[PATCH] mempolicies: fix policy_zone check
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
2f1b6248
CL
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
fb0e7942 73#ifdef CONFIG_ZONE_DMA32
2f1b6248 74 256,
fb0e7942 75#endif
e53ef38d 76#ifdef CONFIG_HIGHMEM
2f1b6248 77 32
e53ef38d 78#endif
2f1b6248 79};
1da177e4
LT
80
81EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
82
83/*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
c3d8c141 87struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
88EXPORT_SYMBOL(zone_table);
89
2f1b6248
CL
90static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
fb0e7942 92#ifdef CONFIG_ZONE_DMA32
2f1b6248 93 "DMA32",
fb0e7942 94#endif
2f1b6248 95 "Normal",
e53ef38d 96#ifdef CONFIG_HIGHMEM
2f1b6248 97 "HighMem"
e53ef38d 98#endif
2f1b6248
CL
99};
100
1da177e4
LT
101int min_free_kbytes = 1024;
102
86356ab1
YG
103unsigned long __meminitdata nr_kernel_pages;
104unsigned long __meminitdata nr_all_pages;
1da177e4 105
13e7444b 106#ifdef CONFIG_DEBUG_VM
c6a57e19 107static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 108{
bdc8cb98
DH
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
c6a57e19 112
bdc8cb98
DH
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
120
121 return ret;
c6a57e19
DH
122}
123
124static int page_is_consistent(struct zone *zone, struct page *page)
125{
1da177e4
LT
126#ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 128 return 0;
1da177e4
LT
129#endif
130 if (zone != page_zone(page))
c6a57e19
DH
131 return 0;
132
133 return 1;
134}
135/*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138static int bad_range(struct zone *zone, struct page *page)
139{
140 if (page_outside_zone_boundaries(zone, page))
1da177e4 141 return 1;
c6a57e19
DH
142 if (!page_is_consistent(zone, page))
143 return 1;
144
1da177e4
LT
145 return 0;
146}
13e7444b
NP
147#else
148static inline int bad_range(struct zone *zone, struct page *page)
149{
150 return 0;
151}
152#endif
153
224abf92 154static void bad_page(struct page *page)
1da177e4 155{
224abf92 156 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
224abf92
NP
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
1da177e4 163 dump_stack();
334795ec
HD
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
1da177e4 166 1 << PG_locked |
1da177e4
LT
167 1 << PG_active |
168 1 << PG_dirty |
334795ec
HD
169 1 << PG_reclaim |
170 1 << PG_slab |
1da177e4 171 1 << PG_swapcache |
676165a8
NP
172 1 << PG_writeback |
173 1 << PG_buddy );
1da177e4
LT
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
9f158333 177 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
178}
179
1da177e4
LT
180/*
181 * Higher-order pages are called "compound pages". They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
41d78ba5
HD
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
1da177e4 193 */
d98c7a09
HD
194
195static void free_compound_page(struct page *page)
196{
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
198}
199
1da177e4
LT
200static void prep_compound_page(struct page *page, unsigned long order)
201{
202 int i;
203 int nr_pages = 1 << order;
204
d98c7a09 205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 206 page[1].lru.prev = (void *)order;
1da177e4
LT
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
5e9dace8 210 __SetPageCompound(p);
4c21e2f2 211 set_page_private(p, (unsigned long)page);
1da177e4
LT
212 }
213}
214
215static void destroy_compound_page(struct page *page, unsigned long order)
216{
217 int i;
218 int nr_pages = 1 << order;
219
41d78ba5 220 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 221 bad_page(page);
1da177e4
LT
222
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
225
224abf92
NP
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
5e9dace8 229 __ClearPageCompound(p);
1da177e4
LT
230 }
231}
1da177e4 232
17cf4406
NP
233static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234{
235 int i;
236
725d704e 237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
238 /*
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
241 */
725d704e 242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
245}
246
1da177e4
LT
247/*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
6aa3001b
AM
252static inline unsigned long page_order(struct page *page)
253{
4c21e2f2 254 return page_private(page);
1da177e4
LT
255}
256
6aa3001b
AM
257static inline void set_page_order(struct page *page, int order)
258{
4c21e2f2 259 set_page_private(page, order);
676165a8 260 __SetPageBuddy(page);
1da177e4
LT
261}
262
263static inline void rmv_page_order(struct page *page)
264{
676165a8 265 __ClearPageBuddy(page);
4c21e2f2 266 set_page_private(page, 0);
1da177e4
LT
267}
268
269/*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
283 *
d6e05edc 284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
285 */
286static inline struct page *
287__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288{
289 unsigned long buddy_idx = page_idx ^ (1 << order);
290
291 return page + (buddy_idx - page_idx);
292}
293
294static inline unsigned long
295__find_combined_index(unsigned long page_idx, unsigned int order)
296{
297 return (page_idx & ~(1 << order));
298}
299
300/*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
13e7444b 303 * (a) the buddy is not in a hole &&
676165a8 304 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
676165a8
NP
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 310 *
676165a8 311 * For recording page's order, we use page_private(page).
1da177e4 312 */
cb2b95e1
AW
313static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
1da177e4 315{
13e7444b 316#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 317 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
318 return 0;
319#endif
320
cb2b95e1
AW
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
323
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
6aa3001b 326 return 1;
676165a8 327 }
6aa3001b 328 return 0;
1da177e4
LT
329}
330
331/*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
676165a8 344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 345 * order is recorded in page_private(page) field.
1da177e4
LT
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
48db57f8 355static inline void __free_one_page(struct page *page,
1da177e4
LT
356 struct zone *zone, unsigned int order)
357{
358 unsigned long page_idx;
359 int order_size = 1 << order;
360
224abf92 361 if (unlikely(PageCompound(page)))
1da177e4
LT
362 destroy_compound_page(page, order);
363
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
725d704e
NP
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
368
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
374
1da177e4 375 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 376 if (!page_is_buddy(page, buddy, order))
1da177e4 377 break; /* Move the buddy up one level. */
13e7444b 378
1da177e4
LT
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
13e7444b 383 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
387 }
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
391}
392
224abf92 393static inline int free_pages_check(struct page *page)
1da177e4 394{
92be2e33
NP
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
1da177e4
LT
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
b5810039 406 1 << PG_writeback |
676165a8
NP
407 1 << PG_reserved |
408 1 << PG_buddy ))))
224abf92 409 bad_page(page);
1da177e4 410 if (PageDirty(page))
242e5468 411 __ClearPageDirty(page);
689bcebf
HD
412 /*
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
416 */
417 return PageReserved(page);
1da177e4
LT
418}
419
420/*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
207f36ee 423 * count is the number of pages to free.
1da177e4
LT
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
48db57f8
NP
431static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
1da177e4 433{
c54ad30c 434 spin_lock(&zone->lock);
1da177e4
LT
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
48db57f8
NP
437 while (count--) {
438 struct page *page;
439
725d704e 440 VM_BUG_ON(list_empty(list));
1da177e4 441 page = list_entry(list->prev, struct page, lru);
48db57f8 442 /* have to delete it as __free_one_page list manipulates */
1da177e4 443 list_del(&page->lru);
48db57f8 444 __free_one_page(page, zone, order);
1da177e4 445 }
c54ad30c 446 spin_unlock(&zone->lock);
1da177e4
LT
447}
448
48db57f8 449static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
450{
451 LIST_HEAD(list);
48db57f8
NP
452 list_add(&page->lru, &list);
453 free_pages_bulk(zone, 1, &list, order);
454}
455
456static void __free_pages_ok(struct page *page, unsigned int order)
457{
458 unsigned long flags;
1da177e4 459 int i;
689bcebf 460 int reserved = 0;
1da177e4
LT
461
462 arch_free_page(page, order);
de5097c2 463 if (!PageHighMem(page))
f9b8404c
IM
464 debug_check_no_locks_freed(page_address(page),
465 PAGE_SIZE<<order);
1da177e4 466
1da177e4 467 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 468 reserved += free_pages_check(page + i);
689bcebf
HD
469 if (reserved)
470 return;
471
48db57f8 472 kernel_map_pages(page, 1 << order, 0);
c54ad30c 473 local_irq_save(flags);
f8891e5e 474 __count_vm_events(PGFREE, 1 << order);
48db57f8 475 free_one_page(page_zone(page), page, order);
c54ad30c 476 local_irq_restore(flags);
1da177e4
LT
477}
478
a226f6c8
DH
479/*
480 * permit the bootmem allocator to evade page validation on high-order frees
481 */
482void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
483{
484 if (order == 0) {
485 __ClearPageReserved(page);
486 set_page_count(page, 0);
7835e98b 487 set_page_refcounted(page);
545b1ea9 488 __free_page(page);
a226f6c8 489 } else {
a226f6c8
DH
490 int loop;
491
545b1ea9 492 prefetchw(page);
a226f6c8
DH
493 for (loop = 0; loop < BITS_PER_LONG; loop++) {
494 struct page *p = &page[loop];
495
545b1ea9
NP
496 if (loop + 1 < BITS_PER_LONG)
497 prefetchw(p + 1);
a226f6c8
DH
498 __ClearPageReserved(p);
499 set_page_count(p, 0);
500 }
501
7835e98b 502 set_page_refcounted(page);
545b1ea9 503 __free_pages(page, order);
a226f6c8
DH
504 }
505}
506
1da177e4
LT
507
508/*
509 * The order of subdivision here is critical for the IO subsystem.
510 * Please do not alter this order without good reasons and regression
511 * testing. Specifically, as large blocks of memory are subdivided,
512 * the order in which smaller blocks are delivered depends on the order
513 * they're subdivided in this function. This is the primary factor
514 * influencing the order in which pages are delivered to the IO
515 * subsystem according to empirical testing, and this is also justified
516 * by considering the behavior of a buddy system containing a single
517 * large block of memory acted on by a series of small allocations.
518 * This behavior is a critical factor in sglist merging's success.
519 *
520 * -- wli
521 */
085cc7d5 522static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
523 int low, int high, struct free_area *area)
524{
525 unsigned long size = 1 << high;
526
527 while (high > low) {
528 area--;
529 high--;
530 size >>= 1;
725d704e 531 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
532 list_add(&page[size].lru, &area->free_list);
533 area->nr_free++;
534 set_page_order(&page[size], high);
535 }
1da177e4
LT
536}
537
1da177e4
LT
538/*
539 * This page is about to be returned from the page allocator
540 */
17cf4406 541static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 542{
92be2e33
NP
543 if (unlikely(page_mapcount(page) |
544 (page->mapping != NULL) |
545 (page_count(page) != 0) |
334795ec
HD
546 (page->flags & (
547 1 << PG_lru |
1da177e4
LT
548 1 << PG_private |
549 1 << PG_locked |
1da177e4
LT
550 1 << PG_active |
551 1 << PG_dirty |
552 1 << PG_reclaim |
334795ec 553 1 << PG_slab |
1da177e4 554 1 << PG_swapcache |
b5810039 555 1 << PG_writeback |
676165a8
NP
556 1 << PG_reserved |
557 1 << PG_buddy ))))
224abf92 558 bad_page(page);
1da177e4 559
689bcebf
HD
560 /*
561 * For now, we report if PG_reserved was found set, but do not
562 * clear it, and do not allocate the page: as a safety net.
563 */
564 if (PageReserved(page))
565 return 1;
566
1da177e4
LT
567 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
568 1 << PG_referenced | 1 << PG_arch_1 |
569 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 570 set_page_private(page, 0);
7835e98b 571 set_page_refcounted(page);
1da177e4 572 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
573
574 if (gfp_flags & __GFP_ZERO)
575 prep_zero_page(page, order, gfp_flags);
576
577 if (order && (gfp_flags & __GFP_COMP))
578 prep_compound_page(page, order);
579
689bcebf 580 return 0;
1da177e4
LT
581}
582
583/*
584 * Do the hard work of removing an element from the buddy allocator.
585 * Call me with the zone->lock already held.
586 */
587static struct page *__rmqueue(struct zone *zone, unsigned int order)
588{
589 struct free_area * area;
590 unsigned int current_order;
591 struct page *page;
592
593 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
594 area = zone->free_area + current_order;
595 if (list_empty(&area->free_list))
596 continue;
597
598 page = list_entry(area->free_list.next, struct page, lru);
599 list_del(&page->lru);
600 rmv_page_order(page);
601 area->nr_free--;
602 zone->free_pages -= 1UL << order;
085cc7d5
NP
603 expand(zone, page, order, current_order, area);
604 return page;
1da177e4
LT
605 }
606
607 return NULL;
608}
609
610/*
611 * Obtain a specified number of elements from the buddy allocator, all under
612 * a single hold of the lock, for efficiency. Add them to the supplied list.
613 * Returns the number of new pages which were placed at *list.
614 */
615static int rmqueue_bulk(struct zone *zone, unsigned int order,
616 unsigned long count, struct list_head *list)
617{
1da177e4 618 int i;
1da177e4 619
c54ad30c 620 spin_lock(&zone->lock);
1da177e4 621 for (i = 0; i < count; ++i) {
085cc7d5
NP
622 struct page *page = __rmqueue(zone, order);
623 if (unlikely(page == NULL))
1da177e4 624 break;
1da177e4
LT
625 list_add_tail(&page->lru, list);
626 }
c54ad30c 627 spin_unlock(&zone->lock);
085cc7d5 628 return i;
1da177e4
LT
629}
630
4ae7c039 631#ifdef CONFIG_NUMA
8fce4d8e
CL
632/*
633 * Called from the slab reaper to drain pagesets on a particular node that
634 * belong to the currently executing processor.
879336c3
CL
635 * Note that this function must be called with the thread pinned to
636 * a single processor.
8fce4d8e
CL
637 */
638void drain_node_pages(int nodeid)
4ae7c039 639{
8fce4d8e 640 int i, z;
4ae7c039
CL
641 unsigned long flags;
642
8fce4d8e
CL
643 for (z = 0; z < MAX_NR_ZONES; z++) {
644 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
645 struct per_cpu_pageset *pset;
646
23316bc8 647 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
648 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
649 struct per_cpu_pages *pcp;
650
651 pcp = &pset->pcp[i];
879336c3
CL
652 if (pcp->count) {
653 local_irq_save(flags);
654 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
655 pcp->count = 0;
656 local_irq_restore(flags);
657 }
4ae7c039
CL
658 }
659 }
4ae7c039
CL
660}
661#endif
662
1da177e4
LT
663#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
664static void __drain_pages(unsigned int cpu)
665{
c54ad30c 666 unsigned long flags;
1da177e4
LT
667 struct zone *zone;
668 int i;
669
670 for_each_zone(zone) {
671 struct per_cpu_pageset *pset;
672
e7c8d5c9 673 pset = zone_pcp(zone, cpu);
1da177e4
LT
674 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
675 struct per_cpu_pages *pcp;
676
677 pcp = &pset->pcp[i];
c54ad30c 678 local_irq_save(flags);
48db57f8
NP
679 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
680 pcp->count = 0;
c54ad30c 681 local_irq_restore(flags);
1da177e4
LT
682 }
683 }
684}
685#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
686
687#ifdef CONFIG_PM
688
689void mark_free_pages(struct zone *zone)
690{
691 unsigned long zone_pfn, flags;
692 int order;
693 struct list_head *curr;
694
695 if (!zone->spanned_pages)
696 return;
697
698 spin_lock_irqsave(&zone->lock, flags);
699 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
700 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
701
702 for (order = MAX_ORDER - 1; order >= 0; --order)
703 list_for_each(curr, &zone->free_area[order].free_list) {
704 unsigned long start_pfn, i;
705
706 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
707
708 for (i=0; i < (1<<order); i++)
709 SetPageNosaveFree(pfn_to_page(start_pfn+i));
710 }
711 spin_unlock_irqrestore(&zone->lock, flags);
712}
713
714/*
715 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
716 */
717void drain_local_pages(void)
718{
719 unsigned long flags;
720
721 local_irq_save(flags);
722 __drain_pages(smp_processor_id());
723 local_irq_restore(flags);
724}
725#endif /* CONFIG_PM */
726
1da177e4
LT
727/*
728 * Free a 0-order page
729 */
1da177e4
LT
730static void fastcall free_hot_cold_page(struct page *page, int cold)
731{
732 struct zone *zone = page_zone(page);
733 struct per_cpu_pages *pcp;
734 unsigned long flags;
735
736 arch_free_page(page, 0);
737
1da177e4
LT
738 if (PageAnon(page))
739 page->mapping = NULL;
224abf92 740 if (free_pages_check(page))
689bcebf
HD
741 return;
742
689bcebf
HD
743 kernel_map_pages(page, 1, 0);
744
e7c8d5c9 745 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 746 local_irq_save(flags);
f8891e5e 747 __count_vm_event(PGFREE);
1da177e4
LT
748 list_add(&page->lru, &pcp->list);
749 pcp->count++;
48db57f8
NP
750 if (pcp->count >= pcp->high) {
751 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
752 pcp->count -= pcp->batch;
753 }
1da177e4
LT
754 local_irq_restore(flags);
755 put_cpu();
756}
757
758void fastcall free_hot_page(struct page *page)
759{
760 free_hot_cold_page(page, 0);
761}
762
763void fastcall free_cold_page(struct page *page)
764{
765 free_hot_cold_page(page, 1);
766}
767
8dfcc9ba
NP
768/*
769 * split_page takes a non-compound higher-order page, and splits it into
770 * n (1<<order) sub-pages: page[0..n]
771 * Each sub-page must be freed individually.
772 *
773 * Note: this is probably too low level an operation for use in drivers.
774 * Please consult with lkml before using this in your driver.
775 */
776void split_page(struct page *page, unsigned int order)
777{
778 int i;
779
725d704e
NP
780 VM_BUG_ON(PageCompound(page));
781 VM_BUG_ON(!page_count(page));
7835e98b
NP
782 for (i = 1; i < (1 << order); i++)
783 set_page_refcounted(page + i);
8dfcc9ba 784}
8dfcc9ba 785
1da177e4
LT
786/*
787 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
788 * we cheat by calling it from here, in the order > 0 path. Saves a branch
789 * or two.
790 */
a74609fa
NP
791static struct page *buffered_rmqueue(struct zonelist *zonelist,
792 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
793{
794 unsigned long flags;
689bcebf 795 struct page *page;
1da177e4 796 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 797 int cpu;
1da177e4 798
689bcebf 799again:
a74609fa 800 cpu = get_cpu();
48db57f8 801 if (likely(order == 0)) {
1da177e4
LT
802 struct per_cpu_pages *pcp;
803
a74609fa 804 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 805 local_irq_save(flags);
a74609fa 806 if (!pcp->count) {
1da177e4
LT
807 pcp->count += rmqueue_bulk(zone, 0,
808 pcp->batch, &pcp->list);
a74609fa
NP
809 if (unlikely(!pcp->count))
810 goto failed;
1da177e4 811 }
a74609fa
NP
812 page = list_entry(pcp->list.next, struct page, lru);
813 list_del(&page->lru);
814 pcp->count--;
7fb1d9fc 815 } else {
1da177e4
LT
816 spin_lock_irqsave(&zone->lock, flags);
817 page = __rmqueue(zone, order);
a74609fa
NP
818 spin_unlock(&zone->lock);
819 if (!page)
820 goto failed;
1da177e4
LT
821 }
822
f8891e5e 823 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 824 zone_statistics(zonelist, zone);
a74609fa
NP
825 local_irq_restore(flags);
826 put_cpu();
1da177e4 827
725d704e 828 VM_BUG_ON(bad_range(zone, page));
17cf4406 829 if (prep_new_page(page, order, gfp_flags))
a74609fa 830 goto again;
1da177e4 831 return page;
a74609fa
NP
832
833failed:
834 local_irq_restore(flags);
835 put_cpu();
836 return NULL;
1da177e4
LT
837}
838
7fb1d9fc 839#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
840#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
841#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
842#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
843#define ALLOC_HARDER 0x10 /* try to alloc harder */
844#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
845#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 846
1da177e4
LT
847/*
848 * Return 1 if free pages are above 'mark'. This takes into account the order
849 * of the allocation.
850 */
851int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 852 int classzone_idx, int alloc_flags)
1da177e4
LT
853{
854 /* free_pages my go negative - that's OK */
855 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
856 int o;
857
7fb1d9fc 858 if (alloc_flags & ALLOC_HIGH)
1da177e4 859 min -= min / 2;
7fb1d9fc 860 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
861 min -= min / 4;
862
863 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
864 return 0;
865 for (o = 0; o < order; o++) {
866 /* At the next order, this order's pages become unavailable */
867 free_pages -= z->free_area[o].nr_free << o;
868
869 /* Require fewer higher order pages to be free */
870 min >>= 1;
871
872 if (free_pages <= min)
873 return 0;
874 }
875 return 1;
876}
877
7fb1d9fc
RS
878/*
879 * get_page_from_freeliest goes through the zonelist trying to allocate
880 * a page.
881 */
882static struct page *
883get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
884 struct zonelist *zonelist, int alloc_flags)
753ee728 885{
7fb1d9fc
RS
886 struct zone **z = zonelist->zones;
887 struct page *page = NULL;
888 int classzone_idx = zone_idx(*z);
889
890 /*
891 * Go through the zonelist once, looking for a zone with enough free.
892 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
893 */
894 do {
895 if ((alloc_flags & ALLOC_CPUSET) &&
896 !cpuset_zone_allowed(*z, gfp_mask))
897 continue;
898
899 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
900 unsigned long mark;
901 if (alloc_flags & ALLOC_WMARK_MIN)
902 mark = (*z)->pages_min;
903 else if (alloc_flags & ALLOC_WMARK_LOW)
904 mark = (*z)->pages_low;
905 else
906 mark = (*z)->pages_high;
907 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 908 classzone_idx, alloc_flags))
9eeff239
CL
909 if (!zone_reclaim_mode ||
910 !zone_reclaim(*z, gfp_mask, order))
911 continue;
7fb1d9fc
RS
912 }
913
a74609fa 914 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 915 if (page) {
7fb1d9fc
RS
916 break;
917 }
918 } while (*(++z) != NULL);
919 return page;
753ee728
MH
920}
921
1da177e4
LT
922/*
923 * This is the 'heart' of the zoned buddy allocator.
924 */
925struct page * fastcall
dd0fc66f 926__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
927 struct zonelist *zonelist)
928{
260b2367 929 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 930 struct zone **z;
1da177e4
LT
931 struct page *page;
932 struct reclaim_state reclaim_state;
933 struct task_struct *p = current;
1da177e4 934 int do_retry;
7fb1d9fc 935 int alloc_flags;
1da177e4
LT
936 int did_some_progress;
937
938 might_sleep_if(wait);
939
6b1de916 940restart:
7fb1d9fc 941 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 942
7fb1d9fc 943 if (unlikely(*z == NULL)) {
1da177e4
LT
944 /* Should this ever happen?? */
945 return NULL;
946 }
6b1de916 947
7fb1d9fc 948 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 949 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
950 if (page)
951 goto got_pg;
1da177e4 952
6b1de916 953 do {
43b0bc00 954 wakeup_kswapd(*z, order);
6b1de916 955 } while (*(++z));
1da177e4 956
9bf2229f 957 /*
7fb1d9fc
RS
958 * OK, we're below the kswapd watermark and have kicked background
959 * reclaim. Now things get more complex, so set up alloc_flags according
960 * to how we want to proceed.
961 *
962 * The caller may dip into page reserves a bit more if the caller
963 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
964 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
965 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 966 */
3148890b 967 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
968 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
969 alloc_flags |= ALLOC_HARDER;
970 if (gfp_mask & __GFP_HIGH)
971 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
972 if (wait)
973 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
974
975 /*
976 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 977 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
978 *
979 * This is the last chance, in general, before the goto nopage.
980 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 981 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 982 */
7fb1d9fc
RS
983 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
984 if (page)
985 goto got_pg;
1da177e4
LT
986
987 /* This allocation should allow future memory freeing. */
b84a35be
NP
988
989 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
990 && !in_interrupt()) {
991 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 992nofail_alloc:
b84a35be 993 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 994 page = get_page_from_freelist(gfp_mask, order,
47f3a867 995 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
996 if (page)
997 goto got_pg;
885036d3
KK
998 if (gfp_mask & __GFP_NOFAIL) {
999 blk_congestion_wait(WRITE, HZ/50);
1000 goto nofail_alloc;
1001 }
1da177e4
LT
1002 }
1003 goto nopage;
1004 }
1005
1006 /* Atomic allocations - we can't balance anything */
1007 if (!wait)
1008 goto nopage;
1009
1010rebalance:
1011 cond_resched();
1012
1013 /* We now go into synchronous reclaim */
3e0d98b9 1014 cpuset_memory_pressure_bump();
1da177e4
LT
1015 p->flags |= PF_MEMALLOC;
1016 reclaim_state.reclaimed_slab = 0;
1017 p->reclaim_state = &reclaim_state;
1018
7fb1d9fc 1019 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1020
1021 p->reclaim_state = NULL;
1022 p->flags &= ~PF_MEMALLOC;
1023
1024 cond_resched();
1025
1026 if (likely(did_some_progress)) {
7fb1d9fc
RS
1027 page = get_page_from_freelist(gfp_mask, order,
1028 zonelist, alloc_flags);
1029 if (page)
1030 goto got_pg;
1da177e4
LT
1031 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1032 /*
1033 * Go through the zonelist yet one more time, keep
1034 * very high watermark here, this is only to catch
1035 * a parallel oom killing, we must fail if we're still
1036 * under heavy pressure.
1037 */
7fb1d9fc 1038 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1039 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1040 if (page)
1041 goto got_pg;
1da177e4 1042
9b0f8b04 1043 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1044 goto restart;
1045 }
1046
1047 /*
1048 * Don't let big-order allocations loop unless the caller explicitly
1049 * requests that. Wait for some write requests to complete then retry.
1050 *
1051 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1052 * <= 3, but that may not be true in other implementations.
1053 */
1054 do_retry = 0;
1055 if (!(gfp_mask & __GFP_NORETRY)) {
1056 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1057 do_retry = 1;
1058 if (gfp_mask & __GFP_NOFAIL)
1059 do_retry = 1;
1060 }
1061 if (do_retry) {
1062 blk_congestion_wait(WRITE, HZ/50);
1063 goto rebalance;
1064 }
1065
1066nopage:
1067 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1068 printk(KERN_WARNING "%s: page allocation failure."
1069 " order:%d, mode:0x%x\n",
1070 p->comm, order, gfp_mask);
1071 dump_stack();
578c2fd6 1072 show_mem();
1da177e4 1073 }
1da177e4 1074got_pg:
1da177e4
LT
1075 return page;
1076}
1077
1078EXPORT_SYMBOL(__alloc_pages);
1079
1080/*
1081 * Common helper functions.
1082 */
dd0fc66f 1083fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1084{
1085 struct page * page;
1086 page = alloc_pages(gfp_mask, order);
1087 if (!page)
1088 return 0;
1089 return (unsigned long) page_address(page);
1090}
1091
1092EXPORT_SYMBOL(__get_free_pages);
1093
dd0fc66f 1094fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1095{
1096 struct page * page;
1097
1098 /*
1099 * get_zeroed_page() returns a 32-bit address, which cannot represent
1100 * a highmem page
1101 */
725d704e 1102 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1103
1104 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1105 if (page)
1106 return (unsigned long) page_address(page);
1107 return 0;
1108}
1109
1110EXPORT_SYMBOL(get_zeroed_page);
1111
1112void __pagevec_free(struct pagevec *pvec)
1113{
1114 int i = pagevec_count(pvec);
1115
1116 while (--i >= 0)
1117 free_hot_cold_page(pvec->pages[i], pvec->cold);
1118}
1119
1120fastcall void __free_pages(struct page *page, unsigned int order)
1121{
b5810039 1122 if (put_page_testzero(page)) {
1da177e4
LT
1123 if (order == 0)
1124 free_hot_page(page);
1125 else
1126 __free_pages_ok(page, order);
1127 }
1128}
1129
1130EXPORT_SYMBOL(__free_pages);
1131
1132fastcall void free_pages(unsigned long addr, unsigned int order)
1133{
1134 if (addr != 0) {
725d704e 1135 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1136 __free_pages(virt_to_page((void *)addr), order);
1137 }
1138}
1139
1140EXPORT_SYMBOL(free_pages);
1141
1142/*
1143 * Total amount of free (allocatable) RAM:
1144 */
1145unsigned int nr_free_pages(void)
1146{
1147 unsigned int sum = 0;
1148 struct zone *zone;
1149
1150 for_each_zone(zone)
1151 sum += zone->free_pages;
1152
1153 return sum;
1154}
1155
1156EXPORT_SYMBOL(nr_free_pages);
1157
1158#ifdef CONFIG_NUMA
1159unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1160{
1161 unsigned int i, sum = 0;
1162
1163 for (i = 0; i < MAX_NR_ZONES; i++)
1164 sum += pgdat->node_zones[i].free_pages;
1165
1166 return sum;
1167}
1168#endif
1169
1170static unsigned int nr_free_zone_pages(int offset)
1171{
e310fd43
MB
1172 /* Just pick one node, since fallback list is circular */
1173 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1174 unsigned int sum = 0;
1175
e310fd43
MB
1176 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1177 struct zone **zonep = zonelist->zones;
1178 struct zone *zone;
1da177e4 1179
e310fd43
MB
1180 for (zone = *zonep++; zone; zone = *zonep++) {
1181 unsigned long size = zone->present_pages;
1182 unsigned long high = zone->pages_high;
1183 if (size > high)
1184 sum += size - high;
1da177e4
LT
1185 }
1186
1187 return sum;
1188}
1189
1190/*
1191 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1192 */
1193unsigned int nr_free_buffer_pages(void)
1194{
af4ca457 1195 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1196}
1197
1198/*
1199 * Amount of free RAM allocatable within all zones
1200 */
1201unsigned int nr_free_pagecache_pages(void)
1202{
af4ca457 1203 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1204}
1da177e4
LT
1205#ifdef CONFIG_NUMA
1206static void show_node(struct zone *zone)
1207{
1208 printk("Node %d ", zone->zone_pgdat->node_id);
1209}
1210#else
1211#define show_node(zone) do { } while (0)
1212#endif
1213
1da177e4
LT
1214void si_meminfo(struct sysinfo *val)
1215{
1216 val->totalram = totalram_pages;
1217 val->sharedram = 0;
1218 val->freeram = nr_free_pages();
1219 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1220 val->totalhigh = totalhigh_pages;
1221 val->freehigh = nr_free_highpages();
1da177e4
LT
1222 val->mem_unit = PAGE_SIZE;
1223}
1224
1225EXPORT_SYMBOL(si_meminfo);
1226
1227#ifdef CONFIG_NUMA
1228void si_meminfo_node(struct sysinfo *val, int nid)
1229{
1230 pg_data_t *pgdat = NODE_DATA(nid);
1231
1232 val->totalram = pgdat->node_present_pages;
1233 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1234#ifdef CONFIG_HIGHMEM
1da177e4
LT
1235 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1236 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1237#else
1238 val->totalhigh = 0;
1239 val->freehigh = 0;
1240#endif
1da177e4
LT
1241 val->mem_unit = PAGE_SIZE;
1242}
1243#endif
1244
1245#define K(x) ((x) << (PAGE_SHIFT-10))
1246
1247/*
1248 * Show free area list (used inside shift_scroll-lock stuff)
1249 * We also calculate the percentage fragmentation. We do this by counting the
1250 * memory on each free list with the exception of the first item on the list.
1251 */
1252void show_free_areas(void)
1253{
1da177e4
LT
1254 int cpu, temperature;
1255 unsigned long active;
1256 unsigned long inactive;
1257 unsigned long free;
1258 struct zone *zone;
1259
1260 for_each_zone(zone) {
1261 show_node(zone);
1262 printk("%s per-cpu:", zone->name);
1263
f3fe6512 1264 if (!populated_zone(zone)) {
1da177e4
LT
1265 printk(" empty\n");
1266 continue;
1267 } else
1268 printk("\n");
1269
6b482c67 1270 for_each_online_cpu(cpu) {
1da177e4
LT
1271 struct per_cpu_pageset *pageset;
1272
e7c8d5c9 1273 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1274
1275 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1276 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1277 cpu,
1278 temperature ? "cold" : "hot",
1da177e4 1279 pageset->pcp[temperature].high,
4ae7c039
CL
1280 pageset->pcp[temperature].batch,
1281 pageset->pcp[temperature].count);
1da177e4
LT
1282 }
1283 }
1284
1da177e4
LT
1285 get_zone_counts(&active, &inactive, &free);
1286
1da177e4
LT
1287 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1288 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1289 active,
1290 inactive,
b1e7a8fd 1291 global_page_state(NR_FILE_DIRTY),
ce866b34 1292 global_page_state(NR_WRITEBACK),
fd39fc85 1293 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1294 nr_free_pages(),
9a865ffa 1295 global_page_state(NR_SLAB),
65ba55f5 1296 global_page_state(NR_FILE_MAPPED),
df849a15 1297 global_page_state(NR_PAGETABLE));
1da177e4
LT
1298
1299 for_each_zone(zone) {
1300 int i;
1301
1302 show_node(zone);
1303 printk("%s"
1304 " free:%lukB"
1305 " min:%lukB"
1306 " low:%lukB"
1307 " high:%lukB"
1308 " active:%lukB"
1309 " inactive:%lukB"
1310 " present:%lukB"
1311 " pages_scanned:%lu"
1312 " all_unreclaimable? %s"
1313 "\n",
1314 zone->name,
1315 K(zone->free_pages),
1316 K(zone->pages_min),
1317 K(zone->pages_low),
1318 K(zone->pages_high),
1319 K(zone->nr_active),
1320 K(zone->nr_inactive),
1321 K(zone->present_pages),
1322 zone->pages_scanned,
1323 (zone->all_unreclaimable ? "yes" : "no")
1324 );
1325 printk("lowmem_reserve[]:");
1326 for (i = 0; i < MAX_NR_ZONES; i++)
1327 printk(" %lu", zone->lowmem_reserve[i]);
1328 printk("\n");
1329 }
1330
1331 for_each_zone(zone) {
8f9de51a 1332 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1333
1334 show_node(zone);
1335 printk("%s: ", zone->name);
f3fe6512 1336 if (!populated_zone(zone)) {
1da177e4
LT
1337 printk("empty\n");
1338 continue;
1339 }
1340
1341 spin_lock_irqsave(&zone->lock, flags);
1342 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1343 nr[order] = zone->free_area[order].nr_free;
1344 total += nr[order] << order;
1da177e4
LT
1345 }
1346 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1347 for (order = 0; order < MAX_ORDER; order++)
1348 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1349 printk("= %lukB\n", K(total));
1350 }
1351
1352 show_swap_cache_info();
1353}
1354
1355/*
1356 * Builds allocation fallback zone lists.
1a93205b
CL
1357 *
1358 * Add all populated zones of a node to the zonelist.
1da177e4 1359 */
86356ab1 1360static int __meminit build_zonelists_node(pg_data_t *pgdat,
070f8032 1361 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1362{
1a93205b
CL
1363 struct zone *zone;
1364
98d2b0eb 1365 BUG_ON(zone_type >= MAX_NR_ZONES);
02a68a5e
CL
1366
1367 do {
070f8032 1368 zone = pgdat->node_zones + zone_type;
1a93205b 1369 if (populated_zone(zone)) {
070f8032
CL
1370 zonelist->zones[nr_zones++] = zone;
1371 check_highest_zone(zone_type);
1da177e4 1372 }
070f8032 1373 zone_type--;
02a68a5e 1374
070f8032
CL
1375 } while (zone_type >= 0);
1376 return nr_zones;
1da177e4
LT
1377}
1378
1379#ifdef CONFIG_NUMA
1380#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1381static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1382/**
4dc3b16b 1383 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1384 * @node: node whose fallback list we're appending
1385 * @used_node_mask: nodemask_t of already used nodes
1386 *
1387 * We use a number of factors to determine which is the next node that should
1388 * appear on a given node's fallback list. The node should not have appeared
1389 * already in @node's fallback list, and it should be the next closest node
1390 * according to the distance array (which contains arbitrary distance values
1391 * from each node to each node in the system), and should also prefer nodes
1392 * with no CPUs, since presumably they'll have very little allocation pressure
1393 * on them otherwise.
1394 * It returns -1 if no node is found.
1395 */
86356ab1 1396static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1397{
4cf808eb 1398 int n, val;
1da177e4
LT
1399 int min_val = INT_MAX;
1400 int best_node = -1;
1401
4cf808eb
LT
1402 /* Use the local node if we haven't already */
1403 if (!node_isset(node, *used_node_mask)) {
1404 node_set(node, *used_node_mask);
1405 return node;
1406 }
1da177e4 1407
4cf808eb
LT
1408 for_each_online_node(n) {
1409 cpumask_t tmp;
1da177e4
LT
1410
1411 /* Don't want a node to appear more than once */
1412 if (node_isset(n, *used_node_mask))
1413 continue;
1414
1da177e4
LT
1415 /* Use the distance array to find the distance */
1416 val = node_distance(node, n);
1417
4cf808eb
LT
1418 /* Penalize nodes under us ("prefer the next node") */
1419 val += (n < node);
1420
1da177e4
LT
1421 /* Give preference to headless and unused nodes */
1422 tmp = node_to_cpumask(n);
1423 if (!cpus_empty(tmp))
1424 val += PENALTY_FOR_NODE_WITH_CPUS;
1425
1426 /* Slight preference for less loaded node */
1427 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1428 val += node_load[n];
1429
1430 if (val < min_val) {
1431 min_val = val;
1432 best_node = n;
1433 }
1434 }
1435
1436 if (best_node >= 0)
1437 node_set(best_node, *used_node_mask);
1438
1439 return best_node;
1440}
1441
86356ab1 1442static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1443{
1444 int i, j, k, node, local_node;
1445 int prev_node, load;
1446 struct zonelist *zonelist;
1447 nodemask_t used_mask;
1448
1449 /* initialize zonelists */
1450 for (i = 0; i < GFP_ZONETYPES; i++) {
1451 zonelist = pgdat->node_zonelists + i;
1452 zonelist->zones[0] = NULL;
1453 }
1454
1455 /* NUMA-aware ordering of nodes */
1456 local_node = pgdat->node_id;
1457 load = num_online_nodes();
1458 prev_node = local_node;
1459 nodes_clear(used_mask);
1460 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1461 int distance = node_distance(local_node, node);
1462
1463 /*
1464 * If another node is sufficiently far away then it is better
1465 * to reclaim pages in a zone before going off node.
1466 */
1467 if (distance > RECLAIM_DISTANCE)
1468 zone_reclaim_mode = 1;
1469
1da177e4
LT
1470 /*
1471 * We don't want to pressure a particular node.
1472 * So adding penalty to the first node in same
1473 * distance group to make it round-robin.
1474 */
9eeff239
CL
1475
1476 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1477 node_load[node] += load;
1478 prev_node = node;
1479 load--;
1480 for (i = 0; i < GFP_ZONETYPES; i++) {
1481 zonelist = pgdat->node_zonelists + i;
1482 for (j = 0; zonelist->zones[j] != NULL; j++);
1483
260b2367 1484 k = highest_zone(i);
1da177e4
LT
1485
1486 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1487 zonelist->zones[j] = NULL;
1488 }
1489 }
1490}
1491
1492#else /* CONFIG_NUMA */
1493
86356ab1 1494static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1495{
2f1b6248
CL
1496 int i, node, local_node;
1497 enum zone_type k;
1498 enum zone_type j;
1da177e4
LT
1499
1500 local_node = pgdat->node_id;
1501 for (i = 0; i < GFP_ZONETYPES; i++) {
1502 struct zonelist *zonelist;
1503
1504 zonelist = pgdat->node_zonelists + i;
1505
1506 j = 0;
260b2367 1507 k = highest_zone(i);
1da177e4
LT
1508 j = build_zonelists_node(pgdat, zonelist, j, k);
1509 /*
1510 * Now we build the zonelist so that it contains the zones
1511 * of all the other nodes.
1512 * We don't want to pressure a particular node, so when
1513 * building the zones for node N, we make sure that the
1514 * zones coming right after the local ones are those from
1515 * node N+1 (modulo N)
1516 */
1517 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1518 if (!node_online(node))
1519 continue;
1520 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1521 }
1522 for (node = 0; node < local_node; node++) {
1523 if (!node_online(node))
1524 continue;
1525 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1526 }
1527
1528 zonelist->zones[j] = NULL;
1529 }
1530}
1531
1532#endif /* CONFIG_NUMA */
1533
6811378e
YG
1534/* return values int ....just for stop_machine_run() */
1535static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1536{
6811378e
YG
1537 int nid;
1538 for_each_online_node(nid)
1539 build_zonelists(NODE_DATA(nid));
1540 return 0;
1541}
1542
1543void __meminit build_all_zonelists(void)
1544{
1545 if (system_state == SYSTEM_BOOTING) {
1546 __build_all_zonelists(0);
1547 cpuset_init_current_mems_allowed();
1548 } else {
1549 /* we have to stop all cpus to guaranntee there is no user
1550 of zonelist */
1551 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1552 /* cpuset refresh routine should be here */
1553 }
bd1e22b8
AM
1554 vm_total_pages = nr_free_pagecache_pages();
1555 printk("Built %i zonelists. Total pages: %ld\n",
1556 num_online_nodes(), vm_total_pages);
1da177e4
LT
1557}
1558
1559/*
1560 * Helper functions to size the waitqueue hash table.
1561 * Essentially these want to choose hash table sizes sufficiently
1562 * large so that collisions trying to wait on pages are rare.
1563 * But in fact, the number of active page waitqueues on typical
1564 * systems is ridiculously low, less than 200. So this is even
1565 * conservative, even though it seems large.
1566 *
1567 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1568 * waitqueues, i.e. the size of the waitq table given the number of pages.
1569 */
1570#define PAGES_PER_WAITQUEUE 256
1571
cca448fe 1572#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1573static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1574{
1575 unsigned long size = 1;
1576
1577 pages /= PAGES_PER_WAITQUEUE;
1578
1579 while (size < pages)
1580 size <<= 1;
1581
1582 /*
1583 * Once we have dozens or even hundreds of threads sleeping
1584 * on IO we've got bigger problems than wait queue collision.
1585 * Limit the size of the wait table to a reasonable size.
1586 */
1587 size = min(size, 4096UL);
1588
1589 return max(size, 4UL);
1590}
cca448fe
YG
1591#else
1592/*
1593 * A zone's size might be changed by hot-add, so it is not possible to determine
1594 * a suitable size for its wait_table. So we use the maximum size now.
1595 *
1596 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1597 *
1598 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1599 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1600 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1601 *
1602 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1603 * or more by the traditional way. (See above). It equals:
1604 *
1605 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1606 * ia64(16K page size) : = ( 8G + 4M)byte.
1607 * powerpc (64K page size) : = (32G +16M)byte.
1608 */
1609static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1610{
1611 return 4096UL;
1612}
1613#endif
1da177e4
LT
1614
1615/*
1616 * This is an integer logarithm so that shifts can be used later
1617 * to extract the more random high bits from the multiplicative
1618 * hash function before the remainder is taken.
1619 */
1620static inline unsigned long wait_table_bits(unsigned long size)
1621{
1622 return ffz(~size);
1623}
1624
1625#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1626
1627static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1628 unsigned long *zones_size, unsigned long *zholes_size)
1629{
1630 unsigned long realtotalpages, totalpages = 0;
1631 int i;
1632
1633 for (i = 0; i < MAX_NR_ZONES; i++)
1634 totalpages += zones_size[i];
1635 pgdat->node_spanned_pages = totalpages;
1636
1637 realtotalpages = totalpages;
1638 if (zholes_size)
1639 for (i = 0; i < MAX_NR_ZONES; i++)
1640 realtotalpages -= zholes_size[i];
1641 pgdat->node_present_pages = realtotalpages;
1642 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1643}
1644
1645
1646/*
1647 * Initially all pages are reserved - free ones are freed
1648 * up by free_all_bootmem() once the early boot process is
1649 * done. Non-atomic initialization, single-pass.
1650 */
c09b4240 1651void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1652 unsigned long start_pfn)
1653{
1da177e4 1654 struct page *page;
29751f69
AW
1655 unsigned long end_pfn = start_pfn + size;
1656 unsigned long pfn;
1da177e4 1657
cbe8dd4a 1658 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1659 if (!early_pfn_valid(pfn))
1660 continue;
1661 page = pfn_to_page(pfn);
1662 set_page_links(page, zone, nid, pfn);
7835e98b 1663 init_page_count(page);
1da177e4
LT
1664 reset_page_mapcount(page);
1665 SetPageReserved(page);
1666 INIT_LIST_HEAD(&page->lru);
1667#ifdef WANT_PAGE_VIRTUAL
1668 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1669 if (!is_highmem_idx(zone))
3212c6be 1670 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1671#endif
1da177e4
LT
1672 }
1673}
1674
1675void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1676 unsigned long size)
1677{
1678 int order;
1679 for (order = 0; order < MAX_ORDER ; order++) {
1680 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1681 zone->free_area[order].nr_free = 0;
1682 }
1683}
1684
d41dee36 1685#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1686void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1687 unsigned long pfn, unsigned long size)
d41dee36
AW
1688{
1689 unsigned long snum = pfn_to_section_nr(pfn);
1690 unsigned long end = pfn_to_section_nr(pfn + size);
1691
1692 if (FLAGS_HAS_NODE)
1693 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1694 else
1695 for (; snum <= end; snum++)
1696 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1697}
1698
1da177e4
LT
1699#ifndef __HAVE_ARCH_MEMMAP_INIT
1700#define memmap_init(size, nid, zone, start_pfn) \
1701 memmap_init_zone((size), (nid), (zone), (start_pfn))
1702#endif
1703
6292d9aa 1704static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1705{
1706 int batch;
1707
1708 /*
1709 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1710 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1711 *
1712 * OK, so we don't know how big the cache is. So guess.
1713 */
1714 batch = zone->present_pages / 1024;
ba56e91c
SR
1715 if (batch * PAGE_SIZE > 512 * 1024)
1716 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1717 batch /= 4; /* We effectively *= 4 below */
1718 if (batch < 1)
1719 batch = 1;
1720
1721 /*
0ceaacc9
NP
1722 * Clamp the batch to a 2^n - 1 value. Having a power
1723 * of 2 value was found to be more likely to have
1724 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1725 *
0ceaacc9
NP
1726 * For example if 2 tasks are alternately allocating
1727 * batches of pages, one task can end up with a lot
1728 * of pages of one half of the possible page colors
1729 * and the other with pages of the other colors.
e7c8d5c9 1730 */
0ceaacc9 1731 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1732
e7c8d5c9
CL
1733 return batch;
1734}
1735
2caaad41
CL
1736inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1737{
1738 struct per_cpu_pages *pcp;
1739
1c6fe946
MD
1740 memset(p, 0, sizeof(*p));
1741
2caaad41
CL
1742 pcp = &p->pcp[0]; /* hot */
1743 pcp->count = 0;
2caaad41
CL
1744 pcp->high = 6 * batch;
1745 pcp->batch = max(1UL, 1 * batch);
1746 INIT_LIST_HEAD(&pcp->list);
1747
1748 pcp = &p->pcp[1]; /* cold*/
1749 pcp->count = 0;
2caaad41 1750 pcp->high = 2 * batch;
e46a5e28 1751 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1752 INIT_LIST_HEAD(&pcp->list);
1753}
1754
8ad4b1fb
RS
1755/*
1756 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1757 * to the value high for the pageset p.
1758 */
1759
1760static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1761 unsigned long high)
1762{
1763 struct per_cpu_pages *pcp;
1764
1765 pcp = &p->pcp[0]; /* hot list */
1766 pcp->high = high;
1767 pcp->batch = max(1UL, high/4);
1768 if ((high/4) > (PAGE_SHIFT * 8))
1769 pcp->batch = PAGE_SHIFT * 8;
1770}
1771
1772
e7c8d5c9
CL
1773#ifdef CONFIG_NUMA
1774/*
2caaad41
CL
1775 * Boot pageset table. One per cpu which is going to be used for all
1776 * zones and all nodes. The parameters will be set in such a way
1777 * that an item put on a list will immediately be handed over to
1778 * the buddy list. This is safe since pageset manipulation is done
1779 * with interrupts disabled.
1780 *
1781 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1782 *
1783 * The boot_pagesets must be kept even after bootup is complete for
1784 * unused processors and/or zones. They do play a role for bootstrapping
1785 * hotplugged processors.
1786 *
1787 * zoneinfo_show() and maybe other functions do
1788 * not check if the processor is online before following the pageset pointer.
1789 * Other parts of the kernel may not check if the zone is available.
2caaad41 1790 */
88a2a4ac 1791static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1792
1793/*
1794 * Dynamically allocate memory for the
e7c8d5c9
CL
1795 * per cpu pageset array in struct zone.
1796 */
6292d9aa 1797static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1798{
1799 struct zone *zone, *dzone;
e7c8d5c9
CL
1800
1801 for_each_zone(zone) {
e7c8d5c9 1802
23316bc8 1803 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1804 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1805 if (!zone_pcp(zone, cpu))
e7c8d5c9 1806 goto bad;
e7c8d5c9 1807
23316bc8 1808 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1809
1810 if (percpu_pagelist_fraction)
1811 setup_pagelist_highmark(zone_pcp(zone, cpu),
1812 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1813 }
1814
1815 return 0;
1816bad:
1817 for_each_zone(dzone) {
1818 if (dzone == zone)
1819 break;
23316bc8
NP
1820 kfree(zone_pcp(dzone, cpu));
1821 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1822 }
1823 return -ENOMEM;
1824}
1825
1826static inline void free_zone_pagesets(int cpu)
1827{
e7c8d5c9
CL
1828 struct zone *zone;
1829
1830 for_each_zone(zone) {
1831 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1832
f3ef9ead
DR
1833 /* Free per_cpu_pageset if it is slab allocated */
1834 if (pset != &boot_pageset[cpu])
1835 kfree(pset);
e7c8d5c9 1836 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1837 }
e7c8d5c9
CL
1838}
1839
9c7b216d 1840static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1841 unsigned long action,
1842 void *hcpu)
1843{
1844 int cpu = (long)hcpu;
1845 int ret = NOTIFY_OK;
1846
1847 switch (action) {
1848 case CPU_UP_PREPARE:
1849 if (process_zones(cpu))
1850 ret = NOTIFY_BAD;
1851 break;
b0d41693 1852 case CPU_UP_CANCELED:
e7c8d5c9
CL
1853 case CPU_DEAD:
1854 free_zone_pagesets(cpu);
1855 break;
e7c8d5c9
CL
1856 default:
1857 break;
1858 }
1859 return ret;
1860}
1861
74b85f37 1862static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1863 { &pageset_cpuup_callback, NULL, 0 };
1864
78d9955b 1865void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1866{
1867 int err;
1868
1869 /* Initialize per_cpu_pageset for cpu 0.
1870 * A cpuup callback will do this for every cpu
1871 * as it comes online
1872 */
1873 err = process_zones(smp_processor_id());
1874 BUG_ON(err);
1875 register_cpu_notifier(&pageset_notifier);
1876}
1877
1878#endif
1879
c09b4240 1880static __meminit
cca448fe 1881int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1882{
1883 int i;
1884 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1885 size_t alloc_size;
ed8ece2e
DH
1886
1887 /*
1888 * The per-page waitqueue mechanism uses hashed waitqueues
1889 * per zone.
1890 */
02b694de
YG
1891 zone->wait_table_hash_nr_entries =
1892 wait_table_hash_nr_entries(zone_size_pages);
1893 zone->wait_table_bits =
1894 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1895 alloc_size = zone->wait_table_hash_nr_entries
1896 * sizeof(wait_queue_head_t);
1897
1898 if (system_state == SYSTEM_BOOTING) {
1899 zone->wait_table = (wait_queue_head_t *)
1900 alloc_bootmem_node(pgdat, alloc_size);
1901 } else {
1902 /*
1903 * This case means that a zone whose size was 0 gets new memory
1904 * via memory hot-add.
1905 * But it may be the case that a new node was hot-added. In
1906 * this case vmalloc() will not be able to use this new node's
1907 * memory - this wait_table must be initialized to use this new
1908 * node itself as well.
1909 * To use this new node's memory, further consideration will be
1910 * necessary.
1911 */
1912 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1913 }
1914 if (!zone->wait_table)
1915 return -ENOMEM;
ed8ece2e 1916
02b694de 1917 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1918 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1919
1920 return 0;
ed8ece2e
DH
1921}
1922
c09b4240 1923static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1924{
1925 int cpu;
1926 unsigned long batch = zone_batchsize(zone);
1927
1928 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1929#ifdef CONFIG_NUMA
1930 /* Early boot. Slab allocator not functional yet */
23316bc8 1931 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1932 setup_pageset(&boot_pageset[cpu],0);
1933#else
1934 setup_pageset(zone_pcp(zone,cpu), batch);
1935#endif
1936 }
f5335c0f
AB
1937 if (zone->present_pages)
1938 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1939 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1940}
1941
718127cc
YG
1942__meminit int init_currently_empty_zone(struct zone *zone,
1943 unsigned long zone_start_pfn,
1944 unsigned long size)
ed8ece2e
DH
1945{
1946 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1947 int ret;
1948 ret = zone_wait_table_init(zone, size);
1949 if (ret)
1950 return ret;
ed8ece2e
DH
1951 pgdat->nr_zones = zone_idx(zone) + 1;
1952
ed8ece2e
DH
1953 zone->zone_start_pfn = zone_start_pfn;
1954
1955 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1956
1957 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1958
1959 return 0;
ed8ece2e
DH
1960}
1961
1da177e4
LT
1962/*
1963 * Set up the zone data structures:
1964 * - mark all pages reserved
1965 * - mark all memory queues empty
1966 * - clear the memory bitmaps
1967 */
86356ab1 1968static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1969 unsigned long *zones_size, unsigned long *zholes_size)
1970{
2f1b6248 1971 enum zone_type j;
ed8ece2e 1972 int nid = pgdat->node_id;
1da177e4 1973 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1974 int ret;
1da177e4 1975
208d54e5 1976 pgdat_resize_init(pgdat);
1da177e4
LT
1977 pgdat->nr_zones = 0;
1978 init_waitqueue_head(&pgdat->kswapd_wait);
1979 pgdat->kswapd_max_order = 0;
1980
1981 for (j = 0; j < MAX_NR_ZONES; j++) {
1982 struct zone *zone = pgdat->node_zones + j;
1983 unsigned long size, realsize;
1da177e4 1984
1da177e4
LT
1985 realsize = size = zones_size[j];
1986 if (zholes_size)
1987 realsize -= zholes_size[j];
1988
98d2b0eb 1989 if (!is_highmem_idx(j))
1da177e4
LT
1990 nr_kernel_pages += realsize;
1991 nr_all_pages += realsize;
1992
1993 zone->spanned_pages = size;
1994 zone->present_pages = realsize;
9614634f
CL
1995#ifdef CONFIG_NUMA
1996 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
1997 / 100;
1998#endif
1da177e4
LT
1999 zone->name = zone_names[j];
2000 spin_lock_init(&zone->lock);
2001 spin_lock_init(&zone->lru_lock);
bdc8cb98 2002 zone_seqlock_init(zone);
1da177e4
LT
2003 zone->zone_pgdat = pgdat;
2004 zone->free_pages = 0;
2005
2006 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2007
ed8ece2e 2008 zone_pcp_init(zone);
1da177e4
LT
2009 INIT_LIST_HEAD(&zone->active_list);
2010 INIT_LIST_HEAD(&zone->inactive_list);
2011 zone->nr_scan_active = 0;
2012 zone->nr_scan_inactive = 0;
2013 zone->nr_active = 0;
2014 zone->nr_inactive = 0;
2244b95a 2015 zap_zone_vm_stats(zone);
53e9a615 2016 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2017 if (!size)
2018 continue;
2019
d41dee36 2020 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2021 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2022 BUG_ON(ret);
1da177e4 2023 zone_start_pfn += size;
1da177e4
LT
2024 }
2025}
2026
2027static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2028{
1da177e4
LT
2029 /* Skip empty nodes */
2030 if (!pgdat->node_spanned_pages)
2031 return;
2032
d41dee36 2033#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2034 /* ia64 gets its own node_mem_map, before this, without bootmem */
2035 if (!pgdat->node_mem_map) {
e984bb43 2036 unsigned long size, start, end;
d41dee36
AW
2037 struct page *map;
2038
e984bb43
BP
2039 /*
2040 * The zone's endpoints aren't required to be MAX_ORDER
2041 * aligned but the node_mem_map endpoints must be in order
2042 * for the buddy allocator to function correctly.
2043 */
2044 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2045 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2046 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2047 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2048 map = alloc_remap(pgdat->node_id, size);
2049 if (!map)
2050 map = alloc_bootmem_node(pgdat, size);
e984bb43 2051 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2052 }
d41dee36 2053#ifdef CONFIG_FLATMEM
1da177e4
LT
2054 /*
2055 * With no DISCONTIG, the global mem_map is just set as node 0's
2056 */
2057 if (pgdat == NODE_DATA(0))
2058 mem_map = NODE_DATA(0)->node_mem_map;
2059#endif
d41dee36 2060#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2061}
2062
86356ab1 2063void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2064 unsigned long *zones_size, unsigned long node_start_pfn,
2065 unsigned long *zholes_size)
2066{
2067 pgdat->node_id = nid;
2068 pgdat->node_start_pfn = node_start_pfn;
2069 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2070
2071 alloc_node_mem_map(pgdat);
2072
2073 free_area_init_core(pgdat, zones_size, zholes_size);
2074}
2075
93b7504e 2076#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2077static bootmem_data_t contig_bootmem_data;
2078struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2079
2080EXPORT_SYMBOL(contig_page_data);
93b7504e 2081#endif
1da177e4
LT
2082
2083void __init free_area_init(unsigned long *zones_size)
2084{
93b7504e 2085 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2086 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2087}
1da177e4 2088
1da177e4
LT
2089#ifdef CONFIG_HOTPLUG_CPU
2090static int page_alloc_cpu_notify(struct notifier_block *self,
2091 unsigned long action, void *hcpu)
2092{
2093 int cpu = (unsigned long)hcpu;
1da177e4
LT
2094
2095 if (action == CPU_DEAD) {
1da177e4
LT
2096 local_irq_disable();
2097 __drain_pages(cpu);
f8891e5e 2098 vm_events_fold_cpu(cpu);
1da177e4 2099 local_irq_enable();
2244b95a 2100 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2101 }
2102 return NOTIFY_OK;
2103}
2104#endif /* CONFIG_HOTPLUG_CPU */
2105
2106void __init page_alloc_init(void)
2107{
2108 hotcpu_notifier(page_alloc_cpu_notify, 0);
2109}
2110
cb45b0e9
HA
2111/*
2112 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2113 * or min_free_kbytes changes.
2114 */
2115static void calculate_totalreserve_pages(void)
2116{
2117 struct pglist_data *pgdat;
2118 unsigned long reserve_pages = 0;
2119 int i, j;
2120
2121 for_each_online_pgdat(pgdat) {
2122 for (i = 0; i < MAX_NR_ZONES; i++) {
2123 struct zone *zone = pgdat->node_zones + i;
2124 unsigned long max = 0;
2125
2126 /* Find valid and maximum lowmem_reserve in the zone */
2127 for (j = i; j < MAX_NR_ZONES; j++) {
2128 if (zone->lowmem_reserve[j] > max)
2129 max = zone->lowmem_reserve[j];
2130 }
2131
2132 /* we treat pages_high as reserved pages. */
2133 max += zone->pages_high;
2134
2135 if (max > zone->present_pages)
2136 max = zone->present_pages;
2137 reserve_pages += max;
2138 }
2139 }
2140 totalreserve_pages = reserve_pages;
2141}
2142
1da177e4
LT
2143/*
2144 * setup_per_zone_lowmem_reserve - called whenever
2145 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2146 * has a correct pages reserved value, so an adequate number of
2147 * pages are left in the zone after a successful __alloc_pages().
2148 */
2149static void setup_per_zone_lowmem_reserve(void)
2150{
2151 struct pglist_data *pgdat;
2152 int j, idx;
2153
ec936fc5 2154 for_each_online_pgdat(pgdat) {
1da177e4
LT
2155 for (j = 0; j < MAX_NR_ZONES; j++) {
2156 struct zone *zone = pgdat->node_zones + j;
2157 unsigned long present_pages = zone->present_pages;
2158
2159 zone->lowmem_reserve[j] = 0;
2160
2161 for (idx = j-1; idx >= 0; idx--) {
2162 struct zone *lower_zone;
2163
2164 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2165 sysctl_lowmem_reserve_ratio[idx] = 1;
2166
2167 lower_zone = pgdat->node_zones + idx;
2168 lower_zone->lowmem_reserve[j] = present_pages /
2169 sysctl_lowmem_reserve_ratio[idx];
2170 present_pages += lower_zone->present_pages;
2171 }
2172 }
2173 }
cb45b0e9
HA
2174
2175 /* update totalreserve_pages */
2176 calculate_totalreserve_pages();
1da177e4
LT
2177}
2178
2179/*
2180 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2181 * that the pages_{min,low,high} values for each zone are set correctly
2182 * with respect to min_free_kbytes.
2183 */
3947be19 2184void setup_per_zone_pages_min(void)
1da177e4
LT
2185{
2186 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2187 unsigned long lowmem_pages = 0;
2188 struct zone *zone;
2189 unsigned long flags;
2190
2191 /* Calculate total number of !ZONE_HIGHMEM pages */
2192 for_each_zone(zone) {
2193 if (!is_highmem(zone))
2194 lowmem_pages += zone->present_pages;
2195 }
2196
2197 for_each_zone(zone) {
ac924c60
AM
2198 u64 tmp;
2199
1da177e4 2200 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2201 tmp = (u64)pages_min * zone->present_pages;
2202 do_div(tmp, lowmem_pages);
1da177e4
LT
2203 if (is_highmem(zone)) {
2204 /*
669ed175
NP
2205 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2206 * need highmem pages, so cap pages_min to a small
2207 * value here.
2208 *
2209 * The (pages_high-pages_low) and (pages_low-pages_min)
2210 * deltas controls asynch page reclaim, and so should
2211 * not be capped for highmem.
1da177e4
LT
2212 */
2213 int min_pages;
2214
2215 min_pages = zone->present_pages / 1024;
2216 if (min_pages < SWAP_CLUSTER_MAX)
2217 min_pages = SWAP_CLUSTER_MAX;
2218 if (min_pages > 128)
2219 min_pages = 128;
2220 zone->pages_min = min_pages;
2221 } else {
669ed175
NP
2222 /*
2223 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2224 * proportionate to the zone's size.
2225 */
669ed175 2226 zone->pages_min = tmp;
1da177e4
LT
2227 }
2228
ac924c60
AM
2229 zone->pages_low = zone->pages_min + (tmp >> 2);
2230 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2231 spin_unlock_irqrestore(&zone->lru_lock, flags);
2232 }
cb45b0e9
HA
2233
2234 /* update totalreserve_pages */
2235 calculate_totalreserve_pages();
1da177e4
LT
2236}
2237
2238/*
2239 * Initialise min_free_kbytes.
2240 *
2241 * For small machines we want it small (128k min). For large machines
2242 * we want it large (64MB max). But it is not linear, because network
2243 * bandwidth does not increase linearly with machine size. We use
2244 *
2245 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2246 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2247 *
2248 * which yields
2249 *
2250 * 16MB: 512k
2251 * 32MB: 724k
2252 * 64MB: 1024k
2253 * 128MB: 1448k
2254 * 256MB: 2048k
2255 * 512MB: 2896k
2256 * 1024MB: 4096k
2257 * 2048MB: 5792k
2258 * 4096MB: 8192k
2259 * 8192MB: 11584k
2260 * 16384MB: 16384k
2261 */
2262static int __init init_per_zone_pages_min(void)
2263{
2264 unsigned long lowmem_kbytes;
2265
2266 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2267
2268 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2269 if (min_free_kbytes < 128)
2270 min_free_kbytes = 128;
2271 if (min_free_kbytes > 65536)
2272 min_free_kbytes = 65536;
2273 setup_per_zone_pages_min();
2274 setup_per_zone_lowmem_reserve();
2275 return 0;
2276}
2277module_init(init_per_zone_pages_min)
2278
2279/*
2280 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2281 * that we can call two helper functions whenever min_free_kbytes
2282 * changes.
2283 */
2284int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2285 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2286{
2287 proc_dointvec(table, write, file, buffer, length, ppos);
2288 setup_per_zone_pages_min();
2289 return 0;
2290}
2291
9614634f
CL
2292#ifdef CONFIG_NUMA
2293int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2294 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2295{
2296 struct zone *zone;
2297 int rc;
2298
2299 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2300 if (rc)
2301 return rc;
2302
2303 for_each_zone(zone)
2304 zone->min_unmapped_ratio = (zone->present_pages *
2305 sysctl_min_unmapped_ratio) / 100;
2306 return 0;
2307}
2308#endif
2309
1da177e4
LT
2310/*
2311 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2312 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2313 * whenever sysctl_lowmem_reserve_ratio changes.
2314 *
2315 * The reserve ratio obviously has absolutely no relation with the
2316 * pages_min watermarks. The lowmem reserve ratio can only make sense
2317 * if in function of the boot time zone sizes.
2318 */
2319int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2320 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2321{
2322 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2323 setup_per_zone_lowmem_reserve();
2324 return 0;
2325}
2326
8ad4b1fb
RS
2327/*
2328 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2329 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2330 * can have before it gets flushed back to buddy allocator.
2331 */
2332
2333int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2334 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2335{
2336 struct zone *zone;
2337 unsigned int cpu;
2338 int ret;
2339
2340 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2341 if (!write || (ret == -EINVAL))
2342 return ret;
2343 for_each_zone(zone) {
2344 for_each_online_cpu(cpu) {
2345 unsigned long high;
2346 high = zone->present_pages / percpu_pagelist_fraction;
2347 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2348 }
2349 }
2350 return 0;
2351}
2352
f034b5d4 2353int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2354
2355#ifdef CONFIG_NUMA
2356static int __init set_hashdist(char *str)
2357{
2358 if (!str)
2359 return 0;
2360 hashdist = simple_strtoul(str, &str, 0);
2361 return 1;
2362}
2363__setup("hashdist=", set_hashdist);
2364#endif
2365
2366/*
2367 * allocate a large system hash table from bootmem
2368 * - it is assumed that the hash table must contain an exact power-of-2
2369 * quantity of entries
2370 * - limit is the number of hash buckets, not the total allocation size
2371 */
2372void *__init alloc_large_system_hash(const char *tablename,
2373 unsigned long bucketsize,
2374 unsigned long numentries,
2375 int scale,
2376 int flags,
2377 unsigned int *_hash_shift,
2378 unsigned int *_hash_mask,
2379 unsigned long limit)
2380{
2381 unsigned long long max = limit;
2382 unsigned long log2qty, size;
2383 void *table = NULL;
2384
2385 /* allow the kernel cmdline to have a say */
2386 if (!numentries) {
2387 /* round applicable memory size up to nearest megabyte */
2388 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2389 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2390 numentries >>= 20 - PAGE_SHIFT;
2391 numentries <<= 20 - PAGE_SHIFT;
2392
2393 /* limit to 1 bucket per 2^scale bytes of low memory */
2394 if (scale > PAGE_SHIFT)
2395 numentries >>= (scale - PAGE_SHIFT);
2396 else
2397 numentries <<= (PAGE_SHIFT - scale);
2398 }
6e692ed3 2399 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2400
2401 /* limit allocation size to 1/16 total memory by default */
2402 if (max == 0) {
2403 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2404 do_div(max, bucketsize);
2405 }
2406
2407 if (numentries > max)
2408 numentries = max;
2409
2410 log2qty = long_log2(numentries);
2411
2412 do {
2413 size = bucketsize << log2qty;
2414 if (flags & HASH_EARLY)
2415 table = alloc_bootmem(size);
2416 else if (hashdist)
2417 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2418 else {
2419 unsigned long order;
2420 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2421 ;
2422 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2423 }
2424 } while (!table && size > PAGE_SIZE && --log2qty);
2425
2426 if (!table)
2427 panic("Failed to allocate %s hash table\n", tablename);
2428
2429 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2430 tablename,
2431 (1U << log2qty),
2432 long_log2(size) - PAGE_SHIFT,
2433 size);
2434
2435 if (_hash_shift)
2436 *_hash_shift = log2qty;
2437 if (_hash_mask)
2438 *_hash_mask = (1 << log2qty) - 1;
2439
2440 return table;
2441}
a117e66e
KH
2442
2443#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2444struct page *pfn_to_page(unsigned long pfn)
2445{
67de6482 2446 return __pfn_to_page(pfn);
a117e66e
KH
2447}
2448unsigned long page_to_pfn(struct page *page)
2449{
67de6482 2450 return __page_to_pfn(page);
a117e66e 2451}
a117e66e
KH
2452EXPORT_SYMBOL(pfn_to_page);
2453EXPORT_SYMBOL(page_to_pfn);
2454#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */