[PATCH] remove set_page_count() outside mm/
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92 139 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
224abf92
NP
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4 175 */
d98c7a09
HD
176
177static void free_compound_page(struct page *page)
178{
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
180}
181
1da177e4
LT
182static void prep_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
d98c7a09 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 188 page[1].lru.prev = (void *)order;
1da177e4
LT
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
191
5e9dace8 192 __SetPageCompound(p);
4c21e2f2 193 set_page_private(p, (unsigned long)page);
1da177e4
LT
194 }
195}
196
197static void destroy_compound_page(struct page *page, unsigned long order)
198{
199 int i;
200 int nr_pages = 1 << order;
201
41d78ba5 202 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 203 bad_page(page);
1da177e4
LT
204
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
207
224abf92
NP
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
5e9dace8 211 __ClearPageCompound(p);
1da177e4
LT
212 }
213}
1da177e4
LT
214
215/*
216 * function for dealing with page's order in buddy system.
217 * zone->lock is already acquired when we use these.
218 * So, we don't need atomic page->flags operations here.
219 */
220static inline unsigned long page_order(struct page *page) {
4c21e2f2 221 return page_private(page);
1da177e4
LT
222}
223
224static inline void set_page_order(struct page *page, int order) {
4c21e2f2 225 set_page_private(page, order);
1da177e4
LT
226 __SetPagePrivate(page);
227}
228
229static inline void rmv_page_order(struct page *page)
230{
231 __ClearPagePrivate(page);
4c21e2f2 232 set_page_private(page, 0);
1da177e4
LT
233}
234
235/*
236 * Locate the struct page for both the matching buddy in our
237 * pair (buddy1) and the combined O(n+1) page they form (page).
238 *
239 * 1) Any buddy B1 will have an order O twin B2 which satisfies
240 * the following equation:
241 * B2 = B1 ^ (1 << O)
242 * For example, if the starting buddy (buddy2) is #8 its order
243 * 1 buddy is #10:
244 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
245 *
246 * 2) Any buddy B will have an order O+1 parent P which
247 * satisfies the following equation:
248 * P = B & ~(1 << O)
249 *
250 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
251 */
252static inline struct page *
253__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
254{
255 unsigned long buddy_idx = page_idx ^ (1 << order);
256
257 return page + (buddy_idx - page_idx);
258}
259
260static inline unsigned long
261__find_combined_index(unsigned long page_idx, unsigned int order)
262{
263 return (page_idx & ~(1 << order));
264}
265
266/*
267 * This function checks whether a page is free && is the buddy
268 * we can do coalesce a page and its buddy if
13e7444b
NP
269 * (a) the buddy is not in a hole &&
270 * (b) the buddy is free &&
271 * (c) the buddy is on the buddy system &&
272 * (d) a page and its buddy have the same order.
4c21e2f2 273 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
274 *
275 */
276static inline int page_is_buddy(struct page *page, int order)
277{
13e7444b
NP
278#ifdef CONFIG_HOLES_IN_ZONE
279 if (!pfn_valid(page_to_pfn(page)))
280 return 0;
281#endif
282
1da177e4
LT
283 if (PagePrivate(page) &&
284 (page_order(page) == order) &&
1da177e4
LT
285 page_count(page) == 0)
286 return 1;
287 return 0;
288}
289
290/*
291 * Freeing function for a buddy system allocator.
292 *
293 * The concept of a buddy system is to maintain direct-mapped table
294 * (containing bit values) for memory blocks of various "orders".
295 * The bottom level table contains the map for the smallest allocatable
296 * units of memory (here, pages), and each level above it describes
297 * pairs of units from the levels below, hence, "buddies".
298 * At a high level, all that happens here is marking the table entry
299 * at the bottom level available, and propagating the changes upward
300 * as necessary, plus some accounting needed to play nicely with other
301 * parts of the VM system.
302 * At each level, we keep a list of pages, which are heads of continuous
303 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 304 * order is recorded in page_private(page) field.
1da177e4
LT
305 * So when we are allocating or freeing one, we can derive the state of the
306 * other. That is, if we allocate a small block, and both were
307 * free, the remainder of the region must be split into blocks.
308 * If a block is freed, and its buddy is also free, then this
309 * triggers coalescing into a block of larger size.
310 *
311 * -- wli
312 */
313
48db57f8 314static inline void __free_one_page(struct page *page,
1da177e4
LT
315 struct zone *zone, unsigned int order)
316{
317 unsigned long page_idx;
318 int order_size = 1 << order;
319
224abf92 320 if (unlikely(PageCompound(page)))
1da177e4
LT
321 destroy_compound_page(page, order);
322
323 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
324
325 BUG_ON(page_idx & (order_size - 1));
326 BUG_ON(bad_range(zone, page));
327
328 zone->free_pages += order_size;
329 while (order < MAX_ORDER-1) {
330 unsigned long combined_idx;
331 struct free_area *area;
332 struct page *buddy;
333
1da177e4 334 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
335 if (!page_is_buddy(buddy, order))
336 break; /* Move the buddy up one level. */
13e7444b 337
1da177e4
LT
338 list_del(&buddy->lru);
339 area = zone->free_area + order;
340 area->nr_free--;
341 rmv_page_order(buddy);
13e7444b 342 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
343 page = page + (combined_idx - page_idx);
344 page_idx = combined_idx;
345 order++;
346 }
347 set_page_order(page, order);
348 list_add(&page->lru, &zone->free_area[order].free_list);
349 zone->free_area[order].nr_free++;
350}
351
224abf92 352static inline int free_pages_check(struct page *page)
1da177e4 353{
92be2e33
NP
354 if (unlikely(page_mapcount(page) |
355 (page->mapping != NULL) |
356 (page_count(page) != 0) |
1da177e4
LT
357 (page->flags & (
358 1 << PG_lru |
359 1 << PG_private |
360 1 << PG_locked |
361 1 << PG_active |
362 1 << PG_reclaim |
363 1 << PG_slab |
364 1 << PG_swapcache |
b5810039 365 1 << PG_writeback |
92be2e33 366 1 << PG_reserved ))))
224abf92 367 bad_page(page);
1da177e4 368 if (PageDirty(page))
242e5468 369 __ClearPageDirty(page);
689bcebf
HD
370 /*
371 * For now, we report if PG_reserved was found set, but do not
372 * clear it, and do not free the page. But we shall soon need
373 * to do more, for when the ZERO_PAGE count wraps negative.
374 */
375 return PageReserved(page);
1da177e4
LT
376}
377
378/*
379 * Frees a list of pages.
380 * Assumes all pages on list are in same zone, and of same order.
207f36ee 381 * count is the number of pages to free.
1da177e4
LT
382 *
383 * If the zone was previously in an "all pages pinned" state then look to
384 * see if this freeing clears that state.
385 *
386 * And clear the zone's pages_scanned counter, to hold off the "all pages are
387 * pinned" detection logic.
388 */
48db57f8
NP
389static void free_pages_bulk(struct zone *zone, int count,
390 struct list_head *list, int order)
1da177e4 391{
c54ad30c 392 spin_lock(&zone->lock);
1da177e4
LT
393 zone->all_unreclaimable = 0;
394 zone->pages_scanned = 0;
48db57f8
NP
395 while (count--) {
396 struct page *page;
397
398 BUG_ON(list_empty(list));
1da177e4 399 page = list_entry(list->prev, struct page, lru);
48db57f8 400 /* have to delete it as __free_one_page list manipulates */
1da177e4 401 list_del(&page->lru);
48db57f8 402 __free_one_page(page, zone, order);
1da177e4 403 }
c54ad30c 404 spin_unlock(&zone->lock);
1da177e4
LT
405}
406
48db57f8 407static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
408{
409 LIST_HEAD(list);
48db57f8
NP
410 list_add(&page->lru, &list);
411 free_pages_bulk(zone, 1, &list, order);
412}
413
414static void __free_pages_ok(struct page *page, unsigned int order)
415{
416 unsigned long flags;
1da177e4 417 int i;
689bcebf 418 int reserved = 0;
1da177e4
LT
419
420 arch_free_page(page, order);
de5097c2
IM
421 if (!PageHighMem(page))
422 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 423 PAGE_SIZE<<order);
1da177e4 424
1da177e4 425 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 426 reserved += free_pages_check(page + i);
689bcebf
HD
427 if (reserved)
428 return;
429
48db57f8 430 kernel_map_pages(page, 1 << order, 0);
c54ad30c 431 local_irq_save(flags);
a74609fa 432 __mod_page_state(pgfree, 1 << order);
48db57f8 433 free_one_page(page_zone(page), page, order);
c54ad30c 434 local_irq_restore(flags);
1da177e4
LT
435}
436
a226f6c8
DH
437/*
438 * permit the bootmem allocator to evade page validation on high-order frees
439 */
440void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
441{
442 if (order == 0) {
443 __ClearPageReserved(page);
444 set_page_count(page, 0);
7835e98b 445 set_page_refcounted(page);
545b1ea9 446 __free_page(page);
a226f6c8 447 } else {
a226f6c8
DH
448 int loop;
449
545b1ea9 450 prefetchw(page);
a226f6c8
DH
451 for (loop = 0; loop < BITS_PER_LONG; loop++) {
452 struct page *p = &page[loop];
453
545b1ea9
NP
454 if (loop + 1 < BITS_PER_LONG)
455 prefetchw(p + 1);
a226f6c8
DH
456 __ClearPageReserved(p);
457 set_page_count(p, 0);
458 }
459
7835e98b 460 set_page_refcounted(page);
545b1ea9 461 __free_pages(page, order);
a226f6c8
DH
462 }
463}
464
1da177e4
LT
465
466/*
467 * The order of subdivision here is critical for the IO subsystem.
468 * Please do not alter this order without good reasons and regression
469 * testing. Specifically, as large blocks of memory are subdivided,
470 * the order in which smaller blocks are delivered depends on the order
471 * they're subdivided in this function. This is the primary factor
472 * influencing the order in which pages are delivered to the IO
473 * subsystem according to empirical testing, and this is also justified
474 * by considering the behavior of a buddy system containing a single
475 * large block of memory acted on by a series of small allocations.
476 * This behavior is a critical factor in sglist merging's success.
477 *
478 * -- wli
479 */
085cc7d5 480static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
481 int low, int high, struct free_area *area)
482{
483 unsigned long size = 1 << high;
484
485 while (high > low) {
486 area--;
487 high--;
488 size >>= 1;
489 BUG_ON(bad_range(zone, &page[size]));
490 list_add(&page[size].lru, &area->free_list);
491 area->nr_free++;
492 set_page_order(&page[size], high);
493 }
1da177e4
LT
494}
495
1da177e4
LT
496/*
497 * This page is about to be returned from the page allocator
498 */
689bcebf 499static int prep_new_page(struct page *page, int order)
1da177e4 500{
92be2e33
NP
501 if (unlikely(page_mapcount(page) |
502 (page->mapping != NULL) |
503 (page_count(page) != 0) |
334795ec
HD
504 (page->flags & (
505 1 << PG_lru |
1da177e4
LT
506 1 << PG_private |
507 1 << PG_locked |
1da177e4
LT
508 1 << PG_active |
509 1 << PG_dirty |
510 1 << PG_reclaim |
334795ec 511 1 << PG_slab |
1da177e4 512 1 << PG_swapcache |
b5810039 513 1 << PG_writeback |
92be2e33 514 1 << PG_reserved ))))
224abf92 515 bad_page(page);
1da177e4 516
689bcebf
HD
517 /*
518 * For now, we report if PG_reserved was found set, but do not
519 * clear it, and do not allocate the page: as a safety net.
520 */
521 if (PageReserved(page))
522 return 1;
523
1da177e4
LT
524 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
525 1 << PG_referenced | 1 << PG_arch_1 |
526 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 527 set_page_private(page, 0);
7835e98b 528 set_page_refcounted(page);
1da177e4 529 kernel_map_pages(page, 1 << order, 1);
689bcebf 530 return 0;
1da177e4
LT
531}
532
533/*
534 * Do the hard work of removing an element from the buddy allocator.
535 * Call me with the zone->lock already held.
536 */
537static struct page *__rmqueue(struct zone *zone, unsigned int order)
538{
539 struct free_area * area;
540 unsigned int current_order;
541 struct page *page;
542
543 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
544 area = zone->free_area + current_order;
545 if (list_empty(&area->free_list))
546 continue;
547
548 page = list_entry(area->free_list.next, struct page, lru);
549 list_del(&page->lru);
550 rmv_page_order(page);
551 area->nr_free--;
552 zone->free_pages -= 1UL << order;
085cc7d5
NP
553 expand(zone, page, order, current_order, area);
554 return page;
1da177e4
LT
555 }
556
557 return NULL;
558}
559
560/*
561 * Obtain a specified number of elements from the buddy allocator, all under
562 * a single hold of the lock, for efficiency. Add them to the supplied list.
563 * Returns the number of new pages which were placed at *list.
564 */
565static int rmqueue_bulk(struct zone *zone, unsigned int order,
566 unsigned long count, struct list_head *list)
567{
1da177e4 568 int i;
1da177e4 569
c54ad30c 570 spin_lock(&zone->lock);
1da177e4 571 for (i = 0; i < count; ++i) {
085cc7d5
NP
572 struct page *page = __rmqueue(zone, order);
573 if (unlikely(page == NULL))
1da177e4 574 break;
1da177e4
LT
575 list_add_tail(&page->lru, list);
576 }
c54ad30c 577 spin_unlock(&zone->lock);
085cc7d5 578 return i;
1da177e4
LT
579}
580
4ae7c039 581#ifdef CONFIG_NUMA
8fce4d8e
CL
582/*
583 * Called from the slab reaper to drain pagesets on a particular node that
584 * belong to the currently executing processor.
585 */
586void drain_node_pages(int nodeid)
4ae7c039 587{
8fce4d8e 588 int i, z;
4ae7c039
CL
589 unsigned long flags;
590
591 local_irq_save(flags);
8fce4d8e
CL
592 for (z = 0; z < MAX_NR_ZONES; z++) {
593 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
594 struct per_cpu_pageset *pset;
595
23316bc8 596 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
597 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
598 struct per_cpu_pages *pcp;
599
600 pcp = &pset->pcp[i];
48db57f8
NP
601 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
602 pcp->count = 0;
4ae7c039
CL
603 }
604 }
605 local_irq_restore(flags);
606}
607#endif
608
1da177e4
LT
609#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
610static void __drain_pages(unsigned int cpu)
611{
c54ad30c 612 unsigned long flags;
1da177e4
LT
613 struct zone *zone;
614 int i;
615
616 for_each_zone(zone) {
617 struct per_cpu_pageset *pset;
618
e7c8d5c9 619 pset = zone_pcp(zone, cpu);
1da177e4
LT
620 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
621 struct per_cpu_pages *pcp;
622
623 pcp = &pset->pcp[i];
c54ad30c 624 local_irq_save(flags);
48db57f8
NP
625 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
626 pcp->count = 0;
c54ad30c 627 local_irq_restore(flags);
1da177e4
LT
628 }
629 }
630}
631#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
632
633#ifdef CONFIG_PM
634
635void mark_free_pages(struct zone *zone)
636{
637 unsigned long zone_pfn, flags;
638 int order;
639 struct list_head *curr;
640
641 if (!zone->spanned_pages)
642 return;
643
644 spin_lock_irqsave(&zone->lock, flags);
645 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
646 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
647
648 for (order = MAX_ORDER - 1; order >= 0; --order)
649 list_for_each(curr, &zone->free_area[order].free_list) {
650 unsigned long start_pfn, i;
651
652 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
653
654 for (i=0; i < (1<<order); i++)
655 SetPageNosaveFree(pfn_to_page(start_pfn+i));
656 }
657 spin_unlock_irqrestore(&zone->lock, flags);
658}
659
660/*
661 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
662 */
663void drain_local_pages(void)
664{
665 unsigned long flags;
666
667 local_irq_save(flags);
668 __drain_pages(smp_processor_id());
669 local_irq_restore(flags);
670}
671#endif /* CONFIG_PM */
672
a74609fa 673static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
674{
675#ifdef CONFIG_NUMA
1da177e4
LT
676 pg_data_t *pg = z->zone_pgdat;
677 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
678 struct per_cpu_pageset *p;
679
a74609fa 680 p = zone_pcp(z, cpu);
1da177e4 681 if (pg == orig) {
e7c8d5c9 682 p->numa_hit++;
1da177e4
LT
683 } else {
684 p->numa_miss++;
e7c8d5c9 685 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
686 }
687 if (pg == NODE_DATA(numa_node_id()))
688 p->local_node++;
689 else
690 p->other_node++;
1da177e4
LT
691#endif
692}
693
694/*
695 * Free a 0-order page
696 */
1da177e4
LT
697static void fastcall free_hot_cold_page(struct page *page, int cold)
698{
699 struct zone *zone = page_zone(page);
700 struct per_cpu_pages *pcp;
701 unsigned long flags;
702
703 arch_free_page(page, 0);
704
1da177e4
LT
705 if (PageAnon(page))
706 page->mapping = NULL;
224abf92 707 if (free_pages_check(page))
689bcebf
HD
708 return;
709
689bcebf
HD
710 kernel_map_pages(page, 1, 0);
711
e7c8d5c9 712 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 713 local_irq_save(flags);
a74609fa 714 __inc_page_state(pgfree);
1da177e4
LT
715 list_add(&page->lru, &pcp->list);
716 pcp->count++;
48db57f8
NP
717 if (pcp->count >= pcp->high) {
718 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
719 pcp->count -= pcp->batch;
720 }
1da177e4
LT
721 local_irq_restore(flags);
722 put_cpu();
723}
724
725void fastcall free_hot_page(struct page *page)
726{
727 free_hot_cold_page(page, 0);
728}
729
730void fastcall free_cold_page(struct page *page)
731{
732 free_hot_cold_page(page, 1);
733}
734
dd0fc66f 735static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
736{
737 int i;
738
739 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
740 for(i = 0; i < (1 << order); i++)
741 clear_highpage(page + i);
742}
743
8dfcc9ba
NP
744/*
745 * split_page takes a non-compound higher-order page, and splits it into
746 * n (1<<order) sub-pages: page[0..n]
747 * Each sub-page must be freed individually.
748 *
749 * Note: this is probably too low level an operation for use in drivers.
750 * Please consult with lkml before using this in your driver.
751 */
752void split_page(struct page *page, unsigned int order)
753{
754 int i;
755
756 BUG_ON(PageCompound(page));
757 BUG_ON(!page_count(page));
7835e98b
NP
758 for (i = 1; i < (1 << order); i++)
759 set_page_refcounted(page + i);
8dfcc9ba 760}
8dfcc9ba 761
1da177e4
LT
762/*
763 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
764 * we cheat by calling it from here, in the order > 0 path. Saves a branch
765 * or two.
766 */
a74609fa
NP
767static struct page *buffered_rmqueue(struct zonelist *zonelist,
768 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
769{
770 unsigned long flags;
689bcebf 771 struct page *page;
1da177e4 772 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 773 int cpu;
1da177e4 774
689bcebf 775again:
a74609fa 776 cpu = get_cpu();
48db57f8 777 if (likely(order == 0)) {
1da177e4
LT
778 struct per_cpu_pages *pcp;
779
a74609fa 780 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 781 local_irq_save(flags);
a74609fa 782 if (!pcp->count) {
1da177e4
LT
783 pcp->count += rmqueue_bulk(zone, 0,
784 pcp->batch, &pcp->list);
a74609fa
NP
785 if (unlikely(!pcp->count))
786 goto failed;
1da177e4 787 }
a74609fa
NP
788 page = list_entry(pcp->list.next, struct page, lru);
789 list_del(&page->lru);
790 pcp->count--;
7fb1d9fc 791 } else {
1da177e4
LT
792 spin_lock_irqsave(&zone->lock, flags);
793 page = __rmqueue(zone, order);
a74609fa
NP
794 spin_unlock(&zone->lock);
795 if (!page)
796 goto failed;
1da177e4
LT
797 }
798
a74609fa
NP
799 __mod_page_state_zone(zone, pgalloc, 1 << order);
800 zone_statistics(zonelist, zone, cpu);
801 local_irq_restore(flags);
802 put_cpu();
1da177e4 803
a74609fa
NP
804 BUG_ON(bad_range(zone, page));
805 if (prep_new_page(page, order))
806 goto again;
1da177e4 807
a74609fa
NP
808 if (gfp_flags & __GFP_ZERO)
809 prep_zero_page(page, order, gfp_flags);
810
811 if (order && (gfp_flags & __GFP_COMP))
812 prep_compound_page(page, order);
1da177e4 813 return page;
a74609fa
NP
814
815failed:
816 local_irq_restore(flags);
817 put_cpu();
818 return NULL;
1da177e4
LT
819}
820
7fb1d9fc 821#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
822#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
823#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
824#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
825#define ALLOC_HARDER 0x10 /* try to alloc harder */
826#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
827#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 828
1da177e4
LT
829/*
830 * Return 1 if free pages are above 'mark'. This takes into account the order
831 * of the allocation.
832 */
833int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 834 int classzone_idx, int alloc_flags)
1da177e4
LT
835{
836 /* free_pages my go negative - that's OK */
837 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
838 int o;
839
7fb1d9fc 840 if (alloc_flags & ALLOC_HIGH)
1da177e4 841 min -= min / 2;
7fb1d9fc 842 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
843 min -= min / 4;
844
845 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
846 return 0;
847 for (o = 0; o < order; o++) {
848 /* At the next order, this order's pages become unavailable */
849 free_pages -= z->free_area[o].nr_free << o;
850
851 /* Require fewer higher order pages to be free */
852 min >>= 1;
853
854 if (free_pages <= min)
855 return 0;
856 }
857 return 1;
858}
859
7fb1d9fc
RS
860/*
861 * get_page_from_freeliest goes through the zonelist trying to allocate
862 * a page.
863 */
864static struct page *
865get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
866 struct zonelist *zonelist, int alloc_flags)
753ee728 867{
7fb1d9fc
RS
868 struct zone **z = zonelist->zones;
869 struct page *page = NULL;
870 int classzone_idx = zone_idx(*z);
871
872 /*
873 * Go through the zonelist once, looking for a zone with enough free.
874 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
875 */
876 do {
877 if ((alloc_flags & ALLOC_CPUSET) &&
878 !cpuset_zone_allowed(*z, gfp_mask))
879 continue;
880
881 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
882 unsigned long mark;
883 if (alloc_flags & ALLOC_WMARK_MIN)
884 mark = (*z)->pages_min;
885 else if (alloc_flags & ALLOC_WMARK_LOW)
886 mark = (*z)->pages_low;
887 else
888 mark = (*z)->pages_high;
889 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 890 classzone_idx, alloc_flags))
9eeff239
CL
891 if (!zone_reclaim_mode ||
892 !zone_reclaim(*z, gfp_mask, order))
893 continue;
7fb1d9fc
RS
894 }
895
a74609fa 896 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 897 if (page) {
7fb1d9fc
RS
898 break;
899 }
900 } while (*(++z) != NULL);
901 return page;
753ee728
MH
902}
903
1da177e4
LT
904/*
905 * This is the 'heart' of the zoned buddy allocator.
906 */
907struct page * fastcall
dd0fc66f 908__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
909 struct zonelist *zonelist)
910{
260b2367 911 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 912 struct zone **z;
1da177e4
LT
913 struct page *page;
914 struct reclaim_state reclaim_state;
915 struct task_struct *p = current;
1da177e4 916 int do_retry;
7fb1d9fc 917 int alloc_flags;
1da177e4
LT
918 int did_some_progress;
919
920 might_sleep_if(wait);
921
6b1de916 922restart:
7fb1d9fc 923 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 924
7fb1d9fc 925 if (unlikely(*z == NULL)) {
1da177e4
LT
926 /* Should this ever happen?? */
927 return NULL;
928 }
6b1de916 929
7fb1d9fc 930 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 931 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
932 if (page)
933 goto got_pg;
1da177e4 934
6b1de916 935 do {
7fb1d9fc 936 wakeup_kswapd(*z, order);
6b1de916 937 } while (*(++z));
1da177e4 938
9bf2229f 939 /*
7fb1d9fc
RS
940 * OK, we're below the kswapd watermark and have kicked background
941 * reclaim. Now things get more complex, so set up alloc_flags according
942 * to how we want to proceed.
943 *
944 * The caller may dip into page reserves a bit more if the caller
945 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
946 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
947 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 948 */
3148890b 949 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
950 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
951 alloc_flags |= ALLOC_HARDER;
952 if (gfp_mask & __GFP_HIGH)
953 alloc_flags |= ALLOC_HIGH;
47f3a867 954 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
955
956 /*
957 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 958 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
959 *
960 * This is the last chance, in general, before the goto nopage.
961 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 962 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 963 */
7fb1d9fc
RS
964 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
965 if (page)
966 goto got_pg;
1da177e4
LT
967
968 /* This allocation should allow future memory freeing. */
b84a35be
NP
969
970 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
971 && !in_interrupt()) {
972 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 973nofail_alloc:
b84a35be 974 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 975 page = get_page_from_freelist(gfp_mask, order,
47f3a867 976 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
977 if (page)
978 goto got_pg;
885036d3
KK
979 if (gfp_mask & __GFP_NOFAIL) {
980 blk_congestion_wait(WRITE, HZ/50);
981 goto nofail_alloc;
982 }
1da177e4
LT
983 }
984 goto nopage;
985 }
986
987 /* Atomic allocations - we can't balance anything */
988 if (!wait)
989 goto nopage;
990
991rebalance:
992 cond_resched();
993
994 /* We now go into synchronous reclaim */
3e0d98b9 995 cpuset_memory_pressure_bump();
1da177e4
LT
996 p->flags |= PF_MEMALLOC;
997 reclaim_state.reclaimed_slab = 0;
998 p->reclaim_state = &reclaim_state;
999
7fb1d9fc 1000 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1001
1002 p->reclaim_state = NULL;
1003 p->flags &= ~PF_MEMALLOC;
1004
1005 cond_resched();
1006
1007 if (likely(did_some_progress)) {
7fb1d9fc
RS
1008 page = get_page_from_freelist(gfp_mask, order,
1009 zonelist, alloc_flags);
1010 if (page)
1011 goto got_pg;
1da177e4
LT
1012 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1013 /*
1014 * Go through the zonelist yet one more time, keep
1015 * very high watermark here, this is only to catch
1016 * a parallel oom killing, we must fail if we're still
1017 * under heavy pressure.
1018 */
7fb1d9fc 1019 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1020 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1021 if (page)
1022 goto got_pg;
1da177e4 1023
9b0f8b04 1024 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1025 goto restart;
1026 }
1027
1028 /*
1029 * Don't let big-order allocations loop unless the caller explicitly
1030 * requests that. Wait for some write requests to complete then retry.
1031 *
1032 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1033 * <= 3, but that may not be true in other implementations.
1034 */
1035 do_retry = 0;
1036 if (!(gfp_mask & __GFP_NORETRY)) {
1037 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1038 do_retry = 1;
1039 if (gfp_mask & __GFP_NOFAIL)
1040 do_retry = 1;
1041 }
1042 if (do_retry) {
1043 blk_congestion_wait(WRITE, HZ/50);
1044 goto rebalance;
1045 }
1046
1047nopage:
1048 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1049 printk(KERN_WARNING "%s: page allocation failure."
1050 " order:%d, mode:0x%x\n",
1051 p->comm, order, gfp_mask);
1052 dump_stack();
578c2fd6 1053 show_mem();
1da177e4 1054 }
1da177e4 1055got_pg:
1da177e4
LT
1056 return page;
1057}
1058
1059EXPORT_SYMBOL(__alloc_pages);
1060
1061/*
1062 * Common helper functions.
1063 */
dd0fc66f 1064fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1065{
1066 struct page * page;
1067 page = alloc_pages(gfp_mask, order);
1068 if (!page)
1069 return 0;
1070 return (unsigned long) page_address(page);
1071}
1072
1073EXPORT_SYMBOL(__get_free_pages);
1074
dd0fc66f 1075fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1076{
1077 struct page * page;
1078
1079 /*
1080 * get_zeroed_page() returns a 32-bit address, which cannot represent
1081 * a highmem page
1082 */
260b2367 1083 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1084
1085 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1086 if (page)
1087 return (unsigned long) page_address(page);
1088 return 0;
1089}
1090
1091EXPORT_SYMBOL(get_zeroed_page);
1092
1093void __pagevec_free(struct pagevec *pvec)
1094{
1095 int i = pagevec_count(pvec);
1096
1097 while (--i >= 0)
1098 free_hot_cold_page(pvec->pages[i], pvec->cold);
1099}
1100
1101fastcall void __free_pages(struct page *page, unsigned int order)
1102{
b5810039 1103 if (put_page_testzero(page)) {
1da177e4
LT
1104 if (order == 0)
1105 free_hot_page(page);
1106 else
1107 __free_pages_ok(page, order);
1108 }
1109}
1110
1111EXPORT_SYMBOL(__free_pages);
1112
1113fastcall void free_pages(unsigned long addr, unsigned int order)
1114{
1115 if (addr != 0) {
1116 BUG_ON(!virt_addr_valid((void *)addr));
1117 __free_pages(virt_to_page((void *)addr), order);
1118 }
1119}
1120
1121EXPORT_SYMBOL(free_pages);
1122
1123/*
1124 * Total amount of free (allocatable) RAM:
1125 */
1126unsigned int nr_free_pages(void)
1127{
1128 unsigned int sum = 0;
1129 struct zone *zone;
1130
1131 for_each_zone(zone)
1132 sum += zone->free_pages;
1133
1134 return sum;
1135}
1136
1137EXPORT_SYMBOL(nr_free_pages);
1138
1139#ifdef CONFIG_NUMA
1140unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1141{
1142 unsigned int i, sum = 0;
1143
1144 for (i = 0; i < MAX_NR_ZONES; i++)
1145 sum += pgdat->node_zones[i].free_pages;
1146
1147 return sum;
1148}
1149#endif
1150
1151static unsigned int nr_free_zone_pages(int offset)
1152{
e310fd43
MB
1153 /* Just pick one node, since fallback list is circular */
1154 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1155 unsigned int sum = 0;
1156
e310fd43
MB
1157 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1158 struct zone **zonep = zonelist->zones;
1159 struct zone *zone;
1da177e4 1160
e310fd43
MB
1161 for (zone = *zonep++; zone; zone = *zonep++) {
1162 unsigned long size = zone->present_pages;
1163 unsigned long high = zone->pages_high;
1164 if (size > high)
1165 sum += size - high;
1da177e4
LT
1166 }
1167
1168 return sum;
1169}
1170
1171/*
1172 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1173 */
1174unsigned int nr_free_buffer_pages(void)
1175{
af4ca457 1176 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1177}
1178
1179/*
1180 * Amount of free RAM allocatable within all zones
1181 */
1182unsigned int nr_free_pagecache_pages(void)
1183{
af4ca457 1184 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1185}
1186
1187#ifdef CONFIG_HIGHMEM
1188unsigned int nr_free_highpages (void)
1189{
1190 pg_data_t *pgdat;
1191 unsigned int pages = 0;
1192
1193 for_each_pgdat(pgdat)
1194 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1195
1196 return pages;
1197}
1198#endif
1199
1200#ifdef CONFIG_NUMA
1201static void show_node(struct zone *zone)
1202{
1203 printk("Node %d ", zone->zone_pgdat->node_id);
1204}
1205#else
1206#define show_node(zone) do { } while (0)
1207#endif
1208
1209/*
1210 * Accumulate the page_state information across all CPUs.
1211 * The result is unavoidably approximate - it can change
1212 * during and after execution of this function.
1213 */
1214static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1215
1216atomic_t nr_pagecache = ATOMIC_INIT(0);
1217EXPORT_SYMBOL(nr_pagecache);
1218#ifdef CONFIG_SMP
1219DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1220#endif
1221
a86b1f53 1222static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4 1223{
b40607fc 1224 unsigned cpu;
1da177e4 1225
88a2a4ac 1226 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1227 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1228
b40607fc
AM
1229 for_each_cpu_mask(cpu, *cpumask) {
1230 unsigned long *in;
1231 unsigned long *out;
1232 unsigned off;
1233 unsigned next_cpu;
88a2a4ac 1234
1da177e4
LT
1235 in = (unsigned long *)&per_cpu(page_states, cpu);
1236
b40607fc
AM
1237 next_cpu = next_cpu(cpu, *cpumask);
1238 if (likely(next_cpu < NR_CPUS))
1239 prefetch(&per_cpu(page_states, next_cpu));
1da177e4
LT
1240
1241 out = (unsigned long *)ret;
1242 for (off = 0; off < nr; off++)
1243 *out++ += *in++;
1244 }
1245}
1246
c07e02db
MH
1247void get_page_state_node(struct page_state *ret, int node)
1248{
1249 int nr;
1250 cpumask_t mask = node_to_cpumask(node);
1251
1252 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1253 nr /= sizeof(unsigned long);
1254
1255 __get_page_state(ret, nr+1, &mask);
1256}
1257
1da177e4
LT
1258void get_page_state(struct page_state *ret)
1259{
1260 int nr;
c07e02db 1261 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1262
1263 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1264 nr /= sizeof(unsigned long);
1265
c07e02db 1266 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1267}
1268
1269void get_full_page_state(struct page_state *ret)
1270{
c07e02db
MH
1271 cpumask_t mask = CPU_MASK_ALL;
1272
1273 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1274}
1275
a74609fa 1276unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1277{
1278 unsigned long ret = 0;
1279 int cpu;
1280
84c2008a 1281 for_each_online_cpu(cpu) {
1da177e4
LT
1282 unsigned long in;
1283
1284 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1285 ret += *((unsigned long *)in);
1286 }
1287 return ret;
1288}
1289
a74609fa
NP
1290void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1291{
1292 void *ptr;
1293
1294 ptr = &__get_cpu_var(page_states);
1295 *(unsigned long *)(ptr + offset) += delta;
1296}
1297EXPORT_SYMBOL(__mod_page_state_offset);
1298
1299void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1300{
1301 unsigned long flags;
a74609fa 1302 void *ptr;
1da177e4
LT
1303
1304 local_irq_save(flags);
1305 ptr = &__get_cpu_var(page_states);
a74609fa 1306 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1307 local_irq_restore(flags);
1308}
a74609fa 1309EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1310
1311void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1312 unsigned long *free, struct pglist_data *pgdat)
1313{
1314 struct zone *zones = pgdat->node_zones;
1315 int i;
1316
1317 *active = 0;
1318 *inactive = 0;
1319 *free = 0;
1320 for (i = 0; i < MAX_NR_ZONES; i++) {
1321 *active += zones[i].nr_active;
1322 *inactive += zones[i].nr_inactive;
1323 *free += zones[i].free_pages;
1324 }
1325}
1326
1327void get_zone_counts(unsigned long *active,
1328 unsigned long *inactive, unsigned long *free)
1329{
1330 struct pglist_data *pgdat;
1331
1332 *active = 0;
1333 *inactive = 0;
1334 *free = 0;
1335 for_each_pgdat(pgdat) {
1336 unsigned long l, m, n;
1337 __get_zone_counts(&l, &m, &n, pgdat);
1338 *active += l;
1339 *inactive += m;
1340 *free += n;
1341 }
1342}
1343
1344void si_meminfo(struct sysinfo *val)
1345{
1346 val->totalram = totalram_pages;
1347 val->sharedram = 0;
1348 val->freeram = nr_free_pages();
1349 val->bufferram = nr_blockdev_pages();
1350#ifdef CONFIG_HIGHMEM
1351 val->totalhigh = totalhigh_pages;
1352 val->freehigh = nr_free_highpages();
1353#else
1354 val->totalhigh = 0;
1355 val->freehigh = 0;
1356#endif
1357 val->mem_unit = PAGE_SIZE;
1358}
1359
1360EXPORT_SYMBOL(si_meminfo);
1361
1362#ifdef CONFIG_NUMA
1363void si_meminfo_node(struct sysinfo *val, int nid)
1364{
1365 pg_data_t *pgdat = NODE_DATA(nid);
1366
1367 val->totalram = pgdat->node_present_pages;
1368 val->freeram = nr_free_pages_pgdat(pgdat);
1369 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1370 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1371 val->mem_unit = PAGE_SIZE;
1372}
1373#endif
1374
1375#define K(x) ((x) << (PAGE_SHIFT-10))
1376
1377/*
1378 * Show free area list (used inside shift_scroll-lock stuff)
1379 * We also calculate the percentage fragmentation. We do this by counting the
1380 * memory on each free list with the exception of the first item on the list.
1381 */
1382void show_free_areas(void)
1383{
1384 struct page_state ps;
1385 int cpu, temperature;
1386 unsigned long active;
1387 unsigned long inactive;
1388 unsigned long free;
1389 struct zone *zone;
1390
1391 for_each_zone(zone) {
1392 show_node(zone);
1393 printk("%s per-cpu:", zone->name);
1394
f3fe6512 1395 if (!populated_zone(zone)) {
1da177e4
LT
1396 printk(" empty\n");
1397 continue;
1398 } else
1399 printk("\n");
1400
6b482c67 1401 for_each_online_cpu(cpu) {
1da177e4
LT
1402 struct per_cpu_pageset *pageset;
1403
e7c8d5c9 1404 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1405
1406 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1407 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1408 cpu,
1409 temperature ? "cold" : "hot",
1da177e4 1410 pageset->pcp[temperature].high,
4ae7c039
CL
1411 pageset->pcp[temperature].batch,
1412 pageset->pcp[temperature].count);
1da177e4
LT
1413 }
1414 }
1415
1416 get_page_state(&ps);
1417 get_zone_counts(&active, &inactive, &free);
1418
c0d62219 1419 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1420 K(nr_free_pages()),
1421 K(nr_free_highpages()));
1422
1423 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1424 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1425 active,
1426 inactive,
1427 ps.nr_dirty,
1428 ps.nr_writeback,
1429 ps.nr_unstable,
1430 nr_free_pages(),
1431 ps.nr_slab,
1432 ps.nr_mapped,
1433 ps.nr_page_table_pages);
1434
1435 for_each_zone(zone) {
1436 int i;
1437
1438 show_node(zone);
1439 printk("%s"
1440 " free:%lukB"
1441 " min:%lukB"
1442 " low:%lukB"
1443 " high:%lukB"
1444 " active:%lukB"
1445 " inactive:%lukB"
1446 " present:%lukB"
1447 " pages_scanned:%lu"
1448 " all_unreclaimable? %s"
1449 "\n",
1450 zone->name,
1451 K(zone->free_pages),
1452 K(zone->pages_min),
1453 K(zone->pages_low),
1454 K(zone->pages_high),
1455 K(zone->nr_active),
1456 K(zone->nr_inactive),
1457 K(zone->present_pages),
1458 zone->pages_scanned,
1459 (zone->all_unreclaimable ? "yes" : "no")
1460 );
1461 printk("lowmem_reserve[]:");
1462 for (i = 0; i < MAX_NR_ZONES; i++)
1463 printk(" %lu", zone->lowmem_reserve[i]);
1464 printk("\n");
1465 }
1466
1467 for_each_zone(zone) {
1468 unsigned long nr, flags, order, total = 0;
1469
1470 show_node(zone);
1471 printk("%s: ", zone->name);
f3fe6512 1472 if (!populated_zone(zone)) {
1da177e4
LT
1473 printk("empty\n");
1474 continue;
1475 }
1476
1477 spin_lock_irqsave(&zone->lock, flags);
1478 for (order = 0; order < MAX_ORDER; order++) {
1479 nr = zone->free_area[order].nr_free;
1480 total += nr << order;
1481 printk("%lu*%lukB ", nr, K(1UL) << order);
1482 }
1483 spin_unlock_irqrestore(&zone->lock, flags);
1484 printk("= %lukB\n", K(total));
1485 }
1486
1487 show_swap_cache_info();
1488}
1489
1490/*
1491 * Builds allocation fallback zone lists.
1a93205b
CL
1492 *
1493 * Add all populated zones of a node to the zonelist.
1da177e4 1494 */
1a93205b 1495static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1496 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1497{
1a93205b
CL
1498 struct zone *zone;
1499
070f8032 1500 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1501
1502 do {
070f8032 1503 zone = pgdat->node_zones + zone_type;
1a93205b 1504 if (populated_zone(zone)) {
1da177e4 1505#ifndef CONFIG_HIGHMEM
070f8032 1506 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1507#endif
070f8032
CL
1508 zonelist->zones[nr_zones++] = zone;
1509 check_highest_zone(zone_type);
1da177e4 1510 }
070f8032 1511 zone_type--;
02a68a5e 1512
070f8032
CL
1513 } while (zone_type >= 0);
1514 return nr_zones;
1da177e4
LT
1515}
1516
260b2367
AV
1517static inline int highest_zone(int zone_bits)
1518{
1519 int res = ZONE_NORMAL;
1520 if (zone_bits & (__force int)__GFP_HIGHMEM)
1521 res = ZONE_HIGHMEM;
a2f1b424
AK
1522 if (zone_bits & (__force int)__GFP_DMA32)
1523 res = ZONE_DMA32;
260b2367
AV
1524 if (zone_bits & (__force int)__GFP_DMA)
1525 res = ZONE_DMA;
1526 return res;
1527}
1528
1da177e4
LT
1529#ifdef CONFIG_NUMA
1530#define MAX_NODE_LOAD (num_online_nodes())
1531static int __initdata node_load[MAX_NUMNODES];
1532/**
4dc3b16b 1533 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1534 * @node: node whose fallback list we're appending
1535 * @used_node_mask: nodemask_t of already used nodes
1536 *
1537 * We use a number of factors to determine which is the next node that should
1538 * appear on a given node's fallback list. The node should not have appeared
1539 * already in @node's fallback list, and it should be the next closest node
1540 * according to the distance array (which contains arbitrary distance values
1541 * from each node to each node in the system), and should also prefer nodes
1542 * with no CPUs, since presumably they'll have very little allocation pressure
1543 * on them otherwise.
1544 * It returns -1 if no node is found.
1545 */
1546static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1547{
4cf808eb 1548 int n, val;
1da177e4
LT
1549 int min_val = INT_MAX;
1550 int best_node = -1;
1551
4cf808eb
LT
1552 /* Use the local node if we haven't already */
1553 if (!node_isset(node, *used_node_mask)) {
1554 node_set(node, *used_node_mask);
1555 return node;
1556 }
1da177e4 1557
4cf808eb
LT
1558 for_each_online_node(n) {
1559 cpumask_t tmp;
1da177e4
LT
1560
1561 /* Don't want a node to appear more than once */
1562 if (node_isset(n, *used_node_mask))
1563 continue;
1564
1da177e4
LT
1565 /* Use the distance array to find the distance */
1566 val = node_distance(node, n);
1567
4cf808eb
LT
1568 /* Penalize nodes under us ("prefer the next node") */
1569 val += (n < node);
1570
1da177e4
LT
1571 /* Give preference to headless and unused nodes */
1572 tmp = node_to_cpumask(n);
1573 if (!cpus_empty(tmp))
1574 val += PENALTY_FOR_NODE_WITH_CPUS;
1575
1576 /* Slight preference for less loaded node */
1577 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1578 val += node_load[n];
1579
1580 if (val < min_val) {
1581 min_val = val;
1582 best_node = n;
1583 }
1584 }
1585
1586 if (best_node >= 0)
1587 node_set(best_node, *used_node_mask);
1588
1589 return best_node;
1590}
1591
1592static void __init build_zonelists(pg_data_t *pgdat)
1593{
1594 int i, j, k, node, local_node;
1595 int prev_node, load;
1596 struct zonelist *zonelist;
1597 nodemask_t used_mask;
1598
1599 /* initialize zonelists */
1600 for (i = 0; i < GFP_ZONETYPES; i++) {
1601 zonelist = pgdat->node_zonelists + i;
1602 zonelist->zones[0] = NULL;
1603 }
1604
1605 /* NUMA-aware ordering of nodes */
1606 local_node = pgdat->node_id;
1607 load = num_online_nodes();
1608 prev_node = local_node;
1609 nodes_clear(used_mask);
1610 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1611 int distance = node_distance(local_node, node);
1612
1613 /*
1614 * If another node is sufficiently far away then it is better
1615 * to reclaim pages in a zone before going off node.
1616 */
1617 if (distance > RECLAIM_DISTANCE)
1618 zone_reclaim_mode = 1;
1619
1da177e4
LT
1620 /*
1621 * We don't want to pressure a particular node.
1622 * So adding penalty to the first node in same
1623 * distance group to make it round-robin.
1624 */
9eeff239
CL
1625
1626 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1627 node_load[node] += load;
1628 prev_node = node;
1629 load--;
1630 for (i = 0; i < GFP_ZONETYPES; i++) {
1631 zonelist = pgdat->node_zonelists + i;
1632 for (j = 0; zonelist->zones[j] != NULL; j++);
1633
260b2367 1634 k = highest_zone(i);
1da177e4
LT
1635
1636 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1637 zonelist->zones[j] = NULL;
1638 }
1639 }
1640}
1641
1642#else /* CONFIG_NUMA */
1643
1644static void __init build_zonelists(pg_data_t *pgdat)
1645{
1646 int i, j, k, node, local_node;
1647
1648 local_node = pgdat->node_id;
1649 for (i = 0; i < GFP_ZONETYPES; i++) {
1650 struct zonelist *zonelist;
1651
1652 zonelist = pgdat->node_zonelists + i;
1653
1654 j = 0;
260b2367 1655 k = highest_zone(i);
1da177e4
LT
1656 j = build_zonelists_node(pgdat, zonelist, j, k);
1657 /*
1658 * Now we build the zonelist so that it contains the zones
1659 * of all the other nodes.
1660 * We don't want to pressure a particular node, so when
1661 * building the zones for node N, we make sure that the
1662 * zones coming right after the local ones are those from
1663 * node N+1 (modulo N)
1664 */
1665 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1666 if (!node_online(node))
1667 continue;
1668 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1669 }
1670 for (node = 0; node < local_node; node++) {
1671 if (!node_online(node))
1672 continue;
1673 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1674 }
1675
1676 zonelist->zones[j] = NULL;
1677 }
1678}
1679
1680#endif /* CONFIG_NUMA */
1681
1682void __init build_all_zonelists(void)
1683{
1684 int i;
1685
1686 for_each_online_node(i)
1687 build_zonelists(NODE_DATA(i));
1688 printk("Built %i zonelists\n", num_online_nodes());
1689 cpuset_init_current_mems_allowed();
1690}
1691
1692/*
1693 * Helper functions to size the waitqueue hash table.
1694 * Essentially these want to choose hash table sizes sufficiently
1695 * large so that collisions trying to wait on pages are rare.
1696 * But in fact, the number of active page waitqueues on typical
1697 * systems is ridiculously low, less than 200. So this is even
1698 * conservative, even though it seems large.
1699 *
1700 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1701 * waitqueues, i.e. the size of the waitq table given the number of pages.
1702 */
1703#define PAGES_PER_WAITQUEUE 256
1704
1705static inline unsigned long wait_table_size(unsigned long pages)
1706{
1707 unsigned long size = 1;
1708
1709 pages /= PAGES_PER_WAITQUEUE;
1710
1711 while (size < pages)
1712 size <<= 1;
1713
1714 /*
1715 * Once we have dozens or even hundreds of threads sleeping
1716 * on IO we've got bigger problems than wait queue collision.
1717 * Limit the size of the wait table to a reasonable size.
1718 */
1719 size = min(size, 4096UL);
1720
1721 return max(size, 4UL);
1722}
1723
1724/*
1725 * This is an integer logarithm so that shifts can be used later
1726 * to extract the more random high bits from the multiplicative
1727 * hash function before the remainder is taken.
1728 */
1729static inline unsigned long wait_table_bits(unsigned long size)
1730{
1731 return ffz(~size);
1732}
1733
1734#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1735
1736static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1737 unsigned long *zones_size, unsigned long *zholes_size)
1738{
1739 unsigned long realtotalpages, totalpages = 0;
1740 int i;
1741
1742 for (i = 0; i < MAX_NR_ZONES; i++)
1743 totalpages += zones_size[i];
1744 pgdat->node_spanned_pages = totalpages;
1745
1746 realtotalpages = totalpages;
1747 if (zholes_size)
1748 for (i = 0; i < MAX_NR_ZONES; i++)
1749 realtotalpages -= zholes_size[i];
1750 pgdat->node_present_pages = realtotalpages;
1751 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1752}
1753
1754
1755/*
1756 * Initially all pages are reserved - free ones are freed
1757 * up by free_all_bootmem() once the early boot process is
1758 * done. Non-atomic initialization, single-pass.
1759 */
c09b4240 1760void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1761 unsigned long start_pfn)
1762{
1da177e4 1763 struct page *page;
29751f69
AW
1764 unsigned long end_pfn = start_pfn + size;
1765 unsigned long pfn;
1da177e4 1766
cbe8dd4a 1767 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1768 if (!early_pfn_valid(pfn))
1769 continue;
1770 page = pfn_to_page(pfn);
1771 set_page_links(page, zone, nid, pfn);
7835e98b 1772 init_page_count(page);
1da177e4
LT
1773 reset_page_mapcount(page);
1774 SetPageReserved(page);
1775 INIT_LIST_HEAD(&page->lru);
1776#ifdef WANT_PAGE_VIRTUAL
1777 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1778 if (!is_highmem_idx(zone))
3212c6be 1779 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1780#endif
1da177e4
LT
1781 }
1782}
1783
1784void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1785 unsigned long size)
1786{
1787 int order;
1788 for (order = 0; order < MAX_ORDER ; order++) {
1789 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1790 zone->free_area[order].nr_free = 0;
1791 }
1792}
1793
d41dee36
AW
1794#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1795void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1796 unsigned long size)
1797{
1798 unsigned long snum = pfn_to_section_nr(pfn);
1799 unsigned long end = pfn_to_section_nr(pfn + size);
1800
1801 if (FLAGS_HAS_NODE)
1802 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1803 else
1804 for (; snum <= end; snum++)
1805 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1806}
1807
1da177e4
LT
1808#ifndef __HAVE_ARCH_MEMMAP_INIT
1809#define memmap_init(size, nid, zone, start_pfn) \
1810 memmap_init_zone((size), (nid), (zone), (start_pfn))
1811#endif
1812
6292d9aa 1813static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1814{
1815 int batch;
1816
1817 /*
1818 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1819 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1820 *
1821 * OK, so we don't know how big the cache is. So guess.
1822 */
1823 batch = zone->present_pages / 1024;
ba56e91c
SR
1824 if (batch * PAGE_SIZE > 512 * 1024)
1825 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1826 batch /= 4; /* We effectively *= 4 below */
1827 if (batch < 1)
1828 batch = 1;
1829
1830 /*
0ceaacc9
NP
1831 * Clamp the batch to a 2^n - 1 value. Having a power
1832 * of 2 value was found to be more likely to have
1833 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1834 *
0ceaacc9
NP
1835 * For example if 2 tasks are alternately allocating
1836 * batches of pages, one task can end up with a lot
1837 * of pages of one half of the possible page colors
1838 * and the other with pages of the other colors.
e7c8d5c9 1839 */
0ceaacc9 1840 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1841
e7c8d5c9
CL
1842 return batch;
1843}
1844
2caaad41
CL
1845inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1846{
1847 struct per_cpu_pages *pcp;
1848
1c6fe946
MD
1849 memset(p, 0, sizeof(*p));
1850
2caaad41
CL
1851 pcp = &p->pcp[0]; /* hot */
1852 pcp->count = 0;
2caaad41
CL
1853 pcp->high = 6 * batch;
1854 pcp->batch = max(1UL, 1 * batch);
1855 INIT_LIST_HEAD(&pcp->list);
1856
1857 pcp = &p->pcp[1]; /* cold*/
1858 pcp->count = 0;
2caaad41 1859 pcp->high = 2 * batch;
e46a5e28 1860 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1861 INIT_LIST_HEAD(&pcp->list);
1862}
1863
8ad4b1fb
RS
1864/*
1865 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1866 * to the value high for the pageset p.
1867 */
1868
1869static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1870 unsigned long high)
1871{
1872 struct per_cpu_pages *pcp;
1873
1874 pcp = &p->pcp[0]; /* hot list */
1875 pcp->high = high;
1876 pcp->batch = max(1UL, high/4);
1877 if ((high/4) > (PAGE_SHIFT * 8))
1878 pcp->batch = PAGE_SHIFT * 8;
1879}
1880
1881
e7c8d5c9
CL
1882#ifdef CONFIG_NUMA
1883/*
2caaad41
CL
1884 * Boot pageset table. One per cpu which is going to be used for all
1885 * zones and all nodes. The parameters will be set in such a way
1886 * that an item put on a list will immediately be handed over to
1887 * the buddy list. This is safe since pageset manipulation is done
1888 * with interrupts disabled.
1889 *
1890 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1891 *
1892 * The boot_pagesets must be kept even after bootup is complete for
1893 * unused processors and/or zones. They do play a role for bootstrapping
1894 * hotplugged processors.
1895 *
1896 * zoneinfo_show() and maybe other functions do
1897 * not check if the processor is online before following the pageset pointer.
1898 * Other parts of the kernel may not check if the zone is available.
2caaad41 1899 */
88a2a4ac 1900static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1901
1902/*
1903 * Dynamically allocate memory for the
e7c8d5c9
CL
1904 * per cpu pageset array in struct zone.
1905 */
6292d9aa 1906static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1907{
1908 struct zone *zone, *dzone;
e7c8d5c9
CL
1909
1910 for_each_zone(zone) {
e7c8d5c9 1911
23316bc8 1912 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1913 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1914 if (!zone_pcp(zone, cpu))
e7c8d5c9 1915 goto bad;
e7c8d5c9 1916
23316bc8 1917 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1918
1919 if (percpu_pagelist_fraction)
1920 setup_pagelist_highmark(zone_pcp(zone, cpu),
1921 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1922 }
1923
1924 return 0;
1925bad:
1926 for_each_zone(dzone) {
1927 if (dzone == zone)
1928 break;
23316bc8
NP
1929 kfree(zone_pcp(dzone, cpu));
1930 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1931 }
1932 return -ENOMEM;
1933}
1934
1935static inline void free_zone_pagesets(int cpu)
1936{
e7c8d5c9
CL
1937 struct zone *zone;
1938
1939 for_each_zone(zone) {
1940 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1941
1942 zone_pcp(zone, cpu) = NULL;
1943 kfree(pset);
1944 }
e7c8d5c9
CL
1945}
1946
6292d9aa 1947static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1948 unsigned long action,
1949 void *hcpu)
1950{
1951 int cpu = (long)hcpu;
1952 int ret = NOTIFY_OK;
1953
1954 switch (action) {
1955 case CPU_UP_PREPARE:
1956 if (process_zones(cpu))
1957 ret = NOTIFY_BAD;
1958 break;
b0d41693 1959 case CPU_UP_CANCELED:
e7c8d5c9
CL
1960 case CPU_DEAD:
1961 free_zone_pagesets(cpu);
1962 break;
e7c8d5c9
CL
1963 default:
1964 break;
1965 }
1966 return ret;
1967}
1968
1969static struct notifier_block pageset_notifier =
1970 { &pageset_cpuup_callback, NULL, 0 };
1971
78d9955b 1972void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1973{
1974 int err;
1975
1976 /* Initialize per_cpu_pageset for cpu 0.
1977 * A cpuup callback will do this for every cpu
1978 * as it comes online
1979 */
1980 err = process_zones(smp_processor_id());
1981 BUG_ON(err);
1982 register_cpu_notifier(&pageset_notifier);
1983}
1984
1985#endif
1986
c09b4240 1987static __meminit
ed8ece2e
DH
1988void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1989{
1990 int i;
1991 struct pglist_data *pgdat = zone->zone_pgdat;
1992
1993 /*
1994 * The per-page waitqueue mechanism uses hashed waitqueues
1995 * per zone.
1996 */
1997 zone->wait_table_size = wait_table_size(zone_size_pages);
1998 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1999 zone->wait_table = (wait_queue_head_t *)
2000 alloc_bootmem_node(pgdat, zone->wait_table_size
2001 * sizeof(wait_queue_head_t));
2002
2003 for(i = 0; i < zone->wait_table_size; ++i)
2004 init_waitqueue_head(zone->wait_table + i);
2005}
2006
c09b4240 2007static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2008{
2009 int cpu;
2010 unsigned long batch = zone_batchsize(zone);
2011
2012 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2013#ifdef CONFIG_NUMA
2014 /* Early boot. Slab allocator not functional yet */
23316bc8 2015 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2016 setup_pageset(&boot_pageset[cpu],0);
2017#else
2018 setup_pageset(zone_pcp(zone,cpu), batch);
2019#endif
2020 }
2021 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2022 zone->name, zone->present_pages, batch);
2023}
2024
c09b4240 2025static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2026 unsigned long zone_start_pfn, unsigned long size)
2027{
2028 struct pglist_data *pgdat = zone->zone_pgdat;
2029
2030 zone_wait_table_init(zone, size);
2031 pgdat->nr_zones = zone_idx(zone) + 1;
2032
2033 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2034 zone->zone_start_pfn = zone_start_pfn;
2035
2036 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2037
2038 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2039}
2040
1da177e4
LT
2041/*
2042 * Set up the zone data structures:
2043 * - mark all pages reserved
2044 * - mark all memory queues empty
2045 * - clear the memory bitmaps
2046 */
2047static void __init free_area_init_core(struct pglist_data *pgdat,
2048 unsigned long *zones_size, unsigned long *zholes_size)
2049{
ed8ece2e
DH
2050 unsigned long j;
2051 int nid = pgdat->node_id;
1da177e4
LT
2052 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2053
208d54e5 2054 pgdat_resize_init(pgdat);
1da177e4
LT
2055 pgdat->nr_zones = 0;
2056 init_waitqueue_head(&pgdat->kswapd_wait);
2057 pgdat->kswapd_max_order = 0;
2058
2059 for (j = 0; j < MAX_NR_ZONES; j++) {
2060 struct zone *zone = pgdat->node_zones + j;
2061 unsigned long size, realsize;
1da177e4 2062
1da177e4
LT
2063 realsize = size = zones_size[j];
2064 if (zholes_size)
2065 realsize -= zholes_size[j];
2066
a2f1b424 2067 if (j < ZONE_HIGHMEM)
1da177e4
LT
2068 nr_kernel_pages += realsize;
2069 nr_all_pages += realsize;
2070
2071 zone->spanned_pages = size;
2072 zone->present_pages = realsize;
2073 zone->name = zone_names[j];
2074 spin_lock_init(&zone->lock);
2075 spin_lock_init(&zone->lru_lock);
bdc8cb98 2076 zone_seqlock_init(zone);
1da177e4
LT
2077 zone->zone_pgdat = pgdat;
2078 zone->free_pages = 0;
2079
2080 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2081
ed8ece2e 2082 zone_pcp_init(zone);
1da177e4
LT
2083 INIT_LIST_HEAD(&zone->active_list);
2084 INIT_LIST_HEAD(&zone->inactive_list);
2085 zone->nr_scan_active = 0;
2086 zone->nr_scan_inactive = 0;
2087 zone->nr_active = 0;
2088 zone->nr_inactive = 0;
53e9a615 2089 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2090 if (!size)
2091 continue;
2092
d41dee36 2093 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2094 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2095 zone_start_pfn += size;
1da177e4
LT
2096 }
2097}
2098
2099static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2100{
1da177e4
LT
2101 /* Skip empty nodes */
2102 if (!pgdat->node_spanned_pages)
2103 return;
2104
d41dee36 2105#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2106 /* ia64 gets its own node_mem_map, before this, without bootmem */
2107 if (!pgdat->node_mem_map) {
d41dee36
AW
2108 unsigned long size;
2109 struct page *map;
2110
1da177e4 2111 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2112 map = alloc_remap(pgdat->node_id, size);
2113 if (!map)
2114 map = alloc_bootmem_node(pgdat, size);
2115 pgdat->node_mem_map = map;
1da177e4 2116 }
d41dee36 2117#ifdef CONFIG_FLATMEM
1da177e4
LT
2118 /*
2119 * With no DISCONTIG, the global mem_map is just set as node 0's
2120 */
2121 if (pgdat == NODE_DATA(0))
2122 mem_map = NODE_DATA(0)->node_mem_map;
2123#endif
d41dee36 2124#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2125}
2126
2127void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2128 unsigned long *zones_size, unsigned long node_start_pfn,
2129 unsigned long *zholes_size)
2130{
2131 pgdat->node_id = nid;
2132 pgdat->node_start_pfn = node_start_pfn;
2133 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2134
2135 alloc_node_mem_map(pgdat);
2136
2137 free_area_init_core(pgdat, zones_size, zholes_size);
2138}
2139
93b7504e 2140#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2141static bootmem_data_t contig_bootmem_data;
2142struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2143
2144EXPORT_SYMBOL(contig_page_data);
93b7504e 2145#endif
1da177e4
LT
2146
2147void __init free_area_init(unsigned long *zones_size)
2148{
93b7504e 2149 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2150 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2151}
1da177e4
LT
2152
2153#ifdef CONFIG_PROC_FS
2154
2155#include <linux/seq_file.h>
2156
2157static void *frag_start(struct seq_file *m, loff_t *pos)
2158{
2159 pg_data_t *pgdat;
2160 loff_t node = *pos;
2161
2162 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2163 --node;
2164
2165 return pgdat;
2166}
2167
2168static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2169{
2170 pg_data_t *pgdat = (pg_data_t *)arg;
2171
2172 (*pos)++;
2173 return pgdat->pgdat_next;
2174}
2175
2176static void frag_stop(struct seq_file *m, void *arg)
2177{
2178}
2179
2180/*
2181 * This walks the free areas for each zone.
2182 */
2183static int frag_show(struct seq_file *m, void *arg)
2184{
2185 pg_data_t *pgdat = (pg_data_t *)arg;
2186 struct zone *zone;
2187 struct zone *node_zones = pgdat->node_zones;
2188 unsigned long flags;
2189 int order;
2190
2191 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2192 if (!populated_zone(zone))
1da177e4
LT
2193 continue;
2194
2195 spin_lock_irqsave(&zone->lock, flags);
2196 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2197 for (order = 0; order < MAX_ORDER; ++order)
2198 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2199 spin_unlock_irqrestore(&zone->lock, flags);
2200 seq_putc(m, '\n');
2201 }
2202 return 0;
2203}
2204
2205struct seq_operations fragmentation_op = {
2206 .start = frag_start,
2207 .next = frag_next,
2208 .stop = frag_stop,
2209 .show = frag_show,
2210};
2211
295ab934
ND
2212/*
2213 * Output information about zones in @pgdat.
2214 */
2215static int zoneinfo_show(struct seq_file *m, void *arg)
2216{
2217 pg_data_t *pgdat = arg;
2218 struct zone *zone;
2219 struct zone *node_zones = pgdat->node_zones;
2220 unsigned long flags;
2221
2222 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2223 int i;
2224
f3fe6512 2225 if (!populated_zone(zone))
295ab934
ND
2226 continue;
2227
2228 spin_lock_irqsave(&zone->lock, flags);
2229 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2230 seq_printf(m,
2231 "\n pages free %lu"
2232 "\n min %lu"
2233 "\n low %lu"
2234 "\n high %lu"
2235 "\n active %lu"
2236 "\n inactive %lu"
2237 "\n scanned %lu (a: %lu i: %lu)"
2238 "\n spanned %lu"
2239 "\n present %lu",
2240 zone->free_pages,
2241 zone->pages_min,
2242 zone->pages_low,
2243 zone->pages_high,
2244 zone->nr_active,
2245 zone->nr_inactive,
2246 zone->pages_scanned,
2247 zone->nr_scan_active, zone->nr_scan_inactive,
2248 zone->spanned_pages,
2249 zone->present_pages);
2250 seq_printf(m,
2251 "\n protection: (%lu",
2252 zone->lowmem_reserve[0]);
2253 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2254 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2255 seq_printf(m,
2256 ")"
2257 "\n pagesets");
23316bc8 2258 for_each_online_cpu(i) {
295ab934
ND
2259 struct per_cpu_pageset *pageset;
2260 int j;
2261
e7c8d5c9 2262 pageset = zone_pcp(zone, i);
295ab934
ND
2263 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2264 if (pageset->pcp[j].count)
2265 break;
2266 }
2267 if (j == ARRAY_SIZE(pageset->pcp))
2268 continue;
2269 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2270 seq_printf(m,
2271 "\n cpu: %i pcp: %i"
2272 "\n count: %i"
295ab934
ND
2273 "\n high: %i"
2274 "\n batch: %i",
2275 i, j,
2276 pageset->pcp[j].count,
295ab934
ND
2277 pageset->pcp[j].high,
2278 pageset->pcp[j].batch);
2279 }
2280#ifdef CONFIG_NUMA
2281 seq_printf(m,
2282 "\n numa_hit: %lu"
2283 "\n numa_miss: %lu"
2284 "\n numa_foreign: %lu"
2285 "\n interleave_hit: %lu"
2286 "\n local_node: %lu"
2287 "\n other_node: %lu",
2288 pageset->numa_hit,
2289 pageset->numa_miss,
2290 pageset->numa_foreign,
2291 pageset->interleave_hit,
2292 pageset->local_node,
2293 pageset->other_node);
2294#endif
2295 }
2296 seq_printf(m,
2297 "\n all_unreclaimable: %u"
2298 "\n prev_priority: %i"
2299 "\n temp_priority: %i"
2300 "\n start_pfn: %lu",
2301 zone->all_unreclaimable,
2302 zone->prev_priority,
2303 zone->temp_priority,
2304 zone->zone_start_pfn);
2305 spin_unlock_irqrestore(&zone->lock, flags);
2306 seq_putc(m, '\n');
2307 }
2308 return 0;
2309}
2310
2311struct seq_operations zoneinfo_op = {
2312 .start = frag_start, /* iterate over all zones. The same as in
2313 * fragmentation. */
2314 .next = frag_next,
2315 .stop = frag_stop,
2316 .show = zoneinfo_show,
2317};
2318
1da177e4
LT
2319static char *vmstat_text[] = {
2320 "nr_dirty",
2321 "nr_writeback",
2322 "nr_unstable",
2323 "nr_page_table_pages",
2324 "nr_mapped",
2325 "nr_slab",
2326
2327 "pgpgin",
2328 "pgpgout",
2329 "pswpin",
2330 "pswpout",
1da177e4 2331
9328b8fa 2332 "pgalloc_high",
1da177e4 2333 "pgalloc_normal",
9328b8fa 2334 "pgalloc_dma32",
1da177e4 2335 "pgalloc_dma",
9328b8fa 2336
1da177e4
LT
2337 "pgfree",
2338 "pgactivate",
2339 "pgdeactivate",
2340
2341 "pgfault",
2342 "pgmajfault",
9328b8fa 2343
1da177e4
LT
2344 "pgrefill_high",
2345 "pgrefill_normal",
9328b8fa 2346 "pgrefill_dma32",
1da177e4
LT
2347 "pgrefill_dma",
2348
2349 "pgsteal_high",
2350 "pgsteal_normal",
9328b8fa 2351 "pgsteal_dma32",
1da177e4 2352 "pgsteal_dma",
9328b8fa 2353
1da177e4
LT
2354 "pgscan_kswapd_high",
2355 "pgscan_kswapd_normal",
9328b8fa 2356 "pgscan_kswapd_dma32",
1da177e4 2357 "pgscan_kswapd_dma",
9328b8fa 2358
1da177e4
LT
2359 "pgscan_direct_high",
2360 "pgscan_direct_normal",
9328b8fa 2361 "pgscan_direct_dma32",
1da177e4 2362 "pgscan_direct_dma",
1da177e4 2363
9328b8fa 2364 "pginodesteal",
1da177e4
LT
2365 "slabs_scanned",
2366 "kswapd_steal",
2367 "kswapd_inodesteal",
2368 "pageoutrun",
2369 "allocstall",
2370
2371 "pgrotated",
edfbe2b0 2372 "nr_bounce",
1da177e4
LT
2373};
2374
2375static void *vmstat_start(struct seq_file *m, loff_t *pos)
2376{
2377 struct page_state *ps;
2378
2379 if (*pos >= ARRAY_SIZE(vmstat_text))
2380 return NULL;
2381
2382 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2383 m->private = ps;
2384 if (!ps)
2385 return ERR_PTR(-ENOMEM);
2386 get_full_page_state(ps);
2387 ps->pgpgin /= 2; /* sectors -> kbytes */
2388 ps->pgpgout /= 2;
2389 return (unsigned long *)ps + *pos;
2390}
2391
2392static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2393{
2394 (*pos)++;
2395 if (*pos >= ARRAY_SIZE(vmstat_text))
2396 return NULL;
2397 return (unsigned long *)m->private + *pos;
2398}
2399
2400static int vmstat_show(struct seq_file *m, void *arg)
2401{
2402 unsigned long *l = arg;
2403 unsigned long off = l - (unsigned long *)m->private;
2404
2405 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2406 return 0;
2407}
2408
2409static void vmstat_stop(struct seq_file *m, void *arg)
2410{
2411 kfree(m->private);
2412 m->private = NULL;
2413}
2414
2415struct seq_operations vmstat_op = {
2416 .start = vmstat_start,
2417 .next = vmstat_next,
2418 .stop = vmstat_stop,
2419 .show = vmstat_show,
2420};
2421
2422#endif /* CONFIG_PROC_FS */
2423
2424#ifdef CONFIG_HOTPLUG_CPU
2425static int page_alloc_cpu_notify(struct notifier_block *self,
2426 unsigned long action, void *hcpu)
2427{
2428 int cpu = (unsigned long)hcpu;
2429 long *count;
2430 unsigned long *src, *dest;
2431
2432 if (action == CPU_DEAD) {
2433 int i;
2434
2435 /* Drain local pagecache count. */
2436 count = &per_cpu(nr_pagecache_local, cpu);
2437 atomic_add(*count, &nr_pagecache);
2438 *count = 0;
2439 local_irq_disable();
2440 __drain_pages(cpu);
2441
2442 /* Add dead cpu's page_states to our own. */
2443 dest = (unsigned long *)&__get_cpu_var(page_states);
2444 src = (unsigned long *)&per_cpu(page_states, cpu);
2445
2446 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2447 i++) {
2448 dest[i] += src[i];
2449 src[i] = 0;
2450 }
2451
2452 local_irq_enable();
2453 }
2454 return NOTIFY_OK;
2455}
2456#endif /* CONFIG_HOTPLUG_CPU */
2457
2458void __init page_alloc_init(void)
2459{
2460 hotcpu_notifier(page_alloc_cpu_notify, 0);
2461}
2462
2463/*
2464 * setup_per_zone_lowmem_reserve - called whenever
2465 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2466 * has a correct pages reserved value, so an adequate number of
2467 * pages are left in the zone after a successful __alloc_pages().
2468 */
2469static void setup_per_zone_lowmem_reserve(void)
2470{
2471 struct pglist_data *pgdat;
2472 int j, idx;
2473
2474 for_each_pgdat(pgdat) {
2475 for (j = 0; j < MAX_NR_ZONES; j++) {
2476 struct zone *zone = pgdat->node_zones + j;
2477 unsigned long present_pages = zone->present_pages;
2478
2479 zone->lowmem_reserve[j] = 0;
2480
2481 for (idx = j-1; idx >= 0; idx--) {
2482 struct zone *lower_zone;
2483
2484 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2485 sysctl_lowmem_reserve_ratio[idx] = 1;
2486
2487 lower_zone = pgdat->node_zones + idx;
2488 lower_zone->lowmem_reserve[j] = present_pages /
2489 sysctl_lowmem_reserve_ratio[idx];
2490 present_pages += lower_zone->present_pages;
2491 }
2492 }
2493 }
2494}
2495
2496/*
2497 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2498 * that the pages_{min,low,high} values for each zone are set correctly
2499 * with respect to min_free_kbytes.
2500 */
3947be19 2501void setup_per_zone_pages_min(void)
1da177e4
LT
2502{
2503 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2504 unsigned long lowmem_pages = 0;
2505 struct zone *zone;
2506 unsigned long flags;
2507
2508 /* Calculate total number of !ZONE_HIGHMEM pages */
2509 for_each_zone(zone) {
2510 if (!is_highmem(zone))
2511 lowmem_pages += zone->present_pages;
2512 }
2513
2514 for_each_zone(zone) {
669ed175 2515 unsigned long tmp;
1da177e4 2516 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2517 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2518 if (is_highmem(zone)) {
2519 /*
669ed175
NP
2520 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2521 * need highmem pages, so cap pages_min to a small
2522 * value here.
2523 *
2524 * The (pages_high-pages_low) and (pages_low-pages_min)
2525 * deltas controls asynch page reclaim, and so should
2526 * not be capped for highmem.
1da177e4
LT
2527 */
2528 int min_pages;
2529
2530 min_pages = zone->present_pages / 1024;
2531 if (min_pages < SWAP_CLUSTER_MAX)
2532 min_pages = SWAP_CLUSTER_MAX;
2533 if (min_pages > 128)
2534 min_pages = 128;
2535 zone->pages_min = min_pages;
2536 } else {
669ed175
NP
2537 /*
2538 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2539 * proportionate to the zone's size.
2540 */
669ed175 2541 zone->pages_min = tmp;
1da177e4
LT
2542 }
2543
669ed175
NP
2544 zone->pages_low = zone->pages_min + tmp / 4;
2545 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2546 spin_unlock_irqrestore(&zone->lru_lock, flags);
2547 }
2548}
2549
2550/*
2551 * Initialise min_free_kbytes.
2552 *
2553 * For small machines we want it small (128k min). For large machines
2554 * we want it large (64MB max). But it is not linear, because network
2555 * bandwidth does not increase linearly with machine size. We use
2556 *
2557 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2558 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2559 *
2560 * which yields
2561 *
2562 * 16MB: 512k
2563 * 32MB: 724k
2564 * 64MB: 1024k
2565 * 128MB: 1448k
2566 * 256MB: 2048k
2567 * 512MB: 2896k
2568 * 1024MB: 4096k
2569 * 2048MB: 5792k
2570 * 4096MB: 8192k
2571 * 8192MB: 11584k
2572 * 16384MB: 16384k
2573 */
2574static int __init init_per_zone_pages_min(void)
2575{
2576 unsigned long lowmem_kbytes;
2577
2578 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2579
2580 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2581 if (min_free_kbytes < 128)
2582 min_free_kbytes = 128;
2583 if (min_free_kbytes > 65536)
2584 min_free_kbytes = 65536;
2585 setup_per_zone_pages_min();
2586 setup_per_zone_lowmem_reserve();
2587 return 0;
2588}
2589module_init(init_per_zone_pages_min)
2590
2591/*
2592 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2593 * that we can call two helper functions whenever min_free_kbytes
2594 * changes.
2595 */
2596int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2597 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2598{
2599 proc_dointvec(table, write, file, buffer, length, ppos);
2600 setup_per_zone_pages_min();
2601 return 0;
2602}
2603
2604/*
2605 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2606 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2607 * whenever sysctl_lowmem_reserve_ratio changes.
2608 *
2609 * The reserve ratio obviously has absolutely no relation with the
2610 * pages_min watermarks. The lowmem reserve ratio can only make sense
2611 * if in function of the boot time zone sizes.
2612 */
2613int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2614 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2615{
2616 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2617 setup_per_zone_lowmem_reserve();
2618 return 0;
2619}
2620
8ad4b1fb
RS
2621/*
2622 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2623 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2624 * can have before it gets flushed back to buddy allocator.
2625 */
2626
2627int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2628 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2629{
2630 struct zone *zone;
2631 unsigned int cpu;
2632 int ret;
2633
2634 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2635 if (!write || (ret == -EINVAL))
2636 return ret;
2637 for_each_zone(zone) {
2638 for_each_online_cpu(cpu) {
2639 unsigned long high;
2640 high = zone->present_pages / percpu_pagelist_fraction;
2641 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2642 }
2643 }
2644 return 0;
2645}
2646
1da177e4
LT
2647__initdata int hashdist = HASHDIST_DEFAULT;
2648
2649#ifdef CONFIG_NUMA
2650static int __init set_hashdist(char *str)
2651{
2652 if (!str)
2653 return 0;
2654 hashdist = simple_strtoul(str, &str, 0);
2655 return 1;
2656}
2657__setup("hashdist=", set_hashdist);
2658#endif
2659
2660/*
2661 * allocate a large system hash table from bootmem
2662 * - it is assumed that the hash table must contain an exact power-of-2
2663 * quantity of entries
2664 * - limit is the number of hash buckets, not the total allocation size
2665 */
2666void *__init alloc_large_system_hash(const char *tablename,
2667 unsigned long bucketsize,
2668 unsigned long numentries,
2669 int scale,
2670 int flags,
2671 unsigned int *_hash_shift,
2672 unsigned int *_hash_mask,
2673 unsigned long limit)
2674{
2675 unsigned long long max = limit;
2676 unsigned long log2qty, size;
2677 void *table = NULL;
2678
2679 /* allow the kernel cmdline to have a say */
2680 if (!numentries) {
2681 /* round applicable memory size up to nearest megabyte */
2682 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2683 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2684 numentries >>= 20 - PAGE_SHIFT;
2685 numentries <<= 20 - PAGE_SHIFT;
2686
2687 /* limit to 1 bucket per 2^scale bytes of low memory */
2688 if (scale > PAGE_SHIFT)
2689 numentries >>= (scale - PAGE_SHIFT);
2690 else
2691 numentries <<= (PAGE_SHIFT - scale);
2692 }
2693 /* rounded up to nearest power of 2 in size */
2694 numentries = 1UL << (long_log2(numentries) + 1);
2695
2696 /* limit allocation size to 1/16 total memory by default */
2697 if (max == 0) {
2698 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2699 do_div(max, bucketsize);
2700 }
2701
2702 if (numentries > max)
2703 numentries = max;
2704
2705 log2qty = long_log2(numentries);
2706
2707 do {
2708 size = bucketsize << log2qty;
2709 if (flags & HASH_EARLY)
2710 table = alloc_bootmem(size);
2711 else if (hashdist)
2712 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2713 else {
2714 unsigned long order;
2715 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2716 ;
2717 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2718 }
2719 } while (!table && size > PAGE_SIZE && --log2qty);
2720
2721 if (!table)
2722 panic("Failed to allocate %s hash table\n", tablename);
2723
2724 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2725 tablename,
2726 (1U << log2qty),
2727 long_log2(size) - PAGE_SHIFT,
2728 size);
2729
2730 if (_hash_shift)
2731 *_hash_shift = log2qty;
2732 if (_hash_mask)
2733 *_hash_mask = (1 << log2qty) - 1;
2734
2735 return table;
2736}