mm: use two zonelist that are filtered by GFP mask
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
8a9f3ccd 47#include <linux/memcontrol.h>
1da177e4
LT
48
49#include <asm/tlbflush.h>
ac924c60 50#include <asm/div64.h>
1da177e4
LT
51#include "internal.h"
52
53/*
13808910 54 * Array of node states.
1da177e4 55 */
13808910
CL
56nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
57 [N_POSSIBLE] = NODE_MASK_ALL,
58 [N_ONLINE] = { { [0] = 1UL } },
59#ifndef CONFIG_NUMA
60 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
61#ifdef CONFIG_HIGHMEM
62 [N_HIGH_MEMORY] = { { [0] = 1UL } },
63#endif
64 [N_CPU] = { { [0] = 1UL } },
65#endif /* NUMA */
66};
67EXPORT_SYMBOL(node_states);
68
6c231b7b 69unsigned long totalram_pages __read_mostly;
cb45b0e9 70unsigned long totalreserve_pages __read_mostly;
1da177e4 71long nr_swap_pages;
8ad4b1fb 72int percpu_pagelist_fraction;
1da177e4 73
d9c23400
MG
74#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75int pageblock_order __read_mostly;
76#endif
77
d98c7a09 78static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 79
1da177e4
LT
80/*
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
87 *
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
1da177e4 90 */
2f1b6248 91int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 92#ifdef CONFIG_ZONE_DMA
2f1b6248 93 256,
4b51d669 94#endif
fb0e7942 95#ifdef CONFIG_ZONE_DMA32
2f1b6248 96 256,
fb0e7942 97#endif
e53ef38d 98#ifdef CONFIG_HIGHMEM
2a1e274a 99 32,
e53ef38d 100#endif
2a1e274a 101 32,
2f1b6248 102};
1da177e4
LT
103
104EXPORT_SYMBOL(totalram_pages);
1da177e4 105
15ad7cdc 106static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 107#ifdef CONFIG_ZONE_DMA
2f1b6248 108 "DMA",
4b51d669 109#endif
fb0e7942 110#ifdef CONFIG_ZONE_DMA32
2f1b6248 111 "DMA32",
fb0e7942 112#endif
2f1b6248 113 "Normal",
e53ef38d 114#ifdef CONFIG_HIGHMEM
2a1e274a 115 "HighMem",
e53ef38d 116#endif
2a1e274a 117 "Movable",
2f1b6248
CL
118};
119
1da177e4
LT
120int min_free_kbytes = 1024;
121
86356ab1
YG
122unsigned long __meminitdata nr_kernel_pages;
123unsigned long __meminitdata nr_all_pages;
a3142c8e 124static unsigned long __meminitdata dma_reserve;
1da177e4 125
c713216d
MG
126#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
127 /*
183ff22b 128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
133 */
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137 #else
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141 #else
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
144 #endif
145 #endif
146
98011f56
JB
147 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148 static int __meminitdata nr_nodemap_entries;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 151#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
152 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 154#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 155 unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
e228929b 157 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
166EXPORT_SYMBOL(nr_node_ids);
167#endif
168
9ef9acb0
MG
169int page_group_by_mobility_disabled __read_mostly;
170
b2a0ac88
MG
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
173 set_pageblock_flags_group(page, (unsigned long)migratetype,
174 PB_migrate, PB_migrate_end);
175}
176
13e7444b 177#ifdef CONFIG_DEBUG_VM
c6a57e19 178static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 179{
bdc8cb98
DH
180 int ret = 0;
181 unsigned seq;
182 unsigned long pfn = page_to_pfn(page);
c6a57e19 183
bdc8cb98
DH
184 do {
185 seq = zone_span_seqbegin(zone);
186 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187 ret = 1;
188 else if (pfn < zone->zone_start_pfn)
189 ret = 1;
190 } while (zone_span_seqretry(zone, seq));
191
192 return ret;
c6a57e19
DH
193}
194
195static int page_is_consistent(struct zone *zone, struct page *page)
196{
14e07298 197 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 198 return 0;
1da177e4 199 if (zone != page_zone(page))
c6a57e19
DH
200 return 0;
201
202 return 1;
203}
204/*
205 * Temporary debugging check for pages not lying within a given zone.
206 */
207static int bad_range(struct zone *zone, struct page *page)
208{
209 if (page_outside_zone_boundaries(zone, page))
1da177e4 210 return 1;
c6a57e19
DH
211 if (!page_is_consistent(zone, page))
212 return 1;
213
1da177e4
LT
214 return 0;
215}
13e7444b
NP
216#else
217static inline int bad_range(struct zone *zone, struct page *page)
218{
219 return 0;
220}
221#endif
222
224abf92 223static void bad_page(struct page *page)
1da177e4 224{
9442ec9d
HD
225 void *pc = page_get_page_cgroup(page);
226
227 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
228 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
224abf92
NP
229 current->comm, page, (int)(2*sizeof(unsigned long)),
230 (unsigned long)page->flags, page->mapping,
231 page_mapcount(page), page_count(page));
9442ec9d
HD
232 if (pc) {
233 printk(KERN_EMERG "cgroup:%p\n", pc);
234 page_reset_bad_cgroup(page);
235 }
236 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
237 KERN_EMERG "Backtrace:\n");
1da177e4 238 dump_stack();
334795ec
HD
239 page->flags &= ~(1 << PG_lru |
240 1 << PG_private |
1da177e4 241 1 << PG_locked |
1da177e4
LT
242 1 << PG_active |
243 1 << PG_dirty |
334795ec
HD
244 1 << PG_reclaim |
245 1 << PG_slab |
1da177e4 246 1 << PG_swapcache |
676165a8
NP
247 1 << PG_writeback |
248 1 << PG_buddy );
1da177e4
LT
249 set_page_count(page, 0);
250 reset_page_mapcount(page);
251 page->mapping = NULL;
9f158333 252 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
253}
254
1da177e4
LT
255/*
256 * Higher-order pages are called "compound pages". They are structured thusly:
257 *
258 * The first PAGE_SIZE page is called the "head page".
259 *
260 * The remaining PAGE_SIZE pages are called "tail pages".
261 *
262 * All pages have PG_compound set. All pages have their ->private pointing at
263 * the head page (even the head page has this).
264 *
41d78ba5
HD
265 * The first tail page's ->lru.next holds the address of the compound page's
266 * put_page() function. Its ->lru.prev holds the order of allocation.
267 * This usage means that zero-order pages may not be compound.
1da177e4 268 */
d98c7a09
HD
269
270static void free_compound_page(struct page *page)
271{
d85f3385 272 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
273}
274
1da177e4
LT
275static void prep_compound_page(struct page *page, unsigned long order)
276{
277 int i;
278 int nr_pages = 1 << order;
279
33f2ef89 280 set_compound_page_dtor(page, free_compound_page);
d85f3385 281 set_compound_order(page, order);
6d777953 282 __SetPageHead(page);
d85f3385 283 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
284 struct page *p = page + i;
285
d85f3385 286 __SetPageTail(p);
d85f3385 287 p->first_page = page;
1da177e4
LT
288 }
289}
290
291static void destroy_compound_page(struct page *page, unsigned long order)
292{
293 int i;
294 int nr_pages = 1 << order;
295
d85f3385 296 if (unlikely(compound_order(page) != order))
224abf92 297 bad_page(page);
1da177e4 298
6d777953 299 if (unlikely(!PageHead(page)))
d85f3385 300 bad_page(page);
6d777953 301 __ClearPageHead(page);
d85f3385 302 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
303 struct page *p = page + i;
304
6d777953 305 if (unlikely(!PageTail(p) |
d85f3385 306 (p->first_page != page)))
224abf92 307 bad_page(page);
d85f3385 308 __ClearPageTail(p);
1da177e4
LT
309 }
310}
1da177e4 311
17cf4406
NP
312static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
313{
314 int i;
315
6626c5d5
AM
316 /*
317 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318 * and __GFP_HIGHMEM from hard or soft interrupt context.
319 */
725d704e 320 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
321 for (i = 0; i < (1 << order); i++)
322 clear_highpage(page + i);
323}
324
6aa3001b
AM
325static inline void set_page_order(struct page *page, int order)
326{
4c21e2f2 327 set_page_private(page, order);
676165a8 328 __SetPageBuddy(page);
1da177e4
LT
329}
330
331static inline void rmv_page_order(struct page *page)
332{
676165a8 333 __ClearPageBuddy(page);
4c21e2f2 334 set_page_private(page, 0);
1da177e4
LT
335}
336
337/*
338 * Locate the struct page for both the matching buddy in our
339 * pair (buddy1) and the combined O(n+1) page they form (page).
340 *
341 * 1) Any buddy B1 will have an order O twin B2 which satisfies
342 * the following equation:
343 * B2 = B1 ^ (1 << O)
344 * For example, if the starting buddy (buddy2) is #8 its order
345 * 1 buddy is #10:
346 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
347 *
348 * 2) Any buddy B will have an order O+1 parent P which
349 * satisfies the following equation:
350 * P = B & ~(1 << O)
351 *
d6e05edc 352 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
353 */
354static inline struct page *
355__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
356{
357 unsigned long buddy_idx = page_idx ^ (1 << order);
358
359 return page + (buddy_idx - page_idx);
360}
361
362static inline unsigned long
363__find_combined_index(unsigned long page_idx, unsigned int order)
364{
365 return (page_idx & ~(1 << order));
366}
367
368/*
369 * This function checks whether a page is free && is the buddy
370 * we can do coalesce a page and its buddy if
13e7444b 371 * (a) the buddy is not in a hole &&
676165a8 372 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
373 * (c) a page and its buddy have the same order &&
374 * (d) a page and its buddy are in the same zone.
676165a8
NP
375 *
376 * For recording whether a page is in the buddy system, we use PG_buddy.
377 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 378 *
676165a8 379 * For recording page's order, we use page_private(page).
1da177e4 380 */
cb2b95e1
AW
381static inline int page_is_buddy(struct page *page, struct page *buddy,
382 int order)
1da177e4 383{
14e07298 384 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 385 return 0;
13e7444b 386
cb2b95e1
AW
387 if (page_zone_id(page) != page_zone_id(buddy))
388 return 0;
389
390 if (PageBuddy(buddy) && page_order(buddy) == order) {
391 BUG_ON(page_count(buddy) != 0);
6aa3001b 392 return 1;
676165a8 393 }
6aa3001b 394 return 0;
1da177e4
LT
395}
396
397/*
398 * Freeing function for a buddy system allocator.
399 *
400 * The concept of a buddy system is to maintain direct-mapped table
401 * (containing bit values) for memory blocks of various "orders".
402 * The bottom level table contains the map for the smallest allocatable
403 * units of memory (here, pages), and each level above it describes
404 * pairs of units from the levels below, hence, "buddies".
405 * At a high level, all that happens here is marking the table entry
406 * at the bottom level available, and propagating the changes upward
407 * as necessary, plus some accounting needed to play nicely with other
408 * parts of the VM system.
409 * At each level, we keep a list of pages, which are heads of continuous
676165a8 410 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 411 * order is recorded in page_private(page) field.
1da177e4
LT
412 * So when we are allocating or freeing one, we can derive the state of the
413 * other. That is, if we allocate a small block, and both were
414 * free, the remainder of the region must be split into blocks.
415 * If a block is freed, and its buddy is also free, then this
416 * triggers coalescing into a block of larger size.
417 *
418 * -- wli
419 */
420
48db57f8 421static inline void __free_one_page(struct page *page,
1da177e4
LT
422 struct zone *zone, unsigned int order)
423{
424 unsigned long page_idx;
425 int order_size = 1 << order;
b2a0ac88 426 int migratetype = get_pageblock_migratetype(page);
1da177e4 427
224abf92 428 if (unlikely(PageCompound(page)))
1da177e4
LT
429 destroy_compound_page(page, order);
430
431 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
432
725d704e
NP
433 VM_BUG_ON(page_idx & (order_size - 1));
434 VM_BUG_ON(bad_range(zone, page));
1da177e4 435
d23ad423 436 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
437 while (order < MAX_ORDER-1) {
438 unsigned long combined_idx;
1da177e4
LT
439 struct page *buddy;
440
1da177e4 441 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 442 if (!page_is_buddy(page, buddy, order))
1da177e4 443 break; /* Move the buddy up one level. */
13e7444b 444
1da177e4 445 list_del(&buddy->lru);
b2a0ac88 446 zone->free_area[order].nr_free--;
1da177e4 447 rmv_page_order(buddy);
13e7444b 448 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
449 page = page + (combined_idx - page_idx);
450 page_idx = combined_idx;
451 order++;
452 }
453 set_page_order(page, order);
b2a0ac88
MG
454 list_add(&page->lru,
455 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
456 zone->free_area[order].nr_free++;
457}
458
224abf92 459static inline int free_pages_check(struct page *page)
1da177e4 460{
92be2e33
NP
461 if (unlikely(page_mapcount(page) |
462 (page->mapping != NULL) |
9442ec9d 463 (page_get_page_cgroup(page) != NULL) |
92be2e33 464 (page_count(page) != 0) |
1da177e4
LT
465 (page->flags & (
466 1 << PG_lru |
467 1 << PG_private |
468 1 << PG_locked |
469 1 << PG_active |
1da177e4
LT
470 1 << PG_slab |
471 1 << PG_swapcache |
b5810039 472 1 << PG_writeback |
676165a8
NP
473 1 << PG_reserved |
474 1 << PG_buddy ))))
224abf92 475 bad_page(page);
1da177e4 476 if (PageDirty(page))
242e5468 477 __ClearPageDirty(page);
689bcebf
HD
478 /*
479 * For now, we report if PG_reserved was found set, but do not
480 * clear it, and do not free the page. But we shall soon need
481 * to do more, for when the ZERO_PAGE count wraps negative.
482 */
483 return PageReserved(page);
1da177e4
LT
484}
485
486/*
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
207f36ee 489 * count is the number of pages to free.
1da177e4
LT
490 *
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
493 *
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
496 */
48db57f8
NP
497static void free_pages_bulk(struct zone *zone, int count,
498 struct list_head *list, int order)
1da177e4 499{
c54ad30c 500 spin_lock(&zone->lock);
e815af95 501 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 502 zone->pages_scanned = 0;
48db57f8
NP
503 while (count--) {
504 struct page *page;
505
725d704e 506 VM_BUG_ON(list_empty(list));
1da177e4 507 page = list_entry(list->prev, struct page, lru);
48db57f8 508 /* have to delete it as __free_one_page list manipulates */
1da177e4 509 list_del(&page->lru);
48db57f8 510 __free_one_page(page, zone, order);
1da177e4 511 }
c54ad30c 512 spin_unlock(&zone->lock);
1da177e4
LT
513}
514
48db57f8 515static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 516{
006d22d9 517 spin_lock(&zone->lock);
e815af95 518 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 519 zone->pages_scanned = 0;
0798e519 520 __free_one_page(page, zone, order);
006d22d9 521 spin_unlock(&zone->lock);
48db57f8
NP
522}
523
524static void __free_pages_ok(struct page *page, unsigned int order)
525{
526 unsigned long flags;
1da177e4 527 int i;
689bcebf 528 int reserved = 0;
1da177e4 529
1da177e4 530 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 531 reserved += free_pages_check(page + i);
689bcebf
HD
532 if (reserved)
533 return;
534
9858db50
NP
535 if (!PageHighMem(page))
536 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 537 arch_free_page(page, order);
48db57f8 538 kernel_map_pages(page, 1 << order, 0);
dafb1367 539
c54ad30c 540 local_irq_save(flags);
f8891e5e 541 __count_vm_events(PGFREE, 1 << order);
48db57f8 542 free_one_page(page_zone(page), page, order);
c54ad30c 543 local_irq_restore(flags);
1da177e4
LT
544}
545
a226f6c8
DH
546/*
547 * permit the bootmem allocator to evade page validation on high-order frees
548 */
920c7a5d 549void __init __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
550{
551 if (order == 0) {
552 __ClearPageReserved(page);
553 set_page_count(page, 0);
7835e98b 554 set_page_refcounted(page);
545b1ea9 555 __free_page(page);
a226f6c8 556 } else {
a226f6c8
DH
557 int loop;
558
545b1ea9 559 prefetchw(page);
a226f6c8
DH
560 for (loop = 0; loop < BITS_PER_LONG; loop++) {
561 struct page *p = &page[loop];
562
545b1ea9
NP
563 if (loop + 1 < BITS_PER_LONG)
564 prefetchw(p + 1);
a226f6c8
DH
565 __ClearPageReserved(p);
566 set_page_count(p, 0);
567 }
568
7835e98b 569 set_page_refcounted(page);
545b1ea9 570 __free_pages(page, order);
a226f6c8
DH
571 }
572}
573
1da177e4
LT
574
575/*
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
586 *
587 * -- wli
588 */
085cc7d5 589static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
590 int low, int high, struct free_area *area,
591 int migratetype)
1da177e4
LT
592{
593 unsigned long size = 1 << high;
594
595 while (high > low) {
596 area--;
597 high--;
598 size >>= 1;
725d704e 599 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 600 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
601 area->nr_free++;
602 set_page_order(&page[size], high);
603 }
1da177e4
LT
604}
605
1da177e4
LT
606/*
607 * This page is about to be returned from the page allocator
608 */
17cf4406 609static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 610{
92be2e33
NP
611 if (unlikely(page_mapcount(page) |
612 (page->mapping != NULL) |
9442ec9d 613 (page_get_page_cgroup(page) != NULL) |
92be2e33 614 (page_count(page) != 0) |
334795ec
HD
615 (page->flags & (
616 1 << PG_lru |
1da177e4
LT
617 1 << PG_private |
618 1 << PG_locked |
1da177e4
LT
619 1 << PG_active |
620 1 << PG_dirty |
334795ec 621 1 << PG_slab |
1da177e4 622 1 << PG_swapcache |
b5810039 623 1 << PG_writeback |
676165a8
NP
624 1 << PG_reserved |
625 1 << PG_buddy ))))
224abf92 626 bad_page(page);
1da177e4 627
689bcebf
HD
628 /*
629 * For now, we report if PG_reserved was found set, but do not
630 * clear it, and do not allocate the page: as a safety net.
631 */
632 if (PageReserved(page))
633 return 1;
634
d77c2d7c 635 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 636 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 637 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 638 set_page_private(page, 0);
7835e98b 639 set_page_refcounted(page);
cc102509
NP
640
641 arch_alloc_page(page, order);
1da177e4 642 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
643
644 if (gfp_flags & __GFP_ZERO)
645 prep_zero_page(page, order, gfp_flags);
646
647 if (order && (gfp_flags & __GFP_COMP))
648 prep_compound_page(page, order);
649
689bcebf 650 return 0;
1da177e4
LT
651}
652
56fd56b8
MG
653/*
654 * Go through the free lists for the given migratetype and remove
655 * the smallest available page from the freelists
656 */
657static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
658 int migratetype)
659{
660 unsigned int current_order;
661 struct free_area * area;
662 struct page *page;
663
664 /* Find a page of the appropriate size in the preferred list */
665 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
666 area = &(zone->free_area[current_order]);
667 if (list_empty(&area->free_list[migratetype]))
668 continue;
669
670 page = list_entry(area->free_list[migratetype].next,
671 struct page, lru);
672 list_del(&page->lru);
673 rmv_page_order(page);
674 area->nr_free--;
675 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
676 expand(zone, page, order, current_order, area, migratetype);
677 return page;
678 }
679
680 return NULL;
681}
682
683
b2a0ac88
MG
684/*
685 * This array describes the order lists are fallen back to when
686 * the free lists for the desirable migrate type are depleted
687 */
688static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
689 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
690 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
691 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
692 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
693};
694
c361be55
MG
695/*
696 * Move the free pages in a range to the free lists of the requested type.
d9c23400 697 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
698 * boundary. If alignment is required, use move_freepages_block()
699 */
700int move_freepages(struct zone *zone,
701 struct page *start_page, struct page *end_page,
702 int migratetype)
703{
704 struct page *page;
705 unsigned long order;
d100313f 706 int pages_moved = 0;
c361be55
MG
707
708#ifndef CONFIG_HOLES_IN_ZONE
709 /*
710 * page_zone is not safe to call in this context when
711 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712 * anyway as we check zone boundaries in move_freepages_block().
713 * Remove at a later date when no bug reports exist related to
ac0e5b7a 714 * grouping pages by mobility
c361be55
MG
715 */
716 BUG_ON(page_zone(start_page) != page_zone(end_page));
717#endif
718
719 for (page = start_page; page <= end_page;) {
720 if (!pfn_valid_within(page_to_pfn(page))) {
721 page++;
722 continue;
723 }
724
725 if (!PageBuddy(page)) {
726 page++;
727 continue;
728 }
729
730 order = page_order(page);
731 list_del(&page->lru);
732 list_add(&page->lru,
733 &zone->free_area[order].free_list[migratetype]);
734 page += 1 << order;
d100313f 735 pages_moved += 1 << order;
c361be55
MG
736 }
737
d100313f 738 return pages_moved;
c361be55
MG
739}
740
741int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
742{
743 unsigned long start_pfn, end_pfn;
744 struct page *start_page, *end_page;
745
746 start_pfn = page_to_pfn(page);
d9c23400 747 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 748 start_page = pfn_to_page(start_pfn);
d9c23400
MG
749 end_page = start_page + pageblock_nr_pages - 1;
750 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
751
752 /* Do not cross zone boundaries */
753 if (start_pfn < zone->zone_start_pfn)
754 start_page = page;
755 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
756 return 0;
757
758 return move_freepages(zone, start_page, end_page, migratetype);
759}
760
b2a0ac88
MG
761/* Remove an element from the buddy allocator from the fallback list */
762static struct page *__rmqueue_fallback(struct zone *zone, int order,
763 int start_migratetype)
764{
765 struct free_area * area;
766 int current_order;
767 struct page *page;
768 int migratetype, i;
769
770 /* Find the largest possible block of pages in the other list */
771 for (current_order = MAX_ORDER-1; current_order >= order;
772 --current_order) {
773 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
774 migratetype = fallbacks[start_migratetype][i];
775
56fd56b8
MG
776 /* MIGRATE_RESERVE handled later if necessary */
777 if (migratetype == MIGRATE_RESERVE)
778 continue;
e010487d 779
b2a0ac88
MG
780 area = &(zone->free_area[current_order]);
781 if (list_empty(&area->free_list[migratetype]))
782 continue;
783
784 page = list_entry(area->free_list[migratetype].next,
785 struct page, lru);
786 area->nr_free--;
787
788 /*
c361be55 789 * If breaking a large block of pages, move all free
46dafbca
MG
790 * pages to the preferred allocation list. If falling
791 * back for a reclaimable kernel allocation, be more
792 * agressive about taking ownership of free pages
b2a0ac88 793 */
d9c23400 794 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
795 start_migratetype == MIGRATE_RECLAIMABLE) {
796 unsigned long pages;
797 pages = move_freepages_block(zone, page,
798 start_migratetype);
799
800 /* Claim the whole block if over half of it is free */
d9c23400 801 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
802 set_pageblock_migratetype(page,
803 start_migratetype);
804
b2a0ac88 805 migratetype = start_migratetype;
c361be55 806 }
b2a0ac88
MG
807
808 /* Remove the page from the freelists */
809 list_del(&page->lru);
810 rmv_page_order(page);
811 __mod_zone_page_state(zone, NR_FREE_PAGES,
812 -(1UL << order));
813
d9c23400 814 if (current_order == pageblock_order)
b2a0ac88
MG
815 set_pageblock_migratetype(page,
816 start_migratetype);
817
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821 }
822
56fd56b8
MG
823 /* Use MIGRATE_RESERVE rather than fail an allocation */
824 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
825}
826
56fd56b8 827/*
1da177e4
LT
828 * Do the hard work of removing an element from the buddy allocator.
829 * Call me with the zone->lock already held.
830 */
b2a0ac88
MG
831static struct page *__rmqueue(struct zone *zone, unsigned int order,
832 int migratetype)
1da177e4 833{
1da177e4
LT
834 struct page *page;
835
56fd56b8 836 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 837
56fd56b8
MG
838 if (unlikely(!page))
839 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
840
841 return page;
1da177e4
LT
842}
843
844/*
845 * Obtain a specified number of elements from the buddy allocator, all under
846 * a single hold of the lock, for efficiency. Add them to the supplied list.
847 * Returns the number of new pages which were placed at *list.
848 */
849static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
850 unsigned long count, struct list_head *list,
851 int migratetype)
1da177e4 852{
1da177e4 853 int i;
1da177e4 854
c54ad30c 855 spin_lock(&zone->lock);
1da177e4 856 for (i = 0; i < count; ++i) {
b2a0ac88 857 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 858 if (unlikely(page == NULL))
1da177e4 859 break;
81eabcbe
MG
860
861 /*
862 * Split buddy pages returned by expand() are received here
863 * in physical page order. The page is added to the callers and
864 * list and the list head then moves forward. From the callers
865 * perspective, the linked list is ordered by page number in
866 * some conditions. This is useful for IO devices that can
867 * merge IO requests if the physical pages are ordered
868 * properly.
869 */
535131e6
MG
870 list_add(&page->lru, list);
871 set_page_private(page, migratetype);
81eabcbe 872 list = &page->lru;
1da177e4 873 }
c54ad30c 874 spin_unlock(&zone->lock);
085cc7d5 875 return i;
1da177e4
LT
876}
877
4ae7c039 878#ifdef CONFIG_NUMA
8fce4d8e 879/*
4037d452
CL
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
882 * expired.
883 *
879336c3
CL
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
8fce4d8e 886 */
4037d452 887void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 888{
4ae7c039 889 unsigned long flags;
4037d452 890 int to_drain;
4ae7c039 891
4037d452
CL
892 local_irq_save(flags);
893 if (pcp->count >= pcp->batch)
894 to_drain = pcp->batch;
895 else
896 to_drain = pcp->count;
897 free_pages_bulk(zone, to_drain, &pcp->list, 0);
898 pcp->count -= to_drain;
899 local_irq_restore(flags);
4ae7c039
CL
900}
901#endif
902
9f8f2172
CL
903/*
904 * Drain pages of the indicated processor.
905 *
906 * The processor must either be the current processor and the
907 * thread pinned to the current processor or a processor that
908 * is not online.
909 */
910static void drain_pages(unsigned int cpu)
1da177e4 911{
c54ad30c 912 unsigned long flags;
1da177e4 913 struct zone *zone;
1da177e4
LT
914
915 for_each_zone(zone) {
916 struct per_cpu_pageset *pset;
3dfa5721 917 struct per_cpu_pages *pcp;
1da177e4 918
f2e12bb2
CL
919 if (!populated_zone(zone))
920 continue;
921
e7c8d5c9 922 pset = zone_pcp(zone, cpu);
3dfa5721
CL
923
924 pcp = &pset->pcp;
925 local_irq_save(flags);
926 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
927 pcp->count = 0;
928 local_irq_restore(flags);
1da177e4
LT
929 }
930}
1da177e4 931
9f8f2172
CL
932/*
933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
934 */
935void drain_local_pages(void *arg)
936{
937 drain_pages(smp_processor_id());
938}
939
940/*
941 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
942 */
943void drain_all_pages(void)
944{
945 on_each_cpu(drain_local_pages, NULL, 0, 1);
946}
947
296699de 948#ifdef CONFIG_HIBERNATION
1da177e4
LT
949
950void mark_free_pages(struct zone *zone)
951{
f623f0db
RW
952 unsigned long pfn, max_zone_pfn;
953 unsigned long flags;
b2a0ac88 954 int order, t;
1da177e4
LT
955 struct list_head *curr;
956
957 if (!zone->spanned_pages)
958 return;
959
960 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
961
962 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
963 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
964 if (pfn_valid(pfn)) {
965 struct page *page = pfn_to_page(pfn);
966
7be98234
RW
967 if (!swsusp_page_is_forbidden(page))
968 swsusp_unset_page_free(page);
f623f0db 969 }
1da177e4 970
b2a0ac88
MG
971 for_each_migratetype_order(order, t) {
972 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 973 unsigned long i;
1da177e4 974
f623f0db
RW
975 pfn = page_to_pfn(list_entry(curr, struct page, lru));
976 for (i = 0; i < (1UL << order); i++)
7be98234 977 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 978 }
b2a0ac88 979 }
1da177e4
LT
980 spin_unlock_irqrestore(&zone->lock, flags);
981}
e2c55dc8 982#endif /* CONFIG_PM */
1da177e4 983
1da177e4
LT
984/*
985 * Free a 0-order page
986 */
920c7a5d 987static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
988{
989 struct zone *zone = page_zone(page);
990 struct per_cpu_pages *pcp;
991 unsigned long flags;
992
1da177e4
LT
993 if (PageAnon(page))
994 page->mapping = NULL;
224abf92 995 if (free_pages_check(page))
689bcebf
HD
996 return;
997
9858db50
NP
998 if (!PageHighMem(page))
999 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 1000 arch_free_page(page, 0);
689bcebf
HD
1001 kernel_map_pages(page, 1, 0);
1002
3dfa5721 1003 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1004 local_irq_save(flags);
f8891e5e 1005 __count_vm_event(PGFREE);
3dfa5721
CL
1006 if (cold)
1007 list_add_tail(&page->lru, &pcp->list);
1008 else
1009 list_add(&page->lru, &pcp->list);
535131e6 1010 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1011 pcp->count++;
48db57f8
NP
1012 if (pcp->count >= pcp->high) {
1013 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014 pcp->count -= pcp->batch;
1015 }
1da177e4
LT
1016 local_irq_restore(flags);
1017 put_cpu();
1018}
1019
920c7a5d 1020void free_hot_page(struct page *page)
1da177e4
LT
1021{
1022 free_hot_cold_page(page, 0);
1023}
1024
920c7a5d 1025void free_cold_page(struct page *page)
1da177e4
LT
1026{
1027 free_hot_cold_page(page, 1);
1028}
1029
8dfcc9ba
NP
1030/*
1031 * split_page takes a non-compound higher-order page, and splits it into
1032 * n (1<<order) sub-pages: page[0..n]
1033 * Each sub-page must be freed individually.
1034 *
1035 * Note: this is probably too low level an operation for use in drivers.
1036 * Please consult with lkml before using this in your driver.
1037 */
1038void split_page(struct page *page, unsigned int order)
1039{
1040 int i;
1041
725d704e
NP
1042 VM_BUG_ON(PageCompound(page));
1043 VM_BUG_ON(!page_count(page));
7835e98b
NP
1044 for (i = 1; i < (1 << order); i++)
1045 set_page_refcounted(page + i);
8dfcc9ba 1046}
8dfcc9ba 1047
1da177e4
LT
1048/*
1049 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1050 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1051 * or two.
1052 */
18ea7e71 1053static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1054 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1055{
1056 unsigned long flags;
689bcebf 1057 struct page *page;
1da177e4 1058 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1059 int cpu;
64c5e135 1060 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1061
689bcebf 1062again:
a74609fa 1063 cpu = get_cpu();
48db57f8 1064 if (likely(order == 0)) {
1da177e4
LT
1065 struct per_cpu_pages *pcp;
1066
3dfa5721 1067 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1068 local_irq_save(flags);
a74609fa 1069 if (!pcp->count) {
941c7105 1070 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1071 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1072 if (unlikely(!pcp->count))
1073 goto failed;
1da177e4 1074 }
b92a6edd 1075
535131e6 1076 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1077 if (cold) {
1078 list_for_each_entry_reverse(page, &pcp->list, lru)
1079 if (page_private(page) == migratetype)
1080 break;
1081 } else {
1082 list_for_each_entry(page, &pcp->list, lru)
1083 if (page_private(page) == migratetype)
1084 break;
1085 }
535131e6 1086
b92a6edd
MG
1087 /* Allocate more to the pcp list if necessary */
1088 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1089 pcp->count += rmqueue_bulk(zone, 0,
1090 pcp->batch, &pcp->list, migratetype);
1091 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1092 }
b92a6edd
MG
1093
1094 list_del(&page->lru);
1095 pcp->count--;
7fb1d9fc 1096 } else {
1da177e4 1097 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1098 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1099 spin_unlock(&zone->lock);
1100 if (!page)
1101 goto failed;
1da177e4
LT
1102 }
1103
f8891e5e 1104 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1105 zone_statistics(preferred_zone, zone);
a74609fa
NP
1106 local_irq_restore(flags);
1107 put_cpu();
1da177e4 1108
725d704e 1109 VM_BUG_ON(bad_range(zone, page));
17cf4406 1110 if (prep_new_page(page, order, gfp_flags))
a74609fa 1111 goto again;
1da177e4 1112 return page;
a74609fa
NP
1113
1114failed:
1115 local_irq_restore(flags);
1116 put_cpu();
1117 return NULL;
1da177e4
LT
1118}
1119
7fb1d9fc 1120#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1121#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1122#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1123#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1124#define ALLOC_HARDER 0x10 /* try to alloc harder */
1125#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1126#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1127
933e312e
AM
1128#ifdef CONFIG_FAIL_PAGE_ALLOC
1129
1130static struct fail_page_alloc_attr {
1131 struct fault_attr attr;
1132
1133 u32 ignore_gfp_highmem;
1134 u32 ignore_gfp_wait;
54114994 1135 u32 min_order;
933e312e
AM
1136
1137#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1138
1139 struct dentry *ignore_gfp_highmem_file;
1140 struct dentry *ignore_gfp_wait_file;
54114994 1141 struct dentry *min_order_file;
933e312e
AM
1142
1143#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1144
1145} fail_page_alloc = {
1146 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1147 .ignore_gfp_wait = 1,
1148 .ignore_gfp_highmem = 1,
54114994 1149 .min_order = 1,
933e312e
AM
1150};
1151
1152static int __init setup_fail_page_alloc(char *str)
1153{
1154 return setup_fault_attr(&fail_page_alloc.attr, str);
1155}
1156__setup("fail_page_alloc=", setup_fail_page_alloc);
1157
1158static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1159{
54114994
AM
1160 if (order < fail_page_alloc.min_order)
1161 return 0;
933e312e
AM
1162 if (gfp_mask & __GFP_NOFAIL)
1163 return 0;
1164 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165 return 0;
1166 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167 return 0;
1168
1169 return should_fail(&fail_page_alloc.attr, 1 << order);
1170}
1171
1172#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1173
1174static int __init fail_page_alloc_debugfs(void)
1175{
1176 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177 struct dentry *dir;
1178 int err;
1179
1180 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181 "fail_page_alloc");
1182 if (err)
1183 return err;
1184 dir = fail_page_alloc.attr.dentries.dir;
1185
1186 fail_page_alloc.ignore_gfp_wait_file =
1187 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188 &fail_page_alloc.ignore_gfp_wait);
1189
1190 fail_page_alloc.ignore_gfp_highmem_file =
1191 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1193 fail_page_alloc.min_order_file =
1194 debugfs_create_u32("min-order", mode, dir,
1195 &fail_page_alloc.min_order);
933e312e
AM
1196
1197 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1198 !fail_page_alloc.ignore_gfp_highmem_file ||
1199 !fail_page_alloc.min_order_file) {
933e312e
AM
1200 err = -ENOMEM;
1201 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1203 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1204 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1205 }
1206
1207 return err;
1208}
1209
1210late_initcall(fail_page_alloc_debugfs);
1211
1212#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1213
1214#else /* CONFIG_FAIL_PAGE_ALLOC */
1215
1216static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217{
1218 return 0;
1219}
1220
1221#endif /* CONFIG_FAIL_PAGE_ALLOC */
1222
1da177e4
LT
1223/*
1224 * Return 1 if free pages are above 'mark'. This takes into account the order
1225 * of the allocation.
1226 */
1227int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1228 int classzone_idx, int alloc_flags)
1da177e4
LT
1229{
1230 /* free_pages my go negative - that's OK */
d23ad423
CL
1231 long min = mark;
1232 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1233 int o;
1234
7fb1d9fc 1235 if (alloc_flags & ALLOC_HIGH)
1da177e4 1236 min -= min / 2;
7fb1d9fc 1237 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1238 min -= min / 4;
1239
1240 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241 return 0;
1242 for (o = 0; o < order; o++) {
1243 /* At the next order, this order's pages become unavailable */
1244 free_pages -= z->free_area[o].nr_free << o;
1245
1246 /* Require fewer higher order pages to be free */
1247 min >>= 1;
1248
1249 if (free_pages <= min)
1250 return 0;
1251 }
1252 return 1;
1253}
1254
9276b1bc
PJ
1255#ifdef CONFIG_NUMA
1256/*
1257 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1258 * skip over zones that are not allowed by the cpuset, or that have
1259 * been recently (in last second) found to be nearly full. See further
1260 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1261 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1262 *
1263 * If the zonelist cache is present in the passed in zonelist, then
1264 * returns a pointer to the allowed node mask (either the current
37b07e41 1265 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1266 *
1267 * If the zonelist cache is not available for this zonelist, does
1268 * nothing and returns NULL.
1269 *
1270 * If the fullzones BITMAP in the zonelist cache is stale (more than
1271 * a second since last zap'd) then we zap it out (clear its bits.)
1272 *
1273 * We hold off even calling zlc_setup, until after we've checked the
1274 * first zone in the zonelist, on the theory that most allocations will
1275 * be satisfied from that first zone, so best to examine that zone as
1276 * quickly as we can.
1277 */
1278static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1279{
1280 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1281 nodemask_t *allowednodes; /* zonelist_cache approximation */
1282
1283 zlc = zonelist->zlcache_ptr;
1284 if (!zlc)
1285 return NULL;
1286
10ed273f 1287 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1288 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289 zlc->last_full_zap = jiffies;
1290 }
1291
1292 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293 &cpuset_current_mems_allowed :
37b07e41 1294 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1295 return allowednodes;
1296}
1297
1298/*
1299 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300 * if it is worth looking at further for free memory:
1301 * 1) Check that the zone isn't thought to be full (doesn't have its
1302 * bit set in the zonelist_cache fullzones BITMAP).
1303 * 2) Check that the zones node (obtained from the zonelist_cache
1304 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305 * Return true (non-zero) if zone is worth looking at further, or
1306 * else return false (zero) if it is not.
1307 *
1308 * This check -ignores- the distinction between various watermarks,
1309 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1310 * found to be full for any variation of these watermarks, it will
1311 * be considered full for up to one second by all requests, unless
1312 * we are so low on memory on all allowed nodes that we are forced
1313 * into the second scan of the zonelist.
1314 *
1315 * In the second scan we ignore this zonelist cache and exactly
1316 * apply the watermarks to all zones, even it is slower to do so.
1317 * We are low on memory in the second scan, and should leave no stone
1318 * unturned looking for a free page.
1319 */
1320static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1321 nodemask_t *allowednodes)
1322{
1323 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1324 int i; /* index of *z in zonelist zones */
1325 int n; /* node that zone *z is on */
1326
1327 zlc = zonelist->zlcache_ptr;
1328 if (!zlc)
1329 return 1;
1330
1331 i = z - zonelist->zones;
1332 n = zlc->z_to_n[i];
1333
1334 /* This zone is worth trying if it is allowed but not full */
1335 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1336}
1337
1338/*
1339 * Given 'z' scanning a zonelist, set the corresponding bit in
1340 * zlc->fullzones, so that subsequent attempts to allocate a page
1341 * from that zone don't waste time re-examining it.
1342 */
1343static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1344{
1345 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1346 int i; /* index of *z in zonelist zones */
1347
1348 zlc = zonelist->zlcache_ptr;
1349 if (!zlc)
1350 return;
1351
1352 i = z - zonelist->zones;
1353
1354 set_bit(i, zlc->fullzones);
1355}
1356
1357#else /* CONFIG_NUMA */
1358
1359static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1360{
1361 return NULL;
1362}
1363
1364static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1365 nodemask_t *allowednodes)
1366{
1367 return 1;
1368}
1369
1370static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1371{
1372}
1373#endif /* CONFIG_NUMA */
1374
7fb1d9fc 1375/*
0798e519 1376 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1377 * a page.
1378 */
1379static struct page *
1380get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
54a6eb5c 1381 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1382{
9276b1bc 1383 struct zone **z;
7fb1d9fc 1384 struct page *page = NULL;
54a6eb5c 1385 int classzone_idx;
18ea7e71 1386 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1387 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388 int zlc_active = 0; /* set if using zonelist_cache */
1389 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c
MG
1390
1391 z = first_zones_zonelist(zonelist, high_zoneidx);
1392 classzone_idx = zone_idx(*z);
1393 preferred_zone = *z;
7fb1d9fc 1394
9276b1bc 1395zonelist_scan:
7fb1d9fc 1396 /*
9276b1bc 1397 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1398 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1399 */
54a6eb5c 1400 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
9276b1bc
PJ
1401 if (NUMA_BUILD && zlc_active &&
1402 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1403 continue;
7fb1d9fc 1404 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1405 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1406 goto try_next_zone;
7fb1d9fc
RS
1407
1408 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1409 unsigned long mark;
1410 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1411 mark = zone->pages_min;
3148890b 1412 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1413 mark = zone->pages_low;
3148890b 1414 else
1192d526 1415 mark = zone->pages_high;
0798e519
PJ
1416 if (!zone_watermark_ok(zone, order, mark,
1417 classzone_idx, alloc_flags)) {
9eeff239 1418 if (!zone_reclaim_mode ||
1192d526 1419 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1420 goto this_zone_full;
0798e519 1421 }
7fb1d9fc
RS
1422 }
1423
18ea7e71 1424 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1425 if (page)
7fb1d9fc 1426 break;
9276b1bc
PJ
1427this_zone_full:
1428 if (NUMA_BUILD)
1429 zlc_mark_zone_full(zonelist, z);
1430try_next_zone:
1431 if (NUMA_BUILD && !did_zlc_setup) {
1432 /* we do zlc_setup after the first zone is tried */
1433 allowednodes = zlc_setup(zonelist, alloc_flags);
1434 zlc_active = 1;
1435 did_zlc_setup = 1;
1436 }
54a6eb5c 1437 }
9276b1bc
PJ
1438
1439 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1440 /* Disable zlc cache for second zonelist scan */
1441 zlc_active = 0;
1442 goto zonelist_scan;
1443 }
7fb1d9fc 1444 return page;
753ee728
MH
1445}
1446
1da177e4
LT
1447/*
1448 * This is the 'heart' of the zoned buddy allocator.
1449 */
edde08f2 1450struct page *
dd0fc66f 1451__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1452 struct zonelist *zonelist)
1453{
260b2367 1454 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1455 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
7fb1d9fc 1456 struct zone **z;
1da177e4
LT
1457 struct page *page;
1458 struct reclaim_state reclaim_state;
1459 struct task_struct *p = current;
1da177e4 1460 int do_retry;
7fb1d9fc 1461 int alloc_flags;
1da177e4
LT
1462 int did_some_progress;
1463
1464 might_sleep_if(wait);
1465
933e312e
AM
1466 if (should_fail_alloc_page(gfp_mask, order))
1467 return NULL;
1468
6b1de916 1469restart:
7fb1d9fc 1470 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1471
7fb1d9fc 1472 if (unlikely(*z == NULL)) {
523b9458
CL
1473 /*
1474 * Happens if we have an empty zonelist as a result of
1475 * GFP_THISNODE being used on a memoryless node
1476 */
1da177e4
LT
1477 return NULL;
1478 }
6b1de916 1479
7fb1d9fc 1480 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
54a6eb5c 1481 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1482 if (page)
1483 goto got_pg;
1da177e4 1484
952f3b51
CL
1485 /*
1486 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1487 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1488 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1489 * using a larger set of nodes after it has established that the
1490 * allowed per node queues are empty and that nodes are
1491 * over allocated.
1492 */
1493 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1494 goto nopage;
1495
0798e519 1496 for (z = zonelist->zones; *z; z++)
43b0bc00 1497 wakeup_kswapd(*z, order);
1da177e4 1498
9bf2229f 1499 /*
7fb1d9fc
RS
1500 * OK, we're below the kswapd watermark and have kicked background
1501 * reclaim. Now things get more complex, so set up alloc_flags according
1502 * to how we want to proceed.
1503 *
1504 * The caller may dip into page reserves a bit more if the caller
1505 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1506 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1507 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1508 */
3148890b 1509 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1510 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1511 alloc_flags |= ALLOC_HARDER;
1512 if (gfp_mask & __GFP_HIGH)
1513 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1514 if (wait)
1515 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1516
1517 /*
1518 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1519 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1520 *
1521 * This is the last chance, in general, before the goto nopage.
1522 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1523 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1524 */
54a6eb5c
MG
1525 page = get_page_from_freelist(gfp_mask, order, zonelist,
1526 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1527 if (page)
1528 goto got_pg;
1da177e4
LT
1529
1530 /* This allocation should allow future memory freeing. */
b84a35be 1531
b43a57bb 1532rebalance:
b84a35be
NP
1533 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1534 && !in_interrupt()) {
1535 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1536nofail_alloc:
b84a35be 1537 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1538 page = get_page_from_freelist(gfp_mask, order,
54a6eb5c 1539 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1540 if (page)
1541 goto got_pg;
885036d3 1542 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1543 congestion_wait(WRITE, HZ/50);
885036d3
KK
1544 goto nofail_alloc;
1545 }
1da177e4
LT
1546 }
1547 goto nopage;
1548 }
1549
1550 /* Atomic allocations - we can't balance anything */
1551 if (!wait)
1552 goto nopage;
1553
1da177e4
LT
1554 cond_resched();
1555
1556 /* We now go into synchronous reclaim */
3e0d98b9 1557 cpuset_memory_pressure_bump();
1da177e4
LT
1558 p->flags |= PF_MEMALLOC;
1559 reclaim_state.reclaimed_slab = 0;
1560 p->reclaim_state = &reclaim_state;
1561
dac1d27b 1562 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1da177e4
LT
1563
1564 p->reclaim_state = NULL;
1565 p->flags &= ~PF_MEMALLOC;
1566
1567 cond_resched();
1568
e2c55dc8 1569 if (order != 0)
9f8f2172 1570 drain_all_pages();
e2c55dc8 1571
1da177e4 1572 if (likely(did_some_progress)) {
7fb1d9fc 1573 page = get_page_from_freelist(gfp_mask, order,
54a6eb5c 1574 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1575 if (page)
1576 goto got_pg;
1da177e4 1577 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
ff0ceb9d
DR
1578 if (!try_set_zone_oom(zonelist)) {
1579 schedule_timeout_uninterruptible(1);
1580 goto restart;
1581 }
1582
1da177e4
LT
1583 /*
1584 * Go through the zonelist yet one more time, keep
1585 * very high watermark here, this is only to catch
1586 * a parallel oom killing, we must fail if we're still
1587 * under heavy pressure.
1588 */
7fb1d9fc 1589 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
54a6eb5c 1590 zonelist, high_zoneidx, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d
DR
1591 if (page) {
1592 clear_zonelist_oom(zonelist);
7fb1d9fc 1593 goto got_pg;
ff0ceb9d 1594 }
1da177e4 1595
a8bbf72a 1596 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d
DR
1597 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1598 clear_zonelist_oom(zonelist);
a8bbf72a 1599 goto nopage;
ff0ceb9d 1600 }
a8bbf72a 1601
9b0f8b04 1602 out_of_memory(zonelist, gfp_mask, order);
ff0ceb9d 1603 clear_zonelist_oom(zonelist);
1da177e4
LT
1604 goto restart;
1605 }
1606
1607 /*
1608 * Don't let big-order allocations loop unless the caller explicitly
1609 * requests that. Wait for some write requests to complete then retry.
1610 *
1611 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1612 * <= 3, but that may not be true in other implementations.
1613 */
1614 do_retry = 0;
1615 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1616 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1617 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1618 do_retry = 1;
1619 if (gfp_mask & __GFP_NOFAIL)
1620 do_retry = 1;
1621 }
1622 if (do_retry) {
3fcfab16 1623 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1624 goto rebalance;
1625 }
1626
1627nopage:
1628 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1629 printk(KERN_WARNING "%s: page allocation failure."
1630 " order:%d, mode:0x%x\n",
1631 p->comm, order, gfp_mask);
1632 dump_stack();
578c2fd6 1633 show_mem();
1da177e4 1634 }
1da177e4 1635got_pg:
1da177e4
LT
1636 return page;
1637}
1638
1639EXPORT_SYMBOL(__alloc_pages);
1640
1641/*
1642 * Common helper functions.
1643 */
920c7a5d 1644unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1645{
1646 struct page * page;
1647 page = alloc_pages(gfp_mask, order);
1648 if (!page)
1649 return 0;
1650 return (unsigned long) page_address(page);
1651}
1652
1653EXPORT_SYMBOL(__get_free_pages);
1654
920c7a5d 1655unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1656{
1657 struct page * page;
1658
1659 /*
1660 * get_zeroed_page() returns a 32-bit address, which cannot represent
1661 * a highmem page
1662 */
725d704e 1663 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1664
1665 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1666 if (page)
1667 return (unsigned long) page_address(page);
1668 return 0;
1669}
1670
1671EXPORT_SYMBOL(get_zeroed_page);
1672
1673void __pagevec_free(struct pagevec *pvec)
1674{
1675 int i = pagevec_count(pvec);
1676
1677 while (--i >= 0)
1678 free_hot_cold_page(pvec->pages[i], pvec->cold);
1679}
1680
920c7a5d 1681void __free_pages(struct page *page, unsigned int order)
1da177e4 1682{
b5810039 1683 if (put_page_testzero(page)) {
1da177e4
LT
1684 if (order == 0)
1685 free_hot_page(page);
1686 else
1687 __free_pages_ok(page, order);
1688 }
1689}
1690
1691EXPORT_SYMBOL(__free_pages);
1692
920c7a5d 1693void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1694{
1695 if (addr != 0) {
725d704e 1696 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1697 __free_pages(virt_to_page((void *)addr), order);
1698 }
1699}
1700
1701EXPORT_SYMBOL(free_pages);
1702
1da177e4
LT
1703static unsigned int nr_free_zone_pages(int offset)
1704{
54a6eb5c
MG
1705 struct zone **z;
1706 struct zone *zone;
1707
e310fd43 1708 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1709 unsigned int sum = 0;
1710
0e88460d 1711 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1712
54a6eb5c 1713 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1714 unsigned long size = zone->present_pages;
1715 unsigned long high = zone->pages_high;
1716 if (size > high)
1717 sum += size - high;
1da177e4
LT
1718 }
1719
1720 return sum;
1721}
1722
1723/*
1724 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1725 */
1726unsigned int nr_free_buffer_pages(void)
1727{
af4ca457 1728 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1729}
c2f1a551 1730EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1731
1732/*
1733 * Amount of free RAM allocatable within all zones
1734 */
1735unsigned int nr_free_pagecache_pages(void)
1736{
2a1e274a 1737 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1738}
08e0f6a9
CL
1739
1740static inline void show_node(struct zone *zone)
1da177e4 1741{
08e0f6a9 1742 if (NUMA_BUILD)
25ba77c1 1743 printk("Node %d ", zone_to_nid(zone));
1da177e4 1744}
1da177e4 1745
1da177e4
LT
1746void si_meminfo(struct sysinfo *val)
1747{
1748 val->totalram = totalram_pages;
1749 val->sharedram = 0;
d23ad423 1750 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1751 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1752 val->totalhigh = totalhigh_pages;
1753 val->freehigh = nr_free_highpages();
1da177e4
LT
1754 val->mem_unit = PAGE_SIZE;
1755}
1756
1757EXPORT_SYMBOL(si_meminfo);
1758
1759#ifdef CONFIG_NUMA
1760void si_meminfo_node(struct sysinfo *val, int nid)
1761{
1762 pg_data_t *pgdat = NODE_DATA(nid);
1763
1764 val->totalram = pgdat->node_present_pages;
d23ad423 1765 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1766#ifdef CONFIG_HIGHMEM
1da177e4 1767 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1768 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1769 NR_FREE_PAGES);
98d2b0eb
CL
1770#else
1771 val->totalhigh = 0;
1772 val->freehigh = 0;
1773#endif
1da177e4
LT
1774 val->mem_unit = PAGE_SIZE;
1775}
1776#endif
1777
1778#define K(x) ((x) << (PAGE_SHIFT-10))
1779
1780/*
1781 * Show free area list (used inside shift_scroll-lock stuff)
1782 * We also calculate the percentage fragmentation. We do this by counting the
1783 * memory on each free list with the exception of the first item on the list.
1784 */
1785void show_free_areas(void)
1786{
c7241913 1787 int cpu;
1da177e4
LT
1788 struct zone *zone;
1789
1790 for_each_zone(zone) {
c7241913 1791 if (!populated_zone(zone))
1da177e4 1792 continue;
c7241913
JS
1793
1794 show_node(zone);
1795 printk("%s per-cpu:\n", zone->name);
1da177e4 1796
6b482c67 1797 for_each_online_cpu(cpu) {
1da177e4
LT
1798 struct per_cpu_pageset *pageset;
1799
e7c8d5c9 1800 pageset = zone_pcp(zone, cpu);
1da177e4 1801
3dfa5721
CL
1802 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1803 cpu, pageset->pcp.high,
1804 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1805 }
1806 }
1807
a25700a5 1808 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1809 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1810 global_page_state(NR_ACTIVE),
1811 global_page_state(NR_INACTIVE),
b1e7a8fd 1812 global_page_state(NR_FILE_DIRTY),
ce866b34 1813 global_page_state(NR_WRITEBACK),
fd39fc85 1814 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1815 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1816 global_page_state(NR_SLAB_RECLAIMABLE) +
1817 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1818 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1819 global_page_state(NR_PAGETABLE),
1820 global_page_state(NR_BOUNCE));
1da177e4
LT
1821
1822 for_each_zone(zone) {
1823 int i;
1824
c7241913
JS
1825 if (!populated_zone(zone))
1826 continue;
1827
1da177e4
LT
1828 show_node(zone);
1829 printk("%s"
1830 " free:%lukB"
1831 " min:%lukB"
1832 " low:%lukB"
1833 " high:%lukB"
1834 " active:%lukB"
1835 " inactive:%lukB"
1836 " present:%lukB"
1837 " pages_scanned:%lu"
1838 " all_unreclaimable? %s"
1839 "\n",
1840 zone->name,
d23ad423 1841 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1842 K(zone->pages_min),
1843 K(zone->pages_low),
1844 K(zone->pages_high),
c8785385
CL
1845 K(zone_page_state(zone, NR_ACTIVE)),
1846 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1847 K(zone->present_pages),
1848 zone->pages_scanned,
e815af95 1849 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1850 );
1851 printk("lowmem_reserve[]:");
1852 for (i = 0; i < MAX_NR_ZONES; i++)
1853 printk(" %lu", zone->lowmem_reserve[i]);
1854 printk("\n");
1855 }
1856
1857 for_each_zone(zone) {
8f9de51a 1858 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1859
c7241913
JS
1860 if (!populated_zone(zone))
1861 continue;
1862
1da177e4
LT
1863 show_node(zone);
1864 printk("%s: ", zone->name);
1da177e4
LT
1865
1866 spin_lock_irqsave(&zone->lock, flags);
1867 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1868 nr[order] = zone->free_area[order].nr_free;
1869 total += nr[order] << order;
1da177e4
LT
1870 }
1871 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1872 for (order = 0; order < MAX_ORDER; order++)
1873 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1874 printk("= %lukB\n", K(total));
1875 }
1876
e6f3602d
LW
1877 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1878
1da177e4
LT
1879 show_swap_cache_info();
1880}
1881
1882/*
1883 * Builds allocation fallback zone lists.
1a93205b
CL
1884 *
1885 * Add all populated zones of a node to the zonelist.
1da177e4 1886 */
f0c0b2b8
KH
1887static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1888 int nr_zones, enum zone_type zone_type)
1da177e4 1889{
1a93205b
CL
1890 struct zone *zone;
1891
98d2b0eb 1892 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1893 zone_type++;
02a68a5e
CL
1894
1895 do {
2f6726e5 1896 zone_type--;
070f8032 1897 zone = pgdat->node_zones + zone_type;
1a93205b 1898 if (populated_zone(zone)) {
070f8032
CL
1899 zonelist->zones[nr_zones++] = zone;
1900 check_highest_zone(zone_type);
1da177e4 1901 }
02a68a5e 1902
2f6726e5 1903 } while (zone_type);
070f8032 1904 return nr_zones;
1da177e4
LT
1905}
1906
f0c0b2b8
KH
1907
1908/*
1909 * zonelist_order:
1910 * 0 = automatic detection of better ordering.
1911 * 1 = order by ([node] distance, -zonetype)
1912 * 2 = order by (-zonetype, [node] distance)
1913 *
1914 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1915 * the same zonelist. So only NUMA can configure this param.
1916 */
1917#define ZONELIST_ORDER_DEFAULT 0
1918#define ZONELIST_ORDER_NODE 1
1919#define ZONELIST_ORDER_ZONE 2
1920
1921/* zonelist order in the kernel.
1922 * set_zonelist_order() will set this to NODE or ZONE.
1923 */
1924static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1925static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1926
1927
1da177e4 1928#ifdef CONFIG_NUMA
f0c0b2b8
KH
1929/* The value user specified ....changed by config */
1930static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1931/* string for sysctl */
1932#define NUMA_ZONELIST_ORDER_LEN 16
1933char numa_zonelist_order[16] = "default";
1934
1935/*
1936 * interface for configure zonelist ordering.
1937 * command line option "numa_zonelist_order"
1938 * = "[dD]efault - default, automatic configuration.
1939 * = "[nN]ode - order by node locality, then by zone within node
1940 * = "[zZ]one - order by zone, then by locality within zone
1941 */
1942
1943static int __parse_numa_zonelist_order(char *s)
1944{
1945 if (*s == 'd' || *s == 'D') {
1946 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1947 } else if (*s == 'n' || *s == 'N') {
1948 user_zonelist_order = ZONELIST_ORDER_NODE;
1949 } else if (*s == 'z' || *s == 'Z') {
1950 user_zonelist_order = ZONELIST_ORDER_ZONE;
1951 } else {
1952 printk(KERN_WARNING
1953 "Ignoring invalid numa_zonelist_order value: "
1954 "%s\n", s);
1955 return -EINVAL;
1956 }
1957 return 0;
1958}
1959
1960static __init int setup_numa_zonelist_order(char *s)
1961{
1962 if (s)
1963 return __parse_numa_zonelist_order(s);
1964 return 0;
1965}
1966early_param("numa_zonelist_order", setup_numa_zonelist_order);
1967
1968/*
1969 * sysctl handler for numa_zonelist_order
1970 */
1971int numa_zonelist_order_handler(ctl_table *table, int write,
1972 struct file *file, void __user *buffer, size_t *length,
1973 loff_t *ppos)
1974{
1975 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1976 int ret;
1977
1978 if (write)
1979 strncpy(saved_string, (char*)table->data,
1980 NUMA_ZONELIST_ORDER_LEN);
1981 ret = proc_dostring(table, write, file, buffer, length, ppos);
1982 if (ret)
1983 return ret;
1984 if (write) {
1985 int oldval = user_zonelist_order;
1986 if (__parse_numa_zonelist_order((char*)table->data)) {
1987 /*
1988 * bogus value. restore saved string
1989 */
1990 strncpy((char*)table->data, saved_string,
1991 NUMA_ZONELIST_ORDER_LEN);
1992 user_zonelist_order = oldval;
1993 } else if (oldval != user_zonelist_order)
1994 build_all_zonelists();
1995 }
1996 return 0;
1997}
1998
1999
1da177e4 2000#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2001static int node_load[MAX_NUMNODES];
2002
1da177e4 2003/**
4dc3b16b 2004 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2005 * @node: node whose fallback list we're appending
2006 * @used_node_mask: nodemask_t of already used nodes
2007 *
2008 * We use a number of factors to determine which is the next node that should
2009 * appear on a given node's fallback list. The node should not have appeared
2010 * already in @node's fallback list, and it should be the next closest node
2011 * according to the distance array (which contains arbitrary distance values
2012 * from each node to each node in the system), and should also prefer nodes
2013 * with no CPUs, since presumably they'll have very little allocation pressure
2014 * on them otherwise.
2015 * It returns -1 if no node is found.
2016 */
f0c0b2b8 2017static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2018{
4cf808eb 2019 int n, val;
1da177e4
LT
2020 int min_val = INT_MAX;
2021 int best_node = -1;
c5f59f08 2022 node_to_cpumask_ptr(tmp, 0);
1da177e4 2023
4cf808eb
LT
2024 /* Use the local node if we haven't already */
2025 if (!node_isset(node, *used_node_mask)) {
2026 node_set(node, *used_node_mask);
2027 return node;
2028 }
1da177e4 2029
37b07e41 2030 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2031
2032 /* Don't want a node to appear more than once */
2033 if (node_isset(n, *used_node_mask))
2034 continue;
2035
1da177e4
LT
2036 /* Use the distance array to find the distance */
2037 val = node_distance(node, n);
2038
4cf808eb
LT
2039 /* Penalize nodes under us ("prefer the next node") */
2040 val += (n < node);
2041
1da177e4 2042 /* Give preference to headless and unused nodes */
c5f59f08
MT
2043 node_to_cpumask_ptr_next(tmp, n);
2044 if (!cpus_empty(*tmp))
1da177e4
LT
2045 val += PENALTY_FOR_NODE_WITH_CPUS;
2046
2047 /* Slight preference for less loaded node */
2048 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2049 val += node_load[n];
2050
2051 if (val < min_val) {
2052 min_val = val;
2053 best_node = n;
2054 }
2055 }
2056
2057 if (best_node >= 0)
2058 node_set(best_node, *used_node_mask);
2059
2060 return best_node;
2061}
2062
f0c0b2b8
KH
2063
2064/*
2065 * Build zonelists ordered by node and zones within node.
2066 * This results in maximum locality--normal zone overflows into local
2067 * DMA zone, if any--but risks exhausting DMA zone.
2068 */
2069static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2070{
f0c0b2b8 2071 int j;
1da177e4 2072 struct zonelist *zonelist;
f0c0b2b8 2073
54a6eb5c
MG
2074 zonelist = &pgdat->node_zonelists[0];
2075 for (j = 0; zonelist->zones[j] != NULL; j++)
2076 ;
2077 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2078 MAX_NR_ZONES - 1);
2079 zonelist->zones[j] = NULL;
f0c0b2b8
KH
2080}
2081
523b9458
CL
2082/*
2083 * Build gfp_thisnode zonelists
2084 */
2085static void build_thisnode_zonelists(pg_data_t *pgdat)
2086{
523b9458
CL
2087 int j;
2088 struct zonelist *zonelist;
2089
54a6eb5c
MG
2090 zonelist = &pgdat->node_zonelists[1];
2091 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2092 zonelist->zones[j] = NULL;
523b9458
CL
2093}
2094
f0c0b2b8
KH
2095/*
2096 * Build zonelists ordered by zone and nodes within zones.
2097 * This results in conserving DMA zone[s] until all Normal memory is
2098 * exhausted, but results in overflowing to remote node while memory
2099 * may still exist in local DMA zone.
2100 */
2101static int node_order[MAX_NUMNODES];
2102
2103static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2104{
f0c0b2b8
KH
2105 int pos, j, node;
2106 int zone_type; /* needs to be signed */
2107 struct zone *z;
2108 struct zonelist *zonelist;
2109
54a6eb5c
MG
2110 zonelist = &pgdat->node_zonelists[0];
2111 pos = 0;
2112 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2113 for (j = 0; j < nr_nodes; j++) {
2114 node = node_order[j];
2115 z = &NODE_DATA(node)->node_zones[zone_type];
2116 if (populated_zone(z)) {
2117 zonelist->zones[pos++] = z;
2118 check_highest_zone(zone_type);
f0c0b2b8
KH
2119 }
2120 }
f0c0b2b8 2121 }
54a6eb5c 2122 zonelist->zones[pos] = NULL;
f0c0b2b8
KH
2123}
2124
2125static int default_zonelist_order(void)
2126{
2127 int nid, zone_type;
2128 unsigned long low_kmem_size,total_size;
2129 struct zone *z;
2130 int average_size;
2131 /*
2132 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2133 * If they are really small and used heavily, the system can fall
2134 * into OOM very easily.
2135 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2136 */
2137 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2138 low_kmem_size = 0;
2139 total_size = 0;
2140 for_each_online_node(nid) {
2141 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2142 z = &NODE_DATA(nid)->node_zones[zone_type];
2143 if (populated_zone(z)) {
2144 if (zone_type < ZONE_NORMAL)
2145 low_kmem_size += z->present_pages;
2146 total_size += z->present_pages;
2147 }
2148 }
2149 }
2150 if (!low_kmem_size || /* there are no DMA area. */
2151 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2152 return ZONELIST_ORDER_NODE;
2153 /*
2154 * look into each node's config.
2155 * If there is a node whose DMA/DMA32 memory is very big area on
2156 * local memory, NODE_ORDER may be suitable.
2157 */
37b07e41
LS
2158 average_size = total_size /
2159 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2160 for_each_online_node(nid) {
2161 low_kmem_size = 0;
2162 total_size = 0;
2163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2164 z = &NODE_DATA(nid)->node_zones[zone_type];
2165 if (populated_zone(z)) {
2166 if (zone_type < ZONE_NORMAL)
2167 low_kmem_size += z->present_pages;
2168 total_size += z->present_pages;
2169 }
2170 }
2171 if (low_kmem_size &&
2172 total_size > average_size && /* ignore small node */
2173 low_kmem_size > total_size * 70/100)
2174 return ZONELIST_ORDER_NODE;
2175 }
2176 return ZONELIST_ORDER_ZONE;
2177}
2178
2179static void set_zonelist_order(void)
2180{
2181 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2182 current_zonelist_order = default_zonelist_order();
2183 else
2184 current_zonelist_order = user_zonelist_order;
2185}
2186
2187static void build_zonelists(pg_data_t *pgdat)
2188{
2189 int j, node, load;
2190 enum zone_type i;
1da177e4 2191 nodemask_t used_mask;
f0c0b2b8
KH
2192 int local_node, prev_node;
2193 struct zonelist *zonelist;
2194 int order = current_zonelist_order;
1da177e4
LT
2195
2196 /* initialize zonelists */
523b9458 2197 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4
LT
2198 zonelist = pgdat->node_zonelists + i;
2199 zonelist->zones[0] = NULL;
2200 }
2201
2202 /* NUMA-aware ordering of nodes */
2203 local_node = pgdat->node_id;
2204 load = num_online_nodes();
2205 prev_node = local_node;
2206 nodes_clear(used_mask);
f0c0b2b8
KH
2207
2208 memset(node_load, 0, sizeof(node_load));
2209 memset(node_order, 0, sizeof(node_order));
2210 j = 0;
2211
1da177e4 2212 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2213 int distance = node_distance(local_node, node);
2214
2215 /*
2216 * If another node is sufficiently far away then it is better
2217 * to reclaim pages in a zone before going off node.
2218 */
2219 if (distance > RECLAIM_DISTANCE)
2220 zone_reclaim_mode = 1;
2221
1da177e4
LT
2222 /*
2223 * We don't want to pressure a particular node.
2224 * So adding penalty to the first node in same
2225 * distance group to make it round-robin.
2226 */
9eeff239 2227 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2228 node_load[node] = load;
2229
1da177e4
LT
2230 prev_node = node;
2231 load--;
f0c0b2b8
KH
2232 if (order == ZONELIST_ORDER_NODE)
2233 build_zonelists_in_node_order(pgdat, node);
2234 else
2235 node_order[j++] = node; /* remember order */
2236 }
1da177e4 2237
f0c0b2b8
KH
2238 if (order == ZONELIST_ORDER_ZONE) {
2239 /* calculate node order -- i.e., DMA last! */
2240 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2241 }
523b9458
CL
2242
2243 build_thisnode_zonelists(pgdat);
1da177e4
LT
2244}
2245
9276b1bc 2246/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2247static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2248{
54a6eb5c
MG
2249 struct zonelist *zonelist;
2250 struct zonelist_cache *zlc;
2251 struct zone **z;
9276b1bc 2252
54a6eb5c
MG
2253 zonelist = &pgdat->node_zonelists[0];
2254 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2255 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2256 for (z = zonelist->zones; *z; z++)
2257 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
9276b1bc
PJ
2258}
2259
f0c0b2b8 2260
1da177e4
LT
2261#else /* CONFIG_NUMA */
2262
f0c0b2b8
KH
2263static void set_zonelist_order(void)
2264{
2265 current_zonelist_order = ZONELIST_ORDER_ZONE;
2266}
2267
2268static void build_zonelists(pg_data_t *pgdat)
1da177e4 2269{
19655d34 2270 int node, local_node;
54a6eb5c
MG
2271 enum zone_type j;
2272 struct zonelist *zonelist;
1da177e4
LT
2273
2274 local_node = pgdat->node_id;
1da177e4 2275
54a6eb5c
MG
2276 zonelist = &pgdat->node_zonelists[0];
2277 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2278
54a6eb5c
MG
2279 /*
2280 * Now we build the zonelist so that it contains the zones
2281 * of all the other nodes.
2282 * We don't want to pressure a particular node, so when
2283 * building the zones for node N, we make sure that the
2284 * zones coming right after the local ones are those from
2285 * node N+1 (modulo N)
2286 */
2287 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2288 if (!node_online(node))
2289 continue;
2290 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2291 MAX_NR_ZONES - 1);
1da177e4 2292 }
54a6eb5c
MG
2293 for (node = 0; node < local_node; node++) {
2294 if (!node_online(node))
2295 continue;
2296 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2297 MAX_NR_ZONES - 1);
2298 }
2299
2300 zonelist->zones[j] = NULL;
1da177e4
LT
2301}
2302
9276b1bc 2303/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2304static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2305{
54a6eb5c
MG
2306 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2307 pgdat->node_zonelists[1].zlcache_ptr = NULL;
9276b1bc
PJ
2308}
2309
1da177e4
LT
2310#endif /* CONFIG_NUMA */
2311
6811378e 2312/* return values int ....just for stop_machine_run() */
f0c0b2b8 2313static int __build_all_zonelists(void *dummy)
1da177e4 2314{
6811378e 2315 int nid;
9276b1bc
PJ
2316
2317 for_each_online_node(nid) {
7ea1530a
CL
2318 pg_data_t *pgdat = NODE_DATA(nid);
2319
2320 build_zonelists(pgdat);
2321 build_zonelist_cache(pgdat);
9276b1bc 2322 }
6811378e
YG
2323 return 0;
2324}
2325
f0c0b2b8 2326void build_all_zonelists(void)
6811378e 2327{
f0c0b2b8
KH
2328 set_zonelist_order();
2329
6811378e 2330 if (system_state == SYSTEM_BOOTING) {
423b41d7 2331 __build_all_zonelists(NULL);
6811378e
YG
2332 cpuset_init_current_mems_allowed();
2333 } else {
183ff22b 2334 /* we have to stop all cpus to guarantee there is no user
6811378e
YG
2335 of zonelist */
2336 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2337 /* cpuset refresh routine should be here */
2338 }
bd1e22b8 2339 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2340 /*
2341 * Disable grouping by mobility if the number of pages in the
2342 * system is too low to allow the mechanism to work. It would be
2343 * more accurate, but expensive to check per-zone. This check is
2344 * made on memory-hotadd so a system can start with mobility
2345 * disabled and enable it later
2346 */
d9c23400 2347 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2348 page_group_by_mobility_disabled = 1;
2349 else
2350 page_group_by_mobility_disabled = 0;
2351
2352 printk("Built %i zonelists in %s order, mobility grouping %s. "
2353 "Total pages: %ld\n",
f0c0b2b8
KH
2354 num_online_nodes(),
2355 zonelist_order_name[current_zonelist_order],
9ef9acb0 2356 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2357 vm_total_pages);
2358#ifdef CONFIG_NUMA
2359 printk("Policy zone: %s\n", zone_names[policy_zone]);
2360#endif
1da177e4
LT
2361}
2362
2363/*
2364 * Helper functions to size the waitqueue hash table.
2365 * Essentially these want to choose hash table sizes sufficiently
2366 * large so that collisions trying to wait on pages are rare.
2367 * But in fact, the number of active page waitqueues on typical
2368 * systems is ridiculously low, less than 200. So this is even
2369 * conservative, even though it seems large.
2370 *
2371 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2372 * waitqueues, i.e. the size of the waitq table given the number of pages.
2373 */
2374#define PAGES_PER_WAITQUEUE 256
2375
cca448fe 2376#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2377static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2378{
2379 unsigned long size = 1;
2380
2381 pages /= PAGES_PER_WAITQUEUE;
2382
2383 while (size < pages)
2384 size <<= 1;
2385
2386 /*
2387 * Once we have dozens or even hundreds of threads sleeping
2388 * on IO we've got bigger problems than wait queue collision.
2389 * Limit the size of the wait table to a reasonable size.
2390 */
2391 size = min(size, 4096UL);
2392
2393 return max(size, 4UL);
2394}
cca448fe
YG
2395#else
2396/*
2397 * A zone's size might be changed by hot-add, so it is not possible to determine
2398 * a suitable size for its wait_table. So we use the maximum size now.
2399 *
2400 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2401 *
2402 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2403 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2404 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2405 *
2406 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2407 * or more by the traditional way. (See above). It equals:
2408 *
2409 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2410 * ia64(16K page size) : = ( 8G + 4M)byte.
2411 * powerpc (64K page size) : = (32G +16M)byte.
2412 */
2413static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2414{
2415 return 4096UL;
2416}
2417#endif
1da177e4
LT
2418
2419/*
2420 * This is an integer logarithm so that shifts can be used later
2421 * to extract the more random high bits from the multiplicative
2422 * hash function before the remainder is taken.
2423 */
2424static inline unsigned long wait_table_bits(unsigned long size)
2425{
2426 return ffz(~size);
2427}
2428
2429#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2430
56fd56b8 2431/*
d9c23400 2432 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2433 * of blocks reserved is based on zone->pages_min. The memory within the
2434 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2435 * higher will lead to a bigger reserve which will get freed as contiguous
2436 * blocks as reclaim kicks in
2437 */
2438static void setup_zone_migrate_reserve(struct zone *zone)
2439{
2440 unsigned long start_pfn, pfn, end_pfn;
2441 struct page *page;
2442 unsigned long reserve, block_migratetype;
2443
2444 /* Get the start pfn, end pfn and the number of blocks to reserve */
2445 start_pfn = zone->zone_start_pfn;
2446 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2447 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2448 pageblock_order;
56fd56b8 2449
d9c23400 2450 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2451 if (!pfn_valid(pfn))
2452 continue;
2453 page = pfn_to_page(pfn);
2454
2455 /* Blocks with reserved pages will never free, skip them. */
2456 if (PageReserved(page))
2457 continue;
2458
2459 block_migratetype = get_pageblock_migratetype(page);
2460
2461 /* If this block is reserved, account for it */
2462 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2463 reserve--;
2464 continue;
2465 }
2466
2467 /* Suitable for reserving if this block is movable */
2468 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2469 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2470 move_freepages_block(zone, page, MIGRATE_RESERVE);
2471 reserve--;
2472 continue;
2473 }
2474
2475 /*
2476 * If the reserve is met and this is a previous reserved block,
2477 * take it back
2478 */
2479 if (block_migratetype == MIGRATE_RESERVE) {
2480 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2481 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2482 }
2483 }
2484}
ac0e5b7a 2485
1da177e4
LT
2486/*
2487 * Initially all pages are reserved - free ones are freed
2488 * up by free_all_bootmem() once the early boot process is
2489 * done. Non-atomic initialization, single-pass.
2490 */
c09b4240 2491void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2492 unsigned long start_pfn, enum memmap_context context)
1da177e4 2493{
1da177e4 2494 struct page *page;
29751f69
AW
2495 unsigned long end_pfn = start_pfn + size;
2496 unsigned long pfn;
1da177e4 2497
cbe8dd4a 2498 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2499 /*
2500 * There can be holes in boot-time mem_map[]s
2501 * handed to this function. They do not
2502 * exist on hotplugged memory.
2503 */
2504 if (context == MEMMAP_EARLY) {
2505 if (!early_pfn_valid(pfn))
2506 continue;
2507 if (!early_pfn_in_nid(pfn, nid))
2508 continue;
2509 }
d41dee36
AW
2510 page = pfn_to_page(pfn);
2511 set_page_links(page, zone, nid, pfn);
7835e98b 2512 init_page_count(page);
1da177e4
LT
2513 reset_page_mapcount(page);
2514 SetPageReserved(page);
b2a0ac88
MG
2515
2516 /*
2517 * Mark the block movable so that blocks are reserved for
2518 * movable at startup. This will force kernel allocations
2519 * to reserve their blocks rather than leaking throughout
2520 * the address space during boot when many long-lived
56fd56b8
MG
2521 * kernel allocations are made. Later some blocks near
2522 * the start are marked MIGRATE_RESERVE by
2523 * setup_zone_migrate_reserve()
b2a0ac88 2524 */
d9c23400 2525 if ((pfn & (pageblock_nr_pages-1)))
56fd56b8 2526 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2527
1da177e4
LT
2528 INIT_LIST_HEAD(&page->lru);
2529#ifdef WANT_PAGE_VIRTUAL
2530 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2531 if (!is_highmem_idx(zone))
3212c6be 2532 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2533#endif
1da177e4
LT
2534 }
2535}
2536
1e548deb 2537static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2538{
b2a0ac88
MG
2539 int order, t;
2540 for_each_migratetype_order(order, t) {
2541 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2542 zone->free_area[order].nr_free = 0;
2543 }
2544}
2545
2546#ifndef __HAVE_ARCH_MEMMAP_INIT
2547#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2548 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2549#endif
2550
1d6f4e60 2551static int zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2552{
2553 int batch;
2554
2555 /*
2556 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2557 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2558 *
2559 * OK, so we don't know how big the cache is. So guess.
2560 */
2561 batch = zone->present_pages / 1024;
ba56e91c
SR
2562 if (batch * PAGE_SIZE > 512 * 1024)
2563 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2564 batch /= 4; /* We effectively *= 4 below */
2565 if (batch < 1)
2566 batch = 1;
2567
2568 /*
0ceaacc9
NP
2569 * Clamp the batch to a 2^n - 1 value. Having a power
2570 * of 2 value was found to be more likely to have
2571 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2572 *
0ceaacc9
NP
2573 * For example if 2 tasks are alternately allocating
2574 * batches of pages, one task can end up with a lot
2575 * of pages of one half of the possible page colors
2576 * and the other with pages of the other colors.
e7c8d5c9 2577 */
0ceaacc9 2578 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2579
e7c8d5c9
CL
2580 return batch;
2581}
2582
2caaad41
CL
2583inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2584{
2585 struct per_cpu_pages *pcp;
2586
1c6fe946
MD
2587 memset(p, 0, sizeof(*p));
2588
3dfa5721 2589 pcp = &p->pcp;
2caaad41 2590 pcp->count = 0;
2caaad41
CL
2591 pcp->high = 6 * batch;
2592 pcp->batch = max(1UL, 1 * batch);
2593 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2594}
2595
8ad4b1fb
RS
2596/*
2597 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2598 * to the value high for the pageset p.
2599 */
2600
2601static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2602 unsigned long high)
2603{
2604 struct per_cpu_pages *pcp;
2605
3dfa5721 2606 pcp = &p->pcp;
8ad4b1fb
RS
2607 pcp->high = high;
2608 pcp->batch = max(1UL, high/4);
2609 if ((high/4) > (PAGE_SHIFT * 8))
2610 pcp->batch = PAGE_SHIFT * 8;
2611}
2612
2613
e7c8d5c9
CL
2614#ifdef CONFIG_NUMA
2615/*
2caaad41
CL
2616 * Boot pageset table. One per cpu which is going to be used for all
2617 * zones and all nodes. The parameters will be set in such a way
2618 * that an item put on a list will immediately be handed over to
2619 * the buddy list. This is safe since pageset manipulation is done
2620 * with interrupts disabled.
2621 *
2622 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2623 *
2624 * The boot_pagesets must be kept even after bootup is complete for
2625 * unused processors and/or zones. They do play a role for bootstrapping
2626 * hotplugged processors.
2627 *
2628 * zoneinfo_show() and maybe other functions do
2629 * not check if the processor is online before following the pageset pointer.
2630 * Other parts of the kernel may not check if the zone is available.
2caaad41 2631 */
88a2a4ac 2632static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2633
2634/*
2635 * Dynamically allocate memory for the
e7c8d5c9
CL
2636 * per cpu pageset array in struct zone.
2637 */
6292d9aa 2638static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2639{
2640 struct zone *zone, *dzone;
37c0708d
CL
2641 int node = cpu_to_node(cpu);
2642
2643 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2644
2645 for_each_zone(zone) {
e7c8d5c9 2646
66a55030
CL
2647 if (!populated_zone(zone))
2648 continue;
2649
23316bc8 2650 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2651 GFP_KERNEL, node);
23316bc8 2652 if (!zone_pcp(zone, cpu))
e7c8d5c9 2653 goto bad;
e7c8d5c9 2654
23316bc8 2655 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2656
2657 if (percpu_pagelist_fraction)
2658 setup_pagelist_highmark(zone_pcp(zone, cpu),
2659 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2660 }
2661
2662 return 0;
2663bad:
2664 for_each_zone(dzone) {
64191688
AM
2665 if (!populated_zone(dzone))
2666 continue;
e7c8d5c9
CL
2667 if (dzone == zone)
2668 break;
23316bc8
NP
2669 kfree(zone_pcp(dzone, cpu));
2670 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2671 }
2672 return -ENOMEM;
2673}
2674
2675static inline void free_zone_pagesets(int cpu)
2676{
e7c8d5c9
CL
2677 struct zone *zone;
2678
2679 for_each_zone(zone) {
2680 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2681
f3ef9ead
DR
2682 /* Free per_cpu_pageset if it is slab allocated */
2683 if (pset != &boot_pageset[cpu])
2684 kfree(pset);
e7c8d5c9 2685 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2686 }
e7c8d5c9
CL
2687}
2688
9c7b216d 2689static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2690 unsigned long action,
2691 void *hcpu)
2692{
2693 int cpu = (long)hcpu;
2694 int ret = NOTIFY_OK;
2695
2696 switch (action) {
ce421c79 2697 case CPU_UP_PREPARE:
8bb78442 2698 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2699 if (process_zones(cpu))
2700 ret = NOTIFY_BAD;
2701 break;
2702 case CPU_UP_CANCELED:
8bb78442 2703 case CPU_UP_CANCELED_FROZEN:
ce421c79 2704 case CPU_DEAD:
8bb78442 2705 case CPU_DEAD_FROZEN:
ce421c79
AW
2706 free_zone_pagesets(cpu);
2707 break;
2708 default:
2709 break;
e7c8d5c9
CL
2710 }
2711 return ret;
2712}
2713
74b85f37 2714static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2715 { &pageset_cpuup_callback, NULL, 0 };
2716
78d9955b 2717void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2718{
2719 int err;
2720
2721 /* Initialize per_cpu_pageset for cpu 0.
2722 * A cpuup callback will do this for every cpu
2723 * as it comes online
2724 */
2725 err = process_zones(smp_processor_id());
2726 BUG_ON(err);
2727 register_cpu_notifier(&pageset_notifier);
2728}
2729
2730#endif
2731
577a32f6 2732static noinline __init_refok
cca448fe 2733int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2734{
2735 int i;
2736 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2737 size_t alloc_size;
ed8ece2e
DH
2738
2739 /*
2740 * The per-page waitqueue mechanism uses hashed waitqueues
2741 * per zone.
2742 */
02b694de
YG
2743 zone->wait_table_hash_nr_entries =
2744 wait_table_hash_nr_entries(zone_size_pages);
2745 zone->wait_table_bits =
2746 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2747 alloc_size = zone->wait_table_hash_nr_entries
2748 * sizeof(wait_queue_head_t);
2749
2750 if (system_state == SYSTEM_BOOTING) {
2751 zone->wait_table = (wait_queue_head_t *)
2752 alloc_bootmem_node(pgdat, alloc_size);
2753 } else {
2754 /*
2755 * This case means that a zone whose size was 0 gets new memory
2756 * via memory hot-add.
2757 * But it may be the case that a new node was hot-added. In
2758 * this case vmalloc() will not be able to use this new node's
2759 * memory - this wait_table must be initialized to use this new
2760 * node itself as well.
2761 * To use this new node's memory, further consideration will be
2762 * necessary.
2763 */
8691f3a7 2764 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2765 }
2766 if (!zone->wait_table)
2767 return -ENOMEM;
ed8ece2e 2768
02b694de 2769 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2770 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2771
2772 return 0;
ed8ece2e
DH
2773}
2774
c09b4240 2775static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2776{
2777 int cpu;
2778 unsigned long batch = zone_batchsize(zone);
2779
2780 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2781#ifdef CONFIG_NUMA
2782 /* Early boot. Slab allocator not functional yet */
23316bc8 2783 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2784 setup_pageset(&boot_pageset[cpu],0);
2785#else
2786 setup_pageset(zone_pcp(zone,cpu), batch);
2787#endif
2788 }
f5335c0f
AB
2789 if (zone->present_pages)
2790 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2791 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2792}
2793
718127cc
YG
2794__meminit int init_currently_empty_zone(struct zone *zone,
2795 unsigned long zone_start_pfn,
a2f3aa02
DH
2796 unsigned long size,
2797 enum memmap_context context)
ed8ece2e
DH
2798{
2799 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2800 int ret;
2801 ret = zone_wait_table_init(zone, size);
2802 if (ret)
2803 return ret;
ed8ece2e
DH
2804 pgdat->nr_zones = zone_idx(zone) + 1;
2805
ed8ece2e
DH
2806 zone->zone_start_pfn = zone_start_pfn;
2807
2808 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2809
1e548deb 2810 zone_init_free_lists(zone);
718127cc
YG
2811
2812 return 0;
ed8ece2e
DH
2813}
2814
c713216d
MG
2815#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2816/*
2817 * Basic iterator support. Return the first range of PFNs for a node
2818 * Note: nid == MAX_NUMNODES returns first region regardless of node
2819 */
a3142c8e 2820static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2821{
2822 int i;
2823
2824 for (i = 0; i < nr_nodemap_entries; i++)
2825 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2826 return i;
2827
2828 return -1;
2829}
2830
2831/*
2832 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2833 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2834 */
a3142c8e 2835static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2836{
2837 for (index = index + 1; index < nr_nodemap_entries; index++)
2838 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2839 return index;
2840
2841 return -1;
2842}
2843
2844#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2845/*
2846 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2847 * Architectures may implement their own version but if add_active_range()
2848 * was used and there are no special requirements, this is a convenient
2849 * alternative
2850 */
6f076f5d 2851int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2852{
2853 int i;
2854
2855 for (i = 0; i < nr_nodemap_entries; i++) {
2856 unsigned long start_pfn = early_node_map[i].start_pfn;
2857 unsigned long end_pfn = early_node_map[i].end_pfn;
2858
2859 if (start_pfn <= pfn && pfn < end_pfn)
2860 return early_node_map[i].nid;
2861 }
2862
2863 return 0;
2864}
2865#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2866
2867/* Basic iterator support to walk early_node_map[] */
2868#define for_each_active_range_index_in_nid(i, nid) \
2869 for (i = first_active_region_index_in_nid(nid); i != -1; \
2870 i = next_active_region_index_in_nid(i, nid))
2871
2872/**
2873 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2874 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2875 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2876 *
2877 * If an architecture guarantees that all ranges registered with
2878 * add_active_ranges() contain no holes and may be freed, this
2879 * this function may be used instead of calling free_bootmem() manually.
2880 */
2881void __init free_bootmem_with_active_regions(int nid,
2882 unsigned long max_low_pfn)
2883{
2884 int i;
2885
2886 for_each_active_range_index_in_nid(i, nid) {
2887 unsigned long size_pages = 0;
2888 unsigned long end_pfn = early_node_map[i].end_pfn;
2889
2890 if (early_node_map[i].start_pfn >= max_low_pfn)
2891 continue;
2892
2893 if (end_pfn > max_low_pfn)
2894 end_pfn = max_low_pfn;
2895
2896 size_pages = end_pfn - early_node_map[i].start_pfn;
2897 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2898 PFN_PHYS(early_node_map[i].start_pfn),
2899 size_pages << PAGE_SHIFT);
2900 }
2901}
2902
2903/**
2904 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2905 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2906 *
2907 * If an architecture guarantees that all ranges registered with
2908 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2909 * function may be used instead of calling memory_present() manually.
c713216d
MG
2910 */
2911void __init sparse_memory_present_with_active_regions(int nid)
2912{
2913 int i;
2914
2915 for_each_active_range_index_in_nid(i, nid)
2916 memory_present(early_node_map[i].nid,
2917 early_node_map[i].start_pfn,
2918 early_node_map[i].end_pfn);
2919}
2920
fb01439c
MG
2921/**
2922 * push_node_boundaries - Push node boundaries to at least the requested boundary
2923 * @nid: The nid of the node to push the boundary for
2924 * @start_pfn: The start pfn of the node
2925 * @end_pfn: The end pfn of the node
2926 *
2927 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2928 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2929 * be hotplugged even though no physical memory exists. This function allows
2930 * an arch to push out the node boundaries so mem_map is allocated that can
2931 * be used later.
2932 */
2933#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2934void __init push_node_boundaries(unsigned int nid,
2935 unsigned long start_pfn, unsigned long end_pfn)
2936{
2937 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2938 nid, start_pfn, end_pfn);
2939
2940 /* Initialise the boundary for this node if necessary */
2941 if (node_boundary_end_pfn[nid] == 0)
2942 node_boundary_start_pfn[nid] = -1UL;
2943
2944 /* Update the boundaries */
2945 if (node_boundary_start_pfn[nid] > start_pfn)
2946 node_boundary_start_pfn[nid] = start_pfn;
2947 if (node_boundary_end_pfn[nid] < end_pfn)
2948 node_boundary_end_pfn[nid] = end_pfn;
2949}
2950
2951/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2952static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2953 unsigned long *start_pfn, unsigned long *end_pfn)
2954{
2955 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2956 nid, *start_pfn, *end_pfn);
2957
2958 /* Return if boundary information has not been provided */
2959 if (node_boundary_end_pfn[nid] == 0)
2960 return;
2961
2962 /* Check the boundaries and update if necessary */
2963 if (node_boundary_start_pfn[nid] < *start_pfn)
2964 *start_pfn = node_boundary_start_pfn[nid];
2965 if (node_boundary_end_pfn[nid] > *end_pfn)
2966 *end_pfn = node_boundary_end_pfn[nid];
2967}
2968#else
2969void __init push_node_boundaries(unsigned int nid,
2970 unsigned long start_pfn, unsigned long end_pfn) {}
2971
98011f56 2972static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2973 unsigned long *start_pfn, unsigned long *end_pfn) {}
2974#endif
2975
2976
c713216d
MG
2977/**
2978 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2979 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2980 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2981 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2982 *
2983 * It returns the start and end page frame of a node based on information
2984 * provided by an arch calling add_active_range(). If called for a node
2985 * with no available memory, a warning is printed and the start and end
88ca3b94 2986 * PFNs will be 0.
c713216d 2987 */
a3142c8e 2988void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
2989 unsigned long *start_pfn, unsigned long *end_pfn)
2990{
2991 int i;
2992 *start_pfn = -1UL;
2993 *end_pfn = 0;
2994
2995 for_each_active_range_index_in_nid(i, nid) {
2996 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2997 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2998 }
2999
633c0666 3000 if (*start_pfn == -1UL)
c713216d 3001 *start_pfn = 0;
fb01439c
MG
3002
3003 /* Push the node boundaries out if requested */
3004 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3005}
3006
2a1e274a
MG
3007/*
3008 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3009 * assumption is made that zones within a node are ordered in monotonic
3010 * increasing memory addresses so that the "highest" populated zone is used
3011 */
3012void __init find_usable_zone_for_movable(void)
3013{
3014 int zone_index;
3015 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3016 if (zone_index == ZONE_MOVABLE)
3017 continue;
3018
3019 if (arch_zone_highest_possible_pfn[zone_index] >
3020 arch_zone_lowest_possible_pfn[zone_index])
3021 break;
3022 }
3023
3024 VM_BUG_ON(zone_index == -1);
3025 movable_zone = zone_index;
3026}
3027
3028/*
3029 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3030 * because it is sized independant of architecture. Unlike the other zones,
3031 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3032 * in each node depending on the size of each node and how evenly kernelcore
3033 * is distributed. This helper function adjusts the zone ranges
3034 * provided by the architecture for a given node by using the end of the
3035 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3036 * zones within a node are in order of monotonic increases memory addresses
3037 */
3038void __meminit adjust_zone_range_for_zone_movable(int nid,
3039 unsigned long zone_type,
3040 unsigned long node_start_pfn,
3041 unsigned long node_end_pfn,
3042 unsigned long *zone_start_pfn,
3043 unsigned long *zone_end_pfn)
3044{
3045 /* Only adjust if ZONE_MOVABLE is on this node */
3046 if (zone_movable_pfn[nid]) {
3047 /* Size ZONE_MOVABLE */
3048 if (zone_type == ZONE_MOVABLE) {
3049 *zone_start_pfn = zone_movable_pfn[nid];
3050 *zone_end_pfn = min(node_end_pfn,
3051 arch_zone_highest_possible_pfn[movable_zone]);
3052
3053 /* Adjust for ZONE_MOVABLE starting within this range */
3054 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3055 *zone_end_pfn > zone_movable_pfn[nid]) {
3056 *zone_end_pfn = zone_movable_pfn[nid];
3057
3058 /* Check if this whole range is within ZONE_MOVABLE */
3059 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3060 *zone_start_pfn = *zone_end_pfn;
3061 }
3062}
3063
c713216d
MG
3064/*
3065 * Return the number of pages a zone spans in a node, including holes
3066 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3067 */
6ea6e688 3068static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3069 unsigned long zone_type,
3070 unsigned long *ignored)
3071{
3072 unsigned long node_start_pfn, node_end_pfn;
3073 unsigned long zone_start_pfn, zone_end_pfn;
3074
3075 /* Get the start and end of the node and zone */
3076 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3077 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3078 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3079 adjust_zone_range_for_zone_movable(nid, zone_type,
3080 node_start_pfn, node_end_pfn,
3081 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3082
3083 /* Check that this node has pages within the zone's required range */
3084 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3085 return 0;
3086
3087 /* Move the zone boundaries inside the node if necessary */
3088 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3089 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3090
3091 /* Return the spanned pages */
3092 return zone_end_pfn - zone_start_pfn;
3093}
3094
3095/*
3096 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3097 * then all holes in the requested range will be accounted for.
c713216d 3098 */
a3142c8e 3099unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3100 unsigned long range_start_pfn,
3101 unsigned long range_end_pfn)
3102{
3103 int i = 0;
3104 unsigned long prev_end_pfn = 0, hole_pages = 0;
3105 unsigned long start_pfn;
3106
3107 /* Find the end_pfn of the first active range of pfns in the node */
3108 i = first_active_region_index_in_nid(nid);
3109 if (i == -1)
3110 return 0;
3111
b5445f95
MG
3112 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3113
9c7cd687
MG
3114 /* Account for ranges before physical memory on this node */
3115 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3116 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3117
3118 /* Find all holes for the zone within the node */
3119 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3120
3121 /* No need to continue if prev_end_pfn is outside the zone */
3122 if (prev_end_pfn >= range_end_pfn)
3123 break;
3124
3125 /* Make sure the end of the zone is not within the hole */
3126 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3127 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3128
3129 /* Update the hole size cound and move on */
3130 if (start_pfn > range_start_pfn) {
3131 BUG_ON(prev_end_pfn > start_pfn);
3132 hole_pages += start_pfn - prev_end_pfn;
3133 }
3134 prev_end_pfn = early_node_map[i].end_pfn;
3135 }
3136
9c7cd687
MG
3137 /* Account for ranges past physical memory on this node */
3138 if (range_end_pfn > prev_end_pfn)
0c6cb974 3139 hole_pages += range_end_pfn -
9c7cd687
MG
3140 max(range_start_pfn, prev_end_pfn);
3141
c713216d
MG
3142 return hole_pages;
3143}
3144
3145/**
3146 * absent_pages_in_range - Return number of page frames in holes within a range
3147 * @start_pfn: The start PFN to start searching for holes
3148 * @end_pfn: The end PFN to stop searching for holes
3149 *
88ca3b94 3150 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3151 */
3152unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3153 unsigned long end_pfn)
3154{
3155 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3156}
3157
3158/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3159static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3160 unsigned long zone_type,
3161 unsigned long *ignored)
3162{
9c7cd687
MG
3163 unsigned long node_start_pfn, node_end_pfn;
3164 unsigned long zone_start_pfn, zone_end_pfn;
3165
3166 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3167 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3168 node_start_pfn);
3169 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3170 node_end_pfn);
3171
2a1e274a
MG
3172 adjust_zone_range_for_zone_movable(nid, zone_type,
3173 node_start_pfn, node_end_pfn,
3174 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3175 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3176}
0e0b864e 3177
c713216d 3178#else
6ea6e688 3179static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3180 unsigned long zone_type,
3181 unsigned long *zones_size)
3182{
3183 return zones_size[zone_type];
3184}
3185
6ea6e688 3186static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3187 unsigned long zone_type,
3188 unsigned long *zholes_size)
3189{
3190 if (!zholes_size)
3191 return 0;
3192
3193 return zholes_size[zone_type];
3194}
0e0b864e 3195
c713216d
MG
3196#endif
3197
a3142c8e 3198static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3199 unsigned long *zones_size, unsigned long *zholes_size)
3200{
3201 unsigned long realtotalpages, totalpages = 0;
3202 enum zone_type i;
3203
3204 for (i = 0; i < MAX_NR_ZONES; i++)
3205 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3206 zones_size);
3207 pgdat->node_spanned_pages = totalpages;
3208
3209 realtotalpages = totalpages;
3210 for (i = 0; i < MAX_NR_ZONES; i++)
3211 realtotalpages -=
3212 zone_absent_pages_in_node(pgdat->node_id, i,
3213 zholes_size);
3214 pgdat->node_present_pages = realtotalpages;
3215 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3216 realtotalpages);
3217}
3218
835c134e
MG
3219#ifndef CONFIG_SPARSEMEM
3220/*
3221 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3222 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3223 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3224 * round what is now in bits to nearest long in bits, then return it in
3225 * bytes.
3226 */
3227static unsigned long __init usemap_size(unsigned long zonesize)
3228{
3229 unsigned long usemapsize;
3230
d9c23400
MG
3231 usemapsize = roundup(zonesize, pageblock_nr_pages);
3232 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3233 usemapsize *= NR_PAGEBLOCK_BITS;
3234 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3235
3236 return usemapsize / 8;
3237}
3238
3239static void __init setup_usemap(struct pglist_data *pgdat,
3240 struct zone *zone, unsigned long zonesize)
3241{
3242 unsigned long usemapsize = usemap_size(zonesize);
3243 zone->pageblock_flags = NULL;
3244 if (usemapsize) {
3245 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3246 memset(zone->pageblock_flags, 0, usemapsize);
3247 }
3248}
3249#else
3250static void inline setup_usemap(struct pglist_data *pgdat,
3251 struct zone *zone, unsigned long zonesize) {}
3252#endif /* CONFIG_SPARSEMEM */
3253
d9c23400 3254#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3255
3256/* Return a sensible default order for the pageblock size. */
3257static inline int pageblock_default_order(void)
3258{
3259 if (HPAGE_SHIFT > PAGE_SHIFT)
3260 return HUGETLB_PAGE_ORDER;
3261
3262 return MAX_ORDER-1;
3263}
3264
d9c23400
MG
3265/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3266static inline void __init set_pageblock_order(unsigned int order)
3267{
3268 /* Check that pageblock_nr_pages has not already been setup */
3269 if (pageblock_order)
3270 return;
3271
3272 /*
3273 * Assume the largest contiguous order of interest is a huge page.
3274 * This value may be variable depending on boot parameters on IA64
3275 */
3276 pageblock_order = order;
3277}
3278#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3279
ba72cb8c
MG
3280/*
3281 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3282 * and pageblock_default_order() are unused as pageblock_order is set
3283 * at compile-time. See include/linux/pageblock-flags.h for the values of
3284 * pageblock_order based on the kernel config
3285 */
3286static inline int pageblock_default_order(unsigned int order)
3287{
3288 return MAX_ORDER-1;
3289}
d9c23400
MG
3290#define set_pageblock_order(x) do {} while (0)
3291
3292#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3293
1da177e4
LT
3294/*
3295 * Set up the zone data structures:
3296 * - mark all pages reserved
3297 * - mark all memory queues empty
3298 * - clear the memory bitmaps
3299 */
b5a0e011 3300static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3301 unsigned long *zones_size, unsigned long *zholes_size)
3302{
2f1b6248 3303 enum zone_type j;
ed8ece2e 3304 int nid = pgdat->node_id;
1da177e4 3305 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3306 int ret;
1da177e4 3307
208d54e5 3308 pgdat_resize_init(pgdat);
1da177e4
LT
3309 pgdat->nr_zones = 0;
3310 init_waitqueue_head(&pgdat->kswapd_wait);
3311 pgdat->kswapd_max_order = 0;
3312
3313 for (j = 0; j < MAX_NR_ZONES; j++) {
3314 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3315 unsigned long size, realsize, memmap_pages;
1da177e4 3316
c713216d
MG
3317 size = zone_spanned_pages_in_node(nid, j, zones_size);
3318 realsize = size - zone_absent_pages_in_node(nid, j,
3319 zholes_size);
1da177e4 3320
0e0b864e
MG
3321 /*
3322 * Adjust realsize so that it accounts for how much memory
3323 * is used by this zone for memmap. This affects the watermark
3324 * and per-cpu initialisations
3325 */
3326 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3327 if (realsize >= memmap_pages) {
3328 realsize -= memmap_pages;
3329 printk(KERN_DEBUG
3330 " %s zone: %lu pages used for memmap\n",
3331 zone_names[j], memmap_pages);
3332 } else
3333 printk(KERN_WARNING
3334 " %s zone: %lu pages exceeds realsize %lu\n",
3335 zone_names[j], memmap_pages, realsize);
3336
6267276f
CL
3337 /* Account for reserved pages */
3338 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3339 realsize -= dma_reserve;
6267276f
CL
3340 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3341 zone_names[0], dma_reserve);
0e0b864e
MG
3342 }
3343
98d2b0eb 3344 if (!is_highmem_idx(j))
1da177e4
LT
3345 nr_kernel_pages += realsize;
3346 nr_all_pages += realsize;
3347
3348 zone->spanned_pages = size;
3349 zone->present_pages = realsize;
9614634f 3350#ifdef CONFIG_NUMA
d5f541ed 3351 zone->node = nid;
8417bba4 3352 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3353 / 100;
0ff38490 3354 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3355#endif
1da177e4
LT
3356 zone->name = zone_names[j];
3357 spin_lock_init(&zone->lock);
3358 spin_lock_init(&zone->lru_lock);
bdc8cb98 3359 zone_seqlock_init(zone);
1da177e4 3360 zone->zone_pgdat = pgdat;
1da177e4 3361
3bb1a852 3362 zone->prev_priority = DEF_PRIORITY;
1da177e4 3363
ed8ece2e 3364 zone_pcp_init(zone);
1da177e4
LT
3365 INIT_LIST_HEAD(&zone->active_list);
3366 INIT_LIST_HEAD(&zone->inactive_list);
3367 zone->nr_scan_active = 0;
3368 zone->nr_scan_inactive = 0;
2244b95a 3369 zap_zone_vm_stats(zone);
e815af95 3370 zone->flags = 0;
1da177e4
LT
3371 if (!size)
3372 continue;
3373
ba72cb8c 3374 set_pageblock_order(pageblock_default_order());
835c134e 3375 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3376 ret = init_currently_empty_zone(zone, zone_start_pfn,
3377 size, MEMMAP_EARLY);
718127cc 3378 BUG_ON(ret);
1da177e4 3379 zone_start_pfn += size;
1da177e4
LT
3380 }
3381}
3382
577a32f6 3383static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3384{
1da177e4
LT
3385 /* Skip empty nodes */
3386 if (!pgdat->node_spanned_pages)
3387 return;
3388
d41dee36 3389#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3390 /* ia64 gets its own node_mem_map, before this, without bootmem */
3391 if (!pgdat->node_mem_map) {
e984bb43 3392 unsigned long size, start, end;
d41dee36
AW
3393 struct page *map;
3394
e984bb43
BP
3395 /*
3396 * The zone's endpoints aren't required to be MAX_ORDER
3397 * aligned but the node_mem_map endpoints must be in order
3398 * for the buddy allocator to function correctly.
3399 */
3400 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3401 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3402 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3403 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3404 map = alloc_remap(pgdat->node_id, size);
3405 if (!map)
3406 map = alloc_bootmem_node(pgdat, size);
e984bb43 3407 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3408 }
12d810c1 3409#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3410 /*
3411 * With no DISCONTIG, the global mem_map is just set as node 0's
3412 */
c713216d 3413 if (pgdat == NODE_DATA(0)) {
1da177e4 3414 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3415#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3416 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3417 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3418#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3419 }
1da177e4 3420#endif
d41dee36 3421#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3422}
3423
b5a0e011 3424void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3425 unsigned long *zones_size, unsigned long node_start_pfn,
3426 unsigned long *zholes_size)
3427{
3428 pgdat->node_id = nid;
3429 pgdat->node_start_pfn = node_start_pfn;
c713216d 3430 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3431
3432 alloc_node_mem_map(pgdat);
3433
3434 free_area_init_core(pgdat, zones_size, zholes_size);
3435}
3436
c713216d 3437#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3438
3439#if MAX_NUMNODES > 1
3440/*
3441 * Figure out the number of possible node ids.
3442 */
3443static void __init setup_nr_node_ids(void)
3444{
3445 unsigned int node;
3446 unsigned int highest = 0;
3447
3448 for_each_node_mask(node, node_possible_map)
3449 highest = node;
3450 nr_node_ids = highest + 1;
3451}
3452#else
3453static inline void setup_nr_node_ids(void)
3454{
3455}
3456#endif
3457
c713216d
MG
3458/**
3459 * add_active_range - Register a range of PFNs backed by physical memory
3460 * @nid: The node ID the range resides on
3461 * @start_pfn: The start PFN of the available physical memory
3462 * @end_pfn: The end PFN of the available physical memory
3463 *
3464 * These ranges are stored in an early_node_map[] and later used by
3465 * free_area_init_nodes() to calculate zone sizes and holes. If the
3466 * range spans a memory hole, it is up to the architecture to ensure
3467 * the memory is not freed by the bootmem allocator. If possible
3468 * the range being registered will be merged with existing ranges.
3469 */
3470void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3471 unsigned long end_pfn)
3472{
3473 int i;
3474
3475 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3476 "%d entries of %d used\n",
3477 nid, start_pfn, end_pfn,
3478 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3479
3480 /* Merge with existing active regions if possible */
3481 for (i = 0; i < nr_nodemap_entries; i++) {
3482 if (early_node_map[i].nid != nid)
3483 continue;
3484
3485 /* Skip if an existing region covers this new one */
3486 if (start_pfn >= early_node_map[i].start_pfn &&
3487 end_pfn <= early_node_map[i].end_pfn)
3488 return;
3489
3490 /* Merge forward if suitable */
3491 if (start_pfn <= early_node_map[i].end_pfn &&
3492 end_pfn > early_node_map[i].end_pfn) {
3493 early_node_map[i].end_pfn = end_pfn;
3494 return;
3495 }
3496
3497 /* Merge backward if suitable */
3498 if (start_pfn < early_node_map[i].end_pfn &&
3499 end_pfn >= early_node_map[i].start_pfn) {
3500 early_node_map[i].start_pfn = start_pfn;
3501 return;
3502 }
3503 }
3504
3505 /* Check that early_node_map is large enough */
3506 if (i >= MAX_ACTIVE_REGIONS) {
3507 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3508 MAX_ACTIVE_REGIONS);
3509 return;
3510 }
3511
3512 early_node_map[i].nid = nid;
3513 early_node_map[i].start_pfn = start_pfn;
3514 early_node_map[i].end_pfn = end_pfn;
3515 nr_nodemap_entries = i + 1;
3516}
3517
3518/**
3519 * shrink_active_range - Shrink an existing registered range of PFNs
3520 * @nid: The node id the range is on that should be shrunk
3521 * @old_end_pfn: The old end PFN of the range
3522 * @new_end_pfn: The new PFN of the range
3523 *
3524 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3525 * The map is kept at the end physical page range that has already been
3526 * registered with add_active_range(). This function allows an arch to shrink
3527 * an existing registered range.
3528 */
3529void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3530 unsigned long new_end_pfn)
3531{
3532 int i;
3533
3534 /* Find the old active region end and shrink */
3535 for_each_active_range_index_in_nid(i, nid)
3536 if (early_node_map[i].end_pfn == old_end_pfn) {
3537 early_node_map[i].end_pfn = new_end_pfn;
3538 break;
3539 }
3540}
3541
3542/**
3543 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3544 *
c713216d
MG
3545 * During discovery, it may be found that a table like SRAT is invalid
3546 * and an alternative discovery method must be used. This function removes
3547 * all currently registered regions.
3548 */
88ca3b94 3549void __init remove_all_active_ranges(void)
c713216d
MG
3550{
3551 memset(early_node_map, 0, sizeof(early_node_map));
3552 nr_nodemap_entries = 0;
fb01439c
MG
3553#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3554 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3555 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3556#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3557}
3558
3559/* Compare two active node_active_regions */
3560static int __init cmp_node_active_region(const void *a, const void *b)
3561{
3562 struct node_active_region *arange = (struct node_active_region *)a;
3563 struct node_active_region *brange = (struct node_active_region *)b;
3564
3565 /* Done this way to avoid overflows */
3566 if (arange->start_pfn > brange->start_pfn)
3567 return 1;
3568 if (arange->start_pfn < brange->start_pfn)
3569 return -1;
3570
3571 return 0;
3572}
3573
3574/* sort the node_map by start_pfn */
3575static void __init sort_node_map(void)
3576{
3577 sort(early_node_map, (size_t)nr_nodemap_entries,
3578 sizeof(struct node_active_region),
3579 cmp_node_active_region, NULL);
3580}
3581
a6af2bc3 3582/* Find the lowest pfn for a node */
c713216d
MG
3583unsigned long __init find_min_pfn_for_node(unsigned long nid)
3584{
3585 int i;
a6af2bc3 3586 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3587
c713216d
MG
3588 /* Assuming a sorted map, the first range found has the starting pfn */
3589 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3590 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3591
a6af2bc3
MG
3592 if (min_pfn == ULONG_MAX) {
3593 printk(KERN_WARNING
3594 "Could not find start_pfn for node %lu\n", nid);
3595 return 0;
3596 }
3597
3598 return min_pfn;
c713216d
MG
3599}
3600
3601/**
3602 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3603 *
3604 * It returns the minimum PFN based on information provided via
88ca3b94 3605 * add_active_range().
c713216d
MG
3606 */
3607unsigned long __init find_min_pfn_with_active_regions(void)
3608{
3609 return find_min_pfn_for_node(MAX_NUMNODES);
3610}
3611
3612/**
3613 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3614 *
3615 * It returns the maximum PFN based on information provided via
88ca3b94 3616 * add_active_range().
c713216d
MG
3617 */
3618unsigned long __init find_max_pfn_with_active_regions(void)
3619{
3620 int i;
3621 unsigned long max_pfn = 0;
3622
3623 for (i = 0; i < nr_nodemap_entries; i++)
3624 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3625
3626 return max_pfn;
3627}
3628
37b07e41
LS
3629/*
3630 * early_calculate_totalpages()
3631 * Sum pages in active regions for movable zone.
3632 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3633 */
484f51f8 3634static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3635{
3636 int i;
3637 unsigned long totalpages = 0;
3638
37b07e41
LS
3639 for (i = 0; i < nr_nodemap_entries; i++) {
3640 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3641 early_node_map[i].start_pfn;
37b07e41
LS
3642 totalpages += pages;
3643 if (pages)
3644 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3645 }
3646 return totalpages;
7e63efef
MG
3647}
3648
2a1e274a
MG
3649/*
3650 * Find the PFN the Movable zone begins in each node. Kernel memory
3651 * is spread evenly between nodes as long as the nodes have enough
3652 * memory. When they don't, some nodes will have more kernelcore than
3653 * others
3654 */
3655void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3656{
3657 int i, nid;
3658 unsigned long usable_startpfn;
3659 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3660 unsigned long totalpages = early_calculate_totalpages();
3661 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3662
7e63efef
MG
3663 /*
3664 * If movablecore was specified, calculate what size of
3665 * kernelcore that corresponds so that memory usable for
3666 * any allocation type is evenly spread. If both kernelcore
3667 * and movablecore are specified, then the value of kernelcore
3668 * will be used for required_kernelcore if it's greater than
3669 * what movablecore would have allowed.
3670 */
3671 if (required_movablecore) {
7e63efef
MG
3672 unsigned long corepages;
3673
3674 /*
3675 * Round-up so that ZONE_MOVABLE is at least as large as what
3676 * was requested by the user
3677 */
3678 required_movablecore =
3679 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3680 corepages = totalpages - required_movablecore;
3681
3682 required_kernelcore = max(required_kernelcore, corepages);
3683 }
3684
2a1e274a
MG
3685 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3686 if (!required_kernelcore)
3687 return;
3688
3689 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3690 find_usable_zone_for_movable();
3691 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3692
3693restart:
3694 /* Spread kernelcore memory as evenly as possible throughout nodes */
3695 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3696 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3697 /*
3698 * Recalculate kernelcore_node if the division per node
3699 * now exceeds what is necessary to satisfy the requested
3700 * amount of memory for the kernel
3701 */
3702 if (required_kernelcore < kernelcore_node)
3703 kernelcore_node = required_kernelcore / usable_nodes;
3704
3705 /*
3706 * As the map is walked, we track how much memory is usable
3707 * by the kernel using kernelcore_remaining. When it is
3708 * 0, the rest of the node is usable by ZONE_MOVABLE
3709 */
3710 kernelcore_remaining = kernelcore_node;
3711
3712 /* Go through each range of PFNs within this node */
3713 for_each_active_range_index_in_nid(i, nid) {
3714 unsigned long start_pfn, end_pfn;
3715 unsigned long size_pages;
3716
3717 start_pfn = max(early_node_map[i].start_pfn,
3718 zone_movable_pfn[nid]);
3719 end_pfn = early_node_map[i].end_pfn;
3720 if (start_pfn >= end_pfn)
3721 continue;
3722
3723 /* Account for what is only usable for kernelcore */
3724 if (start_pfn < usable_startpfn) {
3725 unsigned long kernel_pages;
3726 kernel_pages = min(end_pfn, usable_startpfn)
3727 - start_pfn;
3728
3729 kernelcore_remaining -= min(kernel_pages,
3730 kernelcore_remaining);
3731 required_kernelcore -= min(kernel_pages,
3732 required_kernelcore);
3733
3734 /* Continue if range is now fully accounted */
3735 if (end_pfn <= usable_startpfn) {
3736
3737 /*
3738 * Push zone_movable_pfn to the end so
3739 * that if we have to rebalance
3740 * kernelcore across nodes, we will
3741 * not double account here
3742 */
3743 zone_movable_pfn[nid] = end_pfn;
3744 continue;
3745 }
3746 start_pfn = usable_startpfn;
3747 }
3748
3749 /*
3750 * The usable PFN range for ZONE_MOVABLE is from
3751 * start_pfn->end_pfn. Calculate size_pages as the
3752 * number of pages used as kernelcore
3753 */
3754 size_pages = end_pfn - start_pfn;
3755 if (size_pages > kernelcore_remaining)
3756 size_pages = kernelcore_remaining;
3757 zone_movable_pfn[nid] = start_pfn + size_pages;
3758
3759 /*
3760 * Some kernelcore has been met, update counts and
3761 * break if the kernelcore for this node has been
3762 * satisified
3763 */
3764 required_kernelcore -= min(required_kernelcore,
3765 size_pages);
3766 kernelcore_remaining -= size_pages;
3767 if (!kernelcore_remaining)
3768 break;
3769 }
3770 }
3771
3772 /*
3773 * If there is still required_kernelcore, we do another pass with one
3774 * less node in the count. This will push zone_movable_pfn[nid] further
3775 * along on the nodes that still have memory until kernelcore is
3776 * satisified
3777 */
3778 usable_nodes--;
3779 if (usable_nodes && required_kernelcore > usable_nodes)
3780 goto restart;
3781
3782 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3783 for (nid = 0; nid < MAX_NUMNODES; nid++)
3784 zone_movable_pfn[nid] =
3785 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3786}
3787
37b07e41
LS
3788/* Any regular memory on that node ? */
3789static void check_for_regular_memory(pg_data_t *pgdat)
3790{
3791#ifdef CONFIG_HIGHMEM
3792 enum zone_type zone_type;
3793
3794 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3795 struct zone *zone = &pgdat->node_zones[zone_type];
3796 if (zone->present_pages)
3797 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3798 }
3799#endif
3800}
3801
c713216d
MG
3802/**
3803 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3804 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3805 *
3806 * This will call free_area_init_node() for each active node in the system.
3807 * Using the page ranges provided by add_active_range(), the size of each
3808 * zone in each node and their holes is calculated. If the maximum PFN
3809 * between two adjacent zones match, it is assumed that the zone is empty.
3810 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3811 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3812 * starts where the previous one ended. For example, ZONE_DMA32 starts
3813 * at arch_max_dma_pfn.
3814 */
3815void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3816{
3817 unsigned long nid;
3818 enum zone_type i;
3819
a6af2bc3
MG
3820 /* Sort early_node_map as initialisation assumes it is sorted */
3821 sort_node_map();
3822
c713216d
MG
3823 /* Record where the zone boundaries are */
3824 memset(arch_zone_lowest_possible_pfn, 0,
3825 sizeof(arch_zone_lowest_possible_pfn));
3826 memset(arch_zone_highest_possible_pfn, 0,
3827 sizeof(arch_zone_highest_possible_pfn));
3828 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3829 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3830 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3831 if (i == ZONE_MOVABLE)
3832 continue;
c713216d
MG
3833 arch_zone_lowest_possible_pfn[i] =
3834 arch_zone_highest_possible_pfn[i-1];
3835 arch_zone_highest_possible_pfn[i] =
3836 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3837 }
2a1e274a
MG
3838 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3839 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3840
3841 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3842 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3843 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3844
c713216d
MG
3845 /* Print out the zone ranges */
3846 printk("Zone PFN ranges:\n");
2a1e274a
MG
3847 for (i = 0; i < MAX_NR_ZONES; i++) {
3848 if (i == ZONE_MOVABLE)
3849 continue;
c713216d
MG
3850 printk(" %-8s %8lu -> %8lu\n",
3851 zone_names[i],
3852 arch_zone_lowest_possible_pfn[i],
3853 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3854 }
3855
3856 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3857 printk("Movable zone start PFN for each node\n");
3858 for (i = 0; i < MAX_NUMNODES; i++) {
3859 if (zone_movable_pfn[i])
3860 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3861 }
c713216d
MG
3862
3863 /* Print out the early_node_map[] */
3864 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3865 for (i = 0; i < nr_nodemap_entries; i++)
3866 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3867 early_node_map[i].start_pfn,
3868 early_node_map[i].end_pfn);
3869
3870 /* Initialise every node */
8ef82866 3871 setup_nr_node_ids();
c713216d
MG
3872 for_each_online_node(nid) {
3873 pg_data_t *pgdat = NODE_DATA(nid);
3874 free_area_init_node(nid, pgdat, NULL,
3875 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3876
3877 /* Any memory on that node */
3878 if (pgdat->node_present_pages)
3879 node_set_state(nid, N_HIGH_MEMORY);
3880 check_for_regular_memory(pgdat);
c713216d
MG
3881 }
3882}
2a1e274a 3883
7e63efef 3884static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3885{
3886 unsigned long long coremem;
3887 if (!p)
3888 return -EINVAL;
3889
3890 coremem = memparse(p, &p);
7e63efef 3891 *core = coremem >> PAGE_SHIFT;
2a1e274a 3892
7e63efef 3893 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3894 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3895
3896 return 0;
3897}
ed7ed365 3898
7e63efef
MG
3899/*
3900 * kernelcore=size sets the amount of memory for use for allocations that
3901 * cannot be reclaimed or migrated.
3902 */
3903static int __init cmdline_parse_kernelcore(char *p)
3904{
3905 return cmdline_parse_core(p, &required_kernelcore);
3906}
3907
3908/*
3909 * movablecore=size sets the amount of memory for use for allocations that
3910 * can be reclaimed or migrated.
3911 */
3912static int __init cmdline_parse_movablecore(char *p)
3913{
3914 return cmdline_parse_core(p, &required_movablecore);
3915}
3916
ed7ed365 3917early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3918early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3919
c713216d
MG
3920#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3921
0e0b864e 3922/**
88ca3b94
RD
3923 * set_dma_reserve - set the specified number of pages reserved in the first zone
3924 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3925 *
3926 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3927 * In the DMA zone, a significant percentage may be consumed by kernel image
3928 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3929 * function may optionally be used to account for unfreeable pages in the
3930 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3931 * smaller per-cpu batchsize.
0e0b864e
MG
3932 */
3933void __init set_dma_reserve(unsigned long new_dma_reserve)
3934{
3935 dma_reserve = new_dma_reserve;
3936}
3937
93b7504e 3938#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3939static bootmem_data_t contig_bootmem_data;
3940struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3941
3942EXPORT_SYMBOL(contig_page_data);
93b7504e 3943#endif
1da177e4
LT
3944
3945void __init free_area_init(unsigned long *zones_size)
3946{
93b7504e 3947 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3948 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3949}
1da177e4 3950
1da177e4
LT
3951static int page_alloc_cpu_notify(struct notifier_block *self,
3952 unsigned long action, void *hcpu)
3953{
3954 int cpu = (unsigned long)hcpu;
1da177e4 3955
8bb78442 3956 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
3957 drain_pages(cpu);
3958
3959 /*
3960 * Spill the event counters of the dead processor
3961 * into the current processors event counters.
3962 * This artificially elevates the count of the current
3963 * processor.
3964 */
f8891e5e 3965 vm_events_fold_cpu(cpu);
9f8f2172
CL
3966
3967 /*
3968 * Zero the differential counters of the dead processor
3969 * so that the vm statistics are consistent.
3970 *
3971 * This is only okay since the processor is dead and cannot
3972 * race with what we are doing.
3973 */
2244b95a 3974 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3975 }
3976 return NOTIFY_OK;
3977}
1da177e4
LT
3978
3979void __init page_alloc_init(void)
3980{
3981 hotcpu_notifier(page_alloc_cpu_notify, 0);
3982}
3983
cb45b0e9
HA
3984/*
3985 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3986 * or min_free_kbytes changes.
3987 */
3988static void calculate_totalreserve_pages(void)
3989{
3990 struct pglist_data *pgdat;
3991 unsigned long reserve_pages = 0;
2f6726e5 3992 enum zone_type i, j;
cb45b0e9
HA
3993
3994 for_each_online_pgdat(pgdat) {
3995 for (i = 0; i < MAX_NR_ZONES; i++) {
3996 struct zone *zone = pgdat->node_zones + i;
3997 unsigned long max = 0;
3998
3999 /* Find valid and maximum lowmem_reserve in the zone */
4000 for (j = i; j < MAX_NR_ZONES; j++) {
4001 if (zone->lowmem_reserve[j] > max)
4002 max = zone->lowmem_reserve[j];
4003 }
4004
4005 /* we treat pages_high as reserved pages. */
4006 max += zone->pages_high;
4007
4008 if (max > zone->present_pages)
4009 max = zone->present_pages;
4010 reserve_pages += max;
4011 }
4012 }
4013 totalreserve_pages = reserve_pages;
4014}
4015
1da177e4
LT
4016/*
4017 * setup_per_zone_lowmem_reserve - called whenever
4018 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4019 * has a correct pages reserved value, so an adequate number of
4020 * pages are left in the zone after a successful __alloc_pages().
4021 */
4022static void setup_per_zone_lowmem_reserve(void)
4023{
4024 struct pglist_data *pgdat;
2f6726e5 4025 enum zone_type j, idx;
1da177e4 4026
ec936fc5 4027 for_each_online_pgdat(pgdat) {
1da177e4
LT
4028 for (j = 0; j < MAX_NR_ZONES; j++) {
4029 struct zone *zone = pgdat->node_zones + j;
4030 unsigned long present_pages = zone->present_pages;
4031
4032 zone->lowmem_reserve[j] = 0;
4033
2f6726e5
CL
4034 idx = j;
4035 while (idx) {
1da177e4
LT
4036 struct zone *lower_zone;
4037
2f6726e5
CL
4038 idx--;
4039
1da177e4
LT
4040 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4041 sysctl_lowmem_reserve_ratio[idx] = 1;
4042
4043 lower_zone = pgdat->node_zones + idx;
4044 lower_zone->lowmem_reserve[j] = present_pages /
4045 sysctl_lowmem_reserve_ratio[idx];
4046 present_pages += lower_zone->present_pages;
4047 }
4048 }
4049 }
cb45b0e9
HA
4050
4051 /* update totalreserve_pages */
4052 calculate_totalreserve_pages();
1da177e4
LT
4053}
4054
88ca3b94
RD
4055/**
4056 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4057 *
4058 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4059 * with respect to min_free_kbytes.
1da177e4 4060 */
3947be19 4061void setup_per_zone_pages_min(void)
1da177e4
LT
4062{
4063 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4064 unsigned long lowmem_pages = 0;
4065 struct zone *zone;
4066 unsigned long flags;
4067
4068 /* Calculate total number of !ZONE_HIGHMEM pages */
4069 for_each_zone(zone) {
4070 if (!is_highmem(zone))
4071 lowmem_pages += zone->present_pages;
4072 }
4073
4074 for_each_zone(zone) {
ac924c60
AM
4075 u64 tmp;
4076
1da177e4 4077 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
4078 tmp = (u64)pages_min * zone->present_pages;
4079 do_div(tmp, lowmem_pages);
1da177e4
LT
4080 if (is_highmem(zone)) {
4081 /*
669ed175
NP
4082 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4083 * need highmem pages, so cap pages_min to a small
4084 * value here.
4085 *
4086 * The (pages_high-pages_low) and (pages_low-pages_min)
4087 * deltas controls asynch page reclaim, and so should
4088 * not be capped for highmem.
1da177e4
LT
4089 */
4090 int min_pages;
4091
4092 min_pages = zone->present_pages / 1024;
4093 if (min_pages < SWAP_CLUSTER_MAX)
4094 min_pages = SWAP_CLUSTER_MAX;
4095 if (min_pages > 128)
4096 min_pages = 128;
4097 zone->pages_min = min_pages;
4098 } else {
669ed175
NP
4099 /*
4100 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4101 * proportionate to the zone's size.
4102 */
669ed175 4103 zone->pages_min = tmp;
1da177e4
LT
4104 }
4105
ac924c60
AM
4106 zone->pages_low = zone->pages_min + (tmp >> 2);
4107 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4108 setup_zone_migrate_reserve(zone);
1da177e4
LT
4109 spin_unlock_irqrestore(&zone->lru_lock, flags);
4110 }
cb45b0e9
HA
4111
4112 /* update totalreserve_pages */
4113 calculate_totalreserve_pages();
1da177e4
LT
4114}
4115
4116/*
4117 * Initialise min_free_kbytes.
4118 *
4119 * For small machines we want it small (128k min). For large machines
4120 * we want it large (64MB max). But it is not linear, because network
4121 * bandwidth does not increase linearly with machine size. We use
4122 *
4123 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4124 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4125 *
4126 * which yields
4127 *
4128 * 16MB: 512k
4129 * 32MB: 724k
4130 * 64MB: 1024k
4131 * 128MB: 1448k
4132 * 256MB: 2048k
4133 * 512MB: 2896k
4134 * 1024MB: 4096k
4135 * 2048MB: 5792k
4136 * 4096MB: 8192k
4137 * 8192MB: 11584k
4138 * 16384MB: 16384k
4139 */
4140static int __init init_per_zone_pages_min(void)
4141{
4142 unsigned long lowmem_kbytes;
4143
4144 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4145
4146 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4147 if (min_free_kbytes < 128)
4148 min_free_kbytes = 128;
4149 if (min_free_kbytes > 65536)
4150 min_free_kbytes = 65536;
4151 setup_per_zone_pages_min();
4152 setup_per_zone_lowmem_reserve();
4153 return 0;
4154}
4155module_init(init_per_zone_pages_min)
4156
4157/*
4158 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4159 * that we can call two helper functions whenever min_free_kbytes
4160 * changes.
4161 */
4162int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4163 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4164{
4165 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4166 if (write)
4167 setup_per_zone_pages_min();
1da177e4
LT
4168 return 0;
4169}
4170
9614634f
CL
4171#ifdef CONFIG_NUMA
4172int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4173 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4174{
4175 struct zone *zone;
4176 int rc;
4177
4178 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4179 if (rc)
4180 return rc;
4181
4182 for_each_zone(zone)
8417bba4 4183 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4184 sysctl_min_unmapped_ratio) / 100;
4185 return 0;
4186}
0ff38490
CL
4187
4188int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4189 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4190{
4191 struct zone *zone;
4192 int rc;
4193
4194 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4195 if (rc)
4196 return rc;
4197
4198 for_each_zone(zone)
4199 zone->min_slab_pages = (zone->present_pages *
4200 sysctl_min_slab_ratio) / 100;
4201 return 0;
4202}
9614634f
CL
4203#endif
4204
1da177e4
LT
4205/*
4206 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4207 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4208 * whenever sysctl_lowmem_reserve_ratio changes.
4209 *
4210 * The reserve ratio obviously has absolutely no relation with the
4211 * pages_min watermarks. The lowmem reserve ratio can only make sense
4212 * if in function of the boot time zone sizes.
4213 */
4214int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4215 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4216{
4217 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4218 setup_per_zone_lowmem_reserve();
4219 return 0;
4220}
4221
8ad4b1fb
RS
4222/*
4223 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4224 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4225 * can have before it gets flushed back to buddy allocator.
4226 */
4227
4228int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4229 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4230{
4231 struct zone *zone;
4232 unsigned int cpu;
4233 int ret;
4234
4235 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4236 if (!write || (ret == -EINVAL))
4237 return ret;
4238 for_each_zone(zone) {
4239 for_each_online_cpu(cpu) {
4240 unsigned long high;
4241 high = zone->present_pages / percpu_pagelist_fraction;
4242 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4243 }
4244 }
4245 return 0;
4246}
4247
f034b5d4 4248int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4249
4250#ifdef CONFIG_NUMA
4251static int __init set_hashdist(char *str)
4252{
4253 if (!str)
4254 return 0;
4255 hashdist = simple_strtoul(str, &str, 0);
4256 return 1;
4257}
4258__setup("hashdist=", set_hashdist);
4259#endif
4260
4261/*
4262 * allocate a large system hash table from bootmem
4263 * - it is assumed that the hash table must contain an exact power-of-2
4264 * quantity of entries
4265 * - limit is the number of hash buckets, not the total allocation size
4266 */
4267void *__init alloc_large_system_hash(const char *tablename,
4268 unsigned long bucketsize,
4269 unsigned long numentries,
4270 int scale,
4271 int flags,
4272 unsigned int *_hash_shift,
4273 unsigned int *_hash_mask,
4274 unsigned long limit)
4275{
4276 unsigned long long max = limit;
4277 unsigned long log2qty, size;
4278 void *table = NULL;
4279
4280 /* allow the kernel cmdline to have a say */
4281 if (!numentries) {
4282 /* round applicable memory size up to nearest megabyte */
04903664 4283 numentries = nr_kernel_pages;
1da177e4
LT
4284 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4285 numentries >>= 20 - PAGE_SHIFT;
4286 numentries <<= 20 - PAGE_SHIFT;
4287
4288 /* limit to 1 bucket per 2^scale bytes of low memory */
4289 if (scale > PAGE_SHIFT)
4290 numentries >>= (scale - PAGE_SHIFT);
4291 else
4292 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4293
4294 /* Make sure we've got at least a 0-order allocation.. */
4295 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4296 numentries = PAGE_SIZE / bucketsize;
1da177e4 4297 }
6e692ed3 4298 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4299
4300 /* limit allocation size to 1/16 total memory by default */
4301 if (max == 0) {
4302 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4303 do_div(max, bucketsize);
4304 }
4305
4306 if (numentries > max)
4307 numentries = max;
4308
f0d1b0b3 4309 log2qty = ilog2(numentries);
1da177e4
LT
4310
4311 do {
4312 size = bucketsize << log2qty;
4313 if (flags & HASH_EARLY)
4314 table = alloc_bootmem(size);
4315 else if (hashdist)
4316 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4317 else {
4318 unsigned long order;
4319 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4320 ;
4321 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4322 /*
4323 * If bucketsize is not a power-of-two, we may free
4324 * some pages at the end of hash table.
4325 */
4326 if (table) {
4327 unsigned long alloc_end = (unsigned long)table +
4328 (PAGE_SIZE << order);
4329 unsigned long used = (unsigned long)table +
4330 PAGE_ALIGN(size);
4331 split_page(virt_to_page(table), order);
4332 while (used < alloc_end) {
4333 free_page(used);
4334 used += PAGE_SIZE;
4335 }
4336 }
1da177e4
LT
4337 }
4338 } while (!table && size > PAGE_SIZE && --log2qty);
4339
4340 if (!table)
4341 panic("Failed to allocate %s hash table\n", tablename);
4342
b49ad484 4343 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4344 tablename,
4345 (1U << log2qty),
f0d1b0b3 4346 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4347 size);
4348
4349 if (_hash_shift)
4350 *_hash_shift = log2qty;
4351 if (_hash_mask)
4352 *_hash_mask = (1 << log2qty) - 1;
4353
4354 return table;
4355}
a117e66e
KH
4356
4357#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4358struct page *pfn_to_page(unsigned long pfn)
4359{
67de6482 4360 return __pfn_to_page(pfn);
a117e66e
KH
4361}
4362unsigned long page_to_pfn(struct page *page)
4363{
67de6482 4364 return __page_to_pfn(page);
a117e66e 4365}
a117e66e
KH
4366EXPORT_SYMBOL(pfn_to_page);
4367EXPORT_SYMBOL(page_to_pfn);
4368#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4369
835c134e
MG
4370/* Return a pointer to the bitmap storing bits affecting a block of pages */
4371static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4372 unsigned long pfn)
4373{
4374#ifdef CONFIG_SPARSEMEM
4375 return __pfn_to_section(pfn)->pageblock_flags;
4376#else
4377 return zone->pageblock_flags;
4378#endif /* CONFIG_SPARSEMEM */
4379}
4380
4381static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4382{
4383#ifdef CONFIG_SPARSEMEM
4384 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4386#else
4387 pfn = pfn - zone->zone_start_pfn;
d9c23400 4388 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4389#endif /* CONFIG_SPARSEMEM */
4390}
4391
4392/**
d9c23400 4393 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4394 * @page: The page within the block of interest
4395 * @start_bitidx: The first bit of interest to retrieve
4396 * @end_bitidx: The last bit of interest
4397 * returns pageblock_bits flags
4398 */
4399unsigned long get_pageblock_flags_group(struct page *page,
4400 int start_bitidx, int end_bitidx)
4401{
4402 struct zone *zone;
4403 unsigned long *bitmap;
4404 unsigned long pfn, bitidx;
4405 unsigned long flags = 0;
4406 unsigned long value = 1;
4407
4408 zone = page_zone(page);
4409 pfn = page_to_pfn(page);
4410 bitmap = get_pageblock_bitmap(zone, pfn);
4411 bitidx = pfn_to_bitidx(zone, pfn);
4412
4413 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4414 if (test_bit(bitidx + start_bitidx, bitmap))
4415 flags |= value;
6220ec78 4416
835c134e
MG
4417 return flags;
4418}
4419
4420/**
d9c23400 4421 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4422 * @page: The page within the block of interest
4423 * @start_bitidx: The first bit of interest
4424 * @end_bitidx: The last bit of interest
4425 * @flags: The flags to set
4426 */
4427void set_pageblock_flags_group(struct page *page, unsigned long flags,
4428 int start_bitidx, int end_bitidx)
4429{
4430 struct zone *zone;
4431 unsigned long *bitmap;
4432 unsigned long pfn, bitidx;
4433 unsigned long value = 1;
4434
4435 zone = page_zone(page);
4436 pfn = page_to_pfn(page);
4437 bitmap = get_pageblock_bitmap(zone, pfn);
4438 bitidx = pfn_to_bitidx(zone, pfn);
4439
4440 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4441 if (flags & value)
4442 __set_bit(bitidx + start_bitidx, bitmap);
4443 else
4444 __clear_bit(bitidx + start_bitidx, bitmap);
4445}
a5d76b54
KH
4446
4447/*
4448 * This is designed as sub function...plz see page_isolation.c also.
4449 * set/clear page block's type to be ISOLATE.
4450 * page allocater never alloc memory from ISOLATE block.
4451 */
4452
4453int set_migratetype_isolate(struct page *page)
4454{
4455 struct zone *zone;
4456 unsigned long flags;
4457 int ret = -EBUSY;
4458
4459 zone = page_zone(page);
4460 spin_lock_irqsave(&zone->lock, flags);
4461 /*
4462 * In future, more migrate types will be able to be isolation target.
4463 */
4464 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4465 goto out;
4466 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4467 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4468 ret = 0;
4469out:
4470 spin_unlock_irqrestore(&zone->lock, flags);
4471 if (!ret)
9f8f2172 4472 drain_all_pages();
a5d76b54
KH
4473 return ret;
4474}
4475
4476void unset_migratetype_isolate(struct page *page)
4477{
4478 struct zone *zone;
4479 unsigned long flags;
4480 zone = page_zone(page);
4481 spin_lock_irqsave(&zone->lock, flags);
4482 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4483 goto out;
4484 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4485 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4486out:
4487 spin_unlock_irqrestore(&zone->lock, flags);
4488}
0c0e6195
KH
4489
4490#ifdef CONFIG_MEMORY_HOTREMOVE
4491/*
4492 * All pages in the range must be isolated before calling this.
4493 */
4494void
4495__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4496{
4497 struct page *page;
4498 struct zone *zone;
4499 int order, i;
4500 unsigned long pfn;
4501 unsigned long flags;
4502 /* find the first valid pfn */
4503 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4504 if (pfn_valid(pfn))
4505 break;
4506 if (pfn == end_pfn)
4507 return;
4508 zone = page_zone(pfn_to_page(pfn));
4509 spin_lock_irqsave(&zone->lock, flags);
4510 pfn = start_pfn;
4511 while (pfn < end_pfn) {
4512 if (!pfn_valid(pfn)) {
4513 pfn++;
4514 continue;
4515 }
4516 page = pfn_to_page(pfn);
4517 BUG_ON(page_count(page));
4518 BUG_ON(!PageBuddy(page));
4519 order = page_order(page);
4520#ifdef CONFIG_DEBUG_VM
4521 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4522 pfn, 1 << order, end_pfn);
4523#endif
4524 list_del(&page->lru);
4525 rmv_page_order(page);
4526 zone->free_area[order].nr_free--;
4527 __mod_zone_page_state(zone, NR_FREE_PAGES,
4528 - (1UL << order));
4529 for (i = 0; i < (1 << order); i++)
4530 SetPageReserved((page+i));
4531 pfn += (1 << order);
4532 }
4533 spin_unlock_irqrestore(&zone->lock, flags);
4534}
4535#endif