cgroup avoid permanent sleep at rmdir
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
56/*
13808910 57 * Array of node states.
1da177e4 58 */
13808910
CL
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67 [N_CPU] = { { [0] = 1UL } },
68#endif /* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
6c231b7b 72unsigned long totalram_pages __read_mostly;
cb45b0e9 73unsigned long totalreserve_pages __read_mostly;
22b31eec 74unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
dcce284a 76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 77
d9c23400
MG
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
d98c7a09 82static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 83
1da177e4
LT
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
1da177e4 94 */
2f1b6248 95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 96#ifdef CONFIG_ZONE_DMA
2f1b6248 97 256,
4b51d669 98#endif
fb0e7942 99#ifdef CONFIG_ZONE_DMA32
2f1b6248 100 256,
fb0e7942 101#endif
e53ef38d 102#ifdef CONFIG_HIGHMEM
2a1e274a 103 32,
e53ef38d 104#endif
2a1e274a 105 32,
2f1b6248 106};
1da177e4
LT
107
108EXPORT_SYMBOL(totalram_pages);
1da177e4 109
15ad7cdc 110static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248 112 "DMA",
4b51d669 113#endif
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248 115 "DMA32",
fb0e7942 116#endif
2f1b6248 117 "Normal",
e53ef38d 118#ifdef CONFIG_HIGHMEM
2a1e274a 119 "HighMem",
e53ef38d 120#endif
2a1e274a 121 "Movable",
2f1b6248
CL
122};
123
1da177e4
LT
124int min_free_kbytes = 1024;
125
86356ab1
YG
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
a3142c8e 128static unsigned long __meminitdata dma_reserve;
1da177e4 129
c713216d
MG
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
183ff22b 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
98011f56
JB
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 155 static unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
b69a7288 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 166int nr_online_nodes __read_mostly = 1;
418508c1 167EXPORT_SYMBOL(nr_node_ids);
62bc62a8 168EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
169#endif
170
9ef9acb0
MG
171int page_group_by_mobility_disabled __read_mostly;
172
b2a0ac88
MG
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
49255c61
MG
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
b2a0ac88
MG
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181}
182
7f33d49a
RW
183bool oom_killer_disabled __read_mostly;
184
13e7444b 185#ifdef CONFIG_DEBUG_VM
c6a57e19 186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 187{
bdc8cb98
DH
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
c6a57e19 191
bdc8cb98
DH
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
c6a57e19
DH
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
14e07298 205 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 206 return 0;
1da177e4 207 if (zone != page_zone(page))
c6a57e19
DH
208 return 0;
209
210 return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217 if (page_outside_zone_boundaries(zone, page))
1da177e4 218 return 1;
c6a57e19
DH
219 if (!page_is_consistent(zone, page))
220 return 1;
221
1da177e4
LT
222 return 0;
223}
13e7444b
NP
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227 return 0;
228}
229#endif
230
224abf92 231static void bad_page(struct page *page)
1da177e4 232{
d936cf9b
HD
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
1e9e6365
HD
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
1e9e6365 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 258 current->comm, page_to_pfn(page));
1e9e6365 259 printk(KERN_ALERT
3dc14741
HD
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
3dc14741 263
1da177e4 264 dump_stack();
d936cf9b 265out:
8cc3b392
HD
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
9f158333 268 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
269}
270
1da177e4
LT
271/*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
41d78ba5
HD
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
1da177e4 284 */
d98c7a09
HD
285
286static void free_compound_page(struct page *page)
287{
d85f3385 288 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
289}
290
01ad1c08 291void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
292{
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305}
306
8cc3b392 307static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
308{
309 int i;
310 int nr_pages = 1 << order;
8cc3b392 311 int bad = 0;
1da177e4 312
8cc3b392
HD
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
224abf92 315 bad_page(page);
8cc3b392
HD
316 bad++;
317 }
1da177e4 318
6d777953 319 __ClearPageHead(page);
8cc3b392 320
18229df5
AW
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
1da177e4 323
e713a21d 324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
d85f3385 328 __ClearPageTail(p);
1da177e4 329 }
8cc3b392
HD
330
331 return bad;
1da177e4 332}
1da177e4 333
17cf4406
NP
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336 int i;
337
6626c5d5
AM
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
725d704e 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 413 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
ed0ae21d
MG
444 struct zone *zone, unsigned int order,
445 int migratetype)
1da177e4
LT
446{
447 unsigned long page_idx;
1da177e4 448
224abf92 449 if (unlikely(PageCompound(page)))
8cc3b392
HD
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
1da177e4 452
ed0ae21d
MG
453 VM_BUG_ON(migratetype == -1);
454
1da177e4
LT
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
f2260e6b 457 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 458 VM_BUG_ON(bad_range(zone, page));
1da177e4 459
1da177e4
LT
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
1da177e4
LT
462 struct page *buddy;
463
1da177e4 464 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 465 if (!page_is_buddy(page, buddy, order))
3c82d0ce 466 break;
13e7444b 467
3c82d0ce 468 /* Our buddy is free, merge with it and move up one order. */
1da177e4 469 list_del(&buddy->lru);
b2a0ac88 470 zone->free_area[order].nr_free--;
1da177e4 471 rmv_page_order(buddy);
13e7444b 472 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
b2a0ac88
MG
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
480 zone->free_area[order].nr_free++;
481}
482
092cead6
KM
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
092cead6
KM
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
a3af9c38 502 (atomic_read(&page->_count) != 0) |
8cc3b392 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 504 bad_page(page);
79f4b7bf 505 return 1;
8cc3b392 506 }
79f4b7bf
HD
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
1da177e4
LT
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
207f36ee 515 * count is the number of pages to free.
1da177e4
LT
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
48db57f8
NP
523static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
1da177e4 525{
c54ad30c 526 spin_lock(&zone->lock);
e815af95 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 528 zone->pages_scanned = 0;
f2260e6b
MG
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
531 while (count--) {
532 struct page *page;
533
725d704e 534 VM_BUG_ON(list_empty(list));
1da177e4 535 page = list_entry(list->prev, struct page, lru);
48db57f8 536 /* have to delete it as __free_one_page list manipulates */
1da177e4 537 list_del(&page->lru);
ed0ae21d 538 __free_one_page(page, zone, order, page_private(page));
1da177e4 539 }
c54ad30c 540 spin_unlock(&zone->lock);
1da177e4
LT
541}
542
ed0ae21d
MG
543static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
1da177e4 545{
006d22d9 546 spin_lock(&zone->lock);
e815af95 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 548 zone->pages_scanned = 0;
f2260e6b
MG
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 551 __free_one_page(page, zone, order, migratetype);
006d22d9 552 spin_unlock(&zone->lock);
48db57f8
NP
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557 unsigned long flags;
1da177e4 558 int i;
8cc3b392 559 int bad = 0;
c277331d 560 int wasMlocked = TestClearPageMlocked(page);
1da177e4 561
b1eeab67
VN
562 kmemcheck_free_shadow(page, order);
563
1da177e4 564 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
565 bad += free_pages_check(page + i);
566 if (bad)
689bcebf
HD
567 return;
568
3ac7fe5a 569 if (!PageHighMem(page)) {
9858db50 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
dafb1367 574 arch_free_page(page, order);
48db57f8 575 kernel_map_pages(page, 1 << order, 0);
dafb1367 576
c54ad30c 577 local_irq_save(flags);
c277331d 578 if (unlikely(wasMlocked))
da456f14 579 free_page_mlock(page);
f8891e5e 580 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
c54ad30c 583 local_irq_restore(flags);
1da177e4
LT
584}
585
a226f6c8
DH
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
af370fb8 589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
590{
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_page(page);
a226f6c8 596 } else {
a226f6c8
DH
597 int loop;
598
545b1ea9 599 prefetchw(page);
a226f6c8
DH
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
545b1ea9
NP
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
a226f6c8
DH
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
7835e98b 609 set_page_refcounted(page);
545b1ea9 610 __free_pages(page, order);
a226f6c8
DH
611 }
612}
613
1da177e4
LT
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
085cc7d5 629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
630 int low, int high, struct free_area *area,
631 int migratetype)
1da177e4
LT
632{
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
725d704e 639 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 640 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
1da177e4
LT
644}
645
1da177e4
LT
646/*
647 * This page is about to be returned from the page allocator
648 */
17cf4406 649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 650{
92be2e33
NP
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
a3af9c38 653 (atomic_read(&page->_count) != 0) |
8cc3b392 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 655 bad_page(page);
689bcebf 656 return 1;
8cc3b392 657 }
689bcebf 658
4c21e2f2 659 set_page_private(page, 0);
7835e98b 660 set_page_refcounted(page);
cc102509
NP
661
662 arch_alloc_page(page, order);
1da177e4 663 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
689bcebf 671 return 0;
1da177e4
LT
672}
673
56fd56b8
MG
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
728ec980
MG
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
680 int migratetype)
681{
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
56fd56b8
MG
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702}
703
704
b2a0ac88
MG
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
714};
715
c361be55
MG
716/*
717 * Move the free pages in a range to the free lists of the requested type.
d9c23400 718 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
719 * boundary. If alignment is required, use move_freepages_block()
720 */
b69a7288
AB
721static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
c361be55
MG
724{
725 struct page *page;
726 unsigned long order;
d100313f 727 int pages_moved = 0;
c361be55
MG
728
729#ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
ac0e5b7a 735 * grouping pages by mobility
c361be55
MG
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740 for (page = start_page; page <= end_page;) {
344c790e
AL
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
c361be55
MG
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
d100313f 759 pages_moved += 1 << order;
c361be55
MG
760 }
761
d100313f 762 return pages_moved;
c361be55
MG
763}
764
b69a7288
AB
765static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
c361be55
MG
767{
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
d9c23400 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 773 start_page = pfn_to_page(start_pfn);
d9c23400
MG
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784}
785
b2a0ac88 786/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
789{
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
794
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
800
56fd56b8
MG
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
e010487d 804
b2a0ac88
MG
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
808
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
812
813 /*
c361be55 814 * If breaking a large block of pages, move all free
46dafbca
MG
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
b2a0ac88 818 */
d9c23400 819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
820 start_migratetype == MIGRATE_RECLAIMABLE) {
821 unsigned long pages;
822 pages = move_freepages_block(zone, page,
823 start_migratetype);
824
825 /* Claim the whole block if over half of it is free */
d9c23400 826 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
827 set_pageblock_migratetype(page,
828 start_migratetype);
829
b2a0ac88 830 migratetype = start_migratetype;
c361be55 831 }
b2a0ac88
MG
832
833 /* Remove the page from the freelists */
834 list_del(&page->lru);
835 rmv_page_order(page);
b2a0ac88 836
d9c23400 837 if (current_order == pageblock_order)
b2a0ac88
MG
838 set_pageblock_migratetype(page,
839 start_migratetype);
840
841 expand(zone, page, order, current_order, area, migratetype);
842 return page;
843 }
844 }
845
728ec980 846 return NULL;
b2a0ac88
MG
847}
848
56fd56b8 849/*
1da177e4
LT
850 * Do the hard work of removing an element from the buddy allocator.
851 * Call me with the zone->lock already held.
852 */
b2a0ac88
MG
853static struct page *__rmqueue(struct zone *zone, unsigned int order,
854 int migratetype)
1da177e4 855{
1da177e4
LT
856 struct page *page;
857
728ec980 858retry_reserve:
56fd56b8 859 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 860
728ec980 861 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 862 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 863
728ec980
MG
864 /*
865 * Use MIGRATE_RESERVE rather than fail an allocation. goto
866 * is used because __rmqueue_smallest is an inline function
867 * and we want just one call site
868 */
869 if (!page) {
870 migratetype = MIGRATE_RESERVE;
871 goto retry_reserve;
872 }
873 }
874
b2a0ac88 875 return page;
1da177e4
LT
876}
877
878/*
879 * Obtain a specified number of elements from the buddy allocator, all under
880 * a single hold of the lock, for efficiency. Add them to the supplied list.
881 * Returns the number of new pages which were placed at *list.
882 */
883static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 884 unsigned long count, struct list_head *list,
e084b2d9 885 int migratetype, int cold)
1da177e4 886{
1da177e4 887 int i;
1da177e4 888
c54ad30c 889 spin_lock(&zone->lock);
1da177e4 890 for (i = 0; i < count; ++i) {
b2a0ac88 891 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 892 if (unlikely(page == NULL))
1da177e4 893 break;
81eabcbe
MG
894
895 /*
896 * Split buddy pages returned by expand() are received here
897 * in physical page order. The page is added to the callers and
898 * list and the list head then moves forward. From the callers
899 * perspective, the linked list is ordered by page number in
900 * some conditions. This is useful for IO devices that can
901 * merge IO requests if the physical pages are ordered
902 * properly.
903 */
e084b2d9
MG
904 if (likely(cold == 0))
905 list_add(&page->lru, list);
906 else
907 list_add_tail(&page->lru, list);
535131e6 908 set_page_private(page, migratetype);
81eabcbe 909 list = &page->lru;
1da177e4 910 }
f2260e6b 911 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 912 spin_unlock(&zone->lock);
085cc7d5 913 return i;
1da177e4
LT
914}
915
4ae7c039 916#ifdef CONFIG_NUMA
8fce4d8e 917/*
4037d452
CL
918 * Called from the vmstat counter updater to drain pagesets of this
919 * currently executing processor on remote nodes after they have
920 * expired.
921 *
879336c3
CL
922 * Note that this function must be called with the thread pinned to
923 * a single processor.
8fce4d8e 924 */
4037d452 925void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 926{
4ae7c039 927 unsigned long flags;
4037d452 928 int to_drain;
4ae7c039 929
4037d452
CL
930 local_irq_save(flags);
931 if (pcp->count >= pcp->batch)
932 to_drain = pcp->batch;
933 else
934 to_drain = pcp->count;
935 free_pages_bulk(zone, to_drain, &pcp->list, 0);
936 pcp->count -= to_drain;
937 local_irq_restore(flags);
4ae7c039
CL
938}
939#endif
940
9f8f2172
CL
941/*
942 * Drain pages of the indicated processor.
943 *
944 * The processor must either be the current processor and the
945 * thread pinned to the current processor or a processor that
946 * is not online.
947 */
948static void drain_pages(unsigned int cpu)
1da177e4 949{
c54ad30c 950 unsigned long flags;
1da177e4 951 struct zone *zone;
1da177e4 952
ee99c71c 953 for_each_populated_zone(zone) {
1da177e4 954 struct per_cpu_pageset *pset;
3dfa5721 955 struct per_cpu_pages *pcp;
1da177e4 956
e7c8d5c9 957 pset = zone_pcp(zone, cpu);
3dfa5721
CL
958
959 pcp = &pset->pcp;
960 local_irq_save(flags);
961 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
962 pcp->count = 0;
963 local_irq_restore(flags);
1da177e4
LT
964 }
965}
1da177e4 966
9f8f2172
CL
967/*
968 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
969 */
970void drain_local_pages(void *arg)
971{
972 drain_pages(smp_processor_id());
973}
974
975/*
976 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
977 */
978void drain_all_pages(void)
979{
15c8b6c1 980 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
981}
982
296699de 983#ifdef CONFIG_HIBERNATION
1da177e4
LT
984
985void mark_free_pages(struct zone *zone)
986{
f623f0db
RW
987 unsigned long pfn, max_zone_pfn;
988 unsigned long flags;
b2a0ac88 989 int order, t;
1da177e4
LT
990 struct list_head *curr;
991
992 if (!zone->spanned_pages)
993 return;
994
995 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
996
997 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
998 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
999 if (pfn_valid(pfn)) {
1000 struct page *page = pfn_to_page(pfn);
1001
7be98234
RW
1002 if (!swsusp_page_is_forbidden(page))
1003 swsusp_unset_page_free(page);
f623f0db 1004 }
1da177e4 1005
b2a0ac88
MG
1006 for_each_migratetype_order(order, t) {
1007 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1008 unsigned long i;
1da177e4 1009
f623f0db
RW
1010 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1011 for (i = 0; i < (1UL << order); i++)
7be98234 1012 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1013 }
b2a0ac88 1014 }
1da177e4
LT
1015 spin_unlock_irqrestore(&zone->lock, flags);
1016}
e2c55dc8 1017#endif /* CONFIG_PM */
1da177e4 1018
1da177e4
LT
1019/*
1020 * Free a 0-order page
1021 */
920c7a5d 1022static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1023{
1024 struct zone *zone = page_zone(page);
1025 struct per_cpu_pages *pcp;
1026 unsigned long flags;
c277331d 1027 int wasMlocked = TestClearPageMlocked(page);
1da177e4 1028
b1eeab67
VN
1029 kmemcheck_free_shadow(page, 0);
1030
1da177e4
LT
1031 if (PageAnon(page))
1032 page->mapping = NULL;
224abf92 1033 if (free_pages_check(page))
689bcebf
HD
1034 return;
1035
3ac7fe5a 1036 if (!PageHighMem(page)) {
9858db50 1037 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1038 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1039 }
dafb1367 1040 arch_free_page(page, 0);
689bcebf
HD
1041 kernel_map_pages(page, 1, 0);
1042
3dfa5721 1043 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1044 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1045 local_irq_save(flags);
c277331d 1046 if (unlikely(wasMlocked))
da456f14 1047 free_page_mlock(page);
f8891e5e 1048 __count_vm_event(PGFREE);
da456f14 1049
3dfa5721
CL
1050 if (cold)
1051 list_add_tail(&page->lru, &pcp->list);
1052 else
1053 list_add(&page->lru, &pcp->list);
1da177e4 1054 pcp->count++;
48db57f8
NP
1055 if (pcp->count >= pcp->high) {
1056 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1057 pcp->count -= pcp->batch;
1058 }
1da177e4
LT
1059 local_irq_restore(flags);
1060 put_cpu();
1061}
1062
920c7a5d 1063void free_hot_page(struct page *page)
1da177e4
LT
1064{
1065 free_hot_cold_page(page, 0);
1066}
1067
920c7a5d 1068void free_cold_page(struct page *page)
1da177e4
LT
1069{
1070 free_hot_cold_page(page, 1);
1071}
1072
8dfcc9ba
NP
1073/*
1074 * split_page takes a non-compound higher-order page, and splits it into
1075 * n (1<<order) sub-pages: page[0..n]
1076 * Each sub-page must be freed individually.
1077 *
1078 * Note: this is probably too low level an operation for use in drivers.
1079 * Please consult with lkml before using this in your driver.
1080 */
1081void split_page(struct page *page, unsigned int order)
1082{
1083 int i;
1084
725d704e
NP
1085 VM_BUG_ON(PageCompound(page));
1086 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1087
1088#ifdef CONFIG_KMEMCHECK
1089 /*
1090 * Split shadow pages too, because free(page[0]) would
1091 * otherwise free the whole shadow.
1092 */
1093 if (kmemcheck_page_is_tracked(page))
1094 split_page(virt_to_page(page[0].shadow), order);
1095#endif
1096
7835e98b
NP
1097 for (i = 1; i < (1 << order); i++)
1098 set_page_refcounted(page + i);
8dfcc9ba 1099}
8dfcc9ba 1100
1da177e4
LT
1101/*
1102 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1103 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1104 * or two.
1105 */
0a15c3e9
MG
1106static inline
1107struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1108 struct zone *zone, int order, gfp_t gfp_flags,
1109 int migratetype)
1da177e4
LT
1110{
1111 unsigned long flags;
689bcebf 1112 struct page *page;
1da177e4 1113 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1114 int cpu;
1da177e4 1115
689bcebf 1116again:
a74609fa 1117 cpu = get_cpu();
48db57f8 1118 if (likely(order == 0)) {
1da177e4
LT
1119 struct per_cpu_pages *pcp;
1120
3dfa5721 1121 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1122 local_irq_save(flags);
a74609fa 1123 if (!pcp->count) {
941c7105 1124 pcp->count = rmqueue_bulk(zone, 0,
e084b2d9
MG
1125 pcp->batch, &pcp->list,
1126 migratetype, cold);
a74609fa
NP
1127 if (unlikely(!pcp->count))
1128 goto failed;
1da177e4 1129 }
b92a6edd 1130
535131e6 1131 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1132 if (cold) {
1133 list_for_each_entry_reverse(page, &pcp->list, lru)
1134 if (page_private(page) == migratetype)
1135 break;
1136 } else {
1137 list_for_each_entry(page, &pcp->list, lru)
1138 if (page_private(page) == migratetype)
1139 break;
1140 }
535131e6 1141
b92a6edd
MG
1142 /* Allocate more to the pcp list if necessary */
1143 if (unlikely(&page->lru == &pcp->list)) {
535131e6 1144 pcp->count += rmqueue_bulk(zone, 0,
e084b2d9
MG
1145 pcp->batch, &pcp->list,
1146 migratetype, cold);
535131e6 1147 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1148 }
b92a6edd
MG
1149
1150 list_del(&page->lru);
1151 pcp->count--;
7fb1d9fc 1152 } else {
dab48dab
AM
1153 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1154 /*
1155 * __GFP_NOFAIL is not to be used in new code.
1156 *
1157 * All __GFP_NOFAIL callers should be fixed so that they
1158 * properly detect and handle allocation failures.
1159 *
1160 * We most definitely don't want callers attempting to
4923abf9 1161 * allocate greater than order-1 page units with
dab48dab
AM
1162 * __GFP_NOFAIL.
1163 */
4923abf9 1164 WARN_ON_ONCE(order > 1);
dab48dab 1165 }
1da177e4 1166 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1167 page = __rmqueue(zone, order, migratetype);
f2260e6b 1168 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1169 spin_unlock(&zone->lock);
1170 if (!page)
1171 goto failed;
1da177e4
LT
1172 }
1173
f8891e5e 1174 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1175 zone_statistics(preferred_zone, zone);
a74609fa
NP
1176 local_irq_restore(flags);
1177 put_cpu();
1da177e4 1178
725d704e 1179 VM_BUG_ON(bad_range(zone, page));
17cf4406 1180 if (prep_new_page(page, order, gfp_flags))
a74609fa 1181 goto again;
1da177e4 1182 return page;
a74609fa
NP
1183
1184failed:
1185 local_irq_restore(flags);
1186 put_cpu();
1187 return NULL;
1da177e4
LT
1188}
1189
41858966
MG
1190/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1191#define ALLOC_WMARK_MIN WMARK_MIN
1192#define ALLOC_WMARK_LOW WMARK_LOW
1193#define ALLOC_WMARK_HIGH WMARK_HIGH
1194#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1195
1196/* Mask to get the watermark bits */
1197#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1198
3148890b
NP
1199#define ALLOC_HARDER 0x10 /* try to alloc harder */
1200#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1201#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1202
933e312e
AM
1203#ifdef CONFIG_FAIL_PAGE_ALLOC
1204
1205static struct fail_page_alloc_attr {
1206 struct fault_attr attr;
1207
1208 u32 ignore_gfp_highmem;
1209 u32 ignore_gfp_wait;
54114994 1210 u32 min_order;
933e312e
AM
1211
1212#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1213
1214 struct dentry *ignore_gfp_highmem_file;
1215 struct dentry *ignore_gfp_wait_file;
54114994 1216 struct dentry *min_order_file;
933e312e
AM
1217
1218#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1219
1220} fail_page_alloc = {
1221 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1222 .ignore_gfp_wait = 1,
1223 .ignore_gfp_highmem = 1,
54114994 1224 .min_order = 1,
933e312e
AM
1225};
1226
1227static int __init setup_fail_page_alloc(char *str)
1228{
1229 return setup_fault_attr(&fail_page_alloc.attr, str);
1230}
1231__setup("fail_page_alloc=", setup_fail_page_alloc);
1232
1233static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1234{
54114994
AM
1235 if (order < fail_page_alloc.min_order)
1236 return 0;
933e312e
AM
1237 if (gfp_mask & __GFP_NOFAIL)
1238 return 0;
1239 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1240 return 0;
1241 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1242 return 0;
1243
1244 return should_fail(&fail_page_alloc.attr, 1 << order);
1245}
1246
1247#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1248
1249static int __init fail_page_alloc_debugfs(void)
1250{
1251 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1252 struct dentry *dir;
1253 int err;
1254
1255 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1256 "fail_page_alloc");
1257 if (err)
1258 return err;
1259 dir = fail_page_alloc.attr.dentries.dir;
1260
1261 fail_page_alloc.ignore_gfp_wait_file =
1262 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1263 &fail_page_alloc.ignore_gfp_wait);
1264
1265 fail_page_alloc.ignore_gfp_highmem_file =
1266 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1267 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1268 fail_page_alloc.min_order_file =
1269 debugfs_create_u32("min-order", mode, dir,
1270 &fail_page_alloc.min_order);
933e312e
AM
1271
1272 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1273 !fail_page_alloc.ignore_gfp_highmem_file ||
1274 !fail_page_alloc.min_order_file) {
933e312e
AM
1275 err = -ENOMEM;
1276 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1277 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1278 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1279 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1280 }
1281
1282 return err;
1283}
1284
1285late_initcall(fail_page_alloc_debugfs);
1286
1287#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1288
1289#else /* CONFIG_FAIL_PAGE_ALLOC */
1290
1291static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1292{
1293 return 0;
1294}
1295
1296#endif /* CONFIG_FAIL_PAGE_ALLOC */
1297
1da177e4
LT
1298/*
1299 * Return 1 if free pages are above 'mark'. This takes into account the order
1300 * of the allocation.
1301 */
1302int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1303 int classzone_idx, int alloc_flags)
1da177e4
LT
1304{
1305 /* free_pages my go negative - that's OK */
d23ad423
CL
1306 long min = mark;
1307 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1308 int o;
1309
7fb1d9fc 1310 if (alloc_flags & ALLOC_HIGH)
1da177e4 1311 min -= min / 2;
7fb1d9fc 1312 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1313 min -= min / 4;
1314
1315 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1316 return 0;
1317 for (o = 0; o < order; o++) {
1318 /* At the next order, this order's pages become unavailable */
1319 free_pages -= z->free_area[o].nr_free << o;
1320
1321 /* Require fewer higher order pages to be free */
1322 min >>= 1;
1323
1324 if (free_pages <= min)
1325 return 0;
1326 }
1327 return 1;
1328}
1329
9276b1bc
PJ
1330#ifdef CONFIG_NUMA
1331/*
1332 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1333 * skip over zones that are not allowed by the cpuset, or that have
1334 * been recently (in last second) found to be nearly full. See further
1335 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1336 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1337 *
1338 * If the zonelist cache is present in the passed in zonelist, then
1339 * returns a pointer to the allowed node mask (either the current
37b07e41 1340 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1341 *
1342 * If the zonelist cache is not available for this zonelist, does
1343 * nothing and returns NULL.
1344 *
1345 * If the fullzones BITMAP in the zonelist cache is stale (more than
1346 * a second since last zap'd) then we zap it out (clear its bits.)
1347 *
1348 * We hold off even calling zlc_setup, until after we've checked the
1349 * first zone in the zonelist, on the theory that most allocations will
1350 * be satisfied from that first zone, so best to examine that zone as
1351 * quickly as we can.
1352 */
1353static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1354{
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 nodemask_t *allowednodes; /* zonelist_cache approximation */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return NULL;
1361
f05111f5 1362 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1363 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1364 zlc->last_full_zap = jiffies;
1365 }
1366
1367 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1368 &cpuset_current_mems_allowed :
37b07e41 1369 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1370 return allowednodes;
1371}
1372
1373/*
1374 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1375 * if it is worth looking at further for free memory:
1376 * 1) Check that the zone isn't thought to be full (doesn't have its
1377 * bit set in the zonelist_cache fullzones BITMAP).
1378 * 2) Check that the zones node (obtained from the zonelist_cache
1379 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1380 * Return true (non-zero) if zone is worth looking at further, or
1381 * else return false (zero) if it is not.
1382 *
1383 * This check -ignores- the distinction between various watermarks,
1384 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1385 * found to be full for any variation of these watermarks, it will
1386 * be considered full for up to one second by all requests, unless
1387 * we are so low on memory on all allowed nodes that we are forced
1388 * into the second scan of the zonelist.
1389 *
1390 * In the second scan we ignore this zonelist cache and exactly
1391 * apply the watermarks to all zones, even it is slower to do so.
1392 * We are low on memory in the second scan, and should leave no stone
1393 * unturned looking for a free page.
1394 */
dd1a239f 1395static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1396 nodemask_t *allowednodes)
1397{
1398 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1399 int i; /* index of *z in zonelist zones */
1400 int n; /* node that zone *z is on */
1401
1402 zlc = zonelist->zlcache_ptr;
1403 if (!zlc)
1404 return 1;
1405
dd1a239f 1406 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1407 n = zlc->z_to_n[i];
1408
1409 /* This zone is worth trying if it is allowed but not full */
1410 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1411}
1412
1413/*
1414 * Given 'z' scanning a zonelist, set the corresponding bit in
1415 * zlc->fullzones, so that subsequent attempts to allocate a page
1416 * from that zone don't waste time re-examining it.
1417 */
dd1a239f 1418static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1419{
1420 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1421 int i; /* index of *z in zonelist zones */
1422
1423 zlc = zonelist->zlcache_ptr;
1424 if (!zlc)
1425 return;
1426
dd1a239f 1427 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1428
1429 set_bit(i, zlc->fullzones);
1430}
1431
1432#else /* CONFIG_NUMA */
1433
1434static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1435{
1436 return NULL;
1437}
1438
dd1a239f 1439static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1440 nodemask_t *allowednodes)
1441{
1442 return 1;
1443}
1444
dd1a239f 1445static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1446{
1447}
1448#endif /* CONFIG_NUMA */
1449
7fb1d9fc 1450/*
0798e519 1451 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1452 * a page.
1453 */
1454static struct page *
19770b32 1455get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1456 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1457 struct zone *preferred_zone, int migratetype)
753ee728 1458{
dd1a239f 1459 struct zoneref *z;
7fb1d9fc 1460 struct page *page = NULL;
54a6eb5c 1461 int classzone_idx;
5117f45d 1462 struct zone *zone;
9276b1bc
PJ
1463 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1464 int zlc_active = 0; /* set if using zonelist_cache */
1465 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1466
19770b32 1467 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1468zonelist_scan:
7fb1d9fc 1469 /*
9276b1bc 1470 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1471 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1472 */
19770b32
MG
1473 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1474 high_zoneidx, nodemask) {
9276b1bc
PJ
1475 if (NUMA_BUILD && zlc_active &&
1476 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1477 continue;
7fb1d9fc 1478 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1479 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1480 goto try_next_zone;
7fb1d9fc 1481
41858966 1482 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1483 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1484 unsigned long mark;
fa5e084e
MG
1485 int ret;
1486
41858966 1487 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1488 if (zone_watermark_ok(zone, order, mark,
1489 classzone_idx, alloc_flags))
1490 goto try_this_zone;
1491
1492 if (zone_reclaim_mode == 0)
1493 goto this_zone_full;
1494
1495 ret = zone_reclaim(zone, gfp_mask, order);
1496 switch (ret) {
1497 case ZONE_RECLAIM_NOSCAN:
1498 /* did not scan */
1499 goto try_next_zone;
1500 case ZONE_RECLAIM_FULL:
1501 /* scanned but unreclaimable */
1502 goto this_zone_full;
1503 default:
1504 /* did we reclaim enough */
1505 if (!zone_watermark_ok(zone, order, mark,
1506 classzone_idx, alloc_flags))
9276b1bc 1507 goto this_zone_full;
0798e519 1508 }
7fb1d9fc
RS
1509 }
1510
fa5e084e 1511try_this_zone:
3dd28266
MG
1512 page = buffered_rmqueue(preferred_zone, zone, order,
1513 gfp_mask, migratetype);
0798e519 1514 if (page)
7fb1d9fc 1515 break;
9276b1bc
PJ
1516this_zone_full:
1517 if (NUMA_BUILD)
1518 zlc_mark_zone_full(zonelist, z);
1519try_next_zone:
62bc62a8 1520 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1521 /*
1522 * we do zlc_setup after the first zone is tried but only
1523 * if there are multiple nodes make it worthwhile
1524 */
9276b1bc
PJ
1525 allowednodes = zlc_setup(zonelist, alloc_flags);
1526 zlc_active = 1;
1527 did_zlc_setup = 1;
1528 }
54a6eb5c 1529 }
9276b1bc
PJ
1530
1531 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1532 /* Disable zlc cache for second zonelist scan */
1533 zlc_active = 0;
1534 goto zonelist_scan;
1535 }
7fb1d9fc 1536 return page;
753ee728
MH
1537}
1538
11e33f6a
MG
1539static inline int
1540should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1541 unsigned long pages_reclaimed)
1da177e4 1542{
11e33f6a
MG
1543 /* Do not loop if specifically requested */
1544 if (gfp_mask & __GFP_NORETRY)
1545 return 0;
1da177e4 1546
11e33f6a
MG
1547 /*
1548 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1549 * means __GFP_NOFAIL, but that may not be true in other
1550 * implementations.
1551 */
1552 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1553 return 1;
1554
1555 /*
1556 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1557 * specified, then we retry until we no longer reclaim any pages
1558 * (above), or we've reclaimed an order of pages at least as
1559 * large as the allocation's order. In both cases, if the
1560 * allocation still fails, we stop retrying.
1561 */
1562 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1563 return 1;
cf40bd16 1564
11e33f6a
MG
1565 /*
1566 * Don't let big-order allocations loop unless the caller
1567 * explicitly requests that.
1568 */
1569 if (gfp_mask & __GFP_NOFAIL)
1570 return 1;
1da177e4 1571
11e33f6a
MG
1572 return 0;
1573}
933e312e 1574
11e33f6a
MG
1575static inline struct page *
1576__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1577 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1578 nodemask_t *nodemask, struct zone *preferred_zone,
1579 int migratetype)
11e33f6a
MG
1580{
1581 struct page *page;
1582
1583 /* Acquire the OOM killer lock for the zones in zonelist */
1584 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1585 schedule_timeout_uninterruptible(1);
1da177e4
LT
1586 return NULL;
1587 }
6b1de916 1588
11e33f6a
MG
1589 /*
1590 * Go through the zonelist yet one more time, keep very high watermark
1591 * here, this is only to catch a parallel oom killing, we must fail if
1592 * we're still under heavy pressure.
1593 */
1594 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1595 order, zonelist, high_zoneidx,
5117f45d 1596 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1597 preferred_zone, migratetype);
7fb1d9fc 1598 if (page)
11e33f6a
MG
1599 goto out;
1600
1601 /* The OOM killer will not help higher order allocs */
82553a93 1602 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1603 goto out;
1604
1605 /* Exhausted what can be done so it's blamo time */
1606 out_of_memory(zonelist, gfp_mask, order);
1607
1608out:
1609 clear_zonelist_oom(zonelist, gfp_mask);
1610 return page;
1611}
1612
1613/* The really slow allocator path where we enter direct reclaim */
1614static inline struct page *
1615__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1616 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1617 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1618 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1619{
1620 struct page *page = NULL;
1621 struct reclaim_state reclaim_state;
1622 struct task_struct *p = current;
1623
1624 cond_resched();
1625
1626 /* We now go into synchronous reclaim */
1627 cpuset_memory_pressure_bump();
1628
1629 /*
1630 * The task's cpuset might have expanded its set of allowable nodes
1631 */
1632 p->flags |= PF_MEMALLOC;
1633 lockdep_set_current_reclaim_state(gfp_mask);
1634 reclaim_state.reclaimed_slab = 0;
1635 p->reclaim_state = &reclaim_state;
1636
1637 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1638
1639 p->reclaim_state = NULL;
1640 lockdep_clear_current_reclaim_state();
1641 p->flags &= ~PF_MEMALLOC;
1642
1643 cond_resched();
1644
1645 if (order != 0)
1646 drain_all_pages();
1647
1648 if (likely(*did_some_progress))
1649 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1650 zonelist, high_zoneidx,
3dd28266
MG
1651 alloc_flags, preferred_zone,
1652 migratetype);
11e33f6a
MG
1653 return page;
1654}
1655
1da177e4 1656/*
11e33f6a
MG
1657 * This is called in the allocator slow-path if the allocation request is of
1658 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1659 */
11e33f6a
MG
1660static inline struct page *
1661__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1662 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1663 nodemask_t *nodemask, struct zone *preferred_zone,
1664 int migratetype)
11e33f6a
MG
1665{
1666 struct page *page;
1667
1668 do {
1669 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1670 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1671 preferred_zone, migratetype);
11e33f6a
MG
1672
1673 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1674 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1675 } while (!page && (gfp_mask & __GFP_NOFAIL));
1676
1677 return page;
1678}
1679
1680static inline
1681void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1682 enum zone_type high_zoneidx)
1da177e4 1683{
dd1a239f
MG
1684 struct zoneref *z;
1685 struct zone *zone;
1da177e4 1686
11e33f6a
MG
1687 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1688 wakeup_kswapd(zone, order);
1689}
cf40bd16 1690
341ce06f
PZ
1691static inline int
1692gfp_to_alloc_flags(gfp_t gfp_mask)
1693{
1694 struct task_struct *p = current;
1695 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1696 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1697
a56f57ff
MG
1698 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1699 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1700
341ce06f
PZ
1701 /*
1702 * The caller may dip into page reserves a bit more if the caller
1703 * cannot run direct reclaim, or if the caller has realtime scheduling
1704 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1705 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1706 */
a56f57ff 1707 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1708
341ce06f
PZ
1709 if (!wait) {
1710 alloc_flags |= ALLOC_HARDER;
523b9458 1711 /*
341ce06f
PZ
1712 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1713 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1714 */
341ce06f
PZ
1715 alloc_flags &= ~ALLOC_CPUSET;
1716 } else if (unlikely(rt_task(p)))
1717 alloc_flags |= ALLOC_HARDER;
1718
1719 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1720 if (!in_interrupt() &&
1721 ((p->flags & PF_MEMALLOC) ||
1722 unlikely(test_thread_flag(TIF_MEMDIE))))
1723 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1724 }
6b1de916 1725
341ce06f
PZ
1726 return alloc_flags;
1727}
1728
11e33f6a
MG
1729static inline struct page *
1730__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1731 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1732 nodemask_t *nodemask, struct zone *preferred_zone,
1733 int migratetype)
11e33f6a
MG
1734{
1735 const gfp_t wait = gfp_mask & __GFP_WAIT;
1736 struct page *page = NULL;
1737 int alloc_flags;
1738 unsigned long pages_reclaimed = 0;
1739 unsigned long did_some_progress;
1740 struct task_struct *p = current;
1da177e4 1741
72807a74
MG
1742 /*
1743 * In the slowpath, we sanity check order to avoid ever trying to
1744 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1745 * be using allocators in order of preference for an area that is
1746 * too large.
1747 */
1748 if (WARN_ON_ONCE(order >= MAX_ORDER))
1749 return NULL;
1da177e4 1750
952f3b51
CL
1751 /*
1752 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1753 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1754 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1755 * using a larger set of nodes after it has established that the
1756 * allowed per node queues are empty and that nodes are
1757 * over allocated.
1758 */
1759 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1760 goto nopage;
1761
11e33f6a 1762 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1763
9bf2229f 1764 /*
7fb1d9fc
RS
1765 * OK, we're below the kswapd watermark and have kicked background
1766 * reclaim. Now things get more complex, so set up alloc_flags according
1767 * to how we want to proceed.
9bf2229f 1768 */
341ce06f 1769 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1770
11e33f6a 1771restart:
341ce06f 1772 /* This is the last chance, in general, before the goto nopage. */
19770b32 1773 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1774 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1775 preferred_zone, migratetype);
7fb1d9fc
RS
1776 if (page)
1777 goto got_pg;
1da177e4 1778
b43a57bb 1779rebalance:
11e33f6a 1780 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1781 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1782 page = __alloc_pages_high_priority(gfp_mask, order,
1783 zonelist, high_zoneidx, nodemask,
1784 preferred_zone, migratetype);
1785 if (page)
1786 goto got_pg;
1da177e4
LT
1787 }
1788
1789 /* Atomic allocations - we can't balance anything */
1790 if (!wait)
1791 goto nopage;
1792
341ce06f
PZ
1793 /* Avoid recursion of direct reclaim */
1794 if (p->flags & PF_MEMALLOC)
1795 goto nopage;
1796
6583bb64
DR
1797 /* Avoid allocations with no watermarks from looping endlessly */
1798 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1799 goto nopage;
1800
11e33f6a
MG
1801 /* Try direct reclaim and then allocating */
1802 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1803 zonelist, high_zoneidx,
1804 nodemask,
5117f45d 1805 alloc_flags, preferred_zone,
3dd28266 1806 migratetype, &did_some_progress);
11e33f6a
MG
1807 if (page)
1808 goto got_pg;
1da177e4 1809
e33c3b5e 1810 /*
11e33f6a
MG
1811 * If we failed to make any progress reclaiming, then we are
1812 * running out of options and have to consider going OOM
e33c3b5e 1813 */
11e33f6a
MG
1814 if (!did_some_progress) {
1815 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1816 if (oom_killer_disabled)
1817 goto nopage;
11e33f6a
MG
1818 page = __alloc_pages_may_oom(gfp_mask, order,
1819 zonelist, high_zoneidx,
3dd28266
MG
1820 nodemask, preferred_zone,
1821 migratetype);
11e33f6a
MG
1822 if (page)
1823 goto got_pg;
1da177e4 1824
11e33f6a 1825 /*
82553a93
DR
1826 * The OOM killer does not trigger for high-order
1827 * ~__GFP_NOFAIL allocations so if no progress is being
1828 * made, there are no other options and retrying is
1829 * unlikely to help.
11e33f6a 1830 */
82553a93
DR
1831 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1832 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1833 goto nopage;
e2c55dc8 1834
ff0ceb9d
DR
1835 goto restart;
1836 }
1da177e4
LT
1837 }
1838
11e33f6a 1839 /* Check if we should retry the allocation */
a41f24ea 1840 pages_reclaimed += did_some_progress;
11e33f6a
MG
1841 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1842 /* Wait for some write requests to complete then retry */
8aa7e847 1843 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1844 goto rebalance;
1845 }
1846
1847nopage:
1848 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1849 printk(KERN_WARNING "%s: page allocation failure."
1850 " order:%d, mode:0x%x\n",
1851 p->comm, order, gfp_mask);
1852 dump_stack();
578c2fd6 1853 show_mem();
1da177e4 1854 }
b1eeab67 1855 return page;
1da177e4 1856got_pg:
b1eeab67
VN
1857 if (kmemcheck_enabled)
1858 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1859 return page;
11e33f6a 1860
1da177e4 1861}
11e33f6a
MG
1862
1863/*
1864 * This is the 'heart' of the zoned buddy allocator.
1865 */
1866struct page *
1867__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1868 struct zonelist *zonelist, nodemask_t *nodemask)
1869{
1870 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1871 struct zone *preferred_zone;
11e33f6a 1872 struct page *page;
3dd28266 1873 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1874
dcce284a
BH
1875 gfp_mask &= gfp_allowed_mask;
1876
11e33f6a
MG
1877 lockdep_trace_alloc(gfp_mask);
1878
1879 might_sleep_if(gfp_mask & __GFP_WAIT);
1880
1881 if (should_fail_alloc_page(gfp_mask, order))
1882 return NULL;
1883
1884 /*
1885 * Check the zones suitable for the gfp_mask contain at least one
1886 * valid zone. It's possible to have an empty zonelist as a result
1887 * of GFP_THISNODE and a memoryless node
1888 */
1889 if (unlikely(!zonelist->_zonerefs->zone))
1890 return NULL;
1891
5117f45d
MG
1892 /* The preferred zone is used for statistics later */
1893 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1894 if (!preferred_zone)
1895 return NULL;
1896
1897 /* First allocation attempt */
11e33f6a 1898 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1899 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1900 preferred_zone, migratetype);
11e33f6a
MG
1901 if (unlikely(!page))
1902 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1903 zonelist, high_zoneidx, nodemask,
3dd28266 1904 preferred_zone, migratetype);
11e33f6a
MG
1905
1906 return page;
1da177e4 1907}
d239171e 1908EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1909
1910/*
1911 * Common helper functions.
1912 */
920c7a5d 1913unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1914{
1915 struct page * page;
1916 page = alloc_pages(gfp_mask, order);
1917 if (!page)
1918 return 0;
1919 return (unsigned long) page_address(page);
1920}
1921
1922EXPORT_SYMBOL(__get_free_pages);
1923
920c7a5d 1924unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1925{
1926 struct page * page;
1927
1928 /*
1929 * get_zeroed_page() returns a 32-bit address, which cannot represent
1930 * a highmem page
1931 */
725d704e 1932 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1933
1934 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1935 if (page)
1936 return (unsigned long) page_address(page);
1937 return 0;
1938}
1939
1940EXPORT_SYMBOL(get_zeroed_page);
1941
1942void __pagevec_free(struct pagevec *pvec)
1943{
1944 int i = pagevec_count(pvec);
1945
1946 while (--i >= 0)
1947 free_hot_cold_page(pvec->pages[i], pvec->cold);
1948}
1949
920c7a5d 1950void __free_pages(struct page *page, unsigned int order)
1da177e4 1951{
b5810039 1952 if (put_page_testzero(page)) {
1da177e4
LT
1953 if (order == 0)
1954 free_hot_page(page);
1955 else
1956 __free_pages_ok(page, order);
1957 }
1958}
1959
1960EXPORT_SYMBOL(__free_pages);
1961
920c7a5d 1962void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1963{
1964 if (addr != 0) {
725d704e 1965 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1966 __free_pages(virt_to_page((void *)addr), order);
1967 }
1968}
1969
1970EXPORT_SYMBOL(free_pages);
1971
2be0ffe2
TT
1972/**
1973 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1974 * @size: the number of bytes to allocate
1975 * @gfp_mask: GFP flags for the allocation
1976 *
1977 * This function is similar to alloc_pages(), except that it allocates the
1978 * minimum number of pages to satisfy the request. alloc_pages() can only
1979 * allocate memory in power-of-two pages.
1980 *
1981 * This function is also limited by MAX_ORDER.
1982 *
1983 * Memory allocated by this function must be released by free_pages_exact().
1984 */
1985void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1986{
1987 unsigned int order = get_order(size);
1988 unsigned long addr;
1989
1990 addr = __get_free_pages(gfp_mask, order);
1991 if (addr) {
1992 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1993 unsigned long used = addr + PAGE_ALIGN(size);
1994
5bfd7560 1995 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
1996 while (used < alloc_end) {
1997 free_page(used);
1998 used += PAGE_SIZE;
1999 }
2000 }
2001
2002 return (void *)addr;
2003}
2004EXPORT_SYMBOL(alloc_pages_exact);
2005
2006/**
2007 * free_pages_exact - release memory allocated via alloc_pages_exact()
2008 * @virt: the value returned by alloc_pages_exact.
2009 * @size: size of allocation, same value as passed to alloc_pages_exact().
2010 *
2011 * Release the memory allocated by a previous call to alloc_pages_exact.
2012 */
2013void free_pages_exact(void *virt, size_t size)
2014{
2015 unsigned long addr = (unsigned long)virt;
2016 unsigned long end = addr + PAGE_ALIGN(size);
2017
2018 while (addr < end) {
2019 free_page(addr);
2020 addr += PAGE_SIZE;
2021 }
2022}
2023EXPORT_SYMBOL(free_pages_exact);
2024
1da177e4
LT
2025static unsigned int nr_free_zone_pages(int offset)
2026{
dd1a239f 2027 struct zoneref *z;
54a6eb5c
MG
2028 struct zone *zone;
2029
e310fd43 2030 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2031 unsigned int sum = 0;
2032
0e88460d 2033 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2034
54a6eb5c 2035 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2036 unsigned long size = zone->present_pages;
41858966 2037 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2038 if (size > high)
2039 sum += size - high;
1da177e4
LT
2040 }
2041
2042 return sum;
2043}
2044
2045/*
2046 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2047 */
2048unsigned int nr_free_buffer_pages(void)
2049{
af4ca457 2050 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2051}
c2f1a551 2052EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2053
2054/*
2055 * Amount of free RAM allocatable within all zones
2056 */
2057unsigned int nr_free_pagecache_pages(void)
2058{
2a1e274a 2059 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2060}
08e0f6a9
CL
2061
2062static inline void show_node(struct zone *zone)
1da177e4 2063{
08e0f6a9 2064 if (NUMA_BUILD)
25ba77c1 2065 printk("Node %d ", zone_to_nid(zone));
1da177e4 2066}
1da177e4 2067
1da177e4
LT
2068void si_meminfo(struct sysinfo *val)
2069{
2070 val->totalram = totalram_pages;
2071 val->sharedram = 0;
d23ad423 2072 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2073 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2074 val->totalhigh = totalhigh_pages;
2075 val->freehigh = nr_free_highpages();
1da177e4
LT
2076 val->mem_unit = PAGE_SIZE;
2077}
2078
2079EXPORT_SYMBOL(si_meminfo);
2080
2081#ifdef CONFIG_NUMA
2082void si_meminfo_node(struct sysinfo *val, int nid)
2083{
2084 pg_data_t *pgdat = NODE_DATA(nid);
2085
2086 val->totalram = pgdat->node_present_pages;
d23ad423 2087 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2088#ifdef CONFIG_HIGHMEM
1da177e4 2089 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2090 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2091 NR_FREE_PAGES);
98d2b0eb
CL
2092#else
2093 val->totalhigh = 0;
2094 val->freehigh = 0;
2095#endif
1da177e4
LT
2096 val->mem_unit = PAGE_SIZE;
2097}
2098#endif
2099
2100#define K(x) ((x) << (PAGE_SHIFT-10))
2101
2102/*
2103 * Show free area list (used inside shift_scroll-lock stuff)
2104 * We also calculate the percentage fragmentation. We do this by counting the
2105 * memory on each free list with the exception of the first item on the list.
2106 */
2107void show_free_areas(void)
2108{
c7241913 2109 int cpu;
1da177e4
LT
2110 struct zone *zone;
2111
ee99c71c 2112 for_each_populated_zone(zone) {
c7241913
JS
2113 show_node(zone);
2114 printk("%s per-cpu:\n", zone->name);
1da177e4 2115
6b482c67 2116 for_each_online_cpu(cpu) {
1da177e4
LT
2117 struct per_cpu_pageset *pageset;
2118
e7c8d5c9 2119 pageset = zone_pcp(zone, cpu);
1da177e4 2120
3dfa5721
CL
2121 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2122 cpu, pageset->pcp.high,
2123 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2124 }
2125 }
2126
7b854121
LS
2127 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2128 " inactive_file:%lu"
7b854121 2129 " unevictable:%lu"
7b854121 2130 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2131 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2132 global_page_state(NR_ACTIVE_ANON),
2133 global_page_state(NR_ACTIVE_FILE),
2134 global_page_state(NR_INACTIVE_ANON),
2135 global_page_state(NR_INACTIVE_FILE),
7b854121 2136 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2137 global_page_state(NR_FILE_DIRTY),
ce866b34 2138 global_page_state(NR_WRITEBACK),
fd39fc85 2139 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2140 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2141 global_page_state(NR_SLAB_RECLAIMABLE) +
2142 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2143 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2144 global_page_state(NR_PAGETABLE),
2145 global_page_state(NR_BOUNCE));
1da177e4 2146
ee99c71c 2147 for_each_populated_zone(zone) {
1da177e4
LT
2148 int i;
2149
2150 show_node(zone);
2151 printk("%s"
2152 " free:%lukB"
2153 " min:%lukB"
2154 " low:%lukB"
2155 " high:%lukB"
4f98a2fe
RR
2156 " active_anon:%lukB"
2157 " inactive_anon:%lukB"
2158 " active_file:%lukB"
2159 " inactive_file:%lukB"
7b854121 2160 " unevictable:%lukB"
1da177e4
LT
2161 " present:%lukB"
2162 " pages_scanned:%lu"
2163 " all_unreclaimable? %s"
2164 "\n",
2165 zone->name,
d23ad423 2166 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2167 K(min_wmark_pages(zone)),
2168 K(low_wmark_pages(zone)),
2169 K(high_wmark_pages(zone)),
4f98a2fe
RR
2170 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2171 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2172 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2173 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2174 K(zone_page_state(zone, NR_UNEVICTABLE)),
1da177e4
LT
2175 K(zone->present_pages),
2176 zone->pages_scanned,
e815af95 2177 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2178 );
2179 printk("lowmem_reserve[]:");
2180 for (i = 0; i < MAX_NR_ZONES; i++)
2181 printk(" %lu", zone->lowmem_reserve[i]);
2182 printk("\n");
2183 }
2184
ee99c71c 2185 for_each_populated_zone(zone) {
8f9de51a 2186 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2187
2188 show_node(zone);
2189 printk("%s: ", zone->name);
1da177e4
LT
2190
2191 spin_lock_irqsave(&zone->lock, flags);
2192 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2193 nr[order] = zone->free_area[order].nr_free;
2194 total += nr[order] << order;
1da177e4
LT
2195 }
2196 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2197 for (order = 0; order < MAX_ORDER; order++)
2198 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2199 printk("= %lukB\n", K(total));
2200 }
2201
e6f3602d
LW
2202 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2203
1da177e4
LT
2204 show_swap_cache_info();
2205}
2206
19770b32
MG
2207static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2208{
2209 zoneref->zone = zone;
2210 zoneref->zone_idx = zone_idx(zone);
2211}
2212
1da177e4
LT
2213/*
2214 * Builds allocation fallback zone lists.
1a93205b
CL
2215 *
2216 * Add all populated zones of a node to the zonelist.
1da177e4 2217 */
f0c0b2b8
KH
2218static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2219 int nr_zones, enum zone_type zone_type)
1da177e4 2220{
1a93205b
CL
2221 struct zone *zone;
2222
98d2b0eb 2223 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2224 zone_type++;
02a68a5e
CL
2225
2226 do {
2f6726e5 2227 zone_type--;
070f8032 2228 zone = pgdat->node_zones + zone_type;
1a93205b 2229 if (populated_zone(zone)) {
dd1a239f
MG
2230 zoneref_set_zone(zone,
2231 &zonelist->_zonerefs[nr_zones++]);
070f8032 2232 check_highest_zone(zone_type);
1da177e4 2233 }
02a68a5e 2234
2f6726e5 2235 } while (zone_type);
070f8032 2236 return nr_zones;
1da177e4
LT
2237}
2238
f0c0b2b8
KH
2239
2240/*
2241 * zonelist_order:
2242 * 0 = automatic detection of better ordering.
2243 * 1 = order by ([node] distance, -zonetype)
2244 * 2 = order by (-zonetype, [node] distance)
2245 *
2246 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2247 * the same zonelist. So only NUMA can configure this param.
2248 */
2249#define ZONELIST_ORDER_DEFAULT 0
2250#define ZONELIST_ORDER_NODE 1
2251#define ZONELIST_ORDER_ZONE 2
2252
2253/* zonelist order in the kernel.
2254 * set_zonelist_order() will set this to NODE or ZONE.
2255 */
2256static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2257static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2258
2259
1da177e4 2260#ifdef CONFIG_NUMA
f0c0b2b8
KH
2261/* The value user specified ....changed by config */
2262static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2263/* string for sysctl */
2264#define NUMA_ZONELIST_ORDER_LEN 16
2265char numa_zonelist_order[16] = "default";
2266
2267/*
2268 * interface for configure zonelist ordering.
2269 * command line option "numa_zonelist_order"
2270 * = "[dD]efault - default, automatic configuration.
2271 * = "[nN]ode - order by node locality, then by zone within node
2272 * = "[zZ]one - order by zone, then by locality within zone
2273 */
2274
2275static int __parse_numa_zonelist_order(char *s)
2276{
2277 if (*s == 'd' || *s == 'D') {
2278 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2279 } else if (*s == 'n' || *s == 'N') {
2280 user_zonelist_order = ZONELIST_ORDER_NODE;
2281 } else if (*s == 'z' || *s == 'Z') {
2282 user_zonelist_order = ZONELIST_ORDER_ZONE;
2283 } else {
2284 printk(KERN_WARNING
2285 "Ignoring invalid numa_zonelist_order value: "
2286 "%s\n", s);
2287 return -EINVAL;
2288 }
2289 return 0;
2290}
2291
2292static __init int setup_numa_zonelist_order(char *s)
2293{
2294 if (s)
2295 return __parse_numa_zonelist_order(s);
2296 return 0;
2297}
2298early_param("numa_zonelist_order", setup_numa_zonelist_order);
2299
2300/*
2301 * sysctl handler for numa_zonelist_order
2302 */
2303int numa_zonelist_order_handler(ctl_table *table, int write,
2304 struct file *file, void __user *buffer, size_t *length,
2305 loff_t *ppos)
2306{
2307 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2308 int ret;
2309
2310 if (write)
2311 strncpy(saved_string, (char*)table->data,
2312 NUMA_ZONELIST_ORDER_LEN);
2313 ret = proc_dostring(table, write, file, buffer, length, ppos);
2314 if (ret)
2315 return ret;
2316 if (write) {
2317 int oldval = user_zonelist_order;
2318 if (__parse_numa_zonelist_order((char*)table->data)) {
2319 /*
2320 * bogus value. restore saved string
2321 */
2322 strncpy((char*)table->data, saved_string,
2323 NUMA_ZONELIST_ORDER_LEN);
2324 user_zonelist_order = oldval;
2325 } else if (oldval != user_zonelist_order)
2326 build_all_zonelists();
2327 }
2328 return 0;
2329}
2330
2331
62bc62a8 2332#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2333static int node_load[MAX_NUMNODES];
2334
1da177e4 2335/**
4dc3b16b 2336 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2337 * @node: node whose fallback list we're appending
2338 * @used_node_mask: nodemask_t of already used nodes
2339 *
2340 * We use a number of factors to determine which is the next node that should
2341 * appear on a given node's fallback list. The node should not have appeared
2342 * already in @node's fallback list, and it should be the next closest node
2343 * according to the distance array (which contains arbitrary distance values
2344 * from each node to each node in the system), and should also prefer nodes
2345 * with no CPUs, since presumably they'll have very little allocation pressure
2346 * on them otherwise.
2347 * It returns -1 if no node is found.
2348 */
f0c0b2b8 2349static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2350{
4cf808eb 2351 int n, val;
1da177e4
LT
2352 int min_val = INT_MAX;
2353 int best_node = -1;
a70f7302 2354 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2355
4cf808eb
LT
2356 /* Use the local node if we haven't already */
2357 if (!node_isset(node, *used_node_mask)) {
2358 node_set(node, *used_node_mask);
2359 return node;
2360 }
1da177e4 2361
37b07e41 2362 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2363
2364 /* Don't want a node to appear more than once */
2365 if (node_isset(n, *used_node_mask))
2366 continue;
2367
1da177e4
LT
2368 /* Use the distance array to find the distance */
2369 val = node_distance(node, n);
2370
4cf808eb
LT
2371 /* Penalize nodes under us ("prefer the next node") */
2372 val += (n < node);
2373
1da177e4 2374 /* Give preference to headless and unused nodes */
a70f7302
RR
2375 tmp = cpumask_of_node(n);
2376 if (!cpumask_empty(tmp))
1da177e4
LT
2377 val += PENALTY_FOR_NODE_WITH_CPUS;
2378
2379 /* Slight preference for less loaded node */
2380 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2381 val += node_load[n];
2382
2383 if (val < min_val) {
2384 min_val = val;
2385 best_node = n;
2386 }
2387 }
2388
2389 if (best_node >= 0)
2390 node_set(best_node, *used_node_mask);
2391
2392 return best_node;
2393}
2394
f0c0b2b8
KH
2395
2396/*
2397 * Build zonelists ordered by node and zones within node.
2398 * This results in maximum locality--normal zone overflows into local
2399 * DMA zone, if any--but risks exhausting DMA zone.
2400 */
2401static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2402{
f0c0b2b8 2403 int j;
1da177e4 2404 struct zonelist *zonelist;
f0c0b2b8 2405
54a6eb5c 2406 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2407 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2408 ;
2409 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2410 MAX_NR_ZONES - 1);
dd1a239f
MG
2411 zonelist->_zonerefs[j].zone = NULL;
2412 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2413}
2414
523b9458
CL
2415/*
2416 * Build gfp_thisnode zonelists
2417 */
2418static void build_thisnode_zonelists(pg_data_t *pgdat)
2419{
523b9458
CL
2420 int j;
2421 struct zonelist *zonelist;
2422
54a6eb5c
MG
2423 zonelist = &pgdat->node_zonelists[1];
2424 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2425 zonelist->_zonerefs[j].zone = NULL;
2426 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2427}
2428
f0c0b2b8
KH
2429/*
2430 * Build zonelists ordered by zone and nodes within zones.
2431 * This results in conserving DMA zone[s] until all Normal memory is
2432 * exhausted, but results in overflowing to remote node while memory
2433 * may still exist in local DMA zone.
2434 */
2435static int node_order[MAX_NUMNODES];
2436
2437static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2438{
f0c0b2b8
KH
2439 int pos, j, node;
2440 int zone_type; /* needs to be signed */
2441 struct zone *z;
2442 struct zonelist *zonelist;
2443
54a6eb5c
MG
2444 zonelist = &pgdat->node_zonelists[0];
2445 pos = 0;
2446 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2447 for (j = 0; j < nr_nodes; j++) {
2448 node = node_order[j];
2449 z = &NODE_DATA(node)->node_zones[zone_type];
2450 if (populated_zone(z)) {
dd1a239f
MG
2451 zoneref_set_zone(z,
2452 &zonelist->_zonerefs[pos++]);
54a6eb5c 2453 check_highest_zone(zone_type);
f0c0b2b8
KH
2454 }
2455 }
f0c0b2b8 2456 }
dd1a239f
MG
2457 zonelist->_zonerefs[pos].zone = NULL;
2458 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2459}
2460
2461static int default_zonelist_order(void)
2462{
2463 int nid, zone_type;
2464 unsigned long low_kmem_size,total_size;
2465 struct zone *z;
2466 int average_size;
2467 /*
2468 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2469 * If they are really small and used heavily, the system can fall
2470 * into OOM very easily.
2471 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2472 */
2473 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2474 low_kmem_size = 0;
2475 total_size = 0;
2476 for_each_online_node(nid) {
2477 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2478 z = &NODE_DATA(nid)->node_zones[zone_type];
2479 if (populated_zone(z)) {
2480 if (zone_type < ZONE_NORMAL)
2481 low_kmem_size += z->present_pages;
2482 total_size += z->present_pages;
2483 }
2484 }
2485 }
2486 if (!low_kmem_size || /* there are no DMA area. */
2487 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2488 return ZONELIST_ORDER_NODE;
2489 /*
2490 * look into each node's config.
2491 * If there is a node whose DMA/DMA32 memory is very big area on
2492 * local memory, NODE_ORDER may be suitable.
2493 */
37b07e41
LS
2494 average_size = total_size /
2495 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2496 for_each_online_node(nid) {
2497 low_kmem_size = 0;
2498 total_size = 0;
2499 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2500 z = &NODE_DATA(nid)->node_zones[zone_type];
2501 if (populated_zone(z)) {
2502 if (zone_type < ZONE_NORMAL)
2503 low_kmem_size += z->present_pages;
2504 total_size += z->present_pages;
2505 }
2506 }
2507 if (low_kmem_size &&
2508 total_size > average_size && /* ignore small node */
2509 low_kmem_size > total_size * 70/100)
2510 return ZONELIST_ORDER_NODE;
2511 }
2512 return ZONELIST_ORDER_ZONE;
2513}
2514
2515static void set_zonelist_order(void)
2516{
2517 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2518 current_zonelist_order = default_zonelist_order();
2519 else
2520 current_zonelist_order = user_zonelist_order;
2521}
2522
2523static void build_zonelists(pg_data_t *pgdat)
2524{
2525 int j, node, load;
2526 enum zone_type i;
1da177e4 2527 nodemask_t used_mask;
f0c0b2b8
KH
2528 int local_node, prev_node;
2529 struct zonelist *zonelist;
2530 int order = current_zonelist_order;
1da177e4
LT
2531
2532 /* initialize zonelists */
523b9458 2533 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2534 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2535 zonelist->_zonerefs[0].zone = NULL;
2536 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2537 }
2538
2539 /* NUMA-aware ordering of nodes */
2540 local_node = pgdat->node_id;
62bc62a8 2541 load = nr_online_nodes;
1da177e4
LT
2542 prev_node = local_node;
2543 nodes_clear(used_mask);
f0c0b2b8
KH
2544
2545 memset(node_load, 0, sizeof(node_load));
2546 memset(node_order, 0, sizeof(node_order));
2547 j = 0;
2548
1da177e4 2549 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2550 int distance = node_distance(local_node, node);
2551
2552 /*
2553 * If another node is sufficiently far away then it is better
2554 * to reclaim pages in a zone before going off node.
2555 */
2556 if (distance > RECLAIM_DISTANCE)
2557 zone_reclaim_mode = 1;
2558
1da177e4
LT
2559 /*
2560 * We don't want to pressure a particular node.
2561 * So adding penalty to the first node in same
2562 * distance group to make it round-robin.
2563 */
9eeff239 2564 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2565 node_load[node] = load;
2566
1da177e4
LT
2567 prev_node = node;
2568 load--;
f0c0b2b8
KH
2569 if (order == ZONELIST_ORDER_NODE)
2570 build_zonelists_in_node_order(pgdat, node);
2571 else
2572 node_order[j++] = node; /* remember order */
2573 }
1da177e4 2574
f0c0b2b8
KH
2575 if (order == ZONELIST_ORDER_ZONE) {
2576 /* calculate node order -- i.e., DMA last! */
2577 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2578 }
523b9458
CL
2579
2580 build_thisnode_zonelists(pgdat);
1da177e4
LT
2581}
2582
9276b1bc 2583/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2584static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2585{
54a6eb5c
MG
2586 struct zonelist *zonelist;
2587 struct zonelist_cache *zlc;
dd1a239f 2588 struct zoneref *z;
9276b1bc 2589
54a6eb5c
MG
2590 zonelist = &pgdat->node_zonelists[0];
2591 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2592 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2593 for (z = zonelist->_zonerefs; z->zone; z++)
2594 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2595}
2596
f0c0b2b8 2597
1da177e4
LT
2598#else /* CONFIG_NUMA */
2599
f0c0b2b8
KH
2600static void set_zonelist_order(void)
2601{
2602 current_zonelist_order = ZONELIST_ORDER_ZONE;
2603}
2604
2605static void build_zonelists(pg_data_t *pgdat)
1da177e4 2606{
19655d34 2607 int node, local_node;
54a6eb5c
MG
2608 enum zone_type j;
2609 struct zonelist *zonelist;
1da177e4
LT
2610
2611 local_node = pgdat->node_id;
1da177e4 2612
54a6eb5c
MG
2613 zonelist = &pgdat->node_zonelists[0];
2614 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2615
54a6eb5c
MG
2616 /*
2617 * Now we build the zonelist so that it contains the zones
2618 * of all the other nodes.
2619 * We don't want to pressure a particular node, so when
2620 * building the zones for node N, we make sure that the
2621 * zones coming right after the local ones are those from
2622 * node N+1 (modulo N)
2623 */
2624 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2625 if (!node_online(node))
2626 continue;
2627 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2628 MAX_NR_ZONES - 1);
1da177e4 2629 }
54a6eb5c
MG
2630 for (node = 0; node < local_node; node++) {
2631 if (!node_online(node))
2632 continue;
2633 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2634 MAX_NR_ZONES - 1);
2635 }
2636
dd1a239f
MG
2637 zonelist->_zonerefs[j].zone = NULL;
2638 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2639}
2640
9276b1bc 2641/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2642static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2643{
54a6eb5c 2644 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2645}
2646
1da177e4
LT
2647#endif /* CONFIG_NUMA */
2648
9b1a4d38 2649/* return values int ....just for stop_machine() */
f0c0b2b8 2650static int __build_all_zonelists(void *dummy)
1da177e4 2651{
6811378e 2652 int nid;
9276b1bc
PJ
2653
2654 for_each_online_node(nid) {
7ea1530a
CL
2655 pg_data_t *pgdat = NODE_DATA(nid);
2656
2657 build_zonelists(pgdat);
2658 build_zonelist_cache(pgdat);
9276b1bc 2659 }
6811378e
YG
2660 return 0;
2661}
2662
f0c0b2b8 2663void build_all_zonelists(void)
6811378e 2664{
f0c0b2b8
KH
2665 set_zonelist_order();
2666
6811378e 2667 if (system_state == SYSTEM_BOOTING) {
423b41d7 2668 __build_all_zonelists(NULL);
68ad8df4 2669 mminit_verify_zonelist();
6811378e
YG
2670 cpuset_init_current_mems_allowed();
2671 } else {
183ff22b 2672 /* we have to stop all cpus to guarantee there is no user
6811378e 2673 of zonelist */
9b1a4d38 2674 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2675 /* cpuset refresh routine should be here */
2676 }
bd1e22b8 2677 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2678 /*
2679 * Disable grouping by mobility if the number of pages in the
2680 * system is too low to allow the mechanism to work. It would be
2681 * more accurate, but expensive to check per-zone. This check is
2682 * made on memory-hotadd so a system can start with mobility
2683 * disabled and enable it later
2684 */
d9c23400 2685 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2686 page_group_by_mobility_disabled = 1;
2687 else
2688 page_group_by_mobility_disabled = 0;
2689
2690 printk("Built %i zonelists in %s order, mobility grouping %s. "
2691 "Total pages: %ld\n",
62bc62a8 2692 nr_online_nodes,
f0c0b2b8 2693 zonelist_order_name[current_zonelist_order],
9ef9acb0 2694 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2695 vm_total_pages);
2696#ifdef CONFIG_NUMA
2697 printk("Policy zone: %s\n", zone_names[policy_zone]);
2698#endif
1da177e4
LT
2699}
2700
2701/*
2702 * Helper functions to size the waitqueue hash table.
2703 * Essentially these want to choose hash table sizes sufficiently
2704 * large so that collisions trying to wait on pages are rare.
2705 * But in fact, the number of active page waitqueues on typical
2706 * systems is ridiculously low, less than 200. So this is even
2707 * conservative, even though it seems large.
2708 *
2709 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2710 * waitqueues, i.e. the size of the waitq table given the number of pages.
2711 */
2712#define PAGES_PER_WAITQUEUE 256
2713
cca448fe 2714#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2715static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2716{
2717 unsigned long size = 1;
2718
2719 pages /= PAGES_PER_WAITQUEUE;
2720
2721 while (size < pages)
2722 size <<= 1;
2723
2724 /*
2725 * Once we have dozens or even hundreds of threads sleeping
2726 * on IO we've got bigger problems than wait queue collision.
2727 * Limit the size of the wait table to a reasonable size.
2728 */
2729 size = min(size, 4096UL);
2730
2731 return max(size, 4UL);
2732}
cca448fe
YG
2733#else
2734/*
2735 * A zone's size might be changed by hot-add, so it is not possible to determine
2736 * a suitable size for its wait_table. So we use the maximum size now.
2737 *
2738 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2739 *
2740 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2741 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2742 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2743 *
2744 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2745 * or more by the traditional way. (See above). It equals:
2746 *
2747 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2748 * ia64(16K page size) : = ( 8G + 4M)byte.
2749 * powerpc (64K page size) : = (32G +16M)byte.
2750 */
2751static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2752{
2753 return 4096UL;
2754}
2755#endif
1da177e4
LT
2756
2757/*
2758 * This is an integer logarithm so that shifts can be used later
2759 * to extract the more random high bits from the multiplicative
2760 * hash function before the remainder is taken.
2761 */
2762static inline unsigned long wait_table_bits(unsigned long size)
2763{
2764 return ffz(~size);
2765}
2766
2767#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2768
56fd56b8 2769/*
d9c23400 2770 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2771 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2772 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2773 * higher will lead to a bigger reserve which will get freed as contiguous
2774 * blocks as reclaim kicks in
2775 */
2776static void setup_zone_migrate_reserve(struct zone *zone)
2777{
2778 unsigned long start_pfn, pfn, end_pfn;
2779 struct page *page;
2780 unsigned long reserve, block_migratetype;
2781
2782 /* Get the start pfn, end pfn and the number of blocks to reserve */
2783 start_pfn = zone->zone_start_pfn;
2784 end_pfn = start_pfn + zone->spanned_pages;
41858966 2785 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2786 pageblock_order;
56fd56b8 2787
d9c23400 2788 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2789 if (!pfn_valid(pfn))
2790 continue;
2791 page = pfn_to_page(pfn);
2792
344c790e
AL
2793 /* Watch out for overlapping nodes */
2794 if (page_to_nid(page) != zone_to_nid(zone))
2795 continue;
2796
56fd56b8
MG
2797 /* Blocks with reserved pages will never free, skip them. */
2798 if (PageReserved(page))
2799 continue;
2800
2801 block_migratetype = get_pageblock_migratetype(page);
2802
2803 /* If this block is reserved, account for it */
2804 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2805 reserve--;
2806 continue;
2807 }
2808
2809 /* Suitable for reserving if this block is movable */
2810 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2811 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2812 move_freepages_block(zone, page, MIGRATE_RESERVE);
2813 reserve--;
2814 continue;
2815 }
2816
2817 /*
2818 * If the reserve is met and this is a previous reserved block,
2819 * take it back
2820 */
2821 if (block_migratetype == MIGRATE_RESERVE) {
2822 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2823 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2824 }
2825 }
2826}
ac0e5b7a 2827
1da177e4
LT
2828/*
2829 * Initially all pages are reserved - free ones are freed
2830 * up by free_all_bootmem() once the early boot process is
2831 * done. Non-atomic initialization, single-pass.
2832 */
c09b4240 2833void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2834 unsigned long start_pfn, enum memmap_context context)
1da177e4 2835{
1da177e4 2836 struct page *page;
29751f69
AW
2837 unsigned long end_pfn = start_pfn + size;
2838 unsigned long pfn;
86051ca5 2839 struct zone *z;
1da177e4 2840
22b31eec
HD
2841 if (highest_memmap_pfn < end_pfn - 1)
2842 highest_memmap_pfn = end_pfn - 1;
2843
86051ca5 2844 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2845 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2846 /*
2847 * There can be holes in boot-time mem_map[]s
2848 * handed to this function. They do not
2849 * exist on hotplugged memory.
2850 */
2851 if (context == MEMMAP_EARLY) {
2852 if (!early_pfn_valid(pfn))
2853 continue;
2854 if (!early_pfn_in_nid(pfn, nid))
2855 continue;
2856 }
d41dee36
AW
2857 page = pfn_to_page(pfn);
2858 set_page_links(page, zone, nid, pfn);
708614e6 2859 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2860 init_page_count(page);
1da177e4
LT
2861 reset_page_mapcount(page);
2862 SetPageReserved(page);
b2a0ac88
MG
2863 /*
2864 * Mark the block movable so that blocks are reserved for
2865 * movable at startup. This will force kernel allocations
2866 * to reserve their blocks rather than leaking throughout
2867 * the address space during boot when many long-lived
56fd56b8
MG
2868 * kernel allocations are made. Later some blocks near
2869 * the start are marked MIGRATE_RESERVE by
2870 * setup_zone_migrate_reserve()
86051ca5
KH
2871 *
2872 * bitmap is created for zone's valid pfn range. but memmap
2873 * can be created for invalid pages (for alignment)
2874 * check here not to call set_pageblock_migratetype() against
2875 * pfn out of zone.
b2a0ac88 2876 */
86051ca5
KH
2877 if ((z->zone_start_pfn <= pfn)
2878 && (pfn < z->zone_start_pfn + z->spanned_pages)
2879 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2880 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2881
1da177e4
LT
2882 INIT_LIST_HEAD(&page->lru);
2883#ifdef WANT_PAGE_VIRTUAL
2884 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2885 if (!is_highmem_idx(zone))
3212c6be 2886 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2887#endif
1da177e4
LT
2888 }
2889}
2890
1e548deb 2891static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2892{
b2a0ac88
MG
2893 int order, t;
2894 for_each_migratetype_order(order, t) {
2895 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2896 zone->free_area[order].nr_free = 0;
2897 }
2898}
2899
2900#ifndef __HAVE_ARCH_MEMMAP_INIT
2901#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2902 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2903#endif
2904
1d6f4e60 2905static int zone_batchsize(struct zone *zone)
e7c8d5c9 2906{
3a6be87f 2907#ifdef CONFIG_MMU
e7c8d5c9
CL
2908 int batch;
2909
2910 /*
2911 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2912 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2913 *
2914 * OK, so we don't know how big the cache is. So guess.
2915 */
2916 batch = zone->present_pages / 1024;
ba56e91c
SR
2917 if (batch * PAGE_SIZE > 512 * 1024)
2918 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2919 batch /= 4; /* We effectively *= 4 below */
2920 if (batch < 1)
2921 batch = 1;
2922
2923 /*
0ceaacc9
NP
2924 * Clamp the batch to a 2^n - 1 value. Having a power
2925 * of 2 value was found to be more likely to have
2926 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2927 *
0ceaacc9
NP
2928 * For example if 2 tasks are alternately allocating
2929 * batches of pages, one task can end up with a lot
2930 * of pages of one half of the possible page colors
2931 * and the other with pages of the other colors.
e7c8d5c9 2932 */
9155203a 2933 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2934
e7c8d5c9 2935 return batch;
3a6be87f
DH
2936
2937#else
2938 /* The deferral and batching of frees should be suppressed under NOMMU
2939 * conditions.
2940 *
2941 * The problem is that NOMMU needs to be able to allocate large chunks
2942 * of contiguous memory as there's no hardware page translation to
2943 * assemble apparent contiguous memory from discontiguous pages.
2944 *
2945 * Queueing large contiguous runs of pages for batching, however,
2946 * causes the pages to actually be freed in smaller chunks. As there
2947 * can be a significant delay between the individual batches being
2948 * recycled, this leads to the once large chunks of space being
2949 * fragmented and becoming unavailable for high-order allocations.
2950 */
2951 return 0;
2952#endif
e7c8d5c9
CL
2953}
2954
b69a7288 2955static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2956{
2957 struct per_cpu_pages *pcp;
2958
1c6fe946
MD
2959 memset(p, 0, sizeof(*p));
2960
3dfa5721 2961 pcp = &p->pcp;
2caaad41 2962 pcp->count = 0;
2caaad41
CL
2963 pcp->high = 6 * batch;
2964 pcp->batch = max(1UL, 1 * batch);
2965 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2966}
2967
8ad4b1fb
RS
2968/*
2969 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2970 * to the value high for the pageset p.
2971 */
2972
2973static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2974 unsigned long high)
2975{
2976 struct per_cpu_pages *pcp;
2977
3dfa5721 2978 pcp = &p->pcp;
8ad4b1fb
RS
2979 pcp->high = high;
2980 pcp->batch = max(1UL, high/4);
2981 if ((high/4) > (PAGE_SHIFT * 8))
2982 pcp->batch = PAGE_SHIFT * 8;
2983}
2984
2985
e7c8d5c9
CL
2986#ifdef CONFIG_NUMA
2987/*
2caaad41
CL
2988 * Boot pageset table. One per cpu which is going to be used for all
2989 * zones and all nodes. The parameters will be set in such a way
2990 * that an item put on a list will immediately be handed over to
2991 * the buddy list. This is safe since pageset manipulation is done
2992 * with interrupts disabled.
2993 *
2994 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2995 *
2996 * The boot_pagesets must be kept even after bootup is complete for
2997 * unused processors and/or zones. They do play a role for bootstrapping
2998 * hotplugged processors.
2999 *
3000 * zoneinfo_show() and maybe other functions do
3001 * not check if the processor is online before following the pageset pointer.
3002 * Other parts of the kernel may not check if the zone is available.
2caaad41 3003 */
88a2a4ac 3004static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3005
3006/*
3007 * Dynamically allocate memory for the
e7c8d5c9
CL
3008 * per cpu pageset array in struct zone.
3009 */
6292d9aa 3010static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3011{
3012 struct zone *zone, *dzone;
37c0708d
CL
3013 int node = cpu_to_node(cpu);
3014
3015 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3016
ee99c71c 3017 for_each_populated_zone(zone) {
23316bc8 3018 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3019 GFP_KERNEL, node);
23316bc8 3020 if (!zone_pcp(zone, cpu))
e7c8d5c9 3021 goto bad;
e7c8d5c9 3022
23316bc8 3023 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3024
3025 if (percpu_pagelist_fraction)
3026 setup_pagelist_highmark(zone_pcp(zone, cpu),
3027 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3028 }
3029
3030 return 0;
3031bad:
3032 for_each_zone(dzone) {
64191688
AM
3033 if (!populated_zone(dzone))
3034 continue;
e7c8d5c9
CL
3035 if (dzone == zone)
3036 break;
23316bc8 3037 kfree(zone_pcp(dzone, cpu));
364df0eb 3038 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3039 }
3040 return -ENOMEM;
3041}
3042
3043static inline void free_zone_pagesets(int cpu)
3044{
e7c8d5c9
CL
3045 struct zone *zone;
3046
3047 for_each_zone(zone) {
3048 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3049
f3ef9ead
DR
3050 /* Free per_cpu_pageset if it is slab allocated */
3051 if (pset != &boot_pageset[cpu])
3052 kfree(pset);
364df0eb 3053 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3054 }
e7c8d5c9
CL
3055}
3056
9c7b216d 3057static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3058 unsigned long action,
3059 void *hcpu)
3060{
3061 int cpu = (long)hcpu;
3062 int ret = NOTIFY_OK;
3063
3064 switch (action) {
ce421c79 3065 case CPU_UP_PREPARE:
8bb78442 3066 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3067 if (process_zones(cpu))
3068 ret = NOTIFY_BAD;
3069 break;
3070 case CPU_UP_CANCELED:
8bb78442 3071 case CPU_UP_CANCELED_FROZEN:
ce421c79 3072 case CPU_DEAD:
8bb78442 3073 case CPU_DEAD_FROZEN:
ce421c79
AW
3074 free_zone_pagesets(cpu);
3075 break;
3076 default:
3077 break;
e7c8d5c9
CL
3078 }
3079 return ret;
3080}
3081
74b85f37 3082static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3083 { &pageset_cpuup_callback, NULL, 0 };
3084
78d9955b 3085void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3086{
3087 int err;
3088
3089 /* Initialize per_cpu_pageset for cpu 0.
3090 * A cpuup callback will do this for every cpu
3091 * as it comes online
3092 */
3093 err = process_zones(smp_processor_id());
3094 BUG_ON(err);
3095 register_cpu_notifier(&pageset_notifier);
3096}
3097
3098#endif
3099
577a32f6 3100static noinline __init_refok
cca448fe 3101int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3102{
3103 int i;
3104 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3105 size_t alloc_size;
ed8ece2e
DH
3106
3107 /*
3108 * The per-page waitqueue mechanism uses hashed waitqueues
3109 * per zone.
3110 */
02b694de
YG
3111 zone->wait_table_hash_nr_entries =
3112 wait_table_hash_nr_entries(zone_size_pages);
3113 zone->wait_table_bits =
3114 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3115 alloc_size = zone->wait_table_hash_nr_entries
3116 * sizeof(wait_queue_head_t);
3117
cd94b9db 3118 if (!slab_is_available()) {
cca448fe
YG
3119 zone->wait_table = (wait_queue_head_t *)
3120 alloc_bootmem_node(pgdat, alloc_size);
3121 } else {
3122 /*
3123 * This case means that a zone whose size was 0 gets new memory
3124 * via memory hot-add.
3125 * But it may be the case that a new node was hot-added. In
3126 * this case vmalloc() will not be able to use this new node's
3127 * memory - this wait_table must be initialized to use this new
3128 * node itself as well.
3129 * To use this new node's memory, further consideration will be
3130 * necessary.
3131 */
8691f3a7 3132 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3133 }
3134 if (!zone->wait_table)
3135 return -ENOMEM;
ed8ece2e 3136
02b694de 3137 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3138 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3139
3140 return 0;
ed8ece2e
DH
3141}
3142
c09b4240 3143static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3144{
3145 int cpu;
3146 unsigned long batch = zone_batchsize(zone);
3147
3148 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3149#ifdef CONFIG_NUMA
3150 /* Early boot. Slab allocator not functional yet */
23316bc8 3151 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3152 setup_pageset(&boot_pageset[cpu],0);
3153#else
3154 setup_pageset(zone_pcp(zone,cpu), batch);
3155#endif
3156 }
f5335c0f
AB
3157 if (zone->present_pages)
3158 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3159 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3160}
3161
718127cc
YG
3162__meminit int init_currently_empty_zone(struct zone *zone,
3163 unsigned long zone_start_pfn,
a2f3aa02
DH
3164 unsigned long size,
3165 enum memmap_context context)
ed8ece2e
DH
3166{
3167 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3168 int ret;
3169 ret = zone_wait_table_init(zone, size);
3170 if (ret)
3171 return ret;
ed8ece2e
DH
3172 pgdat->nr_zones = zone_idx(zone) + 1;
3173
ed8ece2e
DH
3174 zone->zone_start_pfn = zone_start_pfn;
3175
708614e6
MG
3176 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3177 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3178 pgdat->node_id,
3179 (unsigned long)zone_idx(zone),
3180 zone_start_pfn, (zone_start_pfn + size));
3181
1e548deb 3182 zone_init_free_lists(zone);
718127cc
YG
3183
3184 return 0;
ed8ece2e
DH
3185}
3186
c713216d
MG
3187#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3188/*
3189 * Basic iterator support. Return the first range of PFNs for a node
3190 * Note: nid == MAX_NUMNODES returns first region regardless of node
3191 */
a3142c8e 3192static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3193{
3194 int i;
3195
3196 for (i = 0; i < nr_nodemap_entries; i++)
3197 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3198 return i;
3199
3200 return -1;
3201}
3202
3203/*
3204 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3205 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3206 */
a3142c8e 3207static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3208{
3209 for (index = index + 1; index < nr_nodemap_entries; index++)
3210 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3211 return index;
3212
3213 return -1;
3214}
3215
3216#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3217/*
3218 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3219 * Architectures may implement their own version but if add_active_range()
3220 * was used and there are no special requirements, this is a convenient
3221 * alternative
3222 */
f2dbcfa7 3223int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3224{
3225 int i;
3226
3227 for (i = 0; i < nr_nodemap_entries; i++) {
3228 unsigned long start_pfn = early_node_map[i].start_pfn;
3229 unsigned long end_pfn = early_node_map[i].end_pfn;
3230
3231 if (start_pfn <= pfn && pfn < end_pfn)
3232 return early_node_map[i].nid;
3233 }
cc2559bc
KH
3234 /* This is a memory hole */
3235 return -1;
c713216d
MG
3236}
3237#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3238
f2dbcfa7
KH
3239int __meminit early_pfn_to_nid(unsigned long pfn)
3240{
cc2559bc
KH
3241 int nid;
3242
3243 nid = __early_pfn_to_nid(pfn);
3244 if (nid >= 0)
3245 return nid;
3246 /* just returns 0 */
3247 return 0;
f2dbcfa7
KH
3248}
3249
cc2559bc
KH
3250#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3251bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3252{
3253 int nid;
3254
3255 nid = __early_pfn_to_nid(pfn);
3256 if (nid >= 0 && nid != node)
3257 return false;
3258 return true;
3259}
3260#endif
f2dbcfa7 3261
c713216d
MG
3262/* Basic iterator support to walk early_node_map[] */
3263#define for_each_active_range_index_in_nid(i, nid) \
3264 for (i = first_active_region_index_in_nid(nid); i != -1; \
3265 i = next_active_region_index_in_nid(i, nid))
3266
3267/**
3268 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3269 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3270 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3271 *
3272 * If an architecture guarantees that all ranges registered with
3273 * add_active_ranges() contain no holes and may be freed, this
3274 * this function may be used instead of calling free_bootmem() manually.
3275 */
3276void __init free_bootmem_with_active_regions(int nid,
3277 unsigned long max_low_pfn)
3278{
3279 int i;
3280
3281 for_each_active_range_index_in_nid(i, nid) {
3282 unsigned long size_pages = 0;
3283 unsigned long end_pfn = early_node_map[i].end_pfn;
3284
3285 if (early_node_map[i].start_pfn >= max_low_pfn)
3286 continue;
3287
3288 if (end_pfn > max_low_pfn)
3289 end_pfn = max_low_pfn;
3290
3291 size_pages = end_pfn - early_node_map[i].start_pfn;
3292 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3293 PFN_PHYS(early_node_map[i].start_pfn),
3294 size_pages << PAGE_SHIFT);
3295 }
3296}
3297
b5bc6c0e
YL
3298void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3299{
3300 int i;
d52d53b8 3301 int ret;
b5bc6c0e 3302
d52d53b8
YL
3303 for_each_active_range_index_in_nid(i, nid) {
3304 ret = work_fn(early_node_map[i].start_pfn,
3305 early_node_map[i].end_pfn, data);
3306 if (ret)
3307 break;
3308 }
b5bc6c0e 3309}
c713216d
MG
3310/**
3311 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3312 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3313 *
3314 * If an architecture guarantees that all ranges registered with
3315 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3316 * function may be used instead of calling memory_present() manually.
c713216d
MG
3317 */
3318void __init sparse_memory_present_with_active_regions(int nid)
3319{
3320 int i;
3321
3322 for_each_active_range_index_in_nid(i, nid)
3323 memory_present(early_node_map[i].nid,
3324 early_node_map[i].start_pfn,
3325 early_node_map[i].end_pfn);
3326}
3327
3328/**
3329 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3330 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3331 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3332 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3333 *
3334 * It returns the start and end page frame of a node based on information
3335 * provided by an arch calling add_active_range(). If called for a node
3336 * with no available memory, a warning is printed and the start and end
88ca3b94 3337 * PFNs will be 0.
c713216d 3338 */
a3142c8e 3339void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3340 unsigned long *start_pfn, unsigned long *end_pfn)
3341{
3342 int i;
3343 *start_pfn = -1UL;
3344 *end_pfn = 0;
3345
3346 for_each_active_range_index_in_nid(i, nid) {
3347 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3348 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3349 }
3350
633c0666 3351 if (*start_pfn == -1UL)
c713216d 3352 *start_pfn = 0;
c713216d
MG
3353}
3354
2a1e274a
MG
3355/*
3356 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3357 * assumption is made that zones within a node are ordered in monotonic
3358 * increasing memory addresses so that the "highest" populated zone is used
3359 */
b69a7288 3360static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3361{
3362 int zone_index;
3363 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3364 if (zone_index == ZONE_MOVABLE)
3365 continue;
3366
3367 if (arch_zone_highest_possible_pfn[zone_index] >
3368 arch_zone_lowest_possible_pfn[zone_index])
3369 break;
3370 }
3371
3372 VM_BUG_ON(zone_index == -1);
3373 movable_zone = zone_index;
3374}
3375
3376/*
3377 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3378 * because it is sized independant of architecture. Unlike the other zones,
3379 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3380 * in each node depending on the size of each node and how evenly kernelcore
3381 * is distributed. This helper function adjusts the zone ranges
3382 * provided by the architecture for a given node by using the end of the
3383 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3384 * zones within a node are in order of monotonic increases memory addresses
3385 */
b69a7288 3386static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3387 unsigned long zone_type,
3388 unsigned long node_start_pfn,
3389 unsigned long node_end_pfn,
3390 unsigned long *zone_start_pfn,
3391 unsigned long *zone_end_pfn)
3392{
3393 /* Only adjust if ZONE_MOVABLE is on this node */
3394 if (zone_movable_pfn[nid]) {
3395 /* Size ZONE_MOVABLE */
3396 if (zone_type == ZONE_MOVABLE) {
3397 *zone_start_pfn = zone_movable_pfn[nid];
3398 *zone_end_pfn = min(node_end_pfn,
3399 arch_zone_highest_possible_pfn[movable_zone]);
3400
3401 /* Adjust for ZONE_MOVABLE starting within this range */
3402 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3403 *zone_end_pfn > zone_movable_pfn[nid]) {
3404 *zone_end_pfn = zone_movable_pfn[nid];
3405
3406 /* Check if this whole range is within ZONE_MOVABLE */
3407 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3408 *zone_start_pfn = *zone_end_pfn;
3409 }
3410}
3411
c713216d
MG
3412/*
3413 * Return the number of pages a zone spans in a node, including holes
3414 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3415 */
6ea6e688 3416static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3417 unsigned long zone_type,
3418 unsigned long *ignored)
3419{
3420 unsigned long node_start_pfn, node_end_pfn;
3421 unsigned long zone_start_pfn, zone_end_pfn;
3422
3423 /* Get the start and end of the node and zone */
3424 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3425 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3426 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3427 adjust_zone_range_for_zone_movable(nid, zone_type,
3428 node_start_pfn, node_end_pfn,
3429 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3430
3431 /* Check that this node has pages within the zone's required range */
3432 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3433 return 0;
3434
3435 /* Move the zone boundaries inside the node if necessary */
3436 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3437 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3438
3439 /* Return the spanned pages */
3440 return zone_end_pfn - zone_start_pfn;
3441}
3442
3443/*
3444 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3445 * then all holes in the requested range will be accounted for.
c713216d 3446 */
b69a7288 3447static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3448 unsigned long range_start_pfn,
3449 unsigned long range_end_pfn)
3450{
3451 int i = 0;
3452 unsigned long prev_end_pfn = 0, hole_pages = 0;
3453 unsigned long start_pfn;
3454
3455 /* Find the end_pfn of the first active range of pfns in the node */
3456 i = first_active_region_index_in_nid(nid);
3457 if (i == -1)
3458 return 0;
3459
b5445f95
MG
3460 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3461
9c7cd687
MG
3462 /* Account for ranges before physical memory on this node */
3463 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3464 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3465
3466 /* Find all holes for the zone within the node */
3467 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3468
3469 /* No need to continue if prev_end_pfn is outside the zone */
3470 if (prev_end_pfn >= range_end_pfn)
3471 break;
3472
3473 /* Make sure the end of the zone is not within the hole */
3474 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3475 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3476
3477 /* Update the hole size cound and move on */
3478 if (start_pfn > range_start_pfn) {
3479 BUG_ON(prev_end_pfn > start_pfn);
3480 hole_pages += start_pfn - prev_end_pfn;
3481 }
3482 prev_end_pfn = early_node_map[i].end_pfn;
3483 }
3484
9c7cd687
MG
3485 /* Account for ranges past physical memory on this node */
3486 if (range_end_pfn > prev_end_pfn)
0c6cb974 3487 hole_pages += range_end_pfn -
9c7cd687
MG
3488 max(range_start_pfn, prev_end_pfn);
3489
c713216d
MG
3490 return hole_pages;
3491}
3492
3493/**
3494 * absent_pages_in_range - Return number of page frames in holes within a range
3495 * @start_pfn: The start PFN to start searching for holes
3496 * @end_pfn: The end PFN to stop searching for holes
3497 *
88ca3b94 3498 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3499 */
3500unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3501 unsigned long end_pfn)
3502{
3503 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3504}
3505
3506/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3507static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3508 unsigned long zone_type,
3509 unsigned long *ignored)
3510{
9c7cd687
MG
3511 unsigned long node_start_pfn, node_end_pfn;
3512 unsigned long zone_start_pfn, zone_end_pfn;
3513
3514 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3515 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3516 node_start_pfn);
3517 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3518 node_end_pfn);
3519
2a1e274a
MG
3520 adjust_zone_range_for_zone_movable(nid, zone_type,
3521 node_start_pfn, node_end_pfn,
3522 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3523 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3524}
0e0b864e 3525
c713216d 3526#else
6ea6e688 3527static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3528 unsigned long zone_type,
3529 unsigned long *zones_size)
3530{
3531 return zones_size[zone_type];
3532}
3533
6ea6e688 3534static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3535 unsigned long zone_type,
3536 unsigned long *zholes_size)
3537{
3538 if (!zholes_size)
3539 return 0;
3540
3541 return zholes_size[zone_type];
3542}
0e0b864e 3543
c713216d
MG
3544#endif
3545
a3142c8e 3546static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3547 unsigned long *zones_size, unsigned long *zholes_size)
3548{
3549 unsigned long realtotalpages, totalpages = 0;
3550 enum zone_type i;
3551
3552 for (i = 0; i < MAX_NR_ZONES; i++)
3553 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3554 zones_size);
3555 pgdat->node_spanned_pages = totalpages;
3556
3557 realtotalpages = totalpages;
3558 for (i = 0; i < MAX_NR_ZONES; i++)
3559 realtotalpages -=
3560 zone_absent_pages_in_node(pgdat->node_id, i,
3561 zholes_size);
3562 pgdat->node_present_pages = realtotalpages;
3563 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3564 realtotalpages);
3565}
3566
835c134e
MG
3567#ifndef CONFIG_SPARSEMEM
3568/*
3569 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3570 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3571 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3572 * round what is now in bits to nearest long in bits, then return it in
3573 * bytes.
3574 */
3575static unsigned long __init usemap_size(unsigned long zonesize)
3576{
3577 unsigned long usemapsize;
3578
d9c23400
MG
3579 usemapsize = roundup(zonesize, pageblock_nr_pages);
3580 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3581 usemapsize *= NR_PAGEBLOCK_BITS;
3582 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3583
3584 return usemapsize / 8;
3585}
3586
3587static void __init setup_usemap(struct pglist_data *pgdat,
3588 struct zone *zone, unsigned long zonesize)
3589{
3590 unsigned long usemapsize = usemap_size(zonesize);
3591 zone->pageblock_flags = NULL;
58a01a45 3592 if (usemapsize)
835c134e 3593 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3594}
3595#else
3596static void inline setup_usemap(struct pglist_data *pgdat,
3597 struct zone *zone, unsigned long zonesize) {}
3598#endif /* CONFIG_SPARSEMEM */
3599
d9c23400 3600#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3601
3602/* Return a sensible default order for the pageblock size. */
3603static inline int pageblock_default_order(void)
3604{
3605 if (HPAGE_SHIFT > PAGE_SHIFT)
3606 return HUGETLB_PAGE_ORDER;
3607
3608 return MAX_ORDER-1;
3609}
3610
d9c23400
MG
3611/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3612static inline void __init set_pageblock_order(unsigned int order)
3613{
3614 /* Check that pageblock_nr_pages has not already been setup */
3615 if (pageblock_order)
3616 return;
3617
3618 /*
3619 * Assume the largest contiguous order of interest is a huge page.
3620 * This value may be variable depending on boot parameters on IA64
3621 */
3622 pageblock_order = order;
3623}
3624#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3625
ba72cb8c
MG
3626/*
3627 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3628 * and pageblock_default_order() are unused as pageblock_order is set
3629 * at compile-time. See include/linux/pageblock-flags.h for the values of
3630 * pageblock_order based on the kernel config
3631 */
3632static inline int pageblock_default_order(unsigned int order)
3633{
3634 return MAX_ORDER-1;
3635}
d9c23400
MG
3636#define set_pageblock_order(x) do {} while (0)
3637
3638#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3639
1da177e4
LT
3640/*
3641 * Set up the zone data structures:
3642 * - mark all pages reserved
3643 * - mark all memory queues empty
3644 * - clear the memory bitmaps
3645 */
b5a0e011 3646static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3647 unsigned long *zones_size, unsigned long *zholes_size)
3648{
2f1b6248 3649 enum zone_type j;
ed8ece2e 3650 int nid = pgdat->node_id;
1da177e4 3651 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3652 int ret;
1da177e4 3653
208d54e5 3654 pgdat_resize_init(pgdat);
1da177e4
LT
3655 pgdat->nr_zones = 0;
3656 init_waitqueue_head(&pgdat->kswapd_wait);
3657 pgdat->kswapd_max_order = 0;
52d4b9ac 3658 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3659
3660 for (j = 0; j < MAX_NR_ZONES; j++) {
3661 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3662 unsigned long size, realsize, memmap_pages;
b69408e8 3663 enum lru_list l;
1da177e4 3664
c713216d
MG
3665 size = zone_spanned_pages_in_node(nid, j, zones_size);
3666 realsize = size - zone_absent_pages_in_node(nid, j,
3667 zholes_size);
1da177e4 3668
0e0b864e
MG
3669 /*
3670 * Adjust realsize so that it accounts for how much memory
3671 * is used by this zone for memmap. This affects the watermark
3672 * and per-cpu initialisations
3673 */
f7232154
JW
3674 memmap_pages =
3675 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3676 if (realsize >= memmap_pages) {
3677 realsize -= memmap_pages;
5594c8c8
YL
3678 if (memmap_pages)
3679 printk(KERN_DEBUG
3680 " %s zone: %lu pages used for memmap\n",
3681 zone_names[j], memmap_pages);
0e0b864e
MG
3682 } else
3683 printk(KERN_WARNING
3684 " %s zone: %lu pages exceeds realsize %lu\n",
3685 zone_names[j], memmap_pages, realsize);
3686
6267276f
CL
3687 /* Account for reserved pages */
3688 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3689 realsize -= dma_reserve;
d903ef9f 3690 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3691 zone_names[0], dma_reserve);
0e0b864e
MG
3692 }
3693
98d2b0eb 3694 if (!is_highmem_idx(j))
1da177e4
LT
3695 nr_kernel_pages += realsize;
3696 nr_all_pages += realsize;
3697
3698 zone->spanned_pages = size;
3699 zone->present_pages = realsize;
9614634f 3700#ifdef CONFIG_NUMA
d5f541ed 3701 zone->node = nid;
8417bba4 3702 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3703 / 100;
0ff38490 3704 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3705#endif
1da177e4
LT
3706 zone->name = zone_names[j];
3707 spin_lock_init(&zone->lock);
3708 spin_lock_init(&zone->lru_lock);
bdc8cb98 3709 zone_seqlock_init(zone);
1da177e4 3710 zone->zone_pgdat = pgdat;
1da177e4 3711
3bb1a852 3712 zone->prev_priority = DEF_PRIORITY;
1da177e4 3713
ed8ece2e 3714 zone_pcp_init(zone);
b69408e8
CL
3715 for_each_lru(l) {
3716 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3717 zone->lru[l].nr_saved_scan = 0;
b69408e8 3718 }
6e901571
KM
3719 zone->reclaim_stat.recent_rotated[0] = 0;
3720 zone->reclaim_stat.recent_rotated[1] = 0;
3721 zone->reclaim_stat.recent_scanned[0] = 0;
3722 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3723 zap_zone_vm_stats(zone);
e815af95 3724 zone->flags = 0;
1da177e4
LT
3725 if (!size)
3726 continue;
3727
ba72cb8c 3728 set_pageblock_order(pageblock_default_order());
835c134e 3729 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3730 ret = init_currently_empty_zone(zone, zone_start_pfn,
3731 size, MEMMAP_EARLY);
718127cc 3732 BUG_ON(ret);
76cdd58e 3733 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3734 zone_start_pfn += size;
1da177e4
LT
3735 }
3736}
3737
577a32f6 3738static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3739{
1da177e4
LT
3740 /* Skip empty nodes */
3741 if (!pgdat->node_spanned_pages)
3742 return;
3743
d41dee36 3744#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3745 /* ia64 gets its own node_mem_map, before this, without bootmem */
3746 if (!pgdat->node_mem_map) {
e984bb43 3747 unsigned long size, start, end;
d41dee36
AW
3748 struct page *map;
3749
e984bb43
BP
3750 /*
3751 * The zone's endpoints aren't required to be MAX_ORDER
3752 * aligned but the node_mem_map endpoints must be in order
3753 * for the buddy allocator to function correctly.
3754 */
3755 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3756 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3757 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3758 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3759 map = alloc_remap(pgdat->node_id, size);
3760 if (!map)
3761 map = alloc_bootmem_node(pgdat, size);
e984bb43 3762 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3763 }
12d810c1 3764#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3765 /*
3766 * With no DISCONTIG, the global mem_map is just set as node 0's
3767 */
c713216d 3768 if (pgdat == NODE_DATA(0)) {
1da177e4 3769 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3770#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3771 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3772 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3773#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3774 }
1da177e4 3775#endif
d41dee36 3776#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3777}
3778
9109fb7b
JW
3779void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3780 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3781{
9109fb7b
JW
3782 pg_data_t *pgdat = NODE_DATA(nid);
3783
1da177e4
LT
3784 pgdat->node_id = nid;
3785 pgdat->node_start_pfn = node_start_pfn;
c713216d 3786 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3787
3788 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3789#ifdef CONFIG_FLAT_NODE_MEM_MAP
3790 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3791 nid, (unsigned long)pgdat,
3792 (unsigned long)pgdat->node_mem_map);
3793#endif
1da177e4
LT
3794
3795 free_area_init_core(pgdat, zones_size, zholes_size);
3796}
3797
c713216d 3798#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3799
3800#if MAX_NUMNODES > 1
3801/*
3802 * Figure out the number of possible node ids.
3803 */
3804static void __init setup_nr_node_ids(void)
3805{
3806 unsigned int node;
3807 unsigned int highest = 0;
3808
3809 for_each_node_mask(node, node_possible_map)
3810 highest = node;
3811 nr_node_ids = highest + 1;
3812}
3813#else
3814static inline void setup_nr_node_ids(void)
3815{
3816}
3817#endif
3818
c713216d
MG
3819/**
3820 * add_active_range - Register a range of PFNs backed by physical memory
3821 * @nid: The node ID the range resides on
3822 * @start_pfn: The start PFN of the available physical memory
3823 * @end_pfn: The end PFN of the available physical memory
3824 *
3825 * These ranges are stored in an early_node_map[] and later used by
3826 * free_area_init_nodes() to calculate zone sizes and holes. If the
3827 * range spans a memory hole, it is up to the architecture to ensure
3828 * the memory is not freed by the bootmem allocator. If possible
3829 * the range being registered will be merged with existing ranges.
3830 */
3831void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3832 unsigned long end_pfn)
3833{
3834 int i;
3835
6b74ab97
MG
3836 mminit_dprintk(MMINIT_TRACE, "memory_register",
3837 "Entering add_active_range(%d, %#lx, %#lx) "
3838 "%d entries of %d used\n",
3839 nid, start_pfn, end_pfn,
3840 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3841
2dbb51c4
MG
3842 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3843
c713216d
MG
3844 /* Merge with existing active regions if possible */
3845 for (i = 0; i < nr_nodemap_entries; i++) {
3846 if (early_node_map[i].nid != nid)
3847 continue;
3848
3849 /* Skip if an existing region covers this new one */
3850 if (start_pfn >= early_node_map[i].start_pfn &&
3851 end_pfn <= early_node_map[i].end_pfn)
3852 return;
3853
3854 /* Merge forward if suitable */
3855 if (start_pfn <= early_node_map[i].end_pfn &&
3856 end_pfn > early_node_map[i].end_pfn) {
3857 early_node_map[i].end_pfn = end_pfn;
3858 return;
3859 }
3860
3861 /* Merge backward if suitable */
3862 if (start_pfn < early_node_map[i].end_pfn &&
3863 end_pfn >= early_node_map[i].start_pfn) {
3864 early_node_map[i].start_pfn = start_pfn;
3865 return;
3866 }
3867 }
3868
3869 /* Check that early_node_map is large enough */
3870 if (i >= MAX_ACTIVE_REGIONS) {
3871 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3872 MAX_ACTIVE_REGIONS);
3873 return;
3874 }
3875
3876 early_node_map[i].nid = nid;
3877 early_node_map[i].start_pfn = start_pfn;
3878 early_node_map[i].end_pfn = end_pfn;
3879 nr_nodemap_entries = i + 1;
3880}
3881
3882/**
cc1050ba 3883 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3884 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3885 * @start_pfn: The new PFN of the range
3886 * @end_pfn: The new PFN of the range
c713216d
MG
3887 *
3888 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3889 * The map is kept near the end physical page range that has already been
3890 * registered. This function allows an arch to shrink an existing registered
3891 * range.
c713216d 3892 */
cc1050ba
YL
3893void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3894 unsigned long end_pfn)
c713216d 3895{
cc1a9d86
YL
3896 int i, j;
3897 int removed = 0;
c713216d 3898
cc1050ba
YL
3899 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3900 nid, start_pfn, end_pfn);
3901
c713216d 3902 /* Find the old active region end and shrink */
cc1a9d86 3903 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3904 if (early_node_map[i].start_pfn >= start_pfn &&
3905 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3906 /* clear it */
cc1050ba 3907 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3908 early_node_map[i].end_pfn = 0;
3909 removed = 1;
3910 continue;
3911 }
cc1050ba
YL
3912 if (early_node_map[i].start_pfn < start_pfn &&
3913 early_node_map[i].end_pfn > start_pfn) {
3914 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3915 early_node_map[i].end_pfn = start_pfn;
3916 if (temp_end_pfn > end_pfn)
3917 add_active_range(nid, end_pfn, temp_end_pfn);
3918 continue;
3919 }
3920 if (early_node_map[i].start_pfn >= start_pfn &&
3921 early_node_map[i].end_pfn > end_pfn &&
3922 early_node_map[i].start_pfn < end_pfn) {
3923 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3924 continue;
c713216d 3925 }
cc1a9d86
YL
3926 }
3927
3928 if (!removed)
3929 return;
3930
3931 /* remove the blank ones */
3932 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3933 if (early_node_map[i].nid != nid)
3934 continue;
3935 if (early_node_map[i].end_pfn)
3936 continue;
3937 /* we found it, get rid of it */
3938 for (j = i; j < nr_nodemap_entries - 1; j++)
3939 memcpy(&early_node_map[j], &early_node_map[j+1],
3940 sizeof(early_node_map[j]));
3941 j = nr_nodemap_entries - 1;
3942 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3943 nr_nodemap_entries--;
3944 }
c713216d
MG
3945}
3946
3947/**
3948 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3949 *
c713216d
MG
3950 * During discovery, it may be found that a table like SRAT is invalid
3951 * and an alternative discovery method must be used. This function removes
3952 * all currently registered regions.
3953 */
88ca3b94 3954void __init remove_all_active_ranges(void)
c713216d
MG
3955{
3956 memset(early_node_map, 0, sizeof(early_node_map));
3957 nr_nodemap_entries = 0;
3958}
3959
3960/* Compare two active node_active_regions */
3961static int __init cmp_node_active_region(const void *a, const void *b)
3962{
3963 struct node_active_region *arange = (struct node_active_region *)a;
3964 struct node_active_region *brange = (struct node_active_region *)b;
3965
3966 /* Done this way to avoid overflows */
3967 if (arange->start_pfn > brange->start_pfn)
3968 return 1;
3969 if (arange->start_pfn < brange->start_pfn)
3970 return -1;
3971
3972 return 0;
3973}
3974
3975/* sort the node_map by start_pfn */
3976static void __init sort_node_map(void)
3977{
3978 sort(early_node_map, (size_t)nr_nodemap_entries,
3979 sizeof(struct node_active_region),
3980 cmp_node_active_region, NULL);
3981}
3982
a6af2bc3 3983/* Find the lowest pfn for a node */
b69a7288 3984static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3985{
3986 int i;
a6af2bc3 3987 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3988
c713216d
MG
3989 /* Assuming a sorted map, the first range found has the starting pfn */
3990 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3991 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3992
a6af2bc3
MG
3993 if (min_pfn == ULONG_MAX) {
3994 printk(KERN_WARNING
2bc0d261 3995 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3996 return 0;
3997 }
3998
3999 return min_pfn;
c713216d
MG
4000}
4001
4002/**
4003 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4004 *
4005 * It returns the minimum PFN based on information provided via
88ca3b94 4006 * add_active_range().
c713216d
MG
4007 */
4008unsigned long __init find_min_pfn_with_active_regions(void)
4009{
4010 return find_min_pfn_for_node(MAX_NUMNODES);
4011}
4012
37b07e41
LS
4013/*
4014 * early_calculate_totalpages()
4015 * Sum pages in active regions for movable zone.
4016 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4017 */
484f51f8 4018static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4019{
4020 int i;
4021 unsigned long totalpages = 0;
4022
37b07e41
LS
4023 for (i = 0; i < nr_nodemap_entries; i++) {
4024 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4025 early_node_map[i].start_pfn;
37b07e41
LS
4026 totalpages += pages;
4027 if (pages)
4028 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4029 }
4030 return totalpages;
7e63efef
MG
4031}
4032
2a1e274a
MG
4033/*
4034 * Find the PFN the Movable zone begins in each node. Kernel memory
4035 * is spread evenly between nodes as long as the nodes have enough
4036 * memory. When they don't, some nodes will have more kernelcore than
4037 * others
4038 */
b69a7288 4039static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4040{
4041 int i, nid;
4042 unsigned long usable_startpfn;
4043 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4044 /* save the state before borrow the nodemask */
4045 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4046 unsigned long totalpages = early_calculate_totalpages();
4047 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4048
7e63efef
MG
4049 /*
4050 * If movablecore was specified, calculate what size of
4051 * kernelcore that corresponds so that memory usable for
4052 * any allocation type is evenly spread. If both kernelcore
4053 * and movablecore are specified, then the value of kernelcore
4054 * will be used for required_kernelcore if it's greater than
4055 * what movablecore would have allowed.
4056 */
4057 if (required_movablecore) {
7e63efef
MG
4058 unsigned long corepages;
4059
4060 /*
4061 * Round-up so that ZONE_MOVABLE is at least as large as what
4062 * was requested by the user
4063 */
4064 required_movablecore =
4065 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4066 corepages = totalpages - required_movablecore;
4067
4068 required_kernelcore = max(required_kernelcore, corepages);
4069 }
4070
2a1e274a
MG
4071 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4072 if (!required_kernelcore)
66918dcd 4073 goto out;
2a1e274a
MG
4074
4075 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4076 find_usable_zone_for_movable();
4077 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4078
4079restart:
4080 /* Spread kernelcore memory as evenly as possible throughout nodes */
4081 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4082 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4083 /*
4084 * Recalculate kernelcore_node if the division per node
4085 * now exceeds what is necessary to satisfy the requested
4086 * amount of memory for the kernel
4087 */
4088 if (required_kernelcore < kernelcore_node)
4089 kernelcore_node = required_kernelcore / usable_nodes;
4090
4091 /*
4092 * As the map is walked, we track how much memory is usable
4093 * by the kernel using kernelcore_remaining. When it is
4094 * 0, the rest of the node is usable by ZONE_MOVABLE
4095 */
4096 kernelcore_remaining = kernelcore_node;
4097
4098 /* Go through each range of PFNs within this node */
4099 for_each_active_range_index_in_nid(i, nid) {
4100 unsigned long start_pfn, end_pfn;
4101 unsigned long size_pages;
4102
4103 start_pfn = max(early_node_map[i].start_pfn,
4104 zone_movable_pfn[nid]);
4105 end_pfn = early_node_map[i].end_pfn;
4106 if (start_pfn >= end_pfn)
4107 continue;
4108
4109 /* Account for what is only usable for kernelcore */
4110 if (start_pfn < usable_startpfn) {
4111 unsigned long kernel_pages;
4112 kernel_pages = min(end_pfn, usable_startpfn)
4113 - start_pfn;
4114
4115 kernelcore_remaining -= min(kernel_pages,
4116 kernelcore_remaining);
4117 required_kernelcore -= min(kernel_pages,
4118 required_kernelcore);
4119
4120 /* Continue if range is now fully accounted */
4121 if (end_pfn <= usable_startpfn) {
4122
4123 /*
4124 * Push zone_movable_pfn to the end so
4125 * that if we have to rebalance
4126 * kernelcore across nodes, we will
4127 * not double account here
4128 */
4129 zone_movable_pfn[nid] = end_pfn;
4130 continue;
4131 }
4132 start_pfn = usable_startpfn;
4133 }
4134
4135 /*
4136 * The usable PFN range for ZONE_MOVABLE is from
4137 * start_pfn->end_pfn. Calculate size_pages as the
4138 * number of pages used as kernelcore
4139 */
4140 size_pages = end_pfn - start_pfn;
4141 if (size_pages > kernelcore_remaining)
4142 size_pages = kernelcore_remaining;
4143 zone_movable_pfn[nid] = start_pfn + size_pages;
4144
4145 /*
4146 * Some kernelcore has been met, update counts and
4147 * break if the kernelcore for this node has been
4148 * satisified
4149 */
4150 required_kernelcore -= min(required_kernelcore,
4151 size_pages);
4152 kernelcore_remaining -= size_pages;
4153 if (!kernelcore_remaining)
4154 break;
4155 }
4156 }
4157
4158 /*
4159 * If there is still required_kernelcore, we do another pass with one
4160 * less node in the count. This will push zone_movable_pfn[nid] further
4161 * along on the nodes that still have memory until kernelcore is
4162 * satisified
4163 */
4164 usable_nodes--;
4165 if (usable_nodes && required_kernelcore > usable_nodes)
4166 goto restart;
4167
4168 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4169 for (nid = 0; nid < MAX_NUMNODES; nid++)
4170 zone_movable_pfn[nid] =
4171 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4172
4173out:
4174 /* restore the node_state */
4175 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4176}
4177
37b07e41
LS
4178/* Any regular memory on that node ? */
4179static void check_for_regular_memory(pg_data_t *pgdat)
4180{
4181#ifdef CONFIG_HIGHMEM
4182 enum zone_type zone_type;
4183
4184 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4185 struct zone *zone = &pgdat->node_zones[zone_type];
4186 if (zone->present_pages)
4187 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4188 }
4189#endif
4190}
4191
c713216d
MG
4192/**
4193 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4194 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4195 *
4196 * This will call free_area_init_node() for each active node in the system.
4197 * Using the page ranges provided by add_active_range(), the size of each
4198 * zone in each node and their holes is calculated. If the maximum PFN
4199 * between two adjacent zones match, it is assumed that the zone is empty.
4200 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4201 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4202 * starts where the previous one ended. For example, ZONE_DMA32 starts
4203 * at arch_max_dma_pfn.
4204 */
4205void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4206{
4207 unsigned long nid;
db99100d 4208 int i;
c713216d 4209
a6af2bc3
MG
4210 /* Sort early_node_map as initialisation assumes it is sorted */
4211 sort_node_map();
4212
c713216d
MG
4213 /* Record where the zone boundaries are */
4214 memset(arch_zone_lowest_possible_pfn, 0,
4215 sizeof(arch_zone_lowest_possible_pfn));
4216 memset(arch_zone_highest_possible_pfn, 0,
4217 sizeof(arch_zone_highest_possible_pfn));
4218 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4219 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4220 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4221 if (i == ZONE_MOVABLE)
4222 continue;
c713216d
MG
4223 arch_zone_lowest_possible_pfn[i] =
4224 arch_zone_highest_possible_pfn[i-1];
4225 arch_zone_highest_possible_pfn[i] =
4226 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4227 }
2a1e274a
MG
4228 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4229 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4230
4231 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4232 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4233 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4234
c713216d
MG
4235 /* Print out the zone ranges */
4236 printk("Zone PFN ranges:\n");
2a1e274a
MG
4237 for (i = 0; i < MAX_NR_ZONES; i++) {
4238 if (i == ZONE_MOVABLE)
4239 continue;
5dab8ec1 4240 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4241 zone_names[i],
4242 arch_zone_lowest_possible_pfn[i],
4243 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4244 }
4245
4246 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4247 printk("Movable zone start PFN for each node\n");
4248 for (i = 0; i < MAX_NUMNODES; i++) {
4249 if (zone_movable_pfn[i])
4250 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4251 }
c713216d
MG
4252
4253 /* Print out the early_node_map[] */
4254 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4255 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4256 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4257 early_node_map[i].start_pfn,
4258 early_node_map[i].end_pfn);
4259
4260 /* Initialise every node */
708614e6 4261 mminit_verify_pageflags_layout();
8ef82866 4262 setup_nr_node_ids();
c713216d
MG
4263 for_each_online_node(nid) {
4264 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4265 free_area_init_node(nid, NULL,
c713216d 4266 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4267
4268 /* Any memory on that node */
4269 if (pgdat->node_present_pages)
4270 node_set_state(nid, N_HIGH_MEMORY);
4271 check_for_regular_memory(pgdat);
c713216d
MG
4272 }
4273}
2a1e274a 4274
7e63efef 4275static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4276{
4277 unsigned long long coremem;
4278 if (!p)
4279 return -EINVAL;
4280
4281 coremem = memparse(p, &p);
7e63efef 4282 *core = coremem >> PAGE_SHIFT;
2a1e274a 4283
7e63efef 4284 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4285 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4286
4287 return 0;
4288}
ed7ed365 4289
7e63efef
MG
4290/*
4291 * kernelcore=size sets the amount of memory for use for allocations that
4292 * cannot be reclaimed or migrated.
4293 */
4294static int __init cmdline_parse_kernelcore(char *p)
4295{
4296 return cmdline_parse_core(p, &required_kernelcore);
4297}
4298
4299/*
4300 * movablecore=size sets the amount of memory for use for allocations that
4301 * can be reclaimed or migrated.
4302 */
4303static int __init cmdline_parse_movablecore(char *p)
4304{
4305 return cmdline_parse_core(p, &required_movablecore);
4306}
4307
ed7ed365 4308early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4309early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4310
c713216d
MG
4311#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4312
0e0b864e 4313/**
88ca3b94
RD
4314 * set_dma_reserve - set the specified number of pages reserved in the first zone
4315 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4316 *
4317 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4318 * In the DMA zone, a significant percentage may be consumed by kernel image
4319 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4320 * function may optionally be used to account for unfreeable pages in the
4321 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4322 * smaller per-cpu batchsize.
0e0b864e
MG
4323 */
4324void __init set_dma_reserve(unsigned long new_dma_reserve)
4325{
4326 dma_reserve = new_dma_reserve;
4327}
4328
93b7504e 4329#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4330struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4331EXPORT_SYMBOL(contig_page_data);
93b7504e 4332#endif
1da177e4
LT
4333
4334void __init free_area_init(unsigned long *zones_size)
4335{
9109fb7b 4336 free_area_init_node(0, zones_size,
1da177e4
LT
4337 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4338}
1da177e4 4339
1da177e4
LT
4340static int page_alloc_cpu_notify(struct notifier_block *self,
4341 unsigned long action, void *hcpu)
4342{
4343 int cpu = (unsigned long)hcpu;
1da177e4 4344
8bb78442 4345 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4346 drain_pages(cpu);
4347
4348 /*
4349 * Spill the event counters of the dead processor
4350 * into the current processors event counters.
4351 * This artificially elevates the count of the current
4352 * processor.
4353 */
f8891e5e 4354 vm_events_fold_cpu(cpu);
9f8f2172
CL
4355
4356 /*
4357 * Zero the differential counters of the dead processor
4358 * so that the vm statistics are consistent.
4359 *
4360 * This is only okay since the processor is dead and cannot
4361 * race with what we are doing.
4362 */
2244b95a 4363 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4364 }
4365 return NOTIFY_OK;
4366}
1da177e4
LT
4367
4368void __init page_alloc_init(void)
4369{
4370 hotcpu_notifier(page_alloc_cpu_notify, 0);
4371}
4372
cb45b0e9
HA
4373/*
4374 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4375 * or min_free_kbytes changes.
4376 */
4377static void calculate_totalreserve_pages(void)
4378{
4379 struct pglist_data *pgdat;
4380 unsigned long reserve_pages = 0;
2f6726e5 4381 enum zone_type i, j;
cb45b0e9
HA
4382
4383 for_each_online_pgdat(pgdat) {
4384 for (i = 0; i < MAX_NR_ZONES; i++) {
4385 struct zone *zone = pgdat->node_zones + i;
4386 unsigned long max = 0;
4387
4388 /* Find valid and maximum lowmem_reserve in the zone */
4389 for (j = i; j < MAX_NR_ZONES; j++) {
4390 if (zone->lowmem_reserve[j] > max)
4391 max = zone->lowmem_reserve[j];
4392 }
4393
41858966
MG
4394 /* we treat the high watermark as reserved pages. */
4395 max += high_wmark_pages(zone);
cb45b0e9
HA
4396
4397 if (max > zone->present_pages)
4398 max = zone->present_pages;
4399 reserve_pages += max;
4400 }
4401 }
4402 totalreserve_pages = reserve_pages;
4403}
4404
1da177e4
LT
4405/*
4406 * setup_per_zone_lowmem_reserve - called whenever
4407 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4408 * has a correct pages reserved value, so an adequate number of
4409 * pages are left in the zone after a successful __alloc_pages().
4410 */
4411static void setup_per_zone_lowmem_reserve(void)
4412{
4413 struct pglist_data *pgdat;
2f6726e5 4414 enum zone_type j, idx;
1da177e4 4415
ec936fc5 4416 for_each_online_pgdat(pgdat) {
1da177e4
LT
4417 for (j = 0; j < MAX_NR_ZONES; j++) {
4418 struct zone *zone = pgdat->node_zones + j;
4419 unsigned long present_pages = zone->present_pages;
4420
4421 zone->lowmem_reserve[j] = 0;
4422
2f6726e5
CL
4423 idx = j;
4424 while (idx) {
1da177e4
LT
4425 struct zone *lower_zone;
4426
2f6726e5
CL
4427 idx--;
4428
1da177e4
LT
4429 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4430 sysctl_lowmem_reserve_ratio[idx] = 1;
4431
4432 lower_zone = pgdat->node_zones + idx;
4433 lower_zone->lowmem_reserve[j] = present_pages /
4434 sysctl_lowmem_reserve_ratio[idx];
4435 present_pages += lower_zone->present_pages;
4436 }
4437 }
4438 }
cb45b0e9
HA
4439
4440 /* update totalreserve_pages */
4441 calculate_totalreserve_pages();
1da177e4
LT
4442}
4443
88ca3b94 4444/**
bc75d33f 4445 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4446 * or when memory is hot-{added|removed}
88ca3b94 4447 *
bc75d33f
MK
4448 * Ensures that the watermark[min,low,high] values for each zone are set
4449 * correctly with respect to min_free_kbytes.
1da177e4 4450 */
bc75d33f 4451void setup_per_zone_wmarks(void)
1da177e4
LT
4452{
4453 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4454 unsigned long lowmem_pages = 0;
4455 struct zone *zone;
4456 unsigned long flags;
4457
4458 /* Calculate total number of !ZONE_HIGHMEM pages */
4459 for_each_zone(zone) {
4460 if (!is_highmem(zone))
4461 lowmem_pages += zone->present_pages;
4462 }
4463
4464 for_each_zone(zone) {
ac924c60
AM
4465 u64 tmp;
4466
1125b4e3 4467 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4468 tmp = (u64)pages_min * zone->present_pages;
4469 do_div(tmp, lowmem_pages);
1da177e4
LT
4470 if (is_highmem(zone)) {
4471 /*
669ed175
NP
4472 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4473 * need highmem pages, so cap pages_min to a small
4474 * value here.
4475 *
41858966 4476 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4477 * deltas controls asynch page reclaim, and so should
4478 * not be capped for highmem.
1da177e4
LT
4479 */
4480 int min_pages;
4481
4482 min_pages = zone->present_pages / 1024;
4483 if (min_pages < SWAP_CLUSTER_MAX)
4484 min_pages = SWAP_CLUSTER_MAX;
4485 if (min_pages > 128)
4486 min_pages = 128;
41858966 4487 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4488 } else {
669ed175
NP
4489 /*
4490 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4491 * proportionate to the zone's size.
4492 */
41858966 4493 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4494 }
4495
41858966
MG
4496 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4497 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4498 setup_zone_migrate_reserve(zone);
1125b4e3 4499 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4500 }
cb45b0e9
HA
4501
4502 /* update totalreserve_pages */
4503 calculate_totalreserve_pages();
1da177e4
LT
4504}
4505
556adecb 4506/**
556adecb
RR
4507 * The inactive anon list should be small enough that the VM never has to
4508 * do too much work, but large enough that each inactive page has a chance
4509 * to be referenced again before it is swapped out.
4510 *
4511 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4512 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4513 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4514 * the anonymous pages are kept on the inactive list.
4515 *
4516 * total target max
4517 * memory ratio inactive anon
4518 * -------------------------------------
4519 * 10MB 1 5MB
4520 * 100MB 1 50MB
4521 * 1GB 3 250MB
4522 * 10GB 10 0.9GB
4523 * 100GB 31 3GB
4524 * 1TB 101 10GB
4525 * 10TB 320 32GB
4526 */
96cb4df5 4527void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4528{
96cb4df5 4529 unsigned int gb, ratio;
556adecb 4530
96cb4df5
MK
4531 /* Zone size in gigabytes */
4532 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4533 if (gb)
556adecb 4534 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4535 else
4536 ratio = 1;
556adecb 4537
96cb4df5
MK
4538 zone->inactive_ratio = ratio;
4539}
556adecb 4540
96cb4df5
MK
4541static void __init setup_per_zone_inactive_ratio(void)
4542{
4543 struct zone *zone;
4544
4545 for_each_zone(zone)
4546 calculate_zone_inactive_ratio(zone);
556adecb
RR
4547}
4548
1da177e4
LT
4549/*
4550 * Initialise min_free_kbytes.
4551 *
4552 * For small machines we want it small (128k min). For large machines
4553 * we want it large (64MB max). But it is not linear, because network
4554 * bandwidth does not increase linearly with machine size. We use
4555 *
4556 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4557 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4558 *
4559 * which yields
4560 *
4561 * 16MB: 512k
4562 * 32MB: 724k
4563 * 64MB: 1024k
4564 * 128MB: 1448k
4565 * 256MB: 2048k
4566 * 512MB: 2896k
4567 * 1024MB: 4096k
4568 * 2048MB: 5792k
4569 * 4096MB: 8192k
4570 * 8192MB: 11584k
4571 * 16384MB: 16384k
4572 */
bc75d33f 4573static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4574{
4575 unsigned long lowmem_kbytes;
4576
4577 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4578
4579 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4580 if (min_free_kbytes < 128)
4581 min_free_kbytes = 128;
4582 if (min_free_kbytes > 65536)
4583 min_free_kbytes = 65536;
bc75d33f 4584 setup_per_zone_wmarks();
1da177e4 4585 setup_per_zone_lowmem_reserve();
556adecb 4586 setup_per_zone_inactive_ratio();
1da177e4
LT
4587 return 0;
4588}
bc75d33f 4589module_init(init_per_zone_wmark_min)
1da177e4
LT
4590
4591/*
4592 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4593 * that we can call two helper functions whenever min_free_kbytes
4594 * changes.
4595 */
4596int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4597 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4598{
4599 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4600 if (write)
bc75d33f 4601 setup_per_zone_wmarks();
1da177e4
LT
4602 return 0;
4603}
4604
9614634f
CL
4605#ifdef CONFIG_NUMA
4606int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4607 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4608{
4609 struct zone *zone;
4610 int rc;
4611
4612 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4613 if (rc)
4614 return rc;
4615
4616 for_each_zone(zone)
8417bba4 4617 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4618 sysctl_min_unmapped_ratio) / 100;
4619 return 0;
4620}
0ff38490
CL
4621
4622int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4623 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4624{
4625 struct zone *zone;
4626 int rc;
4627
4628 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4629 if (rc)
4630 return rc;
4631
4632 for_each_zone(zone)
4633 zone->min_slab_pages = (zone->present_pages *
4634 sysctl_min_slab_ratio) / 100;
4635 return 0;
4636}
9614634f
CL
4637#endif
4638
1da177e4
LT
4639/*
4640 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4641 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4642 * whenever sysctl_lowmem_reserve_ratio changes.
4643 *
4644 * The reserve ratio obviously has absolutely no relation with the
41858966 4645 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4646 * if in function of the boot time zone sizes.
4647 */
4648int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4649 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4650{
4651 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4652 setup_per_zone_lowmem_reserve();
4653 return 0;
4654}
4655
8ad4b1fb
RS
4656/*
4657 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4658 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4659 * can have before it gets flushed back to buddy allocator.
4660 */
4661
4662int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4663 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4664{
4665 struct zone *zone;
4666 unsigned int cpu;
4667 int ret;
4668
4669 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4670 if (!write || (ret == -EINVAL))
4671 return ret;
364df0eb 4672 for_each_populated_zone(zone) {
8ad4b1fb
RS
4673 for_each_online_cpu(cpu) {
4674 unsigned long high;
4675 high = zone->present_pages / percpu_pagelist_fraction;
4676 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4677 }
4678 }
4679 return 0;
4680}
4681
f034b5d4 4682int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4683
4684#ifdef CONFIG_NUMA
4685static int __init set_hashdist(char *str)
4686{
4687 if (!str)
4688 return 0;
4689 hashdist = simple_strtoul(str, &str, 0);
4690 return 1;
4691}
4692__setup("hashdist=", set_hashdist);
4693#endif
4694
4695/*
4696 * allocate a large system hash table from bootmem
4697 * - it is assumed that the hash table must contain an exact power-of-2
4698 * quantity of entries
4699 * - limit is the number of hash buckets, not the total allocation size
4700 */
4701void *__init alloc_large_system_hash(const char *tablename,
4702 unsigned long bucketsize,
4703 unsigned long numentries,
4704 int scale,
4705 int flags,
4706 unsigned int *_hash_shift,
4707 unsigned int *_hash_mask,
4708 unsigned long limit)
4709{
4710 unsigned long long max = limit;
4711 unsigned long log2qty, size;
4712 void *table = NULL;
4713
4714 /* allow the kernel cmdline to have a say */
4715 if (!numentries) {
4716 /* round applicable memory size up to nearest megabyte */
04903664 4717 numentries = nr_kernel_pages;
1da177e4
LT
4718 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4719 numentries >>= 20 - PAGE_SHIFT;
4720 numentries <<= 20 - PAGE_SHIFT;
4721
4722 /* limit to 1 bucket per 2^scale bytes of low memory */
4723 if (scale > PAGE_SHIFT)
4724 numentries >>= (scale - PAGE_SHIFT);
4725 else
4726 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4727
4728 /* Make sure we've got at least a 0-order allocation.. */
4729 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4730 numentries = PAGE_SIZE / bucketsize;
1da177e4 4731 }
6e692ed3 4732 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4733
4734 /* limit allocation size to 1/16 total memory by default */
4735 if (max == 0) {
4736 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4737 do_div(max, bucketsize);
4738 }
4739
4740 if (numentries > max)
4741 numentries = max;
4742
f0d1b0b3 4743 log2qty = ilog2(numentries);
1da177e4
LT
4744
4745 do {
4746 size = bucketsize << log2qty;
4747 if (flags & HASH_EARLY)
74768ed8 4748 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4749 else if (hashdist)
4750 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4751 else {
1037b83b
ED
4752 /*
4753 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4754 * some pages at the end of hash table which
4755 * alloc_pages_exact() automatically does
1037b83b 4756 */
264ef8a9 4757 if (get_order(size) < MAX_ORDER) {
a1dd268c 4758 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4759 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4760 }
1da177e4
LT
4761 }
4762 } while (!table && size > PAGE_SIZE && --log2qty);
4763
4764 if (!table)
4765 panic("Failed to allocate %s hash table\n", tablename);
4766
b49ad484 4767 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4768 tablename,
4769 (1U << log2qty),
f0d1b0b3 4770 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4771 size);
4772
4773 if (_hash_shift)
4774 *_hash_shift = log2qty;
4775 if (_hash_mask)
4776 *_hash_mask = (1 << log2qty) - 1;
4777
4778 return table;
4779}
a117e66e 4780
835c134e
MG
4781/* Return a pointer to the bitmap storing bits affecting a block of pages */
4782static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4783 unsigned long pfn)
4784{
4785#ifdef CONFIG_SPARSEMEM
4786 return __pfn_to_section(pfn)->pageblock_flags;
4787#else
4788 return zone->pageblock_flags;
4789#endif /* CONFIG_SPARSEMEM */
4790}
4791
4792static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4793{
4794#ifdef CONFIG_SPARSEMEM
4795 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4796 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4797#else
4798 pfn = pfn - zone->zone_start_pfn;
d9c23400 4799 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4800#endif /* CONFIG_SPARSEMEM */
4801}
4802
4803/**
d9c23400 4804 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4805 * @page: The page within the block of interest
4806 * @start_bitidx: The first bit of interest to retrieve
4807 * @end_bitidx: The last bit of interest
4808 * returns pageblock_bits flags
4809 */
4810unsigned long get_pageblock_flags_group(struct page *page,
4811 int start_bitidx, int end_bitidx)
4812{
4813 struct zone *zone;
4814 unsigned long *bitmap;
4815 unsigned long pfn, bitidx;
4816 unsigned long flags = 0;
4817 unsigned long value = 1;
4818
4819 zone = page_zone(page);
4820 pfn = page_to_pfn(page);
4821 bitmap = get_pageblock_bitmap(zone, pfn);
4822 bitidx = pfn_to_bitidx(zone, pfn);
4823
4824 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4825 if (test_bit(bitidx + start_bitidx, bitmap))
4826 flags |= value;
6220ec78 4827
835c134e
MG
4828 return flags;
4829}
4830
4831/**
d9c23400 4832 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4833 * @page: The page within the block of interest
4834 * @start_bitidx: The first bit of interest
4835 * @end_bitidx: The last bit of interest
4836 * @flags: The flags to set
4837 */
4838void set_pageblock_flags_group(struct page *page, unsigned long flags,
4839 int start_bitidx, int end_bitidx)
4840{
4841 struct zone *zone;
4842 unsigned long *bitmap;
4843 unsigned long pfn, bitidx;
4844 unsigned long value = 1;
4845
4846 zone = page_zone(page);
4847 pfn = page_to_pfn(page);
4848 bitmap = get_pageblock_bitmap(zone, pfn);
4849 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4850 VM_BUG_ON(pfn < zone->zone_start_pfn);
4851 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4852
4853 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4854 if (flags & value)
4855 __set_bit(bitidx + start_bitidx, bitmap);
4856 else
4857 __clear_bit(bitidx + start_bitidx, bitmap);
4858}
a5d76b54
KH
4859
4860/*
4861 * This is designed as sub function...plz see page_isolation.c also.
4862 * set/clear page block's type to be ISOLATE.
4863 * page allocater never alloc memory from ISOLATE block.
4864 */
4865
4866int set_migratetype_isolate(struct page *page)
4867{
4868 struct zone *zone;
4869 unsigned long flags;
4870 int ret = -EBUSY;
4871
4872 zone = page_zone(page);
4873 spin_lock_irqsave(&zone->lock, flags);
4874 /*
4875 * In future, more migrate types will be able to be isolation target.
4876 */
4877 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4878 goto out;
4879 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4880 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4881 ret = 0;
4882out:
4883 spin_unlock_irqrestore(&zone->lock, flags);
4884 if (!ret)
9f8f2172 4885 drain_all_pages();
a5d76b54
KH
4886 return ret;
4887}
4888
4889void unset_migratetype_isolate(struct page *page)
4890{
4891 struct zone *zone;
4892 unsigned long flags;
4893 zone = page_zone(page);
4894 spin_lock_irqsave(&zone->lock, flags);
4895 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4896 goto out;
4897 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4898 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4899out:
4900 spin_unlock_irqrestore(&zone->lock, flags);
4901}
0c0e6195
KH
4902
4903#ifdef CONFIG_MEMORY_HOTREMOVE
4904/*
4905 * All pages in the range must be isolated before calling this.
4906 */
4907void
4908__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4909{
4910 struct page *page;
4911 struct zone *zone;
4912 int order, i;
4913 unsigned long pfn;
4914 unsigned long flags;
4915 /* find the first valid pfn */
4916 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4917 if (pfn_valid(pfn))
4918 break;
4919 if (pfn == end_pfn)
4920 return;
4921 zone = page_zone(pfn_to_page(pfn));
4922 spin_lock_irqsave(&zone->lock, flags);
4923 pfn = start_pfn;
4924 while (pfn < end_pfn) {
4925 if (!pfn_valid(pfn)) {
4926 pfn++;
4927 continue;
4928 }
4929 page = pfn_to_page(pfn);
4930 BUG_ON(page_count(page));
4931 BUG_ON(!PageBuddy(page));
4932 order = page_order(page);
4933#ifdef CONFIG_DEBUG_VM
4934 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4935 pfn, 1 << order, end_pfn);
4936#endif
4937 list_del(&page->lru);
4938 rmv_page_order(page);
4939 zone->free_area[order].nr_free--;
4940 __mod_zone_page_state(zone, NR_FREE_PAGES,
4941 - (1UL << order));
4942 for (i = 0; i < (1 << order); i++)
4943 SetPageReserved((page+i));
4944 pfn += (1 << order);
4945 }
4946 spin_unlock_irqrestore(&zone->lock, flags);
4947}
4948#endif