don't group high order atomic allocations
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
13808910 50 * Array of node states.
1da177e4 51 */
13808910
CL
52nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55#ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57#ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59#endif
60 [N_CPU] = { { [0] = 1UL } },
61#endif /* NUMA */
62};
63EXPORT_SYMBOL(node_states);
64
6c231b7b 65unsigned long totalram_pages __read_mostly;
cb45b0e9 66unsigned long totalreserve_pages __read_mostly;
1da177e4 67long nr_swap_pages;
8ad4b1fb 68int percpu_pagelist_fraction;
1da177e4 69
d98c7a09 70static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 71
1da177e4
LT
72/*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
1da177e4 82 */
2f1b6248 83int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 84#ifdef CONFIG_ZONE_DMA
2f1b6248 85 256,
4b51d669 86#endif
fb0e7942 87#ifdef CONFIG_ZONE_DMA32
2f1b6248 88 256,
fb0e7942 89#endif
e53ef38d 90#ifdef CONFIG_HIGHMEM
2a1e274a 91 32,
e53ef38d 92#endif
2a1e274a 93 32,
2f1b6248 94};
1da177e4
LT
95
96EXPORT_SYMBOL(totalram_pages);
1da177e4 97
15ad7cdc 98static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 99#ifdef CONFIG_ZONE_DMA
2f1b6248 100 "DMA",
4b51d669 101#endif
fb0e7942 102#ifdef CONFIG_ZONE_DMA32
2f1b6248 103 "DMA32",
fb0e7942 104#endif
2f1b6248 105 "Normal",
e53ef38d 106#ifdef CONFIG_HIGHMEM
2a1e274a 107 "HighMem",
e53ef38d 108#endif
2a1e274a 109 "Movable",
2f1b6248
CL
110};
111
1da177e4
LT
112int min_free_kbytes = 1024;
113
86356ab1
YG
114unsigned long __meminitdata nr_kernel_pages;
115unsigned long __meminitdata nr_all_pages;
a3142c8e 116static unsigned long __meminitdata dma_reserve;
1da177e4 117
c713216d
MG
118#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
98011f56
JB
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 143#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 146#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 147 unsigned long __initdata required_kernelcore;
7e63efef 148 unsigned long __initdata required_movablecore;
e228929b 149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
c713216d
MG
154#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
418508c1
MS
156#if MAX_NUMNODES > 1
157int nr_node_ids __read_mostly = MAX_NUMNODES;
158EXPORT_SYMBOL(nr_node_ids);
159#endif
160
9ef9acb0
MG
161int page_group_by_mobility_disabled __read_mostly;
162
b2a0ac88
MG
163static inline int get_pageblock_migratetype(struct page *page)
164{
9ef9acb0
MG
165 if (unlikely(page_group_by_mobility_disabled))
166 return MIGRATE_UNMOVABLE;
167
b2a0ac88
MG
168 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
169}
170
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173 set_pageblock_flags_group(page, (unsigned long)migratetype,
174 PB_migrate, PB_migrate_end);
175}
176
64c5e135 177static inline int allocflags_to_migratetype(gfp_t gfp_flags)
b2a0ac88 178{
e12ba74d
MG
179 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
180
9ef9acb0
MG
181 if (unlikely(page_group_by_mobility_disabled))
182 return MIGRATE_UNMOVABLE;
183
e010487d 184 /* Cluster based on mobility */
e12ba74d
MG
185 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
186 ((gfp_flags & __GFP_RECLAIMABLE) != 0);
b2a0ac88
MG
187}
188
13e7444b 189#ifdef CONFIG_DEBUG_VM
c6a57e19 190static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 191{
bdc8cb98
DH
192 int ret = 0;
193 unsigned seq;
194 unsigned long pfn = page_to_pfn(page);
c6a57e19 195
bdc8cb98
DH
196 do {
197 seq = zone_span_seqbegin(zone);
198 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
199 ret = 1;
200 else if (pfn < zone->zone_start_pfn)
201 ret = 1;
202 } while (zone_span_seqretry(zone, seq));
203
204 return ret;
c6a57e19
DH
205}
206
207static int page_is_consistent(struct zone *zone, struct page *page)
208{
14e07298 209 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 210 return 0;
1da177e4 211 if (zone != page_zone(page))
c6a57e19
DH
212 return 0;
213
214 return 1;
215}
216/*
217 * Temporary debugging check for pages not lying within a given zone.
218 */
219static int bad_range(struct zone *zone, struct page *page)
220{
221 if (page_outside_zone_boundaries(zone, page))
1da177e4 222 return 1;
c6a57e19
DH
223 if (!page_is_consistent(zone, page))
224 return 1;
225
1da177e4
LT
226 return 0;
227}
13e7444b
NP
228#else
229static inline int bad_range(struct zone *zone, struct page *page)
230{
231 return 0;
232}
233#endif
234
224abf92 235static void bad_page(struct page *page)
1da177e4 236{
224abf92 237 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
238 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
239 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
240 KERN_EMERG "Backtrace:\n",
224abf92
NP
241 current->comm, page, (int)(2*sizeof(unsigned long)),
242 (unsigned long)page->flags, page->mapping,
243 page_mapcount(page), page_count(page));
1da177e4 244 dump_stack();
334795ec
HD
245 page->flags &= ~(1 << PG_lru |
246 1 << PG_private |
1da177e4 247 1 << PG_locked |
1da177e4
LT
248 1 << PG_active |
249 1 << PG_dirty |
334795ec
HD
250 1 << PG_reclaim |
251 1 << PG_slab |
1da177e4 252 1 << PG_swapcache |
676165a8
NP
253 1 << PG_writeback |
254 1 << PG_buddy );
1da177e4
LT
255 set_page_count(page, 0);
256 reset_page_mapcount(page);
257 page->mapping = NULL;
9f158333 258 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
259}
260
1da177e4
LT
261/*
262 * Higher-order pages are called "compound pages". They are structured thusly:
263 *
264 * The first PAGE_SIZE page is called the "head page".
265 *
266 * The remaining PAGE_SIZE pages are called "tail pages".
267 *
268 * All pages have PG_compound set. All pages have their ->private pointing at
269 * the head page (even the head page has this).
270 *
41d78ba5
HD
271 * The first tail page's ->lru.next holds the address of the compound page's
272 * put_page() function. Its ->lru.prev holds the order of allocation.
273 * This usage means that zero-order pages may not be compound.
1da177e4 274 */
d98c7a09
HD
275
276static void free_compound_page(struct page *page)
277{
d85f3385 278 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
279}
280
1da177e4
LT
281static void prep_compound_page(struct page *page, unsigned long order)
282{
283 int i;
284 int nr_pages = 1 << order;
285
33f2ef89 286 set_compound_page_dtor(page, free_compound_page);
d85f3385 287 set_compound_order(page, order);
6d777953 288 __SetPageHead(page);
d85f3385 289 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
290 struct page *p = page + i;
291
d85f3385 292 __SetPageTail(p);
d85f3385 293 p->first_page = page;
1da177e4
LT
294 }
295}
296
297static void destroy_compound_page(struct page *page, unsigned long order)
298{
299 int i;
300 int nr_pages = 1 << order;
301
d85f3385 302 if (unlikely(compound_order(page) != order))
224abf92 303 bad_page(page);
1da177e4 304
6d777953 305 if (unlikely(!PageHead(page)))
d85f3385 306 bad_page(page);
6d777953 307 __ClearPageHead(page);
d85f3385 308 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
309 struct page *p = page + i;
310
6d777953 311 if (unlikely(!PageTail(p) |
d85f3385 312 (p->first_page != page)))
224abf92 313 bad_page(page);
d85f3385 314 __ClearPageTail(p);
1da177e4
LT
315 }
316}
1da177e4 317
17cf4406
NP
318static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
319{
320 int i;
321
725d704e 322 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
323 /*
324 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
325 * and __GFP_HIGHMEM from hard or soft interrupt context.
326 */
725d704e 327 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
328 for (i = 0; i < (1 << order); i++)
329 clear_highpage(page + i);
330}
331
1da177e4
LT
332/*
333 * function for dealing with page's order in buddy system.
334 * zone->lock is already acquired when we use these.
335 * So, we don't need atomic page->flags operations here.
336 */
6aa3001b
AM
337static inline unsigned long page_order(struct page *page)
338{
4c21e2f2 339 return page_private(page);
1da177e4
LT
340}
341
6aa3001b
AM
342static inline void set_page_order(struct page *page, int order)
343{
4c21e2f2 344 set_page_private(page, order);
676165a8 345 __SetPageBuddy(page);
1da177e4
LT
346}
347
348static inline void rmv_page_order(struct page *page)
349{
676165a8 350 __ClearPageBuddy(page);
4c21e2f2 351 set_page_private(page, 0);
1da177e4
LT
352}
353
354/*
355 * Locate the struct page for both the matching buddy in our
356 * pair (buddy1) and the combined O(n+1) page they form (page).
357 *
358 * 1) Any buddy B1 will have an order O twin B2 which satisfies
359 * the following equation:
360 * B2 = B1 ^ (1 << O)
361 * For example, if the starting buddy (buddy2) is #8 its order
362 * 1 buddy is #10:
363 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
364 *
365 * 2) Any buddy B will have an order O+1 parent P which
366 * satisfies the following equation:
367 * P = B & ~(1 << O)
368 *
d6e05edc 369 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
370 */
371static inline struct page *
372__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
373{
374 unsigned long buddy_idx = page_idx ^ (1 << order);
375
376 return page + (buddy_idx - page_idx);
377}
378
379static inline unsigned long
380__find_combined_index(unsigned long page_idx, unsigned int order)
381{
382 return (page_idx & ~(1 << order));
383}
384
385/*
386 * This function checks whether a page is free && is the buddy
387 * we can do coalesce a page and its buddy if
13e7444b 388 * (a) the buddy is not in a hole &&
676165a8 389 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
390 * (c) a page and its buddy have the same order &&
391 * (d) a page and its buddy are in the same zone.
676165a8
NP
392 *
393 * For recording whether a page is in the buddy system, we use PG_buddy.
394 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 395 *
676165a8 396 * For recording page's order, we use page_private(page).
1da177e4 397 */
cb2b95e1
AW
398static inline int page_is_buddy(struct page *page, struct page *buddy,
399 int order)
1da177e4 400{
14e07298 401 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 402 return 0;
13e7444b 403
cb2b95e1
AW
404 if (page_zone_id(page) != page_zone_id(buddy))
405 return 0;
406
407 if (PageBuddy(buddy) && page_order(buddy) == order) {
408 BUG_ON(page_count(buddy) != 0);
6aa3001b 409 return 1;
676165a8 410 }
6aa3001b 411 return 0;
1da177e4
LT
412}
413
414/*
415 * Freeing function for a buddy system allocator.
416 *
417 * The concept of a buddy system is to maintain direct-mapped table
418 * (containing bit values) for memory blocks of various "orders".
419 * The bottom level table contains the map for the smallest allocatable
420 * units of memory (here, pages), and each level above it describes
421 * pairs of units from the levels below, hence, "buddies".
422 * At a high level, all that happens here is marking the table entry
423 * at the bottom level available, and propagating the changes upward
424 * as necessary, plus some accounting needed to play nicely with other
425 * parts of the VM system.
426 * At each level, we keep a list of pages, which are heads of continuous
676165a8 427 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 428 * order is recorded in page_private(page) field.
1da177e4
LT
429 * So when we are allocating or freeing one, we can derive the state of the
430 * other. That is, if we allocate a small block, and both were
431 * free, the remainder of the region must be split into blocks.
432 * If a block is freed, and its buddy is also free, then this
433 * triggers coalescing into a block of larger size.
434 *
435 * -- wli
436 */
437
48db57f8 438static inline void __free_one_page(struct page *page,
1da177e4
LT
439 struct zone *zone, unsigned int order)
440{
441 unsigned long page_idx;
442 int order_size = 1 << order;
b2a0ac88 443 int migratetype = get_pageblock_migratetype(page);
1da177e4 444
224abf92 445 if (unlikely(PageCompound(page)))
1da177e4
LT
446 destroy_compound_page(page, order);
447
448 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
449
725d704e
NP
450 VM_BUG_ON(page_idx & (order_size - 1));
451 VM_BUG_ON(bad_range(zone, page));
1da177e4 452
d23ad423 453 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
454 while (order < MAX_ORDER-1) {
455 unsigned long combined_idx;
1da177e4
LT
456 struct page *buddy;
457
1da177e4 458 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 459 if (!page_is_buddy(page, buddy, order))
1da177e4 460 break; /* Move the buddy up one level. */
13e7444b 461
1da177e4 462 list_del(&buddy->lru);
b2a0ac88 463 zone->free_area[order].nr_free--;
1da177e4 464 rmv_page_order(buddy);
13e7444b 465 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
466 page = page + (combined_idx - page_idx);
467 page_idx = combined_idx;
468 order++;
469 }
470 set_page_order(page, order);
b2a0ac88
MG
471 list_add(&page->lru,
472 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
473 zone->free_area[order].nr_free++;
474}
475
224abf92 476static inline int free_pages_check(struct page *page)
1da177e4 477{
92be2e33
NP
478 if (unlikely(page_mapcount(page) |
479 (page->mapping != NULL) |
480 (page_count(page) != 0) |
1da177e4
LT
481 (page->flags & (
482 1 << PG_lru |
483 1 << PG_private |
484 1 << PG_locked |
485 1 << PG_active |
1da177e4
LT
486 1 << PG_slab |
487 1 << PG_swapcache |
b5810039 488 1 << PG_writeback |
676165a8
NP
489 1 << PG_reserved |
490 1 << PG_buddy ))))
224abf92 491 bad_page(page);
1da177e4 492 if (PageDirty(page))
242e5468 493 __ClearPageDirty(page);
689bcebf
HD
494 /*
495 * For now, we report if PG_reserved was found set, but do not
496 * clear it, and do not free the page. But we shall soon need
497 * to do more, for when the ZERO_PAGE count wraps negative.
498 */
499 return PageReserved(page);
1da177e4
LT
500}
501
502/*
503 * Frees a list of pages.
504 * Assumes all pages on list are in same zone, and of same order.
207f36ee 505 * count is the number of pages to free.
1da177e4
LT
506 *
507 * If the zone was previously in an "all pages pinned" state then look to
508 * see if this freeing clears that state.
509 *
510 * And clear the zone's pages_scanned counter, to hold off the "all pages are
511 * pinned" detection logic.
512 */
48db57f8
NP
513static void free_pages_bulk(struct zone *zone, int count,
514 struct list_head *list, int order)
1da177e4 515{
c54ad30c 516 spin_lock(&zone->lock);
1da177e4
LT
517 zone->all_unreclaimable = 0;
518 zone->pages_scanned = 0;
48db57f8
NP
519 while (count--) {
520 struct page *page;
521
725d704e 522 VM_BUG_ON(list_empty(list));
1da177e4 523 page = list_entry(list->prev, struct page, lru);
48db57f8 524 /* have to delete it as __free_one_page list manipulates */
1da177e4 525 list_del(&page->lru);
48db57f8 526 __free_one_page(page, zone, order);
1da177e4 527 }
c54ad30c 528 spin_unlock(&zone->lock);
1da177e4
LT
529}
530
48db57f8 531static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 532{
006d22d9
CL
533 spin_lock(&zone->lock);
534 zone->all_unreclaimable = 0;
535 zone->pages_scanned = 0;
0798e519 536 __free_one_page(page, zone, order);
006d22d9 537 spin_unlock(&zone->lock);
48db57f8
NP
538}
539
540static void __free_pages_ok(struct page *page, unsigned int order)
541{
542 unsigned long flags;
1da177e4 543 int i;
689bcebf 544 int reserved = 0;
1da177e4 545
1da177e4 546 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 547 reserved += free_pages_check(page + i);
689bcebf
HD
548 if (reserved)
549 return;
550
9858db50
NP
551 if (!PageHighMem(page))
552 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 553 arch_free_page(page, order);
48db57f8 554 kernel_map_pages(page, 1 << order, 0);
dafb1367 555
c54ad30c 556 local_irq_save(flags);
f8891e5e 557 __count_vm_events(PGFREE, 1 << order);
48db57f8 558 free_one_page(page_zone(page), page, order);
c54ad30c 559 local_irq_restore(flags);
1da177e4
LT
560}
561
a226f6c8
DH
562/*
563 * permit the bootmem allocator to evade page validation on high-order frees
564 */
565void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
566{
567 if (order == 0) {
568 __ClearPageReserved(page);
569 set_page_count(page, 0);
7835e98b 570 set_page_refcounted(page);
545b1ea9 571 __free_page(page);
a226f6c8 572 } else {
a226f6c8
DH
573 int loop;
574
545b1ea9 575 prefetchw(page);
a226f6c8
DH
576 for (loop = 0; loop < BITS_PER_LONG; loop++) {
577 struct page *p = &page[loop];
578
545b1ea9
NP
579 if (loop + 1 < BITS_PER_LONG)
580 prefetchw(p + 1);
a226f6c8
DH
581 __ClearPageReserved(p);
582 set_page_count(p, 0);
583 }
584
7835e98b 585 set_page_refcounted(page);
545b1ea9 586 __free_pages(page, order);
a226f6c8
DH
587 }
588}
589
1da177e4
LT
590
591/*
592 * The order of subdivision here is critical for the IO subsystem.
593 * Please do not alter this order without good reasons and regression
594 * testing. Specifically, as large blocks of memory are subdivided,
595 * the order in which smaller blocks are delivered depends on the order
596 * they're subdivided in this function. This is the primary factor
597 * influencing the order in which pages are delivered to the IO
598 * subsystem according to empirical testing, and this is also justified
599 * by considering the behavior of a buddy system containing a single
600 * large block of memory acted on by a series of small allocations.
601 * This behavior is a critical factor in sglist merging's success.
602 *
603 * -- wli
604 */
085cc7d5 605static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
606 int low, int high, struct free_area *area,
607 int migratetype)
1da177e4
LT
608{
609 unsigned long size = 1 << high;
610
611 while (high > low) {
612 area--;
613 high--;
614 size >>= 1;
725d704e 615 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 616 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
617 area->nr_free++;
618 set_page_order(&page[size], high);
619 }
1da177e4
LT
620}
621
1da177e4
LT
622/*
623 * This page is about to be returned from the page allocator
624 */
17cf4406 625static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 626{
92be2e33
NP
627 if (unlikely(page_mapcount(page) |
628 (page->mapping != NULL) |
629 (page_count(page) != 0) |
334795ec
HD
630 (page->flags & (
631 1 << PG_lru |
1da177e4
LT
632 1 << PG_private |
633 1 << PG_locked |
1da177e4
LT
634 1 << PG_active |
635 1 << PG_dirty |
334795ec 636 1 << PG_slab |
1da177e4 637 1 << PG_swapcache |
b5810039 638 1 << PG_writeback |
676165a8
NP
639 1 << PG_reserved |
640 1 << PG_buddy ))))
224abf92 641 bad_page(page);
1da177e4 642
689bcebf
HD
643 /*
644 * For now, we report if PG_reserved was found set, but do not
645 * clear it, and do not allocate the page: as a safety net.
646 */
647 if (PageReserved(page))
648 return 1;
649
d77c2d7c 650 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 651 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 652 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 653 set_page_private(page, 0);
7835e98b 654 set_page_refcounted(page);
cc102509
NP
655
656 arch_alloc_page(page, order);
1da177e4 657 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
658
659 if (gfp_flags & __GFP_ZERO)
660 prep_zero_page(page, order, gfp_flags);
661
662 if (order && (gfp_flags & __GFP_COMP))
663 prep_compound_page(page, order);
664
689bcebf 665 return 0;
1da177e4
LT
666}
667
56fd56b8
MG
668/*
669 * Go through the free lists for the given migratetype and remove
670 * the smallest available page from the freelists
671 */
672static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
673 int migratetype)
674{
675 unsigned int current_order;
676 struct free_area * area;
677 struct page *page;
678
679 /* Find a page of the appropriate size in the preferred list */
680 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
681 area = &(zone->free_area[current_order]);
682 if (list_empty(&area->free_list[migratetype]))
683 continue;
684
685 page = list_entry(area->free_list[migratetype].next,
686 struct page, lru);
687 list_del(&page->lru);
688 rmv_page_order(page);
689 area->nr_free--;
690 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
691 expand(zone, page, order, current_order, area, migratetype);
692 return page;
693 }
694
695 return NULL;
696}
697
698
b2a0ac88
MG
699/*
700 * This array describes the order lists are fallen back to when
701 * the free lists for the desirable migrate type are depleted
702 */
703static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
704 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
705 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
707 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
708};
709
c361be55
MG
710/*
711 * Move the free pages in a range to the free lists of the requested type.
712 * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
713 * boundary. If alignment is required, use move_freepages_block()
714 */
715int move_freepages(struct zone *zone,
716 struct page *start_page, struct page *end_page,
717 int migratetype)
718{
719 struct page *page;
720 unsigned long order;
721 int blocks_moved = 0;
722
723#ifndef CONFIG_HOLES_IN_ZONE
724 /*
725 * page_zone is not safe to call in this context when
726 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
727 * anyway as we check zone boundaries in move_freepages_block().
728 * Remove at a later date when no bug reports exist related to
ac0e5b7a 729 * grouping pages by mobility
c361be55
MG
730 */
731 BUG_ON(page_zone(start_page) != page_zone(end_page));
732#endif
733
734 for (page = start_page; page <= end_page;) {
735 if (!pfn_valid_within(page_to_pfn(page))) {
736 page++;
737 continue;
738 }
739
740 if (!PageBuddy(page)) {
741 page++;
742 continue;
743 }
744
745 order = page_order(page);
746 list_del(&page->lru);
747 list_add(&page->lru,
748 &zone->free_area[order].free_list[migratetype]);
749 page += 1 << order;
750 blocks_moved++;
751 }
752
753 return blocks_moved;
754}
755
756int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
757{
758 unsigned long start_pfn, end_pfn;
759 struct page *start_page, *end_page;
760
761 start_pfn = page_to_pfn(page);
762 start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
763 start_page = pfn_to_page(start_pfn);
764 end_page = start_page + MAX_ORDER_NR_PAGES - 1;
765 end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
766
767 /* Do not cross zone boundaries */
768 if (start_pfn < zone->zone_start_pfn)
769 start_page = page;
770 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
771 return 0;
772
773 return move_freepages(zone, start_page, end_page, migratetype);
774}
775
5adc5be7
MG
776/* Return the page with the lowest PFN in the list */
777static struct page *min_page(struct list_head *list)
778{
779 unsigned long min_pfn = -1UL;
780 struct page *min_page = NULL, *page;;
781
782 list_for_each_entry(page, list, lru) {
783 unsigned long pfn = page_to_pfn(page);
784 if (pfn < min_pfn) {
785 min_pfn = pfn;
786 min_page = page;
787 }
788 }
789
790 return min_page;
791}
792
b2a0ac88
MG
793/* Remove an element from the buddy allocator from the fallback list */
794static struct page *__rmqueue_fallback(struct zone *zone, int order,
795 int start_migratetype)
796{
797 struct free_area * area;
798 int current_order;
799 struct page *page;
800 int migratetype, i;
801
802 /* Find the largest possible block of pages in the other list */
803 for (current_order = MAX_ORDER-1; current_order >= order;
804 --current_order) {
805 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
806 migratetype = fallbacks[start_migratetype][i];
807
56fd56b8
MG
808 /* MIGRATE_RESERVE handled later if necessary */
809 if (migratetype == MIGRATE_RESERVE)
810 continue;
e010487d 811
b2a0ac88
MG
812 area = &(zone->free_area[current_order]);
813 if (list_empty(&area->free_list[migratetype]))
814 continue;
815
5adc5be7 816 /* Bias kernel allocations towards low pfns */
b2a0ac88
MG
817 page = list_entry(area->free_list[migratetype].next,
818 struct page, lru);
5adc5be7
MG
819 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
820 page = min_page(&area->free_list[migratetype]);
b2a0ac88
MG
821 area->nr_free--;
822
823 /*
c361be55 824 * If breaking a large block of pages, move all free
46dafbca
MG
825 * pages to the preferred allocation list. If falling
826 * back for a reclaimable kernel allocation, be more
827 * agressive about taking ownership of free pages
b2a0ac88 828 */
46dafbca
MG
829 if (unlikely(current_order >= MAX_ORDER / 2) ||
830 start_migratetype == MIGRATE_RECLAIMABLE) {
831 unsigned long pages;
832 pages = move_freepages_block(zone, page,
833 start_migratetype);
834
835 /* Claim the whole block if over half of it is free */
64c5e135 836 if ((pages << current_order) >= (1 << (MAX_ORDER-2)))
46dafbca
MG
837 set_pageblock_migratetype(page,
838 start_migratetype);
839
b2a0ac88 840 migratetype = start_migratetype;
c361be55 841 }
b2a0ac88
MG
842
843 /* Remove the page from the freelists */
844 list_del(&page->lru);
845 rmv_page_order(page);
846 __mod_zone_page_state(zone, NR_FREE_PAGES,
847 -(1UL << order));
848
849 if (current_order == MAX_ORDER - 1)
850 set_pageblock_migratetype(page,
851 start_migratetype);
852
853 expand(zone, page, order, current_order, area, migratetype);
854 return page;
855 }
856 }
857
56fd56b8
MG
858 /* Use MIGRATE_RESERVE rather than fail an allocation */
859 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
860}
861
56fd56b8 862/*
1da177e4
LT
863 * Do the hard work of removing an element from the buddy allocator.
864 * Call me with the zone->lock already held.
865 */
b2a0ac88
MG
866static struct page *__rmqueue(struct zone *zone, unsigned int order,
867 int migratetype)
1da177e4 868{
1da177e4
LT
869 struct page *page;
870
56fd56b8 871 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 872
56fd56b8
MG
873 if (unlikely(!page))
874 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
875
876 return page;
1da177e4
LT
877}
878
879/*
880 * Obtain a specified number of elements from the buddy allocator, all under
881 * a single hold of the lock, for efficiency. Add them to the supplied list.
882 * Returns the number of new pages which were placed at *list.
883 */
884static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
885 unsigned long count, struct list_head *list,
886 int migratetype)
1da177e4 887{
1da177e4 888 int i;
1da177e4 889
c54ad30c 890 spin_lock(&zone->lock);
1da177e4 891 for (i = 0; i < count; ++i) {
b2a0ac88 892 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 893 if (unlikely(page == NULL))
1da177e4 894 break;
535131e6
MG
895 list_add(&page->lru, list);
896 set_page_private(page, migratetype);
1da177e4 897 }
c54ad30c 898 spin_unlock(&zone->lock);
085cc7d5 899 return i;
1da177e4
LT
900}
901
4ae7c039 902#ifdef CONFIG_NUMA
8fce4d8e 903/*
4037d452
CL
904 * Called from the vmstat counter updater to drain pagesets of this
905 * currently executing processor on remote nodes after they have
906 * expired.
907 *
879336c3
CL
908 * Note that this function must be called with the thread pinned to
909 * a single processor.
8fce4d8e 910 */
4037d452 911void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 912{
4ae7c039 913 unsigned long flags;
4037d452 914 int to_drain;
4ae7c039 915
4037d452
CL
916 local_irq_save(flags);
917 if (pcp->count >= pcp->batch)
918 to_drain = pcp->batch;
919 else
920 to_drain = pcp->count;
921 free_pages_bulk(zone, to_drain, &pcp->list, 0);
922 pcp->count -= to_drain;
923 local_irq_restore(flags);
4ae7c039
CL
924}
925#endif
926
1da177e4
LT
927static void __drain_pages(unsigned int cpu)
928{
c54ad30c 929 unsigned long flags;
1da177e4
LT
930 struct zone *zone;
931 int i;
932
933 for_each_zone(zone) {
934 struct per_cpu_pageset *pset;
935
f2e12bb2
CL
936 if (!populated_zone(zone))
937 continue;
938
e7c8d5c9 939 pset = zone_pcp(zone, cpu);
1da177e4
LT
940 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
941 struct per_cpu_pages *pcp;
942
943 pcp = &pset->pcp[i];
c54ad30c 944 local_irq_save(flags);
48db57f8
NP
945 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
946 pcp->count = 0;
c54ad30c 947 local_irq_restore(flags);
1da177e4
LT
948 }
949 }
950}
1da177e4 951
296699de 952#ifdef CONFIG_HIBERNATION
1da177e4
LT
953
954void mark_free_pages(struct zone *zone)
955{
f623f0db
RW
956 unsigned long pfn, max_zone_pfn;
957 unsigned long flags;
b2a0ac88 958 int order, t;
1da177e4
LT
959 struct list_head *curr;
960
961 if (!zone->spanned_pages)
962 return;
963
964 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
965
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
970
7be98234
RW
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
f623f0db 973 }
1da177e4 974
b2a0ac88
MG
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 977 unsigned long i;
1da177e4 978
f623f0db
RW
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
7be98234 981 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 982 }
b2a0ac88 983 }
1da177e4
LT
984 spin_unlock_irqrestore(&zone->lock, flags);
985}
e2c55dc8 986#endif /* CONFIG_PM */
1da177e4
LT
987
988/*
989 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
990 */
991void drain_local_pages(void)
992{
993 unsigned long flags;
994
995 local_irq_save(flags);
996 __drain_pages(smp_processor_id());
997 local_irq_restore(flags);
998}
e2c55dc8
MG
999
1000void smp_drain_local_pages(void *arg)
1001{
1002 drain_local_pages();
1003}
1004
1005/*
1006 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1007 */
1008void drain_all_local_pages(void)
1009{
1010 unsigned long flags;
1011
1012 local_irq_save(flags);
1013 __drain_pages(smp_processor_id());
1014 local_irq_restore(flags);
1015
1016 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
1017}
1da177e4 1018
1da177e4
LT
1019/*
1020 * Free a 0-order page
1021 */
1da177e4
LT
1022static void fastcall free_hot_cold_page(struct page *page, int cold)
1023{
1024 struct zone *zone = page_zone(page);
1025 struct per_cpu_pages *pcp;
1026 unsigned long flags;
1027
1da177e4
LT
1028 if (PageAnon(page))
1029 page->mapping = NULL;
224abf92 1030 if (free_pages_check(page))
689bcebf
HD
1031 return;
1032
9858db50
NP
1033 if (!PageHighMem(page))
1034 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 1035 arch_free_page(page, 0);
689bcebf
HD
1036 kernel_map_pages(page, 1, 0);
1037
e7c8d5c9 1038 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 1039 local_irq_save(flags);
f8891e5e 1040 __count_vm_event(PGFREE);
1da177e4 1041 list_add(&page->lru, &pcp->list);
535131e6 1042 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1043 pcp->count++;
48db57f8
NP
1044 if (pcp->count >= pcp->high) {
1045 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1046 pcp->count -= pcp->batch;
1047 }
1da177e4
LT
1048 local_irq_restore(flags);
1049 put_cpu();
1050}
1051
1052void fastcall free_hot_page(struct page *page)
1053{
1054 free_hot_cold_page(page, 0);
1055}
1056
1057void fastcall free_cold_page(struct page *page)
1058{
1059 free_hot_cold_page(page, 1);
1060}
1061
8dfcc9ba
NP
1062/*
1063 * split_page takes a non-compound higher-order page, and splits it into
1064 * n (1<<order) sub-pages: page[0..n]
1065 * Each sub-page must be freed individually.
1066 *
1067 * Note: this is probably too low level an operation for use in drivers.
1068 * Please consult with lkml before using this in your driver.
1069 */
1070void split_page(struct page *page, unsigned int order)
1071{
1072 int i;
1073
725d704e
NP
1074 VM_BUG_ON(PageCompound(page));
1075 VM_BUG_ON(!page_count(page));
7835e98b
NP
1076 for (i = 1; i < (1 << order); i++)
1077 set_page_refcounted(page + i);
8dfcc9ba 1078}
8dfcc9ba 1079
1da177e4
LT
1080/*
1081 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1082 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1083 * or two.
1084 */
a74609fa
NP
1085static struct page *buffered_rmqueue(struct zonelist *zonelist,
1086 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1087{
1088 unsigned long flags;
689bcebf 1089 struct page *page;
1da177e4 1090 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1091 int cpu;
64c5e135 1092 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1093
689bcebf 1094again:
a74609fa 1095 cpu = get_cpu();
48db57f8 1096 if (likely(order == 0)) {
1da177e4
LT
1097 struct per_cpu_pages *pcp;
1098
a74609fa 1099 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 1100 local_irq_save(flags);
a74609fa 1101 if (!pcp->count) {
941c7105 1102 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1103 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1104 if (unlikely(!pcp->count))
1105 goto failed;
1da177e4 1106 }
b92a6edd 1107
535131e6 1108 /* Find a page of the appropriate migrate type */
b92a6edd
MG
1109 list_for_each_entry(page, &pcp->list, lru)
1110 if (page_private(page) == migratetype)
535131e6 1111 break;
535131e6 1112
b92a6edd
MG
1113 /* Allocate more to the pcp list if necessary */
1114 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1115 pcp->count += rmqueue_bulk(zone, 0,
1116 pcp->batch, &pcp->list, migratetype);
1117 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1118 }
b92a6edd
MG
1119
1120 list_del(&page->lru);
1121 pcp->count--;
7fb1d9fc 1122 } else {
1da177e4 1123 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1124 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1125 spin_unlock(&zone->lock);
1126 if (!page)
1127 goto failed;
1da177e4
LT
1128 }
1129
f8891e5e 1130 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 1131 zone_statistics(zonelist, zone);
a74609fa
NP
1132 local_irq_restore(flags);
1133 put_cpu();
1da177e4 1134
725d704e 1135 VM_BUG_ON(bad_range(zone, page));
17cf4406 1136 if (prep_new_page(page, order, gfp_flags))
a74609fa 1137 goto again;
1da177e4 1138 return page;
a74609fa
NP
1139
1140failed:
1141 local_irq_restore(flags);
1142 put_cpu();
1143 return NULL;
1da177e4
LT
1144}
1145
7fb1d9fc 1146#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1147#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1148#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1149#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1150#define ALLOC_HARDER 0x10 /* try to alloc harder */
1151#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1152#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1153
933e312e
AM
1154#ifdef CONFIG_FAIL_PAGE_ALLOC
1155
1156static struct fail_page_alloc_attr {
1157 struct fault_attr attr;
1158
1159 u32 ignore_gfp_highmem;
1160 u32 ignore_gfp_wait;
54114994 1161 u32 min_order;
933e312e
AM
1162
1163#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1164
1165 struct dentry *ignore_gfp_highmem_file;
1166 struct dentry *ignore_gfp_wait_file;
54114994 1167 struct dentry *min_order_file;
933e312e
AM
1168
1169#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1170
1171} fail_page_alloc = {
1172 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1173 .ignore_gfp_wait = 1,
1174 .ignore_gfp_highmem = 1,
54114994 1175 .min_order = 1,
933e312e
AM
1176};
1177
1178static int __init setup_fail_page_alloc(char *str)
1179{
1180 return setup_fault_attr(&fail_page_alloc.attr, str);
1181}
1182__setup("fail_page_alloc=", setup_fail_page_alloc);
1183
1184static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1185{
54114994
AM
1186 if (order < fail_page_alloc.min_order)
1187 return 0;
933e312e
AM
1188 if (gfp_mask & __GFP_NOFAIL)
1189 return 0;
1190 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1191 return 0;
1192 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1193 return 0;
1194
1195 return should_fail(&fail_page_alloc.attr, 1 << order);
1196}
1197
1198#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1199
1200static int __init fail_page_alloc_debugfs(void)
1201{
1202 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1203 struct dentry *dir;
1204 int err;
1205
1206 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1207 "fail_page_alloc");
1208 if (err)
1209 return err;
1210 dir = fail_page_alloc.attr.dentries.dir;
1211
1212 fail_page_alloc.ignore_gfp_wait_file =
1213 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1214 &fail_page_alloc.ignore_gfp_wait);
1215
1216 fail_page_alloc.ignore_gfp_highmem_file =
1217 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1218 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1219 fail_page_alloc.min_order_file =
1220 debugfs_create_u32("min-order", mode, dir,
1221 &fail_page_alloc.min_order);
933e312e
AM
1222
1223 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1224 !fail_page_alloc.ignore_gfp_highmem_file ||
1225 !fail_page_alloc.min_order_file) {
933e312e
AM
1226 err = -ENOMEM;
1227 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1228 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1229 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1230 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1231 }
1232
1233 return err;
1234}
1235
1236late_initcall(fail_page_alloc_debugfs);
1237
1238#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1239
1240#else /* CONFIG_FAIL_PAGE_ALLOC */
1241
1242static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1243{
1244 return 0;
1245}
1246
1247#endif /* CONFIG_FAIL_PAGE_ALLOC */
1248
1da177e4
LT
1249/*
1250 * Return 1 if free pages are above 'mark'. This takes into account the order
1251 * of the allocation.
1252 */
1253int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1254 int classzone_idx, int alloc_flags)
1da177e4
LT
1255{
1256 /* free_pages my go negative - that's OK */
d23ad423
CL
1257 long min = mark;
1258 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1259 int o;
1260
7fb1d9fc 1261 if (alloc_flags & ALLOC_HIGH)
1da177e4 1262 min -= min / 2;
7fb1d9fc 1263 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1264 min -= min / 4;
1265
1266 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1267 return 0;
1268 for (o = 0; o < order; o++) {
1269 /* At the next order, this order's pages become unavailable */
1270 free_pages -= z->free_area[o].nr_free << o;
1271
1272 /* Require fewer higher order pages to be free */
1273 min >>= 1;
1274
1275 if (free_pages <= min)
1276 return 0;
1277 }
1278 return 1;
1279}
1280
9276b1bc
PJ
1281#ifdef CONFIG_NUMA
1282/*
1283 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1284 * skip over zones that are not allowed by the cpuset, or that have
1285 * been recently (in last second) found to be nearly full. See further
1286 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1287 * that have to skip over alot of full or unallowed zones.
1288 *
1289 * If the zonelist cache is present in the passed in zonelist, then
1290 * returns a pointer to the allowed node mask (either the current
37b07e41 1291 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1292 *
1293 * If the zonelist cache is not available for this zonelist, does
1294 * nothing and returns NULL.
1295 *
1296 * If the fullzones BITMAP in the zonelist cache is stale (more than
1297 * a second since last zap'd) then we zap it out (clear its bits.)
1298 *
1299 * We hold off even calling zlc_setup, until after we've checked the
1300 * first zone in the zonelist, on the theory that most allocations will
1301 * be satisfied from that first zone, so best to examine that zone as
1302 * quickly as we can.
1303 */
1304static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1305{
1306 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1307 nodemask_t *allowednodes; /* zonelist_cache approximation */
1308
1309 zlc = zonelist->zlcache_ptr;
1310 if (!zlc)
1311 return NULL;
1312
1313 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1314 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1315 zlc->last_full_zap = jiffies;
1316 }
1317
1318 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1319 &cpuset_current_mems_allowed :
37b07e41 1320 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1321 return allowednodes;
1322}
1323
1324/*
1325 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1326 * if it is worth looking at further for free memory:
1327 * 1) Check that the zone isn't thought to be full (doesn't have its
1328 * bit set in the zonelist_cache fullzones BITMAP).
1329 * 2) Check that the zones node (obtained from the zonelist_cache
1330 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1331 * Return true (non-zero) if zone is worth looking at further, or
1332 * else return false (zero) if it is not.
1333 *
1334 * This check -ignores- the distinction between various watermarks,
1335 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1336 * found to be full for any variation of these watermarks, it will
1337 * be considered full for up to one second by all requests, unless
1338 * we are so low on memory on all allowed nodes that we are forced
1339 * into the second scan of the zonelist.
1340 *
1341 * In the second scan we ignore this zonelist cache and exactly
1342 * apply the watermarks to all zones, even it is slower to do so.
1343 * We are low on memory in the second scan, and should leave no stone
1344 * unturned looking for a free page.
1345 */
1346static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1347 nodemask_t *allowednodes)
1348{
1349 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1350 int i; /* index of *z in zonelist zones */
1351 int n; /* node that zone *z is on */
1352
1353 zlc = zonelist->zlcache_ptr;
1354 if (!zlc)
1355 return 1;
1356
1357 i = z - zonelist->zones;
1358 n = zlc->z_to_n[i];
1359
1360 /* This zone is worth trying if it is allowed but not full */
1361 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1362}
1363
1364/*
1365 * Given 'z' scanning a zonelist, set the corresponding bit in
1366 * zlc->fullzones, so that subsequent attempts to allocate a page
1367 * from that zone don't waste time re-examining it.
1368 */
1369static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1370{
1371 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1372 int i; /* index of *z in zonelist zones */
1373
1374 zlc = zonelist->zlcache_ptr;
1375 if (!zlc)
1376 return;
1377
1378 i = z - zonelist->zones;
1379
1380 set_bit(i, zlc->fullzones);
1381}
1382
1383#else /* CONFIG_NUMA */
1384
1385static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1386{
1387 return NULL;
1388}
1389
1390static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1391 nodemask_t *allowednodes)
1392{
1393 return 1;
1394}
1395
1396static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1397{
1398}
1399#endif /* CONFIG_NUMA */
1400
7fb1d9fc 1401/*
0798e519 1402 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1403 * a page.
1404 */
1405static struct page *
1406get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1407 struct zonelist *zonelist, int alloc_flags)
753ee728 1408{
9276b1bc 1409 struct zone **z;
7fb1d9fc 1410 struct page *page = NULL;
9276b1bc 1411 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1412 struct zone *zone;
9276b1bc
PJ
1413 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1414 int zlc_active = 0; /* set if using zonelist_cache */
1415 int did_zlc_setup = 0; /* just call zlc_setup() one time */
b377fd39 1416 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
7fb1d9fc 1417
9276b1bc 1418zonelist_scan:
7fb1d9fc 1419 /*
9276b1bc 1420 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1421 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1422 */
9276b1bc
PJ
1423 z = zonelist->zones;
1424
7fb1d9fc 1425 do {
b377fd39
MG
1426 /*
1427 * In NUMA, this could be a policy zonelist which contains
1428 * zones that may not be allowed by the current gfp_mask.
1429 * Check the zone is allowed by the current flags
1430 */
1431 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1432 if (highest_zoneidx == -1)
1433 highest_zoneidx = gfp_zone(gfp_mask);
1434 if (zone_idx(*z) > highest_zoneidx)
1435 continue;
1436 }
1437
9276b1bc
PJ
1438 if (NUMA_BUILD && zlc_active &&
1439 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1440 continue;
1192d526 1441 zone = *z;
7fb1d9fc 1442 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1443 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1444 goto try_next_zone;
7fb1d9fc
RS
1445
1446 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1447 unsigned long mark;
1448 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1449 mark = zone->pages_min;
3148890b 1450 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1451 mark = zone->pages_low;
3148890b 1452 else
1192d526 1453 mark = zone->pages_high;
0798e519
PJ
1454 if (!zone_watermark_ok(zone, order, mark,
1455 classzone_idx, alloc_flags)) {
9eeff239 1456 if (!zone_reclaim_mode ||
1192d526 1457 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1458 goto this_zone_full;
0798e519 1459 }
7fb1d9fc
RS
1460 }
1461
1192d526 1462 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1463 if (page)
7fb1d9fc 1464 break;
9276b1bc
PJ
1465this_zone_full:
1466 if (NUMA_BUILD)
1467 zlc_mark_zone_full(zonelist, z);
1468try_next_zone:
1469 if (NUMA_BUILD && !did_zlc_setup) {
1470 /* we do zlc_setup after the first zone is tried */
1471 allowednodes = zlc_setup(zonelist, alloc_flags);
1472 zlc_active = 1;
1473 did_zlc_setup = 1;
1474 }
7fb1d9fc 1475 } while (*(++z) != NULL);
9276b1bc
PJ
1476
1477 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1478 /* Disable zlc cache for second zonelist scan */
1479 zlc_active = 0;
1480 goto zonelist_scan;
1481 }
7fb1d9fc 1482 return page;
753ee728
MH
1483}
1484
1da177e4
LT
1485/*
1486 * This is the 'heart' of the zoned buddy allocator.
1487 */
1488struct page * fastcall
dd0fc66f 1489__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1490 struct zonelist *zonelist)
1491{
260b2367 1492 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1493 struct zone **z;
1da177e4
LT
1494 struct page *page;
1495 struct reclaim_state reclaim_state;
1496 struct task_struct *p = current;
1da177e4 1497 int do_retry;
7fb1d9fc 1498 int alloc_flags;
1da177e4
LT
1499 int did_some_progress;
1500
1501 might_sleep_if(wait);
1502
933e312e
AM
1503 if (should_fail_alloc_page(gfp_mask, order))
1504 return NULL;
1505
6b1de916 1506restart:
7fb1d9fc 1507 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1508
7fb1d9fc 1509 if (unlikely(*z == NULL)) {
523b9458
CL
1510 /*
1511 * Happens if we have an empty zonelist as a result of
1512 * GFP_THISNODE being used on a memoryless node
1513 */
1da177e4
LT
1514 return NULL;
1515 }
6b1de916 1516
7fb1d9fc 1517 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1518 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1519 if (page)
1520 goto got_pg;
1da177e4 1521
952f3b51
CL
1522 /*
1523 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1524 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1525 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1526 * using a larger set of nodes after it has established that the
1527 * allowed per node queues are empty and that nodes are
1528 * over allocated.
1529 */
1530 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1531 goto nopage;
1532
0798e519 1533 for (z = zonelist->zones; *z; z++)
43b0bc00 1534 wakeup_kswapd(*z, order);
1da177e4 1535
9bf2229f 1536 /*
7fb1d9fc
RS
1537 * OK, we're below the kswapd watermark and have kicked background
1538 * reclaim. Now things get more complex, so set up alloc_flags according
1539 * to how we want to proceed.
1540 *
1541 * The caller may dip into page reserves a bit more if the caller
1542 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1543 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1544 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1545 */
3148890b 1546 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1547 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1548 alloc_flags |= ALLOC_HARDER;
1549 if (gfp_mask & __GFP_HIGH)
1550 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1551 if (wait)
1552 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1553
1554 /*
1555 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1556 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1557 *
1558 * This is the last chance, in general, before the goto nopage.
1559 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1560 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1561 */
7fb1d9fc
RS
1562 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1563 if (page)
1564 goto got_pg;
1da177e4
LT
1565
1566 /* This allocation should allow future memory freeing. */
b84a35be 1567
b43a57bb 1568rebalance:
b84a35be
NP
1569 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1570 && !in_interrupt()) {
1571 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1572nofail_alloc:
b84a35be 1573 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1574 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1575 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1576 if (page)
1577 goto got_pg;
885036d3 1578 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1579 congestion_wait(WRITE, HZ/50);
885036d3
KK
1580 goto nofail_alloc;
1581 }
1da177e4
LT
1582 }
1583 goto nopage;
1584 }
1585
1586 /* Atomic allocations - we can't balance anything */
1587 if (!wait)
1588 goto nopage;
1589
1da177e4
LT
1590 cond_resched();
1591
1592 /* We now go into synchronous reclaim */
3e0d98b9 1593 cpuset_memory_pressure_bump();
1da177e4
LT
1594 p->flags |= PF_MEMALLOC;
1595 reclaim_state.reclaimed_slab = 0;
1596 p->reclaim_state = &reclaim_state;
1597
5ad333eb 1598 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1599
1600 p->reclaim_state = NULL;
1601 p->flags &= ~PF_MEMALLOC;
1602
1603 cond_resched();
1604
e2c55dc8
MG
1605 if (order != 0)
1606 drain_all_local_pages();
1607
1da177e4 1608 if (likely(did_some_progress)) {
7fb1d9fc
RS
1609 page = get_page_from_freelist(gfp_mask, order,
1610 zonelist, alloc_flags);
1611 if (page)
1612 goto got_pg;
1da177e4
LT
1613 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1614 /*
1615 * Go through the zonelist yet one more time, keep
1616 * very high watermark here, this is only to catch
1617 * a parallel oom killing, we must fail if we're still
1618 * under heavy pressure.
1619 */
7fb1d9fc 1620 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1621 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1622 if (page)
1623 goto got_pg;
1da177e4 1624
a8bbf72a
MG
1625 /* The OOM killer will not help higher order allocs so fail */
1626 if (order > PAGE_ALLOC_COSTLY_ORDER)
1627 goto nopage;
1628
9b0f8b04 1629 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1630 goto restart;
1631 }
1632
1633 /*
1634 * Don't let big-order allocations loop unless the caller explicitly
1635 * requests that. Wait for some write requests to complete then retry.
1636 *
1637 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1638 * <= 3, but that may not be true in other implementations.
1639 */
1640 do_retry = 0;
1641 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1642 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1643 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1644 do_retry = 1;
1645 if (gfp_mask & __GFP_NOFAIL)
1646 do_retry = 1;
1647 }
1648 if (do_retry) {
3fcfab16 1649 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1650 goto rebalance;
1651 }
1652
1653nopage:
1654 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1655 printk(KERN_WARNING "%s: page allocation failure."
1656 " order:%d, mode:0x%x\n",
1657 p->comm, order, gfp_mask);
1658 dump_stack();
578c2fd6 1659 show_mem();
1da177e4 1660 }
1da177e4 1661got_pg:
1da177e4
LT
1662 return page;
1663}
1664
1665EXPORT_SYMBOL(__alloc_pages);
1666
1667/*
1668 * Common helper functions.
1669 */
dd0fc66f 1670fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1671{
1672 struct page * page;
1673 page = alloc_pages(gfp_mask, order);
1674 if (!page)
1675 return 0;
1676 return (unsigned long) page_address(page);
1677}
1678
1679EXPORT_SYMBOL(__get_free_pages);
1680
dd0fc66f 1681fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1682{
1683 struct page * page;
1684
1685 /*
1686 * get_zeroed_page() returns a 32-bit address, which cannot represent
1687 * a highmem page
1688 */
725d704e 1689 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1690
1691 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1692 if (page)
1693 return (unsigned long) page_address(page);
1694 return 0;
1695}
1696
1697EXPORT_SYMBOL(get_zeroed_page);
1698
1699void __pagevec_free(struct pagevec *pvec)
1700{
1701 int i = pagevec_count(pvec);
1702
1703 while (--i >= 0)
1704 free_hot_cold_page(pvec->pages[i], pvec->cold);
1705}
1706
1707fastcall void __free_pages(struct page *page, unsigned int order)
1708{
b5810039 1709 if (put_page_testzero(page)) {
1da177e4
LT
1710 if (order == 0)
1711 free_hot_page(page);
1712 else
1713 __free_pages_ok(page, order);
1714 }
1715}
1716
1717EXPORT_SYMBOL(__free_pages);
1718
1719fastcall void free_pages(unsigned long addr, unsigned int order)
1720{
1721 if (addr != 0) {
725d704e 1722 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1723 __free_pages(virt_to_page((void *)addr), order);
1724 }
1725}
1726
1727EXPORT_SYMBOL(free_pages);
1728
1da177e4
LT
1729static unsigned int nr_free_zone_pages(int offset)
1730{
e310fd43
MB
1731 /* Just pick one node, since fallback list is circular */
1732 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1733 unsigned int sum = 0;
1734
e310fd43
MB
1735 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1736 struct zone **zonep = zonelist->zones;
1737 struct zone *zone;
1da177e4 1738
e310fd43
MB
1739 for (zone = *zonep++; zone; zone = *zonep++) {
1740 unsigned long size = zone->present_pages;
1741 unsigned long high = zone->pages_high;
1742 if (size > high)
1743 sum += size - high;
1da177e4
LT
1744 }
1745
1746 return sum;
1747}
1748
1749/*
1750 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1751 */
1752unsigned int nr_free_buffer_pages(void)
1753{
af4ca457 1754 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1755}
c2f1a551 1756EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1757
1758/*
1759 * Amount of free RAM allocatable within all zones
1760 */
1761unsigned int nr_free_pagecache_pages(void)
1762{
2a1e274a 1763 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1764}
08e0f6a9
CL
1765
1766static inline void show_node(struct zone *zone)
1da177e4 1767{
08e0f6a9 1768 if (NUMA_BUILD)
25ba77c1 1769 printk("Node %d ", zone_to_nid(zone));
1da177e4 1770}
1da177e4 1771
1da177e4
LT
1772void si_meminfo(struct sysinfo *val)
1773{
1774 val->totalram = totalram_pages;
1775 val->sharedram = 0;
d23ad423 1776 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1777 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1778 val->totalhigh = totalhigh_pages;
1779 val->freehigh = nr_free_highpages();
1da177e4
LT
1780 val->mem_unit = PAGE_SIZE;
1781}
1782
1783EXPORT_SYMBOL(si_meminfo);
1784
1785#ifdef CONFIG_NUMA
1786void si_meminfo_node(struct sysinfo *val, int nid)
1787{
1788 pg_data_t *pgdat = NODE_DATA(nid);
1789
1790 val->totalram = pgdat->node_present_pages;
d23ad423 1791 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1792#ifdef CONFIG_HIGHMEM
1da177e4 1793 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1794 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1795 NR_FREE_PAGES);
98d2b0eb
CL
1796#else
1797 val->totalhigh = 0;
1798 val->freehigh = 0;
1799#endif
1da177e4
LT
1800 val->mem_unit = PAGE_SIZE;
1801}
1802#endif
1803
1804#define K(x) ((x) << (PAGE_SHIFT-10))
1805
1806/*
1807 * Show free area list (used inside shift_scroll-lock stuff)
1808 * We also calculate the percentage fragmentation. We do this by counting the
1809 * memory on each free list with the exception of the first item on the list.
1810 */
1811void show_free_areas(void)
1812{
c7241913 1813 int cpu;
1da177e4
LT
1814 struct zone *zone;
1815
1816 for_each_zone(zone) {
c7241913 1817 if (!populated_zone(zone))
1da177e4 1818 continue;
c7241913
JS
1819
1820 show_node(zone);
1821 printk("%s per-cpu:\n", zone->name);
1da177e4 1822
6b482c67 1823 for_each_online_cpu(cpu) {
1da177e4
LT
1824 struct per_cpu_pageset *pageset;
1825
e7c8d5c9 1826 pageset = zone_pcp(zone, cpu);
1da177e4 1827
c7241913
JS
1828 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1829 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1830 cpu, pageset->pcp[0].high,
1831 pageset->pcp[0].batch, pageset->pcp[0].count,
1832 pageset->pcp[1].high, pageset->pcp[1].batch,
1833 pageset->pcp[1].count);
1da177e4
LT
1834 }
1835 }
1836
a25700a5 1837 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1838 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1839 global_page_state(NR_ACTIVE),
1840 global_page_state(NR_INACTIVE),
b1e7a8fd 1841 global_page_state(NR_FILE_DIRTY),
ce866b34 1842 global_page_state(NR_WRITEBACK),
fd39fc85 1843 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1844 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1845 global_page_state(NR_SLAB_RECLAIMABLE) +
1846 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1847 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1848 global_page_state(NR_PAGETABLE),
1849 global_page_state(NR_BOUNCE));
1da177e4
LT
1850
1851 for_each_zone(zone) {
1852 int i;
1853
c7241913
JS
1854 if (!populated_zone(zone))
1855 continue;
1856
1da177e4
LT
1857 show_node(zone);
1858 printk("%s"
1859 " free:%lukB"
1860 " min:%lukB"
1861 " low:%lukB"
1862 " high:%lukB"
1863 " active:%lukB"
1864 " inactive:%lukB"
1865 " present:%lukB"
1866 " pages_scanned:%lu"
1867 " all_unreclaimable? %s"
1868 "\n",
1869 zone->name,
d23ad423 1870 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1871 K(zone->pages_min),
1872 K(zone->pages_low),
1873 K(zone->pages_high),
c8785385
CL
1874 K(zone_page_state(zone, NR_ACTIVE)),
1875 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1876 K(zone->present_pages),
1877 zone->pages_scanned,
1878 (zone->all_unreclaimable ? "yes" : "no")
1879 );
1880 printk("lowmem_reserve[]:");
1881 for (i = 0; i < MAX_NR_ZONES; i++)
1882 printk(" %lu", zone->lowmem_reserve[i]);
1883 printk("\n");
1884 }
1885
1886 for_each_zone(zone) {
8f9de51a 1887 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1888
c7241913
JS
1889 if (!populated_zone(zone))
1890 continue;
1891
1da177e4
LT
1892 show_node(zone);
1893 printk("%s: ", zone->name);
1da177e4
LT
1894
1895 spin_lock_irqsave(&zone->lock, flags);
1896 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1897 nr[order] = zone->free_area[order].nr_free;
1898 total += nr[order] << order;
1da177e4
LT
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1901 for (order = 0; order < MAX_ORDER; order++)
1902 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1903 printk("= %lukB\n", K(total));
1904 }
1905
1906 show_swap_cache_info();
1907}
1908
1909/*
1910 * Builds allocation fallback zone lists.
1a93205b
CL
1911 *
1912 * Add all populated zones of a node to the zonelist.
1da177e4 1913 */
f0c0b2b8
KH
1914static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1915 int nr_zones, enum zone_type zone_type)
1da177e4 1916{
1a93205b
CL
1917 struct zone *zone;
1918
98d2b0eb 1919 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1920 zone_type++;
02a68a5e
CL
1921
1922 do {
2f6726e5 1923 zone_type--;
070f8032 1924 zone = pgdat->node_zones + zone_type;
1a93205b 1925 if (populated_zone(zone)) {
070f8032
CL
1926 zonelist->zones[nr_zones++] = zone;
1927 check_highest_zone(zone_type);
1da177e4 1928 }
02a68a5e 1929
2f6726e5 1930 } while (zone_type);
070f8032 1931 return nr_zones;
1da177e4
LT
1932}
1933
f0c0b2b8
KH
1934
1935/*
1936 * zonelist_order:
1937 * 0 = automatic detection of better ordering.
1938 * 1 = order by ([node] distance, -zonetype)
1939 * 2 = order by (-zonetype, [node] distance)
1940 *
1941 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1942 * the same zonelist. So only NUMA can configure this param.
1943 */
1944#define ZONELIST_ORDER_DEFAULT 0
1945#define ZONELIST_ORDER_NODE 1
1946#define ZONELIST_ORDER_ZONE 2
1947
1948/* zonelist order in the kernel.
1949 * set_zonelist_order() will set this to NODE or ZONE.
1950 */
1951static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1952static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1953
1954
1da177e4 1955#ifdef CONFIG_NUMA
f0c0b2b8
KH
1956/* The value user specified ....changed by config */
1957static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1958/* string for sysctl */
1959#define NUMA_ZONELIST_ORDER_LEN 16
1960char numa_zonelist_order[16] = "default";
1961
1962/*
1963 * interface for configure zonelist ordering.
1964 * command line option "numa_zonelist_order"
1965 * = "[dD]efault - default, automatic configuration.
1966 * = "[nN]ode - order by node locality, then by zone within node
1967 * = "[zZ]one - order by zone, then by locality within zone
1968 */
1969
1970static int __parse_numa_zonelist_order(char *s)
1971{
1972 if (*s == 'd' || *s == 'D') {
1973 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1974 } else if (*s == 'n' || *s == 'N') {
1975 user_zonelist_order = ZONELIST_ORDER_NODE;
1976 } else if (*s == 'z' || *s == 'Z') {
1977 user_zonelist_order = ZONELIST_ORDER_ZONE;
1978 } else {
1979 printk(KERN_WARNING
1980 "Ignoring invalid numa_zonelist_order value: "
1981 "%s\n", s);
1982 return -EINVAL;
1983 }
1984 return 0;
1985}
1986
1987static __init int setup_numa_zonelist_order(char *s)
1988{
1989 if (s)
1990 return __parse_numa_zonelist_order(s);
1991 return 0;
1992}
1993early_param("numa_zonelist_order", setup_numa_zonelist_order);
1994
1995/*
1996 * sysctl handler for numa_zonelist_order
1997 */
1998int numa_zonelist_order_handler(ctl_table *table, int write,
1999 struct file *file, void __user *buffer, size_t *length,
2000 loff_t *ppos)
2001{
2002 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2003 int ret;
2004
2005 if (write)
2006 strncpy(saved_string, (char*)table->data,
2007 NUMA_ZONELIST_ORDER_LEN);
2008 ret = proc_dostring(table, write, file, buffer, length, ppos);
2009 if (ret)
2010 return ret;
2011 if (write) {
2012 int oldval = user_zonelist_order;
2013 if (__parse_numa_zonelist_order((char*)table->data)) {
2014 /*
2015 * bogus value. restore saved string
2016 */
2017 strncpy((char*)table->data, saved_string,
2018 NUMA_ZONELIST_ORDER_LEN);
2019 user_zonelist_order = oldval;
2020 } else if (oldval != user_zonelist_order)
2021 build_all_zonelists();
2022 }
2023 return 0;
2024}
2025
2026
1da177e4 2027#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2028static int node_load[MAX_NUMNODES];
2029
1da177e4 2030/**
4dc3b16b 2031 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2032 * @node: node whose fallback list we're appending
2033 * @used_node_mask: nodemask_t of already used nodes
2034 *
2035 * We use a number of factors to determine which is the next node that should
2036 * appear on a given node's fallback list. The node should not have appeared
2037 * already in @node's fallback list, and it should be the next closest node
2038 * according to the distance array (which contains arbitrary distance values
2039 * from each node to each node in the system), and should also prefer nodes
2040 * with no CPUs, since presumably they'll have very little allocation pressure
2041 * on them otherwise.
2042 * It returns -1 if no node is found.
2043 */
f0c0b2b8 2044static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2045{
4cf808eb 2046 int n, val;
1da177e4
LT
2047 int min_val = INT_MAX;
2048 int best_node = -1;
2049
4cf808eb
LT
2050 /* Use the local node if we haven't already */
2051 if (!node_isset(node, *used_node_mask)) {
2052 node_set(node, *used_node_mask);
2053 return node;
2054 }
1da177e4 2055
37b07e41 2056 for_each_node_state(n, N_HIGH_MEMORY) {
4cf808eb 2057 cpumask_t tmp;
1da177e4
LT
2058
2059 /* Don't want a node to appear more than once */
2060 if (node_isset(n, *used_node_mask))
2061 continue;
2062
1da177e4
LT
2063 /* Use the distance array to find the distance */
2064 val = node_distance(node, n);
2065
4cf808eb
LT
2066 /* Penalize nodes under us ("prefer the next node") */
2067 val += (n < node);
2068
1da177e4
LT
2069 /* Give preference to headless and unused nodes */
2070 tmp = node_to_cpumask(n);
2071 if (!cpus_empty(tmp))
2072 val += PENALTY_FOR_NODE_WITH_CPUS;
2073
2074 /* Slight preference for less loaded node */
2075 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2076 val += node_load[n];
2077
2078 if (val < min_val) {
2079 min_val = val;
2080 best_node = n;
2081 }
2082 }
2083
2084 if (best_node >= 0)
2085 node_set(best_node, *used_node_mask);
2086
2087 return best_node;
2088}
2089
f0c0b2b8
KH
2090
2091/*
2092 * Build zonelists ordered by node and zones within node.
2093 * This results in maximum locality--normal zone overflows into local
2094 * DMA zone, if any--but risks exhausting DMA zone.
2095 */
2096static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2097{
19655d34 2098 enum zone_type i;
f0c0b2b8 2099 int j;
1da177e4 2100 struct zonelist *zonelist;
f0c0b2b8
KH
2101
2102 for (i = 0; i < MAX_NR_ZONES; i++) {
2103 zonelist = pgdat->node_zonelists + i;
2104 for (j = 0; zonelist->zones[j] != NULL; j++)
2105 ;
2106 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2107 zonelist->zones[j] = NULL;
2108 }
2109}
2110
523b9458
CL
2111/*
2112 * Build gfp_thisnode zonelists
2113 */
2114static void build_thisnode_zonelists(pg_data_t *pgdat)
2115{
2116 enum zone_type i;
2117 int j;
2118 struct zonelist *zonelist;
2119
2120 for (i = 0; i < MAX_NR_ZONES; i++) {
2121 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2122 j = build_zonelists_node(pgdat, zonelist, 0, i);
2123 zonelist->zones[j] = NULL;
2124 }
2125}
2126
f0c0b2b8
KH
2127/*
2128 * Build zonelists ordered by zone and nodes within zones.
2129 * This results in conserving DMA zone[s] until all Normal memory is
2130 * exhausted, but results in overflowing to remote node while memory
2131 * may still exist in local DMA zone.
2132 */
2133static int node_order[MAX_NUMNODES];
2134
2135static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2136{
2137 enum zone_type i;
2138 int pos, j, node;
2139 int zone_type; /* needs to be signed */
2140 struct zone *z;
2141 struct zonelist *zonelist;
2142
2143 for (i = 0; i < MAX_NR_ZONES; i++) {
2144 zonelist = pgdat->node_zonelists + i;
2145 pos = 0;
2146 for (zone_type = i; zone_type >= 0; zone_type--) {
2147 for (j = 0; j < nr_nodes; j++) {
2148 node = node_order[j];
2149 z = &NODE_DATA(node)->node_zones[zone_type];
2150 if (populated_zone(z)) {
2151 zonelist->zones[pos++] = z;
2152 check_highest_zone(zone_type);
2153 }
2154 }
2155 }
2156 zonelist->zones[pos] = NULL;
2157 }
2158}
2159
2160static int default_zonelist_order(void)
2161{
2162 int nid, zone_type;
2163 unsigned long low_kmem_size,total_size;
2164 struct zone *z;
2165 int average_size;
2166 /*
2167 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2168 * If they are really small and used heavily, the system can fall
2169 * into OOM very easily.
2170 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2171 */
2172 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2173 low_kmem_size = 0;
2174 total_size = 0;
2175 for_each_online_node(nid) {
2176 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2177 z = &NODE_DATA(nid)->node_zones[zone_type];
2178 if (populated_zone(z)) {
2179 if (zone_type < ZONE_NORMAL)
2180 low_kmem_size += z->present_pages;
2181 total_size += z->present_pages;
2182 }
2183 }
2184 }
2185 if (!low_kmem_size || /* there are no DMA area. */
2186 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2187 return ZONELIST_ORDER_NODE;
2188 /*
2189 * look into each node's config.
2190 * If there is a node whose DMA/DMA32 memory is very big area on
2191 * local memory, NODE_ORDER may be suitable.
2192 */
37b07e41
LS
2193 average_size = total_size /
2194 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2195 for_each_online_node(nid) {
2196 low_kmem_size = 0;
2197 total_size = 0;
2198 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2199 z = &NODE_DATA(nid)->node_zones[zone_type];
2200 if (populated_zone(z)) {
2201 if (zone_type < ZONE_NORMAL)
2202 low_kmem_size += z->present_pages;
2203 total_size += z->present_pages;
2204 }
2205 }
2206 if (low_kmem_size &&
2207 total_size > average_size && /* ignore small node */
2208 low_kmem_size > total_size * 70/100)
2209 return ZONELIST_ORDER_NODE;
2210 }
2211 return ZONELIST_ORDER_ZONE;
2212}
2213
2214static void set_zonelist_order(void)
2215{
2216 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2217 current_zonelist_order = default_zonelist_order();
2218 else
2219 current_zonelist_order = user_zonelist_order;
2220}
2221
2222static void build_zonelists(pg_data_t *pgdat)
2223{
2224 int j, node, load;
2225 enum zone_type i;
1da177e4 2226 nodemask_t used_mask;
f0c0b2b8
KH
2227 int local_node, prev_node;
2228 struct zonelist *zonelist;
2229 int order = current_zonelist_order;
1da177e4
LT
2230
2231 /* initialize zonelists */
523b9458 2232 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4
LT
2233 zonelist = pgdat->node_zonelists + i;
2234 zonelist->zones[0] = NULL;
2235 }
2236
2237 /* NUMA-aware ordering of nodes */
2238 local_node = pgdat->node_id;
2239 load = num_online_nodes();
2240 prev_node = local_node;
2241 nodes_clear(used_mask);
f0c0b2b8
KH
2242
2243 memset(node_load, 0, sizeof(node_load));
2244 memset(node_order, 0, sizeof(node_order));
2245 j = 0;
2246
1da177e4 2247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2248 int distance = node_distance(local_node, node);
2249
2250 /*
2251 * If another node is sufficiently far away then it is better
2252 * to reclaim pages in a zone before going off node.
2253 */
2254 if (distance > RECLAIM_DISTANCE)
2255 zone_reclaim_mode = 1;
2256
1da177e4
LT
2257 /*
2258 * We don't want to pressure a particular node.
2259 * So adding penalty to the first node in same
2260 * distance group to make it round-robin.
2261 */
9eeff239 2262 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2263 node_load[node] = load;
2264
1da177e4
LT
2265 prev_node = node;
2266 load--;
f0c0b2b8
KH
2267 if (order == ZONELIST_ORDER_NODE)
2268 build_zonelists_in_node_order(pgdat, node);
2269 else
2270 node_order[j++] = node; /* remember order */
2271 }
1da177e4 2272
f0c0b2b8
KH
2273 if (order == ZONELIST_ORDER_ZONE) {
2274 /* calculate node order -- i.e., DMA last! */
2275 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2276 }
523b9458
CL
2277
2278 build_thisnode_zonelists(pgdat);
1da177e4
LT
2279}
2280
9276b1bc 2281/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2282static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2283{
2284 int i;
2285
2286 for (i = 0; i < MAX_NR_ZONES; i++) {
2287 struct zonelist *zonelist;
2288 struct zonelist_cache *zlc;
2289 struct zone **z;
2290
2291 zonelist = pgdat->node_zonelists + i;
2292 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2293 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2294 for (z = zonelist->zones; *z; z++)
2295 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2296 }
2297}
2298
f0c0b2b8 2299
1da177e4
LT
2300#else /* CONFIG_NUMA */
2301
f0c0b2b8
KH
2302static void set_zonelist_order(void)
2303{
2304 current_zonelist_order = ZONELIST_ORDER_ZONE;
2305}
2306
2307static void build_zonelists(pg_data_t *pgdat)
1da177e4 2308{
19655d34
CL
2309 int node, local_node;
2310 enum zone_type i,j;
1da177e4
LT
2311
2312 local_node = pgdat->node_id;
19655d34 2313 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2314 struct zonelist *zonelist;
2315
2316 zonelist = pgdat->node_zonelists + i;
2317
19655d34 2318 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2319 /*
2320 * Now we build the zonelist so that it contains the zones
2321 * of all the other nodes.
2322 * We don't want to pressure a particular node, so when
2323 * building the zones for node N, we make sure that the
2324 * zones coming right after the local ones are those from
2325 * node N+1 (modulo N)
2326 */
2327 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2328 if (!node_online(node))
2329 continue;
19655d34 2330 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2331 }
2332 for (node = 0; node < local_node; node++) {
2333 if (!node_online(node))
2334 continue;
19655d34 2335 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2336 }
2337
2338 zonelist->zones[j] = NULL;
2339 }
2340}
2341
9276b1bc 2342/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2343static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2344{
2345 int i;
2346
2347 for (i = 0; i < MAX_NR_ZONES; i++)
2348 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2349}
2350
1da177e4
LT
2351#endif /* CONFIG_NUMA */
2352
6811378e 2353/* return values int ....just for stop_machine_run() */
f0c0b2b8 2354static int __build_all_zonelists(void *dummy)
1da177e4 2355{
6811378e 2356 int nid;
9276b1bc
PJ
2357
2358 for_each_online_node(nid) {
7ea1530a
CL
2359 pg_data_t *pgdat = NODE_DATA(nid);
2360
2361 build_zonelists(pgdat);
2362 build_zonelist_cache(pgdat);
9276b1bc 2363 }
6811378e
YG
2364 return 0;
2365}
2366
f0c0b2b8 2367void build_all_zonelists(void)
6811378e 2368{
f0c0b2b8
KH
2369 set_zonelist_order();
2370
6811378e 2371 if (system_state == SYSTEM_BOOTING) {
423b41d7 2372 __build_all_zonelists(NULL);
6811378e
YG
2373 cpuset_init_current_mems_allowed();
2374 } else {
2375 /* we have to stop all cpus to guaranntee there is no user
2376 of zonelist */
2377 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2378 /* cpuset refresh routine should be here */
2379 }
bd1e22b8 2380 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2381 /*
2382 * Disable grouping by mobility if the number of pages in the
2383 * system is too low to allow the mechanism to work. It would be
2384 * more accurate, but expensive to check per-zone. This check is
2385 * made on memory-hotadd so a system can start with mobility
2386 * disabled and enable it later
2387 */
2388 if (vm_total_pages < (MAX_ORDER_NR_PAGES * MIGRATE_TYPES))
2389 page_group_by_mobility_disabled = 1;
2390 else
2391 page_group_by_mobility_disabled = 0;
2392
2393 printk("Built %i zonelists in %s order, mobility grouping %s. "
2394 "Total pages: %ld\n",
f0c0b2b8
KH
2395 num_online_nodes(),
2396 zonelist_order_name[current_zonelist_order],
9ef9acb0 2397 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2398 vm_total_pages);
2399#ifdef CONFIG_NUMA
2400 printk("Policy zone: %s\n", zone_names[policy_zone]);
2401#endif
1da177e4
LT
2402}
2403
2404/*
2405 * Helper functions to size the waitqueue hash table.
2406 * Essentially these want to choose hash table sizes sufficiently
2407 * large so that collisions trying to wait on pages are rare.
2408 * But in fact, the number of active page waitqueues on typical
2409 * systems is ridiculously low, less than 200. So this is even
2410 * conservative, even though it seems large.
2411 *
2412 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2413 * waitqueues, i.e. the size of the waitq table given the number of pages.
2414 */
2415#define PAGES_PER_WAITQUEUE 256
2416
cca448fe 2417#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2418static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2419{
2420 unsigned long size = 1;
2421
2422 pages /= PAGES_PER_WAITQUEUE;
2423
2424 while (size < pages)
2425 size <<= 1;
2426
2427 /*
2428 * Once we have dozens or even hundreds of threads sleeping
2429 * on IO we've got bigger problems than wait queue collision.
2430 * Limit the size of the wait table to a reasonable size.
2431 */
2432 size = min(size, 4096UL);
2433
2434 return max(size, 4UL);
2435}
cca448fe
YG
2436#else
2437/*
2438 * A zone's size might be changed by hot-add, so it is not possible to determine
2439 * a suitable size for its wait_table. So we use the maximum size now.
2440 *
2441 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2442 *
2443 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2444 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2445 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2446 *
2447 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2448 * or more by the traditional way. (See above). It equals:
2449 *
2450 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2451 * ia64(16K page size) : = ( 8G + 4M)byte.
2452 * powerpc (64K page size) : = (32G +16M)byte.
2453 */
2454static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2455{
2456 return 4096UL;
2457}
2458#endif
1da177e4
LT
2459
2460/*
2461 * This is an integer logarithm so that shifts can be used later
2462 * to extract the more random high bits from the multiplicative
2463 * hash function before the remainder is taken.
2464 */
2465static inline unsigned long wait_table_bits(unsigned long size)
2466{
2467 return ffz(~size);
2468}
2469
2470#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2471
56fd56b8
MG
2472/*
2473 * Mark a number of MAX_ORDER_NR_PAGES blocks as MIGRATE_RESERVE. The number
2474 * of blocks reserved is based on zone->pages_min. The memory within the
2475 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2476 * higher will lead to a bigger reserve which will get freed as contiguous
2477 * blocks as reclaim kicks in
2478 */
2479static void setup_zone_migrate_reserve(struct zone *zone)
2480{
2481 unsigned long start_pfn, pfn, end_pfn;
2482 struct page *page;
2483 unsigned long reserve, block_migratetype;
2484
2485 /* Get the start pfn, end pfn and the number of blocks to reserve */
2486 start_pfn = zone->zone_start_pfn;
2487 end_pfn = start_pfn + zone->spanned_pages;
2488 reserve = roundup(zone->pages_min, MAX_ORDER_NR_PAGES) >> (MAX_ORDER-1);
2489
2490 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES) {
2491 if (!pfn_valid(pfn))
2492 continue;
2493 page = pfn_to_page(pfn);
2494
2495 /* Blocks with reserved pages will never free, skip them. */
2496 if (PageReserved(page))
2497 continue;
2498
2499 block_migratetype = get_pageblock_migratetype(page);
2500
2501 /* If this block is reserved, account for it */
2502 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2503 reserve--;
2504 continue;
2505 }
2506
2507 /* Suitable for reserving if this block is movable */
2508 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2509 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2510 move_freepages_block(zone, page, MIGRATE_RESERVE);
2511 reserve--;
2512 continue;
2513 }
2514
2515 /*
2516 * If the reserve is met and this is a previous reserved block,
2517 * take it back
2518 */
2519 if (block_migratetype == MIGRATE_RESERVE) {
2520 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2521 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2522 }
2523 }
2524}
ac0e5b7a 2525
1da177e4
LT
2526/*
2527 * Initially all pages are reserved - free ones are freed
2528 * up by free_all_bootmem() once the early boot process is
2529 * done. Non-atomic initialization, single-pass.
2530 */
c09b4240 2531void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2532 unsigned long start_pfn, enum memmap_context context)
1da177e4 2533{
1da177e4 2534 struct page *page;
29751f69
AW
2535 unsigned long end_pfn = start_pfn + size;
2536 unsigned long pfn;
1da177e4 2537
cbe8dd4a 2538 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2539 /*
2540 * There can be holes in boot-time mem_map[]s
2541 * handed to this function. They do not
2542 * exist on hotplugged memory.
2543 */
2544 if (context == MEMMAP_EARLY) {
2545 if (!early_pfn_valid(pfn))
2546 continue;
2547 if (!early_pfn_in_nid(pfn, nid))
2548 continue;
2549 }
d41dee36
AW
2550 page = pfn_to_page(pfn);
2551 set_page_links(page, zone, nid, pfn);
7835e98b 2552 init_page_count(page);
1da177e4
LT
2553 reset_page_mapcount(page);
2554 SetPageReserved(page);
b2a0ac88
MG
2555
2556 /*
2557 * Mark the block movable so that blocks are reserved for
2558 * movable at startup. This will force kernel allocations
2559 * to reserve their blocks rather than leaking throughout
2560 * the address space during boot when many long-lived
56fd56b8
MG
2561 * kernel allocations are made. Later some blocks near
2562 * the start are marked MIGRATE_RESERVE by
2563 * setup_zone_migrate_reserve()
b2a0ac88 2564 */
56fd56b8
MG
2565 if ((pfn & (MAX_ORDER_NR_PAGES-1)))
2566 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2567
1da177e4
LT
2568 INIT_LIST_HEAD(&page->lru);
2569#ifdef WANT_PAGE_VIRTUAL
2570 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2571 if (!is_highmem_idx(zone))
3212c6be 2572 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2573#endif
1da177e4
LT
2574 }
2575}
2576
6ea6e688
PM
2577static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2578 struct zone *zone, unsigned long size)
1da177e4 2579{
b2a0ac88
MG
2580 int order, t;
2581 for_each_migratetype_order(order, t) {
2582 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2583 zone->free_area[order].nr_free = 0;
2584 }
2585}
2586
2587#ifndef __HAVE_ARCH_MEMMAP_INIT
2588#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2589 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2590#endif
2591
d09c6b80 2592static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2593{
2594 int batch;
2595
2596 /*
2597 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2598 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2599 *
2600 * OK, so we don't know how big the cache is. So guess.
2601 */
2602 batch = zone->present_pages / 1024;
ba56e91c
SR
2603 if (batch * PAGE_SIZE > 512 * 1024)
2604 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2605 batch /= 4; /* We effectively *= 4 below */
2606 if (batch < 1)
2607 batch = 1;
2608
2609 /*
0ceaacc9
NP
2610 * Clamp the batch to a 2^n - 1 value. Having a power
2611 * of 2 value was found to be more likely to have
2612 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2613 *
0ceaacc9
NP
2614 * For example if 2 tasks are alternately allocating
2615 * batches of pages, one task can end up with a lot
2616 * of pages of one half of the possible page colors
2617 * and the other with pages of the other colors.
e7c8d5c9 2618 */
0ceaacc9 2619 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2620
e7c8d5c9
CL
2621 return batch;
2622}
2623
2caaad41
CL
2624inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2625{
2626 struct per_cpu_pages *pcp;
2627
1c6fe946
MD
2628 memset(p, 0, sizeof(*p));
2629
2caaad41
CL
2630 pcp = &p->pcp[0]; /* hot */
2631 pcp->count = 0;
2caaad41
CL
2632 pcp->high = 6 * batch;
2633 pcp->batch = max(1UL, 1 * batch);
2634 INIT_LIST_HEAD(&pcp->list);
2635
2636 pcp = &p->pcp[1]; /* cold*/
2637 pcp->count = 0;
2caaad41 2638 pcp->high = 2 * batch;
e46a5e28 2639 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2640 INIT_LIST_HEAD(&pcp->list);
2641}
2642
8ad4b1fb
RS
2643/*
2644 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2645 * to the value high for the pageset p.
2646 */
2647
2648static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2649 unsigned long high)
2650{
2651 struct per_cpu_pages *pcp;
2652
2653 pcp = &p->pcp[0]; /* hot list */
2654 pcp->high = high;
2655 pcp->batch = max(1UL, high/4);
2656 if ((high/4) > (PAGE_SHIFT * 8))
2657 pcp->batch = PAGE_SHIFT * 8;
2658}
2659
2660
e7c8d5c9
CL
2661#ifdef CONFIG_NUMA
2662/*
2caaad41
CL
2663 * Boot pageset table. One per cpu which is going to be used for all
2664 * zones and all nodes. The parameters will be set in such a way
2665 * that an item put on a list will immediately be handed over to
2666 * the buddy list. This is safe since pageset manipulation is done
2667 * with interrupts disabled.
2668 *
2669 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2670 *
2671 * The boot_pagesets must be kept even after bootup is complete for
2672 * unused processors and/or zones. They do play a role for bootstrapping
2673 * hotplugged processors.
2674 *
2675 * zoneinfo_show() and maybe other functions do
2676 * not check if the processor is online before following the pageset pointer.
2677 * Other parts of the kernel may not check if the zone is available.
2caaad41 2678 */
88a2a4ac 2679static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2680
2681/*
2682 * Dynamically allocate memory for the
e7c8d5c9
CL
2683 * per cpu pageset array in struct zone.
2684 */
6292d9aa 2685static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2686{
2687 struct zone *zone, *dzone;
37c0708d
CL
2688 int node = cpu_to_node(cpu);
2689
2690 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2691
2692 for_each_zone(zone) {
e7c8d5c9 2693
66a55030
CL
2694 if (!populated_zone(zone))
2695 continue;
2696
23316bc8 2697 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2698 GFP_KERNEL, node);
23316bc8 2699 if (!zone_pcp(zone, cpu))
e7c8d5c9 2700 goto bad;
e7c8d5c9 2701
23316bc8 2702 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2703
2704 if (percpu_pagelist_fraction)
2705 setup_pagelist_highmark(zone_pcp(zone, cpu),
2706 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2707 }
2708
2709 return 0;
2710bad:
2711 for_each_zone(dzone) {
64191688
AM
2712 if (!populated_zone(dzone))
2713 continue;
e7c8d5c9
CL
2714 if (dzone == zone)
2715 break;
23316bc8
NP
2716 kfree(zone_pcp(dzone, cpu));
2717 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2718 }
2719 return -ENOMEM;
2720}
2721
2722static inline void free_zone_pagesets(int cpu)
2723{
e7c8d5c9
CL
2724 struct zone *zone;
2725
2726 for_each_zone(zone) {
2727 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2728
f3ef9ead
DR
2729 /* Free per_cpu_pageset if it is slab allocated */
2730 if (pset != &boot_pageset[cpu])
2731 kfree(pset);
e7c8d5c9 2732 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2733 }
e7c8d5c9
CL
2734}
2735
9c7b216d 2736static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2737 unsigned long action,
2738 void *hcpu)
2739{
2740 int cpu = (long)hcpu;
2741 int ret = NOTIFY_OK;
2742
2743 switch (action) {
ce421c79 2744 case CPU_UP_PREPARE:
8bb78442 2745 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2746 if (process_zones(cpu))
2747 ret = NOTIFY_BAD;
2748 break;
2749 case CPU_UP_CANCELED:
8bb78442 2750 case CPU_UP_CANCELED_FROZEN:
ce421c79 2751 case CPU_DEAD:
8bb78442 2752 case CPU_DEAD_FROZEN:
ce421c79
AW
2753 free_zone_pagesets(cpu);
2754 break;
2755 default:
2756 break;
e7c8d5c9
CL
2757 }
2758 return ret;
2759}
2760
74b85f37 2761static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2762 { &pageset_cpuup_callback, NULL, 0 };
2763
78d9955b 2764void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2765{
2766 int err;
2767
2768 /* Initialize per_cpu_pageset for cpu 0.
2769 * A cpuup callback will do this for every cpu
2770 * as it comes online
2771 */
2772 err = process_zones(smp_processor_id());
2773 BUG_ON(err);
2774 register_cpu_notifier(&pageset_notifier);
2775}
2776
2777#endif
2778
577a32f6 2779static noinline __init_refok
cca448fe 2780int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2781{
2782 int i;
2783 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2784 size_t alloc_size;
ed8ece2e
DH
2785
2786 /*
2787 * The per-page waitqueue mechanism uses hashed waitqueues
2788 * per zone.
2789 */
02b694de
YG
2790 zone->wait_table_hash_nr_entries =
2791 wait_table_hash_nr_entries(zone_size_pages);
2792 zone->wait_table_bits =
2793 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2794 alloc_size = zone->wait_table_hash_nr_entries
2795 * sizeof(wait_queue_head_t);
2796
2797 if (system_state == SYSTEM_BOOTING) {
2798 zone->wait_table = (wait_queue_head_t *)
2799 alloc_bootmem_node(pgdat, alloc_size);
2800 } else {
2801 /*
2802 * This case means that a zone whose size was 0 gets new memory
2803 * via memory hot-add.
2804 * But it may be the case that a new node was hot-added. In
2805 * this case vmalloc() will not be able to use this new node's
2806 * memory - this wait_table must be initialized to use this new
2807 * node itself as well.
2808 * To use this new node's memory, further consideration will be
2809 * necessary.
2810 */
8691f3a7 2811 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2812 }
2813 if (!zone->wait_table)
2814 return -ENOMEM;
ed8ece2e 2815
02b694de 2816 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2817 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2818
2819 return 0;
ed8ece2e
DH
2820}
2821
c09b4240 2822static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2823{
2824 int cpu;
2825 unsigned long batch = zone_batchsize(zone);
2826
2827 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2828#ifdef CONFIG_NUMA
2829 /* Early boot. Slab allocator not functional yet */
23316bc8 2830 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2831 setup_pageset(&boot_pageset[cpu],0);
2832#else
2833 setup_pageset(zone_pcp(zone,cpu), batch);
2834#endif
2835 }
f5335c0f
AB
2836 if (zone->present_pages)
2837 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2838 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2839}
2840
718127cc
YG
2841__meminit int init_currently_empty_zone(struct zone *zone,
2842 unsigned long zone_start_pfn,
a2f3aa02
DH
2843 unsigned long size,
2844 enum memmap_context context)
ed8ece2e
DH
2845{
2846 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2847 int ret;
2848 ret = zone_wait_table_init(zone, size);
2849 if (ret)
2850 return ret;
ed8ece2e
DH
2851 pgdat->nr_zones = zone_idx(zone) + 1;
2852
ed8ece2e
DH
2853 zone->zone_start_pfn = zone_start_pfn;
2854
2855 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2856
2857 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2858
2859 return 0;
ed8ece2e
DH
2860}
2861
c713216d
MG
2862#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2863/*
2864 * Basic iterator support. Return the first range of PFNs for a node
2865 * Note: nid == MAX_NUMNODES returns first region regardless of node
2866 */
a3142c8e 2867static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2868{
2869 int i;
2870
2871 for (i = 0; i < nr_nodemap_entries; i++)
2872 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2873 return i;
2874
2875 return -1;
2876}
2877
2878/*
2879 * Basic iterator support. Return the next active range of PFNs for a node
2880 * Note: nid == MAX_NUMNODES returns next region regardles of node
2881 */
a3142c8e 2882static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2883{
2884 for (index = index + 1; index < nr_nodemap_entries; index++)
2885 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2886 return index;
2887
2888 return -1;
2889}
2890
2891#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2892/*
2893 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2894 * Architectures may implement their own version but if add_active_range()
2895 * was used and there are no special requirements, this is a convenient
2896 * alternative
2897 */
6f076f5d 2898int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2899{
2900 int i;
2901
2902 for (i = 0; i < nr_nodemap_entries; i++) {
2903 unsigned long start_pfn = early_node_map[i].start_pfn;
2904 unsigned long end_pfn = early_node_map[i].end_pfn;
2905
2906 if (start_pfn <= pfn && pfn < end_pfn)
2907 return early_node_map[i].nid;
2908 }
2909
2910 return 0;
2911}
2912#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2913
2914/* Basic iterator support to walk early_node_map[] */
2915#define for_each_active_range_index_in_nid(i, nid) \
2916 for (i = first_active_region_index_in_nid(nid); i != -1; \
2917 i = next_active_region_index_in_nid(i, nid))
2918
2919/**
2920 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2921 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2922 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2923 *
2924 * If an architecture guarantees that all ranges registered with
2925 * add_active_ranges() contain no holes and may be freed, this
2926 * this function may be used instead of calling free_bootmem() manually.
2927 */
2928void __init free_bootmem_with_active_regions(int nid,
2929 unsigned long max_low_pfn)
2930{
2931 int i;
2932
2933 for_each_active_range_index_in_nid(i, nid) {
2934 unsigned long size_pages = 0;
2935 unsigned long end_pfn = early_node_map[i].end_pfn;
2936
2937 if (early_node_map[i].start_pfn >= max_low_pfn)
2938 continue;
2939
2940 if (end_pfn > max_low_pfn)
2941 end_pfn = max_low_pfn;
2942
2943 size_pages = end_pfn - early_node_map[i].start_pfn;
2944 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2945 PFN_PHYS(early_node_map[i].start_pfn),
2946 size_pages << PAGE_SHIFT);
2947 }
2948}
2949
2950/**
2951 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2952 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2953 *
2954 * If an architecture guarantees that all ranges registered with
2955 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2956 * function may be used instead of calling memory_present() manually.
c713216d
MG
2957 */
2958void __init sparse_memory_present_with_active_regions(int nid)
2959{
2960 int i;
2961
2962 for_each_active_range_index_in_nid(i, nid)
2963 memory_present(early_node_map[i].nid,
2964 early_node_map[i].start_pfn,
2965 early_node_map[i].end_pfn);
2966}
2967
fb01439c
MG
2968/**
2969 * push_node_boundaries - Push node boundaries to at least the requested boundary
2970 * @nid: The nid of the node to push the boundary for
2971 * @start_pfn: The start pfn of the node
2972 * @end_pfn: The end pfn of the node
2973 *
2974 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2975 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2976 * be hotplugged even though no physical memory exists. This function allows
2977 * an arch to push out the node boundaries so mem_map is allocated that can
2978 * be used later.
2979 */
2980#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2981void __init push_node_boundaries(unsigned int nid,
2982 unsigned long start_pfn, unsigned long end_pfn)
2983{
2984 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2985 nid, start_pfn, end_pfn);
2986
2987 /* Initialise the boundary for this node if necessary */
2988 if (node_boundary_end_pfn[nid] == 0)
2989 node_boundary_start_pfn[nid] = -1UL;
2990
2991 /* Update the boundaries */
2992 if (node_boundary_start_pfn[nid] > start_pfn)
2993 node_boundary_start_pfn[nid] = start_pfn;
2994 if (node_boundary_end_pfn[nid] < end_pfn)
2995 node_boundary_end_pfn[nid] = end_pfn;
2996}
2997
2998/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2999static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3000 unsigned long *start_pfn, unsigned long *end_pfn)
3001{
3002 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3003 nid, *start_pfn, *end_pfn);
3004
3005 /* Return if boundary information has not been provided */
3006 if (node_boundary_end_pfn[nid] == 0)
3007 return;
3008
3009 /* Check the boundaries and update if necessary */
3010 if (node_boundary_start_pfn[nid] < *start_pfn)
3011 *start_pfn = node_boundary_start_pfn[nid];
3012 if (node_boundary_end_pfn[nid] > *end_pfn)
3013 *end_pfn = node_boundary_end_pfn[nid];
3014}
3015#else
3016void __init push_node_boundaries(unsigned int nid,
3017 unsigned long start_pfn, unsigned long end_pfn) {}
3018
98011f56 3019static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3020 unsigned long *start_pfn, unsigned long *end_pfn) {}
3021#endif
3022
3023
c713216d
MG
3024/**
3025 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3026 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3027 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3028 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3029 *
3030 * It returns the start and end page frame of a node based on information
3031 * provided by an arch calling add_active_range(). If called for a node
3032 * with no available memory, a warning is printed and the start and end
88ca3b94 3033 * PFNs will be 0.
c713216d 3034 */
a3142c8e 3035void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3036 unsigned long *start_pfn, unsigned long *end_pfn)
3037{
3038 int i;
3039 *start_pfn = -1UL;
3040 *end_pfn = 0;
3041
3042 for_each_active_range_index_in_nid(i, nid) {
3043 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3044 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3045 }
3046
633c0666 3047 if (*start_pfn == -1UL)
c713216d 3048 *start_pfn = 0;
fb01439c
MG
3049
3050 /* Push the node boundaries out if requested */
3051 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3052}
3053
2a1e274a
MG
3054/*
3055 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3056 * assumption is made that zones within a node are ordered in monotonic
3057 * increasing memory addresses so that the "highest" populated zone is used
3058 */
3059void __init find_usable_zone_for_movable(void)
3060{
3061 int zone_index;
3062 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3063 if (zone_index == ZONE_MOVABLE)
3064 continue;
3065
3066 if (arch_zone_highest_possible_pfn[zone_index] >
3067 arch_zone_lowest_possible_pfn[zone_index])
3068 break;
3069 }
3070
3071 VM_BUG_ON(zone_index == -1);
3072 movable_zone = zone_index;
3073}
3074
3075/*
3076 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3077 * because it is sized independant of architecture. Unlike the other zones,
3078 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3079 * in each node depending on the size of each node and how evenly kernelcore
3080 * is distributed. This helper function adjusts the zone ranges
3081 * provided by the architecture for a given node by using the end of the
3082 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3083 * zones within a node are in order of monotonic increases memory addresses
3084 */
3085void __meminit adjust_zone_range_for_zone_movable(int nid,
3086 unsigned long zone_type,
3087 unsigned long node_start_pfn,
3088 unsigned long node_end_pfn,
3089 unsigned long *zone_start_pfn,
3090 unsigned long *zone_end_pfn)
3091{
3092 /* Only adjust if ZONE_MOVABLE is on this node */
3093 if (zone_movable_pfn[nid]) {
3094 /* Size ZONE_MOVABLE */
3095 if (zone_type == ZONE_MOVABLE) {
3096 *zone_start_pfn = zone_movable_pfn[nid];
3097 *zone_end_pfn = min(node_end_pfn,
3098 arch_zone_highest_possible_pfn[movable_zone]);
3099
3100 /* Adjust for ZONE_MOVABLE starting within this range */
3101 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3102 *zone_end_pfn > zone_movable_pfn[nid]) {
3103 *zone_end_pfn = zone_movable_pfn[nid];
3104
3105 /* Check if this whole range is within ZONE_MOVABLE */
3106 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3107 *zone_start_pfn = *zone_end_pfn;
3108 }
3109}
3110
c713216d
MG
3111/*
3112 * Return the number of pages a zone spans in a node, including holes
3113 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3114 */
6ea6e688 3115static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3116 unsigned long zone_type,
3117 unsigned long *ignored)
3118{
3119 unsigned long node_start_pfn, node_end_pfn;
3120 unsigned long zone_start_pfn, zone_end_pfn;
3121
3122 /* Get the start and end of the node and zone */
3123 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3124 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3125 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3126 adjust_zone_range_for_zone_movable(nid, zone_type,
3127 node_start_pfn, node_end_pfn,
3128 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3129
3130 /* Check that this node has pages within the zone's required range */
3131 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3132 return 0;
3133
3134 /* Move the zone boundaries inside the node if necessary */
3135 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3136 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3137
3138 /* Return the spanned pages */
3139 return zone_end_pfn - zone_start_pfn;
3140}
3141
3142/*
3143 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3144 * then all holes in the requested range will be accounted for.
c713216d 3145 */
a3142c8e 3146unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3147 unsigned long range_start_pfn,
3148 unsigned long range_end_pfn)
3149{
3150 int i = 0;
3151 unsigned long prev_end_pfn = 0, hole_pages = 0;
3152 unsigned long start_pfn;
3153
3154 /* Find the end_pfn of the first active range of pfns in the node */
3155 i = first_active_region_index_in_nid(nid);
3156 if (i == -1)
3157 return 0;
3158
b5445f95
MG
3159 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3160
9c7cd687
MG
3161 /* Account for ranges before physical memory on this node */
3162 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3163 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3164
3165 /* Find all holes for the zone within the node */
3166 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3167
3168 /* No need to continue if prev_end_pfn is outside the zone */
3169 if (prev_end_pfn >= range_end_pfn)
3170 break;
3171
3172 /* Make sure the end of the zone is not within the hole */
3173 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3174 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3175
3176 /* Update the hole size cound and move on */
3177 if (start_pfn > range_start_pfn) {
3178 BUG_ON(prev_end_pfn > start_pfn);
3179 hole_pages += start_pfn - prev_end_pfn;
3180 }
3181 prev_end_pfn = early_node_map[i].end_pfn;
3182 }
3183
9c7cd687
MG
3184 /* Account for ranges past physical memory on this node */
3185 if (range_end_pfn > prev_end_pfn)
0c6cb974 3186 hole_pages += range_end_pfn -
9c7cd687
MG
3187 max(range_start_pfn, prev_end_pfn);
3188
c713216d
MG
3189 return hole_pages;
3190}
3191
3192/**
3193 * absent_pages_in_range - Return number of page frames in holes within a range
3194 * @start_pfn: The start PFN to start searching for holes
3195 * @end_pfn: The end PFN to stop searching for holes
3196 *
88ca3b94 3197 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3198 */
3199unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3200 unsigned long end_pfn)
3201{
3202 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3203}
3204
3205/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3206static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3207 unsigned long zone_type,
3208 unsigned long *ignored)
3209{
9c7cd687
MG
3210 unsigned long node_start_pfn, node_end_pfn;
3211 unsigned long zone_start_pfn, zone_end_pfn;
3212
3213 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3214 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3215 node_start_pfn);
3216 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3217 node_end_pfn);
3218
2a1e274a
MG
3219 adjust_zone_range_for_zone_movable(nid, zone_type,
3220 node_start_pfn, node_end_pfn,
3221 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3222 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3223}
0e0b864e 3224
c713216d 3225#else
6ea6e688 3226static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3227 unsigned long zone_type,
3228 unsigned long *zones_size)
3229{
3230 return zones_size[zone_type];
3231}
3232
6ea6e688 3233static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3234 unsigned long zone_type,
3235 unsigned long *zholes_size)
3236{
3237 if (!zholes_size)
3238 return 0;
3239
3240 return zholes_size[zone_type];
3241}
0e0b864e 3242
c713216d
MG
3243#endif
3244
a3142c8e 3245static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3246 unsigned long *zones_size, unsigned long *zholes_size)
3247{
3248 unsigned long realtotalpages, totalpages = 0;
3249 enum zone_type i;
3250
3251 for (i = 0; i < MAX_NR_ZONES; i++)
3252 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3253 zones_size);
3254 pgdat->node_spanned_pages = totalpages;
3255
3256 realtotalpages = totalpages;
3257 for (i = 0; i < MAX_NR_ZONES; i++)
3258 realtotalpages -=
3259 zone_absent_pages_in_node(pgdat->node_id, i,
3260 zholes_size);
3261 pgdat->node_present_pages = realtotalpages;
3262 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3263 realtotalpages);
3264}
3265
835c134e
MG
3266#ifndef CONFIG_SPARSEMEM
3267/*
3268 * Calculate the size of the zone->blockflags rounded to an unsigned long
3269 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3270 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3271 * round what is now in bits to nearest long in bits, then return it in
3272 * bytes.
3273 */
3274static unsigned long __init usemap_size(unsigned long zonesize)
3275{
3276 unsigned long usemapsize;
3277
3278 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3279 usemapsize = usemapsize >> (MAX_ORDER-1);
3280 usemapsize *= NR_PAGEBLOCK_BITS;
3281 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3282
3283 return usemapsize / 8;
3284}
3285
3286static void __init setup_usemap(struct pglist_data *pgdat,
3287 struct zone *zone, unsigned long zonesize)
3288{
3289 unsigned long usemapsize = usemap_size(zonesize);
3290 zone->pageblock_flags = NULL;
3291 if (usemapsize) {
3292 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3293 memset(zone->pageblock_flags, 0, usemapsize);
3294 }
3295}
3296#else
3297static void inline setup_usemap(struct pglist_data *pgdat,
3298 struct zone *zone, unsigned long zonesize) {}
3299#endif /* CONFIG_SPARSEMEM */
3300
1da177e4
LT
3301/*
3302 * Set up the zone data structures:
3303 * - mark all pages reserved
3304 * - mark all memory queues empty
3305 * - clear the memory bitmaps
3306 */
86356ab1 3307static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3308 unsigned long *zones_size, unsigned long *zholes_size)
3309{
2f1b6248 3310 enum zone_type j;
ed8ece2e 3311 int nid = pgdat->node_id;
1da177e4 3312 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3313 int ret;
1da177e4 3314
208d54e5 3315 pgdat_resize_init(pgdat);
1da177e4
LT
3316 pgdat->nr_zones = 0;
3317 init_waitqueue_head(&pgdat->kswapd_wait);
3318 pgdat->kswapd_max_order = 0;
3319
3320 for (j = 0; j < MAX_NR_ZONES; j++) {
3321 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3322 unsigned long size, realsize, memmap_pages;
1da177e4 3323
c713216d
MG
3324 size = zone_spanned_pages_in_node(nid, j, zones_size);
3325 realsize = size - zone_absent_pages_in_node(nid, j,
3326 zholes_size);
1da177e4 3327
0e0b864e
MG
3328 /*
3329 * Adjust realsize so that it accounts for how much memory
3330 * is used by this zone for memmap. This affects the watermark
3331 * and per-cpu initialisations
3332 */
3333 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3334 if (realsize >= memmap_pages) {
3335 realsize -= memmap_pages;
3336 printk(KERN_DEBUG
3337 " %s zone: %lu pages used for memmap\n",
3338 zone_names[j], memmap_pages);
3339 } else
3340 printk(KERN_WARNING
3341 " %s zone: %lu pages exceeds realsize %lu\n",
3342 zone_names[j], memmap_pages, realsize);
3343
6267276f
CL
3344 /* Account for reserved pages */
3345 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3346 realsize -= dma_reserve;
6267276f
CL
3347 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3348 zone_names[0], dma_reserve);
0e0b864e
MG
3349 }
3350
98d2b0eb 3351 if (!is_highmem_idx(j))
1da177e4
LT
3352 nr_kernel_pages += realsize;
3353 nr_all_pages += realsize;
3354
3355 zone->spanned_pages = size;
3356 zone->present_pages = realsize;
9614634f 3357#ifdef CONFIG_NUMA
d5f541ed 3358 zone->node = nid;
8417bba4 3359 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3360 / 100;
0ff38490 3361 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3362#endif
1da177e4
LT
3363 zone->name = zone_names[j];
3364 spin_lock_init(&zone->lock);
3365 spin_lock_init(&zone->lru_lock);
bdc8cb98 3366 zone_seqlock_init(zone);
1da177e4 3367 zone->zone_pgdat = pgdat;
1da177e4 3368
3bb1a852 3369 zone->prev_priority = DEF_PRIORITY;
1da177e4 3370
ed8ece2e 3371 zone_pcp_init(zone);
1da177e4
LT
3372 INIT_LIST_HEAD(&zone->active_list);
3373 INIT_LIST_HEAD(&zone->inactive_list);
3374 zone->nr_scan_active = 0;
3375 zone->nr_scan_inactive = 0;
2244b95a 3376 zap_zone_vm_stats(zone);
53e9a615 3377 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
3378 if (!size)
3379 continue;
3380
835c134e 3381 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3382 ret = init_currently_empty_zone(zone, zone_start_pfn,
3383 size, MEMMAP_EARLY);
718127cc 3384 BUG_ON(ret);
1da177e4 3385 zone_start_pfn += size;
1da177e4
LT
3386 }
3387}
3388
577a32f6 3389static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3390{
1da177e4
LT
3391 /* Skip empty nodes */
3392 if (!pgdat->node_spanned_pages)
3393 return;
3394
d41dee36 3395#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3396 /* ia64 gets its own node_mem_map, before this, without bootmem */
3397 if (!pgdat->node_mem_map) {
e984bb43 3398 unsigned long size, start, end;
d41dee36
AW
3399 struct page *map;
3400
e984bb43
BP
3401 /*
3402 * The zone's endpoints aren't required to be MAX_ORDER
3403 * aligned but the node_mem_map endpoints must be in order
3404 * for the buddy allocator to function correctly.
3405 */
3406 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3407 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3408 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3409 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3410 map = alloc_remap(pgdat->node_id, size);
3411 if (!map)
3412 map = alloc_bootmem_node(pgdat, size);
e984bb43 3413 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3414 }
12d810c1 3415#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3416 /*
3417 * With no DISCONTIG, the global mem_map is just set as node 0's
3418 */
c713216d 3419 if (pgdat == NODE_DATA(0)) {
1da177e4 3420 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3421#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3422 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3423 mem_map -= pgdat->node_start_pfn;
3424#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3425 }
1da177e4 3426#endif
d41dee36 3427#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3428}
3429
86356ab1 3430void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3431 unsigned long *zones_size, unsigned long node_start_pfn,
3432 unsigned long *zholes_size)
3433{
3434 pgdat->node_id = nid;
3435 pgdat->node_start_pfn = node_start_pfn;
c713216d 3436 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3437
3438 alloc_node_mem_map(pgdat);
3439
3440 free_area_init_core(pgdat, zones_size, zholes_size);
3441}
3442
c713216d 3443#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3444
3445#if MAX_NUMNODES > 1
3446/*
3447 * Figure out the number of possible node ids.
3448 */
3449static void __init setup_nr_node_ids(void)
3450{
3451 unsigned int node;
3452 unsigned int highest = 0;
3453
3454 for_each_node_mask(node, node_possible_map)
3455 highest = node;
3456 nr_node_ids = highest + 1;
3457}
3458#else
3459static inline void setup_nr_node_ids(void)
3460{
3461}
3462#endif
3463
c713216d
MG
3464/**
3465 * add_active_range - Register a range of PFNs backed by physical memory
3466 * @nid: The node ID the range resides on
3467 * @start_pfn: The start PFN of the available physical memory
3468 * @end_pfn: The end PFN of the available physical memory
3469 *
3470 * These ranges are stored in an early_node_map[] and later used by
3471 * free_area_init_nodes() to calculate zone sizes and holes. If the
3472 * range spans a memory hole, it is up to the architecture to ensure
3473 * the memory is not freed by the bootmem allocator. If possible
3474 * the range being registered will be merged with existing ranges.
3475 */
3476void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3477 unsigned long end_pfn)
3478{
3479 int i;
3480
3481 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3482 "%d entries of %d used\n",
3483 nid, start_pfn, end_pfn,
3484 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3485
3486 /* Merge with existing active regions if possible */
3487 for (i = 0; i < nr_nodemap_entries; i++) {
3488 if (early_node_map[i].nid != nid)
3489 continue;
3490
3491 /* Skip if an existing region covers this new one */
3492 if (start_pfn >= early_node_map[i].start_pfn &&
3493 end_pfn <= early_node_map[i].end_pfn)
3494 return;
3495
3496 /* Merge forward if suitable */
3497 if (start_pfn <= early_node_map[i].end_pfn &&
3498 end_pfn > early_node_map[i].end_pfn) {
3499 early_node_map[i].end_pfn = end_pfn;
3500 return;
3501 }
3502
3503 /* Merge backward if suitable */
3504 if (start_pfn < early_node_map[i].end_pfn &&
3505 end_pfn >= early_node_map[i].start_pfn) {
3506 early_node_map[i].start_pfn = start_pfn;
3507 return;
3508 }
3509 }
3510
3511 /* Check that early_node_map is large enough */
3512 if (i >= MAX_ACTIVE_REGIONS) {
3513 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3514 MAX_ACTIVE_REGIONS);
3515 return;
3516 }
3517
3518 early_node_map[i].nid = nid;
3519 early_node_map[i].start_pfn = start_pfn;
3520 early_node_map[i].end_pfn = end_pfn;
3521 nr_nodemap_entries = i + 1;
3522}
3523
3524/**
3525 * shrink_active_range - Shrink an existing registered range of PFNs
3526 * @nid: The node id the range is on that should be shrunk
3527 * @old_end_pfn: The old end PFN of the range
3528 * @new_end_pfn: The new PFN of the range
3529 *
3530 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3531 * The map is kept at the end physical page range that has already been
3532 * registered with add_active_range(). This function allows an arch to shrink
3533 * an existing registered range.
3534 */
3535void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3536 unsigned long new_end_pfn)
3537{
3538 int i;
3539
3540 /* Find the old active region end and shrink */
3541 for_each_active_range_index_in_nid(i, nid)
3542 if (early_node_map[i].end_pfn == old_end_pfn) {
3543 early_node_map[i].end_pfn = new_end_pfn;
3544 break;
3545 }
3546}
3547
3548/**
3549 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3550 *
c713216d
MG
3551 * During discovery, it may be found that a table like SRAT is invalid
3552 * and an alternative discovery method must be used. This function removes
3553 * all currently registered regions.
3554 */
88ca3b94 3555void __init remove_all_active_ranges(void)
c713216d
MG
3556{
3557 memset(early_node_map, 0, sizeof(early_node_map));
3558 nr_nodemap_entries = 0;
fb01439c
MG
3559#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3560 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3561 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3562#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3563}
3564
3565/* Compare two active node_active_regions */
3566static int __init cmp_node_active_region(const void *a, const void *b)
3567{
3568 struct node_active_region *arange = (struct node_active_region *)a;
3569 struct node_active_region *brange = (struct node_active_region *)b;
3570
3571 /* Done this way to avoid overflows */
3572 if (arange->start_pfn > brange->start_pfn)
3573 return 1;
3574 if (arange->start_pfn < brange->start_pfn)
3575 return -1;
3576
3577 return 0;
3578}
3579
3580/* sort the node_map by start_pfn */
3581static void __init sort_node_map(void)
3582{
3583 sort(early_node_map, (size_t)nr_nodemap_entries,
3584 sizeof(struct node_active_region),
3585 cmp_node_active_region, NULL);
3586}
3587
a6af2bc3 3588/* Find the lowest pfn for a node */
c713216d
MG
3589unsigned long __init find_min_pfn_for_node(unsigned long nid)
3590{
3591 int i;
a6af2bc3 3592 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3593
c713216d
MG
3594 /* Assuming a sorted map, the first range found has the starting pfn */
3595 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3596 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3597
a6af2bc3
MG
3598 if (min_pfn == ULONG_MAX) {
3599 printk(KERN_WARNING
3600 "Could not find start_pfn for node %lu\n", nid);
3601 return 0;
3602 }
3603
3604 return min_pfn;
c713216d
MG
3605}
3606
3607/**
3608 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3609 *
3610 * It returns the minimum PFN based on information provided via
88ca3b94 3611 * add_active_range().
c713216d
MG
3612 */
3613unsigned long __init find_min_pfn_with_active_regions(void)
3614{
3615 return find_min_pfn_for_node(MAX_NUMNODES);
3616}
3617
3618/**
3619 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3620 *
3621 * It returns the maximum PFN based on information provided via
88ca3b94 3622 * add_active_range().
c713216d
MG
3623 */
3624unsigned long __init find_max_pfn_with_active_regions(void)
3625{
3626 int i;
3627 unsigned long max_pfn = 0;
3628
3629 for (i = 0; i < nr_nodemap_entries; i++)
3630 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3631
3632 return max_pfn;
3633}
3634
37b07e41
LS
3635/*
3636 * early_calculate_totalpages()
3637 * Sum pages in active regions for movable zone.
3638 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3639 */
7e63efef
MG
3640unsigned long __init early_calculate_totalpages(void)
3641{
3642 int i;
3643 unsigned long totalpages = 0;
3644
37b07e41
LS
3645 for (i = 0; i < nr_nodemap_entries; i++) {
3646 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3647 early_node_map[i].start_pfn;
37b07e41
LS
3648 totalpages += pages;
3649 if (pages)
3650 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3651 }
3652 return totalpages;
7e63efef
MG
3653}
3654
2a1e274a
MG
3655/*
3656 * Find the PFN the Movable zone begins in each node. Kernel memory
3657 * is spread evenly between nodes as long as the nodes have enough
3658 * memory. When they don't, some nodes will have more kernelcore than
3659 * others
3660 */
3661void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3662{
3663 int i, nid;
3664 unsigned long usable_startpfn;
3665 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3666 unsigned long totalpages = early_calculate_totalpages();
3667 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3668
7e63efef
MG
3669 /*
3670 * If movablecore was specified, calculate what size of
3671 * kernelcore that corresponds so that memory usable for
3672 * any allocation type is evenly spread. If both kernelcore
3673 * and movablecore are specified, then the value of kernelcore
3674 * will be used for required_kernelcore if it's greater than
3675 * what movablecore would have allowed.
3676 */
3677 if (required_movablecore) {
7e63efef
MG
3678 unsigned long corepages;
3679
3680 /*
3681 * Round-up so that ZONE_MOVABLE is at least as large as what
3682 * was requested by the user
3683 */
3684 required_movablecore =
3685 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3686 corepages = totalpages - required_movablecore;
3687
3688 required_kernelcore = max(required_kernelcore, corepages);
3689 }
3690
2a1e274a
MG
3691 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3692 if (!required_kernelcore)
3693 return;
3694
3695 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3696 find_usable_zone_for_movable();
3697 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3698
3699restart:
3700 /* Spread kernelcore memory as evenly as possible throughout nodes */
3701 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3702 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3703 /*
3704 * Recalculate kernelcore_node if the division per node
3705 * now exceeds what is necessary to satisfy the requested
3706 * amount of memory for the kernel
3707 */
3708 if (required_kernelcore < kernelcore_node)
3709 kernelcore_node = required_kernelcore / usable_nodes;
3710
3711 /*
3712 * As the map is walked, we track how much memory is usable
3713 * by the kernel using kernelcore_remaining. When it is
3714 * 0, the rest of the node is usable by ZONE_MOVABLE
3715 */
3716 kernelcore_remaining = kernelcore_node;
3717
3718 /* Go through each range of PFNs within this node */
3719 for_each_active_range_index_in_nid(i, nid) {
3720 unsigned long start_pfn, end_pfn;
3721 unsigned long size_pages;
3722
3723 start_pfn = max(early_node_map[i].start_pfn,
3724 zone_movable_pfn[nid]);
3725 end_pfn = early_node_map[i].end_pfn;
3726 if (start_pfn >= end_pfn)
3727 continue;
3728
3729 /* Account for what is only usable for kernelcore */
3730 if (start_pfn < usable_startpfn) {
3731 unsigned long kernel_pages;
3732 kernel_pages = min(end_pfn, usable_startpfn)
3733 - start_pfn;
3734
3735 kernelcore_remaining -= min(kernel_pages,
3736 kernelcore_remaining);
3737 required_kernelcore -= min(kernel_pages,
3738 required_kernelcore);
3739
3740 /* Continue if range is now fully accounted */
3741 if (end_pfn <= usable_startpfn) {
3742
3743 /*
3744 * Push zone_movable_pfn to the end so
3745 * that if we have to rebalance
3746 * kernelcore across nodes, we will
3747 * not double account here
3748 */
3749 zone_movable_pfn[nid] = end_pfn;
3750 continue;
3751 }
3752 start_pfn = usable_startpfn;
3753 }
3754
3755 /*
3756 * The usable PFN range for ZONE_MOVABLE is from
3757 * start_pfn->end_pfn. Calculate size_pages as the
3758 * number of pages used as kernelcore
3759 */
3760 size_pages = end_pfn - start_pfn;
3761 if (size_pages > kernelcore_remaining)
3762 size_pages = kernelcore_remaining;
3763 zone_movable_pfn[nid] = start_pfn + size_pages;
3764
3765 /*
3766 * Some kernelcore has been met, update counts and
3767 * break if the kernelcore for this node has been
3768 * satisified
3769 */
3770 required_kernelcore -= min(required_kernelcore,
3771 size_pages);
3772 kernelcore_remaining -= size_pages;
3773 if (!kernelcore_remaining)
3774 break;
3775 }
3776 }
3777
3778 /*
3779 * If there is still required_kernelcore, we do another pass with one
3780 * less node in the count. This will push zone_movable_pfn[nid] further
3781 * along on the nodes that still have memory until kernelcore is
3782 * satisified
3783 */
3784 usable_nodes--;
3785 if (usable_nodes && required_kernelcore > usable_nodes)
3786 goto restart;
3787
3788 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3789 for (nid = 0; nid < MAX_NUMNODES; nid++)
3790 zone_movable_pfn[nid] =
3791 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3792}
3793
37b07e41
LS
3794/* Any regular memory on that node ? */
3795static void check_for_regular_memory(pg_data_t *pgdat)
3796{
3797#ifdef CONFIG_HIGHMEM
3798 enum zone_type zone_type;
3799
3800 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3801 struct zone *zone = &pgdat->node_zones[zone_type];
3802 if (zone->present_pages)
3803 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3804 }
3805#endif
3806}
3807
c713216d
MG
3808/**
3809 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3810 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3811 *
3812 * This will call free_area_init_node() for each active node in the system.
3813 * Using the page ranges provided by add_active_range(), the size of each
3814 * zone in each node and their holes is calculated. If the maximum PFN
3815 * between two adjacent zones match, it is assumed that the zone is empty.
3816 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3817 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3818 * starts where the previous one ended. For example, ZONE_DMA32 starts
3819 * at arch_max_dma_pfn.
3820 */
3821void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3822{
3823 unsigned long nid;
3824 enum zone_type i;
3825
a6af2bc3
MG
3826 /* Sort early_node_map as initialisation assumes it is sorted */
3827 sort_node_map();
3828
c713216d
MG
3829 /* Record where the zone boundaries are */
3830 memset(arch_zone_lowest_possible_pfn, 0,
3831 sizeof(arch_zone_lowest_possible_pfn));
3832 memset(arch_zone_highest_possible_pfn, 0,
3833 sizeof(arch_zone_highest_possible_pfn));
3834 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3835 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3836 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3837 if (i == ZONE_MOVABLE)
3838 continue;
c713216d
MG
3839 arch_zone_lowest_possible_pfn[i] =
3840 arch_zone_highest_possible_pfn[i-1];
3841 arch_zone_highest_possible_pfn[i] =
3842 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3843 }
2a1e274a
MG
3844 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3845 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3846
3847 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3848 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3849 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3850
c713216d
MG
3851 /* Print out the zone ranges */
3852 printk("Zone PFN ranges:\n");
2a1e274a
MG
3853 for (i = 0; i < MAX_NR_ZONES; i++) {
3854 if (i == ZONE_MOVABLE)
3855 continue;
c713216d
MG
3856 printk(" %-8s %8lu -> %8lu\n",
3857 zone_names[i],
3858 arch_zone_lowest_possible_pfn[i],
3859 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3860 }
3861
3862 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3863 printk("Movable zone start PFN for each node\n");
3864 for (i = 0; i < MAX_NUMNODES; i++) {
3865 if (zone_movable_pfn[i])
3866 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3867 }
c713216d
MG
3868
3869 /* Print out the early_node_map[] */
3870 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3871 for (i = 0; i < nr_nodemap_entries; i++)
3872 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3873 early_node_map[i].start_pfn,
3874 early_node_map[i].end_pfn);
3875
3876 /* Initialise every node */
8ef82866 3877 setup_nr_node_ids();
c713216d
MG
3878 for_each_online_node(nid) {
3879 pg_data_t *pgdat = NODE_DATA(nid);
3880 free_area_init_node(nid, pgdat, NULL,
3881 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3882
3883 /* Any memory on that node */
3884 if (pgdat->node_present_pages)
3885 node_set_state(nid, N_HIGH_MEMORY);
3886 check_for_regular_memory(pgdat);
c713216d
MG
3887 }
3888}
2a1e274a 3889
7e63efef 3890static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3891{
3892 unsigned long long coremem;
3893 if (!p)
3894 return -EINVAL;
3895
3896 coremem = memparse(p, &p);
7e63efef 3897 *core = coremem >> PAGE_SHIFT;
2a1e274a 3898
7e63efef 3899 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3900 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3901
3902 return 0;
3903}
ed7ed365 3904
7e63efef
MG
3905/*
3906 * kernelcore=size sets the amount of memory for use for allocations that
3907 * cannot be reclaimed or migrated.
3908 */
3909static int __init cmdline_parse_kernelcore(char *p)
3910{
3911 return cmdline_parse_core(p, &required_kernelcore);
3912}
3913
3914/*
3915 * movablecore=size sets the amount of memory for use for allocations that
3916 * can be reclaimed or migrated.
3917 */
3918static int __init cmdline_parse_movablecore(char *p)
3919{
3920 return cmdline_parse_core(p, &required_movablecore);
3921}
3922
ed7ed365 3923early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3924early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3925
c713216d
MG
3926#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3927
0e0b864e 3928/**
88ca3b94
RD
3929 * set_dma_reserve - set the specified number of pages reserved in the first zone
3930 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3931 *
3932 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3933 * In the DMA zone, a significant percentage may be consumed by kernel image
3934 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3935 * function may optionally be used to account for unfreeable pages in the
3936 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3937 * smaller per-cpu batchsize.
0e0b864e
MG
3938 */
3939void __init set_dma_reserve(unsigned long new_dma_reserve)
3940{
3941 dma_reserve = new_dma_reserve;
3942}
3943
93b7504e 3944#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3945static bootmem_data_t contig_bootmem_data;
3946struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3947
3948EXPORT_SYMBOL(contig_page_data);
93b7504e 3949#endif
1da177e4
LT
3950
3951void __init free_area_init(unsigned long *zones_size)
3952{
93b7504e 3953 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3954 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3955}
1da177e4 3956
1da177e4
LT
3957static int page_alloc_cpu_notify(struct notifier_block *self,
3958 unsigned long action, void *hcpu)
3959{
3960 int cpu = (unsigned long)hcpu;
1da177e4 3961
8bb78442 3962 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3963 local_irq_disable();
3964 __drain_pages(cpu);
f8891e5e 3965 vm_events_fold_cpu(cpu);
1da177e4 3966 local_irq_enable();
2244b95a 3967 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3968 }
3969 return NOTIFY_OK;
3970}
1da177e4
LT
3971
3972void __init page_alloc_init(void)
3973{
3974 hotcpu_notifier(page_alloc_cpu_notify, 0);
3975}
3976
cb45b0e9
HA
3977/*
3978 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3979 * or min_free_kbytes changes.
3980 */
3981static void calculate_totalreserve_pages(void)
3982{
3983 struct pglist_data *pgdat;
3984 unsigned long reserve_pages = 0;
2f6726e5 3985 enum zone_type i, j;
cb45b0e9
HA
3986
3987 for_each_online_pgdat(pgdat) {
3988 for (i = 0; i < MAX_NR_ZONES; i++) {
3989 struct zone *zone = pgdat->node_zones + i;
3990 unsigned long max = 0;
3991
3992 /* Find valid and maximum lowmem_reserve in the zone */
3993 for (j = i; j < MAX_NR_ZONES; j++) {
3994 if (zone->lowmem_reserve[j] > max)
3995 max = zone->lowmem_reserve[j];
3996 }
3997
3998 /* we treat pages_high as reserved pages. */
3999 max += zone->pages_high;
4000
4001 if (max > zone->present_pages)
4002 max = zone->present_pages;
4003 reserve_pages += max;
4004 }
4005 }
4006 totalreserve_pages = reserve_pages;
4007}
4008
1da177e4
LT
4009/*
4010 * setup_per_zone_lowmem_reserve - called whenever
4011 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4012 * has a correct pages reserved value, so an adequate number of
4013 * pages are left in the zone after a successful __alloc_pages().
4014 */
4015static void setup_per_zone_lowmem_reserve(void)
4016{
4017 struct pglist_data *pgdat;
2f6726e5 4018 enum zone_type j, idx;
1da177e4 4019
ec936fc5 4020 for_each_online_pgdat(pgdat) {
1da177e4
LT
4021 for (j = 0; j < MAX_NR_ZONES; j++) {
4022 struct zone *zone = pgdat->node_zones + j;
4023 unsigned long present_pages = zone->present_pages;
4024
4025 zone->lowmem_reserve[j] = 0;
4026
2f6726e5
CL
4027 idx = j;
4028 while (idx) {
1da177e4
LT
4029 struct zone *lower_zone;
4030
2f6726e5
CL
4031 idx--;
4032
1da177e4
LT
4033 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4034 sysctl_lowmem_reserve_ratio[idx] = 1;
4035
4036 lower_zone = pgdat->node_zones + idx;
4037 lower_zone->lowmem_reserve[j] = present_pages /
4038 sysctl_lowmem_reserve_ratio[idx];
4039 present_pages += lower_zone->present_pages;
4040 }
4041 }
4042 }
cb45b0e9
HA
4043
4044 /* update totalreserve_pages */
4045 calculate_totalreserve_pages();
1da177e4
LT
4046}
4047
88ca3b94
RD
4048/**
4049 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4050 *
4051 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4052 * with respect to min_free_kbytes.
1da177e4 4053 */
3947be19 4054void setup_per_zone_pages_min(void)
1da177e4
LT
4055{
4056 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4057 unsigned long lowmem_pages = 0;
4058 struct zone *zone;
4059 unsigned long flags;
4060
4061 /* Calculate total number of !ZONE_HIGHMEM pages */
4062 for_each_zone(zone) {
4063 if (!is_highmem(zone))
4064 lowmem_pages += zone->present_pages;
4065 }
4066
4067 for_each_zone(zone) {
ac924c60
AM
4068 u64 tmp;
4069
1da177e4 4070 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
4071 tmp = (u64)pages_min * zone->present_pages;
4072 do_div(tmp, lowmem_pages);
1da177e4
LT
4073 if (is_highmem(zone)) {
4074 /*
669ed175
NP
4075 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4076 * need highmem pages, so cap pages_min to a small
4077 * value here.
4078 *
4079 * The (pages_high-pages_low) and (pages_low-pages_min)
4080 * deltas controls asynch page reclaim, and so should
4081 * not be capped for highmem.
1da177e4
LT
4082 */
4083 int min_pages;
4084
4085 min_pages = zone->present_pages / 1024;
4086 if (min_pages < SWAP_CLUSTER_MAX)
4087 min_pages = SWAP_CLUSTER_MAX;
4088 if (min_pages > 128)
4089 min_pages = 128;
4090 zone->pages_min = min_pages;
4091 } else {
669ed175
NP
4092 /*
4093 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4094 * proportionate to the zone's size.
4095 */
669ed175 4096 zone->pages_min = tmp;
1da177e4
LT
4097 }
4098
ac924c60
AM
4099 zone->pages_low = zone->pages_min + (tmp >> 2);
4100 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4101 setup_zone_migrate_reserve(zone);
1da177e4
LT
4102 spin_unlock_irqrestore(&zone->lru_lock, flags);
4103 }
cb45b0e9
HA
4104
4105 /* update totalreserve_pages */
4106 calculate_totalreserve_pages();
1da177e4
LT
4107}
4108
4109/*
4110 * Initialise min_free_kbytes.
4111 *
4112 * For small machines we want it small (128k min). For large machines
4113 * we want it large (64MB max). But it is not linear, because network
4114 * bandwidth does not increase linearly with machine size. We use
4115 *
4116 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4117 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4118 *
4119 * which yields
4120 *
4121 * 16MB: 512k
4122 * 32MB: 724k
4123 * 64MB: 1024k
4124 * 128MB: 1448k
4125 * 256MB: 2048k
4126 * 512MB: 2896k
4127 * 1024MB: 4096k
4128 * 2048MB: 5792k
4129 * 4096MB: 8192k
4130 * 8192MB: 11584k
4131 * 16384MB: 16384k
4132 */
4133static int __init init_per_zone_pages_min(void)
4134{
4135 unsigned long lowmem_kbytes;
4136
4137 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4138
4139 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4140 if (min_free_kbytes < 128)
4141 min_free_kbytes = 128;
4142 if (min_free_kbytes > 65536)
4143 min_free_kbytes = 65536;
4144 setup_per_zone_pages_min();
4145 setup_per_zone_lowmem_reserve();
4146 return 0;
4147}
4148module_init(init_per_zone_pages_min)
4149
4150/*
4151 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4152 * that we can call two helper functions whenever min_free_kbytes
4153 * changes.
4154 */
4155int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4156 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4157{
4158 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4159 if (write)
4160 setup_per_zone_pages_min();
1da177e4
LT
4161 return 0;
4162}
4163
9614634f
CL
4164#ifdef CONFIG_NUMA
4165int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4166 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4167{
4168 struct zone *zone;
4169 int rc;
4170
4171 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4172 if (rc)
4173 return rc;
4174
4175 for_each_zone(zone)
8417bba4 4176 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4177 sysctl_min_unmapped_ratio) / 100;
4178 return 0;
4179}
0ff38490
CL
4180
4181int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4182 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4183{
4184 struct zone *zone;
4185 int rc;
4186
4187 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4188 if (rc)
4189 return rc;
4190
4191 for_each_zone(zone)
4192 zone->min_slab_pages = (zone->present_pages *
4193 sysctl_min_slab_ratio) / 100;
4194 return 0;
4195}
9614634f
CL
4196#endif
4197
1da177e4
LT
4198/*
4199 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4200 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4201 * whenever sysctl_lowmem_reserve_ratio changes.
4202 *
4203 * The reserve ratio obviously has absolutely no relation with the
4204 * pages_min watermarks. The lowmem reserve ratio can only make sense
4205 * if in function of the boot time zone sizes.
4206 */
4207int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4208 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4209{
4210 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4211 setup_per_zone_lowmem_reserve();
4212 return 0;
4213}
4214
8ad4b1fb
RS
4215/*
4216 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4217 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4218 * can have before it gets flushed back to buddy allocator.
4219 */
4220
4221int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4222 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4223{
4224 struct zone *zone;
4225 unsigned int cpu;
4226 int ret;
4227
4228 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4229 if (!write || (ret == -EINVAL))
4230 return ret;
4231 for_each_zone(zone) {
4232 for_each_online_cpu(cpu) {
4233 unsigned long high;
4234 high = zone->present_pages / percpu_pagelist_fraction;
4235 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4236 }
4237 }
4238 return 0;
4239}
4240
f034b5d4 4241int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4242
4243#ifdef CONFIG_NUMA
4244static int __init set_hashdist(char *str)
4245{
4246 if (!str)
4247 return 0;
4248 hashdist = simple_strtoul(str, &str, 0);
4249 return 1;
4250}
4251__setup("hashdist=", set_hashdist);
4252#endif
4253
4254/*
4255 * allocate a large system hash table from bootmem
4256 * - it is assumed that the hash table must contain an exact power-of-2
4257 * quantity of entries
4258 * - limit is the number of hash buckets, not the total allocation size
4259 */
4260void *__init alloc_large_system_hash(const char *tablename,
4261 unsigned long bucketsize,
4262 unsigned long numentries,
4263 int scale,
4264 int flags,
4265 unsigned int *_hash_shift,
4266 unsigned int *_hash_mask,
4267 unsigned long limit)
4268{
4269 unsigned long long max = limit;
4270 unsigned long log2qty, size;
4271 void *table = NULL;
4272
4273 /* allow the kernel cmdline to have a say */
4274 if (!numentries) {
4275 /* round applicable memory size up to nearest megabyte */
04903664 4276 numentries = nr_kernel_pages;
1da177e4
LT
4277 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4278 numentries >>= 20 - PAGE_SHIFT;
4279 numentries <<= 20 - PAGE_SHIFT;
4280
4281 /* limit to 1 bucket per 2^scale bytes of low memory */
4282 if (scale > PAGE_SHIFT)
4283 numentries >>= (scale - PAGE_SHIFT);
4284 else
4285 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4286
4287 /* Make sure we've got at least a 0-order allocation.. */
4288 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4289 numentries = PAGE_SIZE / bucketsize;
1da177e4 4290 }
6e692ed3 4291 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4292
4293 /* limit allocation size to 1/16 total memory by default */
4294 if (max == 0) {
4295 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4296 do_div(max, bucketsize);
4297 }
4298
4299 if (numentries > max)
4300 numentries = max;
4301
f0d1b0b3 4302 log2qty = ilog2(numentries);
1da177e4
LT
4303
4304 do {
4305 size = bucketsize << log2qty;
4306 if (flags & HASH_EARLY)
4307 table = alloc_bootmem(size);
4308 else if (hashdist)
4309 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4310 else {
4311 unsigned long order;
4312 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4313 ;
4314 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4315 /*
4316 * If bucketsize is not a power-of-two, we may free
4317 * some pages at the end of hash table.
4318 */
4319 if (table) {
4320 unsigned long alloc_end = (unsigned long)table +
4321 (PAGE_SIZE << order);
4322 unsigned long used = (unsigned long)table +
4323 PAGE_ALIGN(size);
4324 split_page(virt_to_page(table), order);
4325 while (used < alloc_end) {
4326 free_page(used);
4327 used += PAGE_SIZE;
4328 }
4329 }
1da177e4
LT
4330 }
4331 } while (!table && size > PAGE_SIZE && --log2qty);
4332
4333 if (!table)
4334 panic("Failed to allocate %s hash table\n", tablename);
4335
b49ad484 4336 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4337 tablename,
4338 (1U << log2qty),
f0d1b0b3 4339 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4340 size);
4341
4342 if (_hash_shift)
4343 *_hash_shift = log2qty;
4344 if (_hash_mask)
4345 *_hash_mask = (1 << log2qty) - 1;
4346
4347 return table;
4348}
a117e66e
KH
4349
4350#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4351struct page *pfn_to_page(unsigned long pfn)
4352{
67de6482 4353 return __pfn_to_page(pfn);
a117e66e
KH
4354}
4355unsigned long page_to_pfn(struct page *page)
4356{
67de6482 4357 return __page_to_pfn(page);
a117e66e 4358}
a117e66e
KH
4359EXPORT_SYMBOL(pfn_to_page);
4360EXPORT_SYMBOL(page_to_pfn);
4361#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4362
835c134e
MG
4363/* Return a pointer to the bitmap storing bits affecting a block of pages */
4364static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4365 unsigned long pfn)
4366{
4367#ifdef CONFIG_SPARSEMEM
4368 return __pfn_to_section(pfn)->pageblock_flags;
4369#else
4370 return zone->pageblock_flags;
4371#endif /* CONFIG_SPARSEMEM */
4372}
4373
4374static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4375{
4376#ifdef CONFIG_SPARSEMEM
4377 pfn &= (PAGES_PER_SECTION-1);
4378 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4379#else
4380 pfn = pfn - zone->zone_start_pfn;
4381 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4382#endif /* CONFIG_SPARSEMEM */
4383}
4384
4385/**
4386 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4387 * @page: The page within the block of interest
4388 * @start_bitidx: The first bit of interest to retrieve
4389 * @end_bitidx: The last bit of interest
4390 * returns pageblock_bits flags
4391 */
4392unsigned long get_pageblock_flags_group(struct page *page,
4393 int start_bitidx, int end_bitidx)
4394{
4395 struct zone *zone;
4396 unsigned long *bitmap;
4397 unsigned long pfn, bitidx;
4398 unsigned long flags = 0;
4399 unsigned long value = 1;
4400
4401 zone = page_zone(page);
4402 pfn = page_to_pfn(page);
4403 bitmap = get_pageblock_bitmap(zone, pfn);
4404 bitidx = pfn_to_bitidx(zone, pfn);
4405
4406 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4407 if (test_bit(bitidx + start_bitidx, bitmap))
4408 flags |= value;
6220ec78 4409
835c134e
MG
4410 return flags;
4411}
4412
4413/**
4414 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4415 * @page: The page within the block of interest
4416 * @start_bitidx: The first bit of interest
4417 * @end_bitidx: The last bit of interest
4418 * @flags: The flags to set
4419 */
4420void set_pageblock_flags_group(struct page *page, unsigned long flags,
4421 int start_bitidx, int end_bitidx)
4422{
4423 struct zone *zone;
4424 unsigned long *bitmap;
4425 unsigned long pfn, bitidx;
4426 unsigned long value = 1;
4427
4428 zone = page_zone(page);
4429 pfn = page_to_pfn(page);
4430 bitmap = get_pageblock_bitmap(zone, pfn);
4431 bitidx = pfn_to_bitidx(zone, pfn);
4432
4433 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4434 if (flags & value)
4435 __set_bit(bitidx + start_bitidx, bitmap);
4436 else
4437 __clear_bit(bitidx + start_bitidx, bitmap);
4438}