[PATCH] Hugepage consolidation
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/nodemask.h>
36#include <linux/vmalloc.h>
37
38#include <asm/tlbflush.h>
39#include "internal.h"
40
41/*
42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43 * initializer cleaner
44 */
45nodemask_t node_online_map = { { [0] = 1UL } };
7223a93a 46EXPORT_SYMBOL(node_online_map);
1da177e4 47nodemask_t node_possible_map = NODE_MASK_ALL;
7223a93a 48EXPORT_SYMBOL(node_possible_map);
1da177e4
LT
49struct pglist_data *pgdat_list;
50unsigned long totalram_pages;
51unsigned long totalhigh_pages;
52long nr_swap_pages;
53
54/*
55 * results with 256, 32 in the lowmem_reserve sysctl:
56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57 * 1G machine -> (16M dma, 784M normal, 224M high)
58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61 */
62int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63
64EXPORT_SYMBOL(totalram_pages);
65EXPORT_SYMBOL(nr_swap_pages);
66
67/*
68 * Used by page_zone() to look up the address of the struct zone whose
69 * id is encoded in the upper bits of page->flags
70 */
71struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)];
72EXPORT_SYMBOL(zone_table);
73
74static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75int min_free_kbytes = 1024;
76
77unsigned long __initdata nr_kernel_pages;
78unsigned long __initdata nr_all_pages;
79
80/*
81 * Temporary debugging check for pages not lying within a given zone.
82 */
83static int bad_range(struct zone *zone, struct page *page)
84{
85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 return 1;
87 if (page_to_pfn(page) < zone->zone_start_pfn)
88 return 1;
89#ifdef CONFIG_HOLES_IN_ZONE
90 if (!pfn_valid(page_to_pfn(page)))
91 return 1;
92#endif
93 if (zone != page_zone(page))
94 return 1;
95 return 0;
96}
97
98static void bad_page(const char *function, struct page *page)
99{
100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 function, current->comm, page);
102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 page->mapping, page_mapcount(page), page_count(page));
105 printk(KERN_EMERG "Backtrace:\n");
106 dump_stack();
107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 page->flags &= ~(1 << PG_private |
109 1 << PG_locked |
110 1 << PG_lru |
111 1 << PG_active |
112 1 << PG_dirty |
113 1 << PG_swapcache |
114 1 << PG_writeback);
115 set_page_count(page, 0);
116 reset_page_mapcount(page);
117 page->mapping = NULL;
118 tainted |= TAINT_BAD_PAGE;
119}
120
121#ifndef CONFIG_HUGETLB_PAGE
122#define prep_compound_page(page, order) do { } while (0)
123#define destroy_compound_page(page, order) do { } while (0)
124#else
125/*
126 * Higher-order pages are called "compound pages". They are structured thusly:
127 *
128 * The first PAGE_SIZE page is called the "head page".
129 *
130 * The remaining PAGE_SIZE pages are called "tail pages".
131 *
132 * All pages have PG_compound set. All pages have their ->private pointing at
133 * the head page (even the head page has this).
134 *
135 * The first tail page's ->mapping, if non-zero, holds the address of the
136 * compound page's put_page() function.
137 *
138 * The order of the allocation is stored in the first tail page's ->index
139 * This is only for debug at present. This usage means that zero-order pages
140 * may not be compound.
141 */
142static void prep_compound_page(struct page *page, unsigned long order)
143{
144 int i;
145 int nr_pages = 1 << order;
146
147 page[1].mapping = NULL;
148 page[1].index = order;
149 for (i = 0; i < nr_pages; i++) {
150 struct page *p = page + i;
151
152 SetPageCompound(p);
153 p->private = (unsigned long)page;
154 }
155}
156
157static void destroy_compound_page(struct page *page, unsigned long order)
158{
159 int i;
160 int nr_pages = 1 << order;
161
162 if (!PageCompound(page))
163 return;
164
165 if (page[1].index != order)
166 bad_page(__FUNCTION__, page);
167
168 for (i = 0; i < nr_pages; i++) {
169 struct page *p = page + i;
170
171 if (!PageCompound(p))
172 bad_page(__FUNCTION__, page);
173 if (p->private != (unsigned long)page)
174 bad_page(__FUNCTION__, page);
175 ClearPageCompound(p);
176 }
177}
178#endif /* CONFIG_HUGETLB_PAGE */
179
180/*
181 * function for dealing with page's order in buddy system.
182 * zone->lock is already acquired when we use these.
183 * So, we don't need atomic page->flags operations here.
184 */
185static inline unsigned long page_order(struct page *page) {
186 return page->private;
187}
188
189static inline void set_page_order(struct page *page, int order) {
190 page->private = order;
191 __SetPagePrivate(page);
192}
193
194static inline void rmv_page_order(struct page *page)
195{
196 __ClearPagePrivate(page);
197 page->private = 0;
198}
199
200/*
201 * Locate the struct page for both the matching buddy in our
202 * pair (buddy1) and the combined O(n+1) page they form (page).
203 *
204 * 1) Any buddy B1 will have an order O twin B2 which satisfies
205 * the following equation:
206 * B2 = B1 ^ (1 << O)
207 * For example, if the starting buddy (buddy2) is #8 its order
208 * 1 buddy is #10:
209 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
210 *
211 * 2) Any buddy B will have an order O+1 parent P which
212 * satisfies the following equation:
213 * P = B & ~(1 << O)
214 *
215 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
216 */
217static inline struct page *
218__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
219{
220 unsigned long buddy_idx = page_idx ^ (1 << order);
221
222 return page + (buddy_idx - page_idx);
223}
224
225static inline unsigned long
226__find_combined_index(unsigned long page_idx, unsigned int order)
227{
228 return (page_idx & ~(1 << order));
229}
230
231/*
232 * This function checks whether a page is free && is the buddy
233 * we can do coalesce a page and its buddy if
234 * (a) the buddy is free &&
235 * (b) the buddy is on the buddy system &&
236 * (c) a page and its buddy have the same order.
237 * for recording page's order, we use page->private and PG_private.
238 *
239 */
240static inline int page_is_buddy(struct page *page, int order)
241{
242 if (PagePrivate(page) &&
243 (page_order(page) == order) &&
244 !PageReserved(page) &&
245 page_count(page) == 0)
246 return 1;
247 return 0;
248}
249
250/*
251 * Freeing function for a buddy system allocator.
252 *
253 * The concept of a buddy system is to maintain direct-mapped table
254 * (containing bit values) for memory blocks of various "orders".
255 * The bottom level table contains the map for the smallest allocatable
256 * units of memory (here, pages), and each level above it describes
257 * pairs of units from the levels below, hence, "buddies".
258 * At a high level, all that happens here is marking the table entry
259 * at the bottom level available, and propagating the changes upward
260 * as necessary, plus some accounting needed to play nicely with other
261 * parts of the VM system.
262 * At each level, we keep a list of pages, which are heads of continuous
263 * free pages of length of (1 << order) and marked with PG_Private.Page's
264 * order is recorded in page->private field.
265 * So when we are allocating or freeing one, we can derive the state of the
266 * other. That is, if we allocate a small block, and both were
267 * free, the remainder of the region must be split into blocks.
268 * If a block is freed, and its buddy is also free, then this
269 * triggers coalescing into a block of larger size.
270 *
271 * -- wli
272 */
273
274static inline void __free_pages_bulk (struct page *page,
275 struct zone *zone, unsigned int order)
276{
277 unsigned long page_idx;
278 int order_size = 1 << order;
279
280 if (unlikely(order))
281 destroy_compound_page(page, order);
282
283 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
284
285 BUG_ON(page_idx & (order_size - 1));
286 BUG_ON(bad_range(zone, page));
287
288 zone->free_pages += order_size;
289 while (order < MAX_ORDER-1) {
290 unsigned long combined_idx;
291 struct free_area *area;
292 struct page *buddy;
293
294 combined_idx = __find_combined_index(page_idx, order);
295 buddy = __page_find_buddy(page, page_idx, order);
296
297 if (bad_range(zone, buddy))
298 break;
299 if (!page_is_buddy(buddy, order))
300 break; /* Move the buddy up one level. */
301 list_del(&buddy->lru);
302 area = zone->free_area + order;
303 area->nr_free--;
304 rmv_page_order(buddy);
305 page = page + (combined_idx - page_idx);
306 page_idx = combined_idx;
307 order++;
308 }
309 set_page_order(page, order);
310 list_add(&page->lru, &zone->free_area[order].free_list);
311 zone->free_area[order].nr_free++;
312}
313
314static inline void free_pages_check(const char *function, struct page *page)
315{
316 if ( page_mapcount(page) ||
317 page->mapping != NULL ||
318 page_count(page) != 0 ||
319 (page->flags & (
320 1 << PG_lru |
321 1 << PG_private |
322 1 << PG_locked |
323 1 << PG_active |
324 1 << PG_reclaim |
325 1 << PG_slab |
326 1 << PG_swapcache |
327 1 << PG_writeback )))
328 bad_page(function, page);
329 if (PageDirty(page))
330 ClearPageDirty(page);
331}
332
333/*
334 * Frees a list of pages.
335 * Assumes all pages on list are in same zone, and of same order.
336 * count is the number of pages to free, or 0 for all on the list.
337 *
338 * If the zone was previously in an "all pages pinned" state then look to
339 * see if this freeing clears that state.
340 *
341 * And clear the zone's pages_scanned counter, to hold off the "all pages are
342 * pinned" detection logic.
343 */
344static int
345free_pages_bulk(struct zone *zone, int count,
346 struct list_head *list, unsigned int order)
347{
348 unsigned long flags;
349 struct page *page = NULL;
350 int ret = 0;
351
352 spin_lock_irqsave(&zone->lock, flags);
353 zone->all_unreclaimable = 0;
354 zone->pages_scanned = 0;
355 while (!list_empty(list) && count--) {
356 page = list_entry(list->prev, struct page, lru);
357 /* have to delete it as __free_pages_bulk list manipulates */
358 list_del(&page->lru);
359 __free_pages_bulk(page, zone, order);
360 ret++;
361 }
362 spin_unlock_irqrestore(&zone->lock, flags);
363 return ret;
364}
365
366void __free_pages_ok(struct page *page, unsigned int order)
367{
368 LIST_HEAD(list);
369 int i;
370
371 arch_free_page(page, order);
372
373 mod_page_state(pgfree, 1 << order);
374
375#ifndef CONFIG_MMU
376 if (order > 0)
377 for (i = 1 ; i < (1 << order) ; ++i)
378 __put_page(page + i);
379#endif
380
381 for (i = 0 ; i < (1 << order) ; ++i)
382 free_pages_check(__FUNCTION__, page + i);
383 list_add(&page->lru, &list);
384 kernel_map_pages(page, 1<<order, 0);
385 free_pages_bulk(page_zone(page), 1, &list, order);
386}
387
388
389/*
390 * The order of subdivision here is critical for the IO subsystem.
391 * Please do not alter this order without good reasons and regression
392 * testing. Specifically, as large blocks of memory are subdivided,
393 * the order in which smaller blocks are delivered depends on the order
394 * they're subdivided in this function. This is the primary factor
395 * influencing the order in which pages are delivered to the IO
396 * subsystem according to empirical testing, and this is also justified
397 * by considering the behavior of a buddy system containing a single
398 * large block of memory acted on by a series of small allocations.
399 * This behavior is a critical factor in sglist merging's success.
400 *
401 * -- wli
402 */
403static inline struct page *
404expand(struct zone *zone, struct page *page,
405 int low, int high, struct free_area *area)
406{
407 unsigned long size = 1 << high;
408
409 while (high > low) {
410 area--;
411 high--;
412 size >>= 1;
413 BUG_ON(bad_range(zone, &page[size]));
414 list_add(&page[size].lru, &area->free_list);
415 area->nr_free++;
416 set_page_order(&page[size], high);
417 }
418 return page;
419}
420
421void set_page_refs(struct page *page, int order)
422{
423#ifdef CONFIG_MMU
424 set_page_count(page, 1);
425#else
426 int i;
427
428 /*
429 * We need to reference all the pages for this order, otherwise if
430 * anyone accesses one of the pages with (get/put) it will be freed.
431 * - eg: access_process_vm()
432 */
433 for (i = 0; i < (1 << order); i++)
434 set_page_count(page + i, 1);
435#endif /* CONFIG_MMU */
436}
437
438/*
439 * This page is about to be returned from the page allocator
440 */
441static void prep_new_page(struct page *page, int order)
442{
443 if (page->mapping || page_mapcount(page) ||
444 (page->flags & (
445 1 << PG_private |
446 1 << PG_locked |
447 1 << PG_lru |
448 1 << PG_active |
449 1 << PG_dirty |
450 1 << PG_reclaim |
451 1 << PG_swapcache |
452 1 << PG_writeback )))
453 bad_page(__FUNCTION__, page);
454
455 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
456 1 << PG_referenced | 1 << PG_arch_1 |
457 1 << PG_checked | 1 << PG_mappedtodisk);
458 page->private = 0;
459 set_page_refs(page, order);
460 kernel_map_pages(page, 1 << order, 1);
461}
462
463/*
464 * Do the hard work of removing an element from the buddy allocator.
465 * Call me with the zone->lock already held.
466 */
467static struct page *__rmqueue(struct zone *zone, unsigned int order)
468{
469 struct free_area * area;
470 unsigned int current_order;
471 struct page *page;
472
473 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
474 area = zone->free_area + current_order;
475 if (list_empty(&area->free_list))
476 continue;
477
478 page = list_entry(area->free_list.next, struct page, lru);
479 list_del(&page->lru);
480 rmv_page_order(page);
481 area->nr_free--;
482 zone->free_pages -= 1UL << order;
483 return expand(zone, page, order, current_order, area);
484 }
485
486 return NULL;
487}
488
489/*
490 * Obtain a specified number of elements from the buddy allocator, all under
491 * a single hold of the lock, for efficiency. Add them to the supplied list.
492 * Returns the number of new pages which were placed at *list.
493 */
494static int rmqueue_bulk(struct zone *zone, unsigned int order,
495 unsigned long count, struct list_head *list)
496{
497 unsigned long flags;
498 int i;
499 int allocated = 0;
500 struct page *page;
501
502 spin_lock_irqsave(&zone->lock, flags);
503 for (i = 0; i < count; ++i) {
504 page = __rmqueue(zone, order);
505 if (page == NULL)
506 break;
507 allocated++;
508 list_add_tail(&page->lru, list);
509 }
510 spin_unlock_irqrestore(&zone->lock, flags);
511 return allocated;
512}
513
514#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
515static void __drain_pages(unsigned int cpu)
516{
517 struct zone *zone;
518 int i;
519
520 for_each_zone(zone) {
521 struct per_cpu_pageset *pset;
522
523 pset = &zone->pageset[cpu];
524 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
525 struct per_cpu_pages *pcp;
526
527 pcp = &pset->pcp[i];
528 pcp->count -= free_pages_bulk(zone, pcp->count,
529 &pcp->list, 0);
530 }
531 }
532}
533#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
534
535#ifdef CONFIG_PM
536
537void mark_free_pages(struct zone *zone)
538{
539 unsigned long zone_pfn, flags;
540 int order;
541 struct list_head *curr;
542
543 if (!zone->spanned_pages)
544 return;
545
546 spin_lock_irqsave(&zone->lock, flags);
547 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
548 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
549
550 for (order = MAX_ORDER - 1; order >= 0; --order)
551 list_for_each(curr, &zone->free_area[order].free_list) {
552 unsigned long start_pfn, i;
553
554 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
555
556 for (i=0; i < (1<<order); i++)
557 SetPageNosaveFree(pfn_to_page(start_pfn+i));
558 }
559 spin_unlock_irqrestore(&zone->lock, flags);
560}
561
562/*
563 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
564 */
565void drain_local_pages(void)
566{
567 unsigned long flags;
568
569 local_irq_save(flags);
570 __drain_pages(smp_processor_id());
571 local_irq_restore(flags);
572}
573#endif /* CONFIG_PM */
574
575static void zone_statistics(struct zonelist *zonelist, struct zone *z)
576{
577#ifdef CONFIG_NUMA
578 unsigned long flags;
579 int cpu;
580 pg_data_t *pg = z->zone_pgdat;
581 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
582 struct per_cpu_pageset *p;
583
584 local_irq_save(flags);
585 cpu = smp_processor_id();
586 p = &z->pageset[cpu];
587 if (pg == orig) {
588 z->pageset[cpu].numa_hit++;
589 } else {
590 p->numa_miss++;
591 zonelist->zones[0]->pageset[cpu].numa_foreign++;
592 }
593 if (pg == NODE_DATA(numa_node_id()))
594 p->local_node++;
595 else
596 p->other_node++;
597 local_irq_restore(flags);
598#endif
599}
600
601/*
602 * Free a 0-order page
603 */
604static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
605static void fastcall free_hot_cold_page(struct page *page, int cold)
606{
607 struct zone *zone = page_zone(page);
608 struct per_cpu_pages *pcp;
609 unsigned long flags;
610
611 arch_free_page(page, 0);
612
613 kernel_map_pages(page, 1, 0);
614 inc_page_state(pgfree);
615 if (PageAnon(page))
616 page->mapping = NULL;
617 free_pages_check(__FUNCTION__, page);
618 pcp = &zone->pageset[get_cpu()].pcp[cold];
619 local_irq_save(flags);
620 if (pcp->count >= pcp->high)
621 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
622 list_add(&page->lru, &pcp->list);
623 pcp->count++;
624 local_irq_restore(flags);
625 put_cpu();
626}
627
628void fastcall free_hot_page(struct page *page)
629{
630 free_hot_cold_page(page, 0);
631}
632
633void fastcall free_cold_page(struct page *page)
634{
635 free_hot_cold_page(page, 1);
636}
637
638static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
639{
640 int i;
641
642 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
643 for(i = 0; i < (1 << order); i++)
644 clear_highpage(page + i);
645}
646
647/*
648 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
649 * we cheat by calling it from here, in the order > 0 path. Saves a branch
650 * or two.
651 */
652static struct page *
653buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
654{
655 unsigned long flags;
656 struct page *page = NULL;
657 int cold = !!(gfp_flags & __GFP_COLD);
658
659 if (order == 0) {
660 struct per_cpu_pages *pcp;
661
662 pcp = &zone->pageset[get_cpu()].pcp[cold];
663 local_irq_save(flags);
664 if (pcp->count <= pcp->low)
665 pcp->count += rmqueue_bulk(zone, 0,
666 pcp->batch, &pcp->list);
667 if (pcp->count) {
668 page = list_entry(pcp->list.next, struct page, lru);
669 list_del(&page->lru);
670 pcp->count--;
671 }
672 local_irq_restore(flags);
673 put_cpu();
674 }
675
676 if (page == NULL) {
677 spin_lock_irqsave(&zone->lock, flags);
678 page = __rmqueue(zone, order);
679 spin_unlock_irqrestore(&zone->lock, flags);
680 }
681
682 if (page != NULL) {
683 BUG_ON(bad_range(zone, page));
684 mod_page_state_zone(zone, pgalloc, 1 << order);
685 prep_new_page(page, order);
686
687 if (gfp_flags & __GFP_ZERO)
688 prep_zero_page(page, order, gfp_flags);
689
690 if (order && (gfp_flags & __GFP_COMP))
691 prep_compound_page(page, order);
692 }
693 return page;
694}
695
696/*
697 * Return 1 if free pages are above 'mark'. This takes into account the order
698 * of the allocation.
699 */
700int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
701 int classzone_idx, int can_try_harder, int gfp_high)
702{
703 /* free_pages my go negative - that's OK */
704 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
705 int o;
706
707 if (gfp_high)
708 min -= min / 2;
709 if (can_try_harder)
710 min -= min / 4;
711
712 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
713 return 0;
714 for (o = 0; o < order; o++) {
715 /* At the next order, this order's pages become unavailable */
716 free_pages -= z->free_area[o].nr_free << o;
717
718 /* Require fewer higher order pages to be free */
719 min >>= 1;
720
721 if (free_pages <= min)
722 return 0;
723 }
724 return 1;
725}
726
753ee728
MH
727static inline int
728should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
729{
730 if (!z->reclaim_pages)
731 return 0;
0c35bbad
MH
732 if (gfp_mask & __GFP_NORECLAIM)
733 return 0;
753ee728
MH
734 return 1;
735}
736
1da177e4
LT
737/*
738 * This is the 'heart' of the zoned buddy allocator.
739 */
740struct page * fastcall
741__alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
742 struct zonelist *zonelist)
743{
744 const int wait = gfp_mask & __GFP_WAIT;
745 struct zone **zones, *z;
746 struct page *page;
747 struct reclaim_state reclaim_state;
748 struct task_struct *p = current;
749 int i;
750 int classzone_idx;
751 int do_retry;
752 int can_try_harder;
753 int did_some_progress;
754
755 might_sleep_if(wait);
756
757 /*
758 * The caller may dip into page reserves a bit more if the caller
759 * cannot run direct reclaim, or is the caller has realtime scheduling
760 * policy
761 */
762 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
763
764 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
765
766 if (unlikely(zones[0] == NULL)) {
767 /* Should this ever happen?? */
768 return NULL;
769 }
770
771 classzone_idx = zone_idx(zones[0]);
772
753ee728 773restart:
1da177e4
LT
774 /* Go through the zonelist once, looking for a zone with enough free */
775 for (i = 0; (z = zones[i]) != NULL; i++) {
753ee728 776 int do_reclaim = should_reclaim_zone(z, gfp_mask);
1da177e4
LT
777
778 if (!cpuset_zone_allowed(z))
779 continue;
780
753ee728
MH
781 /*
782 * If the zone is to attempt early page reclaim then this loop
783 * will try to reclaim pages and check the watermark a second
784 * time before giving up and falling back to the next zone.
785 */
786zone_reclaim_retry:
787 if (!zone_watermark_ok(z, order, z->pages_low,
788 classzone_idx, 0, 0)) {
789 if (!do_reclaim)
790 continue;
791 else {
792 zone_reclaim(z, gfp_mask, order);
793 /* Only try reclaim once */
794 do_reclaim = 0;
795 goto zone_reclaim_retry;
796 }
797 }
798
1da177e4
LT
799 page = buffered_rmqueue(z, order, gfp_mask);
800 if (page)
801 goto got_pg;
802 }
803
804 for (i = 0; (z = zones[i]) != NULL; i++)
805 wakeup_kswapd(z, order);
806
807 /*
808 * Go through the zonelist again. Let __GFP_HIGH and allocations
809 * coming from realtime tasks to go deeper into reserves
810 *
811 * This is the last chance, in general, before the goto nopage.
812 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
813 */
814 for (i = 0; (z = zones[i]) != NULL; i++) {
815 if (!zone_watermark_ok(z, order, z->pages_min,
816 classzone_idx, can_try_harder,
817 gfp_mask & __GFP_HIGH))
818 continue;
819
820 if (wait && !cpuset_zone_allowed(z))
821 continue;
822
823 page = buffered_rmqueue(z, order, gfp_mask);
824 if (page)
825 goto got_pg;
826 }
827
828 /* This allocation should allow future memory freeing. */
b84a35be
NP
829
830 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
831 && !in_interrupt()) {
832 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
833 /* go through the zonelist yet again, ignoring mins */
834 for (i = 0; (z = zones[i]) != NULL; i++) {
835 if (!cpuset_zone_allowed(z))
836 continue;
837 page = buffered_rmqueue(z, order, gfp_mask);
838 if (page)
839 goto got_pg;
840 }
1da177e4
LT
841 }
842 goto nopage;
843 }
844
845 /* Atomic allocations - we can't balance anything */
846 if (!wait)
847 goto nopage;
848
849rebalance:
850 cond_resched();
851
852 /* We now go into synchronous reclaim */
853 p->flags |= PF_MEMALLOC;
854 reclaim_state.reclaimed_slab = 0;
855 p->reclaim_state = &reclaim_state;
856
857 did_some_progress = try_to_free_pages(zones, gfp_mask, order);
858
859 p->reclaim_state = NULL;
860 p->flags &= ~PF_MEMALLOC;
861
862 cond_resched();
863
864 if (likely(did_some_progress)) {
865 /*
866 * Go through the zonelist yet one more time, keep
867 * very high watermark here, this is only to catch
868 * a parallel oom killing, we must fail if we're still
869 * under heavy pressure.
870 */
871 for (i = 0; (z = zones[i]) != NULL; i++) {
872 if (!zone_watermark_ok(z, order, z->pages_min,
873 classzone_idx, can_try_harder,
874 gfp_mask & __GFP_HIGH))
875 continue;
876
877 if (!cpuset_zone_allowed(z))
878 continue;
879
880 page = buffered_rmqueue(z, order, gfp_mask);
881 if (page)
882 goto got_pg;
883 }
884 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
885 /*
886 * Go through the zonelist yet one more time, keep
887 * very high watermark here, this is only to catch
888 * a parallel oom killing, we must fail if we're still
889 * under heavy pressure.
890 */
891 for (i = 0; (z = zones[i]) != NULL; i++) {
892 if (!zone_watermark_ok(z, order, z->pages_high,
893 classzone_idx, 0, 0))
894 continue;
895
896 if (!cpuset_zone_allowed(z))
897 continue;
898
899 page = buffered_rmqueue(z, order, gfp_mask);
900 if (page)
901 goto got_pg;
902 }
903
904 out_of_memory(gfp_mask);
905 goto restart;
906 }
907
908 /*
909 * Don't let big-order allocations loop unless the caller explicitly
910 * requests that. Wait for some write requests to complete then retry.
911 *
912 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
913 * <= 3, but that may not be true in other implementations.
914 */
915 do_retry = 0;
916 if (!(gfp_mask & __GFP_NORETRY)) {
917 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
918 do_retry = 1;
919 if (gfp_mask & __GFP_NOFAIL)
920 do_retry = 1;
921 }
922 if (do_retry) {
923 blk_congestion_wait(WRITE, HZ/50);
924 goto rebalance;
925 }
926
927nopage:
928 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
929 printk(KERN_WARNING "%s: page allocation failure."
930 " order:%d, mode:0x%x\n",
931 p->comm, order, gfp_mask);
932 dump_stack();
933 }
934 return NULL;
935got_pg:
936 zone_statistics(zonelist, z);
937 return page;
938}
939
940EXPORT_SYMBOL(__alloc_pages);
941
942/*
943 * Common helper functions.
944 */
945fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
946{
947 struct page * page;
948 page = alloc_pages(gfp_mask, order);
949 if (!page)
950 return 0;
951 return (unsigned long) page_address(page);
952}
953
954EXPORT_SYMBOL(__get_free_pages);
955
956fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
957{
958 struct page * page;
959
960 /*
961 * get_zeroed_page() returns a 32-bit address, which cannot represent
962 * a highmem page
963 */
964 BUG_ON(gfp_mask & __GFP_HIGHMEM);
965
966 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
967 if (page)
968 return (unsigned long) page_address(page);
969 return 0;
970}
971
972EXPORT_SYMBOL(get_zeroed_page);
973
974void __pagevec_free(struct pagevec *pvec)
975{
976 int i = pagevec_count(pvec);
977
978 while (--i >= 0)
979 free_hot_cold_page(pvec->pages[i], pvec->cold);
980}
981
982fastcall void __free_pages(struct page *page, unsigned int order)
983{
984 if (!PageReserved(page) && put_page_testzero(page)) {
985 if (order == 0)
986 free_hot_page(page);
987 else
988 __free_pages_ok(page, order);
989 }
990}
991
992EXPORT_SYMBOL(__free_pages);
993
994fastcall void free_pages(unsigned long addr, unsigned int order)
995{
996 if (addr != 0) {
997 BUG_ON(!virt_addr_valid((void *)addr));
998 __free_pages(virt_to_page((void *)addr), order);
999 }
1000}
1001
1002EXPORT_SYMBOL(free_pages);
1003
1004/*
1005 * Total amount of free (allocatable) RAM:
1006 */
1007unsigned int nr_free_pages(void)
1008{
1009 unsigned int sum = 0;
1010 struct zone *zone;
1011
1012 for_each_zone(zone)
1013 sum += zone->free_pages;
1014
1015 return sum;
1016}
1017
1018EXPORT_SYMBOL(nr_free_pages);
1019
1020#ifdef CONFIG_NUMA
1021unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1022{
1023 unsigned int i, sum = 0;
1024
1025 for (i = 0; i < MAX_NR_ZONES; i++)
1026 sum += pgdat->node_zones[i].free_pages;
1027
1028 return sum;
1029}
1030#endif
1031
1032static unsigned int nr_free_zone_pages(int offset)
1033{
1034 pg_data_t *pgdat;
1035 unsigned int sum = 0;
1036
1037 for_each_pgdat(pgdat) {
1038 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1039 struct zone **zonep = zonelist->zones;
1040 struct zone *zone;
1041
1042 for (zone = *zonep++; zone; zone = *zonep++) {
1043 unsigned long size = zone->present_pages;
1044 unsigned long high = zone->pages_high;
1045 if (size > high)
1046 sum += size - high;
1047 }
1048 }
1049
1050 return sum;
1051}
1052
1053/*
1054 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1055 */
1056unsigned int nr_free_buffer_pages(void)
1057{
1058 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1059}
1060
1061/*
1062 * Amount of free RAM allocatable within all zones
1063 */
1064unsigned int nr_free_pagecache_pages(void)
1065{
1066 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1067}
1068
1069#ifdef CONFIG_HIGHMEM
1070unsigned int nr_free_highpages (void)
1071{
1072 pg_data_t *pgdat;
1073 unsigned int pages = 0;
1074
1075 for_each_pgdat(pgdat)
1076 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1077
1078 return pages;
1079}
1080#endif
1081
1082#ifdef CONFIG_NUMA
1083static void show_node(struct zone *zone)
1084{
1085 printk("Node %d ", zone->zone_pgdat->node_id);
1086}
1087#else
1088#define show_node(zone) do { } while (0)
1089#endif
1090
1091/*
1092 * Accumulate the page_state information across all CPUs.
1093 * The result is unavoidably approximate - it can change
1094 * during and after execution of this function.
1095 */
1096static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1097
1098atomic_t nr_pagecache = ATOMIC_INIT(0);
1099EXPORT_SYMBOL(nr_pagecache);
1100#ifdef CONFIG_SMP
1101DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1102#endif
1103
1104void __get_page_state(struct page_state *ret, int nr)
1105{
1106 int cpu = 0;
1107
1108 memset(ret, 0, sizeof(*ret));
1109
1110 cpu = first_cpu(cpu_online_map);
1111 while (cpu < NR_CPUS) {
1112 unsigned long *in, *out, off;
1113
1114 in = (unsigned long *)&per_cpu(page_states, cpu);
1115
1116 cpu = next_cpu(cpu, cpu_online_map);
1117
1118 if (cpu < NR_CPUS)
1119 prefetch(&per_cpu(page_states, cpu));
1120
1121 out = (unsigned long *)ret;
1122 for (off = 0; off < nr; off++)
1123 *out++ += *in++;
1124 }
1125}
1126
1127void get_page_state(struct page_state *ret)
1128{
1129 int nr;
1130
1131 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1132 nr /= sizeof(unsigned long);
1133
1134 __get_page_state(ret, nr + 1);
1135}
1136
1137void get_full_page_state(struct page_state *ret)
1138{
1139 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long));
1140}
1141
1142unsigned long __read_page_state(unsigned offset)
1143{
1144 unsigned long ret = 0;
1145 int cpu;
1146
1147 for_each_online_cpu(cpu) {
1148 unsigned long in;
1149
1150 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1151 ret += *((unsigned long *)in);
1152 }
1153 return ret;
1154}
1155
1156void __mod_page_state(unsigned offset, unsigned long delta)
1157{
1158 unsigned long flags;
1159 void* ptr;
1160
1161 local_irq_save(flags);
1162 ptr = &__get_cpu_var(page_states);
1163 *(unsigned long*)(ptr + offset) += delta;
1164 local_irq_restore(flags);
1165}
1166
1167EXPORT_SYMBOL(__mod_page_state);
1168
1169void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1170 unsigned long *free, struct pglist_data *pgdat)
1171{
1172 struct zone *zones = pgdat->node_zones;
1173 int i;
1174
1175 *active = 0;
1176 *inactive = 0;
1177 *free = 0;
1178 for (i = 0; i < MAX_NR_ZONES; i++) {
1179 *active += zones[i].nr_active;
1180 *inactive += zones[i].nr_inactive;
1181 *free += zones[i].free_pages;
1182 }
1183}
1184
1185void get_zone_counts(unsigned long *active,
1186 unsigned long *inactive, unsigned long *free)
1187{
1188 struct pglist_data *pgdat;
1189
1190 *active = 0;
1191 *inactive = 0;
1192 *free = 0;
1193 for_each_pgdat(pgdat) {
1194 unsigned long l, m, n;
1195 __get_zone_counts(&l, &m, &n, pgdat);
1196 *active += l;
1197 *inactive += m;
1198 *free += n;
1199 }
1200}
1201
1202void si_meminfo(struct sysinfo *val)
1203{
1204 val->totalram = totalram_pages;
1205 val->sharedram = 0;
1206 val->freeram = nr_free_pages();
1207 val->bufferram = nr_blockdev_pages();
1208#ifdef CONFIG_HIGHMEM
1209 val->totalhigh = totalhigh_pages;
1210 val->freehigh = nr_free_highpages();
1211#else
1212 val->totalhigh = 0;
1213 val->freehigh = 0;
1214#endif
1215 val->mem_unit = PAGE_SIZE;
1216}
1217
1218EXPORT_SYMBOL(si_meminfo);
1219
1220#ifdef CONFIG_NUMA
1221void si_meminfo_node(struct sysinfo *val, int nid)
1222{
1223 pg_data_t *pgdat = NODE_DATA(nid);
1224
1225 val->totalram = pgdat->node_present_pages;
1226 val->freeram = nr_free_pages_pgdat(pgdat);
1227 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1228 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1229 val->mem_unit = PAGE_SIZE;
1230}
1231#endif
1232
1233#define K(x) ((x) << (PAGE_SHIFT-10))
1234
1235/*
1236 * Show free area list (used inside shift_scroll-lock stuff)
1237 * We also calculate the percentage fragmentation. We do this by counting the
1238 * memory on each free list with the exception of the first item on the list.
1239 */
1240void show_free_areas(void)
1241{
1242 struct page_state ps;
1243 int cpu, temperature;
1244 unsigned long active;
1245 unsigned long inactive;
1246 unsigned long free;
1247 struct zone *zone;
1248
1249 for_each_zone(zone) {
1250 show_node(zone);
1251 printk("%s per-cpu:", zone->name);
1252
1253 if (!zone->present_pages) {
1254 printk(" empty\n");
1255 continue;
1256 } else
1257 printk("\n");
1258
1259 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1260 struct per_cpu_pageset *pageset;
1261
1262 if (!cpu_possible(cpu))
1263 continue;
1264
1265 pageset = zone->pageset + cpu;
1266
1267 for (temperature = 0; temperature < 2; temperature++)
1268 printk("cpu %d %s: low %d, high %d, batch %d\n",
1269 cpu,
1270 temperature ? "cold" : "hot",
1271 pageset->pcp[temperature].low,
1272 pageset->pcp[temperature].high,
1273 pageset->pcp[temperature].batch);
1274 }
1275 }
1276
1277 get_page_state(&ps);
1278 get_zone_counts(&active, &inactive, &free);
1279
1280 printk("\nFree pages: %11ukB (%ukB HighMem)\n",
1281 K(nr_free_pages()),
1282 K(nr_free_highpages()));
1283
1284 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1285 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1286 active,
1287 inactive,
1288 ps.nr_dirty,
1289 ps.nr_writeback,
1290 ps.nr_unstable,
1291 nr_free_pages(),
1292 ps.nr_slab,
1293 ps.nr_mapped,
1294 ps.nr_page_table_pages);
1295
1296 for_each_zone(zone) {
1297 int i;
1298
1299 show_node(zone);
1300 printk("%s"
1301 " free:%lukB"
1302 " min:%lukB"
1303 " low:%lukB"
1304 " high:%lukB"
1305 " active:%lukB"
1306 " inactive:%lukB"
1307 " present:%lukB"
1308 " pages_scanned:%lu"
1309 " all_unreclaimable? %s"
1310 "\n",
1311 zone->name,
1312 K(zone->free_pages),
1313 K(zone->pages_min),
1314 K(zone->pages_low),
1315 K(zone->pages_high),
1316 K(zone->nr_active),
1317 K(zone->nr_inactive),
1318 K(zone->present_pages),
1319 zone->pages_scanned,
1320 (zone->all_unreclaimable ? "yes" : "no")
1321 );
1322 printk("lowmem_reserve[]:");
1323 for (i = 0; i < MAX_NR_ZONES; i++)
1324 printk(" %lu", zone->lowmem_reserve[i]);
1325 printk("\n");
1326 }
1327
1328 for_each_zone(zone) {
1329 unsigned long nr, flags, order, total = 0;
1330
1331 show_node(zone);
1332 printk("%s: ", zone->name);
1333 if (!zone->present_pages) {
1334 printk("empty\n");
1335 continue;
1336 }
1337
1338 spin_lock_irqsave(&zone->lock, flags);
1339 for (order = 0; order < MAX_ORDER; order++) {
1340 nr = zone->free_area[order].nr_free;
1341 total += nr << order;
1342 printk("%lu*%lukB ", nr, K(1UL) << order);
1343 }
1344 spin_unlock_irqrestore(&zone->lock, flags);
1345 printk("= %lukB\n", K(total));
1346 }
1347
1348 show_swap_cache_info();
1349}
1350
1351/*
1352 * Builds allocation fallback zone lists.
1353 */
1354static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1355{
1356 switch (k) {
1357 struct zone *zone;
1358 default:
1359 BUG();
1360 case ZONE_HIGHMEM:
1361 zone = pgdat->node_zones + ZONE_HIGHMEM;
1362 if (zone->present_pages) {
1363#ifndef CONFIG_HIGHMEM
1364 BUG();
1365#endif
1366 zonelist->zones[j++] = zone;
1367 }
1368 case ZONE_NORMAL:
1369 zone = pgdat->node_zones + ZONE_NORMAL;
1370 if (zone->present_pages)
1371 zonelist->zones[j++] = zone;
1372 case ZONE_DMA:
1373 zone = pgdat->node_zones + ZONE_DMA;
1374 if (zone->present_pages)
1375 zonelist->zones[j++] = zone;
1376 }
1377
1378 return j;
1379}
1380
1381#ifdef CONFIG_NUMA
1382#define MAX_NODE_LOAD (num_online_nodes())
1383static int __initdata node_load[MAX_NUMNODES];
1384/**
4dc3b16b 1385 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1386 * @node: node whose fallback list we're appending
1387 * @used_node_mask: nodemask_t of already used nodes
1388 *
1389 * We use a number of factors to determine which is the next node that should
1390 * appear on a given node's fallback list. The node should not have appeared
1391 * already in @node's fallback list, and it should be the next closest node
1392 * according to the distance array (which contains arbitrary distance values
1393 * from each node to each node in the system), and should also prefer nodes
1394 * with no CPUs, since presumably they'll have very little allocation pressure
1395 * on them otherwise.
1396 * It returns -1 if no node is found.
1397 */
1398static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1399{
1400 int i, n, val;
1401 int min_val = INT_MAX;
1402 int best_node = -1;
1403
1404 for_each_online_node(i) {
1405 cpumask_t tmp;
1406
1407 /* Start from local node */
1408 n = (node+i) % num_online_nodes();
1409
1410 /* Don't want a node to appear more than once */
1411 if (node_isset(n, *used_node_mask))
1412 continue;
1413
1414 /* Use the local node if we haven't already */
1415 if (!node_isset(node, *used_node_mask)) {
1416 best_node = node;
1417 break;
1418 }
1419
1420 /* Use the distance array to find the distance */
1421 val = node_distance(node, n);
1422
1423 /* Give preference to headless and unused nodes */
1424 tmp = node_to_cpumask(n);
1425 if (!cpus_empty(tmp))
1426 val += PENALTY_FOR_NODE_WITH_CPUS;
1427
1428 /* Slight preference for less loaded node */
1429 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1430 val += node_load[n];
1431
1432 if (val < min_val) {
1433 min_val = val;
1434 best_node = n;
1435 }
1436 }
1437
1438 if (best_node >= 0)
1439 node_set(best_node, *used_node_mask);
1440
1441 return best_node;
1442}
1443
1444static void __init build_zonelists(pg_data_t *pgdat)
1445{
1446 int i, j, k, node, local_node;
1447 int prev_node, load;
1448 struct zonelist *zonelist;
1449 nodemask_t used_mask;
1450
1451 /* initialize zonelists */
1452 for (i = 0; i < GFP_ZONETYPES; i++) {
1453 zonelist = pgdat->node_zonelists + i;
1454 zonelist->zones[0] = NULL;
1455 }
1456
1457 /* NUMA-aware ordering of nodes */
1458 local_node = pgdat->node_id;
1459 load = num_online_nodes();
1460 prev_node = local_node;
1461 nodes_clear(used_mask);
1462 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1463 /*
1464 * We don't want to pressure a particular node.
1465 * So adding penalty to the first node in same
1466 * distance group to make it round-robin.
1467 */
1468 if (node_distance(local_node, node) !=
1469 node_distance(local_node, prev_node))
1470 node_load[node] += load;
1471 prev_node = node;
1472 load--;
1473 for (i = 0; i < GFP_ZONETYPES; i++) {
1474 zonelist = pgdat->node_zonelists + i;
1475 for (j = 0; zonelist->zones[j] != NULL; j++);
1476
1477 k = ZONE_NORMAL;
1478 if (i & __GFP_HIGHMEM)
1479 k = ZONE_HIGHMEM;
1480 if (i & __GFP_DMA)
1481 k = ZONE_DMA;
1482
1483 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1484 zonelist->zones[j] = NULL;
1485 }
1486 }
1487}
1488
1489#else /* CONFIG_NUMA */
1490
1491static void __init build_zonelists(pg_data_t *pgdat)
1492{
1493 int i, j, k, node, local_node;
1494
1495 local_node = pgdat->node_id;
1496 for (i = 0; i < GFP_ZONETYPES; i++) {
1497 struct zonelist *zonelist;
1498
1499 zonelist = pgdat->node_zonelists + i;
1500
1501 j = 0;
1502 k = ZONE_NORMAL;
1503 if (i & __GFP_HIGHMEM)
1504 k = ZONE_HIGHMEM;
1505 if (i & __GFP_DMA)
1506 k = ZONE_DMA;
1507
1508 j = build_zonelists_node(pgdat, zonelist, j, k);
1509 /*
1510 * Now we build the zonelist so that it contains the zones
1511 * of all the other nodes.
1512 * We don't want to pressure a particular node, so when
1513 * building the zones for node N, we make sure that the
1514 * zones coming right after the local ones are those from
1515 * node N+1 (modulo N)
1516 */
1517 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1518 if (!node_online(node))
1519 continue;
1520 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1521 }
1522 for (node = 0; node < local_node; node++) {
1523 if (!node_online(node))
1524 continue;
1525 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1526 }
1527
1528 zonelist->zones[j] = NULL;
1529 }
1530}
1531
1532#endif /* CONFIG_NUMA */
1533
1534void __init build_all_zonelists(void)
1535{
1536 int i;
1537
1538 for_each_online_node(i)
1539 build_zonelists(NODE_DATA(i));
1540 printk("Built %i zonelists\n", num_online_nodes());
1541 cpuset_init_current_mems_allowed();
1542}
1543
1544/*
1545 * Helper functions to size the waitqueue hash table.
1546 * Essentially these want to choose hash table sizes sufficiently
1547 * large so that collisions trying to wait on pages are rare.
1548 * But in fact, the number of active page waitqueues on typical
1549 * systems is ridiculously low, less than 200. So this is even
1550 * conservative, even though it seems large.
1551 *
1552 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1553 * waitqueues, i.e. the size of the waitq table given the number of pages.
1554 */
1555#define PAGES_PER_WAITQUEUE 256
1556
1557static inline unsigned long wait_table_size(unsigned long pages)
1558{
1559 unsigned long size = 1;
1560
1561 pages /= PAGES_PER_WAITQUEUE;
1562
1563 while (size < pages)
1564 size <<= 1;
1565
1566 /*
1567 * Once we have dozens or even hundreds of threads sleeping
1568 * on IO we've got bigger problems than wait queue collision.
1569 * Limit the size of the wait table to a reasonable size.
1570 */
1571 size = min(size, 4096UL);
1572
1573 return max(size, 4UL);
1574}
1575
1576/*
1577 * This is an integer logarithm so that shifts can be used later
1578 * to extract the more random high bits from the multiplicative
1579 * hash function before the remainder is taken.
1580 */
1581static inline unsigned long wait_table_bits(unsigned long size)
1582{
1583 return ffz(~size);
1584}
1585
1586#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1587
1588static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1589 unsigned long *zones_size, unsigned long *zholes_size)
1590{
1591 unsigned long realtotalpages, totalpages = 0;
1592 int i;
1593
1594 for (i = 0; i < MAX_NR_ZONES; i++)
1595 totalpages += zones_size[i];
1596 pgdat->node_spanned_pages = totalpages;
1597
1598 realtotalpages = totalpages;
1599 if (zholes_size)
1600 for (i = 0; i < MAX_NR_ZONES; i++)
1601 realtotalpages -= zholes_size[i];
1602 pgdat->node_present_pages = realtotalpages;
1603 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1604}
1605
1606
1607/*
1608 * Initially all pages are reserved - free ones are freed
1609 * up by free_all_bootmem() once the early boot process is
1610 * done. Non-atomic initialization, single-pass.
1611 */
1612void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1613 unsigned long start_pfn)
1614{
1615 struct page *start = pfn_to_page(start_pfn);
1616 struct page *page;
1617
1618 for (page = start; page < (start + size); page++) {
1619 set_page_zone(page, NODEZONE(nid, zone));
1620 set_page_count(page, 0);
1621 reset_page_mapcount(page);
1622 SetPageReserved(page);
1623 INIT_LIST_HEAD(&page->lru);
1624#ifdef WANT_PAGE_VIRTUAL
1625 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1626 if (!is_highmem_idx(zone))
1627 set_page_address(page, __va(start_pfn << PAGE_SHIFT));
1628#endif
1629 start_pfn++;
1630 }
1631}
1632
1633void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1634 unsigned long size)
1635{
1636 int order;
1637 for (order = 0; order < MAX_ORDER ; order++) {
1638 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1639 zone->free_area[order].nr_free = 0;
1640 }
1641}
1642
1643#ifndef __HAVE_ARCH_MEMMAP_INIT
1644#define memmap_init(size, nid, zone, start_pfn) \
1645 memmap_init_zone((size), (nid), (zone), (start_pfn))
1646#endif
1647
1648/*
1649 * Set up the zone data structures:
1650 * - mark all pages reserved
1651 * - mark all memory queues empty
1652 * - clear the memory bitmaps
1653 */
1654static void __init free_area_init_core(struct pglist_data *pgdat,
1655 unsigned long *zones_size, unsigned long *zholes_size)
1656{
1657 unsigned long i, j;
1658 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
1659 int cpu, nid = pgdat->node_id;
1660 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1661
1662 pgdat->nr_zones = 0;
1663 init_waitqueue_head(&pgdat->kswapd_wait);
1664 pgdat->kswapd_max_order = 0;
1665
1666 for (j = 0; j < MAX_NR_ZONES; j++) {
1667 struct zone *zone = pgdat->node_zones + j;
1668 unsigned long size, realsize;
1669 unsigned long batch;
1670
1671 zone_table[NODEZONE(nid, j)] = zone;
1672 realsize = size = zones_size[j];
1673 if (zholes_size)
1674 realsize -= zholes_size[j];
1675
1676 if (j == ZONE_DMA || j == ZONE_NORMAL)
1677 nr_kernel_pages += realsize;
1678 nr_all_pages += realsize;
1679
1680 zone->spanned_pages = size;
1681 zone->present_pages = realsize;
1682 zone->name = zone_names[j];
1683 spin_lock_init(&zone->lock);
1684 spin_lock_init(&zone->lru_lock);
1685 zone->zone_pgdat = pgdat;
1686 zone->free_pages = 0;
1687
1688 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1689
1690 /*
1691 * The per-cpu-pages pools are set to around 1000th of the
1692 * size of the zone. But no more than 1/4 of a meg - there's
1693 * no point in going beyond the size of L2 cache.
1694 *
1695 * OK, so we don't know how big the cache is. So guess.
1696 */
1697 batch = zone->present_pages / 1024;
1698 if (batch * PAGE_SIZE > 256 * 1024)
1699 batch = (256 * 1024) / PAGE_SIZE;
1700 batch /= 4; /* We effectively *= 4 below */
1701 if (batch < 1)
1702 batch = 1;
1703
8e30f272
NP
1704 /*
1705 * Clamp the batch to a 2^n - 1 value. Having a power
1706 * of 2 value was found to be more likely to have
1707 * suboptimal cache aliasing properties in some cases.
1708 *
1709 * For example if 2 tasks are alternately allocating
1710 * batches of pages, one task can end up with a lot
1711 * of pages of one half of the possible page colors
1712 * and the other with pages of the other colors.
1713 */
1714 batch = (1 << fls(batch + batch/2)) - 1;
1715
1da177e4
LT
1716 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1717 struct per_cpu_pages *pcp;
1718
1719 pcp = &zone->pageset[cpu].pcp[0]; /* hot */
1720 pcp->count = 0;
1721 pcp->low = 2 * batch;
1722 pcp->high = 6 * batch;
1723 pcp->batch = 1 * batch;
1724 INIT_LIST_HEAD(&pcp->list);
1725
1726 pcp = &zone->pageset[cpu].pcp[1]; /* cold */
1727 pcp->count = 0;
1728 pcp->low = 0;
1729 pcp->high = 2 * batch;
1730 pcp->batch = 1 * batch;
1731 INIT_LIST_HEAD(&pcp->list);
1732 }
1733 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1734 zone_names[j], realsize, batch);
1735 INIT_LIST_HEAD(&zone->active_list);
1736 INIT_LIST_HEAD(&zone->inactive_list);
1737 zone->nr_scan_active = 0;
1738 zone->nr_scan_inactive = 0;
1739 zone->nr_active = 0;
1740 zone->nr_inactive = 0;
1e7e5a90 1741 atomic_set(&zone->reclaim_in_progress, -1);
1da177e4
LT
1742 if (!size)
1743 continue;
1744
1745 /*
1746 * The per-page waitqueue mechanism uses hashed waitqueues
1747 * per zone.
1748 */
1749 zone->wait_table_size = wait_table_size(size);
1750 zone->wait_table_bits =
1751 wait_table_bits(zone->wait_table_size);
1752 zone->wait_table = (wait_queue_head_t *)
1753 alloc_bootmem_node(pgdat, zone->wait_table_size
1754 * sizeof(wait_queue_head_t));
1755
1756 for(i = 0; i < zone->wait_table_size; ++i)
1757 init_waitqueue_head(zone->wait_table + i);
1758
1759 pgdat->nr_zones = j+1;
1760
1761 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1762 zone->zone_start_pfn = zone_start_pfn;
1763
1764 if ((zone_start_pfn) & (zone_required_alignment-1))
1765 printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n");
1766
1767 memmap_init(size, nid, j, zone_start_pfn);
1768
1769 zone_start_pfn += size;
1770
1771 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1772 }
1773}
1774
1775static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1776{
1777 unsigned long size;
1778
1779 /* Skip empty nodes */
1780 if (!pgdat->node_spanned_pages)
1781 return;
1782
1783 /* ia64 gets its own node_mem_map, before this, without bootmem */
1784 if (!pgdat->node_mem_map) {
1785 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1786 pgdat->node_mem_map = alloc_bootmem_node(pgdat, size);
1787 }
1788#ifndef CONFIG_DISCONTIGMEM
1789 /*
1790 * With no DISCONTIG, the global mem_map is just set as node 0's
1791 */
1792 if (pgdat == NODE_DATA(0))
1793 mem_map = NODE_DATA(0)->node_mem_map;
1794#endif
1795}
1796
1797void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1798 unsigned long *zones_size, unsigned long node_start_pfn,
1799 unsigned long *zholes_size)
1800{
1801 pgdat->node_id = nid;
1802 pgdat->node_start_pfn = node_start_pfn;
1803 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1804
1805 alloc_node_mem_map(pgdat);
1806
1807 free_area_init_core(pgdat, zones_size, zholes_size);
1808}
1809
1810#ifndef CONFIG_DISCONTIGMEM
1811static bootmem_data_t contig_bootmem_data;
1812struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
1813
1814EXPORT_SYMBOL(contig_page_data);
1815
1816void __init free_area_init(unsigned long *zones_size)
1817{
1818 free_area_init_node(0, &contig_page_data, zones_size,
1819 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
1820}
1821#endif
1822
1823#ifdef CONFIG_PROC_FS
1824
1825#include <linux/seq_file.h>
1826
1827static void *frag_start(struct seq_file *m, loff_t *pos)
1828{
1829 pg_data_t *pgdat;
1830 loff_t node = *pos;
1831
1832 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
1833 --node;
1834
1835 return pgdat;
1836}
1837
1838static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1839{
1840 pg_data_t *pgdat = (pg_data_t *)arg;
1841
1842 (*pos)++;
1843 return pgdat->pgdat_next;
1844}
1845
1846static void frag_stop(struct seq_file *m, void *arg)
1847{
1848}
1849
1850/*
1851 * This walks the free areas for each zone.
1852 */
1853static int frag_show(struct seq_file *m, void *arg)
1854{
1855 pg_data_t *pgdat = (pg_data_t *)arg;
1856 struct zone *zone;
1857 struct zone *node_zones = pgdat->node_zones;
1858 unsigned long flags;
1859 int order;
1860
1861 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1862 if (!zone->present_pages)
1863 continue;
1864
1865 spin_lock_irqsave(&zone->lock, flags);
1866 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1867 for (order = 0; order < MAX_ORDER; ++order)
1868 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1869 spin_unlock_irqrestore(&zone->lock, flags);
1870 seq_putc(m, '\n');
1871 }
1872 return 0;
1873}
1874
1875struct seq_operations fragmentation_op = {
1876 .start = frag_start,
1877 .next = frag_next,
1878 .stop = frag_stop,
1879 .show = frag_show,
1880};
1881
295ab934
ND
1882/*
1883 * Output information about zones in @pgdat.
1884 */
1885static int zoneinfo_show(struct seq_file *m, void *arg)
1886{
1887 pg_data_t *pgdat = arg;
1888 struct zone *zone;
1889 struct zone *node_zones = pgdat->node_zones;
1890 unsigned long flags;
1891
1892 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
1893 int i;
1894
1895 if (!zone->present_pages)
1896 continue;
1897
1898 spin_lock_irqsave(&zone->lock, flags);
1899 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1900 seq_printf(m,
1901 "\n pages free %lu"
1902 "\n min %lu"
1903 "\n low %lu"
1904 "\n high %lu"
1905 "\n active %lu"
1906 "\n inactive %lu"
1907 "\n scanned %lu (a: %lu i: %lu)"
1908 "\n spanned %lu"
1909 "\n present %lu",
1910 zone->free_pages,
1911 zone->pages_min,
1912 zone->pages_low,
1913 zone->pages_high,
1914 zone->nr_active,
1915 zone->nr_inactive,
1916 zone->pages_scanned,
1917 zone->nr_scan_active, zone->nr_scan_inactive,
1918 zone->spanned_pages,
1919 zone->present_pages);
1920 seq_printf(m,
1921 "\n protection: (%lu",
1922 zone->lowmem_reserve[0]);
1923 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1924 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1925 seq_printf(m,
1926 ")"
1927 "\n pagesets");
1928 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
1929 struct per_cpu_pageset *pageset;
1930 int j;
1931
1932 pageset = &zone->pageset[i];
1933 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
1934 if (pageset->pcp[j].count)
1935 break;
1936 }
1937 if (j == ARRAY_SIZE(pageset->pcp))
1938 continue;
1939 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
1940 seq_printf(m,
1941 "\n cpu: %i pcp: %i"
1942 "\n count: %i"
1943 "\n low: %i"
1944 "\n high: %i"
1945 "\n batch: %i",
1946 i, j,
1947 pageset->pcp[j].count,
1948 pageset->pcp[j].low,
1949 pageset->pcp[j].high,
1950 pageset->pcp[j].batch);
1951 }
1952#ifdef CONFIG_NUMA
1953 seq_printf(m,
1954 "\n numa_hit: %lu"
1955 "\n numa_miss: %lu"
1956 "\n numa_foreign: %lu"
1957 "\n interleave_hit: %lu"
1958 "\n local_node: %lu"
1959 "\n other_node: %lu",
1960 pageset->numa_hit,
1961 pageset->numa_miss,
1962 pageset->numa_foreign,
1963 pageset->interleave_hit,
1964 pageset->local_node,
1965 pageset->other_node);
1966#endif
1967 }
1968 seq_printf(m,
1969 "\n all_unreclaimable: %u"
1970 "\n prev_priority: %i"
1971 "\n temp_priority: %i"
1972 "\n start_pfn: %lu",
1973 zone->all_unreclaimable,
1974 zone->prev_priority,
1975 zone->temp_priority,
1976 zone->zone_start_pfn);
1977 spin_unlock_irqrestore(&zone->lock, flags);
1978 seq_putc(m, '\n');
1979 }
1980 return 0;
1981}
1982
1983struct seq_operations zoneinfo_op = {
1984 .start = frag_start, /* iterate over all zones. The same as in
1985 * fragmentation. */
1986 .next = frag_next,
1987 .stop = frag_stop,
1988 .show = zoneinfo_show,
1989};
1990
1da177e4
LT
1991static char *vmstat_text[] = {
1992 "nr_dirty",
1993 "nr_writeback",
1994 "nr_unstable",
1995 "nr_page_table_pages",
1996 "nr_mapped",
1997 "nr_slab",
1998
1999 "pgpgin",
2000 "pgpgout",
2001 "pswpin",
2002 "pswpout",
2003 "pgalloc_high",
2004
2005 "pgalloc_normal",
2006 "pgalloc_dma",
2007 "pgfree",
2008 "pgactivate",
2009 "pgdeactivate",
2010
2011 "pgfault",
2012 "pgmajfault",
2013 "pgrefill_high",
2014 "pgrefill_normal",
2015 "pgrefill_dma",
2016
2017 "pgsteal_high",
2018 "pgsteal_normal",
2019 "pgsteal_dma",
2020 "pgscan_kswapd_high",
2021 "pgscan_kswapd_normal",
2022
2023 "pgscan_kswapd_dma",
2024 "pgscan_direct_high",
2025 "pgscan_direct_normal",
2026 "pgscan_direct_dma",
2027 "pginodesteal",
2028
2029 "slabs_scanned",
2030 "kswapd_steal",
2031 "kswapd_inodesteal",
2032 "pageoutrun",
2033 "allocstall",
2034
2035 "pgrotated",
edfbe2b0 2036 "nr_bounce",
1da177e4
LT
2037};
2038
2039static void *vmstat_start(struct seq_file *m, loff_t *pos)
2040{
2041 struct page_state *ps;
2042
2043 if (*pos >= ARRAY_SIZE(vmstat_text))
2044 return NULL;
2045
2046 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2047 m->private = ps;
2048 if (!ps)
2049 return ERR_PTR(-ENOMEM);
2050 get_full_page_state(ps);
2051 ps->pgpgin /= 2; /* sectors -> kbytes */
2052 ps->pgpgout /= 2;
2053 return (unsigned long *)ps + *pos;
2054}
2055
2056static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2057{
2058 (*pos)++;
2059 if (*pos >= ARRAY_SIZE(vmstat_text))
2060 return NULL;
2061 return (unsigned long *)m->private + *pos;
2062}
2063
2064static int vmstat_show(struct seq_file *m, void *arg)
2065{
2066 unsigned long *l = arg;
2067 unsigned long off = l - (unsigned long *)m->private;
2068
2069 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2070 return 0;
2071}
2072
2073static void vmstat_stop(struct seq_file *m, void *arg)
2074{
2075 kfree(m->private);
2076 m->private = NULL;
2077}
2078
2079struct seq_operations vmstat_op = {
2080 .start = vmstat_start,
2081 .next = vmstat_next,
2082 .stop = vmstat_stop,
2083 .show = vmstat_show,
2084};
2085
2086#endif /* CONFIG_PROC_FS */
2087
2088#ifdef CONFIG_HOTPLUG_CPU
2089static int page_alloc_cpu_notify(struct notifier_block *self,
2090 unsigned long action, void *hcpu)
2091{
2092 int cpu = (unsigned long)hcpu;
2093 long *count;
2094 unsigned long *src, *dest;
2095
2096 if (action == CPU_DEAD) {
2097 int i;
2098
2099 /* Drain local pagecache count. */
2100 count = &per_cpu(nr_pagecache_local, cpu);
2101 atomic_add(*count, &nr_pagecache);
2102 *count = 0;
2103 local_irq_disable();
2104 __drain_pages(cpu);
2105
2106 /* Add dead cpu's page_states to our own. */
2107 dest = (unsigned long *)&__get_cpu_var(page_states);
2108 src = (unsigned long *)&per_cpu(page_states, cpu);
2109
2110 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2111 i++) {
2112 dest[i] += src[i];
2113 src[i] = 0;
2114 }
2115
2116 local_irq_enable();
2117 }
2118 return NOTIFY_OK;
2119}
2120#endif /* CONFIG_HOTPLUG_CPU */
2121
2122void __init page_alloc_init(void)
2123{
2124 hotcpu_notifier(page_alloc_cpu_notify, 0);
2125}
2126
2127/*
2128 * setup_per_zone_lowmem_reserve - called whenever
2129 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2130 * has a correct pages reserved value, so an adequate number of
2131 * pages are left in the zone after a successful __alloc_pages().
2132 */
2133static void setup_per_zone_lowmem_reserve(void)
2134{
2135 struct pglist_data *pgdat;
2136 int j, idx;
2137
2138 for_each_pgdat(pgdat) {
2139 for (j = 0; j < MAX_NR_ZONES; j++) {
2140 struct zone *zone = pgdat->node_zones + j;
2141 unsigned long present_pages = zone->present_pages;
2142
2143 zone->lowmem_reserve[j] = 0;
2144
2145 for (idx = j-1; idx >= 0; idx--) {
2146 struct zone *lower_zone;
2147
2148 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2149 sysctl_lowmem_reserve_ratio[idx] = 1;
2150
2151 lower_zone = pgdat->node_zones + idx;
2152 lower_zone->lowmem_reserve[j] = present_pages /
2153 sysctl_lowmem_reserve_ratio[idx];
2154 present_pages += lower_zone->present_pages;
2155 }
2156 }
2157 }
2158}
2159
2160/*
2161 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2162 * that the pages_{min,low,high} values for each zone are set correctly
2163 * with respect to min_free_kbytes.
2164 */
2165static void setup_per_zone_pages_min(void)
2166{
2167 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2168 unsigned long lowmem_pages = 0;
2169 struct zone *zone;
2170 unsigned long flags;
2171
2172 /* Calculate total number of !ZONE_HIGHMEM pages */
2173 for_each_zone(zone) {
2174 if (!is_highmem(zone))
2175 lowmem_pages += zone->present_pages;
2176 }
2177
2178 for_each_zone(zone) {
2179 spin_lock_irqsave(&zone->lru_lock, flags);
2180 if (is_highmem(zone)) {
2181 /*
2182 * Often, highmem doesn't need to reserve any pages.
2183 * But the pages_min/low/high values are also used for
2184 * batching up page reclaim activity so we need a
2185 * decent value here.
2186 */
2187 int min_pages;
2188
2189 min_pages = zone->present_pages / 1024;
2190 if (min_pages < SWAP_CLUSTER_MAX)
2191 min_pages = SWAP_CLUSTER_MAX;
2192 if (min_pages > 128)
2193 min_pages = 128;
2194 zone->pages_min = min_pages;
2195 } else {
295ab934 2196 /* if it's a lowmem zone, reserve a number of pages
1da177e4
LT
2197 * proportionate to the zone's size.
2198 */
295ab934 2199 zone->pages_min = (pages_min * zone->present_pages) /
1da177e4
LT
2200 lowmem_pages;
2201 }
2202
2203 /*
2204 * When interpreting these watermarks, just keep in mind that:
2205 * zone->pages_min == (zone->pages_min * 4) / 4;
2206 */
2207 zone->pages_low = (zone->pages_min * 5) / 4;
2208 zone->pages_high = (zone->pages_min * 6) / 4;
2209 spin_unlock_irqrestore(&zone->lru_lock, flags);
2210 }
2211}
2212
2213/*
2214 * Initialise min_free_kbytes.
2215 *
2216 * For small machines we want it small (128k min). For large machines
2217 * we want it large (64MB max). But it is not linear, because network
2218 * bandwidth does not increase linearly with machine size. We use
2219 *
2220 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2221 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2222 *
2223 * which yields
2224 *
2225 * 16MB: 512k
2226 * 32MB: 724k
2227 * 64MB: 1024k
2228 * 128MB: 1448k
2229 * 256MB: 2048k
2230 * 512MB: 2896k
2231 * 1024MB: 4096k
2232 * 2048MB: 5792k
2233 * 4096MB: 8192k
2234 * 8192MB: 11584k
2235 * 16384MB: 16384k
2236 */
2237static int __init init_per_zone_pages_min(void)
2238{
2239 unsigned long lowmem_kbytes;
2240
2241 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2242
2243 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2244 if (min_free_kbytes < 128)
2245 min_free_kbytes = 128;
2246 if (min_free_kbytes > 65536)
2247 min_free_kbytes = 65536;
2248 setup_per_zone_pages_min();
2249 setup_per_zone_lowmem_reserve();
2250 return 0;
2251}
2252module_init(init_per_zone_pages_min)
2253
2254/*
2255 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2256 * that we can call two helper functions whenever min_free_kbytes
2257 * changes.
2258 */
2259int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2260 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2261{
2262 proc_dointvec(table, write, file, buffer, length, ppos);
2263 setup_per_zone_pages_min();
2264 return 0;
2265}
2266
2267/*
2268 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2269 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2270 * whenever sysctl_lowmem_reserve_ratio changes.
2271 *
2272 * The reserve ratio obviously has absolutely no relation with the
2273 * pages_min watermarks. The lowmem reserve ratio can only make sense
2274 * if in function of the boot time zone sizes.
2275 */
2276int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2277 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2278{
2279 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2280 setup_per_zone_lowmem_reserve();
2281 return 0;
2282}
2283
2284__initdata int hashdist = HASHDIST_DEFAULT;
2285
2286#ifdef CONFIG_NUMA
2287static int __init set_hashdist(char *str)
2288{
2289 if (!str)
2290 return 0;
2291 hashdist = simple_strtoul(str, &str, 0);
2292 return 1;
2293}
2294__setup("hashdist=", set_hashdist);
2295#endif
2296
2297/*
2298 * allocate a large system hash table from bootmem
2299 * - it is assumed that the hash table must contain an exact power-of-2
2300 * quantity of entries
2301 * - limit is the number of hash buckets, not the total allocation size
2302 */
2303void *__init alloc_large_system_hash(const char *tablename,
2304 unsigned long bucketsize,
2305 unsigned long numentries,
2306 int scale,
2307 int flags,
2308 unsigned int *_hash_shift,
2309 unsigned int *_hash_mask,
2310 unsigned long limit)
2311{
2312 unsigned long long max = limit;
2313 unsigned long log2qty, size;
2314 void *table = NULL;
2315
2316 /* allow the kernel cmdline to have a say */
2317 if (!numentries) {
2318 /* round applicable memory size up to nearest megabyte */
2319 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2320 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2321 numentries >>= 20 - PAGE_SHIFT;
2322 numentries <<= 20 - PAGE_SHIFT;
2323
2324 /* limit to 1 bucket per 2^scale bytes of low memory */
2325 if (scale > PAGE_SHIFT)
2326 numentries >>= (scale - PAGE_SHIFT);
2327 else
2328 numentries <<= (PAGE_SHIFT - scale);
2329 }
2330 /* rounded up to nearest power of 2 in size */
2331 numentries = 1UL << (long_log2(numentries) + 1);
2332
2333 /* limit allocation size to 1/16 total memory by default */
2334 if (max == 0) {
2335 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2336 do_div(max, bucketsize);
2337 }
2338
2339 if (numentries > max)
2340 numentries = max;
2341
2342 log2qty = long_log2(numentries);
2343
2344 do {
2345 size = bucketsize << log2qty;
2346 if (flags & HASH_EARLY)
2347 table = alloc_bootmem(size);
2348 else if (hashdist)
2349 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2350 else {
2351 unsigned long order;
2352 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2353 ;
2354 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2355 }
2356 } while (!table && size > PAGE_SIZE && --log2qty);
2357
2358 if (!table)
2359 panic("Failed to allocate %s hash table\n", tablename);
2360
2361 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2362 tablename,
2363 (1U << log2qty),
2364 long_log2(size) - PAGE_SHIFT,
2365 size);
2366
2367 if (_hash_shift)
2368 *_hash_shift = log2qty;
2369 if (_hash_mask)
2370 *_hash_mask = (1 << log2qty) - 1;
2371
2372 return table;
2373}