mm,writeback: don't use memory reserves for wb_start_writeback
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
2a7684a2
WF
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
22b751c3 527 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
528 return;
529 }
530
d936cf9b
HD
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
ff8e8116 541 pr_alert(
1e9e6365 542 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
ff8e8116 551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 552 current->comm, page_to_pfn(page));
ff8e8116
VB
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
4e462112 558 dump_page_owner(page);
3dc14741 559
4f31888c 560 print_modules();
1da177e4 561 dump_stack();
d936cf9b 562out:
8cc3b392 563 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 564 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
566}
567
1da177e4
LT
568/*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
1d798ca3 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 572 *
1d798ca3
KS
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 575 *
1d798ca3
KS
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
1da177e4 578 *
1d798ca3 579 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 580 * This usage means that zero-order pages may not be compound.
1da177e4 581 */
d98c7a09 582
9a982250 583void free_compound_page(struct page *page)
d98c7a09 584{
d85f3385 585 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
586}
587
d00181b9 588void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
589{
590 int i;
591 int nr_pages = 1 << order;
592
f1e61557 593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
58a84aa9 598 set_page_count(p, 0);
1c290f64 599 p->mapping = TAIL_MAPPING;
1d798ca3 600 set_compound_head(p, page);
18229df5 601 }
53f9263b 602 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
603}
604
c0a32fc5
SG
605#ifdef CONFIG_DEBUG_PAGEALLOC
606unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
607bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 609EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
610bool _debug_guardpage_enabled __read_mostly;
611
031bc574
JK
612static int __init early_debug_pagealloc(char *buf)
613{
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
ea6eabb0
CB
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
031bc574
JK
623 return 0;
624}
625early_param("debug_pagealloc", early_debug_pagealloc);
626
e30825f1
JK
627static bool need_debug_guardpage(void)
628{
031bc574
JK
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
e30825f1
JK
633 return true;
634}
635
636static void init_debug_guardpage(void)
637{
031bc574
JK
638 if (!debug_pagealloc_enabled())
639 return;
640
e30825f1
JK
641 _debug_guardpage_enabled = true;
642}
643
644struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647};
c0a32fc5
SG
648
649static int __init debug_guardpage_minorder_setup(char *buf)
650{
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 654 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
1170532b 658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
659 return 0;
660}
661__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
2847cf95
JK
663static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
c0a32fc5 665{
e30825f1
JK
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
678}
679
2847cf95
JK
680static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
c0a32fc5 682{
e30825f1
JK
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
e30825f1 696struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
697static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13e7444b 718 * (a) the buddy is not in a hole &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
14e07298 733 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 734 return 0;
13e7444b 735
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long page_idx;
6dda9d55 792 unsigned long combined_idx;
43506fad 793 unsigned long uninitialized_var(buddy_idx);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
d9dddbf5 806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 807
309381fe
SL
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 810
d9dddbf5 811continue_merging:
3c605096 812 while (order < max_order - 1) {
43506fad
KC
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
43506fad 828 combined_idx = buddy_idx & page_idx;
1da177e4
LT
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
b7f50cfa 869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
43506fad
KC
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 874 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
4db7548c
MG
944static int free_tail_pages_check(struct page *head_page, struct page *page)
945{
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992}
993
e2769dbd
MG
994static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
4db7548c 996{
e2769dbd 997 int bad = 0;
4db7548c 998
4db7548c
MG
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
e2769dbd
MG
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003 kasan_free_pages(page, order);
1004
1005 /*
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1008 */
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1012
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1014
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
4db7548c
MG
1025 if (PageAnonHead(page))
1026 page->mapping = NULL;
e2769dbd
MG
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
4db7548c 1031
e2769dbd
MG
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
4db7548c
MG
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
e2769dbd 1038 PAGE_SIZE << order);
4db7548c 1039 debug_check_no_obj_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 }
e2769dbd
MG
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
4db7548c 1045
4db7548c
MG
1046 return true;
1047}
1048
e2769dbd
MG
1049#ifdef CONFIG_DEBUG_VM
1050static inline bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, true);
1053}
1054
1055static inline bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return false;
1058}
1059#else
1060static bool free_pcp_prepare(struct page *page)
1061{
1062 return free_pages_prepare(page, 0, false);
1063}
1064
4db7548c
MG
1065static bool bulkfree_pcp_prepare(struct page *page)
1066{
1067 return free_pages_check(page);
1068}
1069#endif /* CONFIG_DEBUG_VM */
1070
1da177e4 1071/*
5f8dcc21 1072 * Frees a number of pages from the PCP lists
1da177e4 1073 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1074 * count is the number of pages to free.
1da177e4
LT
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
5f8dcc21
MG
1082static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1da177e4 1084{
5f8dcc21 1085 int migratetype = 0;
a6f9edd6 1086 int batch_free = 0;
0d5d823a 1087 unsigned long nr_scanned;
3777999d 1088 bool isolated_pageblocks;
5f8dcc21 1089
c54ad30c 1090 spin_lock(&zone->lock);
3777999d 1091 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1095
e5b31ac2 1096 while (count) {
48db57f8 1097 struct page *page;
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
770c8aaa
BZ
1119 int mt; /* migratetype of the to-be-freed page */
1120
a16601c5 1121 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
aa016d14 1124
bb14c2c7 1125 mt = get_pcppage_migratetype(page);
aa016d14
VB
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
3777999d 1129 if (unlikely(isolated_pageblocks))
51bb1a40 1130 mt = get_pageblock_migratetype(page);
51bb1a40 1131
4db7548c
MG
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
dc4b0caf 1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1136 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1137 } while (--count && --batch_free && !list_empty(list));
1da177e4 1138 }
c54ad30c 1139 spin_unlock(&zone->lock);
1da177e4
LT
1140}
1141
dc4b0caf
MG
1142static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
7aeb09f9 1144 unsigned int order,
ed0ae21d 1145 int migratetype)
1da177e4 1146{
0d5d823a 1147 unsigned long nr_scanned;
006d22d9 1148 spin_lock(&zone->lock);
0d5d823a
MG
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1152
ad53f92e
JK
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1156 }
dc4b0caf 1157 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1158 spin_unlock(&zone->lock);
48db57f8
NP
1159}
1160
1e8ce83c
RH
1161static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163{
1e8ce83c 1164 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1e8ce83c 1168
1e8ce83c
RH
1169 INIT_LIST_HEAD(&page->lru);
1170#ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174#endif
1175}
1176
1177static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179{
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181}
1182
7e18adb4
MG
1183#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184static void init_reserved_page(unsigned long pfn)
1185{
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202}
1203#else
1204static inline void init_reserved_page(unsigned long pfn)
1205{
1206}
1207#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
92923ca3
NZ
1209/*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
7e18adb4 1215void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1216{
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
7e18adb4
MG
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1d798ca3
KS
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
7e18adb4
MG
1229 SetPageReserved(page);
1230 }
1231 }
92923ca3
NZ
1232}
1233
ec95f53a
KM
1234static void __free_pages_ok(struct page *page, unsigned int order)
1235{
1236 unsigned long flags;
95e34412 1237 int migratetype;
dc4b0caf 1238 unsigned long pfn = page_to_pfn(page);
ec95f53a 1239
e2769dbd 1240 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1241 return;
1242
cfc47a28 1243 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1244 local_irq_save(flags);
f8891e5e 1245 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1247 local_irq_restore(flags);
1da177e4
LT
1248}
1249
949698a3 1250static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1251{
c3993076 1252 unsigned int nr_pages = 1 << order;
e2d0bd2b 1253 struct page *p = page;
c3993076 1254 unsigned int loop;
a226f6c8 1255
e2d0bd2b
YL
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
c3993076
JW
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
a226f6c8 1261 }
e2d0bd2b
YL
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
c3993076 1264
e2d0bd2b 1265 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
a226f6c8
DH
1268}
1269
75a592a4
MG
1270#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1272
75a592a4
MG
1273static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275int __meminit early_pfn_to_nid(unsigned long pfn)
1276{
7ace9917 1277 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1278 int nid;
1279
7ace9917 1280 spin_lock(&early_pfn_lock);
75a592a4 1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1282 if (nid < 0)
1283 nid = 0;
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
75a592a4
MG
1287}
1288#endif
1289
1290#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293{
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300}
1301
1302/* Only safe to use early in boot when initialisation is single-threaded */
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306}
1307
1308#else
1309
1310static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311{
1312 return true;
1313}
1314static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316{
1317 return true;
1318}
1319#endif
1320
1321
0e1cc95b 1322void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1323 unsigned int order)
1324{
1325 if (early_page_uninitialised(pfn))
1326 return;
949698a3 1327 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1328}
1329
7cf91a98
JK
1330/*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349{
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371}
1372
1373void set_zone_contiguous(struct zone *zone)
1374{
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392}
1393
1394void clear_zone_contiguous(struct zone *zone)
1395{
1396 zone->contiguous = false;
1397}
1398
7e18adb4 1399#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1400static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1401 unsigned long pfn, int nr_pages)
1402{
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1412 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1413 return;
1414 }
1415
949698a3
LZ
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
a4de83dd
MG
1418}
1419
d3cd131d
NS
1420/* Completion tracking for deferred_init_memmap() threads */
1421static atomic_t pgdat_init_n_undone __initdata;
1422static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424static inline void __init pgdat_init_report_one_done(void)
1425{
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428}
0e1cc95b 1429
7e18adb4 1430/* Initialise remaining memory on a node */
0e1cc95b 1431static int __init deferred_init_memmap(void *data)
7e18adb4 1432{
0e1cc95b
MG
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
7e18adb4
MG
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
7e18adb4 1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1443
0e1cc95b 1444 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1445 pgdat_init_report_one_done();
0e1cc95b
MG
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
54608c3f 1467 struct page *page = NULL;
a4de83dd
MG
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
7e18adb4
MG
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
54608c3f 1480 if (!pfn_valid_within(pfn))
a4de83dd 1481 goto free_range;
7e18adb4 1482
54608c3f
MG
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
a4de83dd 1490 goto free_range;
54608c3f
MG
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
a4de83dd
MG
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
54608c3f
MG
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
7e18adb4
MG
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1515 goto free_range;
7e18adb4
MG
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
7e18adb4 1535 }
a4de83dd 1536
7e18adb4
MG
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
0e1cc95b 1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1544 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1545
1546 pgdat_init_report_one_done();
0e1cc95b
MG
1547 return 0;
1548}
7cf91a98 1549#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1550
1551void __init page_alloc_init_late(void)
1552{
7cf91a98
JK
1553 struct zone *zone;
1554
1555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1556 int nid;
1557
d3cd131d
NS
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1560 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
d3cd131d 1565 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
7cf91a98
JK
1569#endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
7e18adb4 1573}
7e18adb4 1574
47118af0 1575#ifdef CONFIG_CMA
9cf510a5 1576/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1577void __init init_cma_reserved_pageblock(struct page *page)
1578{
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
47118af0 1587 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
3dcc0571 1602 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1603}
1604#endif
1da177e4
LT
1605
1606/*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
6d49e352 1618 * -- nyc
1da177e4 1619 */
085cc7d5 1620static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1da177e4
LT
1623{
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
309381fe 1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1631
2847cf95 1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1633 debug_guardpage_enabled() &&
2847cf95 1634 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
2847cf95 1641 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1642 continue;
1643 }
b2a0ac88 1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1da177e4
LT
1648}
1649
4e611801 1650static void check_new_page_bad(struct page *page)
1da177e4 1651{
4e611801
VB
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
7bfec6f4 1654
53f9263b 1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
fe896d18 1659 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1660 bad_reason = "nonzero _count";
f4c18e6f
NH
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 }
f0b791a3
DH
1665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1666 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1667 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1668 }
9edad6ea
JW
1669#ifdef CONFIG_MEMCG
1670 if (unlikely(page->mem_cgroup))
1671 bad_reason = "page still charged to cgroup";
1672#endif
4e611801
VB
1673 bad_page(page, bad_reason, bad_flags);
1674}
1675
1676/*
1677 * This page is about to be returned from the page allocator
1678 */
1679static inline int check_new_page(struct page *page)
1680{
1681 if (likely(page_expected_state(page,
1682 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1683 return 0;
1684
1685 check_new_page_bad(page);
1686 return 1;
2a7684a2
WF
1687}
1688
1414c7f4
LA
1689static inline bool free_pages_prezeroed(bool poisoned)
1690{
1691 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1692 page_poisoning_enabled() && poisoned;
1693}
1694
479f854a
MG
1695#ifdef CONFIG_DEBUG_VM
1696static bool check_pcp_refill(struct page *page)
1697{
1698 return false;
1699}
1700
1701static bool check_new_pcp(struct page *page)
1702{
1703 return check_new_page(page);
1704}
1705#else
1706static bool check_pcp_refill(struct page *page)
1707{
1708 return check_new_page(page);
1709}
1710static bool check_new_pcp(struct page *page)
1711{
1712 return false;
1713}
1714#endif /* CONFIG_DEBUG_VM */
1715
1716static bool check_new_pages(struct page *page, unsigned int order)
1717{
1718 int i;
1719 for (i = 0; i < (1 << order); i++) {
1720 struct page *p = page + i;
1721
1722 if (unlikely(check_new_page(p)))
1723 return true;
1724 }
1725
1726 return false;
1727}
1728
1729static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1730 unsigned int alloc_flags)
2a7684a2
WF
1731{
1732 int i;
1414c7f4 1733 bool poisoned = true;
2a7684a2
WF
1734
1735 for (i = 0; i < (1 << order); i++) {
1736 struct page *p = page + i;
1414c7f4
LA
1737 if (poisoned)
1738 poisoned &= page_is_poisoned(p);
2a7684a2 1739 }
689bcebf 1740
4c21e2f2 1741 set_page_private(page, 0);
7835e98b 1742 set_page_refcounted(page);
cc102509
NP
1743
1744 arch_alloc_page(page, order);
1da177e4 1745 kernel_map_pages(page, 1 << order, 1);
8823b1db 1746 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1747 kasan_alloc_pages(page, order);
17cf4406 1748
1414c7f4 1749 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1750 for (i = 0; i < (1 << order); i++)
1751 clear_highpage(page + i);
17cf4406
NP
1752
1753 if (order && (gfp_flags & __GFP_COMP))
1754 prep_compound_page(page, order);
1755
48c96a36
JK
1756 set_page_owner(page, order, gfp_flags);
1757
75379191 1758 /*
2f064f34 1759 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1760 * allocate the page. The expectation is that the caller is taking
1761 * steps that will free more memory. The caller should avoid the page
1762 * being used for !PFMEMALLOC purposes.
1763 */
2f064f34
MH
1764 if (alloc_flags & ALLOC_NO_WATERMARKS)
1765 set_page_pfmemalloc(page);
1766 else
1767 clear_page_pfmemalloc(page);
1da177e4
LT
1768}
1769
56fd56b8
MG
1770/*
1771 * Go through the free lists for the given migratetype and remove
1772 * the smallest available page from the freelists
1773 */
728ec980
MG
1774static inline
1775struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1776 int migratetype)
1777{
1778 unsigned int current_order;
b8af2941 1779 struct free_area *area;
56fd56b8
MG
1780 struct page *page;
1781
1782 /* Find a page of the appropriate size in the preferred list */
1783 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1784 area = &(zone->free_area[current_order]);
a16601c5 1785 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1786 struct page, lru);
a16601c5
GT
1787 if (!page)
1788 continue;
56fd56b8
MG
1789 list_del(&page->lru);
1790 rmv_page_order(page);
1791 area->nr_free--;
56fd56b8 1792 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1793 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1794 return page;
1795 }
1796
1797 return NULL;
1798}
1799
1800
b2a0ac88
MG
1801/*
1802 * This array describes the order lists are fallen back to when
1803 * the free lists for the desirable migrate type are depleted
1804 */
47118af0 1805static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1806 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1807 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1808 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1809#ifdef CONFIG_CMA
974a786e 1810 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1811#endif
194159fb 1812#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1813 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1814#endif
b2a0ac88
MG
1815};
1816
dc67647b
JK
1817#ifdef CONFIG_CMA
1818static struct page *__rmqueue_cma_fallback(struct zone *zone,
1819 unsigned int order)
1820{
1821 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1822}
1823#else
1824static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1825 unsigned int order) { return NULL; }
1826#endif
1827
c361be55
MG
1828/*
1829 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1830 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1831 * boundary. If alignment is required, use move_freepages_block()
1832 */
435b405c 1833int move_freepages(struct zone *zone,
b69a7288
AB
1834 struct page *start_page, struct page *end_page,
1835 int migratetype)
c361be55
MG
1836{
1837 struct page *page;
d00181b9 1838 unsigned int order;
d100313f 1839 int pages_moved = 0;
c361be55
MG
1840
1841#ifndef CONFIG_HOLES_IN_ZONE
1842 /*
1843 * page_zone is not safe to call in this context when
1844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1845 * anyway as we check zone boundaries in move_freepages_block().
1846 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1847 * grouping pages by mobility
c361be55 1848 */
97ee4ba7 1849 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1850#endif
1851
1852 for (page = start_page; page <= end_page;) {
344c790e 1853 /* Make sure we are not inadvertently changing nodes */
309381fe 1854 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1855
c361be55
MG
1856 if (!pfn_valid_within(page_to_pfn(page))) {
1857 page++;
1858 continue;
1859 }
1860
1861 if (!PageBuddy(page)) {
1862 page++;
1863 continue;
1864 }
1865
1866 order = page_order(page);
84be48d8
KS
1867 list_move(&page->lru,
1868 &zone->free_area[order].free_list[migratetype]);
c361be55 1869 page += 1 << order;
d100313f 1870 pages_moved += 1 << order;
c361be55
MG
1871 }
1872
d100313f 1873 return pages_moved;
c361be55
MG
1874}
1875
ee6f509c 1876int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1877 int migratetype)
c361be55
MG
1878{
1879 unsigned long start_pfn, end_pfn;
1880 struct page *start_page, *end_page;
1881
1882 start_pfn = page_to_pfn(page);
d9c23400 1883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1884 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1885 end_page = start_page + pageblock_nr_pages - 1;
1886 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1887
1888 /* Do not cross zone boundaries */
108bcc96 1889 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1890 start_page = page;
108bcc96 1891 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1892 return 0;
1893
1894 return move_freepages(zone, start_page, end_page, migratetype);
1895}
1896
2f66a68f
MG
1897static void change_pageblock_range(struct page *pageblock_page,
1898 int start_order, int migratetype)
1899{
1900 int nr_pageblocks = 1 << (start_order - pageblock_order);
1901
1902 while (nr_pageblocks--) {
1903 set_pageblock_migratetype(pageblock_page, migratetype);
1904 pageblock_page += pageblock_nr_pages;
1905 }
1906}
1907
fef903ef 1908/*
9c0415eb
VB
1909 * When we are falling back to another migratetype during allocation, try to
1910 * steal extra free pages from the same pageblocks to satisfy further
1911 * allocations, instead of polluting multiple pageblocks.
1912 *
1913 * If we are stealing a relatively large buddy page, it is likely there will
1914 * be more free pages in the pageblock, so try to steal them all. For
1915 * reclaimable and unmovable allocations, we steal regardless of page size,
1916 * as fragmentation caused by those allocations polluting movable pageblocks
1917 * is worse than movable allocations stealing from unmovable and reclaimable
1918 * pageblocks.
fef903ef 1919 */
4eb7dce6
JK
1920static bool can_steal_fallback(unsigned int order, int start_mt)
1921{
1922 /*
1923 * Leaving this order check is intended, although there is
1924 * relaxed order check in next check. The reason is that
1925 * we can actually steal whole pageblock if this condition met,
1926 * but, below check doesn't guarantee it and that is just heuristic
1927 * so could be changed anytime.
1928 */
1929 if (order >= pageblock_order)
1930 return true;
1931
1932 if (order >= pageblock_order / 2 ||
1933 start_mt == MIGRATE_RECLAIMABLE ||
1934 start_mt == MIGRATE_UNMOVABLE ||
1935 page_group_by_mobility_disabled)
1936 return true;
1937
1938 return false;
1939}
1940
1941/*
1942 * This function implements actual steal behaviour. If order is large enough,
1943 * we can steal whole pageblock. If not, we first move freepages in this
1944 * pageblock and check whether half of pages are moved or not. If half of
1945 * pages are moved, we can change migratetype of pageblock and permanently
1946 * use it's pages as requested migratetype in the future.
1947 */
1948static void steal_suitable_fallback(struct zone *zone, struct page *page,
1949 int start_type)
fef903ef 1950{
d00181b9 1951 unsigned int current_order = page_order(page);
4eb7dce6 1952 int pages;
fef903ef 1953
fef903ef
SB
1954 /* Take ownership for orders >= pageblock_order */
1955 if (current_order >= pageblock_order) {
1956 change_pageblock_range(page, current_order, start_type);
3a1086fb 1957 return;
fef903ef
SB
1958 }
1959
4eb7dce6 1960 pages = move_freepages_block(zone, page, start_type);
fef903ef 1961
4eb7dce6
JK
1962 /* Claim the whole block if over half of it is free */
1963 if (pages >= (1 << (pageblock_order-1)) ||
1964 page_group_by_mobility_disabled)
1965 set_pageblock_migratetype(page, start_type);
1966}
1967
2149cdae
JK
1968/*
1969 * Check whether there is a suitable fallback freepage with requested order.
1970 * If only_stealable is true, this function returns fallback_mt only if
1971 * we can steal other freepages all together. This would help to reduce
1972 * fragmentation due to mixed migratetype pages in one pageblock.
1973 */
1974int find_suitable_fallback(struct free_area *area, unsigned int order,
1975 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1976{
1977 int i;
1978 int fallback_mt;
1979
1980 if (area->nr_free == 0)
1981 return -1;
1982
1983 *can_steal = false;
1984 for (i = 0;; i++) {
1985 fallback_mt = fallbacks[migratetype][i];
974a786e 1986 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1987 break;
1988
1989 if (list_empty(&area->free_list[fallback_mt]))
1990 continue;
fef903ef 1991
4eb7dce6
JK
1992 if (can_steal_fallback(order, migratetype))
1993 *can_steal = true;
1994
2149cdae
JK
1995 if (!only_stealable)
1996 return fallback_mt;
1997
1998 if (*can_steal)
1999 return fallback_mt;
fef903ef 2000 }
4eb7dce6
JK
2001
2002 return -1;
fef903ef
SB
2003}
2004
0aaa29a5
MG
2005/*
2006 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2007 * there are no empty page blocks that contain a page with a suitable order
2008 */
2009static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2010 unsigned int alloc_order)
2011{
2012 int mt;
2013 unsigned long max_managed, flags;
2014
2015 /*
2016 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2017 * Check is race-prone but harmless.
2018 */
2019 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2020 if (zone->nr_reserved_highatomic >= max_managed)
2021 return;
2022
2023 spin_lock_irqsave(&zone->lock, flags);
2024
2025 /* Recheck the nr_reserved_highatomic limit under the lock */
2026 if (zone->nr_reserved_highatomic >= max_managed)
2027 goto out_unlock;
2028
2029 /* Yoink! */
2030 mt = get_pageblock_migratetype(page);
2031 if (mt != MIGRATE_HIGHATOMIC &&
2032 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2033 zone->nr_reserved_highatomic += pageblock_nr_pages;
2034 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2035 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2036 }
2037
2038out_unlock:
2039 spin_unlock_irqrestore(&zone->lock, flags);
2040}
2041
2042/*
2043 * Used when an allocation is about to fail under memory pressure. This
2044 * potentially hurts the reliability of high-order allocations when under
2045 * intense memory pressure but failed atomic allocations should be easier
2046 * to recover from than an OOM.
2047 */
2048static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2049{
2050 struct zonelist *zonelist = ac->zonelist;
2051 unsigned long flags;
2052 struct zoneref *z;
2053 struct zone *zone;
2054 struct page *page;
2055 int order;
2056
2057 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2058 ac->nodemask) {
2059 /* Preserve at least one pageblock */
2060 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2061 continue;
2062
2063 spin_lock_irqsave(&zone->lock, flags);
2064 for (order = 0; order < MAX_ORDER; order++) {
2065 struct free_area *area = &(zone->free_area[order]);
2066
a16601c5
GT
2067 page = list_first_entry_or_null(
2068 &area->free_list[MIGRATE_HIGHATOMIC],
2069 struct page, lru);
2070 if (!page)
0aaa29a5
MG
2071 continue;
2072
0aaa29a5
MG
2073 /*
2074 * It should never happen but changes to locking could
2075 * inadvertently allow a per-cpu drain to add pages
2076 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2077 * and watch for underflows.
2078 */
2079 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2080 zone->nr_reserved_highatomic);
2081
2082 /*
2083 * Convert to ac->migratetype and avoid the normal
2084 * pageblock stealing heuristics. Minimally, the caller
2085 * is doing the work and needs the pages. More
2086 * importantly, if the block was always converted to
2087 * MIGRATE_UNMOVABLE or another type then the number
2088 * of pageblocks that cannot be completely freed
2089 * may increase.
2090 */
2091 set_pageblock_migratetype(page, ac->migratetype);
2092 move_freepages_block(zone, page, ac->migratetype);
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 return;
2095 }
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 }
2098}
2099
b2a0ac88 2100/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2101static inline struct page *
7aeb09f9 2102__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2103{
b8af2941 2104 struct free_area *area;
7aeb09f9 2105 unsigned int current_order;
b2a0ac88 2106 struct page *page;
4eb7dce6
JK
2107 int fallback_mt;
2108 bool can_steal;
b2a0ac88
MG
2109
2110 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2111 for (current_order = MAX_ORDER-1;
2112 current_order >= order && current_order <= MAX_ORDER-1;
2113 --current_order) {
4eb7dce6
JK
2114 area = &(zone->free_area[current_order]);
2115 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2116 start_migratetype, false, &can_steal);
4eb7dce6
JK
2117 if (fallback_mt == -1)
2118 continue;
b2a0ac88 2119
a16601c5 2120 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2121 struct page, lru);
2122 if (can_steal)
2123 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2124
4eb7dce6
JK
2125 /* Remove the page from the freelists */
2126 area->nr_free--;
2127 list_del(&page->lru);
2128 rmv_page_order(page);
3a1086fb 2129
4eb7dce6
JK
2130 expand(zone, page, order, current_order, area,
2131 start_migratetype);
2132 /*
bb14c2c7 2133 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2134 * migratetype depending on the decisions in
bb14c2c7
VB
2135 * find_suitable_fallback(). This is OK as long as it does not
2136 * differ for MIGRATE_CMA pageblocks. Those can be used as
2137 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2138 */
bb14c2c7 2139 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2140
4eb7dce6
JK
2141 trace_mm_page_alloc_extfrag(page, order, current_order,
2142 start_migratetype, fallback_mt);
e0fff1bd 2143
4eb7dce6 2144 return page;
b2a0ac88
MG
2145 }
2146
728ec980 2147 return NULL;
b2a0ac88
MG
2148}
2149
56fd56b8 2150/*
1da177e4
LT
2151 * Do the hard work of removing an element from the buddy allocator.
2152 * Call me with the zone->lock already held.
2153 */
b2a0ac88 2154static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2155 int migratetype)
1da177e4 2156{
1da177e4
LT
2157 struct page *page;
2158
56fd56b8 2159 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2160 if (unlikely(!page)) {
dc67647b
JK
2161 if (migratetype == MIGRATE_MOVABLE)
2162 page = __rmqueue_cma_fallback(zone, order);
2163
2164 if (!page)
2165 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2166 }
2167
0d3d062a 2168 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2169 return page;
1da177e4
LT
2170}
2171
5f63b720 2172/*
1da177e4
LT
2173 * Obtain a specified number of elements from the buddy allocator, all under
2174 * a single hold of the lock, for efficiency. Add them to the supplied list.
2175 * Returns the number of new pages which were placed at *list.
2176 */
5f63b720 2177static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2178 unsigned long count, struct list_head *list,
b745bc85 2179 int migratetype, bool cold)
1da177e4 2180{
5bcc9f86 2181 int i;
5f63b720 2182
c54ad30c 2183 spin_lock(&zone->lock);
1da177e4 2184 for (i = 0; i < count; ++i) {
6ac0206b 2185 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2186 if (unlikely(page == NULL))
1da177e4 2187 break;
81eabcbe 2188
479f854a
MG
2189 if (unlikely(check_pcp_refill(page)))
2190 continue;
2191
81eabcbe
MG
2192 /*
2193 * Split buddy pages returned by expand() are received here
2194 * in physical page order. The page is added to the callers and
2195 * list and the list head then moves forward. From the callers
2196 * perspective, the linked list is ordered by page number in
2197 * some conditions. This is useful for IO devices that can
2198 * merge IO requests if the physical pages are ordered
2199 * properly.
2200 */
b745bc85 2201 if (likely(!cold))
e084b2d9
MG
2202 list_add(&page->lru, list);
2203 else
2204 list_add_tail(&page->lru, list);
81eabcbe 2205 list = &page->lru;
bb14c2c7 2206 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2208 -(1 << order));
1da177e4 2209 }
f2260e6b 2210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2211 spin_unlock(&zone->lock);
085cc7d5 2212 return i;
1da177e4
LT
2213}
2214
4ae7c039 2215#ifdef CONFIG_NUMA
8fce4d8e 2216/*
4037d452
CL
2217 * Called from the vmstat counter updater to drain pagesets of this
2218 * currently executing processor on remote nodes after they have
2219 * expired.
2220 *
879336c3
CL
2221 * Note that this function must be called with the thread pinned to
2222 * a single processor.
8fce4d8e 2223 */
4037d452 2224void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2225{
4ae7c039 2226 unsigned long flags;
7be12fc9 2227 int to_drain, batch;
4ae7c039 2228
4037d452 2229 local_irq_save(flags);
4db0c3c2 2230 batch = READ_ONCE(pcp->batch);
7be12fc9 2231 to_drain = min(pcp->count, batch);
2a13515c
KM
2232 if (to_drain > 0) {
2233 free_pcppages_bulk(zone, to_drain, pcp);
2234 pcp->count -= to_drain;
2235 }
4037d452 2236 local_irq_restore(flags);
4ae7c039
CL
2237}
2238#endif
2239
9f8f2172 2240/*
93481ff0 2241 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2242 *
2243 * The processor must either be the current processor and the
2244 * thread pinned to the current processor or a processor that
2245 * is not online.
2246 */
93481ff0 2247static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2248{
c54ad30c 2249 unsigned long flags;
93481ff0
VB
2250 struct per_cpu_pageset *pset;
2251 struct per_cpu_pages *pcp;
1da177e4 2252
93481ff0
VB
2253 local_irq_save(flags);
2254 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2255
93481ff0
VB
2256 pcp = &pset->pcp;
2257 if (pcp->count) {
2258 free_pcppages_bulk(zone, pcp->count, pcp);
2259 pcp->count = 0;
2260 }
2261 local_irq_restore(flags);
2262}
3dfa5721 2263
93481ff0
VB
2264/*
2265 * Drain pcplists of all zones on the indicated processor.
2266 *
2267 * The processor must either be the current processor and the
2268 * thread pinned to the current processor or a processor that
2269 * is not online.
2270 */
2271static void drain_pages(unsigned int cpu)
2272{
2273 struct zone *zone;
2274
2275 for_each_populated_zone(zone) {
2276 drain_pages_zone(cpu, zone);
1da177e4
LT
2277 }
2278}
1da177e4 2279
9f8f2172
CL
2280/*
2281 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2282 *
2283 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2284 * the single zone's pages.
9f8f2172 2285 */
93481ff0 2286void drain_local_pages(struct zone *zone)
9f8f2172 2287{
93481ff0
VB
2288 int cpu = smp_processor_id();
2289
2290 if (zone)
2291 drain_pages_zone(cpu, zone);
2292 else
2293 drain_pages(cpu);
9f8f2172
CL
2294}
2295
2296/*
74046494
GBY
2297 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2298 *
93481ff0
VB
2299 * When zone parameter is non-NULL, spill just the single zone's pages.
2300 *
74046494
GBY
2301 * Note that this code is protected against sending an IPI to an offline
2302 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2303 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2304 * nothing keeps CPUs from showing up after we populated the cpumask and
2305 * before the call to on_each_cpu_mask().
9f8f2172 2306 */
93481ff0 2307void drain_all_pages(struct zone *zone)
9f8f2172 2308{
74046494 2309 int cpu;
74046494
GBY
2310
2311 /*
2312 * Allocate in the BSS so we wont require allocation in
2313 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2314 */
2315 static cpumask_t cpus_with_pcps;
2316
2317 /*
2318 * We don't care about racing with CPU hotplug event
2319 * as offline notification will cause the notified
2320 * cpu to drain that CPU pcps and on_each_cpu_mask
2321 * disables preemption as part of its processing
2322 */
2323 for_each_online_cpu(cpu) {
93481ff0
VB
2324 struct per_cpu_pageset *pcp;
2325 struct zone *z;
74046494 2326 bool has_pcps = false;
93481ff0
VB
2327
2328 if (zone) {
74046494 2329 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2330 if (pcp->pcp.count)
74046494 2331 has_pcps = true;
93481ff0
VB
2332 } else {
2333 for_each_populated_zone(z) {
2334 pcp = per_cpu_ptr(z->pageset, cpu);
2335 if (pcp->pcp.count) {
2336 has_pcps = true;
2337 break;
2338 }
74046494
GBY
2339 }
2340 }
93481ff0 2341
74046494
GBY
2342 if (has_pcps)
2343 cpumask_set_cpu(cpu, &cpus_with_pcps);
2344 else
2345 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2346 }
93481ff0
VB
2347 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2348 zone, 1);
9f8f2172
CL
2349}
2350
296699de 2351#ifdef CONFIG_HIBERNATION
1da177e4
LT
2352
2353void mark_free_pages(struct zone *zone)
2354{
f623f0db
RW
2355 unsigned long pfn, max_zone_pfn;
2356 unsigned long flags;
7aeb09f9 2357 unsigned int order, t;
86760a2c 2358 struct page *page;
1da177e4 2359
8080fc03 2360 if (zone_is_empty(zone))
1da177e4
LT
2361 return;
2362
2363 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2364
108bcc96 2365 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2366 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2367 if (pfn_valid(pfn)) {
86760a2c 2368 page = pfn_to_page(pfn);
ba6b0979
JK
2369
2370 if (page_zone(page) != zone)
2371 continue;
2372
7be98234
RW
2373 if (!swsusp_page_is_forbidden(page))
2374 swsusp_unset_page_free(page);
f623f0db 2375 }
1da177e4 2376
b2a0ac88 2377 for_each_migratetype_order(order, t) {
86760a2c
GT
2378 list_for_each_entry(page,
2379 &zone->free_area[order].free_list[t], lru) {
f623f0db 2380 unsigned long i;
1da177e4 2381
86760a2c 2382 pfn = page_to_pfn(page);
f623f0db 2383 for (i = 0; i < (1UL << order); i++)
7be98234 2384 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2385 }
b2a0ac88 2386 }
1da177e4
LT
2387 spin_unlock_irqrestore(&zone->lock, flags);
2388}
e2c55dc8 2389#endif /* CONFIG_PM */
1da177e4 2390
1da177e4
LT
2391/*
2392 * Free a 0-order page
b745bc85 2393 * cold == true ? free a cold page : free a hot page
1da177e4 2394 */
b745bc85 2395void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2396{
2397 struct zone *zone = page_zone(page);
2398 struct per_cpu_pages *pcp;
2399 unsigned long flags;
dc4b0caf 2400 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2401 int migratetype;
1da177e4 2402
4db7548c 2403 if (!free_pcp_prepare(page))
689bcebf
HD
2404 return;
2405
dc4b0caf 2406 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2407 set_pcppage_migratetype(page, migratetype);
1da177e4 2408 local_irq_save(flags);
f8891e5e 2409 __count_vm_event(PGFREE);
da456f14 2410
5f8dcc21
MG
2411 /*
2412 * We only track unmovable, reclaimable and movable on pcp lists.
2413 * Free ISOLATE pages back to the allocator because they are being
2414 * offlined but treat RESERVE as movable pages so we can get those
2415 * areas back if necessary. Otherwise, we may have to free
2416 * excessively into the page allocator
2417 */
2418 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2419 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2420 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2421 goto out;
2422 }
2423 migratetype = MIGRATE_MOVABLE;
2424 }
2425
99dcc3e5 2426 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2427 if (!cold)
5f8dcc21 2428 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2429 else
2430 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2431 pcp->count++;
48db57f8 2432 if (pcp->count >= pcp->high) {
4db0c3c2 2433 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2434 free_pcppages_bulk(zone, batch, pcp);
2435 pcp->count -= batch;
48db57f8 2436 }
5f8dcc21
MG
2437
2438out:
1da177e4 2439 local_irq_restore(flags);
1da177e4
LT
2440}
2441
cc59850e
KK
2442/*
2443 * Free a list of 0-order pages
2444 */
b745bc85 2445void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2446{
2447 struct page *page, *next;
2448
2449 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2450 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2451 free_hot_cold_page(page, cold);
2452 }
2453}
2454
8dfcc9ba
NP
2455/*
2456 * split_page takes a non-compound higher-order page, and splits it into
2457 * n (1<<order) sub-pages: page[0..n]
2458 * Each sub-page must be freed individually.
2459 *
2460 * Note: this is probably too low level an operation for use in drivers.
2461 * Please consult with lkml before using this in your driver.
2462 */
2463void split_page(struct page *page, unsigned int order)
2464{
2465 int i;
e2cfc911 2466 gfp_t gfp_mask;
8dfcc9ba 2467
309381fe
SL
2468 VM_BUG_ON_PAGE(PageCompound(page), page);
2469 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2470
2471#ifdef CONFIG_KMEMCHECK
2472 /*
2473 * Split shadow pages too, because free(page[0]) would
2474 * otherwise free the whole shadow.
2475 */
2476 if (kmemcheck_page_is_tracked(page))
2477 split_page(virt_to_page(page[0].shadow), order);
2478#endif
2479
e2cfc911
JK
2480 gfp_mask = get_page_owner_gfp(page);
2481 set_page_owner(page, 0, gfp_mask);
48c96a36 2482 for (i = 1; i < (1 << order); i++) {
7835e98b 2483 set_page_refcounted(page + i);
e2cfc911 2484 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2485 }
8dfcc9ba 2486}
5853ff23 2487EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2488
3c605096 2489int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2490{
748446bb
MG
2491 unsigned long watermark;
2492 struct zone *zone;
2139cbe6 2493 int mt;
748446bb
MG
2494
2495 BUG_ON(!PageBuddy(page));
2496
2497 zone = page_zone(page);
2e30abd1 2498 mt = get_pageblock_migratetype(page);
748446bb 2499
194159fb 2500 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2501 /* Obey watermarks as if the page was being allocated */
2502 watermark = low_wmark_pages(zone) + (1 << order);
2503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2504 return 0;
2505
8fb74b9f 2506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2507 }
748446bb
MG
2508
2509 /* Remove page from free list */
2510 list_del(&page->lru);
2511 zone->free_area[order].nr_free--;
2512 rmv_page_order(page);
2139cbe6 2513
e2cfc911 2514 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2515
8fb74b9f 2516 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2517 if (order >= pageblock_order - 1) {
2518 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2519 for (; page < endpage; page += pageblock_nr_pages) {
2520 int mt = get_pageblock_migratetype(page);
194159fb 2521 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2522 set_pageblock_migratetype(page,
2523 MIGRATE_MOVABLE);
2524 }
748446bb
MG
2525 }
2526
f3a14ced 2527
8fb74b9f 2528 return 1UL << order;
1fb3f8ca
MG
2529}
2530
2531/*
2532 * Similar to split_page except the page is already free. As this is only
2533 * being used for migration, the migratetype of the block also changes.
2534 * As this is called with interrupts disabled, the caller is responsible
2535 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2536 * are enabled.
2537 *
2538 * Note: this is probably too low level an operation for use in drivers.
2539 * Please consult with lkml before using this in your driver.
2540 */
2541int split_free_page(struct page *page)
2542{
2543 unsigned int order;
2544 int nr_pages;
2545
1fb3f8ca
MG
2546 order = page_order(page);
2547
8fb74b9f 2548 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2549 if (!nr_pages)
2550 return 0;
2551
2552 /* Split into individual pages */
2553 set_page_refcounted(page);
2554 split_page(page, order);
2555 return nr_pages;
748446bb
MG
2556}
2557
060e7417
MG
2558/*
2559 * Update NUMA hit/miss statistics
2560 *
2561 * Must be called with interrupts disabled.
2562 *
2563 * When __GFP_OTHER_NODE is set assume the node of the preferred
2564 * zone is the local node. This is useful for daemons who allocate
2565 * memory on behalf of other processes.
2566 */
2567static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2568 gfp_t flags)
2569{
2570#ifdef CONFIG_NUMA
2571 int local_nid = numa_node_id();
2572 enum zone_stat_item local_stat = NUMA_LOCAL;
2573
2574 if (unlikely(flags & __GFP_OTHER_NODE)) {
2575 local_stat = NUMA_OTHER;
2576 local_nid = preferred_zone->node;
2577 }
2578
2579 if (z->node == local_nid) {
2580 __inc_zone_state(z, NUMA_HIT);
2581 __inc_zone_state(z, local_stat);
2582 } else {
2583 __inc_zone_state(z, NUMA_MISS);
2584 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2585 }
2586#endif
2587}
2588
1da177e4 2589/*
75379191 2590 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2591 */
0a15c3e9
MG
2592static inline
2593struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2594 struct zone *zone, unsigned int order,
c603844b
MG
2595 gfp_t gfp_flags, unsigned int alloc_flags,
2596 int migratetype)
1da177e4
LT
2597{
2598 unsigned long flags;
689bcebf 2599 struct page *page;
b745bc85 2600 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2601
48db57f8 2602 if (likely(order == 0)) {
1da177e4 2603 struct per_cpu_pages *pcp;
5f8dcc21 2604 struct list_head *list;
1da177e4 2605
1da177e4 2606 local_irq_save(flags);
479f854a
MG
2607 do {
2608 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2609 list = &pcp->lists[migratetype];
2610 if (list_empty(list)) {
2611 pcp->count += rmqueue_bulk(zone, 0,
2612 pcp->batch, list,
2613 migratetype, cold);
2614 if (unlikely(list_empty(list)))
2615 goto failed;
2616 }
b92a6edd 2617
479f854a
MG
2618 if (cold)
2619 page = list_last_entry(list, struct page, lru);
2620 else
2621 page = list_first_entry(list, struct page, lru);
2622 } while (page && check_new_pcp(page));
5f8dcc21 2623
754078eb 2624 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2625 list_del(&page->lru);
2626 pcp->count--;
7fb1d9fc 2627 } else {
0f352e53
MH
2628 /*
2629 * We most definitely don't want callers attempting to
2630 * allocate greater than order-1 page units with __GFP_NOFAIL.
2631 */
2632 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2633 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2634
479f854a
MG
2635 do {
2636 page = NULL;
2637 if (alloc_flags & ALLOC_HARDER) {
2638 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2639 if (page)
2640 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2641 }
2642 if (!page)
2643 page = __rmqueue(zone, order, migratetype);
2644 } while (page && check_new_pages(page, order));
a74609fa
NP
2645 spin_unlock(&zone->lock);
2646 if (!page)
2647 goto failed;
754078eb 2648 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2649 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2650 get_pcppage_migratetype(page));
1da177e4
LT
2651 }
2652
abe5f972 2653 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2654 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2655 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2656
f8891e5e 2657 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2658 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2659 local_irq_restore(flags);
1da177e4 2660
309381fe 2661 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2662 return page;
a74609fa
NP
2663
2664failed:
2665 local_irq_restore(flags);
a74609fa 2666 return NULL;
1da177e4
LT
2667}
2668
933e312e
AM
2669#ifdef CONFIG_FAIL_PAGE_ALLOC
2670
b2588c4b 2671static struct {
933e312e
AM
2672 struct fault_attr attr;
2673
621a5f7a 2674 bool ignore_gfp_highmem;
71baba4b 2675 bool ignore_gfp_reclaim;
54114994 2676 u32 min_order;
933e312e
AM
2677} fail_page_alloc = {
2678 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2679 .ignore_gfp_reclaim = true,
621a5f7a 2680 .ignore_gfp_highmem = true,
54114994 2681 .min_order = 1,
933e312e
AM
2682};
2683
2684static int __init setup_fail_page_alloc(char *str)
2685{
2686 return setup_fault_attr(&fail_page_alloc.attr, str);
2687}
2688__setup("fail_page_alloc=", setup_fail_page_alloc);
2689
deaf386e 2690static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2691{
54114994 2692 if (order < fail_page_alloc.min_order)
deaf386e 2693 return false;
933e312e 2694 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2695 return false;
933e312e 2696 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2697 return false;
71baba4b
MG
2698 if (fail_page_alloc.ignore_gfp_reclaim &&
2699 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2700 return false;
933e312e
AM
2701
2702 return should_fail(&fail_page_alloc.attr, 1 << order);
2703}
2704
2705#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2706
2707static int __init fail_page_alloc_debugfs(void)
2708{
f4ae40a6 2709 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2710 struct dentry *dir;
933e312e 2711
dd48c085
AM
2712 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2713 &fail_page_alloc.attr);
2714 if (IS_ERR(dir))
2715 return PTR_ERR(dir);
933e312e 2716
b2588c4b 2717 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2718 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2719 goto fail;
2720 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2721 &fail_page_alloc.ignore_gfp_highmem))
2722 goto fail;
2723 if (!debugfs_create_u32("min-order", mode, dir,
2724 &fail_page_alloc.min_order))
2725 goto fail;
2726
2727 return 0;
2728fail:
dd48c085 2729 debugfs_remove_recursive(dir);
933e312e 2730
b2588c4b 2731 return -ENOMEM;
933e312e
AM
2732}
2733
2734late_initcall(fail_page_alloc_debugfs);
2735
2736#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2737
2738#else /* CONFIG_FAIL_PAGE_ALLOC */
2739
deaf386e 2740static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2741{
deaf386e 2742 return false;
933e312e
AM
2743}
2744
2745#endif /* CONFIG_FAIL_PAGE_ALLOC */
2746
1da177e4 2747/*
97a16fc8
MG
2748 * Return true if free base pages are above 'mark'. For high-order checks it
2749 * will return true of the order-0 watermark is reached and there is at least
2750 * one free page of a suitable size. Checking now avoids taking the zone lock
2751 * to check in the allocation paths if no pages are free.
1da177e4 2752 */
86a294a8
MH
2753bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2754 int classzone_idx, unsigned int alloc_flags,
2755 long free_pages)
1da177e4 2756{
d23ad423 2757 long min = mark;
1da177e4 2758 int o;
c603844b 2759 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2760
0aaa29a5 2761 /* free_pages may go negative - that's OK */
df0a6daa 2762 free_pages -= (1 << order) - 1;
0aaa29a5 2763
7fb1d9fc 2764 if (alloc_flags & ALLOC_HIGH)
1da177e4 2765 min -= min / 2;
0aaa29a5
MG
2766
2767 /*
2768 * If the caller does not have rights to ALLOC_HARDER then subtract
2769 * the high-atomic reserves. This will over-estimate the size of the
2770 * atomic reserve but it avoids a search.
2771 */
97a16fc8 2772 if (likely(!alloc_harder))
0aaa29a5
MG
2773 free_pages -= z->nr_reserved_highatomic;
2774 else
1da177e4 2775 min -= min / 4;
e2b19197 2776
d95ea5d1
BZ
2777#ifdef CONFIG_CMA
2778 /* If allocation can't use CMA areas don't use free CMA pages */
2779 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2780 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2781#endif
026b0814 2782
97a16fc8
MG
2783 /*
2784 * Check watermarks for an order-0 allocation request. If these
2785 * are not met, then a high-order request also cannot go ahead
2786 * even if a suitable page happened to be free.
2787 */
2788 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2789 return false;
1da177e4 2790
97a16fc8
MG
2791 /* If this is an order-0 request then the watermark is fine */
2792 if (!order)
2793 return true;
2794
2795 /* For a high-order request, check at least one suitable page is free */
2796 for (o = order; o < MAX_ORDER; o++) {
2797 struct free_area *area = &z->free_area[o];
2798 int mt;
2799
2800 if (!area->nr_free)
2801 continue;
2802
2803 if (alloc_harder)
2804 return true;
1da177e4 2805
97a16fc8
MG
2806 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2807 if (!list_empty(&area->free_list[mt]))
2808 return true;
2809 }
2810
2811#ifdef CONFIG_CMA
2812 if ((alloc_flags & ALLOC_CMA) &&
2813 !list_empty(&area->free_list[MIGRATE_CMA])) {
2814 return true;
2815 }
2816#endif
1da177e4 2817 }
97a16fc8 2818 return false;
88f5acf8
MG
2819}
2820
7aeb09f9 2821bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2822 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2823{
2824 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2825 zone_page_state(z, NR_FREE_PAGES));
2826}
2827
48ee5f36
MG
2828static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2829 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2830{
2831 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2832 long cma_pages = 0;
2833
2834#ifdef CONFIG_CMA
2835 /* If allocation can't use CMA areas don't use free CMA pages */
2836 if (!(alloc_flags & ALLOC_CMA))
2837 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2838#endif
2839
2840 /*
2841 * Fast check for order-0 only. If this fails then the reserves
2842 * need to be calculated. There is a corner case where the check
2843 * passes but only the high-order atomic reserve are free. If
2844 * the caller is !atomic then it'll uselessly search the free
2845 * list. That corner case is then slower but it is harmless.
2846 */
2847 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2848 return true;
2849
2850 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2851 free_pages);
2852}
2853
7aeb09f9 2854bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2855 unsigned long mark, int classzone_idx)
88f5acf8
MG
2856{
2857 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2858
2859 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2860 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2861
e2b19197 2862 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2863 free_pages);
1da177e4
LT
2864}
2865
9276b1bc 2866#ifdef CONFIG_NUMA
81c0a2bb
JW
2867static bool zone_local(struct zone *local_zone, struct zone *zone)
2868{
fff4068c 2869 return local_zone->node == zone->node;
81c0a2bb
JW
2870}
2871
957f822a
DR
2872static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2873{
5f7a75ac
MG
2874 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2875 RECLAIM_DISTANCE;
957f822a 2876}
9276b1bc 2877#else /* CONFIG_NUMA */
81c0a2bb
JW
2878static bool zone_local(struct zone *local_zone, struct zone *zone)
2879{
2880 return true;
2881}
2882
957f822a
DR
2883static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2884{
2885 return true;
2886}
9276b1bc
PJ
2887#endif /* CONFIG_NUMA */
2888
4ffeaf35
MG
2889static void reset_alloc_batches(struct zone *preferred_zone)
2890{
2891 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2892
2893 do {
2894 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2895 high_wmark_pages(zone) - low_wmark_pages(zone) -
2896 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2897 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2898 } while (zone++ != preferred_zone);
2899}
2900
7fb1d9fc 2901/*
0798e519 2902 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2903 * a page.
2904 */
2905static struct page *
a9263751
VB
2906get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2907 const struct alloc_context *ac)
753ee728 2908{
c33d6c06 2909 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2910 struct zone *zone;
30534755
MG
2911 bool fair_skipped = false;
2912 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2913
9276b1bc 2914zonelist_scan:
7fb1d9fc 2915 /*
9276b1bc 2916 * Scan zonelist, looking for a zone with enough free.
344736f2 2917 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2918 */
c33d6c06 2919 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2920 ac->nodemask) {
be06af00 2921 struct page *page;
e085dbc5
JW
2922 unsigned long mark;
2923
664eedde
MG
2924 if (cpusets_enabled() &&
2925 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2926 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2927 continue;
81c0a2bb
JW
2928 /*
2929 * Distribute pages in proportion to the individual
2930 * zone size to ensure fair page aging. The zone a
2931 * page was allocated in should have no effect on the
2932 * time the page has in memory before being reclaimed.
81c0a2bb 2933 */
30534755 2934 if (apply_fair) {
57054651 2935 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2936 fair_skipped = true;
3a025760 2937 continue;
4ffeaf35 2938 }
c33d6c06 2939 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2940 if (fair_skipped)
2941 goto reset_fair;
2942 apply_fair = false;
2943 }
81c0a2bb 2944 }
a756cf59
JW
2945 /*
2946 * When allocating a page cache page for writing, we
2947 * want to get it from a zone that is within its dirty
2948 * limit, such that no single zone holds more than its
2949 * proportional share of globally allowed dirty pages.
2950 * The dirty limits take into account the zone's
2951 * lowmem reserves and high watermark so that kswapd
2952 * should be able to balance it without having to
2953 * write pages from its LRU list.
2954 *
2955 * This may look like it could increase pressure on
2956 * lower zones by failing allocations in higher zones
2957 * before they are full. But the pages that do spill
2958 * over are limited as the lower zones are protected
2959 * by this very same mechanism. It should not become
2960 * a practical burden to them.
2961 *
2962 * XXX: For now, allow allocations to potentially
2963 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2964 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2965 * which is important when on a NUMA setup the allowed
2966 * zones are together not big enough to reach the
2967 * global limit. The proper fix for these situations
2968 * will require awareness of zones in the
2969 * dirty-throttling and the flusher threads.
2970 */
c9ab0c4f 2971 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2972 continue;
7fb1d9fc 2973
e085dbc5 2974 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2975 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2976 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2977 int ret;
2978
5dab2911
MG
2979 /* Checked here to keep the fast path fast */
2980 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2981 if (alloc_flags & ALLOC_NO_WATERMARKS)
2982 goto try_this_zone;
2983
957f822a 2984 if (zone_reclaim_mode == 0 ||
c33d6c06 2985 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2986 continue;
2987
fa5e084e
MG
2988 ret = zone_reclaim(zone, gfp_mask, order);
2989 switch (ret) {
2990 case ZONE_RECLAIM_NOSCAN:
2991 /* did not scan */
cd38b115 2992 continue;
fa5e084e
MG
2993 case ZONE_RECLAIM_FULL:
2994 /* scanned but unreclaimable */
cd38b115 2995 continue;
fa5e084e
MG
2996 default:
2997 /* did we reclaim enough */
fed2719e 2998 if (zone_watermark_ok(zone, order, mark,
93ea9964 2999 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3000 goto try_this_zone;
3001
fed2719e 3002 continue;
0798e519 3003 }
7fb1d9fc
RS
3004 }
3005
fa5e084e 3006try_this_zone:
c33d6c06 3007 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3008 gfp_mask, alloc_flags, ac->migratetype);
75379191 3009 if (page) {
479f854a 3010 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3011
3012 /*
3013 * If this is a high-order atomic allocation then check
3014 * if the pageblock should be reserved for the future
3015 */
3016 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3017 reserve_highatomic_pageblock(page, zone, order);
3018
75379191
VB
3019 return page;
3020 }
54a6eb5c 3021 }
9276b1bc 3022
4ffeaf35
MG
3023 /*
3024 * The first pass makes sure allocations are spread fairly within the
3025 * local node. However, the local node might have free pages left
3026 * after the fairness batches are exhausted, and remote zones haven't
3027 * even been considered yet. Try once more without fairness, and
3028 * include remote zones now, before entering the slowpath and waking
3029 * kswapd: prefer spilling to a remote zone over swapping locally.
3030 */
30534755
MG
3031 if (fair_skipped) {
3032reset_fair:
3033 apply_fair = false;
3034 fair_skipped = false;
c33d6c06 3035 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 3036 goto zonelist_scan;
30534755 3037 }
4ffeaf35
MG
3038
3039 return NULL;
753ee728
MH
3040}
3041
29423e77
DR
3042/*
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3045 */
3046static inline bool should_suppress_show_mem(void)
3047{
3048 bool ret = false;
3049
3050#if NODES_SHIFT > 8
3051 ret = in_interrupt();
3052#endif
3053 return ret;
3054}
3055
a238ab5b
DH
3056static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 DEFAULT_RATELIMIT_INTERVAL,
3058 DEFAULT_RATELIMIT_BURST);
3059
d00181b9 3060void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3061{
a238ab5b
DH
3062 unsigned int filter = SHOW_MEM_FILTER_NODES;
3063
c0a32fc5
SG
3064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 debug_guardpage_minorder() > 0)
a238ab5b
DH
3066 return;
3067
3068 /*
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3071 * of allowed nodes.
3072 */
3073 if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 if (test_thread_flag(TIF_MEMDIE) ||
3075 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3077 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3078 filter &= ~SHOW_MEM_FILTER_NODES;
3079
3080 if (fmt) {
3ee9a4f0
JP
3081 struct va_format vaf;
3082 va_list args;
3083
a238ab5b 3084 va_start(args, fmt);
3ee9a4f0
JP
3085
3086 vaf.fmt = fmt;
3087 vaf.va = &args;
3088
3089 pr_warn("%pV", &vaf);
3090
a238ab5b
DH
3091 va_end(args);
3092 }
3093
c5c990e8
VB
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3096 dump_stack();
3097 if (!should_suppress_show_mem())
3098 show_mem(filter);
3099}
3100
11e33f6a
MG
3101static inline struct page *
3102__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3103 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3104{
6e0fc46d
DR
3105 struct oom_control oc = {
3106 .zonelist = ac->zonelist,
3107 .nodemask = ac->nodemask,
3108 .gfp_mask = gfp_mask,
3109 .order = order,
6e0fc46d 3110 };
11e33f6a
MG
3111 struct page *page;
3112
9879de73
JW
3113 *did_some_progress = 0;
3114
9879de73 3115 /*
dc56401f
JW
3116 * Acquire the oom lock. If that fails, somebody else is
3117 * making progress for us.
9879de73 3118 */
dc56401f 3119 if (!mutex_trylock(&oom_lock)) {
9879de73 3120 *did_some_progress = 1;
11e33f6a 3121 schedule_timeout_uninterruptible(1);
1da177e4
LT
3122 return NULL;
3123 }
6b1de916 3124
11e33f6a
MG
3125 /*
3126 * Go through the zonelist yet one more time, keep very high watermark
3127 * here, this is only to catch a parallel oom killing, we must fail if
3128 * we're still under heavy pressure.
3129 */
a9263751
VB
3130 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3131 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3132 if (page)
11e33f6a
MG
3133 goto out;
3134
4365a567 3135 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3136 /* Coredumps can quickly deplete all memory reserves */
3137 if (current->flags & PF_DUMPCORE)
3138 goto out;
4365a567
KH
3139 /* The OOM killer will not help higher order allocs */
3140 if (order > PAGE_ALLOC_COSTLY_ORDER)
3141 goto out;
03668b3c 3142 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3143 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3144 goto out;
9083905a
JW
3145 if (pm_suspended_storage())
3146 goto out;
3da88fb3
MH
3147 /*
3148 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 * other request to make a forward progress.
3150 * We are in an unfortunate situation where out_of_memory cannot
3151 * do much for this context but let's try it to at least get
3152 * access to memory reserved if the current task is killed (see
3153 * out_of_memory). Once filesystems are ready to handle allocation
3154 * failures more gracefully we should just bail out here.
3155 */
3156
4167e9b2 3157 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3158 if (gfp_mask & __GFP_THISNODE)
3159 goto out;
3160 }
11e33f6a 3161 /* Exhausted what can be done so it's blamo time */
5020e285 3162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3163 *did_some_progress = 1;
5020e285
MH
3164
3165 if (gfp_mask & __GFP_NOFAIL) {
3166 page = get_page_from_freelist(gfp_mask, order,
3167 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3168 /*
3169 * fallback to ignore cpuset restriction if our nodes
3170 * are depleted
3171 */
3172 if (!page)
3173 page = get_page_from_freelist(gfp_mask, order,
3174 ALLOC_NO_WATERMARKS, ac);
3175 }
3176 }
11e33f6a 3177out:
dc56401f 3178 mutex_unlock(&oom_lock);
11e33f6a
MG
3179 return page;
3180}
3181
33c2d214
MH
3182
3183/*
3184 * Maximum number of compaction retries wit a progress before OOM
3185 * killer is consider as the only way to move forward.
3186 */
3187#define MAX_COMPACT_RETRIES 16
3188
56de7263
MG
3189#ifdef CONFIG_COMPACTION
3190/* Try memory compaction for high-order allocations before reclaim */
3191static struct page *
3192__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3193 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3194 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3195{
98dd3b48 3196 struct page *page;
c5d01d0d 3197 int contended_compaction;
53853e2d
VB
3198
3199 if (!order)
66199712 3200 return NULL;
66199712 3201
c06b1fca 3202 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3203 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3204 mode, &contended_compaction);
c06b1fca 3205 current->flags &= ~PF_MEMALLOC;
56de7263 3206
c5d01d0d 3207 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3208 return NULL;
53853e2d 3209
98dd3b48
VB
3210 /*
3211 * At least in one zone compaction wasn't deferred or skipped, so let's
3212 * count a compaction stall
3213 */
3214 count_vm_event(COMPACTSTALL);
8fb74b9f 3215
a9263751
VB
3216 page = get_page_from_freelist(gfp_mask, order,
3217 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3218
98dd3b48
VB
3219 if (page) {
3220 struct zone *zone = page_zone(page);
53853e2d 3221
98dd3b48
VB
3222 zone->compact_blockskip_flush = false;
3223 compaction_defer_reset(zone, order, true);
3224 count_vm_event(COMPACTSUCCESS);
3225 return page;
3226 }
56de7263 3227
98dd3b48
VB
3228 /*
3229 * It's bad if compaction run occurs and fails. The most likely reason
3230 * is that pages exist, but not enough to satisfy watermarks.
3231 */
3232 count_vm_event(COMPACTFAIL);
66199712 3233
c5d01d0d
MH
3234 /*
3235 * In all zones where compaction was attempted (and not
3236 * deferred or skipped), lock contention has been detected.
3237 * For THP allocation we do not want to disrupt the others
3238 * so we fallback to base pages instead.
3239 */
3240 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3241 *compact_result = COMPACT_CONTENDED;
3242
3243 /*
3244 * If compaction was aborted due to need_resched(), we do not
3245 * want to further increase allocation latency, unless it is
3246 * khugepaged trying to collapse.
3247 */
3248 if (contended_compaction == COMPACT_CONTENDED_SCHED
3249 && !(current->flags & PF_KTHREAD))
3250 *compact_result = COMPACT_CONTENDED;
3251
98dd3b48 3252 cond_resched();
56de7263
MG
3253
3254 return NULL;
3255}
33c2d214
MH
3256
3257static inline bool
86a294a8
MH
3258should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3259 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3260 int compaction_retries)
3261{
7854ea6c
MH
3262 int max_retries = MAX_COMPACT_RETRIES;
3263
33c2d214
MH
3264 if (!order)
3265 return false;
3266
3267 /*
3268 * compaction considers all the zone as desperately out of memory
3269 * so it doesn't really make much sense to retry except when the
3270 * failure could be caused by weak migration mode.
3271 */
3272 if (compaction_failed(compact_result)) {
3273 if (*migrate_mode == MIGRATE_ASYNC) {
3274 *migrate_mode = MIGRATE_SYNC_LIGHT;
3275 return true;
3276 }
3277 return false;
3278 }
3279
3280 /*
7854ea6c
MH
3281 * make sure the compaction wasn't deferred or didn't bail out early
3282 * due to locks contention before we declare that we should give up.
86a294a8
MH
3283 * But do not retry if the given zonelist is not suitable for
3284 * compaction.
33c2d214 3285 */
7854ea6c 3286 if (compaction_withdrawn(compact_result))
86a294a8 3287 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3288
3289 /*
3290 * !costly requests are much more important than __GFP_REPEAT
3291 * costly ones because they are de facto nofail and invoke OOM
3292 * killer to move on while costly can fail and users are ready
3293 * to cope with that. 1/4 retries is rather arbitrary but we
3294 * would need much more detailed feedback from compaction to
3295 * make a better decision.
3296 */
3297 if (order > PAGE_ALLOC_COSTLY_ORDER)
3298 max_retries /= 4;
3299 if (compaction_retries <= max_retries)
3300 return true;
33c2d214
MH
3301
3302 return false;
3303}
56de7263
MG
3304#else
3305static inline struct page *
3306__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3307 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3308 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3309{
33c2d214 3310 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3311 return NULL;
3312}
33c2d214
MH
3313
3314static inline bool
86a294a8
MH
3315should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3316 enum compact_result compact_result,
33c2d214
MH
3317 enum migrate_mode *migrate_mode,
3318 int compaction_retries)
3319{
31e49bfd
MH
3320 struct zone *zone;
3321 struct zoneref *z;
3322
3323 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3324 return false;
3325
3326 /*
3327 * There are setups with compaction disabled which would prefer to loop
3328 * inside the allocator rather than hit the oom killer prematurely.
3329 * Let's give them a good hope and keep retrying while the order-0
3330 * watermarks are OK.
3331 */
3332 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3333 ac->nodemask) {
3334 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3335 ac_classzone_idx(ac), alloc_flags))
3336 return true;
3337 }
33c2d214
MH
3338 return false;
3339}
56de7263
MG
3340#endif /* CONFIG_COMPACTION */
3341
bba90710
MS
3342/* Perform direct synchronous page reclaim */
3343static int
a9263751
VB
3344__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3345 const struct alloc_context *ac)
11e33f6a 3346{
11e33f6a 3347 struct reclaim_state reclaim_state;
bba90710 3348 int progress;
11e33f6a
MG
3349
3350 cond_resched();
3351
3352 /* We now go into synchronous reclaim */
3353 cpuset_memory_pressure_bump();
c06b1fca 3354 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3355 lockdep_set_current_reclaim_state(gfp_mask);
3356 reclaim_state.reclaimed_slab = 0;
c06b1fca 3357 current->reclaim_state = &reclaim_state;
11e33f6a 3358
a9263751
VB
3359 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3360 ac->nodemask);
11e33f6a 3361
c06b1fca 3362 current->reclaim_state = NULL;
11e33f6a 3363 lockdep_clear_current_reclaim_state();
c06b1fca 3364 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3365
3366 cond_resched();
3367
bba90710
MS
3368 return progress;
3369}
3370
3371/* The really slow allocator path where we enter direct reclaim */
3372static inline struct page *
3373__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3374 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3375 unsigned long *did_some_progress)
bba90710
MS
3376{
3377 struct page *page = NULL;
3378 bool drained = false;
3379
a9263751 3380 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3381 if (unlikely(!(*did_some_progress)))
3382 return NULL;
11e33f6a 3383
9ee493ce 3384retry:
a9263751
VB
3385 page = get_page_from_freelist(gfp_mask, order,
3386 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3387
3388 /*
3389 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3390 * pages are pinned on the per-cpu lists or in high alloc reserves.
3391 * Shrink them them and try again
9ee493ce
MG
3392 */
3393 if (!page && !drained) {
0aaa29a5 3394 unreserve_highatomic_pageblock(ac);
93481ff0 3395 drain_all_pages(NULL);
9ee493ce
MG
3396 drained = true;
3397 goto retry;
3398 }
3399
11e33f6a
MG
3400 return page;
3401}
3402
a9263751 3403static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3404{
3405 struct zoneref *z;
3406 struct zone *zone;
3407
a9263751
VB
3408 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3409 ac->high_zoneidx, ac->nodemask)
93ea9964 3410 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3411}
3412
c603844b 3413static inline unsigned int
341ce06f
PZ
3414gfp_to_alloc_flags(gfp_t gfp_mask)
3415{
c603844b 3416 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3417
a56f57ff 3418 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3419 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3420
341ce06f
PZ
3421 /*
3422 * The caller may dip into page reserves a bit more if the caller
3423 * cannot run direct reclaim, or if the caller has realtime scheduling
3424 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3425 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3426 */
e6223a3b 3427 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3428
d0164adc 3429 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3430 /*
b104a35d
DR
3431 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3432 * if it can't schedule.
5c3240d9 3433 */
b104a35d 3434 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3435 alloc_flags |= ALLOC_HARDER;
523b9458 3436 /*
b104a35d 3437 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3438 * comment for __cpuset_node_allowed().
523b9458 3439 */
341ce06f 3440 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3441 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3442 alloc_flags |= ALLOC_HARDER;
3443
b37f1dd0
MG
3444 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3445 if (gfp_mask & __GFP_MEMALLOC)
3446 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3447 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3448 alloc_flags |= ALLOC_NO_WATERMARKS;
3449 else if (!in_interrupt() &&
3450 ((current->flags & PF_MEMALLOC) ||
3451 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3452 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3453 }
d95ea5d1 3454#ifdef CONFIG_CMA
43e7a34d 3455 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3456 alloc_flags |= ALLOC_CMA;
3457#endif
341ce06f
PZ
3458 return alloc_flags;
3459}
3460
072bb0aa
MG
3461bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3462{
b37f1dd0 3463 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3464}
3465
d0164adc
MG
3466static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3467{
3468 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3469}
3470
0a0337e0
MH
3471/*
3472 * Maximum number of reclaim retries without any progress before OOM killer
3473 * is consider as the only way to move forward.
3474 */
3475#define MAX_RECLAIM_RETRIES 16
3476
3477/*
3478 * Checks whether it makes sense to retry the reclaim to make a forward progress
3479 * for the given allocation request.
3480 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3481 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3482 * any progress in a row) is considered as well as the reclaimable pages on the
3483 * applicable zone list (with a backoff mechanism which is a function of
3484 * no_progress_loops).
0a0337e0
MH
3485 *
3486 * Returns true if a retry is viable or false to enter the oom path.
3487 */
3488static inline bool
3489should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3490 struct alloc_context *ac, int alloc_flags,
7854ea6c 3491 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3492{
3493 struct zone *zone;
3494 struct zoneref *z;
3495
3496 /*
3497 * Make sure we converge to OOM if we cannot make any progress
3498 * several times in the row.
3499 */
3500 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3501 return false;
3502
0a0337e0
MH
3503 /*
3504 * Keep reclaiming pages while there is a chance this will lead somewhere.
3505 * If none of the target zones can satisfy our allocation request even
3506 * if all reclaimable pages are considered then we are screwed and have
3507 * to go OOM.
3508 */
3509 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3510 ac->nodemask) {
3511 unsigned long available;
ede37713 3512 unsigned long reclaimable;
0a0337e0 3513
ede37713 3514 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3515 available -= DIV_ROUND_UP(no_progress_loops * available,
3516 MAX_RECLAIM_RETRIES);
3517 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3518
3519 /*
3520 * Would the allocation succeed if we reclaimed the whole
3521 * available?
3522 */
3523 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3524 ac_classzone_idx(ac), alloc_flags, available)) {
3525 /*
3526 * If we didn't make any progress and have a lot of
3527 * dirty + writeback pages then we should wait for
3528 * an IO to complete to slow down the reclaim and
3529 * prevent from pre mature OOM
3530 */
3531 if (!did_some_progress) {
3532 unsigned long writeback;
3533 unsigned long dirty;
3534
3535 writeback = zone_page_state_snapshot(zone,
3536 NR_WRITEBACK);
3537 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3538
3539 if (2*(writeback + dirty) > reclaimable) {
3540 congestion_wait(BLK_RW_ASYNC, HZ/10);
3541 return true;
3542 }
3543 }
3544
3545 /*
3546 * Memory allocation/reclaim might be called from a WQ
3547 * context and the current implementation of the WQ
3548 * concurrency control doesn't recognize that
3549 * a particular WQ is congested if the worker thread is
3550 * looping without ever sleeping. Therefore we have to
3551 * do a short sleep here rather than calling
3552 * cond_resched().
3553 */
3554 if (current->flags & PF_WQ_WORKER)
3555 schedule_timeout_uninterruptible(1);
3556 else
3557 cond_resched();
3558
0a0337e0
MH
3559 return true;
3560 }
3561 }
3562
3563 return false;
3564}
3565
11e33f6a
MG
3566static inline struct page *
3567__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3568 struct alloc_context *ac)
11e33f6a 3569{
d0164adc 3570 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3571 struct page *page = NULL;
c603844b 3572 unsigned int alloc_flags;
11e33f6a 3573 unsigned long did_some_progress;
e0b9daeb 3574 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3575 enum compact_result compact_result;
33c2d214 3576 int compaction_retries = 0;
0a0337e0 3577 int no_progress_loops = 0;
1da177e4 3578
72807a74
MG
3579 /*
3580 * In the slowpath, we sanity check order to avoid ever trying to
3581 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3582 * be using allocators in order of preference for an area that is
3583 * too large.
3584 */
1fc28b70
MG
3585 if (order >= MAX_ORDER) {
3586 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3587 return NULL;
1fc28b70 3588 }
1da177e4 3589
d0164adc
MG
3590 /*
3591 * We also sanity check to catch abuse of atomic reserves being used by
3592 * callers that are not in atomic context.
3593 */
3594 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3595 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3596 gfp_mask &= ~__GFP_ATOMIC;
3597
9879de73 3598retry:
d0164adc 3599 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3600 wake_all_kswapds(order, ac);
1da177e4 3601
9bf2229f 3602 /*
7fb1d9fc
RS
3603 * OK, we're below the kswapd watermark and have kicked background
3604 * reclaim. Now things get more complex, so set up alloc_flags according
3605 * to how we want to proceed.
9bf2229f 3606 */
341ce06f 3607 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3608
341ce06f 3609 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3610 page = get_page_from_freelist(gfp_mask, order,
3611 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3612 if (page)
3613 goto got_pg;
1da177e4 3614
11e33f6a 3615 /* Allocate without watermarks if the context allows */
341ce06f 3616 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3617 /*
3618 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3619 * the allocation is high priority and these type of
3620 * allocations are system rather than user orientated
3621 */
a9263751 3622 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3623 page = get_page_from_freelist(gfp_mask, order,
3624 ALLOC_NO_WATERMARKS, ac);
3625 if (page)
3626 goto got_pg;
1da177e4
LT
3627 }
3628
d0164adc
MG
3629 /* Caller is not willing to reclaim, we can't balance anything */
3630 if (!can_direct_reclaim) {
aed0a0e3 3631 /*
33d53103
MH
3632 * All existing users of the __GFP_NOFAIL are blockable, so warn
3633 * of any new users that actually allow this type of allocation
3634 * to fail.
aed0a0e3
DR
3635 */
3636 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3637 goto nopage;
aed0a0e3 3638 }
1da177e4 3639
341ce06f 3640 /* Avoid recursion of direct reclaim */
33d53103
MH
3641 if (current->flags & PF_MEMALLOC) {
3642 /*
3643 * __GFP_NOFAIL request from this context is rather bizarre
3644 * because we cannot reclaim anything and only can loop waiting
3645 * for somebody to do a work for us.
3646 */
3647 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3648 cond_resched();
3649 goto retry;
3650 }
341ce06f 3651 goto nopage;
33d53103 3652 }
341ce06f 3653
6583bb64
DR
3654 /* Avoid allocations with no watermarks from looping endlessly */
3655 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3656 goto nopage;
3657
77f1fe6b
MG
3658 /*
3659 * Try direct compaction. The first pass is asynchronous. Subsequent
3660 * attempts after direct reclaim are synchronous
3661 */
a9263751
VB
3662 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3663 migration_mode,
c5d01d0d 3664 &compact_result);
56de7263
MG
3665 if (page)
3666 goto got_pg;
75f30861 3667
1f9efdef 3668 /* Checks for THP-specific high-order allocations */
d0164adc 3669 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3670 /*
3671 * If compaction is deferred for high-order allocations, it is
3672 * because sync compaction recently failed. If this is the case
3673 * and the caller requested a THP allocation, we do not want
3674 * to heavily disrupt the system, so we fail the allocation
3675 * instead of entering direct reclaim.
3676 */
c5d01d0d 3677 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3678 goto nopage;
3679
3680 /*
c5d01d0d
MH
3681 * Compaction is contended so rather back off than cause
3682 * excessive stalls.
1f9efdef 3683 */
c5d01d0d 3684 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3685 goto nopage;
3686 }
66199712 3687
33c2d214
MH
3688 if (order && compaction_made_progress(compact_result))
3689 compaction_retries++;
8fe78048 3690
11e33f6a 3691 /* Try direct reclaim and then allocating */
a9263751
VB
3692 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3693 &did_some_progress);
11e33f6a
MG
3694 if (page)
3695 goto got_pg;
1da177e4 3696
9083905a
JW
3697 /* Do not loop if specifically requested */
3698 if (gfp_mask & __GFP_NORETRY)
3699 goto noretry;
3700
0a0337e0
MH
3701 /*
3702 * Do not retry costly high order allocations unless they are
3703 * __GFP_REPEAT
3704 */
3705 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3706 goto noretry;
3707
7854ea6c
MH
3708 /*
3709 * Costly allocations might have made a progress but this doesn't mean
3710 * their order will become available due to high fragmentation so
3711 * always increment the no progress counter for them
3712 */
3713 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3714 no_progress_loops = 0;
7854ea6c 3715 else
0a0337e0 3716 no_progress_loops++;
1da177e4 3717
0a0337e0 3718 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3719 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3720 goto retry;
3721
33c2d214
MH
3722 /*
3723 * It doesn't make any sense to retry for the compaction if the order-0
3724 * reclaim is not able to make any progress because the current
3725 * implementation of the compaction depends on the sufficient amount
3726 * of free memory (see __compaction_suitable)
3727 */
3728 if (did_some_progress > 0 &&
86a294a8
MH
3729 should_compact_retry(ac, order, alloc_flags,
3730 compact_result, &migration_mode,
3731 compaction_retries))
33c2d214
MH
3732 goto retry;
3733
9083905a
JW
3734 /* Reclaim has failed us, start killing things */
3735 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3736 if (page)
3737 goto got_pg;
3738
3739 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3740 if (did_some_progress) {
3741 no_progress_loops = 0;
9083905a 3742 goto retry;
0a0337e0 3743 }
9083905a
JW
3744
3745noretry:
3746 /*
33c2d214
MH
3747 * High-order allocations do not necessarily loop after direct reclaim
3748 * and reclaim/compaction depends on compaction being called after
3749 * reclaim so call directly if necessary.
3750 * It can become very expensive to allocate transparent hugepages at
3751 * fault, so use asynchronous memory compaction for THP unless it is
3752 * khugepaged trying to collapse. All other requests should tolerate
3753 * at least light sync migration.
9083905a 3754 */
33c2d214
MH
3755 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3756 migration_mode = MIGRATE_ASYNC;
3757 else
3758 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3759 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3760 ac, migration_mode,
c5d01d0d 3761 &compact_result);
9083905a
JW
3762 if (page)
3763 goto got_pg;
1da177e4 3764nopage:
a238ab5b 3765 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3766got_pg:
072bb0aa 3767 return page;
1da177e4 3768}
11e33f6a
MG
3769
3770/*
3771 * This is the 'heart' of the zoned buddy allocator.
3772 */
3773struct page *
3774__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3775 struct zonelist *zonelist, nodemask_t *nodemask)
3776{
5bb1b169 3777 struct page *page;
cc9a6c87 3778 unsigned int cpuset_mems_cookie;
c603844b 3779 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3780 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3781 struct alloc_context ac = {
3782 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3783 .zonelist = zonelist,
a9263751
VB
3784 .nodemask = nodemask,
3785 .migratetype = gfpflags_to_migratetype(gfp_mask),
3786 };
11e33f6a 3787
682a3385 3788 if (cpusets_enabled()) {
83d4ca81 3789 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3790 alloc_flags |= ALLOC_CPUSET;
3791 if (!ac.nodemask)
3792 ac.nodemask = &cpuset_current_mems_allowed;
3793 }
3794
dcce284a
BH
3795 gfp_mask &= gfp_allowed_mask;
3796
11e33f6a
MG
3797 lockdep_trace_alloc(gfp_mask);
3798
d0164adc 3799 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3800
3801 if (should_fail_alloc_page(gfp_mask, order))
3802 return NULL;
3803
3804 /*
3805 * Check the zones suitable for the gfp_mask contain at least one
3806 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3807 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3808 */
3809 if (unlikely(!zonelist->_zonerefs->zone))
3810 return NULL;
3811
a9263751 3812 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3813 alloc_flags |= ALLOC_CMA;
3814
cc9a6c87 3815retry_cpuset:
d26914d1 3816 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3817
c9ab0c4f
MG
3818 /* Dirty zone balancing only done in the fast path */
3819 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3820
5117f45d 3821 /* The preferred zone is used for statistics later */
c33d6c06
MG
3822 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3823 ac.high_zoneidx, ac.nodemask);
3824 if (!ac.preferred_zoneref) {
5bb1b169 3825 page = NULL;
4fcb0971 3826 goto no_zone;
5bb1b169
MG
3827 }
3828
5117f45d 3829 /* First allocation attempt */
a9263751 3830 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3831 if (likely(page))
3832 goto out;
11e33f6a 3833
4fcb0971
MG
3834 /*
3835 * Runtime PM, block IO and its error handling path can deadlock
3836 * because I/O on the device might not complete.
3837 */
3838 alloc_mask = memalloc_noio_flags(gfp_mask);
3839 ac.spread_dirty_pages = false;
23f086f9 3840
4741526b
MG
3841 /*
3842 * Restore the original nodemask if it was potentially replaced with
3843 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3844 */
3845 if (cpusets_enabled())
3846 ac.nodemask = nodemask;
4fcb0971 3847 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3848
4fcb0971 3849no_zone:
cc9a6c87
MG
3850 /*
3851 * When updating a task's mems_allowed, it is possible to race with
3852 * parallel threads in such a way that an allocation can fail while
3853 * the mask is being updated. If a page allocation is about to fail,
3854 * check if the cpuset changed during allocation and if so, retry.
3855 */
83d4ca81
MG
3856 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3857 alloc_mask = gfp_mask;
cc9a6c87 3858 goto retry_cpuset;
83d4ca81 3859 }
cc9a6c87 3860
4fcb0971
MG
3861out:
3862 if (kmemcheck_enabled && page)
3863 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3864
3865 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3866
11e33f6a 3867 return page;
1da177e4 3868}
d239171e 3869EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3870
3871/*
3872 * Common helper functions.
3873 */
920c7a5d 3874unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3875{
945a1113
AM
3876 struct page *page;
3877
3878 /*
3879 * __get_free_pages() returns a 32-bit address, which cannot represent
3880 * a highmem page
3881 */
3882 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3883
1da177e4
LT
3884 page = alloc_pages(gfp_mask, order);
3885 if (!page)
3886 return 0;
3887 return (unsigned long) page_address(page);
3888}
1da177e4
LT
3889EXPORT_SYMBOL(__get_free_pages);
3890
920c7a5d 3891unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3892{
945a1113 3893 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3894}
1da177e4
LT
3895EXPORT_SYMBOL(get_zeroed_page);
3896
920c7a5d 3897void __free_pages(struct page *page, unsigned int order)
1da177e4 3898{
b5810039 3899 if (put_page_testzero(page)) {
1da177e4 3900 if (order == 0)
b745bc85 3901 free_hot_cold_page(page, false);
1da177e4
LT
3902 else
3903 __free_pages_ok(page, order);
3904 }
3905}
3906
3907EXPORT_SYMBOL(__free_pages);
3908
920c7a5d 3909void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3910{
3911 if (addr != 0) {
725d704e 3912 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3913 __free_pages(virt_to_page((void *)addr), order);
3914 }
3915}
3916
3917EXPORT_SYMBOL(free_pages);
3918
b63ae8ca
AD
3919/*
3920 * Page Fragment:
3921 * An arbitrary-length arbitrary-offset area of memory which resides
3922 * within a 0 or higher order page. Multiple fragments within that page
3923 * are individually refcounted, in the page's reference counter.
3924 *
3925 * The page_frag functions below provide a simple allocation framework for
3926 * page fragments. This is used by the network stack and network device
3927 * drivers to provide a backing region of memory for use as either an
3928 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3929 */
3930static struct page *__page_frag_refill(struct page_frag_cache *nc,
3931 gfp_t gfp_mask)
3932{
3933 struct page *page = NULL;
3934 gfp_t gfp = gfp_mask;
3935
3936#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3937 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3938 __GFP_NOMEMALLOC;
3939 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3940 PAGE_FRAG_CACHE_MAX_ORDER);
3941 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3942#endif
3943 if (unlikely(!page))
3944 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3945
3946 nc->va = page ? page_address(page) : NULL;
3947
3948 return page;
3949}
3950
3951void *__alloc_page_frag(struct page_frag_cache *nc,
3952 unsigned int fragsz, gfp_t gfp_mask)
3953{
3954 unsigned int size = PAGE_SIZE;
3955 struct page *page;
3956 int offset;
3957
3958 if (unlikely(!nc->va)) {
3959refill:
3960 page = __page_frag_refill(nc, gfp_mask);
3961 if (!page)
3962 return NULL;
3963
3964#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3965 /* if size can vary use size else just use PAGE_SIZE */
3966 size = nc->size;
3967#endif
3968 /* Even if we own the page, we do not use atomic_set().
3969 * This would break get_page_unless_zero() users.
3970 */
fe896d18 3971 page_ref_add(page, size - 1);
b63ae8ca
AD
3972
3973 /* reset page count bias and offset to start of new frag */
2f064f34 3974 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3975 nc->pagecnt_bias = size;
3976 nc->offset = size;
3977 }
3978
3979 offset = nc->offset - fragsz;
3980 if (unlikely(offset < 0)) {
3981 page = virt_to_page(nc->va);
3982
fe896d18 3983 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3984 goto refill;
3985
3986#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3987 /* if size can vary use size else just use PAGE_SIZE */
3988 size = nc->size;
3989#endif
3990 /* OK, page count is 0, we can safely set it */
fe896d18 3991 set_page_count(page, size);
b63ae8ca
AD
3992
3993 /* reset page count bias and offset to start of new frag */
3994 nc->pagecnt_bias = size;
3995 offset = size - fragsz;
3996 }
3997
3998 nc->pagecnt_bias--;
3999 nc->offset = offset;
4000
4001 return nc->va + offset;
4002}
4003EXPORT_SYMBOL(__alloc_page_frag);
4004
4005/*
4006 * Frees a page fragment allocated out of either a compound or order 0 page.
4007 */
4008void __free_page_frag(void *addr)
4009{
4010 struct page *page = virt_to_head_page(addr);
4011
4012 if (unlikely(put_page_testzero(page)))
4013 __free_pages_ok(page, compound_order(page));
4014}
4015EXPORT_SYMBOL(__free_page_frag);
4016
6a1a0d3b 4017/*
52383431 4018 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4019 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4020 * equivalent to alloc_pages.
6a1a0d3b 4021 *
52383431
VD
4022 * It should be used when the caller would like to use kmalloc, but since the
4023 * allocation is large, it has to fall back to the page allocator.
4024 */
4025struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4026{
4027 struct page *page;
52383431 4028
52383431 4029 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4030 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4031 __free_pages(page, order);
4032 page = NULL;
4033 }
52383431
VD
4034 return page;
4035}
4036
4037struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4038{
4039 struct page *page;
52383431 4040
52383431 4041 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4042 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4043 __free_pages(page, order);
4044 page = NULL;
4045 }
52383431
VD
4046 return page;
4047}
4048
4049/*
4050 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4051 * alloc_kmem_pages.
6a1a0d3b 4052 */
52383431 4053void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4054{
d05e83a6 4055 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4056 __free_pages(page, order);
4057}
4058
52383431 4059void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4060{
4061 if (addr != 0) {
4062 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4063 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4064 }
4065}
4066
d00181b9
KS
4067static void *make_alloc_exact(unsigned long addr, unsigned int order,
4068 size_t size)
ee85c2e1
AK
4069{
4070 if (addr) {
4071 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4072 unsigned long used = addr + PAGE_ALIGN(size);
4073
4074 split_page(virt_to_page((void *)addr), order);
4075 while (used < alloc_end) {
4076 free_page(used);
4077 used += PAGE_SIZE;
4078 }
4079 }
4080 return (void *)addr;
4081}
4082
2be0ffe2
TT
4083/**
4084 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4085 * @size: the number of bytes to allocate
4086 * @gfp_mask: GFP flags for the allocation
4087 *
4088 * This function is similar to alloc_pages(), except that it allocates the
4089 * minimum number of pages to satisfy the request. alloc_pages() can only
4090 * allocate memory in power-of-two pages.
4091 *
4092 * This function is also limited by MAX_ORDER.
4093 *
4094 * Memory allocated by this function must be released by free_pages_exact().
4095 */
4096void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4097{
4098 unsigned int order = get_order(size);
4099 unsigned long addr;
4100
4101 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4102 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4103}
4104EXPORT_SYMBOL(alloc_pages_exact);
4105
ee85c2e1
AK
4106/**
4107 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4108 * pages on a node.
b5e6ab58 4109 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4110 * @size: the number of bytes to allocate
4111 * @gfp_mask: GFP flags for the allocation
4112 *
4113 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4114 * back.
ee85c2e1 4115 */
e1931811 4116void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4117{
d00181b9 4118 unsigned int order = get_order(size);
ee85c2e1
AK
4119 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4120 if (!p)
4121 return NULL;
4122 return make_alloc_exact((unsigned long)page_address(p), order, size);
4123}
ee85c2e1 4124
2be0ffe2
TT
4125/**
4126 * free_pages_exact - release memory allocated via alloc_pages_exact()
4127 * @virt: the value returned by alloc_pages_exact.
4128 * @size: size of allocation, same value as passed to alloc_pages_exact().
4129 *
4130 * Release the memory allocated by a previous call to alloc_pages_exact.
4131 */
4132void free_pages_exact(void *virt, size_t size)
4133{
4134 unsigned long addr = (unsigned long)virt;
4135 unsigned long end = addr + PAGE_ALIGN(size);
4136
4137 while (addr < end) {
4138 free_page(addr);
4139 addr += PAGE_SIZE;
4140 }
4141}
4142EXPORT_SYMBOL(free_pages_exact);
4143
e0fb5815
ZY
4144/**
4145 * nr_free_zone_pages - count number of pages beyond high watermark
4146 * @offset: The zone index of the highest zone
4147 *
4148 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4149 * high watermark within all zones at or below a given zone index. For each
4150 * zone, the number of pages is calculated as:
834405c3 4151 * managed_pages - high_pages
e0fb5815 4152 */
ebec3862 4153static unsigned long nr_free_zone_pages(int offset)
1da177e4 4154{
dd1a239f 4155 struct zoneref *z;
54a6eb5c
MG
4156 struct zone *zone;
4157
e310fd43 4158 /* Just pick one node, since fallback list is circular */
ebec3862 4159 unsigned long sum = 0;
1da177e4 4160
0e88460d 4161 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4162
54a6eb5c 4163 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4164 unsigned long size = zone->managed_pages;
41858966 4165 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4166 if (size > high)
4167 sum += size - high;
1da177e4
LT
4168 }
4169
4170 return sum;
4171}
4172
e0fb5815
ZY
4173/**
4174 * nr_free_buffer_pages - count number of pages beyond high watermark
4175 *
4176 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4177 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4178 */
ebec3862 4179unsigned long nr_free_buffer_pages(void)
1da177e4 4180{
af4ca457 4181 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4182}
c2f1a551 4183EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4184
e0fb5815
ZY
4185/**
4186 * nr_free_pagecache_pages - count number of pages beyond high watermark
4187 *
4188 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4189 * high watermark within all zones.
1da177e4 4190 */
ebec3862 4191unsigned long nr_free_pagecache_pages(void)
1da177e4 4192{
2a1e274a 4193 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4194}
08e0f6a9
CL
4195
4196static inline void show_node(struct zone *zone)
1da177e4 4197{
e5adfffc 4198 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4199 printk("Node %d ", zone_to_nid(zone));
1da177e4 4200}
1da177e4 4201
d02bd27b
IR
4202long si_mem_available(void)
4203{
4204 long available;
4205 unsigned long pagecache;
4206 unsigned long wmark_low = 0;
4207 unsigned long pages[NR_LRU_LISTS];
4208 struct zone *zone;
4209 int lru;
4210
4211 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4212 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4213
4214 for_each_zone(zone)
4215 wmark_low += zone->watermark[WMARK_LOW];
4216
4217 /*
4218 * Estimate the amount of memory available for userspace allocations,
4219 * without causing swapping.
4220 */
4221 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4222
4223 /*
4224 * Not all the page cache can be freed, otherwise the system will
4225 * start swapping. Assume at least half of the page cache, or the
4226 * low watermark worth of cache, needs to stay.
4227 */
4228 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4229 pagecache -= min(pagecache / 2, wmark_low);
4230 available += pagecache;
4231
4232 /*
4233 * Part of the reclaimable slab consists of items that are in use,
4234 * and cannot be freed. Cap this estimate at the low watermark.
4235 */
4236 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4237 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4238
4239 if (available < 0)
4240 available = 0;
4241 return available;
4242}
4243EXPORT_SYMBOL_GPL(si_mem_available);
4244
1da177e4
LT
4245void si_meminfo(struct sysinfo *val)
4246{
4247 val->totalram = totalram_pages;
cc7452b6 4248 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4249 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4250 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4251 val->totalhigh = totalhigh_pages;
4252 val->freehigh = nr_free_highpages();
1da177e4
LT
4253 val->mem_unit = PAGE_SIZE;
4254}
4255
4256EXPORT_SYMBOL(si_meminfo);
4257
4258#ifdef CONFIG_NUMA
4259void si_meminfo_node(struct sysinfo *val, int nid)
4260{
cdd91a77
JL
4261 int zone_type; /* needs to be signed */
4262 unsigned long managed_pages = 0;
fc2bd799
JK
4263 unsigned long managed_highpages = 0;
4264 unsigned long free_highpages = 0;
1da177e4
LT
4265 pg_data_t *pgdat = NODE_DATA(nid);
4266
cdd91a77
JL
4267 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4268 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4269 val->totalram = managed_pages;
cc7452b6 4270 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4271 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4272#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4273 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4274 struct zone *zone = &pgdat->node_zones[zone_type];
4275
4276 if (is_highmem(zone)) {
4277 managed_highpages += zone->managed_pages;
4278 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4279 }
4280 }
4281 val->totalhigh = managed_highpages;
4282 val->freehigh = free_highpages;
98d2b0eb 4283#else
fc2bd799
JK
4284 val->totalhigh = managed_highpages;
4285 val->freehigh = free_highpages;
98d2b0eb 4286#endif
1da177e4
LT
4287 val->mem_unit = PAGE_SIZE;
4288}
4289#endif
4290
ddd588b5 4291/*
7bf02ea2
DR
4292 * Determine whether the node should be displayed or not, depending on whether
4293 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4294 */
7bf02ea2 4295bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4296{
4297 bool ret = false;
cc9a6c87 4298 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4299
4300 if (!(flags & SHOW_MEM_FILTER_NODES))
4301 goto out;
4302
cc9a6c87 4303 do {
d26914d1 4304 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4305 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4306 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4307out:
4308 return ret;
4309}
4310
1da177e4
LT
4311#define K(x) ((x) << (PAGE_SHIFT-10))
4312
377e4f16
RV
4313static void show_migration_types(unsigned char type)
4314{
4315 static const char types[MIGRATE_TYPES] = {
4316 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4317 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4318 [MIGRATE_RECLAIMABLE] = 'E',
4319 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4320#ifdef CONFIG_CMA
4321 [MIGRATE_CMA] = 'C',
4322#endif
194159fb 4323#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4324 [MIGRATE_ISOLATE] = 'I',
194159fb 4325#endif
377e4f16
RV
4326 };
4327 char tmp[MIGRATE_TYPES + 1];
4328 char *p = tmp;
4329 int i;
4330
4331 for (i = 0; i < MIGRATE_TYPES; i++) {
4332 if (type & (1 << i))
4333 *p++ = types[i];
4334 }
4335
4336 *p = '\0';
4337 printk("(%s) ", tmp);
4338}
4339
1da177e4
LT
4340/*
4341 * Show free area list (used inside shift_scroll-lock stuff)
4342 * We also calculate the percentage fragmentation. We do this by counting the
4343 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4344 *
4345 * Bits in @filter:
4346 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4347 * cpuset.
1da177e4 4348 */
7bf02ea2 4349void show_free_areas(unsigned int filter)
1da177e4 4350{
d1bfcdb8 4351 unsigned long free_pcp = 0;
c7241913 4352 int cpu;
1da177e4
LT
4353 struct zone *zone;
4354
ee99c71c 4355 for_each_populated_zone(zone) {
7bf02ea2 4356 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4357 continue;
d1bfcdb8 4358
761b0677
KK
4359 for_each_online_cpu(cpu)
4360 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4361 }
4362
a731286d
KM
4363 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4364 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4365 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4366 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4367 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4368 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4369 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4370 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4371 global_page_state(NR_ISOLATED_ANON),
4372 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4373 global_page_state(NR_INACTIVE_FILE),
a731286d 4374 global_page_state(NR_ISOLATED_FILE),
7b854121 4375 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4376 global_page_state(NR_FILE_DIRTY),
ce866b34 4377 global_page_state(NR_WRITEBACK),
fd39fc85 4378 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4379 global_page_state(NR_SLAB_RECLAIMABLE),
4380 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4381 global_page_state(NR_FILE_MAPPED),
4b02108a 4382 global_page_state(NR_SHMEM),
a25700a5 4383 global_page_state(NR_PAGETABLE),
d1ce749a 4384 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4385 global_page_state(NR_FREE_PAGES),
4386 free_pcp,
d1ce749a 4387 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4388
ee99c71c 4389 for_each_populated_zone(zone) {
1da177e4
LT
4390 int i;
4391
7bf02ea2 4392 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4393 continue;
d1bfcdb8
KK
4394
4395 free_pcp = 0;
4396 for_each_online_cpu(cpu)
4397 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4398
1da177e4
LT
4399 show_node(zone);
4400 printk("%s"
4401 " free:%lukB"
4402 " min:%lukB"
4403 " low:%lukB"
4404 " high:%lukB"
4f98a2fe
RR
4405 " active_anon:%lukB"
4406 " inactive_anon:%lukB"
4407 " active_file:%lukB"
4408 " inactive_file:%lukB"
7b854121 4409 " unevictable:%lukB"
a731286d
KM
4410 " isolated(anon):%lukB"
4411 " isolated(file):%lukB"
1da177e4 4412 " present:%lukB"
9feedc9d 4413 " managed:%lukB"
4a0aa73f
KM
4414 " mlocked:%lukB"
4415 " dirty:%lukB"
4416 " writeback:%lukB"
4417 " mapped:%lukB"
4b02108a 4418 " shmem:%lukB"
4a0aa73f
KM
4419 " slab_reclaimable:%lukB"
4420 " slab_unreclaimable:%lukB"
c6a7f572 4421 " kernel_stack:%lukB"
4a0aa73f
KM
4422 " pagetables:%lukB"
4423 " unstable:%lukB"
4424 " bounce:%lukB"
d1bfcdb8
KK
4425 " free_pcp:%lukB"
4426 " local_pcp:%ukB"
d1ce749a 4427 " free_cma:%lukB"
4a0aa73f 4428 " writeback_tmp:%lukB"
1da177e4
LT
4429 " pages_scanned:%lu"
4430 " all_unreclaimable? %s"
4431 "\n",
4432 zone->name,
88f5acf8 4433 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4434 K(min_wmark_pages(zone)),
4435 K(low_wmark_pages(zone)),
4436 K(high_wmark_pages(zone)),
4f98a2fe
RR
4437 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4438 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4439 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4440 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4441 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4442 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4443 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4444 K(zone->present_pages),
9feedc9d 4445 K(zone->managed_pages),
4a0aa73f
KM
4446 K(zone_page_state(zone, NR_MLOCK)),
4447 K(zone_page_state(zone, NR_FILE_DIRTY)),
4448 K(zone_page_state(zone, NR_WRITEBACK)),
4449 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4450 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4451 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4452 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4453 zone_page_state(zone, NR_KERNEL_STACK) *
4454 THREAD_SIZE / 1024,
4a0aa73f
KM
4455 K(zone_page_state(zone, NR_PAGETABLE)),
4456 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4457 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4458 K(free_pcp),
4459 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4460 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4461 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4462 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4463 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4464 );
4465 printk("lowmem_reserve[]:");
4466 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4467 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4468 printk("\n");
4469 }
4470
ee99c71c 4471 for_each_populated_zone(zone) {
d00181b9
KS
4472 unsigned int order;
4473 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4474 unsigned char types[MAX_ORDER];
1da177e4 4475
7bf02ea2 4476 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4477 continue;
1da177e4
LT
4478 show_node(zone);
4479 printk("%s: ", zone->name);
1da177e4
LT
4480
4481 spin_lock_irqsave(&zone->lock, flags);
4482 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4483 struct free_area *area = &zone->free_area[order];
4484 int type;
4485
4486 nr[order] = area->nr_free;
8f9de51a 4487 total += nr[order] << order;
377e4f16
RV
4488
4489 types[order] = 0;
4490 for (type = 0; type < MIGRATE_TYPES; type++) {
4491 if (!list_empty(&area->free_list[type]))
4492 types[order] |= 1 << type;
4493 }
1da177e4
LT
4494 }
4495 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4496 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4497 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4498 if (nr[order])
4499 show_migration_types(types[order]);
4500 }
1da177e4
LT
4501 printk("= %lukB\n", K(total));
4502 }
4503
949f7ec5
DR
4504 hugetlb_show_meminfo();
4505
e6f3602d
LW
4506 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4507
1da177e4
LT
4508 show_swap_cache_info();
4509}
4510
19770b32
MG
4511static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4512{
4513 zoneref->zone = zone;
4514 zoneref->zone_idx = zone_idx(zone);
4515}
4516
1da177e4
LT
4517/*
4518 * Builds allocation fallback zone lists.
1a93205b
CL
4519 *
4520 * Add all populated zones of a node to the zonelist.
1da177e4 4521 */
f0c0b2b8 4522static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4523 int nr_zones)
1da177e4 4524{
1a93205b 4525 struct zone *zone;
bc732f1d 4526 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4527
4528 do {
2f6726e5 4529 zone_type--;
070f8032 4530 zone = pgdat->node_zones + zone_type;
1a93205b 4531 if (populated_zone(zone)) {
dd1a239f
MG
4532 zoneref_set_zone(zone,
4533 &zonelist->_zonerefs[nr_zones++]);
070f8032 4534 check_highest_zone(zone_type);
1da177e4 4535 }
2f6726e5 4536 } while (zone_type);
bc732f1d 4537
070f8032 4538 return nr_zones;
1da177e4
LT
4539}
4540
f0c0b2b8
KH
4541
4542/*
4543 * zonelist_order:
4544 * 0 = automatic detection of better ordering.
4545 * 1 = order by ([node] distance, -zonetype)
4546 * 2 = order by (-zonetype, [node] distance)
4547 *
4548 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4549 * the same zonelist. So only NUMA can configure this param.
4550 */
4551#define ZONELIST_ORDER_DEFAULT 0
4552#define ZONELIST_ORDER_NODE 1
4553#define ZONELIST_ORDER_ZONE 2
4554
4555/* zonelist order in the kernel.
4556 * set_zonelist_order() will set this to NODE or ZONE.
4557 */
4558static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4559static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4560
4561
1da177e4 4562#ifdef CONFIG_NUMA
f0c0b2b8
KH
4563/* The value user specified ....changed by config */
4564static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4565/* string for sysctl */
4566#define NUMA_ZONELIST_ORDER_LEN 16
4567char numa_zonelist_order[16] = "default";
4568
4569/*
4570 * interface for configure zonelist ordering.
4571 * command line option "numa_zonelist_order"
4572 * = "[dD]efault - default, automatic configuration.
4573 * = "[nN]ode - order by node locality, then by zone within node
4574 * = "[zZ]one - order by zone, then by locality within zone
4575 */
4576
4577static int __parse_numa_zonelist_order(char *s)
4578{
4579 if (*s == 'd' || *s == 'D') {
4580 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4581 } else if (*s == 'n' || *s == 'N') {
4582 user_zonelist_order = ZONELIST_ORDER_NODE;
4583 } else if (*s == 'z' || *s == 'Z') {
4584 user_zonelist_order = ZONELIST_ORDER_ZONE;
4585 } else {
1170532b 4586 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4587 return -EINVAL;
4588 }
4589 return 0;
4590}
4591
4592static __init int setup_numa_zonelist_order(char *s)
4593{
ecb256f8
VL
4594 int ret;
4595
4596 if (!s)
4597 return 0;
4598
4599 ret = __parse_numa_zonelist_order(s);
4600 if (ret == 0)
4601 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4602
4603 return ret;
f0c0b2b8
KH
4604}
4605early_param("numa_zonelist_order", setup_numa_zonelist_order);
4606
4607/*
4608 * sysctl handler for numa_zonelist_order
4609 */
cccad5b9 4610int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4611 void __user *buffer, size_t *length,
f0c0b2b8
KH
4612 loff_t *ppos)
4613{
4614 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4615 int ret;
443c6f14 4616 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4617
443c6f14 4618 mutex_lock(&zl_order_mutex);
dacbde09
CG
4619 if (write) {
4620 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4621 ret = -EINVAL;
4622 goto out;
4623 }
4624 strcpy(saved_string, (char *)table->data);
4625 }
8d65af78 4626 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4627 if (ret)
443c6f14 4628 goto out;
f0c0b2b8
KH
4629 if (write) {
4630 int oldval = user_zonelist_order;
dacbde09
CG
4631
4632 ret = __parse_numa_zonelist_order((char *)table->data);
4633 if (ret) {
f0c0b2b8
KH
4634 /*
4635 * bogus value. restore saved string
4636 */
dacbde09 4637 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4638 NUMA_ZONELIST_ORDER_LEN);
4639 user_zonelist_order = oldval;
4eaf3f64
HL
4640 } else if (oldval != user_zonelist_order) {
4641 mutex_lock(&zonelists_mutex);
9adb62a5 4642 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4643 mutex_unlock(&zonelists_mutex);
4644 }
f0c0b2b8 4645 }
443c6f14
AK
4646out:
4647 mutex_unlock(&zl_order_mutex);
4648 return ret;
f0c0b2b8
KH
4649}
4650
4651
62bc62a8 4652#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4653static int node_load[MAX_NUMNODES];
4654
1da177e4 4655/**
4dc3b16b 4656 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4657 * @node: node whose fallback list we're appending
4658 * @used_node_mask: nodemask_t of already used nodes
4659 *
4660 * We use a number of factors to determine which is the next node that should
4661 * appear on a given node's fallback list. The node should not have appeared
4662 * already in @node's fallback list, and it should be the next closest node
4663 * according to the distance array (which contains arbitrary distance values
4664 * from each node to each node in the system), and should also prefer nodes
4665 * with no CPUs, since presumably they'll have very little allocation pressure
4666 * on them otherwise.
4667 * It returns -1 if no node is found.
4668 */
f0c0b2b8 4669static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4670{
4cf808eb 4671 int n, val;
1da177e4 4672 int min_val = INT_MAX;
00ef2d2f 4673 int best_node = NUMA_NO_NODE;
a70f7302 4674 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4675
4cf808eb
LT
4676 /* Use the local node if we haven't already */
4677 if (!node_isset(node, *used_node_mask)) {
4678 node_set(node, *used_node_mask);
4679 return node;
4680 }
1da177e4 4681
4b0ef1fe 4682 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4683
4684 /* Don't want a node to appear more than once */
4685 if (node_isset(n, *used_node_mask))
4686 continue;
4687
1da177e4
LT
4688 /* Use the distance array to find the distance */
4689 val = node_distance(node, n);
4690
4cf808eb
LT
4691 /* Penalize nodes under us ("prefer the next node") */
4692 val += (n < node);
4693
1da177e4 4694 /* Give preference to headless and unused nodes */
a70f7302
RR
4695 tmp = cpumask_of_node(n);
4696 if (!cpumask_empty(tmp))
1da177e4
LT
4697 val += PENALTY_FOR_NODE_WITH_CPUS;
4698
4699 /* Slight preference for less loaded node */
4700 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4701 val += node_load[n];
4702
4703 if (val < min_val) {
4704 min_val = val;
4705 best_node = n;
4706 }
4707 }
4708
4709 if (best_node >= 0)
4710 node_set(best_node, *used_node_mask);
4711
4712 return best_node;
4713}
4714
f0c0b2b8
KH
4715
4716/*
4717 * Build zonelists ordered by node and zones within node.
4718 * This results in maximum locality--normal zone overflows into local
4719 * DMA zone, if any--but risks exhausting DMA zone.
4720 */
4721static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4722{
f0c0b2b8 4723 int j;
1da177e4 4724 struct zonelist *zonelist;
f0c0b2b8 4725
54a6eb5c 4726 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4727 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4728 ;
bc732f1d 4729 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4730 zonelist->_zonerefs[j].zone = NULL;
4731 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4732}
4733
523b9458
CL
4734/*
4735 * Build gfp_thisnode zonelists
4736 */
4737static void build_thisnode_zonelists(pg_data_t *pgdat)
4738{
523b9458
CL
4739 int j;
4740 struct zonelist *zonelist;
4741
54a6eb5c 4742 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4743 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4744 zonelist->_zonerefs[j].zone = NULL;
4745 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4746}
4747
f0c0b2b8
KH
4748/*
4749 * Build zonelists ordered by zone and nodes within zones.
4750 * This results in conserving DMA zone[s] until all Normal memory is
4751 * exhausted, but results in overflowing to remote node while memory
4752 * may still exist in local DMA zone.
4753 */
4754static int node_order[MAX_NUMNODES];
4755
4756static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4757{
f0c0b2b8
KH
4758 int pos, j, node;
4759 int zone_type; /* needs to be signed */
4760 struct zone *z;
4761 struct zonelist *zonelist;
4762
54a6eb5c
MG
4763 zonelist = &pgdat->node_zonelists[0];
4764 pos = 0;
4765 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4766 for (j = 0; j < nr_nodes; j++) {
4767 node = node_order[j];
4768 z = &NODE_DATA(node)->node_zones[zone_type];
4769 if (populated_zone(z)) {
dd1a239f
MG
4770 zoneref_set_zone(z,
4771 &zonelist->_zonerefs[pos++]);
54a6eb5c 4772 check_highest_zone(zone_type);
f0c0b2b8
KH
4773 }
4774 }
f0c0b2b8 4775 }
dd1a239f
MG
4776 zonelist->_zonerefs[pos].zone = NULL;
4777 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4778}
4779
3193913c
MG
4780#if defined(CONFIG_64BIT)
4781/*
4782 * Devices that require DMA32/DMA are relatively rare and do not justify a
4783 * penalty to every machine in case the specialised case applies. Default
4784 * to Node-ordering on 64-bit NUMA machines
4785 */
4786static int default_zonelist_order(void)
4787{
4788 return ZONELIST_ORDER_NODE;
4789}
4790#else
4791/*
4792 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4793 * by the kernel. If processes running on node 0 deplete the low memory zone
4794 * then reclaim will occur more frequency increasing stalls and potentially
4795 * be easier to OOM if a large percentage of the zone is under writeback or
4796 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4797 * Hence, default to zone ordering on 32-bit.
4798 */
f0c0b2b8
KH
4799static int default_zonelist_order(void)
4800{
f0c0b2b8
KH
4801 return ZONELIST_ORDER_ZONE;
4802}
3193913c 4803#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4804
4805static void set_zonelist_order(void)
4806{
4807 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4808 current_zonelist_order = default_zonelist_order();
4809 else
4810 current_zonelist_order = user_zonelist_order;
4811}
4812
4813static void build_zonelists(pg_data_t *pgdat)
4814{
c00eb15a 4815 int i, node, load;
1da177e4 4816 nodemask_t used_mask;
f0c0b2b8
KH
4817 int local_node, prev_node;
4818 struct zonelist *zonelist;
d00181b9 4819 unsigned int order = current_zonelist_order;
1da177e4
LT
4820
4821 /* initialize zonelists */
523b9458 4822 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4823 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4824 zonelist->_zonerefs[0].zone = NULL;
4825 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4826 }
4827
4828 /* NUMA-aware ordering of nodes */
4829 local_node = pgdat->node_id;
62bc62a8 4830 load = nr_online_nodes;
1da177e4
LT
4831 prev_node = local_node;
4832 nodes_clear(used_mask);
f0c0b2b8 4833
f0c0b2b8 4834 memset(node_order, 0, sizeof(node_order));
c00eb15a 4835 i = 0;
f0c0b2b8 4836
1da177e4
LT
4837 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4838 /*
4839 * We don't want to pressure a particular node.
4840 * So adding penalty to the first node in same
4841 * distance group to make it round-robin.
4842 */
957f822a
DR
4843 if (node_distance(local_node, node) !=
4844 node_distance(local_node, prev_node))
f0c0b2b8
KH
4845 node_load[node] = load;
4846
1da177e4
LT
4847 prev_node = node;
4848 load--;
f0c0b2b8
KH
4849 if (order == ZONELIST_ORDER_NODE)
4850 build_zonelists_in_node_order(pgdat, node);
4851 else
c00eb15a 4852 node_order[i++] = node; /* remember order */
f0c0b2b8 4853 }
1da177e4 4854
f0c0b2b8
KH
4855 if (order == ZONELIST_ORDER_ZONE) {
4856 /* calculate node order -- i.e., DMA last! */
c00eb15a 4857 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4858 }
523b9458
CL
4859
4860 build_thisnode_zonelists(pgdat);
1da177e4
LT
4861}
4862
7aac7898
LS
4863#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4864/*
4865 * Return node id of node used for "local" allocations.
4866 * I.e., first node id of first zone in arg node's generic zonelist.
4867 * Used for initializing percpu 'numa_mem', which is used primarily
4868 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4869 */
4870int local_memory_node(int node)
4871{
c33d6c06 4872 struct zoneref *z;
7aac7898 4873
c33d6c06 4874 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4875 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4876 NULL);
4877 return z->zone->node;
7aac7898
LS
4878}
4879#endif
f0c0b2b8 4880
1da177e4
LT
4881#else /* CONFIG_NUMA */
4882
f0c0b2b8
KH
4883static void set_zonelist_order(void)
4884{
4885 current_zonelist_order = ZONELIST_ORDER_ZONE;
4886}
4887
4888static void build_zonelists(pg_data_t *pgdat)
1da177e4 4889{
19655d34 4890 int node, local_node;
54a6eb5c
MG
4891 enum zone_type j;
4892 struct zonelist *zonelist;
1da177e4
LT
4893
4894 local_node = pgdat->node_id;
1da177e4 4895
54a6eb5c 4896 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4897 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4898
54a6eb5c
MG
4899 /*
4900 * Now we build the zonelist so that it contains the zones
4901 * of all the other nodes.
4902 * We don't want to pressure a particular node, so when
4903 * building the zones for node N, we make sure that the
4904 * zones coming right after the local ones are those from
4905 * node N+1 (modulo N)
4906 */
4907 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4908 if (!node_online(node))
4909 continue;
bc732f1d 4910 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4911 }
54a6eb5c
MG
4912 for (node = 0; node < local_node; node++) {
4913 if (!node_online(node))
4914 continue;
bc732f1d 4915 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4916 }
4917
dd1a239f
MG
4918 zonelist->_zonerefs[j].zone = NULL;
4919 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4920}
4921
4922#endif /* CONFIG_NUMA */
4923
99dcc3e5
CL
4924/*
4925 * Boot pageset table. One per cpu which is going to be used for all
4926 * zones and all nodes. The parameters will be set in such a way
4927 * that an item put on a list will immediately be handed over to
4928 * the buddy list. This is safe since pageset manipulation is done
4929 * with interrupts disabled.
4930 *
4931 * The boot_pagesets must be kept even after bootup is complete for
4932 * unused processors and/or zones. They do play a role for bootstrapping
4933 * hotplugged processors.
4934 *
4935 * zoneinfo_show() and maybe other functions do
4936 * not check if the processor is online before following the pageset pointer.
4937 * Other parts of the kernel may not check if the zone is available.
4938 */
4939static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4940static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4941static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4942
4eaf3f64
HL
4943/*
4944 * Global mutex to protect against size modification of zonelists
4945 * as well as to serialize pageset setup for the new populated zone.
4946 */
4947DEFINE_MUTEX(zonelists_mutex);
4948
9b1a4d38 4949/* return values int ....just for stop_machine() */
4ed7e022 4950static int __build_all_zonelists(void *data)
1da177e4 4951{
6811378e 4952 int nid;
99dcc3e5 4953 int cpu;
9adb62a5 4954 pg_data_t *self = data;
9276b1bc 4955
7f9cfb31
BL
4956#ifdef CONFIG_NUMA
4957 memset(node_load, 0, sizeof(node_load));
4958#endif
9adb62a5
JL
4959
4960 if (self && !node_online(self->node_id)) {
4961 build_zonelists(self);
9adb62a5
JL
4962 }
4963
9276b1bc 4964 for_each_online_node(nid) {
7ea1530a
CL
4965 pg_data_t *pgdat = NODE_DATA(nid);
4966
4967 build_zonelists(pgdat);
9276b1bc 4968 }
99dcc3e5
CL
4969
4970 /*
4971 * Initialize the boot_pagesets that are going to be used
4972 * for bootstrapping processors. The real pagesets for
4973 * each zone will be allocated later when the per cpu
4974 * allocator is available.
4975 *
4976 * boot_pagesets are used also for bootstrapping offline
4977 * cpus if the system is already booted because the pagesets
4978 * are needed to initialize allocators on a specific cpu too.
4979 * F.e. the percpu allocator needs the page allocator which
4980 * needs the percpu allocator in order to allocate its pagesets
4981 * (a chicken-egg dilemma).
4982 */
7aac7898 4983 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4984 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4985
7aac7898
LS
4986#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4987 /*
4988 * We now know the "local memory node" for each node--
4989 * i.e., the node of the first zone in the generic zonelist.
4990 * Set up numa_mem percpu variable for on-line cpus. During
4991 * boot, only the boot cpu should be on-line; we'll init the
4992 * secondary cpus' numa_mem as they come on-line. During
4993 * node/memory hotplug, we'll fixup all on-line cpus.
4994 */
4995 if (cpu_online(cpu))
4996 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4997#endif
4998 }
4999
6811378e
YG
5000 return 0;
5001}
5002
061f67bc
RV
5003static noinline void __init
5004build_all_zonelists_init(void)
5005{
5006 __build_all_zonelists(NULL);
5007 mminit_verify_zonelist();
5008 cpuset_init_current_mems_allowed();
5009}
5010
4eaf3f64
HL
5011/*
5012 * Called with zonelists_mutex held always
5013 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5014 *
5015 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5016 * [we're only called with non-NULL zone through __meminit paths] and
5017 * (2) call of __init annotated helper build_all_zonelists_init
5018 * [protected by SYSTEM_BOOTING].
4eaf3f64 5019 */
9adb62a5 5020void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5021{
f0c0b2b8
KH
5022 set_zonelist_order();
5023
6811378e 5024 if (system_state == SYSTEM_BOOTING) {
061f67bc 5025 build_all_zonelists_init();
6811378e 5026 } else {
e9959f0f 5027#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5028 if (zone)
5029 setup_zone_pageset(zone);
e9959f0f 5030#endif
dd1895e2
CS
5031 /* we have to stop all cpus to guarantee there is no user
5032 of zonelist */
9adb62a5 5033 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5034 /* cpuset refresh routine should be here */
5035 }
bd1e22b8 5036 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5037 /*
5038 * Disable grouping by mobility if the number of pages in the
5039 * system is too low to allow the mechanism to work. It would be
5040 * more accurate, but expensive to check per-zone. This check is
5041 * made on memory-hotadd so a system can start with mobility
5042 * disabled and enable it later
5043 */
d9c23400 5044 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5045 page_group_by_mobility_disabled = 1;
5046 else
5047 page_group_by_mobility_disabled = 0;
5048
756a025f
JP
5049 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5050 nr_online_nodes,
5051 zonelist_order_name[current_zonelist_order],
5052 page_group_by_mobility_disabled ? "off" : "on",
5053 vm_total_pages);
f0c0b2b8 5054#ifdef CONFIG_NUMA
f88dfff5 5055 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5056#endif
1da177e4
LT
5057}
5058
5059/*
5060 * Helper functions to size the waitqueue hash table.
5061 * Essentially these want to choose hash table sizes sufficiently
5062 * large so that collisions trying to wait on pages are rare.
5063 * But in fact, the number of active page waitqueues on typical
5064 * systems is ridiculously low, less than 200. So this is even
5065 * conservative, even though it seems large.
5066 *
5067 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5068 * waitqueues, i.e. the size of the waitq table given the number of pages.
5069 */
5070#define PAGES_PER_WAITQUEUE 256
5071
cca448fe 5072#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5073static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5074{
5075 unsigned long size = 1;
5076
5077 pages /= PAGES_PER_WAITQUEUE;
5078
5079 while (size < pages)
5080 size <<= 1;
5081
5082 /*
5083 * Once we have dozens or even hundreds of threads sleeping
5084 * on IO we've got bigger problems than wait queue collision.
5085 * Limit the size of the wait table to a reasonable size.
5086 */
5087 size = min(size, 4096UL);
5088
5089 return max(size, 4UL);
5090}
cca448fe
YG
5091#else
5092/*
5093 * A zone's size might be changed by hot-add, so it is not possible to determine
5094 * a suitable size for its wait_table. So we use the maximum size now.
5095 *
5096 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5097 *
5098 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5099 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5100 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5101 *
5102 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5103 * or more by the traditional way. (See above). It equals:
5104 *
5105 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5106 * ia64(16K page size) : = ( 8G + 4M)byte.
5107 * powerpc (64K page size) : = (32G +16M)byte.
5108 */
5109static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5110{
5111 return 4096UL;
5112}
5113#endif
1da177e4
LT
5114
5115/*
5116 * This is an integer logarithm so that shifts can be used later
5117 * to extract the more random high bits from the multiplicative
5118 * hash function before the remainder is taken.
5119 */
5120static inline unsigned long wait_table_bits(unsigned long size)
5121{
5122 return ffz(~size);
5123}
5124
1da177e4
LT
5125/*
5126 * Initially all pages are reserved - free ones are freed
5127 * up by free_all_bootmem() once the early boot process is
5128 * done. Non-atomic initialization, single-pass.
5129 */
c09b4240 5130void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5131 unsigned long start_pfn, enum memmap_context context)
1da177e4 5132{
4b94ffdc 5133 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5134 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5135 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5136 unsigned long pfn;
3a80a7fa 5137 unsigned long nr_initialised = 0;
342332e6
TI
5138#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5139 struct memblock_region *r = NULL, *tmp;
5140#endif
1da177e4 5141
22b31eec
HD
5142 if (highest_memmap_pfn < end_pfn - 1)
5143 highest_memmap_pfn = end_pfn - 1;
5144
4b94ffdc
DW
5145 /*
5146 * Honor reservation requested by the driver for this ZONE_DEVICE
5147 * memory
5148 */
5149 if (altmap && start_pfn == altmap->base_pfn)
5150 start_pfn += altmap->reserve;
5151
cbe8dd4a 5152 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5153 /*
b72d0ffb
AM
5154 * There can be holes in boot-time mem_map[]s handed to this
5155 * function. They do not exist on hotplugged memory.
a2f3aa02 5156 */
b72d0ffb
AM
5157 if (context != MEMMAP_EARLY)
5158 goto not_early;
5159
5160 if (!early_pfn_valid(pfn))
5161 continue;
5162 if (!early_pfn_in_nid(pfn, nid))
5163 continue;
5164 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5165 break;
342332e6
TI
5166
5167#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5168 /*
5169 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5170 * from zone_movable_pfn[nid] to end of each node should be
5171 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5172 */
5173 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5174 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5175 continue;
342332e6 5176
b72d0ffb
AM
5177 /*
5178 * Check given memblock attribute by firmware which can affect
5179 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5180 * mirrored, it's an overlapped memmap init. skip it.
5181 */
5182 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5183 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5184 for_each_memblock(memory, tmp)
5185 if (pfn < memblock_region_memory_end_pfn(tmp))
5186 break;
5187 r = tmp;
5188 }
5189 if (pfn >= memblock_region_memory_base_pfn(r) &&
5190 memblock_is_mirror(r)) {
5191 /* already initialized as NORMAL */
5192 pfn = memblock_region_memory_end_pfn(r);
5193 continue;
342332e6 5194 }
a2f3aa02 5195 }
b72d0ffb 5196#endif
ac5d2539 5197
b72d0ffb 5198not_early:
ac5d2539
MG
5199 /*
5200 * Mark the block movable so that blocks are reserved for
5201 * movable at startup. This will force kernel allocations
5202 * to reserve their blocks rather than leaking throughout
5203 * the address space during boot when many long-lived
974a786e 5204 * kernel allocations are made.
ac5d2539
MG
5205 *
5206 * bitmap is created for zone's valid pfn range. but memmap
5207 * can be created for invalid pages (for alignment)
5208 * check here not to call set_pageblock_migratetype() against
5209 * pfn out of zone.
5210 */
5211 if (!(pfn & (pageblock_nr_pages - 1))) {
5212 struct page *page = pfn_to_page(pfn);
5213
5214 __init_single_page(page, pfn, zone, nid);
5215 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5216 } else {
5217 __init_single_pfn(pfn, zone, nid);
5218 }
1da177e4
LT
5219 }
5220}
5221
1e548deb 5222static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5223{
7aeb09f9 5224 unsigned int order, t;
b2a0ac88
MG
5225 for_each_migratetype_order(order, t) {
5226 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5227 zone->free_area[order].nr_free = 0;
5228 }
5229}
5230
5231#ifndef __HAVE_ARCH_MEMMAP_INIT
5232#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5233 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5234#endif
5235
7cd2b0a3 5236static int zone_batchsize(struct zone *zone)
e7c8d5c9 5237{
3a6be87f 5238#ifdef CONFIG_MMU
e7c8d5c9
CL
5239 int batch;
5240
5241 /*
5242 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5243 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5244 *
5245 * OK, so we don't know how big the cache is. So guess.
5246 */
b40da049 5247 batch = zone->managed_pages / 1024;
ba56e91c
SR
5248 if (batch * PAGE_SIZE > 512 * 1024)
5249 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5250 batch /= 4; /* We effectively *= 4 below */
5251 if (batch < 1)
5252 batch = 1;
5253
5254 /*
0ceaacc9
NP
5255 * Clamp the batch to a 2^n - 1 value. Having a power
5256 * of 2 value was found to be more likely to have
5257 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5258 *
0ceaacc9
NP
5259 * For example if 2 tasks are alternately allocating
5260 * batches of pages, one task can end up with a lot
5261 * of pages of one half of the possible page colors
5262 * and the other with pages of the other colors.
e7c8d5c9 5263 */
9155203a 5264 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5265
e7c8d5c9 5266 return batch;
3a6be87f
DH
5267
5268#else
5269 /* The deferral and batching of frees should be suppressed under NOMMU
5270 * conditions.
5271 *
5272 * The problem is that NOMMU needs to be able to allocate large chunks
5273 * of contiguous memory as there's no hardware page translation to
5274 * assemble apparent contiguous memory from discontiguous pages.
5275 *
5276 * Queueing large contiguous runs of pages for batching, however,
5277 * causes the pages to actually be freed in smaller chunks. As there
5278 * can be a significant delay between the individual batches being
5279 * recycled, this leads to the once large chunks of space being
5280 * fragmented and becoming unavailable for high-order allocations.
5281 */
5282 return 0;
5283#endif
e7c8d5c9
CL
5284}
5285
8d7a8fa9
CS
5286/*
5287 * pcp->high and pcp->batch values are related and dependent on one another:
5288 * ->batch must never be higher then ->high.
5289 * The following function updates them in a safe manner without read side
5290 * locking.
5291 *
5292 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5293 * those fields changing asynchronously (acording the the above rule).
5294 *
5295 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5296 * outside of boot time (or some other assurance that no concurrent updaters
5297 * exist).
5298 */
5299static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5300 unsigned long batch)
5301{
5302 /* start with a fail safe value for batch */
5303 pcp->batch = 1;
5304 smp_wmb();
5305
5306 /* Update high, then batch, in order */
5307 pcp->high = high;
5308 smp_wmb();
5309
5310 pcp->batch = batch;
5311}
5312
3664033c 5313/* a companion to pageset_set_high() */
4008bab7
CS
5314static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5315{
8d7a8fa9 5316 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5317}
5318
88c90dbc 5319static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5320{
5321 struct per_cpu_pages *pcp;
5f8dcc21 5322 int migratetype;
2caaad41 5323
1c6fe946
MD
5324 memset(p, 0, sizeof(*p));
5325
3dfa5721 5326 pcp = &p->pcp;
2caaad41 5327 pcp->count = 0;
5f8dcc21
MG
5328 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5329 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5330}
5331
88c90dbc
CS
5332static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5333{
5334 pageset_init(p);
5335 pageset_set_batch(p, batch);
5336}
5337
8ad4b1fb 5338/*
3664033c 5339 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5340 * to the value high for the pageset p.
5341 */
3664033c 5342static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5343 unsigned long high)
5344{
8d7a8fa9
CS
5345 unsigned long batch = max(1UL, high / 4);
5346 if ((high / 4) > (PAGE_SHIFT * 8))
5347 batch = PAGE_SHIFT * 8;
8ad4b1fb 5348
8d7a8fa9 5349 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5350}
5351
7cd2b0a3
DR
5352static void pageset_set_high_and_batch(struct zone *zone,
5353 struct per_cpu_pageset *pcp)
56cef2b8 5354{
56cef2b8 5355 if (percpu_pagelist_fraction)
3664033c 5356 pageset_set_high(pcp,
56cef2b8
CS
5357 (zone->managed_pages /
5358 percpu_pagelist_fraction));
5359 else
5360 pageset_set_batch(pcp, zone_batchsize(zone));
5361}
5362
169f6c19
CS
5363static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5364{
5365 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5366
5367 pageset_init(pcp);
5368 pageset_set_high_and_batch(zone, pcp);
5369}
5370
4ed7e022 5371static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5372{
5373 int cpu;
319774e2 5374 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5375 for_each_possible_cpu(cpu)
5376 zone_pageset_init(zone, cpu);
319774e2
WF
5377}
5378
2caaad41 5379/*
99dcc3e5
CL
5380 * Allocate per cpu pagesets and initialize them.
5381 * Before this call only boot pagesets were available.
e7c8d5c9 5382 */
99dcc3e5 5383void __init setup_per_cpu_pageset(void)
e7c8d5c9 5384{
99dcc3e5 5385 struct zone *zone;
e7c8d5c9 5386
319774e2
WF
5387 for_each_populated_zone(zone)
5388 setup_zone_pageset(zone);
e7c8d5c9
CL
5389}
5390
577a32f6 5391static noinline __init_refok
cca448fe 5392int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5393{
5394 int i;
cca448fe 5395 size_t alloc_size;
ed8ece2e
DH
5396
5397 /*
5398 * The per-page waitqueue mechanism uses hashed waitqueues
5399 * per zone.
5400 */
02b694de
YG
5401 zone->wait_table_hash_nr_entries =
5402 wait_table_hash_nr_entries(zone_size_pages);
5403 zone->wait_table_bits =
5404 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5405 alloc_size = zone->wait_table_hash_nr_entries
5406 * sizeof(wait_queue_head_t);
5407
cd94b9db 5408 if (!slab_is_available()) {
cca448fe 5409 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5410 memblock_virt_alloc_node_nopanic(
5411 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5412 } else {
5413 /*
5414 * This case means that a zone whose size was 0 gets new memory
5415 * via memory hot-add.
5416 * But it may be the case that a new node was hot-added. In
5417 * this case vmalloc() will not be able to use this new node's
5418 * memory - this wait_table must be initialized to use this new
5419 * node itself as well.
5420 * To use this new node's memory, further consideration will be
5421 * necessary.
5422 */
8691f3a7 5423 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5424 }
5425 if (!zone->wait_table)
5426 return -ENOMEM;
ed8ece2e 5427
b8af2941 5428 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5429 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5430
5431 return 0;
ed8ece2e
DH
5432}
5433
c09b4240 5434static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5435{
99dcc3e5
CL
5436 /*
5437 * per cpu subsystem is not up at this point. The following code
5438 * relies on the ability of the linker to provide the
5439 * offset of a (static) per cpu variable into the per cpu area.
5440 */
5441 zone->pageset = &boot_pageset;
ed8ece2e 5442
b38a8725 5443 if (populated_zone(zone))
99dcc3e5
CL
5444 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5445 zone->name, zone->present_pages,
5446 zone_batchsize(zone));
ed8ece2e
DH
5447}
5448
4ed7e022 5449int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5450 unsigned long zone_start_pfn,
b171e409 5451 unsigned long size)
ed8ece2e
DH
5452{
5453 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5454 int ret;
5455 ret = zone_wait_table_init(zone, size);
5456 if (ret)
5457 return ret;
ed8ece2e
DH
5458 pgdat->nr_zones = zone_idx(zone) + 1;
5459
ed8ece2e
DH
5460 zone->zone_start_pfn = zone_start_pfn;
5461
708614e6
MG
5462 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5463 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5464 pgdat->node_id,
5465 (unsigned long)zone_idx(zone),
5466 zone_start_pfn, (zone_start_pfn + size));
5467
1e548deb 5468 zone_init_free_lists(zone);
718127cc
YG
5469
5470 return 0;
ed8ece2e
DH
5471}
5472
0ee332c1 5473#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5474#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5475
c713216d
MG
5476/*
5477 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5478 */
8a942fde
MG
5479int __meminit __early_pfn_to_nid(unsigned long pfn,
5480 struct mminit_pfnnid_cache *state)
c713216d 5481{
c13291a5 5482 unsigned long start_pfn, end_pfn;
e76b63f8 5483 int nid;
7c243c71 5484
8a942fde
MG
5485 if (state->last_start <= pfn && pfn < state->last_end)
5486 return state->last_nid;
c713216d 5487
e76b63f8
YL
5488 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5489 if (nid != -1) {
8a942fde
MG
5490 state->last_start = start_pfn;
5491 state->last_end = end_pfn;
5492 state->last_nid = nid;
e76b63f8
YL
5493 }
5494
5495 return nid;
c713216d
MG
5496}
5497#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5498
c713216d 5499/**
6782832e 5500 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5501 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5502 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5503 *
7d018176
ZZ
5504 * If an architecture guarantees that all ranges registered contain no holes
5505 * and may be freed, this this function may be used instead of calling
5506 * memblock_free_early_nid() manually.
c713216d 5507 */
c13291a5 5508void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5509{
c13291a5
TH
5510 unsigned long start_pfn, end_pfn;
5511 int i, this_nid;
edbe7d23 5512
c13291a5
TH
5513 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5514 start_pfn = min(start_pfn, max_low_pfn);
5515 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5516
c13291a5 5517 if (start_pfn < end_pfn)
6782832e
SS
5518 memblock_free_early_nid(PFN_PHYS(start_pfn),
5519 (end_pfn - start_pfn) << PAGE_SHIFT,
5520 this_nid);
edbe7d23 5521 }
edbe7d23 5522}
edbe7d23 5523
c713216d
MG
5524/**
5525 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5526 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5527 *
7d018176
ZZ
5528 * If an architecture guarantees that all ranges registered contain no holes and may
5529 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5530 */
5531void __init sparse_memory_present_with_active_regions(int nid)
5532{
c13291a5
TH
5533 unsigned long start_pfn, end_pfn;
5534 int i, this_nid;
c713216d 5535
c13291a5
TH
5536 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5537 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5538}
5539
5540/**
5541 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5542 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5543 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5544 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5545 *
5546 * It returns the start and end page frame of a node based on information
7d018176 5547 * provided by memblock_set_node(). If called for a node
c713216d 5548 * with no available memory, a warning is printed and the start and end
88ca3b94 5549 * PFNs will be 0.
c713216d 5550 */
a3142c8e 5551void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5552 unsigned long *start_pfn, unsigned long *end_pfn)
5553{
c13291a5 5554 unsigned long this_start_pfn, this_end_pfn;
c713216d 5555 int i;
c13291a5 5556
c713216d
MG
5557 *start_pfn = -1UL;
5558 *end_pfn = 0;
5559
c13291a5
TH
5560 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5561 *start_pfn = min(*start_pfn, this_start_pfn);
5562 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5563 }
5564
633c0666 5565 if (*start_pfn == -1UL)
c713216d 5566 *start_pfn = 0;
c713216d
MG
5567}
5568
2a1e274a
MG
5569/*
5570 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5571 * assumption is made that zones within a node are ordered in monotonic
5572 * increasing memory addresses so that the "highest" populated zone is used
5573 */
b69a7288 5574static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5575{
5576 int zone_index;
5577 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5578 if (zone_index == ZONE_MOVABLE)
5579 continue;
5580
5581 if (arch_zone_highest_possible_pfn[zone_index] >
5582 arch_zone_lowest_possible_pfn[zone_index])
5583 break;
5584 }
5585
5586 VM_BUG_ON(zone_index == -1);
5587 movable_zone = zone_index;
5588}
5589
5590/*
5591 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5592 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5593 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5594 * in each node depending on the size of each node and how evenly kernelcore
5595 * is distributed. This helper function adjusts the zone ranges
5596 * provided by the architecture for a given node by using the end of the
5597 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5598 * zones within a node are in order of monotonic increases memory addresses
5599 */
b69a7288 5600static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5601 unsigned long zone_type,
5602 unsigned long node_start_pfn,
5603 unsigned long node_end_pfn,
5604 unsigned long *zone_start_pfn,
5605 unsigned long *zone_end_pfn)
5606{
5607 /* Only adjust if ZONE_MOVABLE is on this node */
5608 if (zone_movable_pfn[nid]) {
5609 /* Size ZONE_MOVABLE */
5610 if (zone_type == ZONE_MOVABLE) {
5611 *zone_start_pfn = zone_movable_pfn[nid];
5612 *zone_end_pfn = min(node_end_pfn,
5613 arch_zone_highest_possible_pfn[movable_zone]);
5614
2a1e274a
MG
5615 /* Check if this whole range is within ZONE_MOVABLE */
5616 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5617 *zone_start_pfn = *zone_end_pfn;
5618 }
5619}
5620
c713216d
MG
5621/*
5622 * Return the number of pages a zone spans in a node, including holes
5623 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5624 */
6ea6e688 5625static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5626 unsigned long zone_type,
7960aedd
ZY
5627 unsigned long node_start_pfn,
5628 unsigned long node_end_pfn,
d91749c1
TI
5629 unsigned long *zone_start_pfn,
5630 unsigned long *zone_end_pfn,
c713216d
MG
5631 unsigned long *ignored)
5632{
b5685e92 5633 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5634 if (!node_start_pfn && !node_end_pfn)
5635 return 0;
5636
7960aedd 5637 /* Get the start and end of the zone */
d91749c1
TI
5638 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5639 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5640 adjust_zone_range_for_zone_movable(nid, zone_type,
5641 node_start_pfn, node_end_pfn,
d91749c1 5642 zone_start_pfn, zone_end_pfn);
c713216d
MG
5643
5644 /* Check that this node has pages within the zone's required range */
d91749c1 5645 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5646 return 0;
5647
5648 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5649 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5650 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5651
5652 /* Return the spanned pages */
d91749c1 5653 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5654}
5655
5656/*
5657 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5658 * then all holes in the requested range will be accounted for.
c713216d 5659 */
32996250 5660unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5661 unsigned long range_start_pfn,
5662 unsigned long range_end_pfn)
5663{
96e907d1
TH
5664 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5665 unsigned long start_pfn, end_pfn;
5666 int i;
c713216d 5667
96e907d1
TH
5668 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5669 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5670 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5671 nr_absent -= end_pfn - start_pfn;
c713216d 5672 }
96e907d1 5673 return nr_absent;
c713216d
MG
5674}
5675
5676/**
5677 * absent_pages_in_range - Return number of page frames in holes within a range
5678 * @start_pfn: The start PFN to start searching for holes
5679 * @end_pfn: The end PFN to stop searching for holes
5680 *
88ca3b94 5681 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5682 */
5683unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5684 unsigned long end_pfn)
5685{
5686 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5687}
5688
5689/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5690static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5691 unsigned long zone_type,
7960aedd
ZY
5692 unsigned long node_start_pfn,
5693 unsigned long node_end_pfn,
c713216d
MG
5694 unsigned long *ignored)
5695{
96e907d1
TH
5696 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5697 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5698 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5699 unsigned long nr_absent;
9c7cd687 5700
b5685e92 5701 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5702 if (!node_start_pfn && !node_end_pfn)
5703 return 0;
5704
96e907d1
TH
5705 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5706 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5707
2a1e274a
MG
5708 adjust_zone_range_for_zone_movable(nid, zone_type,
5709 node_start_pfn, node_end_pfn,
5710 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5711 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5712
5713 /*
5714 * ZONE_MOVABLE handling.
5715 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5716 * and vice versa.
5717 */
5718 if (zone_movable_pfn[nid]) {
5719 if (mirrored_kernelcore) {
5720 unsigned long start_pfn, end_pfn;
5721 struct memblock_region *r;
5722
5723 for_each_memblock(memory, r) {
5724 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5725 zone_start_pfn, zone_end_pfn);
5726 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5727 zone_start_pfn, zone_end_pfn);
5728
5729 if (zone_type == ZONE_MOVABLE &&
5730 memblock_is_mirror(r))
5731 nr_absent += end_pfn - start_pfn;
5732
5733 if (zone_type == ZONE_NORMAL &&
5734 !memblock_is_mirror(r))
5735 nr_absent += end_pfn - start_pfn;
5736 }
5737 } else {
5738 if (zone_type == ZONE_NORMAL)
5739 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5740 }
5741 }
5742
5743 return nr_absent;
c713216d 5744}
0e0b864e 5745
0ee332c1 5746#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5747static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5748 unsigned long zone_type,
7960aedd
ZY
5749 unsigned long node_start_pfn,
5750 unsigned long node_end_pfn,
d91749c1
TI
5751 unsigned long *zone_start_pfn,
5752 unsigned long *zone_end_pfn,
c713216d
MG
5753 unsigned long *zones_size)
5754{
d91749c1
TI
5755 unsigned int zone;
5756
5757 *zone_start_pfn = node_start_pfn;
5758 for (zone = 0; zone < zone_type; zone++)
5759 *zone_start_pfn += zones_size[zone];
5760
5761 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5762
c713216d
MG
5763 return zones_size[zone_type];
5764}
5765
6ea6e688 5766static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5767 unsigned long zone_type,
7960aedd
ZY
5768 unsigned long node_start_pfn,
5769 unsigned long node_end_pfn,
c713216d
MG
5770 unsigned long *zholes_size)
5771{
5772 if (!zholes_size)
5773 return 0;
5774
5775 return zholes_size[zone_type];
5776}
20e6926d 5777
0ee332c1 5778#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5779
a3142c8e 5780static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5781 unsigned long node_start_pfn,
5782 unsigned long node_end_pfn,
5783 unsigned long *zones_size,
5784 unsigned long *zholes_size)
c713216d 5785{
febd5949 5786 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5787 enum zone_type i;
5788
febd5949
GZ
5789 for (i = 0; i < MAX_NR_ZONES; i++) {
5790 struct zone *zone = pgdat->node_zones + i;
d91749c1 5791 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5792 unsigned long size, real_size;
c713216d 5793
febd5949
GZ
5794 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5795 node_start_pfn,
5796 node_end_pfn,
d91749c1
TI
5797 &zone_start_pfn,
5798 &zone_end_pfn,
febd5949
GZ
5799 zones_size);
5800 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5801 node_start_pfn, node_end_pfn,
5802 zholes_size);
d91749c1
TI
5803 if (size)
5804 zone->zone_start_pfn = zone_start_pfn;
5805 else
5806 zone->zone_start_pfn = 0;
febd5949
GZ
5807 zone->spanned_pages = size;
5808 zone->present_pages = real_size;
5809
5810 totalpages += size;
5811 realtotalpages += real_size;
5812 }
5813
5814 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5815 pgdat->node_present_pages = realtotalpages;
5816 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5817 realtotalpages);
5818}
5819
835c134e
MG
5820#ifndef CONFIG_SPARSEMEM
5821/*
5822 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5823 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5824 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5825 * round what is now in bits to nearest long in bits, then return it in
5826 * bytes.
5827 */
7c45512d 5828static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5829{
5830 unsigned long usemapsize;
5831
7c45512d 5832 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5833 usemapsize = roundup(zonesize, pageblock_nr_pages);
5834 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5835 usemapsize *= NR_PAGEBLOCK_BITS;
5836 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5837
5838 return usemapsize / 8;
5839}
5840
5841static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5842 struct zone *zone,
5843 unsigned long zone_start_pfn,
5844 unsigned long zonesize)
835c134e 5845{
7c45512d 5846 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5847 zone->pageblock_flags = NULL;
58a01a45 5848 if (usemapsize)
6782832e
SS
5849 zone->pageblock_flags =
5850 memblock_virt_alloc_node_nopanic(usemapsize,
5851 pgdat->node_id);
835c134e
MG
5852}
5853#else
7c45512d
LT
5854static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5855 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5856#endif /* CONFIG_SPARSEMEM */
5857
d9c23400 5858#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5859
d9c23400 5860/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5861void __paginginit set_pageblock_order(void)
d9c23400 5862{
955c1cd7
AM
5863 unsigned int order;
5864
d9c23400
MG
5865 /* Check that pageblock_nr_pages has not already been setup */
5866 if (pageblock_order)
5867 return;
5868
955c1cd7
AM
5869 if (HPAGE_SHIFT > PAGE_SHIFT)
5870 order = HUGETLB_PAGE_ORDER;
5871 else
5872 order = MAX_ORDER - 1;
5873
d9c23400
MG
5874 /*
5875 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5876 * This value may be variable depending on boot parameters on IA64 and
5877 * powerpc.
d9c23400
MG
5878 */
5879 pageblock_order = order;
5880}
5881#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5882
ba72cb8c
MG
5883/*
5884 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5885 * is unused as pageblock_order is set at compile-time. See
5886 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5887 * the kernel config
ba72cb8c 5888 */
15ca220e 5889void __paginginit set_pageblock_order(void)
ba72cb8c 5890{
ba72cb8c 5891}
d9c23400
MG
5892
5893#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5894
01cefaef
JL
5895static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5896 unsigned long present_pages)
5897{
5898 unsigned long pages = spanned_pages;
5899
5900 /*
5901 * Provide a more accurate estimation if there are holes within
5902 * the zone and SPARSEMEM is in use. If there are holes within the
5903 * zone, each populated memory region may cost us one or two extra
5904 * memmap pages due to alignment because memmap pages for each
5905 * populated regions may not naturally algined on page boundary.
5906 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5907 */
5908 if (spanned_pages > present_pages + (present_pages >> 4) &&
5909 IS_ENABLED(CONFIG_SPARSEMEM))
5910 pages = present_pages;
5911
5912 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5913}
5914
1da177e4
LT
5915/*
5916 * Set up the zone data structures:
5917 * - mark all pages reserved
5918 * - mark all memory queues empty
5919 * - clear the memory bitmaps
6527af5d
MK
5920 *
5921 * NOTE: pgdat should get zeroed by caller.
1da177e4 5922 */
7f3eb55b 5923static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5924{
2f1b6248 5925 enum zone_type j;
ed8ece2e 5926 int nid = pgdat->node_id;
718127cc 5927 int ret;
1da177e4 5928
208d54e5 5929 pgdat_resize_init(pgdat);
8177a420
AA
5930#ifdef CONFIG_NUMA_BALANCING
5931 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5932 pgdat->numabalancing_migrate_nr_pages = 0;
5933 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5934#endif
5935#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5936 spin_lock_init(&pgdat->split_queue_lock);
5937 INIT_LIST_HEAD(&pgdat->split_queue);
5938 pgdat->split_queue_len = 0;
8177a420 5939#endif
1da177e4 5940 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5941 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5942#ifdef CONFIG_COMPACTION
5943 init_waitqueue_head(&pgdat->kcompactd_wait);
5944#endif
eefa864b 5945 pgdat_page_ext_init(pgdat);
5f63b720 5946
1da177e4
LT
5947 for (j = 0; j < MAX_NR_ZONES; j++) {
5948 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5949 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5950 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5951
febd5949
GZ
5952 size = zone->spanned_pages;
5953 realsize = freesize = zone->present_pages;
1da177e4 5954
0e0b864e 5955 /*
9feedc9d 5956 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5957 * is used by this zone for memmap. This affects the watermark
5958 * and per-cpu initialisations
5959 */
01cefaef 5960 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5961 if (!is_highmem_idx(j)) {
5962 if (freesize >= memmap_pages) {
5963 freesize -= memmap_pages;
5964 if (memmap_pages)
5965 printk(KERN_DEBUG
5966 " %s zone: %lu pages used for memmap\n",
5967 zone_names[j], memmap_pages);
5968 } else
1170532b 5969 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5970 zone_names[j], memmap_pages, freesize);
5971 }
0e0b864e 5972
6267276f 5973 /* Account for reserved pages */
9feedc9d
JL
5974 if (j == 0 && freesize > dma_reserve) {
5975 freesize -= dma_reserve;
d903ef9f 5976 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5977 zone_names[0], dma_reserve);
0e0b864e
MG
5978 }
5979
98d2b0eb 5980 if (!is_highmem_idx(j))
9feedc9d 5981 nr_kernel_pages += freesize;
01cefaef
JL
5982 /* Charge for highmem memmap if there are enough kernel pages */
5983 else if (nr_kernel_pages > memmap_pages * 2)
5984 nr_kernel_pages -= memmap_pages;
9feedc9d 5985 nr_all_pages += freesize;
1da177e4 5986
9feedc9d
JL
5987 /*
5988 * Set an approximate value for lowmem here, it will be adjusted
5989 * when the bootmem allocator frees pages into the buddy system.
5990 * And all highmem pages will be managed by the buddy system.
5991 */
5992 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5993#ifdef CONFIG_NUMA
d5f541ed 5994 zone->node = nid;
9feedc9d 5995 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5996 / 100;
9feedc9d 5997 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5998#endif
1da177e4
LT
5999 zone->name = zone_names[j];
6000 spin_lock_init(&zone->lock);
6001 spin_lock_init(&zone->lru_lock);
bdc8cb98 6002 zone_seqlock_init(zone);
1da177e4 6003 zone->zone_pgdat = pgdat;
ed8ece2e 6004 zone_pcp_init(zone);
81c0a2bb
JW
6005
6006 /* For bootup, initialized properly in watermark setup */
6007 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6008
bea8c150 6009 lruvec_init(&zone->lruvec);
1da177e4
LT
6010 if (!size)
6011 continue;
6012
955c1cd7 6013 set_pageblock_order();
7c45512d 6014 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6015 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6016 BUG_ON(ret);
76cdd58e 6017 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6018 }
6019}
6020
577a32f6 6021static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6022{
b0aeba74 6023 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6024 unsigned long __maybe_unused offset = 0;
6025
1da177e4
LT
6026 /* Skip empty nodes */
6027 if (!pgdat->node_spanned_pages)
6028 return;
6029
d41dee36 6030#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6031 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6032 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6033 /* ia64 gets its own node_mem_map, before this, without bootmem */
6034 if (!pgdat->node_mem_map) {
b0aeba74 6035 unsigned long size, end;
d41dee36
AW
6036 struct page *map;
6037
e984bb43
BP
6038 /*
6039 * The zone's endpoints aren't required to be MAX_ORDER
6040 * aligned but the node_mem_map endpoints must be in order
6041 * for the buddy allocator to function correctly.
6042 */
108bcc96 6043 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6044 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6045 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6046 map = alloc_remap(pgdat->node_id, size);
6047 if (!map)
6782832e
SS
6048 map = memblock_virt_alloc_node_nopanic(size,
6049 pgdat->node_id);
a1c34a3b 6050 pgdat->node_mem_map = map + offset;
1da177e4 6051 }
12d810c1 6052#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6053 /*
6054 * With no DISCONTIG, the global mem_map is just set as node 0's
6055 */
c713216d 6056 if (pgdat == NODE_DATA(0)) {
1da177e4 6057 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6058#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6059 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6060 mem_map -= offset;
0ee332c1 6061#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6062 }
1da177e4 6063#endif
d41dee36 6064#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6065}
6066
9109fb7b
JW
6067void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6068 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6069{
9109fb7b 6070 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6071 unsigned long start_pfn = 0;
6072 unsigned long end_pfn = 0;
9109fb7b 6073
88fdf75d 6074 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6075 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6076
3a80a7fa 6077 reset_deferred_meminit(pgdat);
1da177e4
LT
6078 pgdat->node_id = nid;
6079 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6080#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6081 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6082 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6083 (u64)start_pfn << PAGE_SHIFT,
6084 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6085#else
6086 start_pfn = node_start_pfn;
7960aedd
ZY
6087#endif
6088 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6089 zones_size, zholes_size);
1da177e4
LT
6090
6091 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6092#ifdef CONFIG_FLAT_NODE_MEM_MAP
6093 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6094 nid, (unsigned long)pgdat,
6095 (unsigned long)pgdat->node_mem_map);
6096#endif
1da177e4 6097
7f3eb55b 6098 free_area_init_core(pgdat);
1da177e4
LT
6099}
6100
0ee332c1 6101#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6102
6103#if MAX_NUMNODES > 1
6104/*
6105 * Figure out the number of possible node ids.
6106 */
f9872caf 6107void __init setup_nr_node_ids(void)
418508c1 6108{
904a9553 6109 unsigned int highest;
418508c1 6110
904a9553 6111 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6112 nr_node_ids = highest + 1;
6113}
418508c1
MS
6114#endif
6115
1e01979c
TH
6116/**
6117 * node_map_pfn_alignment - determine the maximum internode alignment
6118 *
6119 * This function should be called after node map is populated and sorted.
6120 * It calculates the maximum power of two alignment which can distinguish
6121 * all the nodes.
6122 *
6123 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6124 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6125 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6126 * shifted, 1GiB is enough and this function will indicate so.
6127 *
6128 * This is used to test whether pfn -> nid mapping of the chosen memory
6129 * model has fine enough granularity to avoid incorrect mapping for the
6130 * populated node map.
6131 *
6132 * Returns the determined alignment in pfn's. 0 if there is no alignment
6133 * requirement (single node).
6134 */
6135unsigned long __init node_map_pfn_alignment(void)
6136{
6137 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6138 unsigned long start, end, mask;
1e01979c 6139 int last_nid = -1;
c13291a5 6140 int i, nid;
1e01979c 6141
c13291a5 6142 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6143 if (!start || last_nid < 0 || last_nid == nid) {
6144 last_nid = nid;
6145 last_end = end;
6146 continue;
6147 }
6148
6149 /*
6150 * Start with a mask granular enough to pin-point to the
6151 * start pfn and tick off bits one-by-one until it becomes
6152 * too coarse to separate the current node from the last.
6153 */
6154 mask = ~((1 << __ffs(start)) - 1);
6155 while (mask && last_end <= (start & (mask << 1)))
6156 mask <<= 1;
6157
6158 /* accumulate all internode masks */
6159 accl_mask |= mask;
6160 }
6161
6162 /* convert mask to number of pages */
6163 return ~accl_mask + 1;
6164}
6165
a6af2bc3 6166/* Find the lowest pfn for a node */
b69a7288 6167static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6168{
a6af2bc3 6169 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6170 unsigned long start_pfn;
6171 int i;
1abbfb41 6172
c13291a5
TH
6173 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6174 min_pfn = min(min_pfn, start_pfn);
c713216d 6175
a6af2bc3 6176 if (min_pfn == ULONG_MAX) {
1170532b 6177 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6178 return 0;
6179 }
6180
6181 return min_pfn;
c713216d
MG
6182}
6183
6184/**
6185 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6186 *
6187 * It returns the minimum PFN based on information provided via
7d018176 6188 * memblock_set_node().
c713216d
MG
6189 */
6190unsigned long __init find_min_pfn_with_active_regions(void)
6191{
6192 return find_min_pfn_for_node(MAX_NUMNODES);
6193}
6194
37b07e41
LS
6195/*
6196 * early_calculate_totalpages()
6197 * Sum pages in active regions for movable zone.
4b0ef1fe 6198 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6199 */
484f51f8 6200static unsigned long __init early_calculate_totalpages(void)
7e63efef 6201{
7e63efef 6202 unsigned long totalpages = 0;
c13291a5
TH
6203 unsigned long start_pfn, end_pfn;
6204 int i, nid;
6205
6206 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6207 unsigned long pages = end_pfn - start_pfn;
7e63efef 6208
37b07e41
LS
6209 totalpages += pages;
6210 if (pages)
4b0ef1fe 6211 node_set_state(nid, N_MEMORY);
37b07e41 6212 }
b8af2941 6213 return totalpages;
7e63efef
MG
6214}
6215
2a1e274a
MG
6216/*
6217 * Find the PFN the Movable zone begins in each node. Kernel memory
6218 * is spread evenly between nodes as long as the nodes have enough
6219 * memory. When they don't, some nodes will have more kernelcore than
6220 * others
6221 */
b224ef85 6222static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6223{
6224 int i, nid;
6225 unsigned long usable_startpfn;
6226 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6227 /* save the state before borrow the nodemask */
4b0ef1fe 6228 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6229 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6230 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6231 struct memblock_region *r;
b2f3eebe
TC
6232
6233 /* Need to find movable_zone earlier when movable_node is specified. */
6234 find_usable_zone_for_movable();
6235
6236 /*
6237 * If movable_node is specified, ignore kernelcore and movablecore
6238 * options.
6239 */
6240 if (movable_node_is_enabled()) {
136199f0
EM
6241 for_each_memblock(memory, r) {
6242 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6243 continue;
6244
136199f0 6245 nid = r->nid;
b2f3eebe 6246
136199f0 6247 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6248 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6249 min(usable_startpfn, zone_movable_pfn[nid]) :
6250 usable_startpfn;
6251 }
6252
6253 goto out2;
6254 }
2a1e274a 6255
342332e6
TI
6256 /*
6257 * If kernelcore=mirror is specified, ignore movablecore option
6258 */
6259 if (mirrored_kernelcore) {
6260 bool mem_below_4gb_not_mirrored = false;
6261
6262 for_each_memblock(memory, r) {
6263 if (memblock_is_mirror(r))
6264 continue;
6265
6266 nid = r->nid;
6267
6268 usable_startpfn = memblock_region_memory_base_pfn(r);
6269
6270 if (usable_startpfn < 0x100000) {
6271 mem_below_4gb_not_mirrored = true;
6272 continue;
6273 }
6274
6275 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6276 min(usable_startpfn, zone_movable_pfn[nid]) :
6277 usable_startpfn;
6278 }
6279
6280 if (mem_below_4gb_not_mirrored)
6281 pr_warn("This configuration results in unmirrored kernel memory.");
6282
6283 goto out2;
6284 }
6285
7e63efef 6286 /*
b2f3eebe 6287 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6288 * kernelcore that corresponds so that memory usable for
6289 * any allocation type is evenly spread. If both kernelcore
6290 * and movablecore are specified, then the value of kernelcore
6291 * will be used for required_kernelcore if it's greater than
6292 * what movablecore would have allowed.
6293 */
6294 if (required_movablecore) {
7e63efef
MG
6295 unsigned long corepages;
6296
6297 /*
6298 * Round-up so that ZONE_MOVABLE is at least as large as what
6299 * was requested by the user
6300 */
6301 required_movablecore =
6302 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6303 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6304 corepages = totalpages - required_movablecore;
6305
6306 required_kernelcore = max(required_kernelcore, corepages);
6307 }
6308
bde304bd
XQ
6309 /*
6310 * If kernelcore was not specified or kernelcore size is larger
6311 * than totalpages, there is no ZONE_MOVABLE.
6312 */
6313 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6314 goto out;
2a1e274a
MG
6315
6316 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6317 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6318
6319restart:
6320 /* Spread kernelcore memory as evenly as possible throughout nodes */
6321 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6322 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6323 unsigned long start_pfn, end_pfn;
6324
2a1e274a
MG
6325 /*
6326 * Recalculate kernelcore_node if the division per node
6327 * now exceeds what is necessary to satisfy the requested
6328 * amount of memory for the kernel
6329 */
6330 if (required_kernelcore < kernelcore_node)
6331 kernelcore_node = required_kernelcore / usable_nodes;
6332
6333 /*
6334 * As the map is walked, we track how much memory is usable
6335 * by the kernel using kernelcore_remaining. When it is
6336 * 0, the rest of the node is usable by ZONE_MOVABLE
6337 */
6338 kernelcore_remaining = kernelcore_node;
6339
6340 /* Go through each range of PFNs within this node */
c13291a5 6341 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6342 unsigned long size_pages;
6343
c13291a5 6344 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6345 if (start_pfn >= end_pfn)
6346 continue;
6347
6348 /* Account for what is only usable for kernelcore */
6349 if (start_pfn < usable_startpfn) {
6350 unsigned long kernel_pages;
6351 kernel_pages = min(end_pfn, usable_startpfn)
6352 - start_pfn;
6353
6354 kernelcore_remaining -= min(kernel_pages,
6355 kernelcore_remaining);
6356 required_kernelcore -= min(kernel_pages,
6357 required_kernelcore);
6358
6359 /* Continue if range is now fully accounted */
6360 if (end_pfn <= usable_startpfn) {
6361
6362 /*
6363 * Push zone_movable_pfn to the end so
6364 * that if we have to rebalance
6365 * kernelcore across nodes, we will
6366 * not double account here
6367 */
6368 zone_movable_pfn[nid] = end_pfn;
6369 continue;
6370 }
6371 start_pfn = usable_startpfn;
6372 }
6373
6374 /*
6375 * The usable PFN range for ZONE_MOVABLE is from
6376 * start_pfn->end_pfn. Calculate size_pages as the
6377 * number of pages used as kernelcore
6378 */
6379 size_pages = end_pfn - start_pfn;
6380 if (size_pages > kernelcore_remaining)
6381 size_pages = kernelcore_remaining;
6382 zone_movable_pfn[nid] = start_pfn + size_pages;
6383
6384 /*
6385 * Some kernelcore has been met, update counts and
6386 * break if the kernelcore for this node has been
b8af2941 6387 * satisfied
2a1e274a
MG
6388 */
6389 required_kernelcore -= min(required_kernelcore,
6390 size_pages);
6391 kernelcore_remaining -= size_pages;
6392 if (!kernelcore_remaining)
6393 break;
6394 }
6395 }
6396
6397 /*
6398 * If there is still required_kernelcore, we do another pass with one
6399 * less node in the count. This will push zone_movable_pfn[nid] further
6400 * along on the nodes that still have memory until kernelcore is
b8af2941 6401 * satisfied
2a1e274a
MG
6402 */
6403 usable_nodes--;
6404 if (usable_nodes && required_kernelcore > usable_nodes)
6405 goto restart;
6406
b2f3eebe 6407out2:
2a1e274a
MG
6408 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6409 for (nid = 0; nid < MAX_NUMNODES; nid++)
6410 zone_movable_pfn[nid] =
6411 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6412
20e6926d 6413out:
66918dcd 6414 /* restore the node_state */
4b0ef1fe 6415 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6416}
6417
4b0ef1fe
LJ
6418/* Any regular or high memory on that node ? */
6419static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6420{
37b07e41
LS
6421 enum zone_type zone_type;
6422
4b0ef1fe
LJ
6423 if (N_MEMORY == N_NORMAL_MEMORY)
6424 return;
6425
6426 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6427 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6428 if (populated_zone(zone)) {
4b0ef1fe
LJ
6429 node_set_state(nid, N_HIGH_MEMORY);
6430 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6431 zone_type <= ZONE_NORMAL)
6432 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6433 break;
6434 }
37b07e41 6435 }
37b07e41
LS
6436}
6437
c713216d
MG
6438/**
6439 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6440 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6441 *
6442 * This will call free_area_init_node() for each active node in the system.
7d018176 6443 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6444 * zone in each node and their holes is calculated. If the maximum PFN
6445 * between two adjacent zones match, it is assumed that the zone is empty.
6446 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6447 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6448 * starts where the previous one ended. For example, ZONE_DMA32 starts
6449 * at arch_max_dma_pfn.
6450 */
6451void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6452{
c13291a5
TH
6453 unsigned long start_pfn, end_pfn;
6454 int i, nid;
a6af2bc3 6455
c713216d
MG
6456 /* Record where the zone boundaries are */
6457 memset(arch_zone_lowest_possible_pfn, 0,
6458 sizeof(arch_zone_lowest_possible_pfn));
6459 memset(arch_zone_highest_possible_pfn, 0,
6460 sizeof(arch_zone_highest_possible_pfn));
6461 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6462 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6463 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6464 if (i == ZONE_MOVABLE)
6465 continue;
c713216d
MG
6466 arch_zone_lowest_possible_pfn[i] =
6467 arch_zone_highest_possible_pfn[i-1];
6468 arch_zone_highest_possible_pfn[i] =
6469 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6470 }
2a1e274a
MG
6471 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6472 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6473
6474 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6475 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6476 find_zone_movable_pfns_for_nodes();
c713216d 6477
c713216d 6478 /* Print out the zone ranges */
f88dfff5 6479 pr_info("Zone ranges:\n");
2a1e274a
MG
6480 for (i = 0; i < MAX_NR_ZONES; i++) {
6481 if (i == ZONE_MOVABLE)
6482 continue;
f88dfff5 6483 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6484 if (arch_zone_lowest_possible_pfn[i] ==
6485 arch_zone_highest_possible_pfn[i])
f88dfff5 6486 pr_cont("empty\n");
72f0ba02 6487 else
8d29e18a
JG
6488 pr_cont("[mem %#018Lx-%#018Lx]\n",
6489 (u64)arch_zone_lowest_possible_pfn[i]
6490 << PAGE_SHIFT,
6491 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6492 << PAGE_SHIFT) - 1);
2a1e274a
MG
6493 }
6494
6495 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6496 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6497 for (i = 0; i < MAX_NUMNODES; i++) {
6498 if (zone_movable_pfn[i])
8d29e18a
JG
6499 pr_info(" Node %d: %#018Lx\n", i,
6500 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6501 }
c713216d 6502
f2d52fe5 6503 /* Print out the early node map */
f88dfff5 6504 pr_info("Early memory node ranges\n");
c13291a5 6505 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6506 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6507 (u64)start_pfn << PAGE_SHIFT,
6508 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6509
6510 /* Initialise every node */
708614e6 6511 mminit_verify_pageflags_layout();
8ef82866 6512 setup_nr_node_ids();
c713216d
MG
6513 for_each_online_node(nid) {
6514 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6515 free_area_init_node(nid, NULL,
c713216d 6516 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6517
6518 /* Any memory on that node */
6519 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6520 node_set_state(nid, N_MEMORY);
6521 check_for_memory(pgdat, nid);
c713216d
MG
6522 }
6523}
2a1e274a 6524
7e63efef 6525static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6526{
6527 unsigned long long coremem;
6528 if (!p)
6529 return -EINVAL;
6530
6531 coremem = memparse(p, &p);
7e63efef 6532 *core = coremem >> PAGE_SHIFT;
2a1e274a 6533
7e63efef 6534 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6535 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6536
6537 return 0;
6538}
ed7ed365 6539
7e63efef
MG
6540/*
6541 * kernelcore=size sets the amount of memory for use for allocations that
6542 * cannot be reclaimed or migrated.
6543 */
6544static int __init cmdline_parse_kernelcore(char *p)
6545{
342332e6
TI
6546 /* parse kernelcore=mirror */
6547 if (parse_option_str(p, "mirror")) {
6548 mirrored_kernelcore = true;
6549 return 0;
6550 }
6551
7e63efef
MG
6552 return cmdline_parse_core(p, &required_kernelcore);
6553}
6554
6555/*
6556 * movablecore=size sets the amount of memory for use for allocations that
6557 * can be reclaimed or migrated.
6558 */
6559static int __init cmdline_parse_movablecore(char *p)
6560{
6561 return cmdline_parse_core(p, &required_movablecore);
6562}
6563
ed7ed365 6564early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6565early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6566
0ee332c1 6567#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6568
c3d5f5f0
JL
6569void adjust_managed_page_count(struct page *page, long count)
6570{
6571 spin_lock(&managed_page_count_lock);
6572 page_zone(page)->managed_pages += count;
6573 totalram_pages += count;
3dcc0571
JL
6574#ifdef CONFIG_HIGHMEM
6575 if (PageHighMem(page))
6576 totalhigh_pages += count;
6577#endif
c3d5f5f0
JL
6578 spin_unlock(&managed_page_count_lock);
6579}
3dcc0571 6580EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6581
11199692 6582unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6583{
11199692
JL
6584 void *pos;
6585 unsigned long pages = 0;
69afade7 6586
11199692
JL
6587 start = (void *)PAGE_ALIGN((unsigned long)start);
6588 end = (void *)((unsigned long)end & PAGE_MASK);
6589 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6590 if ((unsigned int)poison <= 0xFF)
11199692
JL
6591 memset(pos, poison, PAGE_SIZE);
6592 free_reserved_page(virt_to_page(pos));
69afade7
JL
6593 }
6594
6595 if (pages && s)
11199692 6596 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6597 s, pages << (PAGE_SHIFT - 10), start, end);
6598
6599 return pages;
6600}
11199692 6601EXPORT_SYMBOL(free_reserved_area);
69afade7 6602
cfa11e08
JL
6603#ifdef CONFIG_HIGHMEM
6604void free_highmem_page(struct page *page)
6605{
6606 __free_reserved_page(page);
6607 totalram_pages++;
7b4b2a0d 6608 page_zone(page)->managed_pages++;
cfa11e08
JL
6609 totalhigh_pages++;
6610}
6611#endif
6612
7ee3d4e8
JL
6613
6614void __init mem_init_print_info(const char *str)
6615{
6616 unsigned long physpages, codesize, datasize, rosize, bss_size;
6617 unsigned long init_code_size, init_data_size;
6618
6619 physpages = get_num_physpages();
6620 codesize = _etext - _stext;
6621 datasize = _edata - _sdata;
6622 rosize = __end_rodata - __start_rodata;
6623 bss_size = __bss_stop - __bss_start;
6624 init_data_size = __init_end - __init_begin;
6625 init_code_size = _einittext - _sinittext;
6626
6627 /*
6628 * Detect special cases and adjust section sizes accordingly:
6629 * 1) .init.* may be embedded into .data sections
6630 * 2) .init.text.* may be out of [__init_begin, __init_end],
6631 * please refer to arch/tile/kernel/vmlinux.lds.S.
6632 * 3) .rodata.* may be embedded into .text or .data sections.
6633 */
6634#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6635 do { \
6636 if (start <= pos && pos < end && size > adj) \
6637 size -= adj; \
6638 } while (0)
7ee3d4e8
JL
6639
6640 adj_init_size(__init_begin, __init_end, init_data_size,
6641 _sinittext, init_code_size);
6642 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6643 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6644 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6645 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6646
6647#undef adj_init_size
6648
756a025f 6649 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6650#ifdef CONFIG_HIGHMEM
756a025f 6651 ", %luK highmem"
7ee3d4e8 6652#endif
756a025f
JP
6653 "%s%s)\n",
6654 nr_free_pages() << (PAGE_SHIFT - 10),
6655 physpages << (PAGE_SHIFT - 10),
6656 codesize >> 10, datasize >> 10, rosize >> 10,
6657 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6658 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6659 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6660#ifdef CONFIG_HIGHMEM
756a025f 6661 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6662#endif
756a025f 6663 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6664}
6665
0e0b864e 6666/**
88ca3b94
RD
6667 * set_dma_reserve - set the specified number of pages reserved in the first zone
6668 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6669 *
013110a7 6670 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6671 * In the DMA zone, a significant percentage may be consumed by kernel image
6672 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6673 * function may optionally be used to account for unfreeable pages in the
6674 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6675 * smaller per-cpu batchsize.
0e0b864e
MG
6676 */
6677void __init set_dma_reserve(unsigned long new_dma_reserve)
6678{
6679 dma_reserve = new_dma_reserve;
6680}
6681
1da177e4
LT
6682void __init free_area_init(unsigned long *zones_size)
6683{
9109fb7b 6684 free_area_init_node(0, zones_size,
1da177e4
LT
6685 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6686}
1da177e4 6687
1da177e4
LT
6688static int page_alloc_cpu_notify(struct notifier_block *self,
6689 unsigned long action, void *hcpu)
6690{
6691 int cpu = (unsigned long)hcpu;
1da177e4 6692
8bb78442 6693 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6694 lru_add_drain_cpu(cpu);
9f8f2172
CL
6695 drain_pages(cpu);
6696
6697 /*
6698 * Spill the event counters of the dead processor
6699 * into the current processors event counters.
6700 * This artificially elevates the count of the current
6701 * processor.
6702 */
f8891e5e 6703 vm_events_fold_cpu(cpu);
9f8f2172
CL
6704
6705 /*
6706 * Zero the differential counters of the dead processor
6707 * so that the vm statistics are consistent.
6708 *
6709 * This is only okay since the processor is dead and cannot
6710 * race with what we are doing.
6711 */
2bb921e5 6712 cpu_vm_stats_fold(cpu);
1da177e4
LT
6713 }
6714 return NOTIFY_OK;
6715}
1da177e4
LT
6716
6717void __init page_alloc_init(void)
6718{
6719 hotcpu_notifier(page_alloc_cpu_notify, 0);
6720}
6721
cb45b0e9 6722/*
34b10060 6723 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6724 * or min_free_kbytes changes.
6725 */
6726static void calculate_totalreserve_pages(void)
6727{
6728 struct pglist_data *pgdat;
6729 unsigned long reserve_pages = 0;
2f6726e5 6730 enum zone_type i, j;
cb45b0e9
HA
6731
6732 for_each_online_pgdat(pgdat) {
6733 for (i = 0; i < MAX_NR_ZONES; i++) {
6734 struct zone *zone = pgdat->node_zones + i;
3484b2de 6735 long max = 0;
cb45b0e9
HA
6736
6737 /* Find valid and maximum lowmem_reserve in the zone */
6738 for (j = i; j < MAX_NR_ZONES; j++) {
6739 if (zone->lowmem_reserve[j] > max)
6740 max = zone->lowmem_reserve[j];
6741 }
6742
41858966
MG
6743 /* we treat the high watermark as reserved pages. */
6744 max += high_wmark_pages(zone);
cb45b0e9 6745
b40da049
JL
6746 if (max > zone->managed_pages)
6747 max = zone->managed_pages;
a8d01437
JW
6748
6749 zone->totalreserve_pages = max;
6750
cb45b0e9
HA
6751 reserve_pages += max;
6752 }
6753 }
6754 totalreserve_pages = reserve_pages;
6755}
6756
1da177e4
LT
6757/*
6758 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6759 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6760 * has a correct pages reserved value, so an adequate number of
6761 * pages are left in the zone after a successful __alloc_pages().
6762 */
6763static void setup_per_zone_lowmem_reserve(void)
6764{
6765 struct pglist_data *pgdat;
2f6726e5 6766 enum zone_type j, idx;
1da177e4 6767
ec936fc5 6768 for_each_online_pgdat(pgdat) {
1da177e4
LT
6769 for (j = 0; j < MAX_NR_ZONES; j++) {
6770 struct zone *zone = pgdat->node_zones + j;
b40da049 6771 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6772
6773 zone->lowmem_reserve[j] = 0;
6774
2f6726e5
CL
6775 idx = j;
6776 while (idx) {
1da177e4
LT
6777 struct zone *lower_zone;
6778
2f6726e5
CL
6779 idx--;
6780
1da177e4
LT
6781 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6782 sysctl_lowmem_reserve_ratio[idx] = 1;
6783
6784 lower_zone = pgdat->node_zones + idx;
b40da049 6785 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6786 sysctl_lowmem_reserve_ratio[idx];
b40da049 6787 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6788 }
6789 }
6790 }
cb45b0e9
HA
6791
6792 /* update totalreserve_pages */
6793 calculate_totalreserve_pages();
1da177e4
LT
6794}
6795
cfd3da1e 6796static void __setup_per_zone_wmarks(void)
1da177e4
LT
6797{
6798 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6799 unsigned long lowmem_pages = 0;
6800 struct zone *zone;
6801 unsigned long flags;
6802
6803 /* Calculate total number of !ZONE_HIGHMEM pages */
6804 for_each_zone(zone) {
6805 if (!is_highmem(zone))
b40da049 6806 lowmem_pages += zone->managed_pages;
1da177e4
LT
6807 }
6808
6809 for_each_zone(zone) {
ac924c60
AM
6810 u64 tmp;
6811
1125b4e3 6812 spin_lock_irqsave(&zone->lock, flags);
b40da049 6813 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6814 do_div(tmp, lowmem_pages);
1da177e4
LT
6815 if (is_highmem(zone)) {
6816 /*
669ed175
NP
6817 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6818 * need highmem pages, so cap pages_min to a small
6819 * value here.
6820 *
41858966 6821 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6822 * deltas control asynch page reclaim, and so should
669ed175 6823 * not be capped for highmem.
1da177e4 6824 */
90ae8d67 6825 unsigned long min_pages;
1da177e4 6826
b40da049 6827 min_pages = zone->managed_pages / 1024;
90ae8d67 6828 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6829 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6830 } else {
669ed175
NP
6831 /*
6832 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6833 * proportionate to the zone's size.
6834 */
41858966 6835 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6836 }
6837
795ae7a0
JW
6838 /*
6839 * Set the kswapd watermarks distance according to the
6840 * scale factor in proportion to available memory, but
6841 * ensure a minimum size on small systems.
6842 */
6843 tmp = max_t(u64, tmp >> 2,
6844 mult_frac(zone->managed_pages,
6845 watermark_scale_factor, 10000));
6846
6847 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6848 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6849
81c0a2bb 6850 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6851 high_wmark_pages(zone) - low_wmark_pages(zone) -
6852 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6853
1125b4e3 6854 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6855 }
cb45b0e9
HA
6856
6857 /* update totalreserve_pages */
6858 calculate_totalreserve_pages();
1da177e4
LT
6859}
6860
cfd3da1e
MG
6861/**
6862 * setup_per_zone_wmarks - called when min_free_kbytes changes
6863 * or when memory is hot-{added|removed}
6864 *
6865 * Ensures that the watermark[min,low,high] values for each zone are set
6866 * correctly with respect to min_free_kbytes.
6867 */
6868void setup_per_zone_wmarks(void)
6869{
6870 mutex_lock(&zonelists_mutex);
6871 __setup_per_zone_wmarks();
6872 mutex_unlock(&zonelists_mutex);
6873}
6874
1da177e4
LT
6875/*
6876 * Initialise min_free_kbytes.
6877 *
6878 * For small machines we want it small (128k min). For large machines
6879 * we want it large (64MB max). But it is not linear, because network
6880 * bandwidth does not increase linearly with machine size. We use
6881 *
b8af2941 6882 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6883 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6884 *
6885 * which yields
6886 *
6887 * 16MB: 512k
6888 * 32MB: 724k
6889 * 64MB: 1024k
6890 * 128MB: 1448k
6891 * 256MB: 2048k
6892 * 512MB: 2896k
6893 * 1024MB: 4096k
6894 * 2048MB: 5792k
6895 * 4096MB: 8192k
6896 * 8192MB: 11584k
6897 * 16384MB: 16384k
6898 */
1b79acc9 6899int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6900{
6901 unsigned long lowmem_kbytes;
5f12733e 6902 int new_min_free_kbytes;
1da177e4
LT
6903
6904 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6905 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6906
6907 if (new_min_free_kbytes > user_min_free_kbytes) {
6908 min_free_kbytes = new_min_free_kbytes;
6909 if (min_free_kbytes < 128)
6910 min_free_kbytes = 128;
6911 if (min_free_kbytes > 65536)
6912 min_free_kbytes = 65536;
6913 } else {
6914 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6915 new_min_free_kbytes, user_min_free_kbytes);
6916 }
bc75d33f 6917 setup_per_zone_wmarks();
a6cccdc3 6918 refresh_zone_stat_thresholds();
1da177e4
LT
6919 setup_per_zone_lowmem_reserve();
6920 return 0;
6921}
bc22af74 6922core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6923
6924/*
b8af2941 6925 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6926 * that we can call two helper functions whenever min_free_kbytes
6927 * changes.
6928 */
cccad5b9 6929int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6930 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6931{
da8c757b
HP
6932 int rc;
6933
6934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6935 if (rc)
6936 return rc;
6937
5f12733e
MH
6938 if (write) {
6939 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6940 setup_per_zone_wmarks();
5f12733e 6941 }
1da177e4
LT
6942 return 0;
6943}
6944
795ae7a0
JW
6945int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6946 void __user *buffer, size_t *length, loff_t *ppos)
6947{
6948 int rc;
6949
6950 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6951 if (rc)
6952 return rc;
6953
6954 if (write)
6955 setup_per_zone_wmarks();
6956
6957 return 0;
6958}
6959
9614634f 6960#ifdef CONFIG_NUMA
cccad5b9 6961int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6962 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6963{
6964 struct zone *zone;
6965 int rc;
6966
8d65af78 6967 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6968 if (rc)
6969 return rc;
6970
6971 for_each_zone(zone)
b40da049 6972 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6973 sysctl_min_unmapped_ratio) / 100;
6974 return 0;
6975}
0ff38490 6976
cccad5b9 6977int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6978 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6979{
6980 struct zone *zone;
6981 int rc;
6982
8d65af78 6983 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6984 if (rc)
6985 return rc;
6986
6987 for_each_zone(zone)
b40da049 6988 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6989 sysctl_min_slab_ratio) / 100;
6990 return 0;
6991}
9614634f
CL
6992#endif
6993
1da177e4
LT
6994/*
6995 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6996 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6997 * whenever sysctl_lowmem_reserve_ratio changes.
6998 *
6999 * The reserve ratio obviously has absolutely no relation with the
41858966 7000 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7001 * if in function of the boot time zone sizes.
7002 */
cccad5b9 7003int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7004 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7005{
8d65af78 7006 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7007 setup_per_zone_lowmem_reserve();
7008 return 0;
7009}
7010
8ad4b1fb
RS
7011/*
7012 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7013 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7014 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7015 */
cccad5b9 7016int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7017 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7018{
7019 struct zone *zone;
7cd2b0a3 7020 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7021 int ret;
7022
7cd2b0a3
DR
7023 mutex_lock(&pcp_batch_high_lock);
7024 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7025
8d65af78 7026 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7027 if (!write || ret < 0)
7028 goto out;
7029
7030 /* Sanity checking to avoid pcp imbalance */
7031 if (percpu_pagelist_fraction &&
7032 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7033 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7034 ret = -EINVAL;
7035 goto out;
7036 }
7037
7038 /* No change? */
7039 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7040 goto out;
c8e251fa 7041
364df0eb 7042 for_each_populated_zone(zone) {
7cd2b0a3
DR
7043 unsigned int cpu;
7044
22a7f12b 7045 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7046 pageset_set_high_and_batch(zone,
7047 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7048 }
7cd2b0a3 7049out:
c8e251fa 7050 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7051 return ret;
8ad4b1fb
RS
7052}
7053
a9919c79 7054#ifdef CONFIG_NUMA
f034b5d4 7055int hashdist = HASHDIST_DEFAULT;
1da177e4 7056
1da177e4
LT
7057static int __init set_hashdist(char *str)
7058{
7059 if (!str)
7060 return 0;
7061 hashdist = simple_strtoul(str, &str, 0);
7062 return 1;
7063}
7064__setup("hashdist=", set_hashdist);
7065#endif
7066
7067/*
7068 * allocate a large system hash table from bootmem
7069 * - it is assumed that the hash table must contain an exact power-of-2
7070 * quantity of entries
7071 * - limit is the number of hash buckets, not the total allocation size
7072 */
7073void *__init alloc_large_system_hash(const char *tablename,
7074 unsigned long bucketsize,
7075 unsigned long numentries,
7076 int scale,
7077 int flags,
7078 unsigned int *_hash_shift,
7079 unsigned int *_hash_mask,
31fe62b9
TB
7080 unsigned long low_limit,
7081 unsigned long high_limit)
1da177e4 7082{
31fe62b9 7083 unsigned long long max = high_limit;
1da177e4
LT
7084 unsigned long log2qty, size;
7085 void *table = NULL;
7086
7087 /* allow the kernel cmdline to have a say */
7088 if (!numentries) {
7089 /* round applicable memory size up to nearest megabyte */
04903664 7090 numentries = nr_kernel_pages;
a7e83318
JZ
7091
7092 /* It isn't necessary when PAGE_SIZE >= 1MB */
7093 if (PAGE_SHIFT < 20)
7094 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7095
7096 /* limit to 1 bucket per 2^scale bytes of low memory */
7097 if (scale > PAGE_SHIFT)
7098 numentries >>= (scale - PAGE_SHIFT);
7099 else
7100 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7101
7102 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7103 if (unlikely(flags & HASH_SMALL)) {
7104 /* Makes no sense without HASH_EARLY */
7105 WARN_ON(!(flags & HASH_EARLY));
7106 if (!(numentries >> *_hash_shift)) {
7107 numentries = 1UL << *_hash_shift;
7108 BUG_ON(!numentries);
7109 }
7110 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7111 numentries = PAGE_SIZE / bucketsize;
1da177e4 7112 }
6e692ed3 7113 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7114
7115 /* limit allocation size to 1/16 total memory by default */
7116 if (max == 0) {
7117 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7118 do_div(max, bucketsize);
7119 }
074b8517 7120 max = min(max, 0x80000000ULL);
1da177e4 7121
31fe62b9
TB
7122 if (numentries < low_limit)
7123 numentries = low_limit;
1da177e4
LT
7124 if (numentries > max)
7125 numentries = max;
7126
f0d1b0b3 7127 log2qty = ilog2(numentries);
1da177e4
LT
7128
7129 do {
7130 size = bucketsize << log2qty;
7131 if (flags & HASH_EARLY)
6782832e 7132 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7133 else if (hashdist)
7134 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7135 else {
1037b83b
ED
7136 /*
7137 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7138 * some pages at the end of hash table which
7139 * alloc_pages_exact() automatically does
1037b83b 7140 */
264ef8a9 7141 if (get_order(size) < MAX_ORDER) {
a1dd268c 7142 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7143 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7144 }
1da177e4
LT
7145 }
7146 } while (!table && size > PAGE_SIZE && --log2qty);
7147
7148 if (!table)
7149 panic("Failed to allocate %s hash table\n", tablename);
7150
1170532b
JP
7151 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7152 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7153
7154 if (_hash_shift)
7155 *_hash_shift = log2qty;
7156 if (_hash_mask)
7157 *_hash_mask = (1 << log2qty) - 1;
7158
7159 return table;
7160}
a117e66e 7161
a5d76b54 7162/*
80934513
MK
7163 * This function checks whether pageblock includes unmovable pages or not.
7164 * If @count is not zero, it is okay to include less @count unmovable pages
7165 *
b8af2941 7166 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7167 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7168 * expect this function should be exact.
a5d76b54 7169 */
b023f468
WC
7170bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7171 bool skip_hwpoisoned_pages)
49ac8255
KH
7172{
7173 unsigned long pfn, iter, found;
47118af0
MN
7174 int mt;
7175
49ac8255
KH
7176 /*
7177 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7178 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7179 */
7180 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7181 return false;
47118af0
MN
7182 mt = get_pageblock_migratetype(page);
7183 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7184 return false;
49ac8255
KH
7185
7186 pfn = page_to_pfn(page);
7187 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7188 unsigned long check = pfn + iter;
7189
29723fcc 7190 if (!pfn_valid_within(check))
49ac8255 7191 continue;
29723fcc 7192
49ac8255 7193 page = pfn_to_page(check);
c8721bbb
NH
7194
7195 /*
7196 * Hugepages are not in LRU lists, but they're movable.
7197 * We need not scan over tail pages bacause we don't
7198 * handle each tail page individually in migration.
7199 */
7200 if (PageHuge(page)) {
7201 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7202 continue;
7203 }
7204
97d255c8
MK
7205 /*
7206 * We can't use page_count without pin a page
7207 * because another CPU can free compound page.
7208 * This check already skips compound tails of THP
0139aa7b 7209 * because their page->_refcount is zero at all time.
97d255c8 7210 */
fe896d18 7211 if (!page_ref_count(page)) {
49ac8255
KH
7212 if (PageBuddy(page))
7213 iter += (1 << page_order(page)) - 1;
7214 continue;
7215 }
97d255c8 7216
b023f468
WC
7217 /*
7218 * The HWPoisoned page may be not in buddy system, and
7219 * page_count() is not 0.
7220 */
7221 if (skip_hwpoisoned_pages && PageHWPoison(page))
7222 continue;
7223
49ac8255
KH
7224 if (!PageLRU(page))
7225 found++;
7226 /*
6b4f7799
JW
7227 * If there are RECLAIMABLE pages, we need to check
7228 * it. But now, memory offline itself doesn't call
7229 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7230 */
7231 /*
7232 * If the page is not RAM, page_count()should be 0.
7233 * we don't need more check. This is an _used_ not-movable page.
7234 *
7235 * The problematic thing here is PG_reserved pages. PG_reserved
7236 * is set to both of a memory hole page and a _used_ kernel
7237 * page at boot.
7238 */
7239 if (found > count)
80934513 7240 return true;
49ac8255 7241 }
80934513 7242 return false;
49ac8255
KH
7243}
7244
7245bool is_pageblock_removable_nolock(struct page *page)
7246{
656a0706
MH
7247 struct zone *zone;
7248 unsigned long pfn;
687875fb
MH
7249
7250 /*
7251 * We have to be careful here because we are iterating over memory
7252 * sections which are not zone aware so we might end up outside of
7253 * the zone but still within the section.
656a0706
MH
7254 * We have to take care about the node as well. If the node is offline
7255 * its NODE_DATA will be NULL - see page_zone.
687875fb 7256 */
656a0706
MH
7257 if (!node_online(page_to_nid(page)))
7258 return false;
7259
7260 zone = page_zone(page);
7261 pfn = page_to_pfn(page);
108bcc96 7262 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7263 return false;
7264
b023f468 7265 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7266}
0c0e6195 7267
080fe206 7268#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7269
7270static unsigned long pfn_max_align_down(unsigned long pfn)
7271{
7272 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7273 pageblock_nr_pages) - 1);
7274}
7275
7276static unsigned long pfn_max_align_up(unsigned long pfn)
7277{
7278 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7279 pageblock_nr_pages));
7280}
7281
041d3a8c 7282/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7283static int __alloc_contig_migrate_range(struct compact_control *cc,
7284 unsigned long start, unsigned long end)
041d3a8c
MN
7285{
7286 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7287 unsigned long nr_reclaimed;
041d3a8c
MN
7288 unsigned long pfn = start;
7289 unsigned int tries = 0;
7290 int ret = 0;
7291
be49a6e1 7292 migrate_prep();
041d3a8c 7293
bb13ffeb 7294 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7295 if (fatal_signal_pending(current)) {
7296 ret = -EINTR;
7297 break;
7298 }
7299
bb13ffeb
MG
7300 if (list_empty(&cc->migratepages)) {
7301 cc->nr_migratepages = 0;
edc2ca61 7302 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7303 if (!pfn) {
7304 ret = -EINTR;
7305 break;
7306 }
7307 tries = 0;
7308 } else if (++tries == 5) {
7309 ret = ret < 0 ? ret : -EBUSY;
7310 break;
7311 }
7312
beb51eaa
MK
7313 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7314 &cc->migratepages);
7315 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7316
9c620e2b 7317 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7318 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7319 }
2a6f5124
SP
7320 if (ret < 0) {
7321 putback_movable_pages(&cc->migratepages);
7322 return ret;
7323 }
7324 return 0;
041d3a8c
MN
7325}
7326
7327/**
7328 * alloc_contig_range() -- tries to allocate given range of pages
7329 * @start: start PFN to allocate
7330 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7331 * @migratetype: migratetype of the underlaying pageblocks (either
7332 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7333 * in range must have the same migratetype and it must
7334 * be either of the two.
041d3a8c
MN
7335 *
7336 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7337 * aligned, however it's the caller's responsibility to guarantee that
7338 * we are the only thread that changes migrate type of pageblocks the
7339 * pages fall in.
7340 *
7341 * The PFN range must belong to a single zone.
7342 *
7343 * Returns zero on success or negative error code. On success all
7344 * pages which PFN is in [start, end) are allocated for the caller and
7345 * need to be freed with free_contig_range().
7346 */
0815f3d8
MN
7347int alloc_contig_range(unsigned long start, unsigned long end,
7348 unsigned migratetype)
041d3a8c 7349{
041d3a8c 7350 unsigned long outer_start, outer_end;
d00181b9
KS
7351 unsigned int order;
7352 int ret = 0;
041d3a8c 7353
bb13ffeb
MG
7354 struct compact_control cc = {
7355 .nr_migratepages = 0,
7356 .order = -1,
7357 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7358 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7359 .ignore_skip_hint = true,
7360 };
7361 INIT_LIST_HEAD(&cc.migratepages);
7362
041d3a8c
MN
7363 /*
7364 * What we do here is we mark all pageblocks in range as
7365 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7366 * have different sizes, and due to the way page allocator
7367 * work, we align the range to biggest of the two pages so
7368 * that page allocator won't try to merge buddies from
7369 * different pageblocks and change MIGRATE_ISOLATE to some
7370 * other migration type.
7371 *
7372 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7373 * migrate the pages from an unaligned range (ie. pages that
7374 * we are interested in). This will put all the pages in
7375 * range back to page allocator as MIGRATE_ISOLATE.
7376 *
7377 * When this is done, we take the pages in range from page
7378 * allocator removing them from the buddy system. This way
7379 * page allocator will never consider using them.
7380 *
7381 * This lets us mark the pageblocks back as
7382 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7383 * aligned range but not in the unaligned, original range are
7384 * put back to page allocator so that buddy can use them.
7385 */
7386
7387 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7388 pfn_max_align_up(end), migratetype,
7389 false);
041d3a8c 7390 if (ret)
86a595f9 7391 return ret;
041d3a8c 7392
8ef5849f
JK
7393 /*
7394 * In case of -EBUSY, we'd like to know which page causes problem.
7395 * So, just fall through. We will check it in test_pages_isolated().
7396 */
bb13ffeb 7397 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7398 if (ret && ret != -EBUSY)
041d3a8c
MN
7399 goto done;
7400
7401 /*
7402 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7403 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7404 * more, all pages in [start, end) are free in page allocator.
7405 * What we are going to do is to allocate all pages from
7406 * [start, end) (that is remove them from page allocator).
7407 *
7408 * The only problem is that pages at the beginning and at the
7409 * end of interesting range may be not aligned with pages that
7410 * page allocator holds, ie. they can be part of higher order
7411 * pages. Because of this, we reserve the bigger range and
7412 * once this is done free the pages we are not interested in.
7413 *
7414 * We don't have to hold zone->lock here because the pages are
7415 * isolated thus they won't get removed from buddy.
7416 */
7417
7418 lru_add_drain_all();
510f5507 7419 drain_all_pages(cc.zone);
041d3a8c
MN
7420
7421 order = 0;
7422 outer_start = start;
7423 while (!PageBuddy(pfn_to_page(outer_start))) {
7424 if (++order >= MAX_ORDER) {
8ef5849f
JK
7425 outer_start = start;
7426 break;
041d3a8c
MN
7427 }
7428 outer_start &= ~0UL << order;
7429 }
7430
8ef5849f
JK
7431 if (outer_start != start) {
7432 order = page_order(pfn_to_page(outer_start));
7433
7434 /*
7435 * outer_start page could be small order buddy page and
7436 * it doesn't include start page. Adjust outer_start
7437 * in this case to report failed page properly
7438 * on tracepoint in test_pages_isolated()
7439 */
7440 if (outer_start + (1UL << order) <= start)
7441 outer_start = start;
7442 }
7443
041d3a8c 7444 /* Make sure the range is really isolated. */
b023f468 7445 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7446 pr_info("%s: [%lx, %lx) PFNs busy\n",
7447 __func__, outer_start, end);
041d3a8c
MN
7448 ret = -EBUSY;
7449 goto done;
7450 }
7451
49f223a9 7452 /* Grab isolated pages from freelists. */
bb13ffeb 7453 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7454 if (!outer_end) {
7455 ret = -EBUSY;
7456 goto done;
7457 }
7458
7459 /* Free head and tail (if any) */
7460 if (start != outer_start)
7461 free_contig_range(outer_start, start - outer_start);
7462 if (end != outer_end)
7463 free_contig_range(end, outer_end - end);
7464
7465done:
7466 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7467 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7468 return ret;
7469}
7470
7471void free_contig_range(unsigned long pfn, unsigned nr_pages)
7472{
bcc2b02f
MS
7473 unsigned int count = 0;
7474
7475 for (; nr_pages--; pfn++) {
7476 struct page *page = pfn_to_page(pfn);
7477
7478 count += page_count(page) != 1;
7479 __free_page(page);
7480 }
7481 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7482}
7483#endif
7484
4ed7e022 7485#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7486/*
7487 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7488 * page high values need to be recalulated.
7489 */
4ed7e022
JL
7490void __meminit zone_pcp_update(struct zone *zone)
7491{
0a647f38 7492 unsigned cpu;
c8e251fa 7493 mutex_lock(&pcp_batch_high_lock);
0a647f38 7494 for_each_possible_cpu(cpu)
169f6c19
CS
7495 pageset_set_high_and_batch(zone,
7496 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7497 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7498}
7499#endif
7500
340175b7
JL
7501void zone_pcp_reset(struct zone *zone)
7502{
7503 unsigned long flags;
5a883813
MK
7504 int cpu;
7505 struct per_cpu_pageset *pset;
340175b7
JL
7506
7507 /* avoid races with drain_pages() */
7508 local_irq_save(flags);
7509 if (zone->pageset != &boot_pageset) {
5a883813
MK
7510 for_each_online_cpu(cpu) {
7511 pset = per_cpu_ptr(zone->pageset, cpu);
7512 drain_zonestat(zone, pset);
7513 }
340175b7
JL
7514 free_percpu(zone->pageset);
7515 zone->pageset = &boot_pageset;
7516 }
7517 local_irq_restore(flags);
7518}
7519
6dcd73d7 7520#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7521/*
b9eb6319
JK
7522 * All pages in the range must be in a single zone and isolated
7523 * before calling this.
0c0e6195
KH
7524 */
7525void
7526__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7527{
7528 struct page *page;
7529 struct zone *zone;
7aeb09f9 7530 unsigned int order, i;
0c0e6195
KH
7531 unsigned long pfn;
7532 unsigned long flags;
7533 /* find the first valid pfn */
7534 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7535 if (pfn_valid(pfn))
7536 break;
7537 if (pfn == end_pfn)
7538 return;
7539 zone = page_zone(pfn_to_page(pfn));
7540 spin_lock_irqsave(&zone->lock, flags);
7541 pfn = start_pfn;
7542 while (pfn < end_pfn) {
7543 if (!pfn_valid(pfn)) {
7544 pfn++;
7545 continue;
7546 }
7547 page = pfn_to_page(pfn);
b023f468
WC
7548 /*
7549 * The HWPoisoned page may be not in buddy system, and
7550 * page_count() is not 0.
7551 */
7552 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7553 pfn++;
7554 SetPageReserved(page);
7555 continue;
7556 }
7557
0c0e6195
KH
7558 BUG_ON(page_count(page));
7559 BUG_ON(!PageBuddy(page));
7560 order = page_order(page);
7561#ifdef CONFIG_DEBUG_VM
1170532b
JP
7562 pr_info("remove from free list %lx %d %lx\n",
7563 pfn, 1 << order, end_pfn);
0c0e6195
KH
7564#endif
7565 list_del(&page->lru);
7566 rmv_page_order(page);
7567 zone->free_area[order].nr_free--;
0c0e6195
KH
7568 for (i = 0; i < (1 << order); i++)
7569 SetPageReserved((page+i));
7570 pfn += (1 << order);
7571 }
7572 spin_unlock_irqrestore(&zone->lock, flags);
7573}
7574#endif
8d22ba1b 7575
8d22ba1b
WF
7576bool is_free_buddy_page(struct page *page)
7577{
7578 struct zone *zone = page_zone(page);
7579 unsigned long pfn = page_to_pfn(page);
7580 unsigned long flags;
7aeb09f9 7581 unsigned int order;
8d22ba1b
WF
7582
7583 spin_lock_irqsave(&zone->lock, flags);
7584 for (order = 0; order < MAX_ORDER; order++) {
7585 struct page *page_head = page - (pfn & ((1 << order) - 1));
7586
7587 if (PageBuddy(page_head) && page_order(page_head) >= order)
7588 break;
7589 }
7590 spin_unlock_irqrestore(&zone->lock, flags);
7591
7592 return order < MAX_ORDER;
7593}