 /*
1838 * Check the zones suitable for the gfp_mask contain at least one
1839 * valid zone. It's possible to have an empty zonelist as a result
1840 * of GFP_THISNODE and a memoryless node
1841 */
1842 if (unlikely(!zonelist->_zonerefs->zone))
1843 return NULL;
1844
5117f45d
MG
1845 /* The preferred zone is used for statistics later */
1846 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1847 if (!preferred_zone)
1848 return NULL;
1849
1850 /* First allocation attempt */
11e33f6a 1851 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1852 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1853 preferred_zone, migratetype);
11e33f6a
MG
1854 if (unlikely(!page))
1855 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1856 zonelist, high_zoneidx, nodemask,
3dd28266 1857 preferred_zone, migratetype);
11e33f6a
MG
1858
1859 return page;
1da177e4 1860}
d239171e 1861EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1862
1863/*
1864 * Common helper functions.
1865 */
920c7a5d 1866unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1867{
1868 struct page * page;
1869 page = alloc_pages(gfp_mask, order);
1870 if (!page)
1871 return 0;
1872 return (unsigned long) page_address(page);
1873}
1874
1875EXPORT_SYMBOL(__get_free_pages);
1876
920c7a5d 1877unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1878{
1879 struct page * page;
1880
1881 /*
1882 * get_zeroed_page() returns a 32-bit address, which cannot represent
1883 * a highmem page
1884 */
725d704e 1885 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1886
1887 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1888 if (page)
1889 return (unsigned long) page_address(page);
1890 return 0;
1891}
1892
1893EXPORT_SYMBOL(get_zeroed_page);
1894
1895void __pagevec_free(struct pagevec *pvec)
1896{
1897 int i = pagevec_count(pvec);
1898
1899 while (--i >= 0)
1900 free_hot_cold_page(pvec->pages[i], pvec->cold);
1901}
1902
920c7a5d 1903void __free_pages(struct page *page, unsigned int order)
1da177e4 1904{
b5810039 1905 if (put_page_testzero(page)) {
1da177e4
LT
1906 if (order == 0)
1907 free_hot_page(page);
1908 else
1909 __free_pages_ok(page, order);
1910 }
1911}
1912
1913EXPORT_SYMBOL(__free_pages);
1914
920c7a5d 1915void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1916{
1917 if (addr != 0) {
725d704e 1918 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1919 __free_pages(virt_to_page((void *)addr), order);
1920 }
1921}
1922
1923EXPORT_SYMBOL(free_pages);
1924
2be0ffe2
TT
1925/**
1926 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1927 * @size: the number of bytes to allocate
1928 * @gfp_mask: GFP flags for the allocation
1929 *
1930 * This function is similar to alloc_pages(), except that it allocates the
1931 * minimum number of pages to satisfy the request. alloc_pages() can only
1932 * allocate memory in power-of-two pages.
1933 *
1934 * This function is also limited by MAX_ORDER.
1935 *
1936 * Memory allocated by this function must be released by free_pages_exact().
1937 */
1938void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1939{
1940 unsigned int order = get_order(size);
1941 unsigned long addr;
1942
1943 addr = __get_free_pages(gfp_mask, order);
1944 if (addr) {
1945 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1946 unsigned long used = addr + PAGE_ALIGN(size);
1947
1948 split_page(virt_to_page(addr), order);
1949 while (used < alloc_end) {
1950 free_page(used);
1951 used += PAGE_SIZE;
1952 }
1953 }
1954
1955 return (void *)addr;
1956}
1957EXPORT_SYMBOL(alloc_pages_exact);
1958
1959/**
1960 * free_pages_exact - release memory allocated via alloc_pages_exact()
1961 * @virt: the value returned by alloc_pages_exact.
1962 * @size: size of allocation, same value as passed to alloc_pages_exact().
1963 *
1964 * Release the memory allocated by a previous call to alloc_pages_exact.
1965 */
1966void free_pages_exact(void *virt, size_t size)
1967{
1968 unsigned long addr = (unsigned long)virt;
1969 unsigned long end = addr + PAGE_ALIGN(size);
1970
1971 while (addr < end) {
1972 free_page(addr);
1973 addr += PAGE_SIZE;
1974 }
1975}
1976EXPORT_SYMBOL(free_pages_exact);
1977
1da177e4
LT
1978static unsigned int nr_free_zone_pages(int offset)
1979{
dd1a239f 1980 struct zoneref *z;
54a6eb5c
MG
1981 struct zone *zone;
1982
e310fd43 1983 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1984 unsigned int sum = 0;
1985
0e88460d 1986 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1987
54a6eb5c 1988 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 1989 unsigned long size = zone->present_pages;
41858966 1990 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
1991 if (size > high)
1992 sum += size - high;
1da177e4
LT
1993 }
1994
1995 return sum;
1996}
1997
1998/*
1999 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2000 */
2001unsigned int nr_free_buffer_pages(void)
2002{
af4ca457 2003 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2004}
c2f1a551 2005EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2006
2007/*
2008 * Amount of free RAM allocatable within all zones
2009 */
2010unsigned int nr_free_pagecache_pages(void)
2011{
2a1e274a 2012 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2013}
08e0f6a9
CL
2014
2015static inline void show_node(struct zone *zone)
1da177e4 2016{
08e0f6a9 2017 if (NUMA_BUILD)
25ba77c1 2018 printk("Node %d ", zone_to_nid(zone));
1da177e4 2019}
1da177e4 2020
1da177e4
LT
2021void si_meminfo(struct sysinfo *val)
2022{
2023 val->totalram = totalram_pages;
2024 val->sharedram = 0;
d23ad423 2025 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2026 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2027 val->totalhigh = totalhigh_pages;
2028 val->freehigh = nr_free_highpages();
1da177e4
LT
2029 val->mem_unit = PAGE_SIZE;
2030}
2031
2032EXPORT_SYMBOL(si_meminfo);
2033
2034#ifdef CONFIG_NUMA
2035void si_meminfo_node(struct sysinfo *val, int nid)
2036{
2037 pg_data_t *pgdat = NODE_DATA(nid);
2038
2039 val->totalram = pgdat->node_present_pages;
d23ad423 2040 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2041#ifdef CONFIG_HIGHMEM
1da177e4 2042 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2043 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2044 NR_FREE_PAGES);
98d2b0eb
CL
2045#else
2046 val->totalhigh = 0;
2047 val->freehigh = 0;
2048#endif
1da177e4
LT
2049 val->mem_unit = PAGE_SIZE;
2050}
2051#endif
2052
2053#define K(x) ((x) << (PAGE_SHIFT-10))
2054
2055/*
2056 * Show free area list (used inside shift_scroll-lock stuff)
2057 * We also calculate the percentage fragmentation. We do this by counting the
2058 * memory on each free list with the exception of the first item on the list.
2059 */
2060void show_free_areas(void)
2061{
c7241913 2062 int cpu;
1da177e4
LT
2063 struct zone *zone;
2064
ee99c71c 2065 for_each_populated_zone(zone) {
c7241913
JS
2066 show_node(zone);
2067 printk("%s per-cpu:\n", zone->name);
1da177e4 2068
6b482c67 2069 for_each_online_cpu(cpu) {
1da177e4
LT
2070 struct per_cpu_pageset *pageset;
2071
e7c8d5c9 2072 pageset = zone_pcp(zone, cpu);
1da177e4 2073
3dfa5721
CL
2074 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2075 cpu, pageset->pcp.high,
2076 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2077 }
2078 }
2079
7b854121
LS
2080 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2081 " inactive_file:%lu"
7b854121 2082 " unevictable:%lu"
7b854121 2083 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2084 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2085 global_page_state(NR_ACTIVE_ANON),
2086 global_page_state(NR_ACTIVE_FILE),
2087 global_page_state(NR_INACTIVE_ANON),
2088 global_page_state(NR_INACTIVE_FILE),
7b854121 2089 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2090 global_page_state(NR_FILE_DIRTY),
ce866b34 2091 global_page_state(NR_WRITEBACK),
fd39fc85 2092 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2093 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2094 global_page_state(NR_SLAB_RECLAIMABLE) +
2095 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2096 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2097 global_page_state(NR_PAGETABLE),
2098 global_page_state(NR_BOUNCE));
1da177e4 2099
ee99c71c 2100 for_each_populated_zone(zone) {
1da177e4
LT
2101 int i;
2102
2103 show_node(zone);
2104 printk("%s"
2105 " free:%lukB"
2106 " min:%lukB"
2107 " low:%lukB"
2108 " high:%lukB"
4f98a2fe
RR
2109 " active_anon:%lukB"
2110 " inactive_anon:%lukB"
2111 " active_file:%lukB"
2112 " inactive_file:%lukB"
7b854121 2113 " unevictable:%lukB"
1da177e4
LT
2114 " present:%lukB"
2115 " pages_scanned:%lu"
2116 " all_unreclaimable? %s"
2117 "\n",
2118 zone->name,
d23ad423 2119 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2120 K(min_wmark_pages(zone)),
2121 K(low_wmark_pages(zone)),
2122 K(high_wmark_pages(zone)),
4f98a2fe
RR
2123 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2124 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2125 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2126 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2127 K(zone_page_state(zone, NR_UNEVICTABLE)),
1da177e4
LT
2128 K(zone->present_pages),
2129 zone->pages_scanned,
e815af95 2130 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2131 );
2132 printk("lowmem_reserve[]:");
2133 for (i = 0; i < MAX_NR_ZONES; i++)
2134 printk(" %lu", zone->lowmem_reserve[i]);
2135 printk("\n");
2136 }
2137
ee99c71c 2138 for_each_populated_zone(zone) {
8f9de51a 2139 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2140
2141 show_node(zone);
2142 printk("%s: ", zone->name);
1da177e4
LT
2143
2144 spin_lock_irqsave(&zone->lock, flags);
2145 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2146 nr[order] = zone->free_area[order].nr_free;
2147 total += nr[order] << order;
1da177e4
LT
2148 }
2149 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2150 for (order = 0; order < MAX_ORDER; order++)
2151 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2152 printk("= %lukB\n", K(total));
2153 }
2154
e6f3602d
LW
2155 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2156
1da177e4
LT
2157 show_swap_cache_info();
2158}
2159
19770b32
MG
2160static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2161{
2162 zoneref->zone = zone;
2163 zoneref->zone_idx = zone_idx(zone);
2164}
2165
1da177e4
LT
2166/*
2167 * Builds allocation fallback zone lists.
1a93205b
CL
2168 *
2169 * Add all populated zones of a node to the zonelist.
1da177e4 2170 */
f0c0b2b8
KH
2171static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2172 int nr_zones, enum zone_type zone_type)
1da177e4 2173{
1a93205b
CL
2174 struct zone *zone;
2175
98d2b0eb 2176 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2177 zone_type++;
02a68a5e
CL
2178
2179 do {
2f6726e5 2180 zone_type--;
070f8032 2181 zone = pgdat->node_zones + zone_type;
1a93205b 2182 if (populated_zone(zone)) {
dd1a239f
MG
2183 zoneref_set_zone(zone,
2184 &zonelist->_zonerefs[nr_zones++]);
070f8032 2185 check_highest_zone(zone_type);
1da177e4 2186 }
02a68a5e 2187
2f6726e5 2188 } while (zone_type);
070f8032 2189 return nr_zones;
1da177e4
LT
2190}
2191
f0c0b2b8
KH
2192
2193/*
2194 * zonelist_order:
2195 * 0 = automatic detection of better ordering.
2196 * 1 = order by ([node] distance, -zonetype)
2197 * 2 = order by (-zonetype, [node] distance)
2198 *
2199 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2200 * the same zonelist. So only NUMA can configure this param.
2201 */
2202#define ZONELIST_ORDER_DEFAULT 0
2203#define ZONELIST_ORDER_NODE 1
2204#define ZONELIST_ORDER_ZONE 2
2205
2206/* zonelist order in the kernel.
2207 * set_zonelist_order() will set this to NODE or ZONE.
2208 */
2209static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2210static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2211
2212
1da177e4 2213#ifdef CONFIG_NUMA
f0c0b2b8
KH
2214/* The value user specified ....changed by config */
2215static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2216/* string for sysctl */
2217#define NUMA_ZONELIST_ORDER_LEN 16
2218char numa_zonelist_order[16] = "default";
2219
2220/*
2221 * interface for configure zonelist ordering.
2222 * command line option "numa_zonelist_order"
2223 * = "[dD]efault - default, automatic configuration.
2224 * = "[nN]ode - order by node locality, then by zone within node
2225 * = "[zZ]one - order by zone, then by locality within zone
2226 */
2227
2228static int __parse_numa_zonelist_order(char *s)
2229{
2230 if (*s == 'd' || *s == 'D') {
2231 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2232 } else if (*s == 'n' || *s == 'N') {
2233 user_zonelist_order = ZONELIST_ORDER_NODE;
2234 } else if (*s == 'z' || *s == 'Z') {
2235 user_zonelist_order = ZONELIST_ORDER_ZONE;
2236 } else {
2237 printk(KERN_WARNING
2238 "Ignoring invalid numa_zonelist_order value: "
2239 "%s\n", s);
2240 return -EINVAL;
2241 }
2242 return 0;
2243}
2244
2245static __init int setup_numa_zonelist_order(char *s)
2246{
2247 if (s)
2248 return __parse_numa_zonelist_order(s);
2249 return 0;
2250}
2251early_param("numa_zonelist_order", setup_numa_zonelist_order);
2252
2253/*
2254 * sysctl handler for numa_zonelist_order
2255 */
2256int numa_zonelist_order_handler(ctl_table *table, int write,
2257 struct file *file, void __user *buffer, size_t *length,
2258 loff_t *ppos)
2259{
2260 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2261 int ret;
2262
2263 if (write)
2264 strncpy(saved_string, (char*)table->data,
2265 NUMA_ZONELIST_ORDER_LEN);
2266 ret = proc_dostring(table, write, file, buffer, length, ppos);
2267 if (ret)
2268 return ret;
2269 if (write) {
2270 int oldval = user_zonelist_order;
2271 if (__parse_numa_zonelist_order((char*)table->data)) {
2272 /*
2273 * bogus value. restore saved string
2274 */
2275 strncpy((char*)table->data, saved_string,
2276 NUMA_ZONELIST_ORDER_LEN);
2277 user_zonelist_order = oldval;
2278 } else if (oldval != user_zonelist_order)
2279 build_all_zonelists();
2280 }
2281 return 0;
2282}
2283
2284
62bc62a8 2285#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2286static int node_load[MAX_NUMNODES];
2287
1da177e4 2288/**
4dc3b16b 2289 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2290 * @node: node whose fallback list we're appending
2291 * @used_node_mask: nodemask_t of already used nodes
2292 *
2293 * We use a number of factors to determine which is the next node that should
2294 * appear on a given node's fallback list. The node should not have appeared
2295 * already in @node's fallback list, and it should be the next closest node
2296 * according to the distance array (which contains arbitrary distance values
2297 * from each node to each node in the system), and should also prefer nodes
2298 * with no CPUs, since presumably they'll have very little allocation pressure
2299 * on them otherwise.
2300 * It returns -1 if no node is found.
2301 */
f0c0b2b8 2302static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2303{
4cf808eb 2304 int n, val;
1da177e4
LT
2305 int min_val = INT_MAX;
2306 int best_node = -1;
a70f7302 2307 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2308
4cf808eb
LT
2309 /* Use the local node if we haven't already */
2310 if (!node_isset(node, *used_node_mask)) {
2311 node_set(node, *used_node_mask);
2312 return node;
2313 }
1da177e4 2314
37b07e41 2315 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2316
2317 /* Don't want a node to appear more than once */
2318 if (node_isset(n, *used_node_mask))
2319 continue;
2320
1da177e4
LT
2321 /* Use the distance array to find the distance */
2322 val = node_distance(node, n);
2323
4cf808eb
LT
2324 /* Penalize nodes under us ("prefer the next node") */
2325 val += (n < node);
2326
1da177e4 2327 /* Give preference to headless and unused nodes */
a70f7302
RR
2328 tmp = cpumask_of_node(n);
2329 if (!cpumask_empty(tmp))
1da177e4
LT
2330 val += PENALTY_FOR_NODE_WITH_CPUS;
2331
2332 /* Slight preference for less loaded node */
2333 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2334 val += node_load[n];
2335
2336 if (val < min_val) {
2337 min_val = val;
2338 best_node = n;
2339 }
2340 }
2341
2342 if (best_node >= 0)
2343 node_set(best_node, *used_node_mask);
2344
2345 return best_node;
2346}
2347
f0c0b2b8
KH
2348
2349/*
2350 * Build zonelists ordered by node and zones within node.
2351 * This results in maximum locality--normal zone overflows into local
2352 * DMA zone, if any--but risks exhausting DMA zone.
2353 */
2354static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2355{
f0c0b2b8 2356 int j;
1da177e4 2357 struct zonelist *zonelist;
f0c0b2b8 2358
54a6eb5c 2359 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2360 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2361 ;
2362 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2363 MAX_NR_ZONES - 1);
dd1a239f
MG
2364 zonelist->_zonerefs[j].zone = NULL;
2365 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2366}
2367
523b9458
CL
2368/*
2369 * Build gfp_thisnode zonelists
2370 */
2371static void build_thisnode_zonelists(pg_data_t *pgdat)
2372{
523b9458
CL
2373 int j;
2374 struct zonelist *zonelist;
2375
54a6eb5c
MG
2376 zonelist = &pgdat->node_zonelists[1];
2377 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2378 zonelist->_zonerefs[j].zone = NULL;
2379 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2380}
2381
f0c0b2b8
KH
2382/*
2383 * Build zonelists ordered by zone and nodes within zones.
2384 * This results in conserving DMA zone[s] until all Normal memory is
2385 * exhausted, but results in overflowing to remote node while memory
2386 * may still exist in local DMA zone.
2387 */
2388static int node_order[MAX_NUMNODES];
2389
2390static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2391{
f0c0b2b8
KH
2392 int pos, j, node;
2393 int zone_type; /* needs to be signed */
2394 struct zone *z;
2395 struct zonelist *zonelist;
2396
54a6eb5c
MG
2397 zonelist = &pgdat->node_zonelists[0];
2398 pos = 0;
2399 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2400 for (j = 0; j < nr_nodes; j++) {
2401 node = node_order[j];
2402 z = &NODE_DATA(node)->node_zones[zone_type];
2403 if (populated_zone(z)) {
dd1a239f
MG
2404 zoneref_set_zone(z,
2405 &zonelist->_zonerefs[pos++]);
54a6eb5c 2406 check_highest_zone(zone_type);
f0c0b2b8
KH
2407 }
2408 }
f0c0b2b8 2409 }
dd1a239f
MG
2410 zonelist->_zonerefs[pos].zone = NULL;
2411 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2412}
2413
2414static int default_zonelist_order(void)
2415{
2416 int nid, zone_type;
2417 unsigned long low_kmem_size,total_size;
2418 struct zone *z;
2419 int average_size;
2420 /*
2421 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2422 * If they are really small and used heavily, the system can fall
2423 * into OOM very easily.
2424 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2425 */
2426 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2427 low_kmem_size = 0;
2428 total_size = 0;
2429 for_each_online_node(nid) {
2430 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2431 z = &NODE_DATA(nid)->node_zones[zone_type];
2432 if (populated_zone(z)) {
2433 if (zone_type < ZONE_NORMAL)
2434 low_kmem_size += z->present_pages;
2435 total_size += z->present_pages;
2436 }
2437 }
2438 }
2439 if (!low_kmem_size || /* there are no DMA area. */
2440 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2441 return ZONELIST_ORDER_NODE;
2442 /*
2443 * look into each node's config.
2444 * If there is a node whose DMA/DMA32 memory is very big area on
2445 * local memory, NODE_ORDER may be suitable.
2446 */
37b07e41
LS
2447 average_size = total_size /
2448 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2449 for_each_online_node(nid) {
2450 low_kmem_size = 0;
2451 total_size = 0;
2452 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2453 z = &NODE_DATA(nid)->node_zones[zone_type];
2454 if (populated_zone(z)) {
2455 if (zone_type < ZONE_NORMAL)
2456 low_kmem_size += z->present_pages;
2457 total_size += z->present_pages;
2458 }
2459 }
2460 if (low_kmem_size &&
2461 total_size > average_size && /* ignore small node */
2462 low_kmem_size > total_size * 70/100)
2463 return ZONELIST_ORDER_NODE;
2464 }
2465 return ZONELIST_ORDER_ZONE;
2466}
2467
2468static void set_zonelist_order(void)
2469{
2470 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2471 current_zonelist_order = default_zonelist_order();
2472 else
2473 current_zonelist_order = user_zonelist_order;
2474}
2475
2476static void build_zonelists(pg_data_t *pgdat)
2477{
2478 int j, node, load;
2479 enum zone_type i;
1da177e4 2480 nodemask_t used_mask;
f0c0b2b8
KH
2481 int local_node, prev_node;
2482 struct zonelist *zonelist;
2483 int order = current_zonelist_order;
1da177e4
LT
2484
2485 /* initialize zonelists */
523b9458 2486 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2487 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2488 zonelist->_zonerefs[0].zone = NULL;
2489 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2490 }
2491
2492 /* NUMA-aware ordering of nodes */
2493 local_node = pgdat->node_id;
62bc62a8 2494 load = nr_online_nodes;
1da177e4
LT
2495 prev_node = local_node;
2496 nodes_clear(used_mask);
f0c0b2b8
KH
2497
2498 memset(node_load, 0, sizeof(node_load));
2499 memset(node_order, 0, sizeof(node_order));
2500 j = 0;
2501
1da177e4 2502 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2503 int distance = node_distance(local_node, node);
2504
2505 /*
2506 * If another node is sufficiently far away then it is better
2507 * to reclaim pages in a zone before going off node.
2508 */
2509 if (distance > RECLAIM_DISTANCE)
2510 zone_reclaim_mode = 1;
2511
1da177e4
LT
2512 /*
2513 * We don't want to pressure a particular node.
2514 * So adding penalty to the first node in same
2515 * distance group to make it round-robin.
2516 */
9eeff239 2517 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2518 node_load[node] = load;
2519
1da177e4
LT
2520 prev_node = node;
2521 load--;
f0c0b2b8
KH
2522 if (order == ZONELIST_ORDER_NODE)
2523 build_zonelists_in_node_order(pgdat, node);
2524 else
2525 node_order[j++] = node; /* remember order */
2526 }
1da177e4 2527
f0c0b2b8
KH
2528 if (order == ZONELIST_ORDER_ZONE) {
2529 /* calculate node order -- i.e., DMA last! */
2530 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2531 }
523b9458
CL
2532
2533 build_thisnode_zonelists(pgdat);
1da177e4
LT
2534}
2535
9276b1bc 2536/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2537static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2538{
54a6eb5c
MG
2539 struct zonelist *zonelist;
2540 struct zonelist_cache *zlc;
dd1a239f 2541 struct zoneref *z;
9276b1bc 2542
54a6eb5c
MG
2543 zonelist = &pgdat->node_zonelists[0];
2544 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2545 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2546 for (z = zonelist->_zonerefs; z->zone; z++)
2547 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2548}
2549
f0c0b2b8 2550
1da177e4
LT
2551#else /* CONFIG_NUMA */
2552
f0c0b2b8
KH
2553static void set_zonelist_order(void)
2554{
2555 current_zonelist_order = ZONELIST_ORDER_ZONE;
2556}
2557
2558static void build_zonelists(pg_data_t *pgdat)
1da177e4 2559{
19655d34 2560 int node, local_node;
54a6eb5c
MG
2561 enum zone_type j;
2562 struct zonelist *zonelist;
1da177e4
LT
2563
2564 local_node = pgdat->node_id;
1da177e4 2565
54a6eb5c
MG
2566 zonelist = &pgdat->node_zonelists[0];
2567 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2568
54a6eb5c
MG
2569 /*
2570 * Now we build the zonelist so that it contains the zones
2571 * of all the other nodes.
2572 * We don't want to pressure a particular node, so when
2573 * building the zones for node N, we make sure that the
2574 * zones coming right after the local ones are those from
2575 * node N+1 (modulo N)
2576 */
2577 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2578 if (!node_online(node))
2579 continue;
2580 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2581 MAX_NR_ZONES - 1);
1da177e4 2582 }
54a6eb5c
MG
2583 for (node = 0; node < local_node; node++) {
2584 if (!node_online(node))
2585 continue;
2586 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2587 MAX_NR_ZONES - 1);
2588 }
2589
dd1a239f
MG
2590 zonelist->_zonerefs[j].zone = NULL;
2591 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2592}
2593
9276b1bc 2594/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2595static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2596{
54a6eb5c 2597 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2598}
2599
1da177e4
LT
2600#endif /* CONFIG_NUMA */
2601
9b1a4d38 2602/* return values int ....just for stop_machine() */
f0c0b2b8 2603static int __build_all_zonelists(void *dummy)
1da177e4 2604{
6811378e 2605 int nid;
9276b1bc
PJ
2606
2607 for_each_online_node(nid) {
7ea1530a
CL
2608 pg_data_t *pgdat = NODE_DATA(nid);
2609
2610 build_zonelists(pgdat);
2611 build_zonelist_cache(pgdat);
9276b1bc 2612 }
6811378e
YG
2613 return 0;
2614}
2615
f0c0b2b8 2616void build_all_zonelists(void)
6811378e 2617{
f0c0b2b8
KH
2618 set_zonelist_order();
2619
6811378e 2620 if (system_state == SYSTEM_BOOTING) {
423b41d7 2621 __build_all_zonelists(NULL);
68ad8df4 2622 mminit_verify_zonelist();
6811378e
YG
2623 cpuset_init_current_mems_allowed();
2624 } else {
183ff22b 2625 /* we have to stop all cpus to guarantee there is no user
6811378e 2626 of zonelist */
9b1a4d38 2627 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2628 /* cpuset refresh routine should be here */
2629 }
bd1e22b8 2630 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2631 /*
2632 * Disable grouping by mobility if the number of pages in the
2633 * system is too low to allow the mechanism to work. It would be
2634 * more accurate, but expensive to check per-zone. This check is
2635 * made on memory-hotadd so a system can start with mobility
2636 * disabled and enable it later
2637 */
d9c23400 2638 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2639 page_group_by_mobility_disabled = 1;
2640 else
2641 page_group_by_mobility_disabled = 0;
2642
2643 printk("Built %i zonelists in %s order, mobility grouping %s. "
2644 "Total pages: %ld\n",
62bc62a8 2645 nr_online_nodes,
f0c0b2b8 2646 zonelist_order_name[current_zonelist_order],
9ef9acb0 2647 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2648 vm_total_pages);
2649#ifdef CONFIG_NUMA
2650 printk("Policy zone: %s\n", zone_names[policy_zone]);
2651#endif
1da177e4
LT
2652}
2653
2654/*
2655 * Helper functions to size the waitqueue hash table.
2656 * Essentially these want to choose hash table sizes sufficiently
2657 * large so that collisions trying to wait on pages are rare.
2658 * But in fact, the number of active page waitqueues on typical
2659 * systems is ridiculously low, less than 200. So this is even
2660 * conservative, even though it seems large.
2661 *
2662 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2663 * waitqueues, i.e. the size of the waitq table given the number of pages.
2664 */
2665#define PAGES_PER_WAITQUEUE 256
2666
cca448fe 2667#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2668static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2669{
2670 unsigned long size = 1;
2671
2672 pages /= PAGES_PER_WAITQUEUE;
2673
2674 while (size < pages)
2675 size <<= 1;
2676
2677 /*
2678 * Once we have dozens or even hundreds of threads sleeping
2679 * on IO we've got bigger problems than wait queue collision.
2680 * Limit the size of the wait table to a reasonable size.
2681 */
2682 size = min(size, 4096UL);
2683
2684 return max(size, 4UL);
2685}
cca448fe
YG
2686#else
2687/*
2688 * A zone's size might be changed by hot-add, so it is not possible to determine
2689 * a suitable size for its wait_table. So we use the maximum size now.
2690 *
2691 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2692 *
2693 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2694 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2695 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2696 *
2697 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2698 * or more by the traditional way. (See above). It equals:
2699 *
2700 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2701 * ia64(16K page size) : = ( 8G + 4M)byte.
2702 * powerpc (64K page size) : = (32G +16M)byte.
2703 */
2704static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2705{
2706 return 4096UL;
2707}
2708#endif
1da177e4
LT
2709
2710/*
2711 * This is an integer logarithm so that shifts can be used later
2712 * to extract the more random high bits from the multiplicative
2713 * hash function before the remainder is taken.
2714 */
2715static inline unsigned long wait_table_bits(unsigned long size)
2716{
2717 return ffz(~size);
2718}
2719
2720#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2721
56fd56b8 2722/*
d9c23400 2723 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2724 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2725 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2726 * higher will lead to a bigger reserve which will get freed as contiguous
2727 * blocks as reclaim kicks in
2728 */
2729static void setup_zone_migrate_reserve(struct zone *zone)
2730{
2731 unsigned long start_pfn, pfn, end_pfn;
2732 struct page *page;
2733 unsigned long reserve, block_migratetype;
2734
2735 /* Get the start pfn, end pfn and the number of blocks to reserve */
2736 start_pfn = zone->zone_start_pfn;
2737 end_pfn = start_pfn + zone->spanned_pages;
41858966 2738 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2739 pageblock_order;
56fd56b8 2740
d9c23400 2741 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2742 if (!pfn_valid(pfn))
2743 continue;
2744 page = pfn_to_page(pfn);
2745
344c790e
AL
2746 /* Watch out for overlapping nodes */
2747 if (page_to_nid(page) != zone_to_nid(zone))
2748 continue;
2749
56fd56b8
MG
2750 /* Blocks with reserved pages will never free, skip them. */
2751 if (PageReserved(page))
2752 continue;
2753
2754 block_migratetype = get_pageblock_migratetype(page);
2755
2756 /* If this block is reserved, account for it */
2757 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2758 reserve--;
2759 continue;
2760 }
2761
2762 /* Suitable for reserving if this block is movable */
2763 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2764 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2765 move_freepages_block(zone, page, MIGRATE_RESERVE);
2766 reserve--;
2767 continue;
2768 }
2769
2770 /*
2771 * If the reserve is met and this is a previous reserved block,
2772 * take it back
2773 */
2774 if (block_migratetype == MIGRATE_RESERVE) {
2775 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2776 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2777 }
2778 }
2779}
ac0e5b7a 2780
1da177e4
LT
2781/*
2782 * Initially all pages are reserved - free ones are freed
2783 * up by free_all_bootmem() once the early boot process is
2784 * done. Non-atomic initialization, single-pass.
2785 */
c09b4240 2786void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2787 unsigned long start_pfn, enum memmap_context context)
1da177e4 2788{
1da177e4 2789 struct page *page;
29751f69
AW
2790 unsigned long end_pfn = start_pfn + size;
2791 unsigned long pfn;
86051ca5 2792 struct zone *z;
1da177e4 2793
22b31eec
HD
2794 if (highest_memmap_pfn < end_pfn - 1)
2795 highest_memmap_pfn = end_pfn - 1;
2796
86051ca5 2797 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2798 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2799 /*
2800 * There can be holes in boot-time mem_map[]s
2801 * handed to this function. They do not
2802 * exist on hotplugged memory.
2803 */
2804 if (context == MEMMAP_EARLY) {
2805 if (!early_pfn_valid(pfn))
2806 continue;
2807 if (!early_pfn_in_nid(pfn, nid))
2808 continue;
2809 }
d41dee36
AW
2810 page = pfn_to_page(pfn);
2811 set_page_links(page, zone, nid, pfn);
708614e6 2812 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2813 init_page_count(page);
1da177e4
LT
2814 reset_page_mapcount(page);
2815 SetPageReserved(page);
b2a0ac88
MG
2816 /*
2817 * Mark the block movable so that blocks are reserved for
2818 * movable at startup. This will force kernel allocations
2819 * to reserve their blocks rather than leaking throughout
2820 * the address space during boot when many long-lived
56fd56b8
MG
2821 * kernel allocations are made. Later some blocks near
2822 * the start are marked MIGRATE_RESERVE by
2823 * setup_zone_migrate_reserve()
86051ca5
KH
2824 *
2825 * bitmap is created for zone's valid pfn range. but memmap
2826 * can be created for invalid pages (for alignment)
2827 * check here not to call set_pageblock_migratetype() against
2828 * pfn out of zone.
b2a0ac88 2829 */
86051ca5
KH
2830 if ((z->zone_start_pfn <= pfn)
2831 && (pfn < z->zone_start_pfn + z->spanned_pages)
2832 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2833 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2834
1da177e4
LT
2835 INIT_LIST_HEAD(&page->lru);
2836#ifdef WANT_PAGE_VIRTUAL
2837 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2838 if (!is_highmem_idx(zone))
3212c6be 2839 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2840#endif
1da177e4
LT
2841 }
2842}
2843
1e548deb 2844static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2845{
b2a0ac88
MG
2846 int order, t;
2847 for_each_migratetype_order(order, t) {
2848 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2849 zone->free_area[order].nr_free = 0;
2850 }
2851}
2852
2853#ifndef __HAVE_ARCH_MEMMAP_INIT
2854#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2855 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2856#endif
2857
1d6f4e60 2858static int zone_batchsize(struct zone *zone)
e7c8d5c9 2859{
3a6be87f 2860#ifdef CONFIG_MMU
e7c8d5c9
CL
2861 int batch;
2862
2863 /*
2864 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2865 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2866 *
2867 * OK, so we don't know how big the cache is. So guess.
2868 */
2869 batch = zone->present_pages / 1024;
ba56e91c
SR
2870 if (batch * PAGE_SIZE > 512 * 1024)
2871 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2872 batch /= 4; /* We effectively *= 4 below */
2873 if (batch < 1)
2874 batch = 1;
2875
2876 /*
0ceaacc9
NP
2877 * Clamp the batch to a 2^n - 1 value. Having a power
2878 * of 2 value was found to be more likely to have
2879 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2880 *
0ceaacc9
NP
2881 * For example if 2 tasks are alternately allocating
2882 * batches of pages, one task can end up with a lot
2883 * of pages of one half of the possible page colors
2884 * and the other with pages of the other colors.
e7c8d5c9 2885 */
9155203a 2886 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2887
e7c8d5c9 2888 return batch;
3a6be87f
DH
2889
2890#else
2891 /* The deferral and batching of frees should be suppressed under NOMMU
2892 * conditions.
2893 *
2894 * The problem is that NOMMU needs to be able to allocate large chunks
2895 * of contiguous memory as there's no hardware page translation to
2896 * assemble apparent contiguous memory from discontiguous pages.
2897 *
2898 * Queueing large contiguous runs of pages for batching, however,
2899 * causes the pages to actually be freed in smaller chunks. As there
2900 * can be a significant delay between the individual batches being
2901 * recycled, this leads to the once large chunks of space being
2902 * fragmented and becoming unavailable for high-order allocations.
2903 */
2904 return 0;
2905#endif
e7c8d5c9
CL
2906}
2907
b69a7288 2908static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2909{
2910 struct per_cpu_pages *pcp;
2911
1c6fe946
MD
2912 memset(p, 0, sizeof(*p));
2913
3dfa5721 2914 pcp = &p->pcp;
2caaad41 2915 pcp->count = 0;
2caaad41
CL
2916 pcp->high = 6 * batch;
2917 pcp->batch = max(1UL, 1 * batch);
2918 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2919}
2920
8ad4b1fb
RS
2921/*
2922 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2923 * to the value high for the pageset p.
2924 */
2925
2926static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2927 unsigned long high)
2928{
2929 struct per_cpu_pages *pcp;
2930
3dfa5721 2931 pcp = &p->pcp;
8ad4b1fb
RS
2932 pcp->high = high;
2933 pcp->batch = max(1UL, high/4);
2934 if ((high/4) > (PAGE_SHIFT * 8))
2935 pcp->batch = PAGE_SHIFT * 8;
2936}
2937
2938
e7c8d5c9
CL
2939#ifdef CONFIG_NUMA
2940/*
2caaad41
CL
2941 * Boot pageset table. One per cpu which is going to be used for all
2942 * zones and all nodes. The parameters will be set in such a way
2943 * that an item put on a list will immediately be handed over to
2944 * the buddy list. This is safe since pageset manipulation is done
2945 * with interrupts disabled.
2946 *
2947 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2948 *
2949 * The boot_pagesets must be kept even after bootup is complete for
2950 * unused processors and/or zones. They do play a role for bootstrapping
2951 * hotplugged processors.
2952 *
2953 * zoneinfo_show() and maybe other functions do
2954 * not check if the processor is online before following the pageset pointer.
2955 * Other parts of the kernel may not check if the zone is available.
2caaad41 2956 */
88a2a4ac 2957static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2958
2959/*
2960 * Dynamically allocate memory for the
e7c8d5c9
CL
2961 * per cpu pageset array in struct zone.
2962 */
6292d9aa 2963static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2964{
2965 struct zone *zone, *dzone;
37c0708d
CL
2966 int node = cpu_to_node(cpu);
2967
2968 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2969
ee99c71c 2970 for_each_populated_zone(zone) {
23316bc8 2971 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2972 GFP_KERNEL, node);
23316bc8 2973 if (!zone_pcp(zone, cpu))
e7c8d5c9 2974 goto bad;
e7c8d5c9 2975
23316bc8 2976 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2977
2978 if (percpu_pagelist_fraction)
2979 setup_pagelist_highmark(zone_pcp(zone, cpu),
2980 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2981 }
2982
2983 return 0;
2984bad:
2985 for_each_zone(dzone) {
64191688
AM
2986 if (!populated_zone(dzone))
2987 continue;
e7c8d5c9
CL
2988 if (dzone == zone)
2989 break;
23316bc8
NP
2990 kfree(zone_pcp(dzone, cpu));
2991 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2992 }
2993 return -ENOMEM;
2994}
2995
2996static inline void free_zone_pagesets(int cpu)
2997{
e7c8d5c9
CL
2998 struct zone *zone;
2999
3000 for_each_zone(zone) {
3001 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3002
f3ef9ead
DR
3003 /* Free per_cpu_pageset if it is slab allocated */
3004 if (pset != &boot_pageset[cpu])
3005 kfree(pset);
e7c8d5c9 3006 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 3007 }
e7c8d5c9
CL
3008}
3009
9c7b216d 3010static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3011 unsigned long action,
3012 void *hcpu)
3013{
3014 int cpu = (long)hcpu;
3015 int ret = NOTIFY_OK;
3016
3017 switch (action) {
ce421c79 3018 case CPU_UP_PREPARE:
8bb78442 3019 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3020 if (process_zones(cpu))
3021 ret = NOTIFY_BAD;
3022 break;
3023 case CPU_UP_CANCELED:
8bb78442 3024 case CPU_UP_CANCELED_FROZEN:
ce421c79 3025 case CPU_DEAD:
8bb78442 3026 case CPU_DEAD_FROZEN:
ce421c79
AW
3027 free_zone_pagesets(cpu);
3028 break;
3029 default:
3030 break;
e7c8d5c9
CL
3031 }
3032 return ret;
3033}
3034
74b85f37 3035static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3036 { &pageset_cpuup_callback, NULL, 0 };
3037
78d9955b 3038void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3039{
3040 int err;
3041
3042 /* Initialize per_cpu_pageset for cpu 0.
3043 * A cpuup callback will do this for every cpu
3044 * as it comes online
3045 */
3046 err = process_zones(smp_processor_id());
3047 BUG_ON(err);
3048 register_cpu_notifier(&pageset_notifier);
3049}
3050
3051#endif
3052
577a32f6 3053static noinline __init_refok
cca448fe 3054int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3055{
3056 int i;
3057 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3058 size_t alloc_size;
ed8ece2e
DH
3059
3060 /*
3061 * The per-page waitqueue mechanism uses hashed waitqueues
3062 * per zone.
3063 */
02b694de
YG
3064 zone->wait_table_hash_nr_entries =
3065 wait_table_hash_nr_entries(zone_size_pages);
3066 zone->wait_table_bits =
3067 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3068 alloc_size = zone->wait_table_hash_nr_entries
3069 * sizeof(wait_queue_head_t);
3070
cd94b9db 3071 if (!slab_is_available()) {
cca448fe
YG
3072 zone->wait_table = (wait_queue_head_t *)
3073 alloc_bootmem_node(pgdat, alloc_size);
3074 } else {
3075 /*
3076 * This case means that a zone whose size was 0 gets new memory
3077 * via memory hot-add.
3078 * But it may be the case that a new node was hot-added. In
3079 * this case vmalloc() will not be able to use this new node's
3080 * memory - this wait_table must be initialized to use this new
3081 * node itself as well.
3082 * To use this new node's memory, further consideration will be
3083 * necessary.
3084 */
8691f3a7 3085 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3086 }
3087 if (!zone->wait_table)
3088 return -ENOMEM;
ed8ece2e 3089
02b694de 3090 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3091 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3092
3093 return 0;
ed8ece2e
DH
3094}
3095
c09b4240 3096static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3097{
3098 int cpu;
3099 unsigned long batch = zone_batchsize(zone);
3100
3101 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3102#ifdef CONFIG_NUMA
3103 /* Early boot. Slab allocator not functional yet */
23316bc8 3104 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3105 setup_pageset(&boot_pageset[cpu],0);
3106#else
3107 setup_pageset(zone_pcp(zone,cpu), batch);
3108#endif
3109 }
f5335c0f
AB
3110 if (zone->present_pages)
3111 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3112 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3113}
3114
718127cc
YG
3115__meminit int init_currently_empty_zone(struct zone *zone,
3116 unsigned long zone_start_pfn,
a2f3aa02
DH
3117 unsigned long size,
3118 enum memmap_context context)
ed8ece2e
DH
3119{
3120 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3121 int ret;
3122 ret = zone_wait_table_init(zone, size);
3123 if (ret)
3124 return ret;
ed8ece2e
DH
3125 pgdat->nr_zones = zone_idx(zone) + 1;
3126
ed8ece2e
DH
3127 zone->zone_start_pfn = zone_start_pfn;
3128
708614e6
MG
3129 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3130 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3131 pgdat->node_id,
3132 (unsigned long)zone_idx(zone),
3133 zone_start_pfn, (zone_start_pfn + size));
3134
1e548deb 3135 zone_init_free_lists(zone);
718127cc
YG
3136
3137 return 0;
ed8ece2e
DH
3138}
3139
c713216d
MG
3140#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3141/*
3142 * Basic iterator support. Return the first range of PFNs for a node
3143 * Note: nid == MAX_NUMNODES returns first region regardless of node
3144 */
a3142c8e 3145static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3146{
3147 int i;
3148
3149 for (i = 0; i < nr_nodemap_entries; i++)
3150 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3151 return i;
3152
3153 return -1;
3154}
3155
3156/*
3157 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3158 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3159 */
a3142c8e 3160static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3161{
3162 for (index = index + 1; index < nr_nodemap_entries; index++)
3163 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3164 return index;
3165
3166 return -1;
3167}
3168
3169#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3170/*
3171 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3172 * Architectures may implement their own version but if add_active_range()
3173 * was used and there are no special requirements, this is a convenient
3174 * alternative
3175 */
f2dbcfa7 3176int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3177{
3178 int i;
3179
3180 for (i = 0; i < nr_nodemap_entries; i++) {
3181 unsigned long start_pfn = early_node_map[i].start_pfn;
3182 unsigned long end_pfn = early_node_map[i].end_pfn;
3183
3184 if (start_pfn <= pfn && pfn < end_pfn)
3185 return early_node_map[i].nid;
3186 }
cc2559bc
KH
3187 /* This is a memory hole */
3188 return -1;
c713216d
MG
3189}
3190#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3191
f2dbcfa7
KH
3192int __meminit early_pfn_to_nid(unsigned long pfn)
3193{
cc2559bc
KH
3194 int nid;
3195
3196 nid = __early_pfn_to_nid(pfn);
3197 if (nid >= 0)
3198 return nid;
3199 /* just returns 0 */
3200 return 0;
f2dbcfa7
KH
3201}
3202
cc2559bc
KH
3203#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3204bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3205{
3206 int nid;
3207
3208 nid = __early_pfn_to_nid(pfn);
3209 if (nid >= 0 && nid != node)
3210 return false;
3211 return true;
3212}
3213#endif
f2dbcfa7 3214
c713216d
MG
3215/* Basic iterator support to walk early_node_map[] */
3216#define for_each_active_range_index_in_nid(i, nid) \
3217 for (i = first_active_region_index_in_nid(nid); i != -1; \
3218 i = next_active_region_index_in_nid(i, nid))
3219
3220/**
3221 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3222 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3223 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3224 *
3225 * If an architecture guarantees that all ranges registered with
3226 * add_active_ranges() contain no holes and may be freed, this
3227 * this function may be used instead of calling free_bootmem() manually.
3228 */
3229void __init free_bootmem_with_active_regions(int nid,
3230 unsigned long max_low_pfn)
3231{
3232 int i;
3233
3234 for_each_active_range_index_in_nid(i, nid) {
3235 unsigned long size_pages = 0;
3236 unsigned long end_pfn = early_node_map[i].end_pfn;
3237
3238 if (early_node_map[i].start_pfn >= max_low_pfn)
3239 continue;
3240
3241 if (end_pfn > max_low_pfn)
3242 end_pfn = max_low_pfn;
3243
3244 size_pages = end_pfn - early_node_map[i].start_pfn;
3245 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3246 PFN_PHYS(early_node_map[i].start_pfn),
3247 size_pages << PAGE_SHIFT);
3248 }
3249}
3250
b5bc6c0e
YL
3251void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3252{
3253 int i;
d52d53b8 3254 int ret;
b5bc6c0e 3255
d52d53b8
YL
3256 for_each_active_range_index_in_nid(i, nid) {
3257 ret = work_fn(early_node_map[i].start_pfn,
3258 early_node_map[i].end_pfn, data);
3259 if (ret)
3260 break;
3261 }
b5bc6c0e 3262}
c713216d
MG
3263/**
3264 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3265 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3266 *
3267 * If an architecture guarantees that all ranges registered with
3268 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3269 * function may be used instead of calling memory_present() manually.
c713216d
MG
3270 */
3271void __init sparse_memory_present_with_active_regions(int nid)
3272{
3273 int i;
3274
3275 for_each_active_range_index_in_nid(i, nid)
3276 memory_present(early_node_map[i].nid,
3277 early_node_map[i].start_pfn,
3278 early_node_map[i].end_pfn);
3279}
3280
3281/**
3282 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3283 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3284 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3285 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3286 *
3287 * It returns the start and end page frame of a node based on information
3288 * provided by an arch calling add_active_range(). If called for a node
3289 * with no available memory, a warning is printed and the start and end
88ca3b94 3290 * PFNs will be 0.
c713216d 3291 */
a3142c8e 3292void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3293 unsigned long *start_pfn, unsigned long *end_pfn)
3294{
3295 int i;
3296 *start_pfn = -1UL;
3297 *end_pfn = 0;
3298
3299 for_each_active_range_index_in_nid(i, nid) {
3300 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3301 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3302 }
3303
633c0666 3304 if (*start_pfn == -1UL)
c713216d 3305 *start_pfn = 0;
c713216d
MG
3306}
3307
2a1e274a
MG
3308/*
3309 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3310 * assumption is made that zones within a node are ordered in monotonic
3311 * increasing memory addresses so that the "highest" populated zone is used
3312 */
b69a7288 3313static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3314{
3315 int zone_index;
3316 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3317 if (zone_index == ZONE_MOVABLE)
3318 continue;
3319
3320 if (arch_zone_highest_possible_pfn[zone_index] >
3321 arch_zone_lowest_possible_pfn[zone_index])
3322 break;
3323 }
3324
3325 VM_BUG_ON(zone_index == -1);
3326 movable_zone = zone_index;
3327}
3328
3329/*
3330 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3331 * because it is sized independant of architecture. Unlike the other zones,
3332 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3333 * in each node depending on the size of each node and how evenly kernelcore
3334 * is distributed. This helper function adjusts the zone ranges
3335 * provided by the architecture for a given node by using the end of the
3336 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3337 * zones within a node are in order of monotonic increases memory addresses
3338 */
b69a7288 3339static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3340 unsigned long zone_type,
3341 unsigned long node_start_pfn,
3342 unsigned long node_end_pfn,
3343 unsigned long *zone_start_pfn,
3344 unsigned long *zone_end_pfn)
3345{
3346 /* Only adjust if ZONE_MOVABLE is on this node */
3347 if (zone_movable_pfn[nid]) {
3348 /* Size ZONE_MOVABLE */
3349 if (zone_type == ZONE_MOVABLE) {
3350 *zone_start_pfn = zone_movable_pfn[nid];
3351 *zone_end_pfn = min(node_end_pfn,
3352 arch_zone_highest_possible_pfn[movable_zone]);
3353
3354 /* Adjust for ZONE_MOVABLE starting within this range */
3355 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3356 *zone_end_pfn > zone_movable_pfn[nid]) {
3357 *zone_end_pfn = zone_movable_pfn[nid];
3358
3359 /* Check if this whole range is within ZONE_MOVABLE */
3360 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3361 *zone_start_pfn = *zone_end_pfn;
3362 }
3363}
3364
c713216d
MG
3365/*
3366 * Return the number of pages a zone spans in a node, including holes
3367 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3368 */
6ea6e688 3369static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3370 unsigned long zone_type,
3371 unsigned long *ignored)
3372{
3373 unsigned long node_start_pfn, node_end_pfn;
3374 unsigned long zone_start_pfn, zone_end_pfn;
3375
3376 /* Get the start and end of the node and zone */
3377 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3378 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3379 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3380 adjust_zone_range_for_zone_movable(nid, zone_type,
3381 node_start_pfn, node_end_pfn,
3382 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3383
3384 /* Check that this node has pages within the zone's required range */
3385 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3386 return 0;
3387
3388 /* Move the zone boundaries inside the node if necessary */
3389 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3390 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3391
3392 /* Return the spanned pages */
3393 return zone_end_pfn - zone_start_pfn;
3394}
3395
3396/*
3397 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3398 * then all holes in the requested range will be accounted for.
c713216d 3399 */
b69a7288 3400static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3401 unsigned long range_start_pfn,
3402 unsigned long range_end_pfn)
3403{
3404 int i = 0;
3405 unsigned long prev_end_pfn = 0, hole_pages = 0;
3406 unsigned long start_pfn;
3407
3408 /* Find the end_pfn of the first active range of pfns in the node */
3409 i = first_active_region_index_in_nid(nid);
3410 if (i == -1)
3411 return 0;
3412
b5445f95
MG
3413 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3414
9c7cd687
MG
3415 /* Account for ranges before physical memory on this node */
3416 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3417 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3418
3419 /* Find all holes for the zone within the node */
3420 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3421
3422 /* No need to continue if prev_end_pfn is outside the zone */
3423 if (prev_end_pfn >= range_end_pfn)
3424 break;
3425
3426 /* Make sure the end of the zone is not within the hole */
3427 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3428 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3429
3430 /* Update the hole size cound and move on */
3431 if (start_pfn > range_start_pfn) {
3432 BUG_ON(prev_end_pfn > start_pfn);
3433 hole_pages += start_pfn - prev_end_pfn;
3434 }
3435 prev_end_pfn = early_node_map[i].end_pfn;
3436 }
3437
9c7cd687
MG
3438 /* Account for ranges past physical memory on this node */
3439 if (range_end_pfn > prev_end_pfn)
0c6cb974 3440 hole_pages += range_end_pfn -
9c7cd687
MG
3441 max(range_start_pfn, prev_end_pfn);
3442
c713216d
MG
3443 return hole_pages;
3444}
3445
3446/**
3447 * absent_pages_in_range - Return number of page frames in holes within a range
3448 * @start_pfn: The start PFN to start searching for holes
3449 * @end_pfn: The end PFN to stop searching for holes
3450 *
88ca3b94 3451 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3452 */
3453unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3454 unsigned long end_pfn)
3455{
3456 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3457}
3458
3459/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3460static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3461 unsigned long zone_type,
3462 unsigned long *ignored)
3463{
9c7cd687
MG
3464 unsigned long node_start_pfn, node_end_pfn;
3465 unsigned long zone_start_pfn, zone_end_pfn;
3466
3467 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3468 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3469 node_start_pfn);
3470 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3471 node_end_pfn);
3472
2a1e274a
MG
3473 adjust_zone_range_for_zone_movable(nid, zone_type,
3474 node_start_pfn, node_end_pfn,
3475 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3476 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3477}
0e0b864e 3478
c713216d 3479#else
6ea6e688 3480static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3481 unsigned long zone_type,
3482 unsigned long *zones_size)
3483{
3484 return zones_size[zone_type];
3485}
3486
6ea6e688 3487static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3488 unsigned long zone_type,
3489 unsigned long *zholes_size)
3490{
3491 if (!zholes_size)
3492 return 0;
3493
3494 return zholes_size[zone_type];
3495}
0e0b864e 3496
c713216d
MG
3497#endif
3498
a3142c8e 3499static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3500 unsigned long *zones_size, unsigned long *zholes_size)
3501{
3502 unsigned long realtotalpages, totalpages = 0;
3503 enum zone_type i;
3504
3505 for (i = 0; i < MAX_NR_ZONES; i++)
3506 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3507 zones_size);
3508 pgdat->node_spanned_pages = totalpages;
3509
3510 realtotalpages = totalpages;
3511 for (i = 0; i < MAX_NR_ZONES; i++)
3512 realtotalpages -=
3513 zone_absent_pages_in_node(pgdat->node_id, i,
3514 zholes_size);
3515 pgdat->node_present_pages = realtotalpages;
3516 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3517 realtotalpages);
3518}
3519
835c134e
MG
3520#ifndef CONFIG_SPARSEMEM
3521/*
3522 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3523 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3524 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3525 * round what is now in bits to nearest long in bits, then return it in
3526 * bytes.
3527 */
3528static unsigned long __init usemap_size(unsigned long zonesize)
3529{
3530 unsigned long usemapsize;
3531
d9c23400
MG
3532 usemapsize = roundup(zonesize, pageblock_nr_pages);
3533 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3534 usemapsize *= NR_PAGEBLOCK_BITS;
3535 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3536
3537 return usemapsize / 8;
3538}
3539
3540static void __init setup_usemap(struct pglist_data *pgdat,
3541 struct zone *zone, unsigned long zonesize)
3542{
3543 unsigned long usemapsize = usemap_size(zonesize);
3544 zone->pageblock_flags = NULL;
58a01a45 3545 if (usemapsize)
835c134e 3546 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3547}
3548#else
3549static void inline setup_usemap(struct pglist_data *pgdat,
3550 struct zone *zone, unsigned long zonesize) {}
3551#endif /* CONFIG_SPARSEMEM */
3552
d9c23400 3553#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3554
3555/* Return a sensible default order for the pageblock size. */
3556static inline int pageblock_default_order(void)
3557{
3558 if (HPAGE_SHIFT > PAGE_SHIFT)
3559 return HUGETLB_PAGE_ORDER;
3560
3561 return MAX_ORDER-1;
3562}
3563
d9c23400
MG
3564/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3565static inline void __init set_pageblock_order(unsigned int order)
3566{
3567 /* Check that pageblock_nr_pages has not already been setup */
3568 if (pageblock_order)
3569 return;
3570
3571 /*
3572 * Assume the largest contiguous order of interest is a huge page.
3573 * This value may be variable depending on boot parameters on IA64
3574 */
3575 pageblock_order = order;
3576}
3577#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3578
ba72cb8c
MG
3579/*
3580 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3581 * and pageblock_default_order() are unused as pageblock_order is set
3582 * at compile-time. See include/linux/pageblock-flags.h for the values of
3583 * pageblock_order based on the kernel config
3584 */
3585static inline int pageblock_default_order(unsigned int order)
3586{
3587 return MAX_ORDER-1;
3588}
d9c23400
MG
3589#define set_pageblock_order(x) do {} while (0)
3590
3591#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3592
1da177e4
LT
3593/*
3594 * Set up the zone data structures:
3595 * - mark all pages reserved
3596 * - mark all memory queues empty
3597 * - clear the memory bitmaps
3598 */
b5a0e011 3599static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3600 unsigned long *zones_size, unsigned long *zholes_size)
3601{
2f1b6248 3602 enum zone_type j;
ed8ece2e 3603 int nid = pgdat->node_id;
1da177e4 3604 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3605 int ret;
1da177e4 3606
208d54e5 3607 pgdat_resize_init(pgdat);
1da177e4
LT
3608 pgdat->nr_zones = 0;
3609 init_waitqueue_head(&pgdat->kswapd_wait);
3610 pgdat->kswapd_max_order = 0;
52d4b9ac 3611 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3612
3613 for (j = 0; j < MAX_NR_ZONES; j++) {
3614 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3615 unsigned long size, realsize, memmap_pages;
b69408e8 3616 enum lru_list l;
1da177e4 3617
c713216d
MG
3618 size = zone_spanned_pages_in_node(nid, j, zones_size);
3619 realsize = size - zone_absent_pages_in_node(nid, j,
3620 zholes_size);
1da177e4 3621
0e0b864e
MG
3622 /*
3623 * Adjust realsize so that it accounts for how much memory
3624 * is used by this zone for memmap. This affects the watermark
3625 * and per-cpu initialisations
3626 */
f7232154
JW
3627 memmap_pages =
3628 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3629 if (realsize >= memmap_pages) {
3630 realsize -= memmap_pages;
5594c8c8
YL
3631 if (memmap_pages)
3632 printk(KERN_DEBUG
3633 " %s zone: %lu pages used for memmap\n",
3634 zone_names[j], memmap_pages);
0e0b864e
MG
3635 } else
3636 printk(KERN_WARNING
3637 " %s zone: %lu pages exceeds realsize %lu\n",
3638 zone_names[j], memmap_pages, realsize);
3639
6267276f
CL
3640 /* Account for reserved pages */
3641 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3642 realsize -= dma_reserve;
d903ef9f 3643 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3644 zone_names[0], dma_reserve);
0e0b864e
MG
3645 }
3646
98d2b0eb 3647 if (!is_highmem_idx(j))
1da177e4
LT
3648 nr_kernel_pages += realsize;
3649 nr_all_pages += realsize;
3650
3651 zone->spanned_pages = size;
3652 zone->present_pages = realsize;
9614634f 3653#ifdef CONFIG_NUMA
d5f541ed 3654 zone->node = nid;
8417bba4 3655 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3656 / 100;
0ff38490 3657 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3658#endif
1da177e4
LT
3659 zone->name = zone_names[j];
3660 spin_lock_init(&zone->lock);
3661 spin_lock_init(&zone->lru_lock);
bdc8cb98 3662 zone_seqlock_init(zone);
1da177e4 3663 zone->zone_pgdat = pgdat;
1da177e4 3664
3bb1a852 3665 zone->prev_priority = DEF_PRIORITY;
1da177e4 3666
ed8ece2e 3667 zone_pcp_init(zone);
b69408e8
CL
3668 for_each_lru(l) {
3669 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3670 zone->lru[l].nr_saved_scan = 0;
b69408e8 3671 }
6e901571
KM
3672 zone->reclaim_stat.recent_rotated[0] = 0;
3673 zone->reclaim_stat.recent_rotated[1] = 0;
3674 zone->reclaim_stat.recent_scanned[0] = 0;
3675 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3676 zap_zone_vm_stats(zone);
e815af95 3677 zone->flags = 0;
1da177e4
LT
3678 if (!size)
3679 continue;
3680
ba72cb8c 3681 set_pageblock_order(pageblock_default_order());
835c134e 3682 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3683 ret = init_currently_empty_zone(zone, zone_start_pfn,
3684 size, MEMMAP_EARLY);
718127cc 3685 BUG_ON(ret);
76cdd58e 3686 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3687 zone_start_pfn += size;
1da177e4
LT
3688 }
3689}
3690
577a32f6 3691static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3692{
1da177e4
LT
3693 /* Skip empty nodes */
3694 if (!pgdat->node_spanned_pages)
3695 return;
3696
d41dee36 3697#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3698 /* ia64 gets its own node_mem_map, before this, without bootmem */
3699 if (!pgdat->node_mem_map) {
e984bb43 3700 unsigned long size, start, end;
d41dee36
AW
3701 struct page *map;
3702
e984bb43
BP
3703 /*
3704 * The zone's endpoints aren't required to be MAX_ORDER
3705 * aligned but the node_mem_map endpoints must be in order
3706 * for the buddy allocator to function correctly.
3707 */
3708 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3709 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3710 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3711 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3712 map = alloc_remap(pgdat->node_id, size);
3713 if (!map)
3714 map = alloc_bootmem_node(pgdat, size);
e984bb43 3715 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3716 }
12d810c1 3717#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3718 /*
3719 * With no DISCONTIG, the global mem_map is just set as node 0's
3720 */
c713216d 3721 if (pgdat == NODE_DATA(0)) {
1da177e4 3722 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3723#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3724 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3725 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3726#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3727 }
1da177e4 3728#endif
d41dee36 3729#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3730}
3731
9109fb7b
JW
3732void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3733 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3734{
9109fb7b
JW
3735 pg_data_t *pgdat = NODE_DATA(nid);
3736
1da177e4
LT
3737 pgdat->node_id = nid;
3738 pgdat->node_start_pfn = node_start_pfn;
c713216d 3739 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3740
3741 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3742#ifdef CONFIG_FLAT_NODE_MEM_MAP
3743 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3744 nid, (unsigned long)pgdat,
3745 (unsigned long)pgdat->node_mem_map);
3746#endif
1da177e4
LT
3747
3748 free_area_init_core(pgdat, zones_size, zholes_size);
3749}
3750
c713216d 3751#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3752
3753#if MAX_NUMNODES > 1
3754/*
3755 * Figure out the number of possible node ids.
3756 */
3757static void __init setup_nr_node_ids(void)
3758{
3759 unsigned int node;
3760 unsigned int highest = 0;
3761
3762 for_each_node_mask(node, node_possible_map)
3763 highest = node;
3764 nr_node_ids = highest + 1;
3765}
3766#else
3767static inline void setup_nr_node_ids(void)
3768{
3769}
3770#endif
3771
c713216d
MG
3772/**
3773 * add_active_range - Register a range of PFNs backed by physical memory
3774 * @nid: The node ID the range resides on
3775 * @start_pfn: The start PFN of the available physical memory
3776 * @end_pfn: The end PFN of the available physical memory
3777 *
3778 * These ranges are stored in an early_node_map[] and later used by
3779 * free_area_init_nodes() to calculate zone sizes and holes. If the
3780 * range spans a memory hole, it is up to the architecture to ensure
3781 * the memory is not freed by the bootmem allocator. If possible
3782 * the range being registered will be merged with existing ranges.
3783 */
3784void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3785 unsigned long end_pfn)
3786{
3787 int i;
3788
6b74ab97
MG
3789 mminit_dprintk(MMINIT_TRACE, "memory_register",
3790 "Entering add_active_range(%d, %#lx, %#lx) "
3791 "%d entries of %d used\n",
3792 nid, start_pfn, end_pfn,
3793 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3794
2dbb51c4
MG
3795 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3796
c713216d
MG
3797 /* Merge with existing active regions if possible */
3798 for (i = 0; i < nr_nodemap_entries; i++) {
3799 if (early_node_map[i].nid != nid)
3800 continue;
3801
3802 /* Skip if an existing region covers this new one */
3803 if (start_pfn >= early_node_map[i].start_pfn &&
3804 end_pfn <= early_node_map[i].end_pfn)
3805 return;
3806
3807 /* Merge forward if suitable */
3808 if (start_pfn <= early_node_map[i].end_pfn &&
3809 end_pfn > early_node_map[i].end_pfn) {
3810 early_node_map[i].end_pfn = end_pfn;
3811 return;
3812 }
3813
3814 /* Merge backward if suitable */
3815 if (start_pfn < early_node_map[i].end_pfn &&
3816 end_pfn >= early_node_map[i].start_pfn) {
3817 early_node_map[i].start_pfn = start_pfn;
3818 return;
3819 }
3820 }
3821
3822 /* Check that early_node_map is large enough */
3823 if (i >= MAX_ACTIVE_REGIONS) {
3824 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3825 MAX_ACTIVE_REGIONS);
3826 return;
3827 }
3828
3829 early_node_map[i].nid = nid;
3830 early_node_map[i].start_pfn = start_pfn;
3831 early_node_map[i].end_pfn = end_pfn;
3832 nr_nodemap_entries = i + 1;
3833}
3834
3835/**
cc1050ba 3836 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3837 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3838 * @start_pfn: The new PFN of the range
3839 * @end_pfn: The new PFN of the range
c713216d
MG
3840 *
3841 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3842 * The map is kept near the end physical page range that has already been
3843 * registered. This function allows an arch to shrink an existing registered
3844 * range.
c713216d 3845 */
cc1050ba
YL
3846void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3847 unsigned long end_pfn)
c713216d 3848{
cc1a9d86
YL
3849 int i, j;
3850 int removed = 0;
c713216d 3851
cc1050ba
YL
3852 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3853 nid, start_pfn, end_pfn);
3854
c713216d 3855 /* Find the old active region end and shrink */
cc1a9d86 3856 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3857 if (early_node_map[i].start_pfn >= start_pfn &&
3858 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3859 /* clear it */
cc1050ba 3860 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3861 early_node_map[i].end_pfn = 0;
3862 removed = 1;
3863 continue;
3864 }
cc1050ba
YL
3865 if (early_node_map[i].start_pfn < start_pfn &&
3866 early_node_map[i].end_pfn > start_pfn) {
3867 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3868 early_node_map[i].end_pfn = start_pfn;
3869 if (temp_end_pfn > end_pfn)
3870 add_active_range(nid, end_pfn, temp_end_pfn);
3871 continue;
3872 }
3873 if (early_node_map[i].start_pfn >= start_pfn &&
3874 early_node_map[i].end_pfn > end_pfn &&
3875 early_node_map[i].start_pfn < end_pfn) {
3876 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3877 continue;
c713216d 3878 }
cc1a9d86
YL
3879 }
3880
3881 if (!removed)
3882 return;
3883
3884 /* remove the blank ones */
3885 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3886 if (early_node_map[i].nid != nid)
3887 continue;
3888 if (early_node_map[i].end_pfn)
3889 continue;
3890 /* we found it, get rid of it */
3891 for (j = i; j < nr_nodemap_entries - 1; j++)
3892 memcpy(&early_node_map[j], &early_node_map[j+1],
3893 sizeof(early_node_map[j]));
3894 j = nr_nodemap_entries - 1;
3895 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3896 nr_nodemap_entries--;
3897 }
c713216d
MG
3898}
3899
3900/**
3901 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3902 *
c713216d
MG
3903 * During discovery, it may be found that a table like SRAT is invalid
3904 * and an alternative discovery method must be used. This function removes
3905 * all currently registered regions.
3906 */
88ca3b94 3907void __init remove_all_active_ranges(void)
c713216d
MG
3908{
3909 memset(early_node_map, 0, sizeof(early_node_map));
3910 nr_nodemap_entries = 0;
3911}
3912
3913/* Compare two active node_active_regions */
3914static int __init cmp_node_active_region(const void *a, const void *b)
3915{
3916 struct node_active_region *arange = (struct node_active_region *)a;
3917 struct node_active_region *brange = (struct node_active_region *)b;
3918
3919 /* Done this way to avoid overflows */
3920 if (arange->start_pfn > brange->start_pfn)
3921 return 1;
3922 if (arange->start_pfn < brange->start_pfn)
3923 return -1;
3924
3925 return 0;
3926}
3927
3928/* sort the node_map by start_pfn */
3929static void __init sort_node_map(void)
3930{
3931 sort(early_node_map, (size_t)nr_nodemap_entries,
3932 sizeof(struct node_active_region),
3933 cmp_node_active_region, NULL);
3934}
3935
a6af2bc3 3936/* Find the lowest pfn for a node */
b69a7288 3937static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3938{
3939 int i;
a6af2bc3 3940 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3941
c713216d
MG
3942 /* Assuming a sorted map, the first range found has the starting pfn */
3943 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3944 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3945
a6af2bc3
MG
3946 if (min_pfn == ULONG_MAX) {
3947 printk(KERN_WARNING
2bc0d261 3948 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3949 return 0;
3950 }
3951
3952 return min_pfn;
c713216d
MG
3953}
3954
3955/**
3956 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3957 *
3958 * It returns the minimum PFN based on information provided via
88ca3b94 3959 * add_active_range().
c713216d
MG
3960 */
3961unsigned long __init find_min_pfn_with_active_regions(void)
3962{
3963 return find_min_pfn_for_node(MAX_NUMNODES);
3964}
3965
37b07e41
LS
3966/*
3967 * early_calculate_totalpages()
3968 * Sum pages in active regions for movable zone.
3969 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3970 */
484f51f8 3971static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3972{
3973 int i;
3974 unsigned long totalpages = 0;
3975
37b07e41
LS
3976 for (i = 0; i < nr_nodemap_entries; i++) {
3977 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3978 early_node_map[i].start_pfn;
37b07e41
LS
3979 totalpages += pages;
3980 if (pages)
3981 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3982 }
3983 return totalpages;
7e63efef
MG
3984}
3985
2a1e274a
MG
3986/*
3987 * Find the PFN the Movable zone begins in each node. Kernel memory
3988 * is spread evenly between nodes as long as the nodes have enough
3989 * memory. When they don't, some nodes will have more kernelcore than
3990 * others
3991 */
b69a7288 3992static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3993{
3994 int i, nid;
3995 unsigned long usable_startpfn;
3996 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3997 unsigned long totalpages = early_calculate_totalpages();
3998 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3999
7e63efef
MG
4000 /*
4001 * If movablecore was specified, calculate what size of
4002 * kernelcore that corresponds so that memory usable for
4003 * any allocation type is evenly spread. If both kernelcore
4004 * and movablecore are specified, then the value of kernelcore
4005 * will be used for required_kernelcore if it's greater than
4006 * what movablecore would have allowed.
4007 */
4008 if (required_movablecore) {
7e63efef
MG
4009 unsigned long corepages;
4010
4011 /*
4012 * Round-up so that ZONE_MOVABLE is at least as large as what
4013 * was requested by the user
4014 */
4015 required_movablecore =
4016 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4017 corepages = totalpages - required_movablecore;
4018
4019 required_kernelcore = max(required_kernelcore, corepages);
4020 }
4021
2a1e274a
MG
4022 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4023 if (!required_kernelcore)
4024 return;
4025
4026 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4027 find_usable_zone_for_movable();
4028 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4029
4030restart:
4031 /* Spread kernelcore memory as evenly as possible throughout nodes */
4032 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4033 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4034 /*
4035 * Recalculate kernelcore_node if the division per node
4036 * now exceeds what is necessary to satisfy the requested
4037 * amount of memory for the kernel
4038 */
4039 if (required_kernelcore < kernelcore_node)
4040 kernelcore_node = required_kernelcore / usable_nodes;
4041
4042 /*
4043 * As the map is walked, we track how much memory is usable
4044 * by the kernel using kernelcore_remaining. When it is
4045 * 0, the rest of the node is usable by ZONE_MOVABLE
4046 */
4047 kernelcore_remaining = kernelcore_node;
4048
4049 /* Go through each range of PFNs within this node */
4050 for_each_active_range_index_in_nid(i, nid) {
4051 unsigned long start_pfn, end_pfn;
4052 unsigned long size_pages;
4053
4054 start_pfn = max(early_node_map[i].start_pfn,
4055 zone_movable_pfn[nid]);
4056 end_pfn = early_node_map[i].end_pfn;
4057 if (start_pfn >= end_pfn)
4058 continue;
4059
4060 /* Account for what is only usable for kernelcore */
4061 if (start_pfn < usable_startpfn) {
4062 unsigned long kernel_pages;
4063 kernel_pages = min(end_pfn, usable_startpfn)
4064 - start_pfn;
4065
4066 kernelcore_remaining -= min(kernel_pages,
4067 kernelcore_remaining);
4068 required_kernelcore -= min(kernel_pages,
4069 required_kernelcore);
4070
4071 /* Continue if range is now fully accounted */
4072 if (end_pfn <= usable_startpfn) {
4073
4074 /*
4075 * Push zone_movable_pfn to the end so
4076 * that if we have to rebalance
4077 * kernelcore across nodes, we will
4078 * not double account here
4079 */
4080 zone_movable_pfn[nid] = end_pfn;
4081 continue;
4082 }
4083 start_pfn = usable_startpfn;
4084 }
4085
4086 /*
4087 * The usable PFN range for ZONE_MOVABLE is from
4088 * start_pfn->end_pfn. Calculate size_pages as the
4089 * number of pages used as kernelcore
4090 */
4091 size_pages = end_pfn - start_pfn;
4092 if (size_pages > kernelcore_remaining)
4093 size_pages = kernelcore_remaining;
4094 zone_movable_pfn[nid] = start_pfn + size_pages;
4095
4096 /*
4097 * Some kernelcore has been met, update counts and
4098 * break if the kernelcore for this node has been
4099 * satisified
4100 */
4101 required_kernelcore -= min(required_kernelcore,
4102 size_pages);
4103 kernelcore_remaining -= size_pages;
4104 if (!kernelcore_remaining)
4105 break;
4106 }
4107 }
4108
4109 /*
4110 * If there is still required_kernelcore, we do another pass with one
4111 * less node in the count. This will push zone_movable_pfn[nid] further
4112 * along on the nodes that still have memory until kernelcore is
4113 * satisified
4114 */
4115 usable_nodes--;
4116 if (usable_nodes && required_kernelcore > usable_nodes)
4117 goto restart;
4118
4119 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4120 for (nid = 0; nid < MAX_NUMNODES; nid++)
4121 zone_movable_pfn[nid] =
4122 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4123}
4124
37b07e41
LS
4125/* Any regular memory on that node ? */
4126static void check_for_regular_memory(pg_data_t *pgdat)
4127{
4128#ifdef CONFIG_HIGHMEM
4129 enum zone_type zone_type;
4130
4131 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4132 struct zone *zone = &pgdat->node_zones[zone_type];
4133 if (zone->present_pages)
4134 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4135 }
4136#endif
4137}
4138
c713216d
MG
4139/**
4140 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4141 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4142 *
4143 * This will call free_area_init_node() for each active node in the system.
4144 * Using the page ranges provided by add_active_range(), the size of each
4145 * zone in each node and their holes is calculated. If the maximum PFN
4146 * between two adjacent zones match, it is assumed that the zone is empty.
4147 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4148 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4149 * starts where the previous one ended. For example, ZONE_DMA32 starts
4150 * at arch_max_dma_pfn.
4151 */
4152void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4153{
4154 unsigned long nid;
db99100d 4155 int i;
c713216d 4156
a6af2bc3
MG
4157 /* Sort early_node_map as initialisation assumes it is sorted */
4158 sort_node_map();
4159
c713216d
MG
4160 /* Record where the zone boundaries are */
4161 memset(arch_zone_lowest_possible_pfn, 0,
4162 sizeof(arch_zone_lowest_possible_pfn));
4163 memset(arch_zone_highest_possible_pfn, 0,
4164 sizeof(arch_zone_highest_possible_pfn));
4165 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4166 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4167 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4168 if (i == ZONE_MOVABLE)
4169 continue;
c713216d
MG
4170 arch_zone_lowest_possible_pfn[i] =
4171 arch_zone_highest_possible_pfn[i-1];
4172 arch_zone_highest_possible_pfn[i] =
4173 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4174 }
2a1e274a
MG
4175 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4176 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4177
4178 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4179 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4180 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4181
c713216d
MG
4182 /* Print out the zone ranges */
4183 printk("Zone PFN ranges:\n");
2a1e274a
MG
4184 for (i = 0; i < MAX_NR_ZONES; i++) {
4185 if (i == ZONE_MOVABLE)
4186 continue;
5dab8ec1 4187 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4188 zone_names[i],
4189 arch_zone_lowest_possible_pfn[i],
4190 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4191 }
4192
4193 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4194 printk("Movable zone start PFN for each node\n");
4195 for (i = 0; i < MAX_NUMNODES; i++) {
4196 if (zone_movable_pfn[i])
4197 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4198 }
c713216d
MG
4199
4200 /* Print out the early_node_map[] */
4201 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4202 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4203 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4204 early_node_map[i].start_pfn,
4205 early_node_map[i].end_pfn);
4206
73d60b7f
YL
4207 /*
4208 * find_zone_movable_pfns_for_nodes/early_calculate_totalpages init
4209 * that node_mask, clear it at first
4210 */
4211 nodes_clear(node_states[N_HIGH_MEMORY]);
c713216d 4212 /* Initialise every node */
708614e6 4213 mminit_verify_pageflags_layout();
8ef82866 4214 setup_nr_node_ids();
c713216d
MG
4215 for_each_online_node(nid) {
4216 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4217 free_area_init_node(nid, NULL,
c713216d 4218 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4219
4220 /* Any memory on that node */
4221 if (pgdat->node_present_pages)
4222 node_set_state(nid, N_HIGH_MEMORY);
4223 check_for_regular_memory(pgdat);
c713216d
MG
4224 }
4225}
2a1e274a 4226
7e63efef 4227static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4228{
4229 unsigned long long coremem;
4230 if (!p)
4231 return -EINVAL;
4232
4233 coremem = memparse(p, &p);
7e63efef 4234 *core = coremem >> PAGE_SHIFT;
2a1e274a 4235
7e63efef 4236 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4237 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4238
4239 return 0;
4240}
ed7ed365 4241
7e63efef
MG
4242/*
4243 * kernelcore=size sets the amount of memory for use for allocations that
4244 * cannot be reclaimed or migrated.
4245 */
4246static int __init cmdline_parse_kernelcore(char *p)
4247{
4248 return cmdline_parse_core(p, &required_kernelcore);
4249}
4250
4251/*
4252 * movablecore=size sets the amount of memory for use for allocations that
4253 * can be reclaimed or migrated.
4254 */
4255static int __init cmdline_parse_movablecore(char *p)
4256{
4257 return cmdline_parse_core(p, &required_movablecore);
4258}
4259
ed7ed365 4260early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4261early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4262
c713216d
MG
4263#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4264
0e0b864e 4265/**
88ca3b94
RD
4266 * set_dma_reserve - set the specified number of pages reserved in the first zone
4267 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4268 *
4269 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4270 * In the DMA zone, a significant percentage may be consumed by kernel image
4271 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4272 * function may optionally be used to account for unfreeable pages in the
4273 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4274 * smaller per-cpu batchsize.
0e0b864e
MG
4275 */
4276void __init set_dma_reserve(unsigned long new_dma_reserve)
4277{
4278 dma_reserve = new_dma_reserve;
4279}
4280
93b7504e 4281#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4282struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4283EXPORT_SYMBOL(contig_page_data);
93b7504e 4284#endif
1da177e4
LT
4285
4286void __init free_area_init(unsigned long *zones_size)
4287{
9109fb7b 4288 free_area_init_node(0, zones_size,
1da177e4
LT
4289 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4290}
1da177e4 4291
1da177e4
LT
4292static int page_alloc_cpu_notify(struct notifier_block *self,
4293 unsigned long action, void *hcpu)
4294{
4295 int cpu = (unsigned long)hcpu;
1da177e4 4296
8bb78442 4297 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4298 drain_pages(cpu);
4299
4300 /*
4301 * Spill the event counters of the dead processor
4302 * into the current processors event counters.
4303 * This artificially elevates the count of the current
4304 * processor.
4305 */
f8891e5e 4306 vm_events_fold_cpu(cpu);
9f8f2172
CL
4307
4308 /*
4309 * Zero the differential counters of the dead processor
4310 * so that the vm statistics are consistent.
4311 *
4312 * This is only okay since the processor is dead and cannot
4313 * race with what we are doing.
4314 */
2244b95a 4315 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4316 }
4317 return NOTIFY_OK;
4318}
1da177e4
LT
4319
4320void __init page_alloc_init(void)
4321{
4322 hotcpu_notifier(page_alloc_cpu_notify, 0);
4323}
4324
cb45b0e9
HA
4325/*
4326 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4327 * or min_free_kbytes changes.
4328 */
4329static void calculate_totalreserve_pages(void)
4330{
4331 struct pglist_data *pgdat;
4332 unsigned long reserve_pages = 0;
2f6726e5 4333 enum zone_type i, j;
cb45b0e9
HA
4334
4335 for_each_online_pgdat(pgdat) {
4336 for (i = 0; i < MAX_NR_ZONES; i++) {
4337 struct zone *zone = pgdat->node_zones + i;
4338 unsigned long max = 0;
4339
4340 /* Find valid and maximum lowmem_reserve in the zone */
4341 for (j = i; j < MAX_NR_ZONES; j++) {
4342 if (zone->lowmem_reserve[j] > max)
4343 max = zone->lowmem_reserve[j];
4344 }
4345
41858966
MG
4346 /* we treat the high watermark as reserved pages. */
4347 max += high_wmark_pages(zone);
cb45b0e9
HA
4348
4349 if (max > zone->present_pages)
4350 max = zone->present_pages;
4351 reserve_pages += max;
4352 }
4353 }
4354 totalreserve_pages = reserve_pages;
4355}
4356
1da177e4
LT
4357/*
4358 * setup_per_zone_lowmem_reserve - called whenever
4359 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4360 * has a correct pages reserved value, so an adequate number of
4361 * pages are left in the zone after a successful __alloc_pages().
4362 */
4363static void setup_per_zone_lowmem_reserve(void)
4364{
4365 struct pglist_data *pgdat;
2f6726e5 4366 enum zone_type j, idx;
1da177e4 4367
ec936fc5 4368 for_each_online_pgdat(pgdat) {
1da177e4
LT
4369 for (j = 0; j < MAX_NR_ZONES; j++) {
4370 struct zone *zone = pgdat->node_zones + j;
4371 unsigned long present_pages = zone->present_pages;
4372
4373 zone->lowmem_reserve[j] = 0;
4374
2f6726e5
CL
4375 idx = j;
4376 while (idx) {
1da177e4
LT
4377 struct zone *lower_zone;
4378
2f6726e5
CL
4379 idx--;
4380
1da177e4
LT
4381 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4382 sysctl_lowmem_reserve_ratio[idx] = 1;
4383
4384 lower_zone = pgdat->node_zones + idx;
4385 lower_zone->lowmem_reserve[j] = present_pages /
4386 sysctl_lowmem_reserve_ratio[idx];
4387 present_pages += lower_zone->present_pages;
4388 }
4389 }
4390 }
cb45b0e9
HA
4391
4392 /* update totalreserve_pages */
4393 calculate_totalreserve_pages();
1da177e4
LT
4394}
4395
88ca3b94 4396/**
bc75d33f 4397 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4398 * or when memory is hot-{added|removed}
88ca3b94 4399 *
bc75d33f
MK
4400 * Ensures that the watermark[min,low,high] values for each zone are set
4401 * correctly with respect to min_free_kbytes.
1da177e4 4402 */
bc75d33f 4403void setup_per_zone_wmarks(void)
1da177e4
LT
4404{
4405 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4406 unsigned long lowmem_pages = 0;
4407 struct zone *zone;
4408 unsigned long flags;
4409
4410 /* Calculate total number of !ZONE_HIGHMEM pages */
4411 for_each_zone(zone) {
4412 if (!is_highmem(zone))
4413 lowmem_pages += zone->present_pages;
4414 }
4415
4416 for_each_zone(zone) {
ac924c60
AM
4417 u64 tmp;
4418
1125b4e3 4419 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4420 tmp = (u64)pages_min * zone->present_pages;
4421 do_div(tmp, lowmem_pages);
1da177e4
LT
4422 if (is_highmem(zone)) {
4423 /*
669ed175
NP
4424 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4425 * need highmem pages, so cap pages_min to a small
4426 * value here.
4427 *
41858966 4428 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4429 * deltas controls asynch page reclaim, and so should
4430 * not be capped for highmem.
1da177e4
LT
4431 */
4432 int min_pages;
4433
4434 min_pages = zone->present_pages / 1024;
4435 if (min_pages < SWAP_CLUSTER_MAX)
4436 min_pages = SWAP_CLUSTER_MAX;
4437 if (min_pages > 128)
4438 min_pages = 128;
41858966 4439 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4440 } else {
669ed175
NP
4441 /*
4442 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4443 * proportionate to the zone's size.
4444 */
41858966 4445 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4446 }
4447
41858966
MG
4448 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4449 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4450 setup_zone_migrate_reserve(zone);
1125b4e3 4451 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4452 }
cb45b0e9
HA
4453
4454 /* update totalreserve_pages */
4455 calculate_totalreserve_pages();
1da177e4
LT
4456}
4457
556adecb 4458/**
556adecb
RR
4459 * The inactive anon list should be small enough that the VM never has to
4460 * do too much work, but large enough that each inactive page has a chance
4461 * to be referenced again before it is swapped out.
4462 *
4463 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4464 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4465 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4466 * the anonymous pages are kept on the inactive list.
4467 *
4468 * total target max
4469 * memory ratio inactive anon
4470 * -------------------------------------
4471 * 10MB 1 5MB
4472 * 100MB 1 50MB
4473 * 1GB 3 250MB
4474 * 10GB 10 0.9GB
4475 * 100GB 31 3GB
4476 * 1TB 101 10GB
4477 * 10TB 320 32GB
4478 */
96cb4df5 4479void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4480{
96cb4df5 4481 unsigned int gb, ratio;
556adecb 4482
96cb4df5
MK
4483 /* Zone size in gigabytes */
4484 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4485 if (gb)
4486 ratio = int_sqrt(10 * gb);
4487 else
4488 ratio = 1;
556adecb 4489
96cb4df5
MK
4490 zone->inactive_ratio = ratio;
4491}
556adecb 4492
96cb4df5
MK
4493static void __init setup_per_zone_inactive_ratio(void)
4494{
4495 struct zone *zone;
4496
4497 for_each_zone(zone)
4498 calculate_zone_inactive_ratio(zone);
556adecb
RR
4499}
4500
1da177e4
LT
4501/*
4502 * Initialise min_free_kbytes.
4503 *
4504 * For small machines we want it small (128k min). For large machines
4505 * we want it large (64MB max). But it is not linear, because network
4506 * bandwidth does not increase linearly with machine size. We use
4507 *
4508 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4509 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4510 *
4511 * which yields
4512 *
4513 * 16MB: 512k
4514 * 32MB: 724k
4515 * 64MB: 1024k
4516 * 128MB: 1448k
4517 * 256MB: 2048k
4518 * 512MB: 2896k
4519 * 1024MB: 4096k
4520 * 2048MB: 5792k
4521 * 4096MB: 8192k
4522 * 8192MB: 11584k
4523 * 16384MB: 16384k
4524 */
bc75d33f 4525static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4526{
4527 unsigned long lowmem_kbytes;
4528
4529 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4530
4531 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4532 if (min_free_kbytes < 128)
4533 min_free_kbytes = 128;
4534 if (min_free_kbytes > 65536)
4535 min_free_kbytes = 65536;
bc75d33f 4536 setup_per_zone_wmarks();
1da177e4 4537 setup_per_zone_lowmem_reserve();
556adecb 4538 setup_per_zone_inactive_ratio();
1da177e4
LT
4539 return 0;
4540}
bc75d33f 4541module_init(init_per_zone_wmark_min)
1da177e4
LT
4542
4543/*
4544 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4545 * that we can call two helper functions whenever min_free_kbytes
4546 * changes.
4547 */
4548int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4549 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4550{
4551 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4552 if (write)
bc75d33f 4553 setup_per_zone_wmarks();
1da177e4
LT
4554 return 0;
4555}
4556
9614634f
CL
4557#ifdef CONFIG_NUMA
4558int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4559 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4560{
4561 struct zone *zone;
4562 int rc;
4563
4564 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4565 if (rc)
4566 return rc;
4567
4568 for_each_zone(zone)
8417bba4 4569 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4570 sysctl_min_unmapped_ratio) / 100;
4571 return 0;
4572}
0ff38490
CL
4573
4574int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4575 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4576{
4577 struct zone *zone;
4578 int rc;
4579
4580 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4581 if (rc)
4582 return rc;
4583
4584 for_each_zone(zone)
4585 zone->min_slab_pages = (zone->present_pages *
4586 sysctl_min_slab_ratio) / 100;
4587 return 0;
4588}
9614634f
CL
4589#endif
4590
1da177e4
LT
4591/*
4592 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4593 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4594 * whenever sysctl_lowmem_reserve_ratio changes.
4595 *
4596 * The reserve ratio obviously has absolutely no relation with the
41858966 4597 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4598 * if in function of the boot time zone sizes.
4599 */
4600int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4601 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4602{
4603 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4604 setup_per_zone_lowmem_reserve();
4605 return 0;
4606}
4607
8ad4b1fb
RS
4608/*
4609 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4610 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4611 * can have before it gets flushed back to buddy allocator.
4612 */
4613
4614int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4615 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4616{
4617 struct zone *zone;
4618 unsigned int cpu;
4619 int ret;
4620
4621 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4622 if (!write || (ret == -EINVAL))
4623 return ret;
4624 for_each_zone(zone) {
4625 for_each_online_cpu(cpu) {
4626 unsigned long high;
4627 high = zone->present_pages / percpu_pagelist_fraction;
4628 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4629 }
4630 }
4631 return 0;
4632}
4633
f034b5d4 4634int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4635
4636#ifdef CONFIG_NUMA
4637static int __init set_hashdist(char *str)
4638{
4639 if (!str)
4640 return 0;
4641 hashdist = simple_strtoul(str, &str, 0);
4642 return 1;
4643}
4644__setup("hashdist=", set_hashdist);
4645#endif
4646
4647/*
4648 * allocate a large system hash table from bootmem
4649 * - it is assumed that the hash table must contain an exact power-of-2
4650 * quantity of entries
4651 * - limit is the number of hash buckets, not the total allocation size
4652 */
4653void *__init alloc_large_system_hash(const char *tablename,
4654 unsigned long bucketsize,
4655 unsigned long numentries,
4656 int scale,
4657 int flags,
4658 unsigned int *_hash_shift,
4659 unsigned int *_hash_mask,
4660 unsigned long limit)
4661{
4662 unsigned long long max = limit;
4663 unsigned long log2qty, size;
4664 void *table = NULL;
4665
4666 /* allow the kernel cmdline to have a say */
4667 if (!numentries) {
4668 /* round applicable memory size up to nearest megabyte */
04903664 4669 numentries = nr_kernel_pages;
1da177e4
LT
4670 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4671 numentries >>= 20 - PAGE_SHIFT;
4672 numentries <<= 20 - PAGE_SHIFT;
4673
4674 /* limit to 1 bucket per 2^scale bytes of low memory */
4675 if (scale > PAGE_SHIFT)
4676 numentries >>= (scale - PAGE_SHIFT);
4677 else
4678 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4679
4680 /* Make sure we've got at least a 0-order allocation.. */
4681 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4682 numentries = PAGE_SIZE / bucketsize;
1da177e4 4683 }
6e692ed3 4684 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4685
4686 /* limit allocation size to 1/16 total memory by default */
4687 if (max == 0) {
4688 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4689 do_div(max, bucketsize);
4690 }
4691
4692 if (numentries > max)
4693 numentries = max;
4694
f0d1b0b3 4695 log2qty = ilog2(numentries);
1da177e4
LT
4696
4697 do {
4698 size = bucketsize << log2qty;
4699 if (flags & HASH_EARLY)
74768ed8 4700 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4701 else if (hashdist)
4702 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4703 else {
1037b83b
ED
4704 /*
4705 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4706 * some pages at the end of hash table which
4707 * alloc_pages_exact() automatically does
1037b83b 4708 */
a1dd268c
MG
4709 if (get_order(size) < MAX_ORDER)
4710 table = alloc_pages_exact(size, GFP_ATOMIC);
1da177e4
LT
4711 }
4712 } while (!table && size > PAGE_SIZE && --log2qty);
4713
4714 if (!table)
4715 panic("Failed to allocate %s hash table\n", tablename);
4716
b49ad484 4717 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4718 tablename,
4719 (1U << log2qty),
f0d1b0b3 4720 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4721 size);
4722
4723 if (_hash_shift)
4724 *_hash_shift = log2qty;
4725 if (_hash_mask)
4726 *_hash_mask = (1 << log2qty) - 1;
4727
dbb1f81c
CM
4728 /*
4729 * If hashdist is set, the table allocation is done with __vmalloc()
4730 * which invokes the kmemleak_alloc() callback. This function may also
4731 * be called before the slab and kmemleak are initialised when
4732 * kmemleak simply buffers the request to be executed later
4733 * (GFP_ATOMIC flag ignored in this case).
4734 */
4735 if (!hashdist)
4736 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4737
1da177e4
LT
4738 return table;
4739}
a117e66e 4740
835c134e
MG
4741/* Return a pointer to the bitmap storing bits affecting a block of pages */
4742static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4743 unsigned long pfn)
4744{
4745#ifdef CONFIG_SPARSEMEM
4746 return __pfn_to_section(pfn)->pageblock_flags;
4747#else
4748 return zone->pageblock_flags;
4749#endif /* CONFIG_SPARSEMEM */
4750}
4751
4752static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4753{
4754#ifdef CONFIG_SPARSEMEM
4755 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4756 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4757#else
4758 pfn = pfn - zone->zone_start_pfn;
d9c23400 4759 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4760#endif /* CONFIG_SPARSEMEM */
4761}
4762
4763/**
d9c23400 4764 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4765 * @page: The page within the block of interest
4766 * @start_bitidx: The first bit of interest to retrieve
4767 * @end_bitidx: The last bit of interest
4768 * returns pageblock_bits flags
4769 */
4770unsigned long get_pageblock_flags_group(struct page *page,
4771 int start_bitidx, int end_bitidx)
4772{
4773 struct zone *zone;
4774 unsigned long *bitmap;
4775 unsigned long pfn, bitidx;
4776 unsigned long flags = 0;
4777 unsigned long value = 1;
4778
4779 zone = page_zone(page);
4780 pfn = page_to_pfn(page);
4781 bitmap = get_pageblock_bitmap(zone, pfn);
4782 bitidx = pfn_to_bitidx(zone, pfn);
4783
4784 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4785 if (test_bit(bitidx + start_bitidx, bitmap))
4786 flags |= value;
6220ec78 4787
835c134e
MG
4788 return flags;
4789}
4790
4791/**
d9c23400 4792 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4793 * @page: The page within the block of interest
4794 * @start_bitidx: The first bit of interest
4795 * @end_bitidx: The last bit of interest
4796 * @flags: The flags to set
4797 */
4798void set_pageblock_flags_group(struct page *page, unsigned long flags,
4799 int start_bitidx, int end_bitidx)
4800{
4801 struct zone *zone;
4802 unsigned long *bitmap;
4803 unsigned long pfn, bitidx;
4804 unsigned long value = 1;
4805
4806 zone = page_zone(page);
4807 pfn = page_to_pfn(page);
4808 bitmap = get_pageblock_bitmap(zone, pfn);
4809 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4810 VM_BUG_ON(pfn < zone->zone_start_pfn);
4811 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4812
4813 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4814 if (flags & value)
4815 __set_bit(bitidx + start_bitidx, bitmap);
4816 else
4817 __clear_bit(bitidx + start_bitidx, bitmap);
4818}
a5d76b54
KH
4819
4820/*
4821 * This is designed as sub function...plz see page_isolation.c also.
4822 * set/clear page block's type to be ISOLATE.
4823 * page allocater never alloc memory from ISOLATE block.
4824 */
4825
4826int set_migratetype_isolate(struct page *page)
4827{
4828 struct zone *zone;
4829 unsigned long flags;
4830 int ret = -EBUSY;
4831
4832 zone = page_zone(page);
4833 spin_lock_irqsave(&zone->lock, flags);
4834 /*
4835 * In future, more migrate types will be able to be isolation target.
4836 */
4837 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4838 goto out;
4839 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4840 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4841 ret = 0;
4842out:
4843 spin_unlock_irqrestore(&zone->lock, flags);
4844 if (!ret)
9f8f2172 4845 drain_all_pages();
a5d76b54
KH
4846 return ret;
4847}
4848
4849void unset_migratetype_isolate(struct page *page)
4850{
4851 struct zone *zone;
4852 unsigned long flags;
4853 zone = page_zone(page);
4854 spin_lock_irqsave(&zone->lock, flags);
4855 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4856 goto out;
4857 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4858 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4859out:
4860 spin_unlock_irqrestore(&zone->lock, flags);
4861}
0c0e6195
KH
4862
4863#ifdef CONFIG_MEMORY_HOTREMOVE
4864/*
4865 * All pages in the range must be isolated before calling this.
4866 */
4867void
4868__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4869{
4870 struct page *page;
4871 struct zone *zone;
4872 int order, i;
4873 unsigned long pfn;
4874 unsigned long flags;
4875 /* find the first valid pfn */
4876 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4877 if (pfn_valid(pfn))
4878 break;
4879 if (pfn == end_pfn)
4880 return;
4881 zone = page_zone(pfn_to_page(pfn));
4882 spin_lock_irqsave(&zone->lock, flags);
4883 pfn = start_pfn;
4884 while (pfn < end_pfn) {
4885 if (!pfn_valid(pfn)) {
4886 pfn++;
4887 continue;
4888 }
4889 page = pfn_to_page(pfn);
4890 BUG_ON(page_count(page));
4891 BUG_ON(!PageBuddy(page));
4892 order = page_order(page);
4893#ifdef CONFIG_DEBUG_VM
4894 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4895 pfn, 1 << order, end_pfn);
4896#endif
4897 list_del(&page->lru);
4898 rmv_page_order(page);
4899 zone->free_area[order].nr_free--;
4900 __mod_zone_page_state(zone, NR_FREE_PAGES,
4901 - (1UL << order));
4902 for (i = 0; i < (1 << order); i++)
4903 SetPageReserved((page+i));
4904 pfn += (1 << order);
4905 }
4906 spin_unlock_irqrestore(&zone->lock, flags);
4907}
4908#endif