Print out statistics in relation to fragmentation avoidance to /proc/pagetypeinfo
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
13808910 50 * Array of node states.
1da177e4 51 */
13808910
CL
52nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55#ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57#ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59#endif
60 [N_CPU] = { { [0] = 1UL } },
61#endif /* NUMA */
62};
63EXPORT_SYMBOL(node_states);
64
6c231b7b 65unsigned long totalram_pages __read_mostly;
cb45b0e9 66unsigned long totalreserve_pages __read_mostly;
1da177e4 67long nr_swap_pages;
8ad4b1fb 68int percpu_pagelist_fraction;
1da177e4 69
d9c23400
MG
70#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
71int pageblock_order __read_mostly;
72#endif
73
d98c7a09 74static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 75
1da177e4
LT
76/*
77 * results with 256, 32 in the lowmem_reserve sysctl:
78 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
79 * 1G machine -> (16M dma, 784M normal, 224M high)
80 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
81 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
82 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
83 *
84 * TBD: should special case ZONE_DMA32 machines here - in those we normally
85 * don't need any ZONE_NORMAL reservation
1da177e4 86 */
2f1b6248 87int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 88#ifdef CONFIG_ZONE_DMA
2f1b6248 89 256,
4b51d669 90#endif
fb0e7942 91#ifdef CONFIG_ZONE_DMA32
2f1b6248 92 256,
fb0e7942 93#endif
e53ef38d 94#ifdef CONFIG_HIGHMEM
2a1e274a 95 32,
e53ef38d 96#endif
2a1e274a 97 32,
2f1b6248 98};
1da177e4
LT
99
100EXPORT_SYMBOL(totalram_pages);
1da177e4 101
15ad7cdc 102static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 103#ifdef CONFIG_ZONE_DMA
2f1b6248 104 "DMA",
4b51d669 105#endif
fb0e7942 106#ifdef CONFIG_ZONE_DMA32
2f1b6248 107 "DMA32",
fb0e7942 108#endif
2f1b6248 109 "Normal",
e53ef38d 110#ifdef CONFIG_HIGHMEM
2a1e274a 111 "HighMem",
e53ef38d 112#endif
2a1e274a 113 "Movable",
2f1b6248
CL
114};
115
1da177e4
LT
116int min_free_kbytes = 1024;
117
86356ab1
YG
118unsigned long __meminitdata nr_kernel_pages;
119unsigned long __meminitdata nr_all_pages;
a3142c8e 120static unsigned long __meminitdata dma_reserve;
1da177e4 121
c713216d
MG
122#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
123 /*
124 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
125 * ranges of memory (RAM) that may be registered with add_active_range().
126 * Ranges passed to add_active_range() will be merged if possible
127 * so the number of times add_active_range() can be called is
128 * related to the number of nodes and the number of holes
129 */
130 #ifdef CONFIG_MAX_ACTIVE_REGIONS
131 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
132 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
133 #else
134 #if MAX_NUMNODES >= 32
135 /* If there can be many nodes, allow up to 50 holes per node */
136 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
137 #else
138 /* By default, allow up to 256 distinct regions */
139 #define MAX_ACTIVE_REGIONS 256
140 #endif
141 #endif
142
98011f56
JB
143 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
144 static int __meminitdata nr_nodemap_entries;
145 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
146 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 147#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
148 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
149 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 150#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 151 unsigned long __initdata required_kernelcore;
7e63efef 152 unsigned long __initdata required_movablecore;
e228929b 153 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
154
155 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
156 int movable_zone;
157 EXPORT_SYMBOL(movable_zone);
c713216d
MG
158#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
159
418508c1
MS
160#if MAX_NUMNODES > 1
161int nr_node_ids __read_mostly = MAX_NUMNODES;
162EXPORT_SYMBOL(nr_node_ids);
163#endif
164
9ef9acb0
MG
165int page_group_by_mobility_disabled __read_mostly;
166
b2a0ac88
MG
167static void set_pageblock_migratetype(struct page *page, int migratetype)
168{
169 set_pageblock_flags_group(page, (unsigned long)migratetype,
170 PB_migrate, PB_migrate_end);
171}
172
13e7444b 173#ifdef CONFIG_DEBUG_VM
c6a57e19 174static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 175{
bdc8cb98
DH
176 int ret = 0;
177 unsigned seq;
178 unsigned long pfn = page_to_pfn(page);
c6a57e19 179
bdc8cb98
DH
180 do {
181 seq = zone_span_seqbegin(zone);
182 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
183 ret = 1;
184 else if (pfn < zone->zone_start_pfn)
185 ret = 1;
186 } while (zone_span_seqretry(zone, seq));
187
188 return ret;
c6a57e19
DH
189}
190
191static int page_is_consistent(struct zone *zone, struct page *page)
192{
14e07298 193 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 194 return 0;
1da177e4 195 if (zone != page_zone(page))
c6a57e19
DH
196 return 0;
197
198 return 1;
199}
200/*
201 * Temporary debugging check for pages not lying within a given zone.
202 */
203static int bad_range(struct zone *zone, struct page *page)
204{
205 if (page_outside_zone_boundaries(zone, page))
1da177e4 206 return 1;
c6a57e19
DH
207 if (!page_is_consistent(zone, page))
208 return 1;
209
1da177e4
LT
210 return 0;
211}
13e7444b
NP
212#else
213static inline int bad_range(struct zone *zone, struct page *page)
214{
215 return 0;
216}
217#endif
218
224abf92 219static void bad_page(struct page *page)
1da177e4 220{
224abf92 221 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
222 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
223 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
224 KERN_EMERG "Backtrace:\n",
224abf92
NP
225 current->comm, page, (int)(2*sizeof(unsigned long)),
226 (unsigned long)page->flags, page->mapping,
227 page_mapcount(page), page_count(page));
1da177e4 228 dump_stack();
334795ec
HD
229 page->flags &= ~(1 << PG_lru |
230 1 << PG_private |
1da177e4 231 1 << PG_locked |
1da177e4
LT
232 1 << PG_active |
233 1 << PG_dirty |
334795ec
HD
234 1 << PG_reclaim |
235 1 << PG_slab |
1da177e4 236 1 << PG_swapcache |
676165a8
NP
237 1 << PG_writeback |
238 1 << PG_buddy );
1da177e4
LT
239 set_page_count(page, 0);
240 reset_page_mapcount(page);
241 page->mapping = NULL;
9f158333 242 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
243}
244
1da177e4
LT
245/*
246 * Higher-order pages are called "compound pages". They are structured thusly:
247 *
248 * The first PAGE_SIZE page is called the "head page".
249 *
250 * The remaining PAGE_SIZE pages are called "tail pages".
251 *
252 * All pages have PG_compound set. All pages have their ->private pointing at
253 * the head page (even the head page has this).
254 *
41d78ba5
HD
255 * The first tail page's ->lru.next holds the address of the compound page's
256 * put_page() function. Its ->lru.prev holds the order of allocation.
257 * This usage means that zero-order pages may not be compound.
1da177e4 258 */
d98c7a09
HD
259
260static void free_compound_page(struct page *page)
261{
d85f3385 262 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
263}
264
1da177e4
LT
265static void prep_compound_page(struct page *page, unsigned long order)
266{
267 int i;
268 int nr_pages = 1 << order;
269
33f2ef89 270 set_compound_page_dtor(page, free_compound_page);
d85f3385 271 set_compound_order(page, order);
6d777953 272 __SetPageHead(page);
d85f3385 273 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
274 struct page *p = page + i;
275
d85f3385 276 __SetPageTail(p);
d85f3385 277 p->first_page = page;
1da177e4
LT
278 }
279}
280
281static void destroy_compound_page(struct page *page, unsigned long order)
282{
283 int i;
284 int nr_pages = 1 << order;
285
d85f3385 286 if (unlikely(compound_order(page) != order))
224abf92 287 bad_page(page);
1da177e4 288
6d777953 289 if (unlikely(!PageHead(page)))
d85f3385 290 bad_page(page);
6d777953 291 __ClearPageHead(page);
d85f3385 292 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
293 struct page *p = page + i;
294
6d777953 295 if (unlikely(!PageTail(p) |
d85f3385 296 (p->first_page != page)))
224abf92 297 bad_page(page);
d85f3385 298 __ClearPageTail(p);
1da177e4
LT
299 }
300}
1da177e4 301
17cf4406
NP
302static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
303{
304 int i;
305
725d704e 306 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
307 /*
308 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
309 * and __GFP_HIGHMEM from hard or soft interrupt context.
310 */
725d704e 311 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
312 for (i = 0; i < (1 << order); i++)
313 clear_highpage(page + i);
314}
315
1da177e4
LT
316/*
317 * function for dealing with page's order in buddy system.
318 * zone->lock is already acquired when we use these.
319 * So, we don't need atomic page->flags operations here.
320 */
6aa3001b
AM
321static inline unsigned long page_order(struct page *page)
322{
4c21e2f2 323 return page_private(page);
1da177e4
LT
324}
325
6aa3001b
AM
326static inline void set_page_order(struct page *page, int order)
327{
4c21e2f2 328 set_page_private(page, order);
676165a8 329 __SetPageBuddy(page);
1da177e4
LT
330}
331
332static inline void rmv_page_order(struct page *page)
333{
676165a8 334 __ClearPageBuddy(page);
4c21e2f2 335 set_page_private(page, 0);
1da177e4
LT
336}
337
338/*
339 * Locate the struct page for both the matching buddy in our
340 * pair (buddy1) and the combined O(n+1) page they form (page).
341 *
342 * 1) Any buddy B1 will have an order O twin B2 which satisfies
343 * the following equation:
344 * B2 = B1 ^ (1 << O)
345 * For example, if the starting buddy (buddy2) is #8 its order
346 * 1 buddy is #10:
347 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
348 *
349 * 2) Any buddy B will have an order O+1 parent P which
350 * satisfies the following equation:
351 * P = B & ~(1 << O)
352 *
d6e05edc 353 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
354 */
355static inline struct page *
356__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
357{
358 unsigned long buddy_idx = page_idx ^ (1 << order);
359
360 return page + (buddy_idx - page_idx);
361}
362
363static inline unsigned long
364__find_combined_index(unsigned long page_idx, unsigned int order)
365{
366 return (page_idx & ~(1 << order));
367}
368
369/*
370 * This function checks whether a page is free && is the buddy
371 * we can do coalesce a page and its buddy if
13e7444b 372 * (a) the buddy is not in a hole &&
676165a8 373 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
374 * (c) a page and its buddy have the same order &&
375 * (d) a page and its buddy are in the same zone.
676165a8
NP
376 *
377 * For recording whether a page is in the buddy system, we use PG_buddy.
378 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 379 *
676165a8 380 * For recording page's order, we use page_private(page).
1da177e4 381 */
cb2b95e1
AW
382static inline int page_is_buddy(struct page *page, struct page *buddy,
383 int order)
1da177e4 384{
14e07298 385 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 386 return 0;
13e7444b 387
cb2b95e1
AW
388 if (page_zone_id(page) != page_zone_id(buddy))
389 return 0;
390
391 if (PageBuddy(buddy) && page_order(buddy) == order) {
392 BUG_ON(page_count(buddy) != 0);
6aa3001b 393 return 1;
676165a8 394 }
6aa3001b 395 return 0;
1da177e4
LT
396}
397
398/*
399 * Freeing function for a buddy system allocator.
400 *
401 * The concept of a buddy system is to maintain direct-mapped table
402 * (containing bit values) for memory blocks of various "orders".
403 * The bottom level table contains the map for the smallest allocatable
404 * units of memory (here, pages), and each level above it describes
405 * pairs of units from the levels below, hence, "buddies".
406 * At a high level, all that happens here is marking the table entry
407 * at the bottom level available, and propagating the changes upward
408 * as necessary, plus some accounting needed to play nicely with other
409 * parts of the VM system.
410 * At each level, we keep a list of pages, which are heads of continuous
676165a8 411 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 412 * order is recorded in page_private(page) field.
1da177e4
LT
413 * So when we are allocating or freeing one, we can derive the state of the
414 * other. That is, if we allocate a small block, and both were
415 * free, the remainder of the region must be split into blocks.
416 * If a block is freed, and its buddy is also free, then this
417 * triggers coalescing into a block of larger size.
418 *
419 * -- wli
420 */
421
48db57f8 422static inline void __free_one_page(struct page *page,
1da177e4
LT
423 struct zone *zone, unsigned int order)
424{
425 unsigned long page_idx;
426 int order_size = 1 << order;
b2a0ac88 427 int migratetype = get_pageblock_migratetype(page);
1da177e4 428
224abf92 429 if (unlikely(PageCompound(page)))
1da177e4
LT
430 destroy_compound_page(page, order);
431
432 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
433
725d704e
NP
434 VM_BUG_ON(page_idx & (order_size - 1));
435 VM_BUG_ON(bad_range(zone, page));
1da177e4 436
d23ad423 437 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
438 while (order < MAX_ORDER-1) {
439 unsigned long combined_idx;
1da177e4
LT
440 struct page *buddy;
441
1da177e4 442 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 443 if (!page_is_buddy(page, buddy, order))
1da177e4 444 break; /* Move the buddy up one level. */
13e7444b 445
1da177e4 446 list_del(&buddy->lru);
b2a0ac88 447 zone->free_area[order].nr_free--;
1da177e4 448 rmv_page_order(buddy);
13e7444b 449 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
450 page = page + (combined_idx - page_idx);
451 page_idx = combined_idx;
452 order++;
453 }
454 set_page_order(page, order);
b2a0ac88
MG
455 list_add(&page->lru,
456 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
457 zone->free_area[order].nr_free++;
458}
459
224abf92 460static inline int free_pages_check(struct page *page)
1da177e4 461{
92be2e33
NP
462 if (unlikely(page_mapcount(page) |
463 (page->mapping != NULL) |
464 (page_count(page) != 0) |
1da177e4
LT
465 (page->flags & (
466 1 << PG_lru |
467 1 << PG_private |
468 1 << PG_locked |
469 1 << PG_active |
1da177e4
LT
470 1 << PG_slab |
471 1 << PG_swapcache |
b5810039 472 1 << PG_writeback |
676165a8
NP
473 1 << PG_reserved |
474 1 << PG_buddy ))))
224abf92 475 bad_page(page);
1da177e4 476 if (PageDirty(page))
242e5468 477 __ClearPageDirty(page);
689bcebf
HD
478 /*
479 * For now, we report if PG_reserved was found set, but do not
480 * clear it, and do not free the page. But we shall soon need
481 * to do more, for when the ZERO_PAGE count wraps negative.
482 */
483 return PageReserved(page);
1da177e4
LT
484}
485
486/*
487 * Frees a list of pages.
488 * Assumes all pages on list are in same zone, and of same order.
207f36ee 489 * count is the number of pages to free.
1da177e4
LT
490 *
491 * If the zone was previously in an "all pages pinned" state then look to
492 * see if this freeing clears that state.
493 *
494 * And clear the zone's pages_scanned counter, to hold off the "all pages are
495 * pinned" detection logic.
496 */
48db57f8
NP
497static void free_pages_bulk(struct zone *zone, int count,
498 struct list_head *list, int order)
1da177e4 499{
c54ad30c 500 spin_lock(&zone->lock);
1da177e4
LT
501 zone->all_unreclaimable = 0;
502 zone->pages_scanned = 0;
48db57f8
NP
503 while (count--) {
504 struct page *page;
505
725d704e 506 VM_BUG_ON(list_empty(list));
1da177e4 507 page = list_entry(list->prev, struct page, lru);
48db57f8 508 /* have to delete it as __free_one_page list manipulates */
1da177e4 509 list_del(&page->lru);
48db57f8 510 __free_one_page(page, zone, order);
1da177e4 511 }
c54ad30c 512 spin_unlock(&zone->lock);
1da177e4
LT
513}
514
48db57f8 515static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 516{
006d22d9
CL
517 spin_lock(&zone->lock);
518 zone->all_unreclaimable = 0;
519 zone->pages_scanned = 0;
0798e519 520 __free_one_page(page, zone, order);
006d22d9 521 spin_unlock(&zone->lock);
48db57f8
NP
522}
523
524static void __free_pages_ok(struct page *page, unsigned int order)
525{
526 unsigned long flags;
1da177e4 527 int i;
689bcebf 528 int reserved = 0;
1da177e4 529
1da177e4 530 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 531 reserved += free_pages_check(page + i);
689bcebf
HD
532 if (reserved)
533 return;
534
9858db50
NP
535 if (!PageHighMem(page))
536 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 537 arch_free_page(page, order);
48db57f8 538 kernel_map_pages(page, 1 << order, 0);
dafb1367 539
c54ad30c 540 local_irq_save(flags);
f8891e5e 541 __count_vm_events(PGFREE, 1 << order);
48db57f8 542 free_one_page(page_zone(page), page, order);
c54ad30c 543 local_irq_restore(flags);
1da177e4
LT
544}
545
a226f6c8
DH
546/*
547 * permit the bootmem allocator to evade page validation on high-order frees
548 */
549void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
550{
551 if (order == 0) {
552 __ClearPageReserved(page);
553 set_page_count(page, 0);
7835e98b 554 set_page_refcounted(page);
545b1ea9 555 __free_page(page);
a226f6c8 556 } else {
a226f6c8
DH
557 int loop;
558
545b1ea9 559 prefetchw(page);
a226f6c8
DH
560 for (loop = 0; loop < BITS_PER_LONG; loop++) {
561 struct page *p = &page[loop];
562
545b1ea9
NP
563 if (loop + 1 < BITS_PER_LONG)
564 prefetchw(p + 1);
a226f6c8
DH
565 __ClearPageReserved(p);
566 set_page_count(p, 0);
567 }
568
7835e98b 569 set_page_refcounted(page);
545b1ea9 570 __free_pages(page, order);
a226f6c8
DH
571 }
572}
573
1da177e4
LT
574
575/*
576 * The order of subdivision here is critical for the IO subsystem.
577 * Please do not alter this order without good reasons and regression
578 * testing. Specifically, as large blocks of memory are subdivided,
579 * the order in which smaller blocks are delivered depends on the order
580 * they're subdivided in this function. This is the primary factor
581 * influencing the order in which pages are delivered to the IO
582 * subsystem according to empirical testing, and this is also justified
583 * by considering the behavior of a buddy system containing a single
584 * large block of memory acted on by a series of small allocations.
585 * This behavior is a critical factor in sglist merging's success.
586 *
587 * -- wli
588 */
085cc7d5 589static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
590 int low, int high, struct free_area *area,
591 int migratetype)
1da177e4
LT
592{
593 unsigned long size = 1 << high;
594
595 while (high > low) {
596 area--;
597 high--;
598 size >>= 1;
725d704e 599 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 600 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
601 area->nr_free++;
602 set_page_order(&page[size], high);
603 }
1da177e4
LT
604}
605
1da177e4
LT
606/*
607 * This page is about to be returned from the page allocator
608 */
17cf4406 609static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 610{
92be2e33
NP
611 if (unlikely(page_mapcount(page) |
612 (page->mapping != NULL) |
613 (page_count(page) != 0) |
334795ec
HD
614 (page->flags & (
615 1 << PG_lru |
1da177e4
LT
616 1 << PG_private |
617 1 << PG_locked |
1da177e4
LT
618 1 << PG_active |
619 1 << PG_dirty |
334795ec 620 1 << PG_slab |
1da177e4 621 1 << PG_swapcache |
b5810039 622 1 << PG_writeback |
676165a8
NP
623 1 << PG_reserved |
624 1 << PG_buddy ))))
224abf92 625 bad_page(page);
1da177e4 626
689bcebf
HD
627 /*
628 * For now, we report if PG_reserved was found set, but do not
629 * clear it, and do not allocate the page: as a safety net.
630 */
631 if (PageReserved(page))
632 return 1;
633
d77c2d7c 634 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 635 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 636 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 637 set_page_private(page, 0);
7835e98b 638 set_page_refcounted(page);
cc102509
NP
639
640 arch_alloc_page(page, order);
1da177e4 641 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
642
643 if (gfp_flags & __GFP_ZERO)
644 prep_zero_page(page, order, gfp_flags);
645
646 if (order && (gfp_flags & __GFP_COMP))
647 prep_compound_page(page, order);
648
689bcebf 649 return 0;
1da177e4
LT
650}
651
56fd56b8
MG
652/*
653 * Go through the free lists for the given migratetype and remove
654 * the smallest available page from the freelists
655 */
656static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
657 int migratetype)
658{
659 unsigned int current_order;
660 struct free_area * area;
661 struct page *page;
662
663 /* Find a page of the appropriate size in the preferred list */
664 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
665 area = &(zone->free_area[current_order]);
666 if (list_empty(&area->free_list[migratetype]))
667 continue;
668
669 page = list_entry(area->free_list[migratetype].next,
670 struct page, lru);
671 list_del(&page->lru);
672 rmv_page_order(page);
673 area->nr_free--;
674 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
675 expand(zone, page, order, current_order, area, migratetype);
676 return page;
677 }
678
679 return NULL;
680}
681
682
b2a0ac88
MG
683/*
684 * This array describes the order lists are fallen back to when
685 * the free lists for the desirable migrate type are depleted
686 */
687static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
688 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
689 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
690 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
691 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
692};
693
c361be55
MG
694/*
695 * Move the free pages in a range to the free lists of the requested type.
d9c23400 696 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
697 * boundary. If alignment is required, use move_freepages_block()
698 */
699int move_freepages(struct zone *zone,
700 struct page *start_page, struct page *end_page,
701 int migratetype)
702{
703 struct page *page;
704 unsigned long order;
d100313f 705 int pages_moved = 0;
c361be55
MG
706
707#ifndef CONFIG_HOLES_IN_ZONE
708 /*
709 * page_zone is not safe to call in this context when
710 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
711 * anyway as we check zone boundaries in move_freepages_block().
712 * Remove at a later date when no bug reports exist related to
ac0e5b7a 713 * grouping pages by mobility
c361be55
MG
714 */
715 BUG_ON(page_zone(start_page) != page_zone(end_page));
716#endif
717
718 for (page = start_page; page <= end_page;) {
719 if (!pfn_valid_within(page_to_pfn(page))) {
720 page++;
721 continue;
722 }
723
724 if (!PageBuddy(page)) {
725 page++;
726 continue;
727 }
728
729 order = page_order(page);
730 list_del(&page->lru);
731 list_add(&page->lru,
732 &zone->free_area[order].free_list[migratetype]);
733 page += 1 << order;
d100313f 734 pages_moved += 1 << order;
c361be55
MG
735 }
736
d100313f 737 return pages_moved;
c361be55
MG
738}
739
740int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
741{
742 unsigned long start_pfn, end_pfn;
743 struct page *start_page, *end_page;
744
745 start_pfn = page_to_pfn(page);
d9c23400 746 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 747 start_page = pfn_to_page(start_pfn);
d9c23400
MG
748 end_page = start_page + pageblock_nr_pages - 1;
749 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
750
751 /* Do not cross zone boundaries */
752 if (start_pfn < zone->zone_start_pfn)
753 start_page = page;
754 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
755 return 0;
756
757 return move_freepages(zone, start_page, end_page, migratetype);
758}
759
5adc5be7
MG
760/* Return the page with the lowest PFN in the list */
761static struct page *min_page(struct list_head *list)
762{
763 unsigned long min_pfn = -1UL;
764 struct page *min_page = NULL, *page;;
765
766 list_for_each_entry(page, list, lru) {
767 unsigned long pfn = page_to_pfn(page);
768 if (pfn < min_pfn) {
769 min_pfn = pfn;
770 min_page = page;
771 }
772 }
773
774 return min_page;
775}
776
b2a0ac88
MG
777/* Remove an element from the buddy allocator from the fallback list */
778static struct page *__rmqueue_fallback(struct zone *zone, int order,
779 int start_migratetype)
780{
781 struct free_area * area;
782 int current_order;
783 struct page *page;
784 int migratetype, i;
785
786 /* Find the largest possible block of pages in the other list */
787 for (current_order = MAX_ORDER-1; current_order >= order;
788 --current_order) {
789 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
790 migratetype = fallbacks[start_migratetype][i];
791
56fd56b8
MG
792 /* MIGRATE_RESERVE handled later if necessary */
793 if (migratetype == MIGRATE_RESERVE)
794 continue;
e010487d 795
b2a0ac88
MG
796 area = &(zone->free_area[current_order]);
797 if (list_empty(&area->free_list[migratetype]))
798 continue;
799
5adc5be7 800 /* Bias kernel allocations towards low pfns */
b2a0ac88
MG
801 page = list_entry(area->free_list[migratetype].next,
802 struct page, lru);
5adc5be7
MG
803 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
804 page = min_page(&area->free_list[migratetype]);
b2a0ac88
MG
805 area->nr_free--;
806
807 /*
c361be55 808 * If breaking a large block of pages, move all free
46dafbca
MG
809 * pages to the preferred allocation list. If falling
810 * back for a reclaimable kernel allocation, be more
811 * agressive about taking ownership of free pages
b2a0ac88 812 */
d9c23400 813 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
814 start_migratetype == MIGRATE_RECLAIMABLE) {
815 unsigned long pages;
816 pages = move_freepages_block(zone, page,
817 start_migratetype);
818
819 /* Claim the whole block if over half of it is free */
d9c23400 820 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
821 set_pageblock_migratetype(page,
822 start_migratetype);
823
b2a0ac88 824 migratetype = start_migratetype;
c361be55 825 }
b2a0ac88
MG
826
827 /* Remove the page from the freelists */
828 list_del(&page->lru);
829 rmv_page_order(page);
830 __mod_zone_page_state(zone, NR_FREE_PAGES,
831 -(1UL << order));
832
d9c23400 833 if (current_order == pageblock_order)
b2a0ac88
MG
834 set_pageblock_migratetype(page,
835 start_migratetype);
836
837 expand(zone, page, order, current_order, area, migratetype);
838 return page;
839 }
840 }
841
56fd56b8
MG
842 /* Use MIGRATE_RESERVE rather than fail an allocation */
843 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
844}
845
56fd56b8 846/*
1da177e4
LT
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
849 */
b2a0ac88
MG
850static struct page *__rmqueue(struct zone *zone, unsigned int order,
851 int migratetype)
1da177e4 852{
1da177e4
LT
853 struct page *page;
854
56fd56b8 855 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 856
56fd56b8
MG
857 if (unlikely(!page))
858 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
859
860 return page;
1da177e4
LT
861}
862
863/*
864 * Obtain a specified number of elements from the buddy allocator, all under
865 * a single hold of the lock, for efficiency. Add them to the supplied list.
866 * Returns the number of new pages which were placed at *list.
867 */
868static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
869 unsigned long count, struct list_head *list,
870 int migratetype)
1da177e4 871{
1da177e4 872 int i;
1da177e4 873
c54ad30c 874 spin_lock(&zone->lock);
1da177e4 875 for (i = 0; i < count; ++i) {
b2a0ac88 876 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 877 if (unlikely(page == NULL))
1da177e4 878 break;
535131e6
MG
879 list_add(&page->lru, list);
880 set_page_private(page, migratetype);
1da177e4 881 }
c54ad30c 882 spin_unlock(&zone->lock);
085cc7d5 883 return i;
1da177e4
LT
884}
885
4ae7c039 886#ifdef CONFIG_NUMA
8fce4d8e 887/*
4037d452
CL
888 * Called from the vmstat counter updater to drain pagesets of this
889 * currently executing processor on remote nodes after they have
890 * expired.
891 *
879336c3
CL
892 * Note that this function must be called with the thread pinned to
893 * a single processor.
8fce4d8e 894 */
4037d452 895void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 896{
4ae7c039 897 unsigned long flags;
4037d452 898 int to_drain;
4ae7c039 899
4037d452
CL
900 local_irq_save(flags);
901 if (pcp->count >= pcp->batch)
902 to_drain = pcp->batch;
903 else
904 to_drain = pcp->count;
905 free_pages_bulk(zone, to_drain, &pcp->list, 0);
906 pcp->count -= to_drain;
907 local_irq_restore(flags);
4ae7c039
CL
908}
909#endif
910
1da177e4
LT
911static void __drain_pages(unsigned int cpu)
912{
c54ad30c 913 unsigned long flags;
1da177e4
LT
914 struct zone *zone;
915 int i;
916
917 for_each_zone(zone) {
918 struct per_cpu_pageset *pset;
919
f2e12bb2
CL
920 if (!populated_zone(zone))
921 continue;
922
e7c8d5c9 923 pset = zone_pcp(zone, cpu);
1da177e4
LT
924 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
925 struct per_cpu_pages *pcp;
926
927 pcp = &pset->pcp[i];
c54ad30c 928 local_irq_save(flags);
48db57f8
NP
929 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
930 pcp->count = 0;
c54ad30c 931 local_irq_restore(flags);
1da177e4
LT
932 }
933 }
934}
1da177e4 935
296699de 936#ifdef CONFIG_HIBERNATION
1da177e4
LT
937
938void mark_free_pages(struct zone *zone)
939{
f623f0db
RW
940 unsigned long pfn, max_zone_pfn;
941 unsigned long flags;
b2a0ac88 942 int order, t;
1da177e4
LT
943 struct list_head *curr;
944
945 if (!zone->spanned_pages)
946 return;
947
948 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
949
950 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
951 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
952 if (pfn_valid(pfn)) {
953 struct page *page = pfn_to_page(pfn);
954
7be98234
RW
955 if (!swsusp_page_is_forbidden(page))
956 swsusp_unset_page_free(page);
f623f0db 957 }
1da177e4 958
b2a0ac88
MG
959 for_each_migratetype_order(order, t) {
960 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 961 unsigned long i;
1da177e4 962
f623f0db
RW
963 pfn = page_to_pfn(list_entry(curr, struct page, lru));
964 for (i = 0; i < (1UL << order); i++)
7be98234 965 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 966 }
b2a0ac88 967 }
1da177e4
LT
968 spin_unlock_irqrestore(&zone->lock, flags);
969}
e2c55dc8 970#endif /* CONFIG_PM */
1da177e4
LT
971
972/*
973 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
974 */
975void drain_local_pages(void)
976{
977 unsigned long flags;
978
979 local_irq_save(flags);
980 __drain_pages(smp_processor_id());
981 local_irq_restore(flags);
982}
e2c55dc8
MG
983
984void smp_drain_local_pages(void *arg)
985{
986 drain_local_pages();
987}
988
989/*
990 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
991 */
992void drain_all_local_pages(void)
993{
994 unsigned long flags;
995
996 local_irq_save(flags);
997 __drain_pages(smp_processor_id());
998 local_irq_restore(flags);
999
1000 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
1001}
1da177e4 1002
1da177e4
LT
1003/*
1004 * Free a 0-order page
1005 */
1da177e4
LT
1006static void fastcall free_hot_cold_page(struct page *page, int cold)
1007{
1008 struct zone *zone = page_zone(page);
1009 struct per_cpu_pages *pcp;
1010 unsigned long flags;
1011
1da177e4
LT
1012 if (PageAnon(page))
1013 page->mapping = NULL;
224abf92 1014 if (free_pages_check(page))
689bcebf
HD
1015 return;
1016
9858db50
NP
1017 if (!PageHighMem(page))
1018 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 1019 arch_free_page(page, 0);
689bcebf
HD
1020 kernel_map_pages(page, 1, 0);
1021
e7c8d5c9 1022 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 1023 local_irq_save(flags);
f8891e5e 1024 __count_vm_event(PGFREE);
1da177e4 1025 list_add(&page->lru, &pcp->list);
535131e6 1026 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1027 pcp->count++;
48db57f8
NP
1028 if (pcp->count >= pcp->high) {
1029 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1030 pcp->count -= pcp->batch;
1031 }
1da177e4
LT
1032 local_irq_restore(flags);
1033 put_cpu();
1034}
1035
1036void fastcall free_hot_page(struct page *page)
1037{
1038 free_hot_cold_page(page, 0);
1039}
1040
1041void fastcall free_cold_page(struct page *page)
1042{
1043 free_hot_cold_page(page, 1);
1044}
1045
8dfcc9ba
NP
1046/*
1047 * split_page takes a non-compound higher-order page, and splits it into
1048 * n (1<<order) sub-pages: page[0..n]
1049 * Each sub-page must be freed individually.
1050 *
1051 * Note: this is probably too low level an operation for use in drivers.
1052 * Please consult with lkml before using this in your driver.
1053 */
1054void split_page(struct page *page, unsigned int order)
1055{
1056 int i;
1057
725d704e
NP
1058 VM_BUG_ON(PageCompound(page));
1059 VM_BUG_ON(!page_count(page));
7835e98b
NP
1060 for (i = 1; i < (1 << order); i++)
1061 set_page_refcounted(page + i);
8dfcc9ba 1062}
8dfcc9ba 1063
1da177e4
LT
1064/*
1065 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1066 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1067 * or two.
1068 */
a74609fa
NP
1069static struct page *buffered_rmqueue(struct zonelist *zonelist,
1070 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1071{
1072 unsigned long flags;
689bcebf 1073 struct page *page;
1da177e4 1074 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1075 int cpu;
64c5e135 1076 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1077
689bcebf 1078again:
a74609fa 1079 cpu = get_cpu();
48db57f8 1080 if (likely(order == 0)) {
1da177e4
LT
1081 struct per_cpu_pages *pcp;
1082
a74609fa 1083 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 1084 local_irq_save(flags);
a74609fa 1085 if (!pcp->count) {
941c7105 1086 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1087 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1088 if (unlikely(!pcp->count))
1089 goto failed;
1da177e4 1090 }
b92a6edd 1091
535131e6 1092 /* Find a page of the appropriate migrate type */
b92a6edd
MG
1093 list_for_each_entry(page, &pcp->list, lru)
1094 if (page_private(page) == migratetype)
535131e6 1095 break;
535131e6 1096
b92a6edd
MG
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1099 pcp->count += rmqueue_bulk(zone, 0,
1100 pcp->batch, &pcp->list, migratetype);
1101 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1102 }
b92a6edd
MG
1103
1104 list_del(&page->lru);
1105 pcp->count--;
7fb1d9fc 1106 } else {
1da177e4 1107 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1108 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1109 spin_unlock(&zone->lock);
1110 if (!page)
1111 goto failed;
1da177e4
LT
1112 }
1113
f8891e5e 1114 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 1115 zone_statistics(zonelist, zone);
a74609fa
NP
1116 local_irq_restore(flags);
1117 put_cpu();
1da177e4 1118
725d704e 1119 VM_BUG_ON(bad_range(zone, page));
17cf4406 1120 if (prep_new_page(page, order, gfp_flags))
a74609fa 1121 goto again;
1da177e4 1122 return page;
a74609fa
NP
1123
1124failed:
1125 local_irq_restore(flags);
1126 put_cpu();
1127 return NULL;
1da177e4
LT
1128}
1129
7fb1d9fc 1130#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1131#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134#define ALLOC_HARDER 0x10 /* try to alloc harder */
1135#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1137
933e312e
AM
1138#ifdef CONFIG_FAIL_PAGE_ALLOC
1139
1140static struct fail_page_alloc_attr {
1141 struct fault_attr attr;
1142
1143 u32 ignore_gfp_highmem;
1144 u32 ignore_gfp_wait;
54114994 1145 u32 min_order;
933e312e
AM
1146
1147#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1148
1149 struct dentry *ignore_gfp_highmem_file;
1150 struct dentry *ignore_gfp_wait_file;
54114994 1151 struct dentry *min_order_file;
933e312e
AM
1152
1153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1154
1155} fail_page_alloc = {
1156 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1157 .ignore_gfp_wait = 1,
1158 .ignore_gfp_highmem = 1,
54114994 1159 .min_order = 1,
933e312e
AM
1160};
1161
1162static int __init setup_fail_page_alloc(char *str)
1163{
1164 return setup_fault_attr(&fail_page_alloc.attr, str);
1165}
1166__setup("fail_page_alloc=", setup_fail_page_alloc);
1167
1168static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1169{
54114994
AM
1170 if (order < fail_page_alloc.min_order)
1171 return 0;
933e312e
AM
1172 if (gfp_mask & __GFP_NOFAIL)
1173 return 0;
1174 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1177 return 0;
1178
1179 return should_fail(&fail_page_alloc.attr, 1 << order);
1180}
1181
1182#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1183
1184static int __init fail_page_alloc_debugfs(void)
1185{
1186 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1187 struct dentry *dir;
1188 int err;
1189
1190 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1191 "fail_page_alloc");
1192 if (err)
1193 return err;
1194 dir = fail_page_alloc.attr.dentries.dir;
1195
1196 fail_page_alloc.ignore_gfp_wait_file =
1197 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1198 &fail_page_alloc.ignore_gfp_wait);
1199
1200 fail_page_alloc.ignore_gfp_highmem_file =
1201 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1202 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1203 fail_page_alloc.min_order_file =
1204 debugfs_create_u32("min-order", mode, dir,
1205 &fail_page_alloc.min_order);
933e312e
AM
1206
1207 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1208 !fail_page_alloc.ignore_gfp_highmem_file ||
1209 !fail_page_alloc.min_order_file) {
933e312e
AM
1210 err = -ENOMEM;
1211 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1212 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1213 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1214 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1215 }
1216
1217 return err;
1218}
1219
1220late_initcall(fail_page_alloc_debugfs);
1221
1222#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1223
1224#else /* CONFIG_FAIL_PAGE_ALLOC */
1225
1226static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1227{
1228 return 0;
1229}
1230
1231#endif /* CONFIG_FAIL_PAGE_ALLOC */
1232
1da177e4
LT
1233/*
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1236 */
1237int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1238 int classzone_idx, int alloc_flags)
1da177e4
LT
1239{
1240 /* free_pages my go negative - that's OK */
d23ad423
CL
1241 long min = mark;
1242 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1243 int o;
1244
7fb1d9fc 1245 if (alloc_flags & ALLOC_HIGH)
1da177e4 1246 min -= min / 2;
7fb1d9fc 1247 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1248 min -= min / 4;
1249
1250 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1251 return 0;
1252 for (o = 0; o < order; o++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages -= z->free_area[o].nr_free << o;
1255
1256 /* Require fewer higher order pages to be free */
1257 min >>= 1;
1258
1259 if (free_pages <= min)
1260 return 0;
1261 }
1262 return 1;
1263}
1264
9276b1bc
PJ
1265#ifdef CONFIG_NUMA
1266/*
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1271 * that have to skip over alot of full or unallowed zones.
1272 *
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
37b07e41 1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1276 *
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1279 *
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1282 *
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1287 */
1288static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1289{
1290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1291 nodemask_t *allowednodes; /* zonelist_cache approximation */
1292
1293 zlc = zonelist->zlcache_ptr;
1294 if (!zlc)
1295 return NULL;
1296
1297 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1298 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1299 zlc->last_full_zap = jiffies;
1300 }
1301
1302 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1303 &cpuset_current_mems_allowed :
37b07e41 1304 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1305 return allowednodes;
1306}
1307
1308/*
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1317 *
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1324 *
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1329 */
1330static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1331 nodemask_t *allowednodes)
1332{
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335 int n; /* node that zone *z is on */
1336
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return 1;
1340
1341 i = z - zonelist->zones;
1342 n = zlc->z_to_n[i];
1343
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1346}
1347
1348/*
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1352 */
1353static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1354{
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 int i; /* index of *z in zonelist zones */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return;
1361
1362 i = z - zonelist->zones;
1363
1364 set_bit(i, zlc->fullzones);
1365}
1366
1367#else /* CONFIG_NUMA */
1368
1369static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1370{
1371 return NULL;
1372}
1373
1374static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1375 nodemask_t *allowednodes)
1376{
1377 return 1;
1378}
1379
1380static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1381{
1382}
1383#endif /* CONFIG_NUMA */
1384
7fb1d9fc 1385/*
0798e519 1386 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1387 * a page.
1388 */
1389static struct page *
1390get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1391 struct zonelist *zonelist, int alloc_flags)
753ee728 1392{
9276b1bc 1393 struct zone **z;
7fb1d9fc 1394 struct page *page = NULL;
9276b1bc 1395 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1396 struct zone *zone;
9276b1bc
PJ
1397 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1398 int zlc_active = 0; /* set if using zonelist_cache */
1399 int did_zlc_setup = 0; /* just call zlc_setup() one time */
b377fd39 1400 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
7fb1d9fc 1401
9276b1bc 1402zonelist_scan:
7fb1d9fc 1403 /*
9276b1bc 1404 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1405 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1406 */
9276b1bc
PJ
1407 z = zonelist->zones;
1408
7fb1d9fc 1409 do {
b377fd39
MG
1410 /*
1411 * In NUMA, this could be a policy zonelist which contains
1412 * zones that may not be allowed by the current gfp_mask.
1413 * Check the zone is allowed by the current flags
1414 */
1415 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1416 if (highest_zoneidx == -1)
1417 highest_zoneidx = gfp_zone(gfp_mask);
1418 if (zone_idx(*z) > highest_zoneidx)
1419 continue;
1420 }
1421
9276b1bc
PJ
1422 if (NUMA_BUILD && zlc_active &&
1423 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1424 continue;
1192d526 1425 zone = *z;
7fb1d9fc 1426 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1427 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1428 goto try_next_zone;
7fb1d9fc
RS
1429
1430 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1431 unsigned long mark;
1432 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1433 mark = zone->pages_min;
3148890b 1434 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1435 mark = zone->pages_low;
3148890b 1436 else
1192d526 1437 mark = zone->pages_high;
0798e519
PJ
1438 if (!zone_watermark_ok(zone, order, mark,
1439 classzone_idx, alloc_flags)) {
9eeff239 1440 if (!zone_reclaim_mode ||
1192d526 1441 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1442 goto this_zone_full;
0798e519 1443 }
7fb1d9fc
RS
1444 }
1445
1192d526 1446 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1447 if (page)
7fb1d9fc 1448 break;
9276b1bc
PJ
1449this_zone_full:
1450 if (NUMA_BUILD)
1451 zlc_mark_zone_full(zonelist, z);
1452try_next_zone:
1453 if (NUMA_BUILD && !did_zlc_setup) {
1454 /* we do zlc_setup after the first zone is tried */
1455 allowednodes = zlc_setup(zonelist, alloc_flags);
1456 zlc_active = 1;
1457 did_zlc_setup = 1;
1458 }
7fb1d9fc 1459 } while (*(++z) != NULL);
9276b1bc
PJ
1460
1461 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1462 /* Disable zlc cache for second zonelist scan */
1463 zlc_active = 0;
1464 goto zonelist_scan;
1465 }
7fb1d9fc 1466 return page;
753ee728
MH
1467}
1468
1da177e4
LT
1469/*
1470 * This is the 'heart' of the zoned buddy allocator.
1471 */
1472struct page * fastcall
dd0fc66f 1473__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1474 struct zonelist *zonelist)
1475{
260b2367 1476 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1477 struct zone **z;
1da177e4
LT
1478 struct page *page;
1479 struct reclaim_state reclaim_state;
1480 struct task_struct *p = current;
1da177e4 1481 int do_retry;
7fb1d9fc 1482 int alloc_flags;
1da177e4
LT
1483 int did_some_progress;
1484
1485 might_sleep_if(wait);
1486
933e312e
AM
1487 if (should_fail_alloc_page(gfp_mask, order))
1488 return NULL;
1489
6b1de916 1490restart:
7fb1d9fc 1491 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1492
7fb1d9fc 1493 if (unlikely(*z == NULL)) {
523b9458
CL
1494 /*
1495 * Happens if we have an empty zonelist as a result of
1496 * GFP_THISNODE being used on a memoryless node
1497 */
1da177e4
LT
1498 return NULL;
1499 }
6b1de916 1500
7fb1d9fc 1501 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1502 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1503 if (page)
1504 goto got_pg;
1da177e4 1505
952f3b51
CL
1506 /*
1507 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1508 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1509 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1510 * using a larger set of nodes after it has established that the
1511 * allowed per node queues are empty and that nodes are
1512 * over allocated.
1513 */
1514 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1515 goto nopage;
1516
0798e519 1517 for (z = zonelist->zones; *z; z++)
43b0bc00 1518 wakeup_kswapd(*z, order);
1da177e4 1519
9bf2229f 1520 /*
7fb1d9fc
RS
1521 * OK, we're below the kswapd watermark and have kicked background
1522 * reclaim. Now things get more complex, so set up alloc_flags according
1523 * to how we want to proceed.
1524 *
1525 * The caller may dip into page reserves a bit more if the caller
1526 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1527 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1528 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1529 */
3148890b 1530 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1531 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1532 alloc_flags |= ALLOC_HARDER;
1533 if (gfp_mask & __GFP_HIGH)
1534 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1535 if (wait)
1536 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1537
1538 /*
1539 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1540 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1541 *
1542 * This is the last chance, in general, before the goto nopage.
1543 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1544 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1545 */
7fb1d9fc
RS
1546 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1547 if (page)
1548 goto got_pg;
1da177e4
LT
1549
1550 /* This allocation should allow future memory freeing. */
b84a35be 1551
b43a57bb 1552rebalance:
b84a35be
NP
1553 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1554 && !in_interrupt()) {
1555 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1556nofail_alloc:
b84a35be 1557 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1558 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1559 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1560 if (page)
1561 goto got_pg;
885036d3 1562 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1563 congestion_wait(WRITE, HZ/50);
885036d3
KK
1564 goto nofail_alloc;
1565 }
1da177e4
LT
1566 }
1567 goto nopage;
1568 }
1569
1570 /* Atomic allocations - we can't balance anything */
1571 if (!wait)
1572 goto nopage;
1573
1da177e4
LT
1574 cond_resched();
1575
1576 /* We now go into synchronous reclaim */
3e0d98b9 1577 cpuset_memory_pressure_bump();
1da177e4
LT
1578 p->flags |= PF_MEMALLOC;
1579 reclaim_state.reclaimed_slab = 0;
1580 p->reclaim_state = &reclaim_state;
1581
5ad333eb 1582 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1583
1584 p->reclaim_state = NULL;
1585 p->flags &= ~PF_MEMALLOC;
1586
1587 cond_resched();
1588
e2c55dc8
MG
1589 if (order != 0)
1590 drain_all_local_pages();
1591
1da177e4 1592 if (likely(did_some_progress)) {
7fb1d9fc
RS
1593 page = get_page_from_freelist(gfp_mask, order,
1594 zonelist, alloc_flags);
1595 if (page)
1596 goto got_pg;
1da177e4
LT
1597 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1598 /*
1599 * Go through the zonelist yet one more time, keep
1600 * very high watermark here, this is only to catch
1601 * a parallel oom killing, we must fail if we're still
1602 * under heavy pressure.
1603 */
7fb1d9fc 1604 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1605 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1606 if (page)
1607 goto got_pg;
1da177e4 1608
a8bbf72a
MG
1609 /* The OOM killer will not help higher order allocs so fail */
1610 if (order > PAGE_ALLOC_COSTLY_ORDER)
1611 goto nopage;
1612
9b0f8b04 1613 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1614 goto restart;
1615 }
1616
1617 /*
1618 * Don't let big-order allocations loop unless the caller explicitly
1619 * requests that. Wait for some write requests to complete then retry.
1620 *
1621 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1622 * <= 3, but that may not be true in other implementations.
1623 */
1624 do_retry = 0;
1625 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1626 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1627 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1628 do_retry = 1;
1629 if (gfp_mask & __GFP_NOFAIL)
1630 do_retry = 1;
1631 }
1632 if (do_retry) {
3fcfab16 1633 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1634 goto rebalance;
1635 }
1636
1637nopage:
1638 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1639 printk(KERN_WARNING "%s: page allocation failure."
1640 " order:%d, mode:0x%x\n",
1641 p->comm, order, gfp_mask);
1642 dump_stack();
578c2fd6 1643 show_mem();
1da177e4 1644 }
1da177e4 1645got_pg:
1da177e4
LT
1646 return page;
1647}
1648
1649EXPORT_SYMBOL(__alloc_pages);
1650
1651/*
1652 * Common helper functions.
1653 */
dd0fc66f 1654fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1655{
1656 struct page * page;
1657 page = alloc_pages(gfp_mask, order);
1658 if (!page)
1659 return 0;
1660 return (unsigned long) page_address(page);
1661}
1662
1663EXPORT_SYMBOL(__get_free_pages);
1664
dd0fc66f 1665fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1666{
1667 struct page * page;
1668
1669 /*
1670 * get_zeroed_page() returns a 32-bit address, which cannot represent
1671 * a highmem page
1672 */
725d704e 1673 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1674
1675 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1676 if (page)
1677 return (unsigned long) page_address(page);
1678 return 0;
1679}
1680
1681EXPORT_SYMBOL(get_zeroed_page);
1682
1683void __pagevec_free(struct pagevec *pvec)
1684{
1685 int i = pagevec_count(pvec);
1686
1687 while (--i >= 0)
1688 free_hot_cold_page(pvec->pages[i], pvec->cold);
1689}
1690
1691fastcall void __free_pages(struct page *page, unsigned int order)
1692{
b5810039 1693 if (put_page_testzero(page)) {
1da177e4
LT
1694 if (order == 0)
1695 free_hot_page(page);
1696 else
1697 __free_pages_ok(page, order);
1698 }
1699}
1700
1701EXPORT_SYMBOL(__free_pages);
1702
1703fastcall void free_pages(unsigned long addr, unsigned int order)
1704{
1705 if (addr != 0) {
725d704e 1706 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1707 __free_pages(virt_to_page((void *)addr), order);
1708 }
1709}
1710
1711EXPORT_SYMBOL(free_pages);
1712
1da177e4
LT
1713static unsigned int nr_free_zone_pages(int offset)
1714{
e310fd43
MB
1715 /* Just pick one node, since fallback list is circular */
1716 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1717 unsigned int sum = 0;
1718
e310fd43
MB
1719 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1720 struct zone **zonep = zonelist->zones;
1721 struct zone *zone;
1da177e4 1722
e310fd43
MB
1723 for (zone = *zonep++; zone; zone = *zonep++) {
1724 unsigned long size = zone->present_pages;
1725 unsigned long high = zone->pages_high;
1726 if (size > high)
1727 sum += size - high;
1da177e4
LT
1728 }
1729
1730 return sum;
1731}
1732
1733/*
1734 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1735 */
1736unsigned int nr_free_buffer_pages(void)
1737{
af4ca457 1738 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1739}
c2f1a551 1740EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1741
1742/*
1743 * Amount of free RAM allocatable within all zones
1744 */
1745unsigned int nr_free_pagecache_pages(void)
1746{
2a1e274a 1747 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1748}
08e0f6a9
CL
1749
1750static inline void show_node(struct zone *zone)
1da177e4 1751{
08e0f6a9 1752 if (NUMA_BUILD)
25ba77c1 1753 printk("Node %d ", zone_to_nid(zone));
1da177e4 1754}
1da177e4 1755
1da177e4
LT
1756void si_meminfo(struct sysinfo *val)
1757{
1758 val->totalram = totalram_pages;
1759 val->sharedram = 0;
d23ad423 1760 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1761 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1762 val->totalhigh = totalhigh_pages;
1763 val->freehigh = nr_free_highpages();
1da177e4
LT
1764 val->mem_unit = PAGE_SIZE;
1765}
1766
1767EXPORT_SYMBOL(si_meminfo);
1768
1769#ifdef CONFIG_NUMA
1770void si_meminfo_node(struct sysinfo *val, int nid)
1771{
1772 pg_data_t *pgdat = NODE_DATA(nid);
1773
1774 val->totalram = pgdat->node_present_pages;
d23ad423 1775 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1776#ifdef CONFIG_HIGHMEM
1da177e4 1777 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1778 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1779 NR_FREE_PAGES);
98d2b0eb
CL
1780#else
1781 val->totalhigh = 0;
1782 val->freehigh = 0;
1783#endif
1da177e4
LT
1784 val->mem_unit = PAGE_SIZE;
1785}
1786#endif
1787
1788#define K(x) ((x) << (PAGE_SHIFT-10))
1789
1790/*
1791 * Show free area list (used inside shift_scroll-lock stuff)
1792 * We also calculate the percentage fragmentation. We do this by counting the
1793 * memory on each free list with the exception of the first item on the list.
1794 */
1795void show_free_areas(void)
1796{
c7241913 1797 int cpu;
1da177e4
LT
1798 struct zone *zone;
1799
1800 for_each_zone(zone) {
c7241913 1801 if (!populated_zone(zone))
1da177e4 1802 continue;
c7241913
JS
1803
1804 show_node(zone);
1805 printk("%s per-cpu:\n", zone->name);
1da177e4 1806
6b482c67 1807 for_each_online_cpu(cpu) {
1da177e4
LT
1808 struct per_cpu_pageset *pageset;
1809
e7c8d5c9 1810 pageset = zone_pcp(zone, cpu);
1da177e4 1811
c7241913
JS
1812 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1813 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1814 cpu, pageset->pcp[0].high,
1815 pageset->pcp[0].batch, pageset->pcp[0].count,
1816 pageset->pcp[1].high, pageset->pcp[1].batch,
1817 pageset->pcp[1].count);
1da177e4
LT
1818 }
1819 }
1820
a25700a5 1821 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1822 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1823 global_page_state(NR_ACTIVE),
1824 global_page_state(NR_INACTIVE),
b1e7a8fd 1825 global_page_state(NR_FILE_DIRTY),
ce866b34 1826 global_page_state(NR_WRITEBACK),
fd39fc85 1827 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1828 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1829 global_page_state(NR_SLAB_RECLAIMABLE) +
1830 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1831 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1832 global_page_state(NR_PAGETABLE),
1833 global_page_state(NR_BOUNCE));
1da177e4
LT
1834
1835 for_each_zone(zone) {
1836 int i;
1837
c7241913
JS
1838 if (!populated_zone(zone))
1839 continue;
1840
1da177e4
LT
1841 show_node(zone);
1842 printk("%s"
1843 " free:%lukB"
1844 " min:%lukB"
1845 " low:%lukB"
1846 " high:%lukB"
1847 " active:%lukB"
1848 " inactive:%lukB"
1849 " present:%lukB"
1850 " pages_scanned:%lu"
1851 " all_unreclaimable? %s"
1852 "\n",
1853 zone->name,
d23ad423 1854 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1855 K(zone->pages_min),
1856 K(zone->pages_low),
1857 K(zone->pages_high),
c8785385
CL
1858 K(zone_page_state(zone, NR_ACTIVE)),
1859 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1860 K(zone->present_pages),
1861 zone->pages_scanned,
1862 (zone->all_unreclaimable ? "yes" : "no")
1863 );
1864 printk("lowmem_reserve[]:");
1865 for (i = 0; i < MAX_NR_ZONES; i++)
1866 printk(" %lu", zone->lowmem_reserve[i]);
1867 printk("\n");
1868 }
1869
1870 for_each_zone(zone) {
8f9de51a 1871 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1872
c7241913
JS
1873 if (!populated_zone(zone))
1874 continue;
1875
1da177e4
LT
1876 show_node(zone);
1877 printk("%s: ", zone->name);
1da177e4
LT
1878
1879 spin_lock_irqsave(&zone->lock, flags);
1880 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1881 nr[order] = zone->free_area[order].nr_free;
1882 total += nr[order] << order;
1da177e4
LT
1883 }
1884 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1885 for (order = 0; order < MAX_ORDER; order++)
1886 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1887 printk("= %lukB\n", K(total));
1888 }
1889
1890 show_swap_cache_info();
1891}
1892
1893/*
1894 * Builds allocation fallback zone lists.
1a93205b
CL
1895 *
1896 * Add all populated zones of a node to the zonelist.
1da177e4 1897 */
f0c0b2b8
KH
1898static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1899 int nr_zones, enum zone_type zone_type)
1da177e4 1900{
1a93205b
CL
1901 struct zone *zone;
1902
98d2b0eb 1903 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1904 zone_type++;
02a68a5e
CL
1905
1906 do {
2f6726e5 1907 zone_type--;
070f8032 1908 zone = pgdat->node_zones + zone_type;
1a93205b 1909 if (populated_zone(zone)) {
070f8032
CL
1910 zonelist->zones[nr_zones++] = zone;
1911 check_highest_zone(zone_type);
1da177e4 1912 }
02a68a5e 1913
2f6726e5 1914 } while (zone_type);
070f8032 1915 return nr_zones;
1da177e4
LT
1916}
1917
f0c0b2b8
KH
1918
1919/*
1920 * zonelist_order:
1921 * 0 = automatic detection of better ordering.
1922 * 1 = order by ([node] distance, -zonetype)
1923 * 2 = order by (-zonetype, [node] distance)
1924 *
1925 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1926 * the same zonelist. So only NUMA can configure this param.
1927 */
1928#define ZONELIST_ORDER_DEFAULT 0
1929#define ZONELIST_ORDER_NODE 1
1930#define ZONELIST_ORDER_ZONE 2
1931
1932/* zonelist order in the kernel.
1933 * set_zonelist_order() will set this to NODE or ZONE.
1934 */
1935static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1936static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1937
1938
1da177e4 1939#ifdef CONFIG_NUMA
f0c0b2b8
KH
1940/* The value user specified ....changed by config */
1941static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1942/* string for sysctl */
1943#define NUMA_ZONELIST_ORDER_LEN 16
1944char numa_zonelist_order[16] = "default";
1945
1946/*
1947 * interface for configure zonelist ordering.
1948 * command line option "numa_zonelist_order"
1949 * = "[dD]efault - default, automatic configuration.
1950 * = "[nN]ode - order by node locality, then by zone within node
1951 * = "[zZ]one - order by zone, then by locality within zone
1952 */
1953
1954static int __parse_numa_zonelist_order(char *s)
1955{
1956 if (*s == 'd' || *s == 'D') {
1957 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1958 } else if (*s == 'n' || *s == 'N') {
1959 user_zonelist_order = ZONELIST_ORDER_NODE;
1960 } else if (*s == 'z' || *s == 'Z') {
1961 user_zonelist_order = ZONELIST_ORDER_ZONE;
1962 } else {
1963 printk(KERN_WARNING
1964 "Ignoring invalid numa_zonelist_order value: "
1965 "%s\n", s);
1966 return -EINVAL;
1967 }
1968 return 0;
1969}
1970
1971static __init int setup_numa_zonelist_order(char *s)
1972{
1973 if (s)
1974 return __parse_numa_zonelist_order(s);
1975 return 0;
1976}
1977early_param("numa_zonelist_order", setup_numa_zonelist_order);
1978
1979/*
1980 * sysctl handler for numa_zonelist_order
1981 */
1982int numa_zonelist_order_handler(ctl_table *table, int write,
1983 struct file *file, void __user *buffer, size_t *length,
1984 loff_t *ppos)
1985{
1986 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1987 int ret;
1988
1989 if (write)
1990 strncpy(saved_string, (char*)table->data,
1991 NUMA_ZONELIST_ORDER_LEN);
1992 ret = proc_dostring(table, write, file, buffer, length, ppos);
1993 if (ret)
1994 return ret;
1995 if (write) {
1996 int oldval = user_zonelist_order;
1997 if (__parse_numa_zonelist_order((char*)table->data)) {
1998 /*
1999 * bogus value. restore saved string
2000 */
2001 strncpy((char*)table->data, saved_string,
2002 NUMA_ZONELIST_ORDER_LEN);
2003 user_zonelist_order = oldval;
2004 } else if (oldval != user_zonelist_order)
2005 build_all_zonelists();
2006 }
2007 return 0;
2008}
2009
2010
1da177e4 2011#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2012static int node_load[MAX_NUMNODES];
2013
1da177e4 2014/**
4dc3b16b 2015 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2016 * @node: node whose fallback list we're appending
2017 * @used_node_mask: nodemask_t of already used nodes
2018 *
2019 * We use a number of factors to determine which is the next node that should
2020 * appear on a given node's fallback list. The node should not have appeared
2021 * already in @node's fallback list, and it should be the next closest node
2022 * according to the distance array (which contains arbitrary distance values
2023 * from each node to each node in the system), and should also prefer nodes
2024 * with no CPUs, since presumably they'll have very little allocation pressure
2025 * on them otherwise.
2026 * It returns -1 if no node is found.
2027 */
f0c0b2b8 2028static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2029{
4cf808eb 2030 int n, val;
1da177e4
LT
2031 int min_val = INT_MAX;
2032 int best_node = -1;
2033
4cf808eb
LT
2034 /* Use the local node if we haven't already */
2035 if (!node_isset(node, *used_node_mask)) {
2036 node_set(node, *used_node_mask);
2037 return node;
2038 }
1da177e4 2039
37b07e41 2040 for_each_node_state(n, N_HIGH_MEMORY) {
4cf808eb 2041 cpumask_t tmp;
1da177e4
LT
2042
2043 /* Don't want a node to appear more than once */
2044 if (node_isset(n, *used_node_mask))
2045 continue;
2046
1da177e4
LT
2047 /* Use the distance array to find the distance */
2048 val = node_distance(node, n);
2049
4cf808eb
LT
2050 /* Penalize nodes under us ("prefer the next node") */
2051 val += (n < node);
2052
1da177e4
LT
2053 /* Give preference to headless and unused nodes */
2054 tmp = node_to_cpumask(n);
2055 if (!cpus_empty(tmp))
2056 val += PENALTY_FOR_NODE_WITH_CPUS;
2057
2058 /* Slight preference for less loaded node */
2059 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2060 val += node_load[n];
2061
2062 if (val < min_val) {
2063 min_val = val;
2064 best_node = n;
2065 }
2066 }
2067
2068 if (best_node >= 0)
2069 node_set(best_node, *used_node_mask);
2070
2071 return best_node;
2072}
2073
f0c0b2b8
KH
2074
2075/*
2076 * Build zonelists ordered by node and zones within node.
2077 * This results in maximum locality--normal zone overflows into local
2078 * DMA zone, if any--but risks exhausting DMA zone.
2079 */
2080static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2081{
19655d34 2082 enum zone_type i;
f0c0b2b8 2083 int j;
1da177e4 2084 struct zonelist *zonelist;
f0c0b2b8
KH
2085
2086 for (i = 0; i < MAX_NR_ZONES; i++) {
2087 zonelist = pgdat->node_zonelists + i;
2088 for (j = 0; zonelist->zones[j] != NULL; j++)
2089 ;
2090 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2091 zonelist->zones[j] = NULL;
2092 }
2093}
2094
523b9458
CL
2095/*
2096 * Build gfp_thisnode zonelists
2097 */
2098static void build_thisnode_zonelists(pg_data_t *pgdat)
2099{
2100 enum zone_type i;
2101 int j;
2102 struct zonelist *zonelist;
2103
2104 for (i = 0; i < MAX_NR_ZONES; i++) {
2105 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2106 j = build_zonelists_node(pgdat, zonelist, 0, i);
2107 zonelist->zones[j] = NULL;
2108 }
2109}
2110
f0c0b2b8
KH
2111/*
2112 * Build zonelists ordered by zone and nodes within zones.
2113 * This results in conserving DMA zone[s] until all Normal memory is
2114 * exhausted, but results in overflowing to remote node while memory
2115 * may still exist in local DMA zone.
2116 */
2117static int node_order[MAX_NUMNODES];
2118
2119static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2120{
2121 enum zone_type i;
2122 int pos, j, node;
2123 int zone_type; /* needs to be signed */
2124 struct zone *z;
2125 struct zonelist *zonelist;
2126
2127 for (i = 0; i < MAX_NR_ZONES; i++) {
2128 zonelist = pgdat->node_zonelists + i;
2129 pos = 0;
2130 for (zone_type = i; zone_type >= 0; zone_type--) {
2131 for (j = 0; j < nr_nodes; j++) {
2132 node = node_order[j];
2133 z = &NODE_DATA(node)->node_zones[zone_type];
2134 if (populated_zone(z)) {
2135 zonelist->zones[pos++] = z;
2136 check_highest_zone(zone_type);
2137 }
2138 }
2139 }
2140 zonelist->zones[pos] = NULL;
2141 }
2142}
2143
2144static int default_zonelist_order(void)
2145{
2146 int nid, zone_type;
2147 unsigned long low_kmem_size,total_size;
2148 struct zone *z;
2149 int average_size;
2150 /*
2151 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2152 * If they are really small and used heavily, the system can fall
2153 * into OOM very easily.
2154 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2155 */
2156 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2157 low_kmem_size = 0;
2158 total_size = 0;
2159 for_each_online_node(nid) {
2160 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2161 z = &NODE_DATA(nid)->node_zones[zone_type];
2162 if (populated_zone(z)) {
2163 if (zone_type < ZONE_NORMAL)
2164 low_kmem_size += z->present_pages;
2165 total_size += z->present_pages;
2166 }
2167 }
2168 }
2169 if (!low_kmem_size || /* there are no DMA area. */
2170 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2171 return ZONELIST_ORDER_NODE;
2172 /*
2173 * look into each node's config.
2174 * If there is a node whose DMA/DMA32 memory is very big area on
2175 * local memory, NODE_ORDER may be suitable.
2176 */
37b07e41
LS
2177 average_size = total_size /
2178 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2179 for_each_online_node(nid) {
2180 low_kmem_size = 0;
2181 total_size = 0;
2182 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2183 z = &NODE_DATA(nid)->node_zones[zone_type];
2184 if (populated_zone(z)) {
2185 if (zone_type < ZONE_NORMAL)
2186 low_kmem_size += z->present_pages;
2187 total_size += z->present_pages;
2188 }
2189 }
2190 if (low_kmem_size &&
2191 total_size > average_size && /* ignore small node */
2192 low_kmem_size > total_size * 70/100)
2193 return ZONELIST_ORDER_NODE;
2194 }
2195 return ZONELIST_ORDER_ZONE;
2196}
2197
2198static void set_zonelist_order(void)
2199{
2200 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2201 current_zonelist_order = default_zonelist_order();
2202 else
2203 current_zonelist_order = user_zonelist_order;
2204}
2205
2206static void build_zonelists(pg_data_t *pgdat)
2207{
2208 int j, node, load;
2209 enum zone_type i;
1da177e4 2210 nodemask_t used_mask;
f0c0b2b8
KH
2211 int local_node, prev_node;
2212 struct zonelist *zonelist;
2213 int order = current_zonelist_order;
1da177e4
LT
2214
2215 /* initialize zonelists */
523b9458 2216 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4
LT
2217 zonelist = pgdat->node_zonelists + i;
2218 zonelist->zones[0] = NULL;
2219 }
2220
2221 /* NUMA-aware ordering of nodes */
2222 local_node = pgdat->node_id;
2223 load = num_online_nodes();
2224 prev_node = local_node;
2225 nodes_clear(used_mask);
f0c0b2b8
KH
2226
2227 memset(node_load, 0, sizeof(node_load));
2228 memset(node_order, 0, sizeof(node_order));
2229 j = 0;
2230
1da177e4 2231 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2232 int distance = node_distance(local_node, node);
2233
2234 /*
2235 * If another node is sufficiently far away then it is better
2236 * to reclaim pages in a zone before going off node.
2237 */
2238 if (distance > RECLAIM_DISTANCE)
2239 zone_reclaim_mode = 1;
2240
1da177e4
LT
2241 /*
2242 * We don't want to pressure a particular node.
2243 * So adding penalty to the first node in same
2244 * distance group to make it round-robin.
2245 */
9eeff239 2246 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2247 node_load[node] = load;
2248
1da177e4
LT
2249 prev_node = node;
2250 load--;
f0c0b2b8
KH
2251 if (order == ZONELIST_ORDER_NODE)
2252 build_zonelists_in_node_order(pgdat, node);
2253 else
2254 node_order[j++] = node; /* remember order */
2255 }
1da177e4 2256
f0c0b2b8
KH
2257 if (order == ZONELIST_ORDER_ZONE) {
2258 /* calculate node order -- i.e., DMA last! */
2259 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2260 }
523b9458
CL
2261
2262 build_thisnode_zonelists(pgdat);
1da177e4
LT
2263}
2264
9276b1bc 2265/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2266static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2267{
2268 int i;
2269
2270 for (i = 0; i < MAX_NR_ZONES; i++) {
2271 struct zonelist *zonelist;
2272 struct zonelist_cache *zlc;
2273 struct zone **z;
2274
2275 zonelist = pgdat->node_zonelists + i;
2276 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2277 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2278 for (z = zonelist->zones; *z; z++)
2279 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2280 }
2281}
2282
f0c0b2b8 2283
1da177e4
LT
2284#else /* CONFIG_NUMA */
2285
f0c0b2b8
KH
2286static void set_zonelist_order(void)
2287{
2288 current_zonelist_order = ZONELIST_ORDER_ZONE;
2289}
2290
2291static void build_zonelists(pg_data_t *pgdat)
1da177e4 2292{
19655d34
CL
2293 int node, local_node;
2294 enum zone_type i,j;
1da177e4
LT
2295
2296 local_node = pgdat->node_id;
19655d34 2297 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2298 struct zonelist *zonelist;
2299
2300 zonelist = pgdat->node_zonelists + i;
2301
19655d34 2302 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2303 /*
2304 * Now we build the zonelist so that it contains the zones
2305 * of all the other nodes.
2306 * We don't want to pressure a particular node, so when
2307 * building the zones for node N, we make sure that the
2308 * zones coming right after the local ones are those from
2309 * node N+1 (modulo N)
2310 */
2311 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2312 if (!node_online(node))
2313 continue;
19655d34 2314 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2315 }
2316 for (node = 0; node < local_node; node++) {
2317 if (!node_online(node))
2318 continue;
19655d34 2319 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2320 }
2321
2322 zonelist->zones[j] = NULL;
2323 }
2324}
2325
9276b1bc 2326/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2327static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2328{
2329 int i;
2330
2331 for (i = 0; i < MAX_NR_ZONES; i++)
2332 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2333}
2334
1da177e4
LT
2335#endif /* CONFIG_NUMA */
2336
6811378e 2337/* return values int ....just for stop_machine_run() */
f0c0b2b8 2338static int __build_all_zonelists(void *dummy)
1da177e4 2339{
6811378e 2340 int nid;
9276b1bc
PJ
2341
2342 for_each_online_node(nid) {
7ea1530a
CL
2343 pg_data_t *pgdat = NODE_DATA(nid);
2344
2345 build_zonelists(pgdat);
2346 build_zonelist_cache(pgdat);
9276b1bc 2347 }
6811378e
YG
2348 return 0;
2349}
2350
f0c0b2b8 2351void build_all_zonelists(void)
6811378e 2352{
f0c0b2b8
KH
2353 set_zonelist_order();
2354
6811378e 2355 if (system_state == SYSTEM_BOOTING) {
423b41d7 2356 __build_all_zonelists(NULL);
6811378e
YG
2357 cpuset_init_current_mems_allowed();
2358 } else {
2359 /* we have to stop all cpus to guaranntee there is no user
2360 of zonelist */
2361 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2362 /* cpuset refresh routine should be here */
2363 }
bd1e22b8 2364 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2365 /*
2366 * Disable grouping by mobility if the number of pages in the
2367 * system is too low to allow the mechanism to work. It would be
2368 * more accurate, but expensive to check per-zone. This check is
2369 * made on memory-hotadd so a system can start with mobility
2370 * disabled and enable it later
2371 */
d9c23400 2372 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2373 page_group_by_mobility_disabled = 1;
2374 else
2375 page_group_by_mobility_disabled = 0;
2376
2377 printk("Built %i zonelists in %s order, mobility grouping %s. "
2378 "Total pages: %ld\n",
f0c0b2b8
KH
2379 num_online_nodes(),
2380 zonelist_order_name[current_zonelist_order],
9ef9acb0 2381 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2382 vm_total_pages);
2383#ifdef CONFIG_NUMA
2384 printk("Policy zone: %s\n", zone_names[policy_zone]);
2385#endif
1da177e4
LT
2386}
2387
2388/*
2389 * Helper functions to size the waitqueue hash table.
2390 * Essentially these want to choose hash table sizes sufficiently
2391 * large so that collisions trying to wait on pages are rare.
2392 * But in fact, the number of active page waitqueues on typical
2393 * systems is ridiculously low, less than 200. So this is even
2394 * conservative, even though it seems large.
2395 *
2396 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2397 * waitqueues, i.e. the size of the waitq table given the number of pages.
2398 */
2399#define PAGES_PER_WAITQUEUE 256
2400
cca448fe 2401#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2402static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2403{
2404 unsigned long size = 1;
2405
2406 pages /= PAGES_PER_WAITQUEUE;
2407
2408 while (size < pages)
2409 size <<= 1;
2410
2411 /*
2412 * Once we have dozens or even hundreds of threads sleeping
2413 * on IO we've got bigger problems than wait queue collision.
2414 * Limit the size of the wait table to a reasonable size.
2415 */
2416 size = min(size, 4096UL);
2417
2418 return max(size, 4UL);
2419}
cca448fe
YG
2420#else
2421/*
2422 * A zone's size might be changed by hot-add, so it is not possible to determine
2423 * a suitable size for its wait_table. So we use the maximum size now.
2424 *
2425 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2426 *
2427 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2428 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2429 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2430 *
2431 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2432 * or more by the traditional way. (See above). It equals:
2433 *
2434 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2435 * ia64(16K page size) : = ( 8G + 4M)byte.
2436 * powerpc (64K page size) : = (32G +16M)byte.
2437 */
2438static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2439{
2440 return 4096UL;
2441}
2442#endif
1da177e4
LT
2443
2444/*
2445 * This is an integer logarithm so that shifts can be used later
2446 * to extract the more random high bits from the multiplicative
2447 * hash function before the remainder is taken.
2448 */
2449static inline unsigned long wait_table_bits(unsigned long size)
2450{
2451 return ffz(~size);
2452}
2453
2454#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2455
56fd56b8 2456/*
d9c23400 2457 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2458 * of blocks reserved is based on zone->pages_min. The memory within the
2459 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2460 * higher will lead to a bigger reserve which will get freed as contiguous
2461 * blocks as reclaim kicks in
2462 */
2463static void setup_zone_migrate_reserve(struct zone *zone)
2464{
2465 unsigned long start_pfn, pfn, end_pfn;
2466 struct page *page;
2467 unsigned long reserve, block_migratetype;
2468
2469 /* Get the start pfn, end pfn and the number of blocks to reserve */
2470 start_pfn = zone->zone_start_pfn;
2471 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2472 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2473 pageblock_order;
56fd56b8 2474
d9c23400 2475 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2476 if (!pfn_valid(pfn))
2477 continue;
2478 page = pfn_to_page(pfn);
2479
2480 /* Blocks with reserved pages will never free, skip them. */
2481 if (PageReserved(page))
2482 continue;
2483
2484 block_migratetype = get_pageblock_migratetype(page);
2485
2486 /* If this block is reserved, account for it */
2487 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2488 reserve--;
2489 continue;
2490 }
2491
2492 /* Suitable for reserving if this block is movable */
2493 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2494 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2495 move_freepages_block(zone, page, MIGRATE_RESERVE);
2496 reserve--;
2497 continue;
2498 }
2499
2500 /*
2501 * If the reserve is met and this is a previous reserved block,
2502 * take it back
2503 */
2504 if (block_migratetype == MIGRATE_RESERVE) {
2505 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2506 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2507 }
2508 }
2509}
ac0e5b7a 2510
1da177e4
LT
2511/*
2512 * Initially all pages are reserved - free ones are freed
2513 * up by free_all_bootmem() once the early boot process is
2514 * done. Non-atomic initialization, single-pass.
2515 */
c09b4240 2516void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2517 unsigned long start_pfn, enum memmap_context context)
1da177e4 2518{
1da177e4 2519 struct page *page;
29751f69
AW
2520 unsigned long end_pfn = start_pfn + size;
2521 unsigned long pfn;
1da177e4 2522
cbe8dd4a 2523 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2524 /*
2525 * There can be holes in boot-time mem_map[]s
2526 * handed to this function. They do not
2527 * exist on hotplugged memory.
2528 */
2529 if (context == MEMMAP_EARLY) {
2530 if (!early_pfn_valid(pfn))
2531 continue;
2532 if (!early_pfn_in_nid(pfn, nid))
2533 continue;
2534 }
d41dee36
AW
2535 page = pfn_to_page(pfn);
2536 set_page_links(page, zone, nid, pfn);
7835e98b 2537 init_page_count(page);
1da177e4
LT
2538 reset_page_mapcount(page);
2539 SetPageReserved(page);
b2a0ac88
MG
2540
2541 /*
2542 * Mark the block movable so that blocks are reserved for
2543 * movable at startup. This will force kernel allocations
2544 * to reserve their blocks rather than leaking throughout
2545 * the address space during boot when many long-lived
56fd56b8
MG
2546 * kernel allocations are made. Later some blocks near
2547 * the start are marked MIGRATE_RESERVE by
2548 * setup_zone_migrate_reserve()
b2a0ac88 2549 */
d9c23400 2550 if ((pfn & (pageblock_nr_pages-1)))
56fd56b8 2551 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2552
1da177e4
LT
2553 INIT_LIST_HEAD(&page->lru);
2554#ifdef WANT_PAGE_VIRTUAL
2555 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2556 if (!is_highmem_idx(zone))
3212c6be 2557 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2558#endif
1da177e4
LT
2559 }
2560}
2561
6ea6e688
PM
2562static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2563 struct zone *zone, unsigned long size)
1da177e4 2564{
b2a0ac88
MG
2565 int order, t;
2566 for_each_migratetype_order(order, t) {
2567 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2568 zone->free_area[order].nr_free = 0;
2569 }
2570}
2571
2572#ifndef __HAVE_ARCH_MEMMAP_INIT
2573#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2574 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2575#endif
2576
d09c6b80 2577static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2578{
2579 int batch;
2580
2581 /*
2582 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2583 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2584 *
2585 * OK, so we don't know how big the cache is. So guess.
2586 */
2587 batch = zone->present_pages / 1024;
ba56e91c
SR
2588 if (batch * PAGE_SIZE > 512 * 1024)
2589 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2590 batch /= 4; /* We effectively *= 4 below */
2591 if (batch < 1)
2592 batch = 1;
2593
2594 /*
0ceaacc9
NP
2595 * Clamp the batch to a 2^n - 1 value. Having a power
2596 * of 2 value was found to be more likely to have
2597 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2598 *
0ceaacc9
NP
2599 * For example if 2 tasks are alternately allocating
2600 * batches of pages, one task can end up with a lot
2601 * of pages of one half of the possible page colors
2602 * and the other with pages of the other colors.
e7c8d5c9 2603 */
0ceaacc9 2604 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2605
e7c8d5c9
CL
2606 return batch;
2607}
2608
2caaad41
CL
2609inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2610{
2611 struct per_cpu_pages *pcp;
2612
1c6fe946
MD
2613 memset(p, 0, sizeof(*p));
2614
2caaad41
CL
2615 pcp = &p->pcp[0]; /* hot */
2616 pcp->count = 0;
2caaad41
CL
2617 pcp->high = 6 * batch;
2618 pcp->batch = max(1UL, 1 * batch);
2619 INIT_LIST_HEAD(&pcp->list);
2620
2621 pcp = &p->pcp[1]; /* cold*/
2622 pcp->count = 0;
2caaad41 2623 pcp->high = 2 * batch;
e46a5e28 2624 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2625 INIT_LIST_HEAD(&pcp->list);
2626}
2627
8ad4b1fb
RS
2628/*
2629 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2630 * to the value high for the pageset p.
2631 */
2632
2633static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2634 unsigned long high)
2635{
2636 struct per_cpu_pages *pcp;
2637
2638 pcp = &p->pcp[0]; /* hot list */
2639 pcp->high = high;
2640 pcp->batch = max(1UL, high/4);
2641 if ((high/4) > (PAGE_SHIFT * 8))
2642 pcp->batch = PAGE_SHIFT * 8;
2643}
2644
2645
e7c8d5c9
CL
2646#ifdef CONFIG_NUMA
2647/*
2caaad41
CL
2648 * Boot pageset table. One per cpu which is going to be used for all
2649 * zones and all nodes. The parameters will be set in such a way
2650 * that an item put on a list will immediately be handed over to
2651 * the buddy list. This is safe since pageset manipulation is done
2652 * with interrupts disabled.
2653 *
2654 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2655 *
2656 * The boot_pagesets must be kept even after bootup is complete for
2657 * unused processors and/or zones. They do play a role for bootstrapping
2658 * hotplugged processors.
2659 *
2660 * zoneinfo_show() and maybe other functions do
2661 * not check if the processor is online before following the pageset pointer.
2662 * Other parts of the kernel may not check if the zone is available.
2caaad41 2663 */
88a2a4ac 2664static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2665
2666/*
2667 * Dynamically allocate memory for the
e7c8d5c9
CL
2668 * per cpu pageset array in struct zone.
2669 */
6292d9aa 2670static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2671{
2672 struct zone *zone, *dzone;
37c0708d
CL
2673 int node = cpu_to_node(cpu);
2674
2675 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2676
2677 for_each_zone(zone) {
e7c8d5c9 2678
66a55030
CL
2679 if (!populated_zone(zone))
2680 continue;
2681
23316bc8 2682 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2683 GFP_KERNEL, node);
23316bc8 2684 if (!zone_pcp(zone, cpu))
e7c8d5c9 2685 goto bad;
e7c8d5c9 2686
23316bc8 2687 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2688
2689 if (percpu_pagelist_fraction)
2690 setup_pagelist_highmark(zone_pcp(zone, cpu),
2691 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2692 }
2693
2694 return 0;
2695bad:
2696 for_each_zone(dzone) {
64191688
AM
2697 if (!populated_zone(dzone))
2698 continue;
e7c8d5c9
CL
2699 if (dzone == zone)
2700 break;
23316bc8
NP
2701 kfree(zone_pcp(dzone, cpu));
2702 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2703 }
2704 return -ENOMEM;
2705}
2706
2707static inline void free_zone_pagesets(int cpu)
2708{
e7c8d5c9
CL
2709 struct zone *zone;
2710
2711 for_each_zone(zone) {
2712 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2713
f3ef9ead
DR
2714 /* Free per_cpu_pageset if it is slab allocated */
2715 if (pset != &boot_pageset[cpu])
2716 kfree(pset);
e7c8d5c9 2717 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2718 }
e7c8d5c9
CL
2719}
2720
9c7b216d 2721static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2722 unsigned long action,
2723 void *hcpu)
2724{
2725 int cpu = (long)hcpu;
2726 int ret = NOTIFY_OK;
2727
2728 switch (action) {
ce421c79 2729 case CPU_UP_PREPARE:
8bb78442 2730 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2731 if (process_zones(cpu))
2732 ret = NOTIFY_BAD;
2733 break;
2734 case CPU_UP_CANCELED:
8bb78442 2735 case CPU_UP_CANCELED_FROZEN:
ce421c79 2736 case CPU_DEAD:
8bb78442 2737 case CPU_DEAD_FROZEN:
ce421c79
AW
2738 free_zone_pagesets(cpu);
2739 break;
2740 default:
2741 break;
e7c8d5c9
CL
2742 }
2743 return ret;
2744}
2745
74b85f37 2746static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2747 { &pageset_cpuup_callback, NULL, 0 };
2748
78d9955b 2749void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2750{
2751 int err;
2752
2753 /* Initialize per_cpu_pageset for cpu 0.
2754 * A cpuup callback will do this for every cpu
2755 * as it comes online
2756 */
2757 err = process_zones(smp_processor_id());
2758 BUG_ON(err);
2759 register_cpu_notifier(&pageset_notifier);
2760}
2761
2762#endif
2763
577a32f6 2764static noinline __init_refok
cca448fe 2765int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2766{
2767 int i;
2768 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2769 size_t alloc_size;
ed8ece2e
DH
2770
2771 /*
2772 * The per-page waitqueue mechanism uses hashed waitqueues
2773 * per zone.
2774 */
02b694de
YG
2775 zone->wait_table_hash_nr_entries =
2776 wait_table_hash_nr_entries(zone_size_pages);
2777 zone->wait_table_bits =
2778 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2779 alloc_size = zone->wait_table_hash_nr_entries
2780 * sizeof(wait_queue_head_t);
2781
2782 if (system_state == SYSTEM_BOOTING) {
2783 zone->wait_table = (wait_queue_head_t *)
2784 alloc_bootmem_node(pgdat, alloc_size);
2785 } else {
2786 /*
2787 * This case means that a zone whose size was 0 gets new memory
2788 * via memory hot-add.
2789 * But it may be the case that a new node was hot-added. In
2790 * this case vmalloc() will not be able to use this new node's
2791 * memory - this wait_table must be initialized to use this new
2792 * node itself as well.
2793 * To use this new node's memory, further consideration will be
2794 * necessary.
2795 */
8691f3a7 2796 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2797 }
2798 if (!zone->wait_table)
2799 return -ENOMEM;
ed8ece2e 2800
02b694de 2801 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2802 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2803
2804 return 0;
ed8ece2e
DH
2805}
2806
c09b4240 2807static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2808{
2809 int cpu;
2810 unsigned long batch = zone_batchsize(zone);
2811
2812 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2813#ifdef CONFIG_NUMA
2814 /* Early boot. Slab allocator not functional yet */
23316bc8 2815 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2816 setup_pageset(&boot_pageset[cpu],0);
2817#else
2818 setup_pageset(zone_pcp(zone,cpu), batch);
2819#endif
2820 }
f5335c0f
AB
2821 if (zone->present_pages)
2822 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2823 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2824}
2825
718127cc
YG
2826__meminit int init_currently_empty_zone(struct zone *zone,
2827 unsigned long zone_start_pfn,
a2f3aa02
DH
2828 unsigned long size,
2829 enum memmap_context context)
ed8ece2e
DH
2830{
2831 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2832 int ret;
2833 ret = zone_wait_table_init(zone, size);
2834 if (ret)
2835 return ret;
ed8ece2e
DH
2836 pgdat->nr_zones = zone_idx(zone) + 1;
2837
ed8ece2e
DH
2838 zone->zone_start_pfn = zone_start_pfn;
2839
2840 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2841
2842 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2843
2844 return 0;
ed8ece2e
DH
2845}
2846
c713216d
MG
2847#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2848/*
2849 * Basic iterator support. Return the first range of PFNs for a node
2850 * Note: nid == MAX_NUMNODES returns first region regardless of node
2851 */
a3142c8e 2852static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2853{
2854 int i;
2855
2856 for (i = 0; i < nr_nodemap_entries; i++)
2857 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2858 return i;
2859
2860 return -1;
2861}
2862
2863/*
2864 * Basic iterator support. Return the next active range of PFNs for a node
2865 * Note: nid == MAX_NUMNODES returns next region regardles of node
2866 */
a3142c8e 2867static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2868{
2869 for (index = index + 1; index < nr_nodemap_entries; index++)
2870 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2871 return index;
2872
2873 return -1;
2874}
2875
2876#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2877/*
2878 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2879 * Architectures may implement their own version but if add_active_range()
2880 * was used and there are no special requirements, this is a convenient
2881 * alternative
2882 */
6f076f5d 2883int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2884{
2885 int i;
2886
2887 for (i = 0; i < nr_nodemap_entries; i++) {
2888 unsigned long start_pfn = early_node_map[i].start_pfn;
2889 unsigned long end_pfn = early_node_map[i].end_pfn;
2890
2891 if (start_pfn <= pfn && pfn < end_pfn)
2892 return early_node_map[i].nid;
2893 }
2894
2895 return 0;
2896}
2897#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2898
2899/* Basic iterator support to walk early_node_map[] */
2900#define for_each_active_range_index_in_nid(i, nid) \
2901 for (i = first_active_region_index_in_nid(nid); i != -1; \
2902 i = next_active_region_index_in_nid(i, nid))
2903
2904/**
2905 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2906 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2907 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2908 *
2909 * If an architecture guarantees that all ranges registered with
2910 * add_active_ranges() contain no holes and may be freed, this
2911 * this function may be used instead of calling free_bootmem() manually.
2912 */
2913void __init free_bootmem_with_active_regions(int nid,
2914 unsigned long max_low_pfn)
2915{
2916 int i;
2917
2918 for_each_active_range_index_in_nid(i, nid) {
2919 unsigned long size_pages = 0;
2920 unsigned long end_pfn = early_node_map[i].end_pfn;
2921
2922 if (early_node_map[i].start_pfn >= max_low_pfn)
2923 continue;
2924
2925 if (end_pfn > max_low_pfn)
2926 end_pfn = max_low_pfn;
2927
2928 size_pages = end_pfn - early_node_map[i].start_pfn;
2929 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2930 PFN_PHYS(early_node_map[i].start_pfn),
2931 size_pages << PAGE_SHIFT);
2932 }
2933}
2934
2935/**
2936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2938 *
2939 * If an architecture guarantees that all ranges registered with
2940 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2941 * function may be used instead of calling memory_present() manually.
c713216d
MG
2942 */
2943void __init sparse_memory_present_with_active_regions(int nid)
2944{
2945 int i;
2946
2947 for_each_active_range_index_in_nid(i, nid)
2948 memory_present(early_node_map[i].nid,
2949 early_node_map[i].start_pfn,
2950 early_node_map[i].end_pfn);
2951}
2952
fb01439c
MG
2953/**
2954 * push_node_boundaries - Push node boundaries to at least the requested boundary
2955 * @nid: The nid of the node to push the boundary for
2956 * @start_pfn: The start pfn of the node
2957 * @end_pfn: The end pfn of the node
2958 *
2959 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2960 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2961 * be hotplugged even though no physical memory exists. This function allows
2962 * an arch to push out the node boundaries so mem_map is allocated that can
2963 * be used later.
2964 */
2965#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2966void __init push_node_boundaries(unsigned int nid,
2967 unsigned long start_pfn, unsigned long end_pfn)
2968{
2969 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2970 nid, start_pfn, end_pfn);
2971
2972 /* Initialise the boundary for this node if necessary */
2973 if (node_boundary_end_pfn[nid] == 0)
2974 node_boundary_start_pfn[nid] = -1UL;
2975
2976 /* Update the boundaries */
2977 if (node_boundary_start_pfn[nid] > start_pfn)
2978 node_boundary_start_pfn[nid] = start_pfn;
2979 if (node_boundary_end_pfn[nid] < end_pfn)
2980 node_boundary_end_pfn[nid] = end_pfn;
2981}
2982
2983/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2984static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2985 unsigned long *start_pfn, unsigned long *end_pfn)
2986{
2987 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2988 nid, *start_pfn, *end_pfn);
2989
2990 /* Return if boundary information has not been provided */
2991 if (node_boundary_end_pfn[nid] == 0)
2992 return;
2993
2994 /* Check the boundaries and update if necessary */
2995 if (node_boundary_start_pfn[nid] < *start_pfn)
2996 *start_pfn = node_boundary_start_pfn[nid];
2997 if (node_boundary_end_pfn[nid] > *end_pfn)
2998 *end_pfn = node_boundary_end_pfn[nid];
2999}
3000#else
3001void __init push_node_boundaries(unsigned int nid,
3002 unsigned long start_pfn, unsigned long end_pfn) {}
3003
98011f56 3004static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3005 unsigned long *start_pfn, unsigned long *end_pfn) {}
3006#endif
3007
3008
c713216d
MG
3009/**
3010 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3011 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3012 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3013 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3014 *
3015 * It returns the start and end page frame of a node based on information
3016 * provided by an arch calling add_active_range(). If called for a node
3017 * with no available memory, a warning is printed and the start and end
88ca3b94 3018 * PFNs will be 0.
c713216d 3019 */
a3142c8e 3020void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3021 unsigned long *start_pfn, unsigned long *end_pfn)
3022{
3023 int i;
3024 *start_pfn = -1UL;
3025 *end_pfn = 0;
3026
3027 for_each_active_range_index_in_nid(i, nid) {
3028 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3029 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3030 }
3031
633c0666 3032 if (*start_pfn == -1UL)
c713216d 3033 *start_pfn = 0;
fb01439c
MG
3034
3035 /* Push the node boundaries out if requested */
3036 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3037}
3038
2a1e274a
MG
3039/*
3040 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3041 * assumption is made that zones within a node are ordered in monotonic
3042 * increasing memory addresses so that the "highest" populated zone is used
3043 */
3044void __init find_usable_zone_for_movable(void)
3045{
3046 int zone_index;
3047 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3048 if (zone_index == ZONE_MOVABLE)
3049 continue;
3050
3051 if (arch_zone_highest_possible_pfn[zone_index] >
3052 arch_zone_lowest_possible_pfn[zone_index])
3053 break;
3054 }
3055
3056 VM_BUG_ON(zone_index == -1);
3057 movable_zone = zone_index;
3058}
3059
3060/*
3061 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3062 * because it is sized independant of architecture. Unlike the other zones,
3063 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3064 * in each node depending on the size of each node and how evenly kernelcore
3065 * is distributed. This helper function adjusts the zone ranges
3066 * provided by the architecture for a given node by using the end of the
3067 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3068 * zones within a node are in order of monotonic increases memory addresses
3069 */
3070void __meminit adjust_zone_range_for_zone_movable(int nid,
3071 unsigned long zone_type,
3072 unsigned long node_start_pfn,
3073 unsigned long node_end_pfn,
3074 unsigned long *zone_start_pfn,
3075 unsigned long *zone_end_pfn)
3076{
3077 /* Only adjust if ZONE_MOVABLE is on this node */
3078 if (zone_movable_pfn[nid]) {
3079 /* Size ZONE_MOVABLE */
3080 if (zone_type == ZONE_MOVABLE) {
3081 *zone_start_pfn = zone_movable_pfn[nid];
3082 *zone_end_pfn = min(node_end_pfn,
3083 arch_zone_highest_possible_pfn[movable_zone]);
3084
3085 /* Adjust for ZONE_MOVABLE starting within this range */
3086 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3087 *zone_end_pfn > zone_movable_pfn[nid]) {
3088 *zone_end_pfn = zone_movable_pfn[nid];
3089
3090 /* Check if this whole range is within ZONE_MOVABLE */
3091 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3092 *zone_start_pfn = *zone_end_pfn;
3093 }
3094}
3095
c713216d
MG
3096/*
3097 * Return the number of pages a zone spans in a node, including holes
3098 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3099 */
6ea6e688 3100static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3101 unsigned long zone_type,
3102 unsigned long *ignored)
3103{
3104 unsigned long node_start_pfn, node_end_pfn;
3105 unsigned long zone_start_pfn, zone_end_pfn;
3106
3107 /* Get the start and end of the node and zone */
3108 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3109 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3110 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3111 adjust_zone_range_for_zone_movable(nid, zone_type,
3112 node_start_pfn, node_end_pfn,
3113 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3114
3115 /* Check that this node has pages within the zone's required range */
3116 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3117 return 0;
3118
3119 /* Move the zone boundaries inside the node if necessary */
3120 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3121 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3122
3123 /* Return the spanned pages */
3124 return zone_end_pfn - zone_start_pfn;
3125}
3126
3127/*
3128 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3129 * then all holes in the requested range will be accounted for.
c713216d 3130 */
a3142c8e 3131unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3132 unsigned long range_start_pfn,
3133 unsigned long range_end_pfn)
3134{
3135 int i = 0;
3136 unsigned long prev_end_pfn = 0, hole_pages = 0;
3137 unsigned long start_pfn;
3138
3139 /* Find the end_pfn of the first active range of pfns in the node */
3140 i = first_active_region_index_in_nid(nid);
3141 if (i == -1)
3142 return 0;
3143
b5445f95
MG
3144 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3145
9c7cd687
MG
3146 /* Account for ranges before physical memory on this node */
3147 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3148 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3149
3150 /* Find all holes for the zone within the node */
3151 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3152
3153 /* No need to continue if prev_end_pfn is outside the zone */
3154 if (prev_end_pfn >= range_end_pfn)
3155 break;
3156
3157 /* Make sure the end of the zone is not within the hole */
3158 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3159 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3160
3161 /* Update the hole size cound and move on */
3162 if (start_pfn > range_start_pfn) {
3163 BUG_ON(prev_end_pfn > start_pfn);
3164 hole_pages += start_pfn - prev_end_pfn;
3165 }
3166 prev_end_pfn = early_node_map[i].end_pfn;
3167 }
3168
9c7cd687
MG
3169 /* Account for ranges past physical memory on this node */
3170 if (range_end_pfn > prev_end_pfn)
0c6cb974 3171 hole_pages += range_end_pfn -
9c7cd687
MG
3172 max(range_start_pfn, prev_end_pfn);
3173
c713216d
MG
3174 return hole_pages;
3175}
3176
3177/**
3178 * absent_pages_in_range - Return number of page frames in holes within a range
3179 * @start_pfn: The start PFN to start searching for holes
3180 * @end_pfn: The end PFN to stop searching for holes
3181 *
88ca3b94 3182 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3183 */
3184unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3185 unsigned long end_pfn)
3186{
3187 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3188}
3189
3190/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3191static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3192 unsigned long zone_type,
3193 unsigned long *ignored)
3194{
9c7cd687
MG
3195 unsigned long node_start_pfn, node_end_pfn;
3196 unsigned long zone_start_pfn, zone_end_pfn;
3197
3198 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3199 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3200 node_start_pfn);
3201 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3202 node_end_pfn);
3203
2a1e274a
MG
3204 adjust_zone_range_for_zone_movable(nid, zone_type,
3205 node_start_pfn, node_end_pfn,
3206 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3207 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3208}
0e0b864e 3209
c713216d 3210#else
6ea6e688 3211static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3212 unsigned long zone_type,
3213 unsigned long *zones_size)
3214{
3215 return zones_size[zone_type];
3216}
3217
6ea6e688 3218static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3219 unsigned long zone_type,
3220 unsigned long *zholes_size)
3221{
3222 if (!zholes_size)
3223 return 0;
3224
3225 return zholes_size[zone_type];
3226}
0e0b864e 3227
c713216d
MG
3228#endif
3229
a3142c8e 3230static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3231 unsigned long *zones_size, unsigned long *zholes_size)
3232{
3233 unsigned long realtotalpages, totalpages = 0;
3234 enum zone_type i;
3235
3236 for (i = 0; i < MAX_NR_ZONES; i++)
3237 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3238 zones_size);
3239 pgdat->node_spanned_pages = totalpages;
3240
3241 realtotalpages = totalpages;
3242 for (i = 0; i < MAX_NR_ZONES; i++)
3243 realtotalpages -=
3244 zone_absent_pages_in_node(pgdat->node_id, i,
3245 zholes_size);
3246 pgdat->node_present_pages = realtotalpages;
3247 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3248 realtotalpages);
3249}
3250
835c134e
MG
3251#ifndef CONFIG_SPARSEMEM
3252/*
3253 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3254 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3255 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3256 * round what is now in bits to nearest long in bits, then return it in
3257 * bytes.
3258 */
3259static unsigned long __init usemap_size(unsigned long zonesize)
3260{
3261 unsigned long usemapsize;
3262
d9c23400
MG
3263 usemapsize = roundup(zonesize, pageblock_nr_pages);
3264 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3265 usemapsize *= NR_PAGEBLOCK_BITS;
3266 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3267
3268 return usemapsize / 8;
3269}
3270
3271static void __init setup_usemap(struct pglist_data *pgdat,
3272 struct zone *zone, unsigned long zonesize)
3273{
3274 unsigned long usemapsize = usemap_size(zonesize);
3275 zone->pageblock_flags = NULL;
3276 if (usemapsize) {
3277 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3278 memset(zone->pageblock_flags, 0, usemapsize);
3279 }
3280}
3281#else
3282static void inline setup_usemap(struct pglist_data *pgdat,
3283 struct zone *zone, unsigned long zonesize) {}
3284#endif /* CONFIG_SPARSEMEM */
3285
d9c23400
MG
3286#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3287/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3288static inline void __init set_pageblock_order(unsigned int order)
3289{
3290 /* Check that pageblock_nr_pages has not already been setup */
3291 if (pageblock_order)
3292 return;
3293
3294 /*
3295 * Assume the largest contiguous order of interest is a huge page.
3296 * This value may be variable depending on boot parameters on IA64
3297 */
3298 pageblock_order = order;
3299}
3300#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3301
3302/* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3303#define set_pageblock_order(x) do {} while (0)
3304
3305#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3306
1da177e4
LT
3307/*
3308 * Set up the zone data structures:
3309 * - mark all pages reserved
3310 * - mark all memory queues empty
3311 * - clear the memory bitmaps
3312 */
86356ab1 3313static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3314 unsigned long *zones_size, unsigned long *zholes_size)
3315{
2f1b6248 3316 enum zone_type j;
ed8ece2e 3317 int nid = pgdat->node_id;
1da177e4 3318 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3319 int ret;
1da177e4 3320
208d54e5 3321 pgdat_resize_init(pgdat);
1da177e4
LT
3322 pgdat->nr_zones = 0;
3323 init_waitqueue_head(&pgdat->kswapd_wait);
3324 pgdat->kswapd_max_order = 0;
3325
3326 for (j = 0; j < MAX_NR_ZONES; j++) {
3327 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3328 unsigned long size, realsize, memmap_pages;
1da177e4 3329
c713216d
MG
3330 size = zone_spanned_pages_in_node(nid, j, zones_size);
3331 realsize = size - zone_absent_pages_in_node(nid, j,
3332 zholes_size);
1da177e4 3333
0e0b864e
MG
3334 /*
3335 * Adjust realsize so that it accounts for how much memory
3336 * is used by this zone for memmap. This affects the watermark
3337 * and per-cpu initialisations
3338 */
3339 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3340 if (realsize >= memmap_pages) {
3341 realsize -= memmap_pages;
3342 printk(KERN_DEBUG
3343 " %s zone: %lu pages used for memmap\n",
3344 zone_names[j], memmap_pages);
3345 } else
3346 printk(KERN_WARNING
3347 " %s zone: %lu pages exceeds realsize %lu\n",
3348 zone_names[j], memmap_pages, realsize);
3349
6267276f
CL
3350 /* Account for reserved pages */
3351 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3352 realsize -= dma_reserve;
6267276f
CL
3353 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3354 zone_names[0], dma_reserve);
0e0b864e
MG
3355 }
3356
98d2b0eb 3357 if (!is_highmem_idx(j))
1da177e4
LT
3358 nr_kernel_pages += realsize;
3359 nr_all_pages += realsize;
3360
3361 zone->spanned_pages = size;
3362 zone->present_pages = realsize;
9614634f 3363#ifdef CONFIG_NUMA
d5f541ed 3364 zone->node = nid;
8417bba4 3365 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3366 / 100;
0ff38490 3367 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3368#endif
1da177e4
LT
3369 zone->name = zone_names[j];
3370 spin_lock_init(&zone->lock);
3371 spin_lock_init(&zone->lru_lock);
bdc8cb98 3372 zone_seqlock_init(zone);
1da177e4 3373 zone->zone_pgdat = pgdat;
1da177e4 3374
3bb1a852 3375 zone->prev_priority = DEF_PRIORITY;
1da177e4 3376
ed8ece2e 3377 zone_pcp_init(zone);
1da177e4
LT
3378 INIT_LIST_HEAD(&zone->active_list);
3379 INIT_LIST_HEAD(&zone->inactive_list);
3380 zone->nr_scan_active = 0;
3381 zone->nr_scan_inactive = 0;
2244b95a 3382 zap_zone_vm_stats(zone);
53e9a615 3383 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
3384 if (!size)
3385 continue;
3386
d9c23400 3387 set_pageblock_order(HUGETLB_PAGE_ORDER);
835c134e 3388 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3389 ret = init_currently_empty_zone(zone, zone_start_pfn,
3390 size, MEMMAP_EARLY);
718127cc 3391 BUG_ON(ret);
1da177e4 3392 zone_start_pfn += size;
1da177e4
LT
3393 }
3394}
3395
577a32f6 3396static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3397{
1da177e4
LT
3398 /* Skip empty nodes */
3399 if (!pgdat->node_spanned_pages)
3400 return;
3401
d41dee36 3402#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3403 /* ia64 gets its own node_mem_map, before this, without bootmem */
3404 if (!pgdat->node_mem_map) {
e984bb43 3405 unsigned long size, start, end;
d41dee36
AW
3406 struct page *map;
3407
e984bb43
BP
3408 /*
3409 * The zone's endpoints aren't required to be MAX_ORDER
3410 * aligned but the node_mem_map endpoints must be in order
3411 * for the buddy allocator to function correctly.
3412 */
3413 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3414 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3415 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3416 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3417 map = alloc_remap(pgdat->node_id, size);
3418 if (!map)
3419 map = alloc_bootmem_node(pgdat, size);
e984bb43 3420 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3421 }
12d810c1 3422#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3423 /*
3424 * With no DISCONTIG, the global mem_map is just set as node 0's
3425 */
c713216d 3426 if (pgdat == NODE_DATA(0)) {
1da177e4 3427 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3428#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3429 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3430 mem_map -= pgdat->node_start_pfn;
3431#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3432 }
1da177e4 3433#endif
d41dee36 3434#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3435}
3436
86356ab1 3437void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3438 unsigned long *zones_size, unsigned long node_start_pfn,
3439 unsigned long *zholes_size)
3440{
3441 pgdat->node_id = nid;
3442 pgdat->node_start_pfn = node_start_pfn;
c713216d 3443 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3444
3445 alloc_node_mem_map(pgdat);
3446
3447 free_area_init_core(pgdat, zones_size, zholes_size);
3448}
3449
c713216d 3450#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3451
3452#if MAX_NUMNODES > 1
3453/*
3454 * Figure out the number of possible node ids.
3455 */
3456static void __init setup_nr_node_ids(void)
3457{
3458 unsigned int node;
3459 unsigned int highest = 0;
3460
3461 for_each_node_mask(node, node_possible_map)
3462 highest = node;
3463 nr_node_ids = highest + 1;
3464}
3465#else
3466static inline void setup_nr_node_ids(void)
3467{
3468}
3469#endif
3470
c713216d
MG
3471/**
3472 * add_active_range - Register a range of PFNs backed by physical memory
3473 * @nid: The node ID the range resides on
3474 * @start_pfn: The start PFN of the available physical memory
3475 * @end_pfn: The end PFN of the available physical memory
3476 *
3477 * These ranges are stored in an early_node_map[] and later used by
3478 * free_area_init_nodes() to calculate zone sizes and holes. If the
3479 * range spans a memory hole, it is up to the architecture to ensure
3480 * the memory is not freed by the bootmem allocator. If possible
3481 * the range being registered will be merged with existing ranges.
3482 */
3483void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3484 unsigned long end_pfn)
3485{
3486 int i;
3487
3488 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3489 "%d entries of %d used\n",
3490 nid, start_pfn, end_pfn,
3491 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3492
3493 /* Merge with existing active regions if possible */
3494 for (i = 0; i < nr_nodemap_entries; i++) {
3495 if (early_node_map[i].nid != nid)
3496 continue;
3497
3498 /* Skip if an existing region covers this new one */
3499 if (start_pfn >= early_node_map[i].start_pfn &&
3500 end_pfn <= early_node_map[i].end_pfn)
3501 return;
3502
3503 /* Merge forward if suitable */
3504 if (start_pfn <= early_node_map[i].end_pfn &&
3505 end_pfn > early_node_map[i].end_pfn) {
3506 early_node_map[i].end_pfn = end_pfn;
3507 return;
3508 }
3509
3510 /* Merge backward if suitable */
3511 if (start_pfn < early_node_map[i].end_pfn &&
3512 end_pfn >= early_node_map[i].start_pfn) {
3513 early_node_map[i].start_pfn = start_pfn;
3514 return;
3515 }
3516 }
3517
3518 /* Check that early_node_map is large enough */
3519 if (i >= MAX_ACTIVE_REGIONS) {
3520 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3521 MAX_ACTIVE_REGIONS);
3522 return;
3523 }
3524
3525 early_node_map[i].nid = nid;
3526 early_node_map[i].start_pfn = start_pfn;
3527 early_node_map[i].end_pfn = end_pfn;
3528 nr_nodemap_entries = i + 1;
3529}
3530
3531/**
3532 * shrink_active_range - Shrink an existing registered range of PFNs
3533 * @nid: The node id the range is on that should be shrunk
3534 * @old_end_pfn: The old end PFN of the range
3535 * @new_end_pfn: The new PFN of the range
3536 *
3537 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3538 * The map is kept at the end physical page range that has already been
3539 * registered with add_active_range(). This function allows an arch to shrink
3540 * an existing registered range.
3541 */
3542void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3543 unsigned long new_end_pfn)
3544{
3545 int i;
3546
3547 /* Find the old active region end and shrink */
3548 for_each_active_range_index_in_nid(i, nid)
3549 if (early_node_map[i].end_pfn == old_end_pfn) {
3550 early_node_map[i].end_pfn = new_end_pfn;
3551 break;
3552 }
3553}
3554
3555/**
3556 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3557 *
c713216d
MG
3558 * During discovery, it may be found that a table like SRAT is invalid
3559 * and an alternative discovery method must be used. This function removes
3560 * all currently registered regions.
3561 */
88ca3b94 3562void __init remove_all_active_ranges(void)
c713216d
MG
3563{
3564 memset(early_node_map, 0, sizeof(early_node_map));
3565 nr_nodemap_entries = 0;
fb01439c
MG
3566#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3567 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3568 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3569#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3570}
3571
3572/* Compare two active node_active_regions */
3573static int __init cmp_node_active_region(const void *a, const void *b)
3574{
3575 struct node_active_region *arange = (struct node_active_region *)a;
3576 struct node_active_region *brange = (struct node_active_region *)b;
3577
3578 /* Done this way to avoid overflows */
3579 if (arange->start_pfn > brange->start_pfn)
3580 return 1;
3581 if (arange->start_pfn < brange->start_pfn)
3582 return -1;
3583
3584 return 0;
3585}
3586
3587/* sort the node_map by start_pfn */
3588static void __init sort_node_map(void)
3589{
3590 sort(early_node_map, (size_t)nr_nodemap_entries,
3591 sizeof(struct node_active_region),
3592 cmp_node_active_region, NULL);
3593}
3594
a6af2bc3 3595/* Find the lowest pfn for a node */
c713216d
MG
3596unsigned long __init find_min_pfn_for_node(unsigned long nid)
3597{
3598 int i;
a6af2bc3 3599 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3600
c713216d
MG
3601 /* Assuming a sorted map, the first range found has the starting pfn */
3602 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3603 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3604
a6af2bc3
MG
3605 if (min_pfn == ULONG_MAX) {
3606 printk(KERN_WARNING
3607 "Could not find start_pfn for node %lu\n", nid);
3608 return 0;
3609 }
3610
3611 return min_pfn;
c713216d
MG
3612}
3613
3614/**
3615 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3616 *
3617 * It returns the minimum PFN based on information provided via
88ca3b94 3618 * add_active_range().
c713216d
MG
3619 */
3620unsigned long __init find_min_pfn_with_active_regions(void)
3621{
3622 return find_min_pfn_for_node(MAX_NUMNODES);
3623}
3624
3625/**
3626 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3627 *
3628 * It returns the maximum PFN based on information provided via
88ca3b94 3629 * add_active_range().
c713216d
MG
3630 */
3631unsigned long __init find_max_pfn_with_active_regions(void)
3632{
3633 int i;
3634 unsigned long max_pfn = 0;
3635
3636 for (i = 0; i < nr_nodemap_entries; i++)
3637 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3638
3639 return max_pfn;
3640}
3641
37b07e41
LS
3642/*
3643 * early_calculate_totalpages()
3644 * Sum pages in active regions for movable zone.
3645 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3646 */
7e63efef
MG
3647unsigned long __init early_calculate_totalpages(void)
3648{
3649 int i;
3650 unsigned long totalpages = 0;
3651
37b07e41
LS
3652 for (i = 0; i < nr_nodemap_entries; i++) {
3653 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3654 early_node_map[i].start_pfn;
37b07e41
LS
3655 totalpages += pages;
3656 if (pages)
3657 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3658 }
3659 return totalpages;
7e63efef
MG
3660}
3661
2a1e274a
MG
3662/*
3663 * Find the PFN the Movable zone begins in each node. Kernel memory
3664 * is spread evenly between nodes as long as the nodes have enough
3665 * memory. When they don't, some nodes will have more kernelcore than
3666 * others
3667 */
3668void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3669{
3670 int i, nid;
3671 unsigned long usable_startpfn;
3672 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3673 unsigned long totalpages = early_calculate_totalpages();
3674 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3675
7e63efef
MG
3676 /*
3677 * If movablecore was specified, calculate what size of
3678 * kernelcore that corresponds so that memory usable for
3679 * any allocation type is evenly spread. If both kernelcore
3680 * and movablecore are specified, then the value of kernelcore
3681 * will be used for required_kernelcore if it's greater than
3682 * what movablecore would have allowed.
3683 */
3684 if (required_movablecore) {
7e63efef
MG
3685 unsigned long corepages;
3686
3687 /*
3688 * Round-up so that ZONE_MOVABLE is at least as large as what
3689 * was requested by the user
3690 */
3691 required_movablecore =
3692 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3693 corepages = totalpages - required_movablecore;
3694
3695 required_kernelcore = max(required_kernelcore, corepages);
3696 }
3697
2a1e274a
MG
3698 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3699 if (!required_kernelcore)
3700 return;
3701
3702 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3703 find_usable_zone_for_movable();
3704 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3705
3706restart:
3707 /* Spread kernelcore memory as evenly as possible throughout nodes */
3708 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3709 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3710 /*
3711 * Recalculate kernelcore_node if the division per node
3712 * now exceeds what is necessary to satisfy the requested
3713 * amount of memory for the kernel
3714 */
3715 if (required_kernelcore < kernelcore_node)
3716 kernelcore_node = required_kernelcore / usable_nodes;
3717
3718 /*
3719 * As the map is walked, we track how much memory is usable
3720 * by the kernel using kernelcore_remaining. When it is
3721 * 0, the rest of the node is usable by ZONE_MOVABLE
3722 */
3723 kernelcore_remaining = kernelcore_node;
3724
3725 /* Go through each range of PFNs within this node */
3726 for_each_active_range_index_in_nid(i, nid) {
3727 unsigned long start_pfn, end_pfn;
3728 unsigned long size_pages;
3729
3730 start_pfn = max(early_node_map[i].start_pfn,
3731 zone_movable_pfn[nid]);
3732 end_pfn = early_node_map[i].end_pfn;
3733 if (start_pfn >= end_pfn)
3734 continue;
3735
3736 /* Account for what is only usable for kernelcore */
3737 if (start_pfn < usable_startpfn) {
3738 unsigned long kernel_pages;
3739 kernel_pages = min(end_pfn, usable_startpfn)
3740 - start_pfn;
3741
3742 kernelcore_remaining -= min(kernel_pages,
3743 kernelcore_remaining);
3744 required_kernelcore -= min(kernel_pages,
3745 required_kernelcore);
3746
3747 /* Continue if range is now fully accounted */
3748 if (end_pfn <= usable_startpfn) {
3749
3750 /*
3751 * Push zone_movable_pfn to the end so
3752 * that if we have to rebalance
3753 * kernelcore across nodes, we will
3754 * not double account here
3755 */
3756 zone_movable_pfn[nid] = end_pfn;
3757 continue;
3758 }
3759 start_pfn = usable_startpfn;
3760 }
3761
3762 /*
3763 * The usable PFN range for ZONE_MOVABLE is from
3764 * start_pfn->end_pfn. Calculate size_pages as the
3765 * number of pages used as kernelcore
3766 */
3767 size_pages = end_pfn - start_pfn;
3768 if (size_pages > kernelcore_remaining)
3769 size_pages = kernelcore_remaining;
3770 zone_movable_pfn[nid] = start_pfn + size_pages;
3771
3772 /*
3773 * Some kernelcore has been met, update counts and
3774 * break if the kernelcore for this node has been
3775 * satisified
3776 */
3777 required_kernelcore -= min(required_kernelcore,
3778 size_pages);
3779 kernelcore_remaining -= size_pages;
3780 if (!kernelcore_remaining)
3781 break;
3782 }
3783 }
3784
3785 /*
3786 * If there is still required_kernelcore, we do another pass with one
3787 * less node in the count. This will push zone_movable_pfn[nid] further
3788 * along on the nodes that still have memory until kernelcore is
3789 * satisified
3790 */
3791 usable_nodes--;
3792 if (usable_nodes && required_kernelcore > usable_nodes)
3793 goto restart;
3794
3795 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3796 for (nid = 0; nid < MAX_NUMNODES; nid++)
3797 zone_movable_pfn[nid] =
3798 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3799}
3800
37b07e41
LS
3801/* Any regular memory on that node ? */
3802static void check_for_regular_memory(pg_data_t *pgdat)
3803{
3804#ifdef CONFIG_HIGHMEM
3805 enum zone_type zone_type;
3806
3807 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3808 struct zone *zone = &pgdat->node_zones[zone_type];
3809 if (zone->present_pages)
3810 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3811 }
3812#endif
3813}
3814
c713216d
MG
3815/**
3816 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3817 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3818 *
3819 * This will call free_area_init_node() for each active node in the system.
3820 * Using the page ranges provided by add_active_range(), the size of each
3821 * zone in each node and their holes is calculated. If the maximum PFN
3822 * between two adjacent zones match, it is assumed that the zone is empty.
3823 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3824 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3825 * starts where the previous one ended. For example, ZONE_DMA32 starts
3826 * at arch_max_dma_pfn.
3827 */
3828void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3829{
3830 unsigned long nid;
3831 enum zone_type i;
3832
a6af2bc3
MG
3833 /* Sort early_node_map as initialisation assumes it is sorted */
3834 sort_node_map();
3835
c713216d
MG
3836 /* Record where the zone boundaries are */
3837 memset(arch_zone_lowest_possible_pfn, 0,
3838 sizeof(arch_zone_lowest_possible_pfn));
3839 memset(arch_zone_highest_possible_pfn, 0,
3840 sizeof(arch_zone_highest_possible_pfn));
3841 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3842 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3843 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3844 if (i == ZONE_MOVABLE)
3845 continue;
c713216d
MG
3846 arch_zone_lowest_possible_pfn[i] =
3847 arch_zone_highest_possible_pfn[i-1];
3848 arch_zone_highest_possible_pfn[i] =
3849 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3850 }
2a1e274a
MG
3851 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3852 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3853
3854 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3855 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3856 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3857
c713216d
MG
3858 /* Print out the zone ranges */
3859 printk("Zone PFN ranges:\n");
2a1e274a
MG
3860 for (i = 0; i < MAX_NR_ZONES; i++) {
3861 if (i == ZONE_MOVABLE)
3862 continue;
c713216d
MG
3863 printk(" %-8s %8lu -> %8lu\n",
3864 zone_names[i],
3865 arch_zone_lowest_possible_pfn[i],
3866 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3867 }
3868
3869 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3870 printk("Movable zone start PFN for each node\n");
3871 for (i = 0; i < MAX_NUMNODES; i++) {
3872 if (zone_movable_pfn[i])
3873 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3874 }
c713216d
MG
3875
3876 /* Print out the early_node_map[] */
3877 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3878 for (i = 0; i < nr_nodemap_entries; i++)
3879 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3880 early_node_map[i].start_pfn,
3881 early_node_map[i].end_pfn);
3882
3883 /* Initialise every node */
8ef82866 3884 setup_nr_node_ids();
c713216d
MG
3885 for_each_online_node(nid) {
3886 pg_data_t *pgdat = NODE_DATA(nid);
3887 free_area_init_node(nid, pgdat, NULL,
3888 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3889
3890 /* Any memory on that node */
3891 if (pgdat->node_present_pages)
3892 node_set_state(nid, N_HIGH_MEMORY);
3893 check_for_regular_memory(pgdat);
c713216d
MG
3894 }
3895}
2a1e274a 3896
7e63efef 3897static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3898{
3899 unsigned long long coremem;
3900 if (!p)
3901 return -EINVAL;
3902
3903 coremem = memparse(p, &p);
7e63efef 3904 *core = coremem >> PAGE_SHIFT;
2a1e274a 3905
7e63efef 3906 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3907 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3908
3909 return 0;
3910}
ed7ed365 3911
7e63efef
MG
3912/*
3913 * kernelcore=size sets the amount of memory for use for allocations that
3914 * cannot be reclaimed or migrated.
3915 */
3916static int __init cmdline_parse_kernelcore(char *p)
3917{
3918 return cmdline_parse_core(p, &required_kernelcore);
3919}
3920
3921/*
3922 * movablecore=size sets the amount of memory for use for allocations that
3923 * can be reclaimed or migrated.
3924 */
3925static int __init cmdline_parse_movablecore(char *p)
3926{
3927 return cmdline_parse_core(p, &required_movablecore);
3928}
3929
ed7ed365 3930early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3931early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3932
c713216d
MG
3933#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3934
0e0b864e 3935/**
88ca3b94
RD
3936 * set_dma_reserve - set the specified number of pages reserved in the first zone
3937 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3938 *
3939 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3940 * In the DMA zone, a significant percentage may be consumed by kernel image
3941 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3942 * function may optionally be used to account for unfreeable pages in the
3943 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3944 * smaller per-cpu batchsize.
0e0b864e
MG
3945 */
3946void __init set_dma_reserve(unsigned long new_dma_reserve)
3947{
3948 dma_reserve = new_dma_reserve;
3949}
3950
93b7504e 3951#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3952static bootmem_data_t contig_bootmem_data;
3953struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3954
3955EXPORT_SYMBOL(contig_page_data);
93b7504e 3956#endif
1da177e4
LT
3957
3958void __init free_area_init(unsigned long *zones_size)
3959{
93b7504e 3960 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3961 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3962}
1da177e4 3963
1da177e4
LT
3964static int page_alloc_cpu_notify(struct notifier_block *self,
3965 unsigned long action, void *hcpu)
3966{
3967 int cpu = (unsigned long)hcpu;
1da177e4 3968
8bb78442 3969 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3970 local_irq_disable();
3971 __drain_pages(cpu);
f8891e5e 3972 vm_events_fold_cpu(cpu);
1da177e4 3973 local_irq_enable();
2244b95a 3974 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3975 }
3976 return NOTIFY_OK;
3977}
1da177e4
LT
3978
3979void __init page_alloc_init(void)
3980{
3981 hotcpu_notifier(page_alloc_cpu_notify, 0);
3982}
3983
cb45b0e9
HA
3984/*
3985 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3986 * or min_free_kbytes changes.
3987 */
3988static void calculate_totalreserve_pages(void)
3989{
3990 struct pglist_data *pgdat;
3991 unsigned long reserve_pages = 0;
2f6726e5 3992 enum zone_type i, j;
cb45b0e9
HA
3993
3994 for_each_online_pgdat(pgdat) {
3995 for (i = 0; i < MAX_NR_ZONES; i++) {
3996 struct zone *zone = pgdat->node_zones + i;
3997 unsigned long max = 0;
3998
3999 /* Find valid and maximum lowmem_reserve in the zone */
4000 for (j = i; j < MAX_NR_ZONES; j++) {
4001 if (zone->lowmem_reserve[j] > max)
4002 max = zone->lowmem_reserve[j];
4003 }
4004
4005 /* we treat pages_high as reserved pages. */
4006 max += zone->pages_high;
4007
4008 if (max > zone->present_pages)
4009 max = zone->present_pages;
4010 reserve_pages += max;
4011 }
4012 }
4013 totalreserve_pages = reserve_pages;
4014}
4015
1da177e4
LT
4016/*
4017 * setup_per_zone_lowmem_reserve - called whenever
4018 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4019 * has a correct pages reserved value, so an adequate number of
4020 * pages are left in the zone after a successful __alloc_pages().
4021 */
4022static void setup_per_zone_lowmem_reserve(void)
4023{
4024 struct pglist_data *pgdat;
2f6726e5 4025 enum zone_type j, idx;
1da177e4 4026
ec936fc5 4027 for_each_online_pgdat(pgdat) {
1da177e4
LT
4028 for (j = 0; j < MAX_NR_ZONES; j++) {
4029 struct zone *zone = pgdat->node_zones + j;
4030 unsigned long present_pages = zone->present_pages;
4031
4032 zone->lowmem_reserve[j] = 0;
4033
2f6726e5
CL
4034 idx = j;
4035 while (idx) {
1da177e4
LT
4036 struct zone *lower_zone;
4037
2f6726e5
CL
4038 idx--;
4039
1da177e4
LT
4040 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4041 sysctl_lowmem_reserve_ratio[idx] = 1;
4042
4043 lower_zone = pgdat->node_zones + idx;
4044 lower_zone->lowmem_reserve[j] = present_pages /
4045 sysctl_lowmem_reserve_ratio[idx];
4046 present_pages += lower_zone->present_pages;
4047 }
4048 }
4049 }
cb45b0e9
HA
4050
4051 /* update totalreserve_pages */
4052 calculate_totalreserve_pages();
1da177e4
LT
4053}
4054
88ca3b94
RD
4055/**
4056 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4057 *
4058 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4059 * with respect to min_free_kbytes.
1da177e4 4060 */
3947be19 4061void setup_per_zone_pages_min(void)
1da177e4
LT
4062{
4063 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4064 unsigned long lowmem_pages = 0;
4065 struct zone *zone;
4066 unsigned long flags;
4067
4068 /* Calculate total number of !ZONE_HIGHMEM pages */
4069 for_each_zone(zone) {
4070 if (!is_highmem(zone))
4071 lowmem_pages += zone->present_pages;
4072 }
4073
4074 for_each_zone(zone) {
ac924c60
AM
4075 u64 tmp;
4076
1da177e4 4077 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
4078 tmp = (u64)pages_min * zone->present_pages;
4079 do_div(tmp, lowmem_pages);
1da177e4
LT
4080 if (is_highmem(zone)) {
4081 /*
669ed175
NP
4082 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4083 * need highmem pages, so cap pages_min to a small
4084 * value here.
4085 *
4086 * The (pages_high-pages_low) and (pages_low-pages_min)
4087 * deltas controls asynch page reclaim, and so should
4088 * not be capped for highmem.
1da177e4
LT
4089 */
4090 int min_pages;
4091
4092 min_pages = zone->present_pages / 1024;
4093 if (min_pages < SWAP_CLUSTER_MAX)
4094 min_pages = SWAP_CLUSTER_MAX;
4095 if (min_pages > 128)
4096 min_pages = 128;
4097 zone->pages_min = min_pages;
4098 } else {
669ed175
NP
4099 /*
4100 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4101 * proportionate to the zone's size.
4102 */
669ed175 4103 zone->pages_min = tmp;
1da177e4
LT
4104 }
4105
ac924c60
AM
4106 zone->pages_low = zone->pages_min + (tmp >> 2);
4107 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4108 setup_zone_migrate_reserve(zone);
1da177e4
LT
4109 spin_unlock_irqrestore(&zone->lru_lock, flags);
4110 }
cb45b0e9
HA
4111
4112 /* update totalreserve_pages */
4113 calculate_totalreserve_pages();
1da177e4
LT
4114}
4115
4116/*
4117 * Initialise min_free_kbytes.
4118 *
4119 * For small machines we want it small (128k min). For large machines
4120 * we want it large (64MB max). But it is not linear, because network
4121 * bandwidth does not increase linearly with machine size. We use
4122 *
4123 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4124 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4125 *
4126 * which yields
4127 *
4128 * 16MB: 512k
4129 * 32MB: 724k
4130 * 64MB: 1024k
4131 * 128MB: 1448k
4132 * 256MB: 2048k
4133 * 512MB: 2896k
4134 * 1024MB: 4096k
4135 * 2048MB: 5792k
4136 * 4096MB: 8192k
4137 * 8192MB: 11584k
4138 * 16384MB: 16384k
4139 */
4140static int __init init_per_zone_pages_min(void)
4141{
4142 unsigned long lowmem_kbytes;
4143
4144 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4145
4146 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4147 if (min_free_kbytes < 128)
4148 min_free_kbytes = 128;
4149 if (min_free_kbytes > 65536)
4150 min_free_kbytes = 65536;
4151 setup_per_zone_pages_min();
4152 setup_per_zone_lowmem_reserve();
4153 return 0;
4154}
4155module_init(init_per_zone_pages_min)
4156
4157/*
4158 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4159 * that we can call two helper functions whenever min_free_kbytes
4160 * changes.
4161 */
4162int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4163 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4164{
4165 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4166 if (write)
4167 setup_per_zone_pages_min();
1da177e4
LT
4168 return 0;
4169}
4170
9614634f
CL
4171#ifdef CONFIG_NUMA
4172int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4173 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4174{
4175 struct zone *zone;
4176 int rc;
4177
4178 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4179 if (rc)
4180 return rc;
4181
4182 for_each_zone(zone)
8417bba4 4183 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4184 sysctl_min_unmapped_ratio) / 100;
4185 return 0;
4186}
0ff38490
CL
4187
4188int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4189 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4190{
4191 struct zone *zone;
4192 int rc;
4193
4194 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4195 if (rc)
4196 return rc;
4197
4198 for_each_zone(zone)
4199 zone->min_slab_pages = (zone->present_pages *
4200 sysctl_min_slab_ratio) / 100;
4201 return 0;
4202}
9614634f
CL
4203#endif
4204
1da177e4
LT
4205/*
4206 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4207 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4208 * whenever sysctl_lowmem_reserve_ratio changes.
4209 *
4210 * The reserve ratio obviously has absolutely no relation with the
4211 * pages_min watermarks. The lowmem reserve ratio can only make sense
4212 * if in function of the boot time zone sizes.
4213 */
4214int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4215 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4216{
4217 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4218 setup_per_zone_lowmem_reserve();
4219 return 0;
4220}
4221
8ad4b1fb
RS
4222/*
4223 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4224 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4225 * can have before it gets flushed back to buddy allocator.
4226 */
4227
4228int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4229 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4230{
4231 struct zone *zone;
4232 unsigned int cpu;
4233 int ret;
4234
4235 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4236 if (!write || (ret == -EINVAL))
4237 return ret;
4238 for_each_zone(zone) {
4239 for_each_online_cpu(cpu) {
4240 unsigned long high;
4241 high = zone->present_pages / percpu_pagelist_fraction;
4242 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4243 }
4244 }
4245 return 0;
4246}
4247
f034b5d4 4248int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4249
4250#ifdef CONFIG_NUMA
4251static int __init set_hashdist(char *str)
4252{
4253 if (!str)
4254 return 0;
4255 hashdist = simple_strtoul(str, &str, 0);
4256 return 1;
4257}
4258__setup("hashdist=", set_hashdist);
4259#endif
4260
4261/*
4262 * allocate a large system hash table from bootmem
4263 * - it is assumed that the hash table must contain an exact power-of-2
4264 * quantity of entries
4265 * - limit is the number of hash buckets, not the total allocation size
4266 */
4267void *__init alloc_large_system_hash(const char *tablename,
4268 unsigned long bucketsize,
4269 unsigned long numentries,
4270 int scale,
4271 int flags,
4272 unsigned int *_hash_shift,
4273 unsigned int *_hash_mask,
4274 unsigned long limit)
4275{
4276 unsigned long long max = limit;
4277 unsigned long log2qty, size;
4278 void *table = NULL;
4279
4280 /* allow the kernel cmdline to have a say */
4281 if (!numentries) {
4282 /* round applicable memory size up to nearest megabyte */
04903664 4283 numentries = nr_kernel_pages;
1da177e4
LT
4284 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4285 numentries >>= 20 - PAGE_SHIFT;
4286 numentries <<= 20 - PAGE_SHIFT;
4287
4288 /* limit to 1 bucket per 2^scale bytes of low memory */
4289 if (scale > PAGE_SHIFT)
4290 numentries >>= (scale - PAGE_SHIFT);
4291 else
4292 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4293
4294 /* Make sure we've got at least a 0-order allocation.. */
4295 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4296 numentries = PAGE_SIZE / bucketsize;
1da177e4 4297 }
6e692ed3 4298 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4299
4300 /* limit allocation size to 1/16 total memory by default */
4301 if (max == 0) {
4302 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4303 do_div(max, bucketsize);
4304 }
4305
4306 if (numentries > max)
4307 numentries = max;
4308
f0d1b0b3 4309 log2qty = ilog2(numentries);
1da177e4
LT
4310
4311 do {
4312 size = bucketsize << log2qty;
4313 if (flags & HASH_EARLY)
4314 table = alloc_bootmem(size);
4315 else if (hashdist)
4316 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4317 else {
4318 unsigned long order;
4319 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4320 ;
4321 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4322 /*
4323 * If bucketsize is not a power-of-two, we may free
4324 * some pages at the end of hash table.
4325 */
4326 if (table) {
4327 unsigned long alloc_end = (unsigned long)table +
4328 (PAGE_SIZE << order);
4329 unsigned long used = (unsigned long)table +
4330 PAGE_ALIGN(size);
4331 split_page(virt_to_page(table), order);
4332 while (used < alloc_end) {
4333 free_page(used);
4334 used += PAGE_SIZE;
4335 }
4336 }
1da177e4
LT
4337 }
4338 } while (!table && size > PAGE_SIZE && --log2qty);
4339
4340 if (!table)
4341 panic("Failed to allocate %s hash table\n", tablename);
4342
b49ad484 4343 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4344 tablename,
4345 (1U << log2qty),
f0d1b0b3 4346 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4347 size);
4348
4349 if (_hash_shift)
4350 *_hash_shift = log2qty;
4351 if (_hash_mask)
4352 *_hash_mask = (1 << log2qty) - 1;
4353
4354 return table;
4355}
a117e66e
KH
4356
4357#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4358struct page *pfn_to_page(unsigned long pfn)
4359{
67de6482 4360 return __pfn_to_page(pfn);
a117e66e
KH
4361}
4362unsigned long page_to_pfn(struct page *page)
4363{
67de6482 4364 return __page_to_pfn(page);
a117e66e 4365}
a117e66e
KH
4366EXPORT_SYMBOL(pfn_to_page);
4367EXPORT_SYMBOL(page_to_pfn);
4368#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4369
835c134e
MG
4370/* Return a pointer to the bitmap storing bits affecting a block of pages */
4371static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4372 unsigned long pfn)
4373{
4374#ifdef CONFIG_SPARSEMEM
4375 return __pfn_to_section(pfn)->pageblock_flags;
4376#else
4377 return zone->pageblock_flags;
4378#endif /* CONFIG_SPARSEMEM */
4379}
4380
4381static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4382{
4383#ifdef CONFIG_SPARSEMEM
4384 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4386#else
4387 pfn = pfn - zone->zone_start_pfn;
d9c23400 4388 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4389#endif /* CONFIG_SPARSEMEM */
4390}
4391
4392/**
d9c23400 4393 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4394 * @page: The page within the block of interest
4395 * @start_bitidx: The first bit of interest to retrieve
4396 * @end_bitidx: The last bit of interest
4397 * returns pageblock_bits flags
4398 */
4399unsigned long get_pageblock_flags_group(struct page *page,
4400 int start_bitidx, int end_bitidx)
4401{
4402 struct zone *zone;
4403 unsigned long *bitmap;
4404 unsigned long pfn, bitidx;
4405 unsigned long flags = 0;
4406 unsigned long value = 1;
4407
4408 zone = page_zone(page);
4409 pfn = page_to_pfn(page);
4410 bitmap = get_pageblock_bitmap(zone, pfn);
4411 bitidx = pfn_to_bitidx(zone, pfn);
4412
4413 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4414 if (test_bit(bitidx + start_bitidx, bitmap))
4415 flags |= value;
6220ec78 4416
835c134e
MG
4417 return flags;
4418}
4419
4420/**
d9c23400 4421 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4422 * @page: The page within the block of interest
4423 * @start_bitidx: The first bit of interest
4424 * @end_bitidx: The last bit of interest
4425 * @flags: The flags to set
4426 */
4427void set_pageblock_flags_group(struct page *page, unsigned long flags,
4428 int start_bitidx, int end_bitidx)
4429{
4430 struct zone *zone;
4431 unsigned long *bitmap;
4432 unsigned long pfn, bitidx;
4433 unsigned long value = 1;
4434
4435 zone = page_zone(page);
4436 pfn = page_to_pfn(page);
4437 bitmap = get_pageblock_bitmap(zone, pfn);
4438 bitidx = pfn_to_bitidx(zone, pfn);
4439
4440 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4441 if (flags & value)
4442 __set_bit(bitidx + start_bitidx, bitmap);
4443 else
4444 __clear_bit(bitidx + start_bitidx, bitmap);
4445}