[PATCH] Get rid of zone_table[]
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
ac924c60 45#include <asm/div64.h>
1da177e4
LT
46#include "internal.h"
47
48/*
49 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
50 * initializer cleaner
51 */
c3d8c141 52nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 53EXPORT_SYMBOL(node_online_map);
c3d8c141 54nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 55EXPORT_SYMBOL(node_possible_map);
6c231b7b 56unsigned long totalram_pages __read_mostly;
cb45b0e9 57unsigned long totalreserve_pages __read_mostly;
1da177e4 58long nr_swap_pages;
8ad4b1fb 59int percpu_pagelist_fraction;
1da177e4 60
d98c7a09 61static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 62
1da177e4
LT
63/*
64 * results with 256, 32 in the lowmem_reserve sysctl:
65 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
66 * 1G machine -> (16M dma, 784M normal, 224M high)
67 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
68 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
69 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
70 *
71 * TBD: should special case ZONE_DMA32 machines here - in those we normally
72 * don't need any ZONE_NORMAL reservation
1da177e4 73 */
2f1b6248
CL
74int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
75 256,
fb0e7942 76#ifdef CONFIG_ZONE_DMA32
2f1b6248 77 256,
fb0e7942 78#endif
e53ef38d 79#ifdef CONFIG_HIGHMEM
2f1b6248 80 32
e53ef38d 81#endif
2f1b6248 82};
1da177e4
LT
83
84EXPORT_SYMBOL(totalram_pages);
1da177e4 85
2f1b6248
CL
86static char *zone_names[MAX_NR_ZONES] = {
87 "DMA",
fb0e7942 88#ifdef CONFIG_ZONE_DMA32
2f1b6248 89 "DMA32",
fb0e7942 90#endif
2f1b6248 91 "Normal",
e53ef38d 92#ifdef CONFIG_HIGHMEM
2f1b6248 93 "HighMem"
e53ef38d 94#endif
2f1b6248
CL
95};
96
1da177e4
LT
97int min_free_kbytes = 1024;
98
86356ab1
YG
99unsigned long __meminitdata nr_kernel_pages;
100unsigned long __meminitdata nr_all_pages;
0e0b864e 101static unsigned long __initdata dma_reserve;
1da177e4 102
c713216d
MG
103#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
104 /*
105 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
106 * ranges of memory (RAM) that may be registered with add_active_range().
107 * Ranges passed to add_active_range() will be merged if possible
108 * so the number of times add_active_range() can be called is
109 * related to the number of nodes and the number of holes
110 */
111 #ifdef CONFIG_MAX_ACTIVE_REGIONS
112 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
113 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
114 #else
115 #if MAX_NUMNODES >= 32
116 /* If there can be many nodes, allow up to 50 holes per node */
117 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
118 #else
119 /* By default, allow up to 256 distinct regions */
120 #define MAX_ACTIVE_REGIONS 256
121 #endif
122 #endif
123
124 struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
125 int __initdata nr_nodemap_entries;
126 unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
127 unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c
MG
128#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
129 unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
130 unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
131#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
132#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
133
13e7444b 134#ifdef CONFIG_DEBUG_VM
c6a57e19 135static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 136{
bdc8cb98
DH
137 int ret = 0;
138 unsigned seq;
139 unsigned long pfn = page_to_pfn(page);
c6a57e19 140
bdc8cb98
DH
141 do {
142 seq = zone_span_seqbegin(zone);
143 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
144 ret = 1;
145 else if (pfn < zone->zone_start_pfn)
146 ret = 1;
147 } while (zone_span_seqretry(zone, seq));
148
149 return ret;
c6a57e19
DH
150}
151
152static int page_is_consistent(struct zone *zone, struct page *page)
153{
1da177e4
LT
154#ifdef CONFIG_HOLES_IN_ZONE
155 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 156 return 0;
1da177e4
LT
157#endif
158 if (zone != page_zone(page))
c6a57e19
DH
159 return 0;
160
161 return 1;
162}
163/*
164 * Temporary debugging check for pages not lying within a given zone.
165 */
166static int bad_range(struct zone *zone, struct page *page)
167{
168 if (page_outside_zone_boundaries(zone, page))
1da177e4 169 return 1;
c6a57e19
DH
170 if (!page_is_consistent(zone, page))
171 return 1;
172
1da177e4
LT
173 return 0;
174}
13e7444b
NP
175#else
176static inline int bad_range(struct zone *zone, struct page *page)
177{
178 return 0;
179}
180#endif
181
224abf92 182static void bad_page(struct page *page)
1da177e4 183{
224abf92 184 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
185 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
186 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
187 KERN_EMERG "Backtrace:\n",
224abf92
NP
188 current->comm, page, (int)(2*sizeof(unsigned long)),
189 (unsigned long)page->flags, page->mapping,
190 page_mapcount(page), page_count(page));
1da177e4 191 dump_stack();
334795ec
HD
192 page->flags &= ~(1 << PG_lru |
193 1 << PG_private |
1da177e4 194 1 << PG_locked |
1da177e4
LT
195 1 << PG_active |
196 1 << PG_dirty |
334795ec
HD
197 1 << PG_reclaim |
198 1 << PG_slab |
1da177e4 199 1 << PG_swapcache |
676165a8
NP
200 1 << PG_writeback |
201 1 << PG_buddy );
1da177e4
LT
202 set_page_count(page, 0);
203 reset_page_mapcount(page);
204 page->mapping = NULL;
9f158333 205 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
206}
207
1da177e4
LT
208/*
209 * Higher-order pages are called "compound pages". They are structured thusly:
210 *
211 * The first PAGE_SIZE page is called the "head page".
212 *
213 * The remaining PAGE_SIZE pages are called "tail pages".
214 *
215 * All pages have PG_compound set. All pages have their ->private pointing at
216 * the head page (even the head page has this).
217 *
41d78ba5
HD
218 * The first tail page's ->lru.next holds the address of the compound page's
219 * put_page() function. Its ->lru.prev holds the order of allocation.
220 * This usage means that zero-order pages may not be compound.
1da177e4 221 */
d98c7a09
HD
222
223static void free_compound_page(struct page *page)
224{
225 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
226}
227
1da177e4
LT
228static void prep_compound_page(struct page *page, unsigned long order)
229{
230 int i;
231 int nr_pages = 1 << order;
232
d98c7a09 233 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 234 page[1].lru.prev = (void *)order;
1da177e4
LT
235 for (i = 0; i < nr_pages; i++) {
236 struct page *p = page + i;
237
5e9dace8 238 __SetPageCompound(p);
4c21e2f2 239 set_page_private(p, (unsigned long)page);
1da177e4
LT
240 }
241}
242
243static void destroy_compound_page(struct page *page, unsigned long order)
244{
245 int i;
246 int nr_pages = 1 << order;
247
41d78ba5 248 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 249 bad_page(page);
1da177e4
LT
250
251 for (i = 0; i < nr_pages; i++) {
252 struct page *p = page + i;
253
224abf92
NP
254 if (unlikely(!PageCompound(p) |
255 (page_private(p) != (unsigned long)page)))
256 bad_page(page);
5e9dace8 257 __ClearPageCompound(p);
1da177e4
LT
258 }
259}
1da177e4 260
17cf4406
NP
261static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
262{
263 int i;
264
725d704e 265 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
266 /*
267 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
268 * and __GFP_HIGHMEM from hard or soft interrupt context.
269 */
725d704e 270 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
271 for (i = 0; i < (1 << order); i++)
272 clear_highpage(page + i);
273}
274
1da177e4
LT
275/*
276 * function for dealing with page's order in buddy system.
277 * zone->lock is already acquired when we use these.
278 * So, we don't need atomic page->flags operations here.
279 */
6aa3001b
AM
280static inline unsigned long page_order(struct page *page)
281{
4c21e2f2 282 return page_private(page);
1da177e4
LT
283}
284
6aa3001b
AM
285static inline void set_page_order(struct page *page, int order)
286{
4c21e2f2 287 set_page_private(page, order);
676165a8 288 __SetPageBuddy(page);
1da177e4
LT
289}
290
291static inline void rmv_page_order(struct page *page)
292{
676165a8 293 __ClearPageBuddy(page);
4c21e2f2 294 set_page_private(page, 0);
1da177e4
LT
295}
296
297/*
298 * Locate the struct page for both the matching buddy in our
299 * pair (buddy1) and the combined O(n+1) page they form (page).
300 *
301 * 1) Any buddy B1 will have an order O twin B2 which satisfies
302 * the following equation:
303 * B2 = B1 ^ (1 << O)
304 * For example, if the starting buddy (buddy2) is #8 its order
305 * 1 buddy is #10:
306 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
307 *
308 * 2) Any buddy B will have an order O+1 parent P which
309 * satisfies the following equation:
310 * P = B & ~(1 << O)
311 *
d6e05edc 312 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
313 */
314static inline struct page *
315__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
316{
317 unsigned long buddy_idx = page_idx ^ (1 << order);
318
319 return page + (buddy_idx - page_idx);
320}
321
322static inline unsigned long
323__find_combined_index(unsigned long page_idx, unsigned int order)
324{
325 return (page_idx & ~(1 << order));
326}
327
328/*
329 * This function checks whether a page is free && is the buddy
330 * we can do coalesce a page and its buddy if
13e7444b 331 * (a) the buddy is not in a hole &&
676165a8 332 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
333 * (c) a page and its buddy have the same order &&
334 * (d) a page and its buddy are in the same zone.
676165a8
NP
335 *
336 * For recording whether a page is in the buddy system, we use PG_buddy.
337 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 338 *
676165a8 339 * For recording page's order, we use page_private(page).
1da177e4 340 */
cb2b95e1
AW
341static inline int page_is_buddy(struct page *page, struct page *buddy,
342 int order)
1da177e4 343{
13e7444b 344#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 345 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
346 return 0;
347#endif
348
cb2b95e1
AW
349 if (page_zone_id(page) != page_zone_id(buddy))
350 return 0;
351
352 if (PageBuddy(buddy) && page_order(buddy) == order) {
353 BUG_ON(page_count(buddy) != 0);
6aa3001b 354 return 1;
676165a8 355 }
6aa3001b 356 return 0;
1da177e4
LT
357}
358
359/*
360 * Freeing function for a buddy system allocator.
361 *
362 * The concept of a buddy system is to maintain direct-mapped table
363 * (containing bit values) for memory blocks of various "orders".
364 * The bottom level table contains the map for the smallest allocatable
365 * units of memory (here, pages), and each level above it describes
366 * pairs of units from the levels below, hence, "buddies".
367 * At a high level, all that happens here is marking the table entry
368 * at the bottom level available, and propagating the changes upward
369 * as necessary, plus some accounting needed to play nicely with other
370 * parts of the VM system.
371 * At each level, we keep a list of pages, which are heads of continuous
676165a8 372 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 373 * order is recorded in page_private(page) field.
1da177e4
LT
374 * So when we are allocating or freeing one, we can derive the state of the
375 * other. That is, if we allocate a small block, and both were
376 * free, the remainder of the region must be split into blocks.
377 * If a block is freed, and its buddy is also free, then this
378 * triggers coalescing into a block of larger size.
379 *
380 * -- wli
381 */
382
48db57f8 383static inline void __free_one_page(struct page *page,
1da177e4
LT
384 struct zone *zone, unsigned int order)
385{
386 unsigned long page_idx;
387 int order_size = 1 << order;
388
224abf92 389 if (unlikely(PageCompound(page)))
1da177e4
LT
390 destroy_compound_page(page, order);
391
392 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
393
725d704e
NP
394 VM_BUG_ON(page_idx & (order_size - 1));
395 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
396
397 zone->free_pages += order_size;
398 while (order < MAX_ORDER-1) {
399 unsigned long combined_idx;
400 struct free_area *area;
401 struct page *buddy;
402
1da177e4 403 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 404 if (!page_is_buddy(page, buddy, order))
1da177e4 405 break; /* Move the buddy up one level. */
13e7444b 406
1da177e4
LT
407 list_del(&buddy->lru);
408 area = zone->free_area + order;
409 area->nr_free--;
410 rmv_page_order(buddy);
13e7444b 411 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
412 page = page + (combined_idx - page_idx);
413 page_idx = combined_idx;
414 order++;
415 }
416 set_page_order(page, order);
417 list_add(&page->lru, &zone->free_area[order].free_list);
418 zone->free_area[order].nr_free++;
419}
420
224abf92 421static inline int free_pages_check(struct page *page)
1da177e4 422{
92be2e33
NP
423 if (unlikely(page_mapcount(page) |
424 (page->mapping != NULL) |
425 (page_count(page) != 0) |
1da177e4
LT
426 (page->flags & (
427 1 << PG_lru |
428 1 << PG_private |
429 1 << PG_locked |
430 1 << PG_active |
431 1 << PG_reclaim |
432 1 << PG_slab |
433 1 << PG_swapcache |
b5810039 434 1 << PG_writeback |
676165a8
NP
435 1 << PG_reserved |
436 1 << PG_buddy ))))
224abf92 437 bad_page(page);
1da177e4 438 if (PageDirty(page))
242e5468 439 __ClearPageDirty(page);
689bcebf
HD
440 /*
441 * For now, we report if PG_reserved was found set, but do not
442 * clear it, and do not free the page. But we shall soon need
443 * to do more, for when the ZERO_PAGE count wraps negative.
444 */
445 return PageReserved(page);
1da177e4
LT
446}
447
448/*
449 * Frees a list of pages.
450 * Assumes all pages on list are in same zone, and of same order.
207f36ee 451 * count is the number of pages to free.
1da177e4
LT
452 *
453 * If the zone was previously in an "all pages pinned" state then look to
454 * see if this freeing clears that state.
455 *
456 * And clear the zone's pages_scanned counter, to hold off the "all pages are
457 * pinned" detection logic.
458 */
48db57f8
NP
459static void free_pages_bulk(struct zone *zone, int count,
460 struct list_head *list, int order)
1da177e4 461{
c54ad30c 462 spin_lock(&zone->lock);
1da177e4
LT
463 zone->all_unreclaimable = 0;
464 zone->pages_scanned = 0;
48db57f8
NP
465 while (count--) {
466 struct page *page;
467
725d704e 468 VM_BUG_ON(list_empty(list));
1da177e4 469 page = list_entry(list->prev, struct page, lru);
48db57f8 470 /* have to delete it as __free_one_page list manipulates */
1da177e4 471 list_del(&page->lru);
48db57f8 472 __free_one_page(page, zone, order);
1da177e4 473 }
c54ad30c 474 spin_unlock(&zone->lock);
1da177e4
LT
475}
476
48db57f8 477static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 478{
006d22d9
CL
479 spin_lock(&zone->lock);
480 zone->all_unreclaimable = 0;
481 zone->pages_scanned = 0;
0798e519 482 __free_one_page(page, zone, order);
006d22d9 483 spin_unlock(&zone->lock);
48db57f8
NP
484}
485
486static void __free_pages_ok(struct page *page, unsigned int order)
487{
488 unsigned long flags;
1da177e4 489 int i;
689bcebf 490 int reserved = 0;
1da177e4 491
1da177e4 492 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 493 reserved += free_pages_check(page + i);
689bcebf
HD
494 if (reserved)
495 return;
496
9858db50
NP
497 if (!PageHighMem(page))
498 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 499 arch_free_page(page, order);
48db57f8 500 kernel_map_pages(page, 1 << order, 0);
dafb1367 501
c54ad30c 502 local_irq_save(flags);
f8891e5e 503 __count_vm_events(PGFREE, 1 << order);
48db57f8 504 free_one_page(page_zone(page), page, order);
c54ad30c 505 local_irq_restore(flags);
1da177e4
LT
506}
507
a226f6c8
DH
508/*
509 * permit the bootmem allocator to evade page validation on high-order frees
510 */
511void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
512{
513 if (order == 0) {
514 __ClearPageReserved(page);
515 set_page_count(page, 0);
7835e98b 516 set_page_refcounted(page);
545b1ea9 517 __free_page(page);
a226f6c8 518 } else {
a226f6c8
DH
519 int loop;
520
545b1ea9 521 prefetchw(page);
a226f6c8
DH
522 for (loop = 0; loop < BITS_PER_LONG; loop++) {
523 struct page *p = &page[loop];
524
545b1ea9
NP
525 if (loop + 1 < BITS_PER_LONG)
526 prefetchw(p + 1);
a226f6c8
DH
527 __ClearPageReserved(p);
528 set_page_count(p, 0);
529 }
530
7835e98b 531 set_page_refcounted(page);
545b1ea9 532 __free_pages(page, order);
a226f6c8
DH
533 }
534}
535
1da177e4
LT
536
537/*
538 * The order of subdivision here is critical for the IO subsystem.
539 * Please do not alter this order without good reasons and regression
540 * testing. Specifically, as large blocks of memory are subdivided,
541 * the order in which smaller blocks are delivered depends on the order
542 * they're subdivided in this function. This is the primary factor
543 * influencing the order in which pages are delivered to the IO
544 * subsystem according to empirical testing, and this is also justified
545 * by considering the behavior of a buddy system containing a single
546 * large block of memory acted on by a series of small allocations.
547 * This behavior is a critical factor in sglist merging's success.
548 *
549 * -- wli
550 */
085cc7d5 551static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
552 int low, int high, struct free_area *area)
553{
554 unsigned long size = 1 << high;
555
556 while (high > low) {
557 area--;
558 high--;
559 size >>= 1;
725d704e 560 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
561 list_add(&page[size].lru, &area->free_list);
562 area->nr_free++;
563 set_page_order(&page[size], high);
564 }
1da177e4
LT
565}
566
1da177e4
LT
567/*
568 * This page is about to be returned from the page allocator
569 */
17cf4406 570static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 571{
92be2e33
NP
572 if (unlikely(page_mapcount(page) |
573 (page->mapping != NULL) |
574 (page_count(page) != 0) |
334795ec
HD
575 (page->flags & (
576 1 << PG_lru |
1da177e4
LT
577 1 << PG_private |
578 1 << PG_locked |
1da177e4
LT
579 1 << PG_active |
580 1 << PG_dirty |
581 1 << PG_reclaim |
334795ec 582 1 << PG_slab |
1da177e4 583 1 << PG_swapcache |
b5810039 584 1 << PG_writeback |
676165a8
NP
585 1 << PG_reserved |
586 1 << PG_buddy ))))
224abf92 587 bad_page(page);
1da177e4 588
689bcebf
HD
589 /*
590 * For now, we report if PG_reserved was found set, but do not
591 * clear it, and do not allocate the page: as a safety net.
592 */
593 if (PageReserved(page))
594 return 1;
595
1da177e4
LT
596 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
597 1 << PG_referenced | 1 << PG_arch_1 |
598 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 599 set_page_private(page, 0);
7835e98b 600 set_page_refcounted(page);
1da177e4 601 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
602
603 if (gfp_flags & __GFP_ZERO)
604 prep_zero_page(page, order, gfp_flags);
605
606 if (order && (gfp_flags & __GFP_COMP))
607 prep_compound_page(page, order);
608
689bcebf 609 return 0;
1da177e4
LT
610}
611
612/*
613 * Do the hard work of removing an element from the buddy allocator.
614 * Call me with the zone->lock already held.
615 */
616static struct page *__rmqueue(struct zone *zone, unsigned int order)
617{
618 struct free_area * area;
619 unsigned int current_order;
620 struct page *page;
621
622 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
623 area = zone->free_area + current_order;
624 if (list_empty(&area->free_list))
625 continue;
626
627 page = list_entry(area->free_list.next, struct page, lru);
628 list_del(&page->lru);
629 rmv_page_order(page);
630 area->nr_free--;
631 zone->free_pages -= 1UL << order;
085cc7d5
NP
632 expand(zone, page, order, current_order, area);
633 return page;
1da177e4
LT
634 }
635
636 return NULL;
637}
638
639/*
640 * Obtain a specified number of elements from the buddy allocator, all under
641 * a single hold of the lock, for efficiency. Add them to the supplied list.
642 * Returns the number of new pages which were placed at *list.
643 */
644static int rmqueue_bulk(struct zone *zone, unsigned int order,
645 unsigned long count, struct list_head *list)
646{
1da177e4 647 int i;
1da177e4 648
c54ad30c 649 spin_lock(&zone->lock);
1da177e4 650 for (i = 0; i < count; ++i) {
085cc7d5
NP
651 struct page *page = __rmqueue(zone, order);
652 if (unlikely(page == NULL))
1da177e4 653 break;
1da177e4
LT
654 list_add_tail(&page->lru, list);
655 }
c54ad30c 656 spin_unlock(&zone->lock);
085cc7d5 657 return i;
1da177e4
LT
658}
659
4ae7c039 660#ifdef CONFIG_NUMA
8fce4d8e
CL
661/*
662 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 663 * belongs to the currently executing processor.
879336c3
CL
664 * Note that this function must be called with the thread pinned to
665 * a single processor.
8fce4d8e
CL
666 */
667void drain_node_pages(int nodeid)
4ae7c039 668{
2f6726e5
CL
669 int i;
670 enum zone_type z;
4ae7c039
CL
671 unsigned long flags;
672
8fce4d8e
CL
673 for (z = 0; z < MAX_NR_ZONES; z++) {
674 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
675 struct per_cpu_pageset *pset;
676
39bbcb8f
CL
677 if (!populated_zone(zone))
678 continue;
679
23316bc8 680 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
681 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
682 struct per_cpu_pages *pcp;
683
684 pcp = &pset->pcp[i];
879336c3
CL
685 if (pcp->count) {
686 local_irq_save(flags);
687 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
688 pcp->count = 0;
689 local_irq_restore(flags);
690 }
4ae7c039
CL
691 }
692 }
4ae7c039
CL
693}
694#endif
695
1da177e4
LT
696#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
697static void __drain_pages(unsigned int cpu)
698{
c54ad30c 699 unsigned long flags;
1da177e4
LT
700 struct zone *zone;
701 int i;
702
703 for_each_zone(zone) {
704 struct per_cpu_pageset *pset;
705
e7c8d5c9 706 pset = zone_pcp(zone, cpu);
1da177e4
LT
707 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
708 struct per_cpu_pages *pcp;
709
710 pcp = &pset->pcp[i];
c54ad30c 711 local_irq_save(flags);
48db57f8
NP
712 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
713 pcp->count = 0;
c54ad30c 714 local_irq_restore(flags);
1da177e4
LT
715 }
716 }
717}
718#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
719
720#ifdef CONFIG_PM
721
722void mark_free_pages(struct zone *zone)
723{
f623f0db
RW
724 unsigned long pfn, max_zone_pfn;
725 unsigned long flags;
1da177e4
LT
726 int order;
727 struct list_head *curr;
728
729 if (!zone->spanned_pages)
730 return;
731
732 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
733
734 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
735 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
736 if (pfn_valid(pfn)) {
737 struct page *page = pfn_to_page(pfn);
738
739 if (!PageNosave(page))
740 ClearPageNosaveFree(page);
741 }
1da177e4
LT
742
743 for (order = MAX_ORDER - 1; order >= 0; --order)
744 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 745 unsigned long i;
1da177e4 746
f623f0db
RW
747 pfn = page_to_pfn(list_entry(curr, struct page, lru));
748 for (i = 0; i < (1UL << order); i++)
749 SetPageNosaveFree(pfn_to_page(pfn + i));
750 }
1da177e4 751
1da177e4
LT
752 spin_unlock_irqrestore(&zone->lock, flags);
753}
754
755/*
756 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
757 */
758void drain_local_pages(void)
759{
760 unsigned long flags;
761
762 local_irq_save(flags);
763 __drain_pages(smp_processor_id());
764 local_irq_restore(flags);
765}
766#endif /* CONFIG_PM */
767
1da177e4
LT
768/*
769 * Free a 0-order page
770 */
1da177e4
LT
771static void fastcall free_hot_cold_page(struct page *page, int cold)
772{
773 struct zone *zone = page_zone(page);
774 struct per_cpu_pages *pcp;
775 unsigned long flags;
776
1da177e4
LT
777 if (PageAnon(page))
778 page->mapping = NULL;
224abf92 779 if (free_pages_check(page))
689bcebf
HD
780 return;
781
9858db50
NP
782 if (!PageHighMem(page))
783 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 784 arch_free_page(page, 0);
689bcebf
HD
785 kernel_map_pages(page, 1, 0);
786
e7c8d5c9 787 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 788 local_irq_save(flags);
f8891e5e 789 __count_vm_event(PGFREE);
1da177e4
LT
790 list_add(&page->lru, &pcp->list);
791 pcp->count++;
48db57f8
NP
792 if (pcp->count >= pcp->high) {
793 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
794 pcp->count -= pcp->batch;
795 }
1da177e4
LT
796 local_irq_restore(flags);
797 put_cpu();
798}
799
800void fastcall free_hot_page(struct page *page)
801{
802 free_hot_cold_page(page, 0);
803}
804
805void fastcall free_cold_page(struct page *page)
806{
807 free_hot_cold_page(page, 1);
808}
809
8dfcc9ba
NP
810/*
811 * split_page takes a non-compound higher-order page, and splits it into
812 * n (1<<order) sub-pages: page[0..n]
813 * Each sub-page must be freed individually.
814 *
815 * Note: this is probably too low level an operation for use in drivers.
816 * Please consult with lkml before using this in your driver.
817 */
818void split_page(struct page *page, unsigned int order)
819{
820 int i;
821
725d704e
NP
822 VM_BUG_ON(PageCompound(page));
823 VM_BUG_ON(!page_count(page));
7835e98b
NP
824 for (i = 1; i < (1 << order); i++)
825 set_page_refcounted(page + i);
8dfcc9ba 826}
8dfcc9ba 827
1da177e4
LT
828/*
829 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
830 * we cheat by calling it from here, in the order > 0 path. Saves a branch
831 * or two.
832 */
a74609fa
NP
833static struct page *buffered_rmqueue(struct zonelist *zonelist,
834 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
835{
836 unsigned long flags;
689bcebf 837 struct page *page;
1da177e4 838 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 839 int cpu;
1da177e4 840
689bcebf 841again:
a74609fa 842 cpu = get_cpu();
48db57f8 843 if (likely(order == 0)) {
1da177e4
LT
844 struct per_cpu_pages *pcp;
845
a74609fa 846 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 847 local_irq_save(flags);
a74609fa 848 if (!pcp->count) {
941c7105 849 pcp->count = rmqueue_bulk(zone, 0,
1da177e4 850 pcp->batch, &pcp->list);
a74609fa
NP
851 if (unlikely(!pcp->count))
852 goto failed;
1da177e4 853 }
a74609fa
NP
854 page = list_entry(pcp->list.next, struct page, lru);
855 list_del(&page->lru);
856 pcp->count--;
7fb1d9fc 857 } else {
1da177e4
LT
858 spin_lock_irqsave(&zone->lock, flags);
859 page = __rmqueue(zone, order);
a74609fa
NP
860 spin_unlock(&zone->lock);
861 if (!page)
862 goto failed;
1da177e4
LT
863 }
864
f8891e5e 865 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 866 zone_statistics(zonelist, zone);
a74609fa
NP
867 local_irq_restore(flags);
868 put_cpu();
1da177e4 869
725d704e 870 VM_BUG_ON(bad_range(zone, page));
17cf4406 871 if (prep_new_page(page, order, gfp_flags))
a74609fa 872 goto again;
1da177e4 873 return page;
a74609fa
NP
874
875failed:
876 local_irq_restore(flags);
877 put_cpu();
878 return NULL;
1da177e4
LT
879}
880
7fb1d9fc 881#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
882#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
883#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
884#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
885#define ALLOC_HARDER 0x10 /* try to alloc harder */
886#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
887#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 888
1da177e4
LT
889/*
890 * Return 1 if free pages are above 'mark'. This takes into account the order
891 * of the allocation.
892 */
893int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 894 int classzone_idx, int alloc_flags)
1da177e4
LT
895{
896 /* free_pages my go negative - that's OK */
e80ee884
NP
897 unsigned long min = mark;
898 long free_pages = z->free_pages - (1 << order) + 1;
1da177e4
LT
899 int o;
900
7fb1d9fc 901 if (alloc_flags & ALLOC_HIGH)
1da177e4 902 min -= min / 2;
7fb1d9fc 903 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
904 min -= min / 4;
905
906 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
907 return 0;
908 for (o = 0; o < order; o++) {
909 /* At the next order, this order's pages become unavailable */
910 free_pages -= z->free_area[o].nr_free << o;
911
912 /* Require fewer higher order pages to be free */
913 min >>= 1;
914
915 if (free_pages <= min)
916 return 0;
917 }
918 return 1;
919}
920
7fb1d9fc 921/*
0798e519 922 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
923 * a page.
924 */
925static struct page *
926get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
927 struct zonelist *zonelist, int alloc_flags)
753ee728 928{
7fb1d9fc
RS
929 struct zone **z = zonelist->zones;
930 struct page *page = NULL;
931 int classzone_idx = zone_idx(*z);
1192d526 932 struct zone *zone;
7fb1d9fc
RS
933
934 /*
935 * Go through the zonelist once, looking for a zone with enough free.
936 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
937 */
938 do {
1192d526 939 zone = *z;
08e0f6a9 940 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1192d526 941 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 942 break;
7fb1d9fc 943 if ((alloc_flags & ALLOC_CPUSET) &&
0798e519
PJ
944 !cpuset_zone_allowed(zone, gfp_mask))
945 continue;
7fb1d9fc
RS
946
947 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
948 unsigned long mark;
949 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 950 mark = zone->pages_min;
3148890b 951 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 952 mark = zone->pages_low;
3148890b 953 else
1192d526 954 mark = zone->pages_high;
0798e519
PJ
955 if (!zone_watermark_ok(zone, order, mark,
956 classzone_idx, alloc_flags)) {
9eeff239 957 if (!zone_reclaim_mode ||
1192d526 958 !zone_reclaim(zone, gfp_mask, order))
9eeff239 959 continue;
0798e519 960 }
7fb1d9fc
RS
961 }
962
1192d526 963 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 964 if (page)
7fb1d9fc 965 break;
0798e519 966
7fb1d9fc
RS
967 } while (*(++z) != NULL);
968 return page;
753ee728
MH
969}
970
1da177e4
LT
971/*
972 * This is the 'heart' of the zoned buddy allocator.
973 */
974struct page * fastcall
dd0fc66f 975__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
976 struct zonelist *zonelist)
977{
260b2367 978 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 979 struct zone **z;
1da177e4
LT
980 struct page *page;
981 struct reclaim_state reclaim_state;
982 struct task_struct *p = current;
1da177e4 983 int do_retry;
7fb1d9fc 984 int alloc_flags;
1da177e4
LT
985 int did_some_progress;
986
987 might_sleep_if(wait);
988
6b1de916 989restart:
7fb1d9fc 990 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 991
7fb1d9fc 992 if (unlikely(*z == NULL)) {
1da177e4
LT
993 /* Should this ever happen?? */
994 return NULL;
995 }
6b1de916 996
7fb1d9fc 997 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 998 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
999 if (page)
1000 goto got_pg;
1da177e4 1001
0798e519 1002 for (z = zonelist->zones; *z; z++)
43b0bc00 1003 wakeup_kswapd(*z, order);
1da177e4 1004
9bf2229f 1005 /*
7fb1d9fc
RS
1006 * OK, we're below the kswapd watermark and have kicked background
1007 * reclaim. Now things get more complex, so set up alloc_flags according
1008 * to how we want to proceed.
1009 *
1010 * The caller may dip into page reserves a bit more if the caller
1011 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1012 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1013 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1014 */
3148890b 1015 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1016 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1017 alloc_flags |= ALLOC_HARDER;
1018 if (gfp_mask & __GFP_HIGH)
1019 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1020 if (wait)
1021 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1022
1023 /*
1024 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1025 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1026 *
1027 * This is the last chance, in general, before the goto nopage.
1028 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1029 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1030 */
7fb1d9fc
RS
1031 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1032 if (page)
1033 goto got_pg;
1da177e4
LT
1034
1035 /* This allocation should allow future memory freeing. */
b84a35be
NP
1036
1037 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1038 && !in_interrupt()) {
1039 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1040nofail_alloc:
b84a35be 1041 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1042 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1043 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1044 if (page)
1045 goto got_pg;
885036d3 1046 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1047 congestion_wait(WRITE, HZ/50);
885036d3
KK
1048 goto nofail_alloc;
1049 }
1da177e4
LT
1050 }
1051 goto nopage;
1052 }
1053
1054 /* Atomic allocations - we can't balance anything */
1055 if (!wait)
1056 goto nopage;
1057
1058rebalance:
1059 cond_resched();
1060
1061 /* We now go into synchronous reclaim */
3e0d98b9 1062 cpuset_memory_pressure_bump();
1da177e4
LT
1063 p->flags |= PF_MEMALLOC;
1064 reclaim_state.reclaimed_slab = 0;
1065 p->reclaim_state = &reclaim_state;
1066
7fb1d9fc 1067 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1068
1069 p->reclaim_state = NULL;
1070 p->flags &= ~PF_MEMALLOC;
1071
1072 cond_resched();
1073
1074 if (likely(did_some_progress)) {
7fb1d9fc
RS
1075 page = get_page_from_freelist(gfp_mask, order,
1076 zonelist, alloc_flags);
1077 if (page)
1078 goto got_pg;
1da177e4
LT
1079 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1080 /*
1081 * Go through the zonelist yet one more time, keep
1082 * very high watermark here, this is only to catch
1083 * a parallel oom killing, we must fail if we're still
1084 * under heavy pressure.
1085 */
7fb1d9fc 1086 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1087 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1088 if (page)
1089 goto got_pg;
1da177e4 1090
9b0f8b04 1091 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1092 goto restart;
1093 }
1094
1095 /*
1096 * Don't let big-order allocations loop unless the caller explicitly
1097 * requests that. Wait for some write requests to complete then retry.
1098 *
1099 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1100 * <= 3, but that may not be true in other implementations.
1101 */
1102 do_retry = 0;
1103 if (!(gfp_mask & __GFP_NORETRY)) {
1104 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1105 do_retry = 1;
1106 if (gfp_mask & __GFP_NOFAIL)
1107 do_retry = 1;
1108 }
1109 if (do_retry) {
3fcfab16 1110 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1111 goto rebalance;
1112 }
1113
1114nopage:
1115 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1116 printk(KERN_WARNING "%s: page allocation failure."
1117 " order:%d, mode:0x%x\n",
1118 p->comm, order, gfp_mask);
1119 dump_stack();
578c2fd6 1120 show_mem();
1da177e4 1121 }
1da177e4 1122got_pg:
1da177e4
LT
1123 return page;
1124}
1125
1126EXPORT_SYMBOL(__alloc_pages);
1127
1128/*
1129 * Common helper functions.
1130 */
dd0fc66f 1131fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1132{
1133 struct page * page;
1134 page = alloc_pages(gfp_mask, order);
1135 if (!page)
1136 return 0;
1137 return (unsigned long) page_address(page);
1138}
1139
1140EXPORT_SYMBOL(__get_free_pages);
1141
dd0fc66f 1142fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1143{
1144 struct page * page;
1145
1146 /*
1147 * get_zeroed_page() returns a 32-bit address, which cannot represent
1148 * a highmem page
1149 */
725d704e 1150 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1151
1152 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1153 if (page)
1154 return (unsigned long) page_address(page);
1155 return 0;
1156}
1157
1158EXPORT_SYMBOL(get_zeroed_page);
1159
1160void __pagevec_free(struct pagevec *pvec)
1161{
1162 int i = pagevec_count(pvec);
1163
1164 while (--i >= 0)
1165 free_hot_cold_page(pvec->pages[i], pvec->cold);
1166}
1167
1168fastcall void __free_pages(struct page *page, unsigned int order)
1169{
b5810039 1170 if (put_page_testzero(page)) {
1da177e4
LT
1171 if (order == 0)
1172 free_hot_page(page);
1173 else
1174 __free_pages_ok(page, order);
1175 }
1176}
1177
1178EXPORT_SYMBOL(__free_pages);
1179
1180fastcall void free_pages(unsigned long addr, unsigned int order)
1181{
1182 if (addr != 0) {
725d704e 1183 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1184 __free_pages(virt_to_page((void *)addr), order);
1185 }
1186}
1187
1188EXPORT_SYMBOL(free_pages);
1189
1190/*
1191 * Total amount of free (allocatable) RAM:
1192 */
1193unsigned int nr_free_pages(void)
1194{
1195 unsigned int sum = 0;
1196 struct zone *zone;
1197
1198 for_each_zone(zone)
1199 sum += zone->free_pages;
1200
1201 return sum;
1202}
1203
1204EXPORT_SYMBOL(nr_free_pages);
1205
1206#ifdef CONFIG_NUMA
1207unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1208{
2f6726e5
CL
1209 unsigned int sum = 0;
1210 enum zone_type i;
1da177e4
LT
1211
1212 for (i = 0; i < MAX_NR_ZONES; i++)
1213 sum += pgdat->node_zones[i].free_pages;
1214
1215 return sum;
1216}
1217#endif
1218
1219static unsigned int nr_free_zone_pages(int offset)
1220{
e310fd43
MB
1221 /* Just pick one node, since fallback list is circular */
1222 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1223 unsigned int sum = 0;
1224
e310fd43
MB
1225 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1226 struct zone **zonep = zonelist->zones;
1227 struct zone *zone;
1da177e4 1228
e310fd43
MB
1229 for (zone = *zonep++; zone; zone = *zonep++) {
1230 unsigned long size = zone->present_pages;
1231 unsigned long high = zone->pages_high;
1232 if (size > high)
1233 sum += size - high;
1da177e4
LT
1234 }
1235
1236 return sum;
1237}
1238
1239/*
1240 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1241 */
1242unsigned int nr_free_buffer_pages(void)
1243{
af4ca457 1244 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1245}
1246
1247/*
1248 * Amount of free RAM allocatable within all zones
1249 */
1250unsigned int nr_free_pagecache_pages(void)
1251{
af4ca457 1252 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1253}
08e0f6a9
CL
1254
1255static inline void show_node(struct zone *zone)
1da177e4 1256{
08e0f6a9
CL
1257 if (NUMA_BUILD)
1258 printk("Node %ld ", zone_to_nid(zone));
1da177e4 1259}
1da177e4 1260
1da177e4
LT
1261void si_meminfo(struct sysinfo *val)
1262{
1263 val->totalram = totalram_pages;
1264 val->sharedram = 0;
1265 val->freeram = nr_free_pages();
1266 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1267 val->totalhigh = totalhigh_pages;
1268 val->freehigh = nr_free_highpages();
1da177e4
LT
1269 val->mem_unit = PAGE_SIZE;
1270}
1271
1272EXPORT_SYMBOL(si_meminfo);
1273
1274#ifdef CONFIG_NUMA
1275void si_meminfo_node(struct sysinfo *val, int nid)
1276{
1277 pg_data_t *pgdat = NODE_DATA(nid);
1278
1279 val->totalram = pgdat->node_present_pages;
1280 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1281#ifdef CONFIG_HIGHMEM
1da177e4
LT
1282 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1283 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1284#else
1285 val->totalhigh = 0;
1286 val->freehigh = 0;
1287#endif
1da177e4
LT
1288 val->mem_unit = PAGE_SIZE;
1289}
1290#endif
1291
1292#define K(x) ((x) << (PAGE_SHIFT-10))
1293
1294/*
1295 * Show free area list (used inside shift_scroll-lock stuff)
1296 * We also calculate the percentage fragmentation. We do this by counting the
1297 * memory on each free list with the exception of the first item on the list.
1298 */
1299void show_free_areas(void)
1300{
c7241913 1301 int cpu;
1da177e4
LT
1302 unsigned long active;
1303 unsigned long inactive;
1304 unsigned long free;
1305 struct zone *zone;
1306
1307 for_each_zone(zone) {
c7241913 1308 if (!populated_zone(zone))
1da177e4 1309 continue;
c7241913
JS
1310
1311 show_node(zone);
1312 printk("%s per-cpu:\n", zone->name);
1da177e4 1313
6b482c67 1314 for_each_online_cpu(cpu) {
1da177e4
LT
1315 struct per_cpu_pageset *pageset;
1316
e7c8d5c9 1317 pageset = zone_pcp(zone, cpu);
1da177e4 1318
c7241913
JS
1319 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1320 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1321 cpu, pageset->pcp[0].high,
1322 pageset->pcp[0].batch, pageset->pcp[0].count,
1323 pageset->pcp[1].high, pageset->pcp[1].batch,
1324 pageset->pcp[1].count);
1da177e4
LT
1325 }
1326 }
1327
1da177e4
LT
1328 get_zone_counts(&active, &inactive, &free);
1329
1da177e4
LT
1330 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1331 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1332 active,
1333 inactive,
b1e7a8fd 1334 global_page_state(NR_FILE_DIRTY),
ce866b34 1335 global_page_state(NR_WRITEBACK),
fd39fc85 1336 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1337 nr_free_pages(),
972d1a7b
CL
1338 global_page_state(NR_SLAB_RECLAIMABLE) +
1339 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1340 global_page_state(NR_FILE_MAPPED),
df849a15 1341 global_page_state(NR_PAGETABLE));
1da177e4
LT
1342
1343 for_each_zone(zone) {
1344 int i;
1345
c7241913
JS
1346 if (!populated_zone(zone))
1347 continue;
1348
1da177e4
LT
1349 show_node(zone);
1350 printk("%s"
1351 " free:%lukB"
1352 " min:%lukB"
1353 " low:%lukB"
1354 " high:%lukB"
1355 " active:%lukB"
1356 " inactive:%lukB"
1357 " present:%lukB"
1358 " pages_scanned:%lu"
1359 " all_unreclaimable? %s"
1360 "\n",
1361 zone->name,
1362 K(zone->free_pages),
1363 K(zone->pages_min),
1364 K(zone->pages_low),
1365 K(zone->pages_high),
1366 K(zone->nr_active),
1367 K(zone->nr_inactive),
1368 K(zone->present_pages),
1369 zone->pages_scanned,
1370 (zone->all_unreclaimable ? "yes" : "no")
1371 );
1372 printk("lowmem_reserve[]:");
1373 for (i = 0; i < MAX_NR_ZONES; i++)
1374 printk(" %lu", zone->lowmem_reserve[i]);
1375 printk("\n");
1376 }
1377
1378 for_each_zone(zone) {
8f9de51a 1379 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1380
c7241913
JS
1381 if (!populated_zone(zone))
1382 continue;
1383
1da177e4
LT
1384 show_node(zone);
1385 printk("%s: ", zone->name);
1da177e4
LT
1386
1387 spin_lock_irqsave(&zone->lock, flags);
1388 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1389 nr[order] = zone->free_area[order].nr_free;
1390 total += nr[order] << order;
1da177e4
LT
1391 }
1392 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1393 for (order = 0; order < MAX_ORDER; order++)
1394 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1395 printk("= %lukB\n", K(total));
1396 }
1397
1398 show_swap_cache_info();
1399}
1400
1401/*
1402 * Builds allocation fallback zone lists.
1a93205b
CL
1403 *
1404 * Add all populated zones of a node to the zonelist.
1da177e4 1405 */
86356ab1 1406static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1407 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1408{
1a93205b
CL
1409 struct zone *zone;
1410
98d2b0eb 1411 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1412 zone_type++;
02a68a5e
CL
1413
1414 do {
2f6726e5 1415 zone_type--;
070f8032 1416 zone = pgdat->node_zones + zone_type;
1a93205b 1417 if (populated_zone(zone)) {
070f8032
CL
1418 zonelist->zones[nr_zones++] = zone;
1419 check_highest_zone(zone_type);
1da177e4 1420 }
02a68a5e 1421
2f6726e5 1422 } while (zone_type);
070f8032 1423 return nr_zones;
1da177e4
LT
1424}
1425
1426#ifdef CONFIG_NUMA
1427#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1428static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1429/**
4dc3b16b 1430 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1431 * @node: node whose fallback list we're appending
1432 * @used_node_mask: nodemask_t of already used nodes
1433 *
1434 * We use a number of factors to determine which is the next node that should
1435 * appear on a given node's fallback list. The node should not have appeared
1436 * already in @node's fallback list, and it should be the next closest node
1437 * according to the distance array (which contains arbitrary distance values
1438 * from each node to each node in the system), and should also prefer nodes
1439 * with no CPUs, since presumably they'll have very little allocation pressure
1440 * on them otherwise.
1441 * It returns -1 if no node is found.
1442 */
86356ab1 1443static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1444{
4cf808eb 1445 int n, val;
1da177e4
LT
1446 int min_val = INT_MAX;
1447 int best_node = -1;
1448
4cf808eb
LT
1449 /* Use the local node if we haven't already */
1450 if (!node_isset(node, *used_node_mask)) {
1451 node_set(node, *used_node_mask);
1452 return node;
1453 }
1da177e4 1454
4cf808eb
LT
1455 for_each_online_node(n) {
1456 cpumask_t tmp;
1da177e4
LT
1457
1458 /* Don't want a node to appear more than once */
1459 if (node_isset(n, *used_node_mask))
1460 continue;
1461
1da177e4
LT
1462 /* Use the distance array to find the distance */
1463 val = node_distance(node, n);
1464
4cf808eb
LT
1465 /* Penalize nodes under us ("prefer the next node") */
1466 val += (n < node);
1467
1da177e4
LT
1468 /* Give preference to headless and unused nodes */
1469 tmp = node_to_cpumask(n);
1470 if (!cpus_empty(tmp))
1471 val += PENALTY_FOR_NODE_WITH_CPUS;
1472
1473 /* Slight preference for less loaded node */
1474 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1475 val += node_load[n];
1476
1477 if (val < min_val) {
1478 min_val = val;
1479 best_node = n;
1480 }
1481 }
1482
1483 if (best_node >= 0)
1484 node_set(best_node, *used_node_mask);
1485
1486 return best_node;
1487}
1488
86356ab1 1489static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1490{
19655d34
CL
1491 int j, node, local_node;
1492 enum zone_type i;
1da177e4
LT
1493 int prev_node, load;
1494 struct zonelist *zonelist;
1495 nodemask_t used_mask;
1496
1497 /* initialize zonelists */
19655d34 1498 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1499 zonelist = pgdat->node_zonelists + i;
1500 zonelist->zones[0] = NULL;
1501 }
1502
1503 /* NUMA-aware ordering of nodes */
1504 local_node = pgdat->node_id;
1505 load = num_online_nodes();
1506 prev_node = local_node;
1507 nodes_clear(used_mask);
1508 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1509 int distance = node_distance(local_node, node);
1510
1511 /*
1512 * If another node is sufficiently far away then it is better
1513 * to reclaim pages in a zone before going off node.
1514 */
1515 if (distance > RECLAIM_DISTANCE)
1516 zone_reclaim_mode = 1;
1517
1da177e4
LT
1518 /*
1519 * We don't want to pressure a particular node.
1520 * So adding penalty to the first node in same
1521 * distance group to make it round-robin.
1522 */
9eeff239
CL
1523
1524 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1525 node_load[node] += load;
1526 prev_node = node;
1527 load--;
19655d34 1528 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1529 zonelist = pgdat->node_zonelists + i;
1530 for (j = 0; zonelist->zones[j] != NULL; j++);
1531
19655d34 1532 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1533 zonelist->zones[j] = NULL;
1534 }
1535 }
1536}
1537
1538#else /* CONFIG_NUMA */
1539
86356ab1 1540static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1541{
19655d34
CL
1542 int node, local_node;
1543 enum zone_type i,j;
1da177e4
LT
1544
1545 local_node = pgdat->node_id;
19655d34 1546 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1547 struct zonelist *zonelist;
1548
1549 zonelist = pgdat->node_zonelists + i;
1550
19655d34 1551 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1552 /*
1553 * Now we build the zonelist so that it contains the zones
1554 * of all the other nodes.
1555 * We don't want to pressure a particular node, so when
1556 * building the zones for node N, we make sure that the
1557 * zones coming right after the local ones are those from
1558 * node N+1 (modulo N)
1559 */
1560 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1561 if (!node_online(node))
1562 continue;
19655d34 1563 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1564 }
1565 for (node = 0; node < local_node; node++) {
1566 if (!node_online(node))
1567 continue;
19655d34 1568 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1569 }
1570
1571 zonelist->zones[j] = NULL;
1572 }
1573}
1574
1575#endif /* CONFIG_NUMA */
1576
6811378e
YG
1577/* return values int ....just for stop_machine_run() */
1578static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1579{
6811378e
YG
1580 int nid;
1581 for_each_online_node(nid)
1582 build_zonelists(NODE_DATA(nid));
1583 return 0;
1584}
1585
1586void __meminit build_all_zonelists(void)
1587{
1588 if (system_state == SYSTEM_BOOTING) {
423b41d7 1589 __build_all_zonelists(NULL);
6811378e
YG
1590 cpuset_init_current_mems_allowed();
1591 } else {
1592 /* we have to stop all cpus to guaranntee there is no user
1593 of zonelist */
1594 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1595 /* cpuset refresh routine should be here */
1596 }
bd1e22b8
AM
1597 vm_total_pages = nr_free_pagecache_pages();
1598 printk("Built %i zonelists. Total pages: %ld\n",
1599 num_online_nodes(), vm_total_pages);
1da177e4
LT
1600}
1601
1602/*
1603 * Helper functions to size the waitqueue hash table.
1604 * Essentially these want to choose hash table sizes sufficiently
1605 * large so that collisions trying to wait on pages are rare.
1606 * But in fact, the number of active page waitqueues on typical
1607 * systems is ridiculously low, less than 200. So this is even
1608 * conservative, even though it seems large.
1609 *
1610 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1611 * waitqueues, i.e. the size of the waitq table given the number of pages.
1612 */
1613#define PAGES_PER_WAITQUEUE 256
1614
cca448fe 1615#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1616static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1617{
1618 unsigned long size = 1;
1619
1620 pages /= PAGES_PER_WAITQUEUE;
1621
1622 while (size < pages)
1623 size <<= 1;
1624
1625 /*
1626 * Once we have dozens or even hundreds of threads sleeping
1627 * on IO we've got bigger problems than wait queue collision.
1628 * Limit the size of the wait table to a reasonable size.
1629 */
1630 size = min(size, 4096UL);
1631
1632 return max(size, 4UL);
1633}
cca448fe
YG
1634#else
1635/*
1636 * A zone's size might be changed by hot-add, so it is not possible to determine
1637 * a suitable size for its wait_table. So we use the maximum size now.
1638 *
1639 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1640 *
1641 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1642 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1643 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1644 *
1645 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1646 * or more by the traditional way. (See above). It equals:
1647 *
1648 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1649 * ia64(16K page size) : = ( 8G + 4M)byte.
1650 * powerpc (64K page size) : = (32G +16M)byte.
1651 */
1652static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1653{
1654 return 4096UL;
1655}
1656#endif
1da177e4
LT
1657
1658/*
1659 * This is an integer logarithm so that shifts can be used later
1660 * to extract the more random high bits from the multiplicative
1661 * hash function before the remainder is taken.
1662 */
1663static inline unsigned long wait_table_bits(unsigned long size)
1664{
1665 return ffz(~size);
1666}
1667
1668#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1669
1da177e4
LT
1670/*
1671 * Initially all pages are reserved - free ones are freed
1672 * up by free_all_bootmem() once the early boot process is
1673 * done. Non-atomic initialization, single-pass.
1674 */
c09b4240 1675void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1676 unsigned long start_pfn)
1677{
1da177e4 1678 struct page *page;
29751f69
AW
1679 unsigned long end_pfn = start_pfn + size;
1680 unsigned long pfn;
1da177e4 1681
cbe8dd4a 1682 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1683 if (!early_pfn_valid(pfn))
1684 continue;
75167957
AW
1685 if (!early_pfn_in_nid(pfn, nid))
1686 continue;
d41dee36
AW
1687 page = pfn_to_page(pfn);
1688 set_page_links(page, zone, nid, pfn);
7835e98b 1689 init_page_count(page);
1da177e4
LT
1690 reset_page_mapcount(page);
1691 SetPageReserved(page);
1692 INIT_LIST_HEAD(&page->lru);
1693#ifdef WANT_PAGE_VIRTUAL
1694 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1695 if (!is_highmem_idx(zone))
3212c6be 1696 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1697#endif
1da177e4
LT
1698 }
1699}
1700
1701void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1702 unsigned long size)
1703{
1704 int order;
1705 for (order = 0; order < MAX_ORDER ; order++) {
1706 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1707 zone->free_area[order].nr_free = 0;
1708 }
1709}
1710
1711#ifndef __HAVE_ARCH_MEMMAP_INIT
1712#define memmap_init(size, nid, zone, start_pfn) \
1713 memmap_init_zone((size), (nid), (zone), (start_pfn))
1714#endif
1715
6292d9aa 1716static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1717{
1718 int batch;
1719
1720 /*
1721 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1722 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1723 *
1724 * OK, so we don't know how big the cache is. So guess.
1725 */
1726 batch = zone->present_pages / 1024;
ba56e91c
SR
1727 if (batch * PAGE_SIZE > 512 * 1024)
1728 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1729 batch /= 4; /* We effectively *= 4 below */
1730 if (batch < 1)
1731 batch = 1;
1732
1733 /*
0ceaacc9
NP
1734 * Clamp the batch to a 2^n - 1 value. Having a power
1735 * of 2 value was found to be more likely to have
1736 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1737 *
0ceaacc9
NP
1738 * For example if 2 tasks are alternately allocating
1739 * batches of pages, one task can end up with a lot
1740 * of pages of one half of the possible page colors
1741 * and the other with pages of the other colors.
e7c8d5c9 1742 */
0ceaacc9 1743 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1744
e7c8d5c9
CL
1745 return batch;
1746}
1747
2caaad41
CL
1748inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1749{
1750 struct per_cpu_pages *pcp;
1751
1c6fe946
MD
1752 memset(p, 0, sizeof(*p));
1753
2caaad41
CL
1754 pcp = &p->pcp[0]; /* hot */
1755 pcp->count = 0;
2caaad41
CL
1756 pcp->high = 6 * batch;
1757 pcp->batch = max(1UL, 1 * batch);
1758 INIT_LIST_HEAD(&pcp->list);
1759
1760 pcp = &p->pcp[1]; /* cold*/
1761 pcp->count = 0;
2caaad41 1762 pcp->high = 2 * batch;
e46a5e28 1763 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1764 INIT_LIST_HEAD(&pcp->list);
1765}
1766
8ad4b1fb
RS
1767/*
1768 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1769 * to the value high for the pageset p.
1770 */
1771
1772static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1773 unsigned long high)
1774{
1775 struct per_cpu_pages *pcp;
1776
1777 pcp = &p->pcp[0]; /* hot list */
1778 pcp->high = high;
1779 pcp->batch = max(1UL, high/4);
1780 if ((high/4) > (PAGE_SHIFT * 8))
1781 pcp->batch = PAGE_SHIFT * 8;
1782}
1783
1784
e7c8d5c9
CL
1785#ifdef CONFIG_NUMA
1786/*
2caaad41
CL
1787 * Boot pageset table. One per cpu which is going to be used for all
1788 * zones and all nodes. The parameters will be set in such a way
1789 * that an item put on a list will immediately be handed over to
1790 * the buddy list. This is safe since pageset manipulation is done
1791 * with interrupts disabled.
1792 *
1793 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1794 *
1795 * The boot_pagesets must be kept even after bootup is complete for
1796 * unused processors and/or zones. They do play a role for bootstrapping
1797 * hotplugged processors.
1798 *
1799 * zoneinfo_show() and maybe other functions do
1800 * not check if the processor is online before following the pageset pointer.
1801 * Other parts of the kernel may not check if the zone is available.
2caaad41 1802 */
88a2a4ac 1803static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1804
1805/*
1806 * Dynamically allocate memory for the
e7c8d5c9
CL
1807 * per cpu pageset array in struct zone.
1808 */
6292d9aa 1809static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1810{
1811 struct zone *zone, *dzone;
e7c8d5c9
CL
1812
1813 for_each_zone(zone) {
e7c8d5c9 1814
66a55030
CL
1815 if (!populated_zone(zone))
1816 continue;
1817
23316bc8 1818 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1819 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1820 if (!zone_pcp(zone, cpu))
e7c8d5c9 1821 goto bad;
e7c8d5c9 1822
23316bc8 1823 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1824
1825 if (percpu_pagelist_fraction)
1826 setup_pagelist_highmark(zone_pcp(zone, cpu),
1827 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1828 }
1829
1830 return 0;
1831bad:
1832 for_each_zone(dzone) {
1833 if (dzone == zone)
1834 break;
23316bc8
NP
1835 kfree(zone_pcp(dzone, cpu));
1836 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1837 }
1838 return -ENOMEM;
1839}
1840
1841static inline void free_zone_pagesets(int cpu)
1842{
e7c8d5c9
CL
1843 struct zone *zone;
1844
1845 for_each_zone(zone) {
1846 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1847
f3ef9ead
DR
1848 /* Free per_cpu_pageset if it is slab allocated */
1849 if (pset != &boot_pageset[cpu])
1850 kfree(pset);
e7c8d5c9 1851 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1852 }
e7c8d5c9
CL
1853}
1854
9c7b216d 1855static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1856 unsigned long action,
1857 void *hcpu)
1858{
1859 int cpu = (long)hcpu;
1860 int ret = NOTIFY_OK;
1861
1862 switch (action) {
1863 case CPU_UP_PREPARE:
1864 if (process_zones(cpu))
1865 ret = NOTIFY_BAD;
1866 break;
b0d41693 1867 case CPU_UP_CANCELED:
e7c8d5c9
CL
1868 case CPU_DEAD:
1869 free_zone_pagesets(cpu);
1870 break;
e7c8d5c9
CL
1871 default:
1872 break;
1873 }
1874 return ret;
1875}
1876
74b85f37 1877static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1878 { &pageset_cpuup_callback, NULL, 0 };
1879
78d9955b 1880void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1881{
1882 int err;
1883
1884 /* Initialize per_cpu_pageset for cpu 0.
1885 * A cpuup callback will do this for every cpu
1886 * as it comes online
1887 */
1888 err = process_zones(smp_processor_id());
1889 BUG_ON(err);
1890 register_cpu_notifier(&pageset_notifier);
1891}
1892
1893#endif
1894
c09b4240 1895static __meminit
cca448fe 1896int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1897{
1898 int i;
1899 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1900 size_t alloc_size;
ed8ece2e
DH
1901
1902 /*
1903 * The per-page waitqueue mechanism uses hashed waitqueues
1904 * per zone.
1905 */
02b694de
YG
1906 zone->wait_table_hash_nr_entries =
1907 wait_table_hash_nr_entries(zone_size_pages);
1908 zone->wait_table_bits =
1909 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1910 alloc_size = zone->wait_table_hash_nr_entries
1911 * sizeof(wait_queue_head_t);
1912
1913 if (system_state == SYSTEM_BOOTING) {
1914 zone->wait_table = (wait_queue_head_t *)
1915 alloc_bootmem_node(pgdat, alloc_size);
1916 } else {
1917 /*
1918 * This case means that a zone whose size was 0 gets new memory
1919 * via memory hot-add.
1920 * But it may be the case that a new node was hot-added. In
1921 * this case vmalloc() will not be able to use this new node's
1922 * memory - this wait_table must be initialized to use this new
1923 * node itself as well.
1924 * To use this new node's memory, further consideration will be
1925 * necessary.
1926 */
1927 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1928 }
1929 if (!zone->wait_table)
1930 return -ENOMEM;
ed8ece2e 1931
02b694de 1932 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1933 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1934
1935 return 0;
ed8ece2e
DH
1936}
1937
c09b4240 1938static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1939{
1940 int cpu;
1941 unsigned long batch = zone_batchsize(zone);
1942
1943 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1944#ifdef CONFIG_NUMA
1945 /* Early boot. Slab allocator not functional yet */
23316bc8 1946 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1947 setup_pageset(&boot_pageset[cpu],0);
1948#else
1949 setup_pageset(zone_pcp(zone,cpu), batch);
1950#endif
1951 }
f5335c0f
AB
1952 if (zone->present_pages)
1953 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1954 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1955}
1956
718127cc
YG
1957__meminit int init_currently_empty_zone(struct zone *zone,
1958 unsigned long zone_start_pfn,
1959 unsigned long size)
ed8ece2e
DH
1960{
1961 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1962 int ret;
1963 ret = zone_wait_table_init(zone, size);
1964 if (ret)
1965 return ret;
ed8ece2e
DH
1966 pgdat->nr_zones = zone_idx(zone) + 1;
1967
ed8ece2e
DH
1968 zone->zone_start_pfn = zone_start_pfn;
1969
1970 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1971
1972 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1973
1974 return 0;
ed8ece2e
DH
1975}
1976
c713216d
MG
1977#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1978/*
1979 * Basic iterator support. Return the first range of PFNs for a node
1980 * Note: nid == MAX_NUMNODES returns first region regardless of node
1981 */
1982static int __init first_active_region_index_in_nid(int nid)
1983{
1984 int i;
1985
1986 for (i = 0; i < nr_nodemap_entries; i++)
1987 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
1988 return i;
1989
1990 return -1;
1991}
1992
1993/*
1994 * Basic iterator support. Return the next active range of PFNs for a node
1995 * Note: nid == MAX_NUMNODES returns next region regardles of node
1996 */
1997static int __init next_active_region_index_in_nid(int index, int nid)
1998{
1999 for (index = index + 1; index < nr_nodemap_entries; index++)
2000 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2001 return index;
2002
2003 return -1;
2004}
2005
2006#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2007/*
2008 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2009 * Architectures may implement their own version but if add_active_range()
2010 * was used and there are no special requirements, this is a convenient
2011 * alternative
2012 */
2013int __init early_pfn_to_nid(unsigned long pfn)
2014{
2015 int i;
2016
2017 for (i = 0; i < nr_nodemap_entries; i++) {
2018 unsigned long start_pfn = early_node_map[i].start_pfn;
2019 unsigned long end_pfn = early_node_map[i].end_pfn;
2020
2021 if (start_pfn <= pfn && pfn < end_pfn)
2022 return early_node_map[i].nid;
2023 }
2024
2025 return 0;
2026}
2027#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2028
2029/* Basic iterator support to walk early_node_map[] */
2030#define for_each_active_range_index_in_nid(i, nid) \
2031 for (i = first_active_region_index_in_nid(nid); i != -1; \
2032 i = next_active_region_index_in_nid(i, nid))
2033
2034/**
2035 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2036 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2037 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2038 *
2039 * If an architecture guarantees that all ranges registered with
2040 * add_active_ranges() contain no holes and may be freed, this
2041 * this function may be used instead of calling free_bootmem() manually.
2042 */
2043void __init free_bootmem_with_active_regions(int nid,
2044 unsigned long max_low_pfn)
2045{
2046 int i;
2047
2048 for_each_active_range_index_in_nid(i, nid) {
2049 unsigned long size_pages = 0;
2050 unsigned long end_pfn = early_node_map[i].end_pfn;
2051
2052 if (early_node_map[i].start_pfn >= max_low_pfn)
2053 continue;
2054
2055 if (end_pfn > max_low_pfn)
2056 end_pfn = max_low_pfn;
2057
2058 size_pages = end_pfn - early_node_map[i].start_pfn;
2059 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2060 PFN_PHYS(early_node_map[i].start_pfn),
2061 size_pages << PAGE_SHIFT);
2062 }
2063}
2064
2065/**
2066 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2067 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2068 *
2069 * If an architecture guarantees that all ranges registered with
2070 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2071 * function may be used instead of calling memory_present() manually.
c713216d
MG
2072 */
2073void __init sparse_memory_present_with_active_regions(int nid)
2074{
2075 int i;
2076
2077 for_each_active_range_index_in_nid(i, nid)
2078 memory_present(early_node_map[i].nid,
2079 early_node_map[i].start_pfn,
2080 early_node_map[i].end_pfn);
2081}
2082
fb01439c
MG
2083/**
2084 * push_node_boundaries - Push node boundaries to at least the requested boundary
2085 * @nid: The nid of the node to push the boundary for
2086 * @start_pfn: The start pfn of the node
2087 * @end_pfn: The end pfn of the node
2088 *
2089 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2090 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2091 * be hotplugged even though no physical memory exists. This function allows
2092 * an arch to push out the node boundaries so mem_map is allocated that can
2093 * be used later.
2094 */
2095#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2096void __init push_node_boundaries(unsigned int nid,
2097 unsigned long start_pfn, unsigned long end_pfn)
2098{
2099 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2100 nid, start_pfn, end_pfn);
2101
2102 /* Initialise the boundary for this node if necessary */
2103 if (node_boundary_end_pfn[nid] == 0)
2104 node_boundary_start_pfn[nid] = -1UL;
2105
2106 /* Update the boundaries */
2107 if (node_boundary_start_pfn[nid] > start_pfn)
2108 node_boundary_start_pfn[nid] = start_pfn;
2109 if (node_boundary_end_pfn[nid] < end_pfn)
2110 node_boundary_end_pfn[nid] = end_pfn;
2111}
2112
2113/* If necessary, push the node boundary out for reserve hotadd */
2114static void __init account_node_boundary(unsigned int nid,
2115 unsigned long *start_pfn, unsigned long *end_pfn)
2116{
2117 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2118 nid, *start_pfn, *end_pfn);
2119
2120 /* Return if boundary information has not been provided */
2121 if (node_boundary_end_pfn[nid] == 0)
2122 return;
2123
2124 /* Check the boundaries and update if necessary */
2125 if (node_boundary_start_pfn[nid] < *start_pfn)
2126 *start_pfn = node_boundary_start_pfn[nid];
2127 if (node_boundary_end_pfn[nid] > *end_pfn)
2128 *end_pfn = node_boundary_end_pfn[nid];
2129}
2130#else
2131void __init push_node_boundaries(unsigned int nid,
2132 unsigned long start_pfn, unsigned long end_pfn) {}
2133
2134static void __init account_node_boundary(unsigned int nid,
2135 unsigned long *start_pfn, unsigned long *end_pfn) {}
2136#endif
2137
2138
c713216d
MG
2139/**
2140 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2141 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2142 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2143 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2144 *
2145 * It returns the start and end page frame of a node based on information
2146 * provided by an arch calling add_active_range(). If called for a node
2147 * with no available memory, a warning is printed and the start and end
88ca3b94 2148 * PFNs will be 0.
c713216d
MG
2149 */
2150void __init get_pfn_range_for_nid(unsigned int nid,
2151 unsigned long *start_pfn, unsigned long *end_pfn)
2152{
2153 int i;
2154 *start_pfn = -1UL;
2155 *end_pfn = 0;
2156
2157 for_each_active_range_index_in_nid(i, nid) {
2158 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2159 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2160 }
2161
2162 if (*start_pfn == -1UL) {
2163 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2164 *start_pfn = 0;
2165 }
fb01439c
MG
2166
2167 /* Push the node boundaries out if requested */
2168 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2169}
2170
2171/*
2172 * Return the number of pages a zone spans in a node, including holes
2173 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2174 */
2175unsigned long __init zone_spanned_pages_in_node(int nid,
2176 unsigned long zone_type,
2177 unsigned long *ignored)
2178{
2179 unsigned long node_start_pfn, node_end_pfn;
2180 unsigned long zone_start_pfn, zone_end_pfn;
2181
2182 /* Get the start and end of the node and zone */
2183 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2184 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2185 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2186
2187 /* Check that this node has pages within the zone's required range */
2188 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2189 return 0;
2190
2191 /* Move the zone boundaries inside the node if necessary */
2192 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2193 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2194
2195 /* Return the spanned pages */
2196 return zone_end_pfn - zone_start_pfn;
2197}
2198
2199/*
2200 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2201 * then all holes in the requested range will be accounted for.
c713216d
MG
2202 */
2203unsigned long __init __absent_pages_in_range(int nid,
2204 unsigned long range_start_pfn,
2205 unsigned long range_end_pfn)
2206{
2207 int i = 0;
2208 unsigned long prev_end_pfn = 0, hole_pages = 0;
2209 unsigned long start_pfn;
2210
2211 /* Find the end_pfn of the first active range of pfns in the node */
2212 i = first_active_region_index_in_nid(nid);
2213 if (i == -1)
2214 return 0;
2215
9c7cd687
MG
2216 /* Account for ranges before physical memory on this node */
2217 if (early_node_map[i].start_pfn > range_start_pfn)
2218 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2219
c713216d
MG
2220 prev_end_pfn = early_node_map[i].start_pfn;
2221
2222 /* Find all holes for the zone within the node */
2223 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2224
2225 /* No need to continue if prev_end_pfn is outside the zone */
2226 if (prev_end_pfn >= range_end_pfn)
2227 break;
2228
2229 /* Make sure the end of the zone is not within the hole */
2230 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2231 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2232
2233 /* Update the hole size cound and move on */
2234 if (start_pfn > range_start_pfn) {
2235 BUG_ON(prev_end_pfn > start_pfn);
2236 hole_pages += start_pfn - prev_end_pfn;
2237 }
2238 prev_end_pfn = early_node_map[i].end_pfn;
2239 }
2240
9c7cd687
MG
2241 /* Account for ranges past physical memory on this node */
2242 if (range_end_pfn > prev_end_pfn)
0c6cb974 2243 hole_pages += range_end_pfn -
9c7cd687
MG
2244 max(range_start_pfn, prev_end_pfn);
2245
c713216d
MG
2246 return hole_pages;
2247}
2248
2249/**
2250 * absent_pages_in_range - Return number of page frames in holes within a range
2251 * @start_pfn: The start PFN to start searching for holes
2252 * @end_pfn: The end PFN to stop searching for holes
2253 *
88ca3b94 2254 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
2255 */
2256unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2257 unsigned long end_pfn)
2258{
2259 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2260}
2261
2262/* Return the number of page frames in holes in a zone on a node */
2263unsigned long __init zone_absent_pages_in_node(int nid,
2264 unsigned long zone_type,
2265 unsigned long *ignored)
2266{
9c7cd687
MG
2267 unsigned long node_start_pfn, node_end_pfn;
2268 unsigned long zone_start_pfn, zone_end_pfn;
2269
2270 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2271 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2272 node_start_pfn);
2273 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2274 node_end_pfn);
2275
2276 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 2277}
0e0b864e 2278
c713216d
MG
2279#else
2280static inline unsigned long zone_spanned_pages_in_node(int nid,
2281 unsigned long zone_type,
2282 unsigned long *zones_size)
2283{
2284 return zones_size[zone_type];
2285}
2286
2287static inline unsigned long zone_absent_pages_in_node(int nid,
2288 unsigned long zone_type,
2289 unsigned long *zholes_size)
2290{
2291 if (!zholes_size)
2292 return 0;
2293
2294 return zholes_size[zone_type];
2295}
0e0b864e 2296
c713216d
MG
2297#endif
2298
2299static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2300 unsigned long *zones_size, unsigned long *zholes_size)
2301{
2302 unsigned long realtotalpages, totalpages = 0;
2303 enum zone_type i;
2304
2305 for (i = 0; i < MAX_NR_ZONES; i++)
2306 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2307 zones_size);
2308 pgdat->node_spanned_pages = totalpages;
2309
2310 realtotalpages = totalpages;
2311 for (i = 0; i < MAX_NR_ZONES; i++)
2312 realtotalpages -=
2313 zone_absent_pages_in_node(pgdat->node_id, i,
2314 zholes_size);
2315 pgdat->node_present_pages = realtotalpages;
2316 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2317 realtotalpages);
2318}
2319
1da177e4
LT
2320/*
2321 * Set up the zone data structures:
2322 * - mark all pages reserved
2323 * - mark all memory queues empty
2324 * - clear the memory bitmaps
2325 */
86356ab1 2326static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2327 unsigned long *zones_size, unsigned long *zholes_size)
2328{
2f1b6248 2329 enum zone_type j;
ed8ece2e 2330 int nid = pgdat->node_id;
1da177e4 2331 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2332 int ret;
1da177e4 2333
208d54e5 2334 pgdat_resize_init(pgdat);
1da177e4
LT
2335 pgdat->nr_zones = 0;
2336 init_waitqueue_head(&pgdat->kswapd_wait);
2337 pgdat->kswapd_max_order = 0;
2338
2339 for (j = 0; j < MAX_NR_ZONES; j++) {
2340 struct zone *zone = pgdat->node_zones + j;
0e0b864e 2341 unsigned long size, realsize, memmap_pages;
1da177e4 2342
c713216d
MG
2343 size = zone_spanned_pages_in_node(nid, j, zones_size);
2344 realsize = size - zone_absent_pages_in_node(nid, j,
2345 zholes_size);
1da177e4 2346
0e0b864e
MG
2347 /*
2348 * Adjust realsize so that it accounts for how much memory
2349 * is used by this zone for memmap. This affects the watermark
2350 * and per-cpu initialisations
2351 */
2352 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2353 if (realsize >= memmap_pages) {
2354 realsize -= memmap_pages;
2355 printk(KERN_DEBUG
2356 " %s zone: %lu pages used for memmap\n",
2357 zone_names[j], memmap_pages);
2358 } else
2359 printk(KERN_WARNING
2360 " %s zone: %lu pages exceeds realsize %lu\n",
2361 zone_names[j], memmap_pages, realsize);
2362
2363 /* Account for reserved DMA pages */
2364 if (j == ZONE_DMA && realsize > dma_reserve) {
2365 realsize -= dma_reserve;
2366 printk(KERN_DEBUG " DMA zone: %lu pages reserved\n",
2367 dma_reserve);
2368 }
2369
98d2b0eb 2370 if (!is_highmem_idx(j))
1da177e4
LT
2371 nr_kernel_pages += realsize;
2372 nr_all_pages += realsize;
2373
2374 zone->spanned_pages = size;
2375 zone->present_pages = realsize;
9614634f 2376#ifdef CONFIG_NUMA
d5f541ed 2377 zone->node = nid;
8417bba4 2378 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2379 / 100;
0ff38490 2380 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2381#endif
1da177e4
LT
2382 zone->name = zone_names[j];
2383 spin_lock_init(&zone->lock);
2384 spin_lock_init(&zone->lru_lock);
bdc8cb98 2385 zone_seqlock_init(zone);
1da177e4
LT
2386 zone->zone_pgdat = pgdat;
2387 zone->free_pages = 0;
2388
3bb1a852 2389 zone->prev_priority = DEF_PRIORITY;
1da177e4 2390
ed8ece2e 2391 zone_pcp_init(zone);
1da177e4
LT
2392 INIT_LIST_HEAD(&zone->active_list);
2393 INIT_LIST_HEAD(&zone->inactive_list);
2394 zone->nr_scan_active = 0;
2395 zone->nr_scan_inactive = 0;
2396 zone->nr_active = 0;
2397 zone->nr_inactive = 0;
2244b95a 2398 zap_zone_vm_stats(zone);
53e9a615 2399 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2400 if (!size)
2401 continue;
2402
718127cc
YG
2403 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2404 BUG_ON(ret);
1da177e4 2405 zone_start_pfn += size;
1da177e4
LT
2406 }
2407}
2408
2409static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2410{
1da177e4
LT
2411 /* Skip empty nodes */
2412 if (!pgdat->node_spanned_pages)
2413 return;
2414
d41dee36 2415#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2416 /* ia64 gets its own node_mem_map, before this, without bootmem */
2417 if (!pgdat->node_mem_map) {
e984bb43 2418 unsigned long size, start, end;
d41dee36
AW
2419 struct page *map;
2420
e984bb43
BP
2421 /*
2422 * The zone's endpoints aren't required to be MAX_ORDER
2423 * aligned but the node_mem_map endpoints must be in order
2424 * for the buddy allocator to function correctly.
2425 */
2426 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2427 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2428 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2429 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2430 map = alloc_remap(pgdat->node_id, size);
2431 if (!map)
2432 map = alloc_bootmem_node(pgdat, size);
e984bb43 2433 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2434 }
d41dee36 2435#ifdef CONFIG_FLATMEM
1da177e4
LT
2436 /*
2437 * With no DISCONTIG, the global mem_map is just set as node 0's
2438 */
c713216d 2439 if (pgdat == NODE_DATA(0)) {
1da177e4 2440 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
2441#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2442 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2443 mem_map -= pgdat->node_start_pfn;
2444#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2445 }
1da177e4 2446#endif
d41dee36 2447#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2448}
2449
86356ab1 2450void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2451 unsigned long *zones_size, unsigned long node_start_pfn,
2452 unsigned long *zholes_size)
2453{
2454 pgdat->node_id = nid;
2455 pgdat->node_start_pfn = node_start_pfn;
c713216d 2456 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
2457
2458 alloc_node_mem_map(pgdat);
2459
2460 free_area_init_core(pgdat, zones_size, zholes_size);
2461}
2462
c713216d
MG
2463#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2464/**
2465 * add_active_range - Register a range of PFNs backed by physical memory
2466 * @nid: The node ID the range resides on
2467 * @start_pfn: The start PFN of the available physical memory
2468 * @end_pfn: The end PFN of the available physical memory
2469 *
2470 * These ranges are stored in an early_node_map[] and later used by
2471 * free_area_init_nodes() to calculate zone sizes and holes. If the
2472 * range spans a memory hole, it is up to the architecture to ensure
2473 * the memory is not freed by the bootmem allocator. If possible
2474 * the range being registered will be merged with existing ranges.
2475 */
2476void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2477 unsigned long end_pfn)
2478{
2479 int i;
2480
2481 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2482 "%d entries of %d used\n",
2483 nid, start_pfn, end_pfn,
2484 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2485
2486 /* Merge with existing active regions if possible */
2487 for (i = 0; i < nr_nodemap_entries; i++) {
2488 if (early_node_map[i].nid != nid)
2489 continue;
2490
2491 /* Skip if an existing region covers this new one */
2492 if (start_pfn >= early_node_map[i].start_pfn &&
2493 end_pfn <= early_node_map[i].end_pfn)
2494 return;
2495
2496 /* Merge forward if suitable */
2497 if (start_pfn <= early_node_map[i].end_pfn &&
2498 end_pfn > early_node_map[i].end_pfn) {
2499 early_node_map[i].end_pfn = end_pfn;
2500 return;
2501 }
2502
2503 /* Merge backward if suitable */
2504 if (start_pfn < early_node_map[i].end_pfn &&
2505 end_pfn >= early_node_map[i].start_pfn) {
2506 early_node_map[i].start_pfn = start_pfn;
2507 return;
2508 }
2509 }
2510
2511 /* Check that early_node_map is large enough */
2512 if (i >= MAX_ACTIVE_REGIONS) {
2513 printk(KERN_CRIT "More than %d memory regions, truncating\n",
2514 MAX_ACTIVE_REGIONS);
2515 return;
2516 }
2517
2518 early_node_map[i].nid = nid;
2519 early_node_map[i].start_pfn = start_pfn;
2520 early_node_map[i].end_pfn = end_pfn;
2521 nr_nodemap_entries = i + 1;
2522}
2523
2524/**
2525 * shrink_active_range - Shrink an existing registered range of PFNs
2526 * @nid: The node id the range is on that should be shrunk
2527 * @old_end_pfn: The old end PFN of the range
2528 * @new_end_pfn: The new PFN of the range
2529 *
2530 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2531 * The map is kept at the end physical page range that has already been
2532 * registered with add_active_range(). This function allows an arch to shrink
2533 * an existing registered range.
2534 */
2535void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2536 unsigned long new_end_pfn)
2537{
2538 int i;
2539
2540 /* Find the old active region end and shrink */
2541 for_each_active_range_index_in_nid(i, nid)
2542 if (early_node_map[i].end_pfn == old_end_pfn) {
2543 early_node_map[i].end_pfn = new_end_pfn;
2544 break;
2545 }
2546}
2547
2548/**
2549 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 2550 *
c713216d
MG
2551 * During discovery, it may be found that a table like SRAT is invalid
2552 * and an alternative discovery method must be used. This function removes
2553 * all currently registered regions.
2554 */
88ca3b94 2555void __init remove_all_active_ranges(void)
c713216d
MG
2556{
2557 memset(early_node_map, 0, sizeof(early_node_map));
2558 nr_nodemap_entries = 0;
fb01439c
MG
2559#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2560 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2561 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2562#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
2563}
2564
2565/* Compare two active node_active_regions */
2566static int __init cmp_node_active_region(const void *a, const void *b)
2567{
2568 struct node_active_region *arange = (struct node_active_region *)a;
2569 struct node_active_region *brange = (struct node_active_region *)b;
2570
2571 /* Done this way to avoid overflows */
2572 if (arange->start_pfn > brange->start_pfn)
2573 return 1;
2574 if (arange->start_pfn < brange->start_pfn)
2575 return -1;
2576
2577 return 0;
2578}
2579
2580/* sort the node_map by start_pfn */
2581static void __init sort_node_map(void)
2582{
2583 sort(early_node_map, (size_t)nr_nodemap_entries,
2584 sizeof(struct node_active_region),
2585 cmp_node_active_region, NULL);
2586}
2587
2588/* Find the lowest pfn for a node. This depends on a sorted early_node_map */
2589unsigned long __init find_min_pfn_for_node(unsigned long nid)
2590{
2591 int i;
2592
1abbfb41
MG
2593 /* Regions in the early_node_map can be in any order */
2594 sort_node_map();
2595
c713216d
MG
2596 /* Assuming a sorted map, the first range found has the starting pfn */
2597 for_each_active_range_index_in_nid(i, nid)
2598 return early_node_map[i].start_pfn;
2599
2600 printk(KERN_WARNING "Could not find start_pfn for node %lu\n", nid);
2601 return 0;
2602}
2603
2604/**
2605 * find_min_pfn_with_active_regions - Find the minimum PFN registered
2606 *
2607 * It returns the minimum PFN based on information provided via
88ca3b94 2608 * add_active_range().
c713216d
MG
2609 */
2610unsigned long __init find_min_pfn_with_active_regions(void)
2611{
2612 return find_min_pfn_for_node(MAX_NUMNODES);
2613}
2614
2615/**
2616 * find_max_pfn_with_active_regions - Find the maximum PFN registered
2617 *
2618 * It returns the maximum PFN based on information provided via
88ca3b94 2619 * add_active_range().
c713216d
MG
2620 */
2621unsigned long __init find_max_pfn_with_active_regions(void)
2622{
2623 int i;
2624 unsigned long max_pfn = 0;
2625
2626 for (i = 0; i < nr_nodemap_entries; i++)
2627 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2628
2629 return max_pfn;
2630}
2631
2632/**
2633 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 2634 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
2635 *
2636 * This will call free_area_init_node() for each active node in the system.
2637 * Using the page ranges provided by add_active_range(), the size of each
2638 * zone in each node and their holes is calculated. If the maximum PFN
2639 * between two adjacent zones match, it is assumed that the zone is empty.
2640 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2641 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2642 * starts where the previous one ended. For example, ZONE_DMA32 starts
2643 * at arch_max_dma_pfn.
2644 */
2645void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2646{
2647 unsigned long nid;
2648 enum zone_type i;
2649
2650 /* Record where the zone boundaries are */
2651 memset(arch_zone_lowest_possible_pfn, 0,
2652 sizeof(arch_zone_lowest_possible_pfn));
2653 memset(arch_zone_highest_possible_pfn, 0,
2654 sizeof(arch_zone_highest_possible_pfn));
2655 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2656 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2657 for (i = 1; i < MAX_NR_ZONES; i++) {
2658 arch_zone_lowest_possible_pfn[i] =
2659 arch_zone_highest_possible_pfn[i-1];
2660 arch_zone_highest_possible_pfn[i] =
2661 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2662 }
2663
c713216d
MG
2664 /* Print out the zone ranges */
2665 printk("Zone PFN ranges:\n");
2666 for (i = 0; i < MAX_NR_ZONES; i++)
2667 printk(" %-8s %8lu -> %8lu\n",
2668 zone_names[i],
2669 arch_zone_lowest_possible_pfn[i],
2670 arch_zone_highest_possible_pfn[i]);
2671
2672 /* Print out the early_node_map[] */
2673 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2674 for (i = 0; i < nr_nodemap_entries; i++)
2675 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2676 early_node_map[i].start_pfn,
2677 early_node_map[i].end_pfn);
2678
2679 /* Initialise every node */
2680 for_each_online_node(nid) {
2681 pg_data_t *pgdat = NODE_DATA(nid);
2682 free_area_init_node(nid, pgdat, NULL,
2683 find_min_pfn_for_node(nid), NULL);
2684 }
2685}
2686#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2687
0e0b864e 2688/**
88ca3b94
RD
2689 * set_dma_reserve - set the specified number of pages reserved in the first zone
2690 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
2691 *
2692 * The per-cpu batchsize and zone watermarks are determined by present_pages.
2693 * In the DMA zone, a significant percentage may be consumed by kernel image
2694 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
2695 * function may optionally be used to account for unfreeable pages in the
2696 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2697 * smaller per-cpu batchsize.
0e0b864e
MG
2698 */
2699void __init set_dma_reserve(unsigned long new_dma_reserve)
2700{
2701 dma_reserve = new_dma_reserve;
2702}
2703
93b7504e 2704#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2705static bootmem_data_t contig_bootmem_data;
2706struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2707
2708EXPORT_SYMBOL(contig_page_data);
93b7504e 2709#endif
1da177e4
LT
2710
2711void __init free_area_init(unsigned long *zones_size)
2712{
93b7504e 2713 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2714 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2715}
1da177e4 2716
1da177e4
LT
2717#ifdef CONFIG_HOTPLUG_CPU
2718static int page_alloc_cpu_notify(struct notifier_block *self,
2719 unsigned long action, void *hcpu)
2720{
2721 int cpu = (unsigned long)hcpu;
1da177e4
LT
2722
2723 if (action == CPU_DEAD) {
1da177e4
LT
2724 local_irq_disable();
2725 __drain_pages(cpu);
f8891e5e 2726 vm_events_fold_cpu(cpu);
1da177e4 2727 local_irq_enable();
2244b95a 2728 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2729 }
2730 return NOTIFY_OK;
2731}
2732#endif /* CONFIG_HOTPLUG_CPU */
2733
2734void __init page_alloc_init(void)
2735{
2736 hotcpu_notifier(page_alloc_cpu_notify, 0);
2737}
2738
cb45b0e9
HA
2739/*
2740 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2741 * or min_free_kbytes changes.
2742 */
2743static void calculate_totalreserve_pages(void)
2744{
2745 struct pglist_data *pgdat;
2746 unsigned long reserve_pages = 0;
2f6726e5 2747 enum zone_type i, j;
cb45b0e9
HA
2748
2749 for_each_online_pgdat(pgdat) {
2750 for (i = 0; i < MAX_NR_ZONES; i++) {
2751 struct zone *zone = pgdat->node_zones + i;
2752 unsigned long max = 0;
2753
2754 /* Find valid and maximum lowmem_reserve in the zone */
2755 for (j = i; j < MAX_NR_ZONES; j++) {
2756 if (zone->lowmem_reserve[j] > max)
2757 max = zone->lowmem_reserve[j];
2758 }
2759
2760 /* we treat pages_high as reserved pages. */
2761 max += zone->pages_high;
2762
2763 if (max > zone->present_pages)
2764 max = zone->present_pages;
2765 reserve_pages += max;
2766 }
2767 }
2768 totalreserve_pages = reserve_pages;
2769}
2770
1da177e4
LT
2771/*
2772 * setup_per_zone_lowmem_reserve - called whenever
2773 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2774 * has a correct pages reserved value, so an adequate number of
2775 * pages are left in the zone after a successful __alloc_pages().
2776 */
2777static void setup_per_zone_lowmem_reserve(void)
2778{
2779 struct pglist_data *pgdat;
2f6726e5 2780 enum zone_type j, idx;
1da177e4 2781
ec936fc5 2782 for_each_online_pgdat(pgdat) {
1da177e4
LT
2783 for (j = 0; j < MAX_NR_ZONES; j++) {
2784 struct zone *zone = pgdat->node_zones + j;
2785 unsigned long present_pages = zone->present_pages;
2786
2787 zone->lowmem_reserve[j] = 0;
2788
2f6726e5
CL
2789 idx = j;
2790 while (idx) {
1da177e4
LT
2791 struct zone *lower_zone;
2792
2f6726e5
CL
2793 idx--;
2794
1da177e4
LT
2795 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2796 sysctl_lowmem_reserve_ratio[idx] = 1;
2797
2798 lower_zone = pgdat->node_zones + idx;
2799 lower_zone->lowmem_reserve[j] = present_pages /
2800 sysctl_lowmem_reserve_ratio[idx];
2801 present_pages += lower_zone->present_pages;
2802 }
2803 }
2804 }
cb45b0e9
HA
2805
2806 /* update totalreserve_pages */
2807 calculate_totalreserve_pages();
1da177e4
LT
2808}
2809
88ca3b94
RD
2810/**
2811 * setup_per_zone_pages_min - called when min_free_kbytes changes.
2812 *
2813 * Ensures that the pages_{min,low,high} values for each zone are set correctly
2814 * with respect to min_free_kbytes.
1da177e4 2815 */
3947be19 2816void setup_per_zone_pages_min(void)
1da177e4
LT
2817{
2818 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2819 unsigned long lowmem_pages = 0;
2820 struct zone *zone;
2821 unsigned long flags;
2822
2823 /* Calculate total number of !ZONE_HIGHMEM pages */
2824 for_each_zone(zone) {
2825 if (!is_highmem(zone))
2826 lowmem_pages += zone->present_pages;
2827 }
2828
2829 for_each_zone(zone) {
ac924c60
AM
2830 u64 tmp;
2831
1da177e4 2832 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2833 tmp = (u64)pages_min * zone->present_pages;
2834 do_div(tmp, lowmem_pages);
1da177e4
LT
2835 if (is_highmem(zone)) {
2836 /*
669ed175
NP
2837 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2838 * need highmem pages, so cap pages_min to a small
2839 * value here.
2840 *
2841 * The (pages_high-pages_low) and (pages_low-pages_min)
2842 * deltas controls asynch page reclaim, and so should
2843 * not be capped for highmem.
1da177e4
LT
2844 */
2845 int min_pages;
2846
2847 min_pages = zone->present_pages / 1024;
2848 if (min_pages < SWAP_CLUSTER_MAX)
2849 min_pages = SWAP_CLUSTER_MAX;
2850 if (min_pages > 128)
2851 min_pages = 128;
2852 zone->pages_min = min_pages;
2853 } else {
669ed175
NP
2854 /*
2855 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2856 * proportionate to the zone's size.
2857 */
669ed175 2858 zone->pages_min = tmp;
1da177e4
LT
2859 }
2860
ac924c60
AM
2861 zone->pages_low = zone->pages_min + (tmp >> 2);
2862 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2863 spin_unlock_irqrestore(&zone->lru_lock, flags);
2864 }
cb45b0e9
HA
2865
2866 /* update totalreserve_pages */
2867 calculate_totalreserve_pages();
1da177e4
LT
2868}
2869
2870/*
2871 * Initialise min_free_kbytes.
2872 *
2873 * For small machines we want it small (128k min). For large machines
2874 * we want it large (64MB max). But it is not linear, because network
2875 * bandwidth does not increase linearly with machine size. We use
2876 *
2877 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2878 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2879 *
2880 * which yields
2881 *
2882 * 16MB: 512k
2883 * 32MB: 724k
2884 * 64MB: 1024k
2885 * 128MB: 1448k
2886 * 256MB: 2048k
2887 * 512MB: 2896k
2888 * 1024MB: 4096k
2889 * 2048MB: 5792k
2890 * 4096MB: 8192k
2891 * 8192MB: 11584k
2892 * 16384MB: 16384k
2893 */
2894static int __init init_per_zone_pages_min(void)
2895{
2896 unsigned long lowmem_kbytes;
2897
2898 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2899
2900 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2901 if (min_free_kbytes < 128)
2902 min_free_kbytes = 128;
2903 if (min_free_kbytes > 65536)
2904 min_free_kbytes = 65536;
2905 setup_per_zone_pages_min();
2906 setup_per_zone_lowmem_reserve();
2907 return 0;
2908}
2909module_init(init_per_zone_pages_min)
2910
2911/*
2912 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2913 * that we can call two helper functions whenever min_free_kbytes
2914 * changes.
2915 */
2916int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2917 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2918{
2919 proc_dointvec(table, write, file, buffer, length, ppos);
2920 setup_per_zone_pages_min();
2921 return 0;
2922}
2923
9614634f
CL
2924#ifdef CONFIG_NUMA
2925int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2926 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2927{
2928 struct zone *zone;
2929 int rc;
2930
2931 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2932 if (rc)
2933 return rc;
2934
2935 for_each_zone(zone)
8417bba4 2936 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
2937 sysctl_min_unmapped_ratio) / 100;
2938 return 0;
2939}
0ff38490
CL
2940
2941int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2942 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2943{
2944 struct zone *zone;
2945 int rc;
2946
2947 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2948 if (rc)
2949 return rc;
2950
2951 for_each_zone(zone)
2952 zone->min_slab_pages = (zone->present_pages *
2953 sysctl_min_slab_ratio) / 100;
2954 return 0;
2955}
9614634f
CL
2956#endif
2957
1da177e4
LT
2958/*
2959 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2960 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2961 * whenever sysctl_lowmem_reserve_ratio changes.
2962 *
2963 * The reserve ratio obviously has absolutely no relation with the
2964 * pages_min watermarks. The lowmem reserve ratio can only make sense
2965 * if in function of the boot time zone sizes.
2966 */
2967int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2968 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2969{
2970 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2971 setup_per_zone_lowmem_reserve();
2972 return 0;
2973}
2974
8ad4b1fb
RS
2975/*
2976 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2977 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2978 * can have before it gets flushed back to buddy allocator.
2979 */
2980
2981int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2982 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2983{
2984 struct zone *zone;
2985 unsigned int cpu;
2986 int ret;
2987
2988 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2989 if (!write || (ret == -EINVAL))
2990 return ret;
2991 for_each_zone(zone) {
2992 for_each_online_cpu(cpu) {
2993 unsigned long high;
2994 high = zone->present_pages / percpu_pagelist_fraction;
2995 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2996 }
2997 }
2998 return 0;
2999}
3000
f034b5d4 3001int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
3002
3003#ifdef CONFIG_NUMA
3004static int __init set_hashdist(char *str)
3005{
3006 if (!str)
3007 return 0;
3008 hashdist = simple_strtoul(str, &str, 0);
3009 return 1;
3010}
3011__setup("hashdist=", set_hashdist);
3012#endif
3013
3014/*
3015 * allocate a large system hash table from bootmem
3016 * - it is assumed that the hash table must contain an exact power-of-2
3017 * quantity of entries
3018 * - limit is the number of hash buckets, not the total allocation size
3019 */
3020void *__init alloc_large_system_hash(const char *tablename,
3021 unsigned long bucketsize,
3022 unsigned long numentries,
3023 int scale,
3024 int flags,
3025 unsigned int *_hash_shift,
3026 unsigned int *_hash_mask,
3027 unsigned long limit)
3028{
3029 unsigned long long max = limit;
3030 unsigned long log2qty, size;
3031 void *table = NULL;
3032
3033 /* allow the kernel cmdline to have a say */
3034 if (!numentries) {
3035 /* round applicable memory size up to nearest megabyte */
3036 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
3037 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3038 numentries >>= 20 - PAGE_SHIFT;
3039 numentries <<= 20 - PAGE_SHIFT;
3040
3041 /* limit to 1 bucket per 2^scale bytes of low memory */
3042 if (scale > PAGE_SHIFT)
3043 numentries >>= (scale - PAGE_SHIFT);
3044 else
3045 numentries <<= (PAGE_SHIFT - scale);
3046 }
6e692ed3 3047 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
3048
3049 /* limit allocation size to 1/16 total memory by default */
3050 if (max == 0) {
3051 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3052 do_div(max, bucketsize);
3053 }
3054
3055 if (numentries > max)
3056 numentries = max;
3057
3058 log2qty = long_log2(numentries);
3059
3060 do {
3061 size = bucketsize << log2qty;
3062 if (flags & HASH_EARLY)
3063 table = alloc_bootmem(size);
3064 else if (hashdist)
3065 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3066 else {
3067 unsigned long order;
3068 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3069 ;
3070 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3071 }
3072 } while (!table && size > PAGE_SIZE && --log2qty);
3073
3074 if (!table)
3075 panic("Failed to allocate %s hash table\n", tablename);
3076
3077 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3078 tablename,
3079 (1U << log2qty),
3080 long_log2(size) - PAGE_SHIFT,
3081 size);
3082
3083 if (_hash_shift)
3084 *_hash_shift = log2qty;
3085 if (_hash_mask)
3086 *_hash_mask = (1 << log2qty) - 1;
3087
3088 return table;
3089}
a117e66e
KH
3090
3091#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
3092struct page *pfn_to_page(unsigned long pfn)
3093{
67de6482 3094 return __pfn_to_page(pfn);
a117e66e
KH
3095}
3096unsigned long page_to_pfn(struct page *page)
3097{
67de6482 3098 return __page_to_pfn(page);
a117e66e 3099}
a117e66e
KH
3100EXPORT_SYMBOL(pfn_to_page);
3101EXPORT_SYMBOL(page_to_pfn);
3102#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78
AM
3103
3104#if MAX_NUMNODES > 1
3105/*
3106 * Find the highest possible node id.
3107 */
3108int highest_possible_node_id(void)
3109{
3110 unsigned int node;
3111 unsigned int highest = 0;
3112
3113 for_each_node_mask(node, node_possible_map)
3114 highest = node;
3115 return highest;
3116}
3117EXPORT_SYMBOL(highest_possible_node_id);
3118#endif