page allocator: calculate the migratetype for allocation only once
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
49255c61
MG
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
b2a0ac88
MG
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177}
178
13e7444b 179#ifdef CONFIG_DEBUG_VM
c6a57e19 180static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 181{
bdc8cb98
DH
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
c6a57e19 185
bdc8cb98
DH
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
c6a57e19
DH
195}
196
197static int page_is_consistent(struct zone *zone, struct page *page)
198{
14e07298 199 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 200 return 0;
1da177e4 201 if (zone != page_zone(page))
c6a57e19
DH
202 return 0;
203
204 return 1;
205}
206/*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209static int bad_range(struct zone *zone, struct page *page)
210{
211 if (page_outside_zone_boundaries(zone, page))
1da177e4 212 return 1;
c6a57e19
DH
213 if (!page_is_consistent(zone, page))
214 return 1;
215
1da177e4
LT
216 return 0;
217}
13e7444b
NP
218#else
219static inline int bad_range(struct zone *zone, struct page *page)
220{
221 return 0;
222}
223#endif
224
224abf92 225static void bad_page(struct page *page)
1da177e4 226{
d936cf9b
HD
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
1e9e6365
HD
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
1e9e6365 251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 252 current->comm, page_to_pfn(page));
1e9e6365 253 printk(KERN_ALERT
3dc14741
HD
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
3dc14741 257
1da177e4 258 dump_stack();
d936cf9b 259out:
8cc3b392
HD
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
9f158333 262 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
41d78ba5
HD
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
1da177e4 278 */
d98c7a09
HD
279
280static void free_compound_page(struct page *page)
281{
d85f3385 282 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
283}
284
01ad1c08 285void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
286{
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
303{
304 int i;
305 int nr_pages = 1 << order;
6babc32c 306 struct page *p = page + 1;
1da177e4 307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
18229df5 311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 312 __SetPageTail(p);
d85f3385 313 p->first_page = page;
1da177e4
LT
314 }
315}
18229df5 316#endif
1da177e4 317
8cc3b392 318static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
319{
320 int i;
321 int nr_pages = 1 << order;
8cc3b392 322 int bad = 0;
1da177e4 323
8cc3b392
HD
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
224abf92 326 bad_page(page);
8cc3b392
HD
327 bad++;
328 }
1da177e4 329
6d777953 330 __ClearPageHead(page);
8cc3b392 331
18229df5
AW
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
1da177e4 334
e713a21d 335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 336 bad_page(page);
8cc3b392
HD
337 bad++;
338 }
d85f3385 339 __ClearPageTail(p);
1da177e4 340 }
8cc3b392
HD
341
342 return bad;
1da177e4 343}
1da177e4 344
17cf4406
NP
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347 int i;
348
6626c5d5
AM
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
725d704e 353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356}
357
6aa3001b
AM
358static inline void set_page_order(struct page *page, int order)
359{
4c21e2f2 360 set_page_private(page, order);
676165a8 361 __SetPageBuddy(page);
1da177e4
LT
362}
363
364static inline void rmv_page_order(struct page *page)
365{
676165a8 366 __ClearPageBuddy(page);
4c21e2f2 367 set_page_private(page, 0);
1da177e4
LT
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
d6e05edc 385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398 return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
13e7444b 404 * (a) the buddy is not in a hole &&
676165a8 405 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
676165a8
NP
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 411 *
676165a8 412 * For recording page's order, we use page_private(page).
1da177e4 413 */
cb2b95e1
AW
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
1da177e4 416{
14e07298 417 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 418 return 0;
13e7444b 419
cb2b95e1
AW
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
6aa3001b 425 return 1;
676165a8 426 }
6aa3001b 427 return 0;
1da177e4
LT
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
676165a8 443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 444 * order is recorded in page_private(page) field.
1da177e4
LT
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
48db57f8 454static inline void __free_one_page(struct page *page,
1da177e4
LT
455 struct zone *zone, unsigned int order)
456{
457 unsigned long page_idx;
458 int order_size = 1 << order;
b2a0ac88 459 int migratetype = get_pageblock_migratetype(page);
1da177e4 460
224abf92 461 if (unlikely(PageCompound(page)))
8cc3b392
HD
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
1da177e4
LT
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
725d704e
NP
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
1da177e4 469
d23ad423 470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
1da177e4
LT
473 struct page *buddy;
474
1da177e4 475 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 476 if (!page_is_buddy(page, buddy, order))
3c82d0ce 477 break;
13e7444b 478
3c82d0ce 479 /* Our buddy is free, merge with it and move up one order. */
1da177e4 480 list_del(&buddy->lru);
b2a0ac88 481 zone->free_area[order].nr_free--;
1da177e4 482 rmv_page_order(buddy);
13e7444b 483 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
b2a0ac88
MG
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
491 zone->free_area[order].nr_free++;
492}
493
224abf92 494static inline int free_pages_check(struct page *page)
1da177e4 495{
985737cf 496 free_page_mlock(page);
92be2e33
NP
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
8cc3b392 500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 501 bad_page(page);
79f4b7bf 502 return 1;
8cc3b392 503 }
79f4b7bf
HD
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
1da177e4
LT
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
207f36ee 512 * count is the number of pages to free.
1da177e4
LT
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
48db57f8
NP
520static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
1da177e4 522{
c54ad30c 523 spin_lock(&zone->lock);
e815af95 524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 525 zone->pages_scanned = 0;
48db57f8
NP
526 while (count--) {
527 struct page *page;
528
725d704e 529 VM_BUG_ON(list_empty(list));
1da177e4 530 page = list_entry(list->prev, struct page, lru);
48db57f8 531 /* have to delete it as __free_one_page list manipulates */
1da177e4 532 list_del(&page->lru);
48db57f8 533 __free_one_page(page, zone, order);
1da177e4 534 }
c54ad30c 535 spin_unlock(&zone->lock);
1da177e4
LT
536}
537
48db57f8 538static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 539{
006d22d9 540 spin_lock(&zone->lock);
e815af95 541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 542 zone->pages_scanned = 0;
0798e519 543 __free_one_page(page, zone, order);
006d22d9 544 spin_unlock(&zone->lock);
48db57f8
NP
545}
546
547static void __free_pages_ok(struct page *page, unsigned int order)
548{
549 unsigned long flags;
1da177e4 550 int i;
8cc3b392 551 int bad = 0;
1da177e4 552
1da177e4 553 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
554 bad += free_pages_check(page + i);
555 if (bad)
689bcebf
HD
556 return;
557
3ac7fe5a 558 if (!PageHighMem(page)) {
9858db50 559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
dafb1367 563 arch_free_page(page, order);
48db57f8 564 kernel_map_pages(page, 1 << order, 0);
dafb1367 565
c54ad30c 566 local_irq_save(flags);
f8891e5e 567 __count_vm_events(PGFREE, 1 << order);
48db57f8 568 free_one_page(page_zone(page), page, order);
c54ad30c 569 local_irq_restore(flags);
1da177e4
LT
570}
571
a226f6c8
DH
572/*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
af370fb8 575void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
576{
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
7835e98b 580 set_page_refcounted(page);
545b1ea9 581 __free_page(page);
a226f6c8 582 } else {
a226f6c8
DH
583 int loop;
584
545b1ea9 585 prefetchw(page);
a226f6c8
DH
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
545b1ea9
NP
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
a226f6c8
DH
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
7835e98b 595 set_page_refcounted(page);
545b1ea9 596 __free_pages(page, order);
a226f6c8
DH
597 }
598}
599
1da177e4
LT
600
601/*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
085cc7d5 615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
616 int low, int high, struct free_area *area,
617 int migratetype)
1da177e4
LT
618{
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
725d704e 625 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 626 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
1da177e4
LT
630}
631
1da177e4
LT
632/*
633 * This page is about to be returned from the page allocator
634 */
17cf4406 635static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 636{
92be2e33
NP
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
8cc3b392 640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 641 bad_page(page);
689bcebf 642 return 1;
8cc3b392 643 }
689bcebf 644
4c21e2f2 645 set_page_private(page, 0);
7835e98b 646 set_page_refcounted(page);
cc102509
NP
647
648 arch_alloc_page(page, order);
1da177e4 649 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
689bcebf 657 return 0;
1da177e4
LT
658}
659
56fd56b8
MG
660/*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
664static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 int migratetype)
666{
667 unsigned int current_order;
668 struct free_area * area;
669 struct page *page;
670
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 area = &(zone->free_area[current_order]);
674 if (list_empty(&area->free_list[migratetype]))
675 continue;
676
677 page = list_entry(area->free_list[migratetype].next,
678 struct page, lru);
679 list_del(&page->lru);
680 rmv_page_order(page);
681 area->nr_free--;
682 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 expand(zone, page, order, current_order, area, migratetype);
684 return page;
685 }
686
687 return NULL;
688}
689
690
b2a0ac88
MG
691/*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
700};
701
c361be55
MG
702/*
703 * Move the free pages in a range to the free lists of the requested type.
d9c23400 704 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
705 * boundary. If alignment is required, use move_freepages_block()
706 */
b69a7288
AB
707static int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
c361be55
MG
710{
711 struct page *page;
712 unsigned long order;
d100313f 713 int pages_moved = 0;
c361be55
MG
714
715#ifndef CONFIG_HOLES_IN_ZONE
716 /*
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
ac0e5b7a 721 * grouping pages by mobility
c361be55
MG
722 */
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724#endif
725
726 for (page = start_page; page <= end_page;) {
344c790e
AL
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729
c361be55
MG
730 if (!pfn_valid_within(page_to_pfn(page))) {
731 page++;
732 continue;
733 }
734
735 if (!PageBuddy(page)) {
736 page++;
737 continue;
738 }
739
740 order = page_order(page);
741 list_del(&page->lru);
742 list_add(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 page += 1 << order;
d100313f 745 pages_moved += 1 << order;
c361be55
MG
746 }
747
d100313f 748 return pages_moved;
c361be55
MG
749}
750
b69a7288
AB
751static int move_freepages_block(struct zone *zone, struct page *page,
752 int migratetype)
c361be55
MG
753{
754 unsigned long start_pfn, end_pfn;
755 struct page *start_page, *end_page;
756
757 start_pfn = page_to_pfn(page);
d9c23400 758 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 759 start_page = pfn_to_page(start_pfn);
d9c23400
MG
760 end_page = start_page + pageblock_nr_pages - 1;
761 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
762
763 /* Do not cross zone boundaries */
764 if (start_pfn < zone->zone_start_pfn)
765 start_page = page;
766 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 return 0;
768
769 return move_freepages(zone, start_page, end_page, migratetype);
770}
771
b2a0ac88
MG
772/* Remove an element from the buddy allocator from the fallback list */
773static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 int start_migratetype)
775{
776 struct free_area * area;
777 int current_order;
778 struct page *page;
779 int migratetype, i;
780
781 /* Find the largest possible block of pages in the other list */
782 for (current_order = MAX_ORDER-1; current_order >= order;
783 --current_order) {
784 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 migratetype = fallbacks[start_migratetype][i];
786
56fd56b8
MG
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype == MIGRATE_RESERVE)
789 continue;
e010487d 790
b2a0ac88
MG
791 area = &(zone->free_area[current_order]);
792 if (list_empty(&area->free_list[migratetype]))
793 continue;
794
795 page = list_entry(area->free_list[migratetype].next,
796 struct page, lru);
797 area->nr_free--;
798
799 /*
c361be55 800 * If breaking a large block of pages, move all free
46dafbca
MG
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
b2a0ac88 804 */
d9c23400 805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
806 start_migratetype == MIGRATE_RECLAIMABLE) {
807 unsigned long pages;
808 pages = move_freepages_block(zone, page,
809 start_migratetype);
810
811 /* Claim the whole block if over half of it is free */
d9c23400 812 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
813 set_pageblock_migratetype(page,
814 start_migratetype);
815
b2a0ac88 816 migratetype = start_migratetype;
c361be55 817 }
b2a0ac88
MG
818
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
823 -(1UL << order));
824
d9c23400 825 if (current_order == pageblock_order)
b2a0ac88
MG
826 set_pageblock_migratetype(page,
827 start_migratetype);
828
829 expand(zone, page, order, current_order, area, migratetype);
830 return page;
831 }
832 }
833
56fd56b8
MG
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
836}
837
56fd56b8 838/*
1da177e4
LT
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
b2a0ac88
MG
842static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
1da177e4 844{
1da177e4
LT
845 struct page *page;
846
56fd56b8 847 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 848
56fd56b8
MG
849 if (unlikely(!page))
850 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
851
852 return page;
1da177e4
LT
853}
854
855/*
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
859 */
860static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
861 unsigned long count, struct list_head *list,
862 int migratetype)
1da177e4 863{
1da177e4 864 int i;
1da177e4 865
c54ad30c 866 spin_lock(&zone->lock);
1da177e4 867 for (i = 0; i < count; ++i) {
b2a0ac88 868 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 869 if (unlikely(page == NULL))
1da177e4 870 break;
81eabcbe
MG
871
872 /*
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
879 * properly.
880 */
535131e6
MG
881 list_add(&page->lru, list);
882 set_page_private(page, migratetype);
81eabcbe 883 list = &page->lru;
1da177e4 884 }
c54ad30c 885 spin_unlock(&zone->lock);
085cc7d5 886 return i;
1da177e4
LT
887}
888
4ae7c039 889#ifdef CONFIG_NUMA
8fce4d8e 890/*
4037d452
CL
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
894 *
879336c3
CL
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
8fce4d8e 897 */
4037d452 898void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 899{
4ae7c039 900 unsigned long flags;
4037d452 901 int to_drain;
4ae7c039 902
4037d452
CL
903 local_irq_save(flags);
904 if (pcp->count >= pcp->batch)
905 to_drain = pcp->batch;
906 else
907 to_drain = pcp->count;
908 free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 pcp->count -= to_drain;
910 local_irq_restore(flags);
4ae7c039
CL
911}
912#endif
913
9f8f2172
CL
914/*
915 * Drain pages of the indicated processor.
916 *
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
920 */
921static void drain_pages(unsigned int cpu)
1da177e4 922{
c54ad30c 923 unsigned long flags;
1da177e4 924 struct zone *zone;
1da177e4 925
ee99c71c 926 for_each_populated_zone(zone) {
1da177e4 927 struct per_cpu_pageset *pset;
3dfa5721 928 struct per_cpu_pages *pcp;
1da177e4 929
e7c8d5c9 930 pset = zone_pcp(zone, cpu);
3dfa5721
CL
931
932 pcp = &pset->pcp;
933 local_irq_save(flags);
934 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
935 pcp->count = 0;
936 local_irq_restore(flags);
1da177e4
LT
937 }
938}
1da177e4 939
9f8f2172
CL
940/*
941 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
942 */
943void drain_local_pages(void *arg)
944{
945 drain_pages(smp_processor_id());
946}
947
948/*
949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
950 */
951void drain_all_pages(void)
952{
15c8b6c1 953 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
954}
955
296699de 956#ifdef CONFIG_HIBERNATION
1da177e4
LT
957
958void mark_free_pages(struct zone *zone)
959{
f623f0db
RW
960 unsigned long pfn, max_zone_pfn;
961 unsigned long flags;
b2a0ac88 962 int order, t;
1da177e4
LT
963 struct list_head *curr;
964
965 if (!zone->spanned_pages)
966 return;
967
968 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
969
970 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
971 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
972 if (pfn_valid(pfn)) {
973 struct page *page = pfn_to_page(pfn);
974
7be98234
RW
975 if (!swsusp_page_is_forbidden(page))
976 swsusp_unset_page_free(page);
f623f0db 977 }
1da177e4 978
b2a0ac88
MG
979 for_each_migratetype_order(order, t) {
980 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 981 unsigned long i;
1da177e4 982
f623f0db
RW
983 pfn = page_to_pfn(list_entry(curr, struct page, lru));
984 for (i = 0; i < (1UL << order); i++)
7be98234 985 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 986 }
b2a0ac88 987 }
1da177e4
LT
988 spin_unlock_irqrestore(&zone->lock, flags);
989}
e2c55dc8 990#endif /* CONFIG_PM */
1da177e4 991
1da177e4
LT
992/*
993 * Free a 0-order page
994 */
920c7a5d 995static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
996{
997 struct zone *zone = page_zone(page);
998 struct per_cpu_pages *pcp;
999 unsigned long flags;
1000
1da177e4
LT
1001 if (PageAnon(page))
1002 page->mapping = NULL;
224abf92 1003 if (free_pages_check(page))
689bcebf
HD
1004 return;
1005
3ac7fe5a 1006 if (!PageHighMem(page)) {
9858db50 1007 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1008 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1009 }
dafb1367 1010 arch_free_page(page, 0);
689bcebf
HD
1011 kernel_map_pages(page, 1, 0);
1012
3dfa5721 1013 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1014 local_irq_save(flags);
f8891e5e 1015 __count_vm_event(PGFREE);
3dfa5721
CL
1016 if (cold)
1017 list_add_tail(&page->lru, &pcp->list);
1018 else
1019 list_add(&page->lru, &pcp->list);
535131e6 1020 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1021 pcp->count++;
48db57f8
NP
1022 if (pcp->count >= pcp->high) {
1023 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1024 pcp->count -= pcp->batch;
1025 }
1da177e4
LT
1026 local_irq_restore(flags);
1027 put_cpu();
1028}
1029
920c7a5d 1030void free_hot_page(struct page *page)
1da177e4
LT
1031{
1032 free_hot_cold_page(page, 0);
1033}
1034
920c7a5d 1035void free_cold_page(struct page *page)
1da177e4
LT
1036{
1037 free_hot_cold_page(page, 1);
1038}
1039
8dfcc9ba
NP
1040/*
1041 * split_page takes a non-compound higher-order page, and splits it into
1042 * n (1<<order) sub-pages: page[0..n]
1043 * Each sub-page must be freed individually.
1044 *
1045 * Note: this is probably too low level an operation for use in drivers.
1046 * Please consult with lkml before using this in your driver.
1047 */
1048void split_page(struct page *page, unsigned int order)
1049{
1050 int i;
1051
725d704e
NP
1052 VM_BUG_ON(PageCompound(page));
1053 VM_BUG_ON(!page_count(page));
7835e98b
NP
1054 for (i = 1; i < (1 << order); i++)
1055 set_page_refcounted(page + i);
8dfcc9ba 1056}
8dfcc9ba 1057
1da177e4
LT
1058/*
1059 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1060 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 * or two.
1062 */
18ea7e71 1063static struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1064 struct zone *zone, int order, gfp_t gfp_flags,
1065 int migratetype)
1da177e4
LT
1066{
1067 unsigned long flags;
689bcebf 1068 struct page *page;
1da177e4 1069 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1070 int cpu;
1da177e4 1071
689bcebf 1072again:
a74609fa 1073 cpu = get_cpu();
48db57f8 1074 if (likely(order == 0)) {
1da177e4
LT
1075 struct per_cpu_pages *pcp;
1076
3dfa5721 1077 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1078 local_irq_save(flags);
a74609fa 1079 if (!pcp->count) {
941c7105 1080 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1081 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1082 if (unlikely(!pcp->count))
1083 goto failed;
1da177e4 1084 }
b92a6edd 1085
535131e6 1086 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1087 if (cold) {
1088 list_for_each_entry_reverse(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 } else {
1092 list_for_each_entry(page, &pcp->list, lru)
1093 if (page_private(page) == migratetype)
1094 break;
1095 }
535131e6 1096
b92a6edd
MG
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1099 pcp->count += rmqueue_bulk(zone, 0,
1100 pcp->batch, &pcp->list, migratetype);
1101 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1102 }
b92a6edd
MG
1103
1104 list_del(&page->lru);
1105 pcp->count--;
7fb1d9fc 1106 } else {
1da177e4 1107 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1108 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1109 spin_unlock(&zone->lock);
1110 if (!page)
1111 goto failed;
1da177e4
LT
1112 }
1113
f8891e5e 1114 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1115 zone_statistics(preferred_zone, zone);
a74609fa
NP
1116 local_irq_restore(flags);
1117 put_cpu();
1da177e4 1118
725d704e 1119 VM_BUG_ON(bad_range(zone, page));
17cf4406 1120 if (prep_new_page(page, order, gfp_flags))
a74609fa 1121 goto again;
1da177e4 1122 return page;
a74609fa
NP
1123
1124failed:
1125 local_irq_restore(flags);
1126 put_cpu();
1127 return NULL;
1da177e4
LT
1128}
1129
7fb1d9fc 1130#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1131#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134#define ALLOC_HARDER 0x10 /* try to alloc harder */
1135#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1137
933e312e
AM
1138#ifdef CONFIG_FAIL_PAGE_ALLOC
1139
1140static struct fail_page_alloc_attr {
1141 struct fault_attr attr;
1142
1143 u32 ignore_gfp_highmem;
1144 u32 ignore_gfp_wait;
54114994 1145 u32 min_order;
933e312e
AM
1146
1147#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1148
1149 struct dentry *ignore_gfp_highmem_file;
1150 struct dentry *ignore_gfp_wait_file;
54114994 1151 struct dentry *min_order_file;
933e312e
AM
1152
1153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1154
1155} fail_page_alloc = {
1156 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1157 .ignore_gfp_wait = 1,
1158 .ignore_gfp_highmem = 1,
54114994 1159 .min_order = 1,
933e312e
AM
1160};
1161
1162static int __init setup_fail_page_alloc(char *str)
1163{
1164 return setup_fault_attr(&fail_page_alloc.attr, str);
1165}
1166__setup("fail_page_alloc=", setup_fail_page_alloc);
1167
1168static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1169{
54114994
AM
1170 if (order < fail_page_alloc.min_order)
1171 return 0;
933e312e
AM
1172 if (gfp_mask & __GFP_NOFAIL)
1173 return 0;
1174 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1177 return 0;
1178
1179 return should_fail(&fail_page_alloc.attr, 1 << order);
1180}
1181
1182#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1183
1184static int __init fail_page_alloc_debugfs(void)
1185{
1186 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1187 struct dentry *dir;
1188 int err;
1189
1190 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1191 "fail_page_alloc");
1192 if (err)
1193 return err;
1194 dir = fail_page_alloc.attr.dentries.dir;
1195
1196 fail_page_alloc.ignore_gfp_wait_file =
1197 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1198 &fail_page_alloc.ignore_gfp_wait);
1199
1200 fail_page_alloc.ignore_gfp_highmem_file =
1201 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1202 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1203 fail_page_alloc.min_order_file =
1204 debugfs_create_u32("min-order", mode, dir,
1205 &fail_page_alloc.min_order);
933e312e
AM
1206
1207 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1208 !fail_page_alloc.ignore_gfp_highmem_file ||
1209 !fail_page_alloc.min_order_file) {
933e312e
AM
1210 err = -ENOMEM;
1211 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1212 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1213 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1214 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1215 }
1216
1217 return err;
1218}
1219
1220late_initcall(fail_page_alloc_debugfs);
1221
1222#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1223
1224#else /* CONFIG_FAIL_PAGE_ALLOC */
1225
1226static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1227{
1228 return 0;
1229}
1230
1231#endif /* CONFIG_FAIL_PAGE_ALLOC */
1232
1da177e4
LT
1233/*
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1236 */
1237int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1238 int classzone_idx, int alloc_flags)
1da177e4
LT
1239{
1240 /* free_pages my go negative - that's OK */
d23ad423
CL
1241 long min = mark;
1242 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1243 int o;
1244
7fb1d9fc 1245 if (alloc_flags & ALLOC_HIGH)
1da177e4 1246 min -= min / 2;
7fb1d9fc 1247 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1248 min -= min / 4;
1249
1250 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1251 return 0;
1252 for (o = 0; o < order; o++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages -= z->free_area[o].nr_free << o;
1255
1256 /* Require fewer higher order pages to be free */
1257 min >>= 1;
1258
1259 if (free_pages <= min)
1260 return 0;
1261 }
1262 return 1;
1263}
1264
9276b1bc
PJ
1265#ifdef CONFIG_NUMA
1266/*
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1271 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1272 *
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
37b07e41 1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1276 *
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1279 *
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1282 *
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1287 */
1288static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1289{
1290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1291 nodemask_t *allowednodes; /* zonelist_cache approximation */
1292
1293 zlc = zonelist->zlcache_ptr;
1294 if (!zlc)
1295 return NULL;
1296
f05111f5 1297 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1298 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1299 zlc->last_full_zap = jiffies;
1300 }
1301
1302 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1303 &cpuset_current_mems_allowed :
37b07e41 1304 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1305 return allowednodes;
1306}
1307
1308/*
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1317 *
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1324 *
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1329 */
dd1a239f 1330static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1331 nodemask_t *allowednodes)
1332{
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335 int n; /* node that zone *z is on */
1336
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return 1;
1340
dd1a239f 1341 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1342 n = zlc->z_to_n[i];
1343
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1346}
1347
1348/*
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1352 */
dd1a239f 1353static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1354{
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 int i; /* index of *z in zonelist zones */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return;
1361
dd1a239f 1362 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1363
1364 set_bit(i, zlc->fullzones);
1365}
1366
1367#else /* CONFIG_NUMA */
1368
1369static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1370{
1371 return NULL;
1372}
1373
dd1a239f 1374static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1375 nodemask_t *allowednodes)
1376{
1377 return 1;
1378}
1379
dd1a239f 1380static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1381{
1382}
1383#endif /* CONFIG_NUMA */
1384
7fb1d9fc 1385/*
0798e519 1386 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1387 * a page.
1388 */
1389static struct page *
19770b32 1390get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1391 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1392 struct zone *preferred_zone, int migratetype)
753ee728 1393{
dd1a239f 1394 struct zoneref *z;
7fb1d9fc 1395 struct page *page = NULL;
54a6eb5c 1396 int classzone_idx;
5117f45d 1397 struct zone *zone;
9276b1bc
PJ
1398 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1399 int zlc_active = 0; /* set if using zonelist_cache */
1400 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1401
b3c466ce
MG
1402 if (WARN_ON_ONCE(order >= MAX_ORDER))
1403 return NULL;
1404
5117f45d 1405 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1406zonelist_scan:
7fb1d9fc 1407 /*
9276b1bc 1408 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1409 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1410 */
19770b32
MG
1411 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1412 high_zoneidx, nodemask) {
9276b1bc
PJ
1413 if (NUMA_BUILD && zlc_active &&
1414 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1415 continue;
7fb1d9fc 1416 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1417 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1418 goto try_next_zone;
7fb1d9fc
RS
1419
1420 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1421 unsigned long mark;
1422 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1423 mark = zone->pages_min;
3148890b 1424 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1425 mark = zone->pages_low;
3148890b 1426 else
1192d526 1427 mark = zone->pages_high;
0798e519
PJ
1428 if (!zone_watermark_ok(zone, order, mark,
1429 classzone_idx, alloc_flags)) {
9eeff239 1430 if (!zone_reclaim_mode ||
1192d526 1431 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1432 goto this_zone_full;
0798e519 1433 }
7fb1d9fc
RS
1434 }
1435
3dd28266
MG
1436 page = buffered_rmqueue(preferred_zone, zone, order,
1437 gfp_mask, migratetype);
0798e519 1438 if (page)
7fb1d9fc 1439 break;
9276b1bc
PJ
1440this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1449 }
54a6eb5c 1450 }
9276b1bc
PJ
1451
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1456 }
7fb1d9fc 1457 return page;
753ee728
MH
1458}
1459
11e33f6a
MG
1460static inline int
1461should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1462 unsigned long pages_reclaimed)
1da177e4 1463{
11e33f6a
MG
1464 /* Do not loop if specifically requested */
1465 if (gfp_mask & __GFP_NORETRY)
1466 return 0;
1da177e4 1467
11e33f6a
MG
1468 /*
1469 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1470 * means __GFP_NOFAIL, but that may not be true in other
1471 * implementations.
1472 */
1473 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1474 return 1;
1475
1476 /*
1477 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1478 * specified, then we retry until we no longer reclaim any pages
1479 * (above), or we've reclaimed an order of pages at least as
1480 * large as the allocation's order. In both cases, if the
1481 * allocation still fails, we stop retrying.
1482 */
1483 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1484 return 1;
cf40bd16 1485
11e33f6a
MG
1486 /*
1487 * Don't let big-order allocations loop unless the caller
1488 * explicitly requests that.
1489 */
1490 if (gfp_mask & __GFP_NOFAIL)
1491 return 1;
1da177e4 1492
11e33f6a
MG
1493 return 0;
1494}
933e312e 1495
11e33f6a
MG
1496static inline struct page *
1497__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1498 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1499 nodemask_t *nodemask, struct zone *preferred_zone,
1500 int migratetype)
11e33f6a
MG
1501{
1502 struct page *page;
1503
1504 /* Acquire the OOM killer lock for the zones in zonelist */
1505 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1506 schedule_timeout_uninterruptible(1);
1da177e4
LT
1507 return NULL;
1508 }
6b1de916 1509
11e33f6a
MG
1510 /*
1511 * Go through the zonelist yet one more time, keep very high watermark
1512 * here, this is only to catch a parallel oom killing, we must fail if
1513 * we're still under heavy pressure.
1514 */
1515 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1516 order, zonelist, high_zoneidx,
5117f45d 1517 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1518 preferred_zone, migratetype);
7fb1d9fc 1519 if (page)
11e33f6a
MG
1520 goto out;
1521
1522 /* The OOM killer will not help higher order allocs */
1523 if (order > PAGE_ALLOC_COSTLY_ORDER)
1524 goto out;
1525
1526 /* Exhausted what can be done so it's blamo time */
1527 out_of_memory(zonelist, gfp_mask, order);
1528
1529out:
1530 clear_zonelist_oom(zonelist, gfp_mask);
1531 return page;
1532}
1533
1534/* The really slow allocator path where we enter direct reclaim */
1535static inline struct page *
1536__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1537 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1538 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1539 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1540{
1541 struct page *page = NULL;
1542 struct reclaim_state reclaim_state;
1543 struct task_struct *p = current;
1544
1545 cond_resched();
1546
1547 /* We now go into synchronous reclaim */
1548 cpuset_memory_pressure_bump();
1549
1550 /*
1551 * The task's cpuset might have expanded its set of allowable nodes
1552 */
1553 p->flags |= PF_MEMALLOC;
1554 lockdep_set_current_reclaim_state(gfp_mask);
1555 reclaim_state.reclaimed_slab = 0;
1556 p->reclaim_state = &reclaim_state;
1557
1558 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1559
1560 p->reclaim_state = NULL;
1561 lockdep_clear_current_reclaim_state();
1562 p->flags &= ~PF_MEMALLOC;
1563
1564 cond_resched();
1565
1566 if (order != 0)
1567 drain_all_pages();
1568
1569 if (likely(*did_some_progress))
1570 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1571 zonelist, high_zoneidx,
3dd28266
MG
1572 alloc_flags, preferred_zone,
1573 migratetype);
11e33f6a
MG
1574 return page;
1575}
1576
1577static inline int
1578is_allocation_high_priority(struct task_struct *p, gfp_t gfp_mask)
1579{
1580 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1581 && !in_interrupt())
1582 return 1;
1583 return 0;
1584}
1585
1586/*
1587 * This is called in the allocator slow-path if the allocation request is of
1588 * sufficient urgency to ignore watermarks and take other desperate measures
1589 */
1590static inline struct page *
1591__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1592 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1593 nodemask_t *nodemask, struct zone *preferred_zone,
1594 int migratetype)
11e33f6a
MG
1595{
1596 struct page *page;
1597
1598 do {
1599 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1600 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1601 preferred_zone, migratetype);
11e33f6a
MG
1602
1603 if (!page && gfp_mask & __GFP_NOFAIL)
1604 congestion_wait(WRITE, HZ/50);
1605 } while (!page && (gfp_mask & __GFP_NOFAIL));
1606
1607 return page;
1608}
1609
1610static inline
1611void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1612 enum zone_type high_zoneidx)
1613{
1614 struct zoneref *z;
1615 struct zone *zone;
1616
1617 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1618 wakeup_kswapd(zone, order);
1619}
1620
1621static inline struct page *
1622__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1623 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1624 nodemask_t *nodemask, struct zone *preferred_zone,
1625 int migratetype)
11e33f6a
MG
1626{
1627 const gfp_t wait = gfp_mask & __GFP_WAIT;
1628 struct page *page = NULL;
1629 int alloc_flags;
1630 unsigned long pages_reclaimed = 0;
1631 unsigned long did_some_progress;
1632 struct task_struct *p = current;
1da177e4 1633
952f3b51
CL
1634 /*
1635 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1636 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1637 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1638 * using a larger set of nodes after it has established that the
1639 * allowed per node queues are empty and that nodes are
1640 * over allocated.
1641 */
1642 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1643 goto nopage;
1644
11e33f6a 1645 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1646
9bf2229f 1647 /*
7fb1d9fc
RS
1648 * OK, we're below the kswapd watermark and have kicked background
1649 * reclaim. Now things get more complex, so set up alloc_flags according
1650 * to how we want to proceed.
1651 *
1652 * The caller may dip into page reserves a bit more if the caller
1653 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1654 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1655 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1656 */
3148890b 1657 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1658 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1659 alloc_flags |= ALLOC_HARDER;
1660 if (gfp_mask & __GFP_HIGH)
1661 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1662 if (wait)
1663 alloc_flags |= ALLOC_CPUSET;
1da177e4 1664
11e33f6a 1665restart:
1da177e4
LT
1666 /*
1667 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1668 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1669 *
1670 * This is the last chance, in general, before the goto nopage.
1671 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1672 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1673 */
19770b32 1674 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
5117f45d 1675 high_zoneidx, alloc_flags,
3dd28266
MG
1676 preferred_zone,
1677 migratetype);
7fb1d9fc
RS
1678 if (page)
1679 goto got_pg;
1da177e4 1680
b43a57bb 1681rebalance:
11e33f6a
MG
1682 /* Allocate without watermarks if the context allows */
1683 if (is_allocation_high_priority(p, gfp_mask)) {
1684 /* Do not dip into emergency reserves if specified */
b84a35be 1685 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
11e33f6a 1686 page = __alloc_pages_high_priority(gfp_mask, order,
3dd28266
MG
1687 zonelist, high_zoneidx, nodemask, preferred_zone,
1688 migratetype);
7fb1d9fc
RS
1689 if (page)
1690 goto got_pg;
1da177e4 1691 }
11e33f6a
MG
1692
1693 /* Ensure no recursion into the allocator */
1da177e4
LT
1694 goto nopage;
1695 }
1696
1697 /* Atomic allocations - we can't balance anything */
1698 if (!wait)
1699 goto nopage;
1700
11e33f6a
MG
1701 /* Try direct reclaim and then allocating */
1702 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1703 zonelist, high_zoneidx,
1704 nodemask,
5117f45d 1705 alloc_flags, preferred_zone,
3dd28266 1706 migratetype, &did_some_progress);
11e33f6a
MG
1707 if (page)
1708 goto got_pg;
1da177e4 1709
11e33f6a
MG
1710 /*
1711 * If we failed to make any progress reclaiming, then we are
1712 * running out of options and have to consider going OOM
1713 */
1714 if (!did_some_progress) {
1715 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1716 page = __alloc_pages_may_oom(gfp_mask, order,
1717 zonelist, high_zoneidx,
3dd28266
MG
1718 nodemask, preferred_zone,
1719 migratetype);
11e33f6a
MG
1720 if (page)
1721 goto got_pg;
1da177e4 1722
11e33f6a
MG
1723 /*
1724 * The OOM killer does not trigger for high-order allocations
1725 * but if no progress is being made, there are no other
1726 * options and retrying is unlikely to help
1727 */
1728 if (order > PAGE_ALLOC_COSTLY_ORDER)
1729 goto nopage;
e2c55dc8 1730
ff0ceb9d
DR
1731 goto restart;
1732 }
1da177e4
LT
1733 }
1734
11e33f6a 1735 /* Check if we should retry the allocation */
a41f24ea 1736 pages_reclaimed += did_some_progress;
11e33f6a
MG
1737 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1738 /* Wait for some write requests to complete then retry */
3fcfab16 1739 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1740 goto rebalance;
1741 }
1742
1743nopage:
1744 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1745 printk(KERN_WARNING "%s: page allocation failure."
1746 " order:%d, mode:0x%x\n",
1747 p->comm, order, gfp_mask);
1748 dump_stack();
578c2fd6 1749 show_mem();
1da177e4 1750 }
1da177e4 1751got_pg:
1da177e4 1752 return page;
11e33f6a
MG
1753
1754}
1755
1756/*
1757 * This is the 'heart' of the zoned buddy allocator.
1758 */
1759struct page *
1760__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1761 struct zonelist *zonelist, nodemask_t *nodemask)
1762{
1763 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1764 struct zone *preferred_zone;
11e33f6a 1765 struct page *page;
3dd28266 1766 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1767
1768 lockdep_trace_alloc(gfp_mask);
1769
1770 might_sleep_if(gfp_mask & __GFP_WAIT);
1771
1772 if (should_fail_alloc_page(gfp_mask, order))
1773 return NULL;
1774
1775 /*
1776 * Check the zones suitable for the gfp_mask contain at least one
1777 * valid zone. It's possible to have an empty zonelist as a result
1778 * of GFP_THISNODE and a memoryless node
1779 */
1780 if (unlikely(!zonelist->_zonerefs->zone))
1781 return NULL;
1782
5117f45d
MG
1783 /* The preferred zone is used for statistics later */
1784 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1785 if (!preferred_zone)
1786 return NULL;
1787
1788 /* First allocation attempt */
11e33f6a 1789 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1790 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1791 preferred_zone, migratetype);
11e33f6a
MG
1792 if (unlikely(!page))
1793 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1794 zonelist, high_zoneidx, nodemask,
3dd28266 1795 preferred_zone, migratetype);
11e33f6a
MG
1796
1797 return page;
1da177e4 1798}
d239171e 1799EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1800
1801/*
1802 * Common helper functions.
1803 */
920c7a5d 1804unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1805{
1806 struct page * page;
1807 page = alloc_pages(gfp_mask, order);
1808 if (!page)
1809 return 0;
1810 return (unsigned long) page_address(page);
1811}
1812
1813EXPORT_SYMBOL(__get_free_pages);
1814
920c7a5d 1815unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1816{
1817 struct page * page;
1818
1819 /*
1820 * get_zeroed_page() returns a 32-bit address, which cannot represent
1821 * a highmem page
1822 */
725d704e 1823 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1824
1825 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1826 if (page)
1827 return (unsigned long) page_address(page);
1828 return 0;
1829}
1830
1831EXPORT_SYMBOL(get_zeroed_page);
1832
1833void __pagevec_free(struct pagevec *pvec)
1834{
1835 int i = pagevec_count(pvec);
1836
1837 while (--i >= 0)
1838 free_hot_cold_page(pvec->pages[i], pvec->cold);
1839}
1840
920c7a5d 1841void __free_pages(struct page *page, unsigned int order)
1da177e4 1842{
b5810039 1843 if (put_page_testzero(page)) {
1da177e4
LT
1844 if (order == 0)
1845 free_hot_page(page);
1846 else
1847 __free_pages_ok(page, order);
1848 }
1849}
1850
1851EXPORT_SYMBOL(__free_pages);
1852
920c7a5d 1853void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1854{
1855 if (addr != 0) {
725d704e 1856 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1857 __free_pages(virt_to_page((void *)addr), order);
1858 }
1859}
1860
1861EXPORT_SYMBOL(free_pages);
1862
2be0ffe2
TT
1863/**
1864 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1865 * @size: the number of bytes to allocate
1866 * @gfp_mask: GFP flags for the allocation
1867 *
1868 * This function is similar to alloc_pages(), except that it allocates the
1869 * minimum number of pages to satisfy the request. alloc_pages() can only
1870 * allocate memory in power-of-two pages.
1871 *
1872 * This function is also limited by MAX_ORDER.
1873 *
1874 * Memory allocated by this function must be released by free_pages_exact().
1875 */
1876void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1877{
1878 unsigned int order = get_order(size);
1879 unsigned long addr;
1880
1881 addr = __get_free_pages(gfp_mask, order);
1882 if (addr) {
1883 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1884 unsigned long used = addr + PAGE_ALIGN(size);
1885
1886 split_page(virt_to_page(addr), order);
1887 while (used < alloc_end) {
1888 free_page(used);
1889 used += PAGE_SIZE;
1890 }
1891 }
1892
1893 return (void *)addr;
1894}
1895EXPORT_SYMBOL(alloc_pages_exact);
1896
1897/**
1898 * free_pages_exact - release memory allocated via alloc_pages_exact()
1899 * @virt: the value returned by alloc_pages_exact.
1900 * @size: size of allocation, same value as passed to alloc_pages_exact().
1901 *
1902 * Release the memory allocated by a previous call to alloc_pages_exact.
1903 */
1904void free_pages_exact(void *virt, size_t size)
1905{
1906 unsigned long addr = (unsigned long)virt;
1907 unsigned long end = addr + PAGE_ALIGN(size);
1908
1909 while (addr < end) {
1910 free_page(addr);
1911 addr += PAGE_SIZE;
1912 }
1913}
1914EXPORT_SYMBOL(free_pages_exact);
1915
1da177e4
LT
1916static unsigned int nr_free_zone_pages(int offset)
1917{
dd1a239f 1918 struct zoneref *z;
54a6eb5c
MG
1919 struct zone *zone;
1920
e310fd43 1921 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1922 unsigned int sum = 0;
1923
0e88460d 1924 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1925
54a6eb5c 1926 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1927 unsigned long size = zone->present_pages;
1928 unsigned long high = zone->pages_high;
1929 if (size > high)
1930 sum += size - high;
1da177e4
LT
1931 }
1932
1933 return sum;
1934}
1935
1936/*
1937 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1938 */
1939unsigned int nr_free_buffer_pages(void)
1940{
af4ca457 1941 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1942}
c2f1a551 1943EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1944
1945/*
1946 * Amount of free RAM allocatable within all zones
1947 */
1948unsigned int nr_free_pagecache_pages(void)
1949{
2a1e274a 1950 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1951}
08e0f6a9
CL
1952
1953static inline void show_node(struct zone *zone)
1da177e4 1954{
08e0f6a9 1955 if (NUMA_BUILD)
25ba77c1 1956 printk("Node %d ", zone_to_nid(zone));
1da177e4 1957}
1da177e4 1958
1da177e4
LT
1959void si_meminfo(struct sysinfo *val)
1960{
1961 val->totalram = totalram_pages;
1962 val->sharedram = 0;
d23ad423 1963 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1964 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1965 val->totalhigh = totalhigh_pages;
1966 val->freehigh = nr_free_highpages();
1da177e4
LT
1967 val->mem_unit = PAGE_SIZE;
1968}
1969
1970EXPORT_SYMBOL(si_meminfo);
1971
1972#ifdef CONFIG_NUMA
1973void si_meminfo_node(struct sysinfo *val, int nid)
1974{
1975 pg_data_t *pgdat = NODE_DATA(nid);
1976
1977 val->totalram = pgdat->node_present_pages;
d23ad423 1978 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1979#ifdef CONFIG_HIGHMEM
1da177e4 1980 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1981 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1982 NR_FREE_PAGES);
98d2b0eb
CL
1983#else
1984 val->totalhigh = 0;
1985 val->freehigh = 0;
1986#endif
1da177e4
LT
1987 val->mem_unit = PAGE_SIZE;
1988}
1989#endif
1990
1991#define K(x) ((x) << (PAGE_SHIFT-10))
1992
1993/*
1994 * Show free area list (used inside shift_scroll-lock stuff)
1995 * We also calculate the percentage fragmentation. We do this by counting the
1996 * memory on each free list with the exception of the first item on the list.
1997 */
1998void show_free_areas(void)
1999{
c7241913 2000 int cpu;
1da177e4
LT
2001 struct zone *zone;
2002
ee99c71c 2003 for_each_populated_zone(zone) {
c7241913
JS
2004 show_node(zone);
2005 printk("%s per-cpu:\n", zone->name);
1da177e4 2006
6b482c67 2007 for_each_online_cpu(cpu) {
1da177e4
LT
2008 struct per_cpu_pageset *pageset;
2009
e7c8d5c9 2010 pageset = zone_pcp(zone, cpu);
1da177e4 2011
3dfa5721
CL
2012 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2013 cpu, pageset->pcp.high,
2014 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2015 }
2016 }
2017
7b854121
LS
2018 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2019 " inactive_file:%lu"
2020//TODO: check/adjust line lengths
2021#ifdef CONFIG_UNEVICTABLE_LRU
2022 " unevictable:%lu"
2023#endif
2024 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2025 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2026 global_page_state(NR_ACTIVE_ANON),
2027 global_page_state(NR_ACTIVE_FILE),
2028 global_page_state(NR_INACTIVE_ANON),
2029 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2030#ifdef CONFIG_UNEVICTABLE_LRU
2031 global_page_state(NR_UNEVICTABLE),
2032#endif
b1e7a8fd 2033 global_page_state(NR_FILE_DIRTY),
ce866b34 2034 global_page_state(NR_WRITEBACK),
fd39fc85 2035 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2036 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2037 global_page_state(NR_SLAB_RECLAIMABLE) +
2038 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2039 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2040 global_page_state(NR_PAGETABLE),
2041 global_page_state(NR_BOUNCE));
1da177e4 2042
ee99c71c 2043 for_each_populated_zone(zone) {
1da177e4
LT
2044 int i;
2045
2046 show_node(zone);
2047 printk("%s"
2048 " free:%lukB"
2049 " min:%lukB"
2050 " low:%lukB"
2051 " high:%lukB"
4f98a2fe
RR
2052 " active_anon:%lukB"
2053 " inactive_anon:%lukB"
2054 " active_file:%lukB"
2055 " inactive_file:%lukB"
7b854121
LS
2056#ifdef CONFIG_UNEVICTABLE_LRU
2057 " unevictable:%lukB"
2058#endif
1da177e4
LT
2059 " present:%lukB"
2060 " pages_scanned:%lu"
2061 " all_unreclaimable? %s"
2062 "\n",
2063 zone->name,
d23ad423 2064 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
2065 K(zone->pages_min),
2066 K(zone->pages_low),
2067 K(zone->pages_high),
4f98a2fe
RR
2068 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2069 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2070 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2071 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2072#ifdef CONFIG_UNEVICTABLE_LRU
2073 K(zone_page_state(zone, NR_UNEVICTABLE)),
2074#endif
1da177e4
LT
2075 K(zone->present_pages),
2076 zone->pages_scanned,
e815af95 2077 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2078 );
2079 printk("lowmem_reserve[]:");
2080 for (i = 0; i < MAX_NR_ZONES; i++)
2081 printk(" %lu", zone->lowmem_reserve[i]);
2082 printk("\n");
2083 }
2084
ee99c71c 2085 for_each_populated_zone(zone) {
8f9de51a 2086 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2087
2088 show_node(zone);
2089 printk("%s: ", zone->name);
1da177e4
LT
2090
2091 spin_lock_irqsave(&zone->lock, flags);
2092 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2093 nr[order] = zone->free_area[order].nr_free;
2094 total += nr[order] << order;
1da177e4
LT
2095 }
2096 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2097 for (order = 0; order < MAX_ORDER; order++)
2098 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2099 printk("= %lukB\n", K(total));
2100 }
2101
e6f3602d
LW
2102 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2103
1da177e4
LT
2104 show_swap_cache_info();
2105}
2106
19770b32
MG
2107static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2108{
2109 zoneref->zone = zone;
2110 zoneref->zone_idx = zone_idx(zone);
2111}
2112
1da177e4
LT
2113/*
2114 * Builds allocation fallback zone lists.
1a93205b
CL
2115 *
2116 * Add all populated zones of a node to the zonelist.
1da177e4 2117 */
f0c0b2b8
KH
2118static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2119 int nr_zones, enum zone_type zone_type)
1da177e4 2120{
1a93205b
CL
2121 struct zone *zone;
2122
98d2b0eb 2123 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2124 zone_type++;
02a68a5e
CL
2125
2126 do {
2f6726e5 2127 zone_type--;
070f8032 2128 zone = pgdat->node_zones + zone_type;
1a93205b 2129 if (populated_zone(zone)) {
dd1a239f
MG
2130 zoneref_set_zone(zone,
2131 &zonelist->_zonerefs[nr_zones++]);
070f8032 2132 check_highest_zone(zone_type);
1da177e4 2133 }
02a68a5e 2134
2f6726e5 2135 } while (zone_type);
070f8032 2136 return nr_zones;
1da177e4
LT
2137}
2138
f0c0b2b8
KH
2139
2140/*
2141 * zonelist_order:
2142 * 0 = automatic detection of better ordering.
2143 * 1 = order by ([node] distance, -zonetype)
2144 * 2 = order by (-zonetype, [node] distance)
2145 *
2146 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2147 * the same zonelist. So only NUMA can configure this param.
2148 */
2149#define ZONELIST_ORDER_DEFAULT 0
2150#define ZONELIST_ORDER_NODE 1
2151#define ZONELIST_ORDER_ZONE 2
2152
2153/* zonelist order in the kernel.
2154 * set_zonelist_order() will set this to NODE or ZONE.
2155 */
2156static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2157static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2158
2159
1da177e4 2160#ifdef CONFIG_NUMA
f0c0b2b8
KH
2161/* The value user specified ....changed by config */
2162static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2163/* string for sysctl */
2164#define NUMA_ZONELIST_ORDER_LEN 16
2165char numa_zonelist_order[16] = "default";
2166
2167/*
2168 * interface for configure zonelist ordering.
2169 * command line option "numa_zonelist_order"
2170 * = "[dD]efault - default, automatic configuration.
2171 * = "[nN]ode - order by node locality, then by zone within node
2172 * = "[zZ]one - order by zone, then by locality within zone
2173 */
2174
2175static int __parse_numa_zonelist_order(char *s)
2176{
2177 if (*s == 'd' || *s == 'D') {
2178 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2179 } else if (*s == 'n' || *s == 'N') {
2180 user_zonelist_order = ZONELIST_ORDER_NODE;
2181 } else if (*s == 'z' || *s == 'Z') {
2182 user_zonelist_order = ZONELIST_ORDER_ZONE;
2183 } else {
2184 printk(KERN_WARNING
2185 "Ignoring invalid numa_zonelist_order value: "
2186 "%s\n", s);
2187 return -EINVAL;
2188 }
2189 return 0;
2190}
2191
2192static __init int setup_numa_zonelist_order(char *s)
2193{
2194 if (s)
2195 return __parse_numa_zonelist_order(s);
2196 return 0;
2197}
2198early_param("numa_zonelist_order", setup_numa_zonelist_order);
2199
2200/*
2201 * sysctl handler for numa_zonelist_order
2202 */
2203int numa_zonelist_order_handler(ctl_table *table, int write,
2204 struct file *file, void __user *buffer, size_t *length,
2205 loff_t *ppos)
2206{
2207 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2208 int ret;
2209
2210 if (write)
2211 strncpy(saved_string, (char*)table->data,
2212 NUMA_ZONELIST_ORDER_LEN);
2213 ret = proc_dostring(table, write, file, buffer, length, ppos);
2214 if (ret)
2215 return ret;
2216 if (write) {
2217 int oldval = user_zonelist_order;
2218 if (__parse_numa_zonelist_order((char*)table->data)) {
2219 /*
2220 * bogus value. restore saved string
2221 */
2222 strncpy((char*)table->data, saved_string,
2223 NUMA_ZONELIST_ORDER_LEN);
2224 user_zonelist_order = oldval;
2225 } else if (oldval != user_zonelist_order)
2226 build_all_zonelists();
2227 }
2228 return 0;
2229}
2230
2231
1da177e4 2232#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2233static int node_load[MAX_NUMNODES];
2234
1da177e4 2235/**
4dc3b16b 2236 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2237 * @node: node whose fallback list we're appending
2238 * @used_node_mask: nodemask_t of already used nodes
2239 *
2240 * We use a number of factors to determine which is the next node that should
2241 * appear on a given node's fallback list. The node should not have appeared
2242 * already in @node's fallback list, and it should be the next closest node
2243 * according to the distance array (which contains arbitrary distance values
2244 * from each node to each node in the system), and should also prefer nodes
2245 * with no CPUs, since presumably they'll have very little allocation pressure
2246 * on them otherwise.
2247 * It returns -1 if no node is found.
2248 */
f0c0b2b8 2249static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2250{
4cf808eb 2251 int n, val;
1da177e4
LT
2252 int min_val = INT_MAX;
2253 int best_node = -1;
a70f7302 2254 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2255
4cf808eb
LT
2256 /* Use the local node if we haven't already */
2257 if (!node_isset(node, *used_node_mask)) {
2258 node_set(node, *used_node_mask);
2259 return node;
2260 }
1da177e4 2261
37b07e41 2262 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2263
2264 /* Don't want a node to appear more than once */
2265 if (node_isset(n, *used_node_mask))
2266 continue;
2267
1da177e4
LT
2268 /* Use the distance array to find the distance */
2269 val = node_distance(node, n);
2270
4cf808eb
LT
2271 /* Penalize nodes under us ("prefer the next node") */
2272 val += (n < node);
2273
1da177e4 2274 /* Give preference to headless and unused nodes */
a70f7302
RR
2275 tmp = cpumask_of_node(n);
2276 if (!cpumask_empty(tmp))
1da177e4
LT
2277 val += PENALTY_FOR_NODE_WITH_CPUS;
2278
2279 /* Slight preference for less loaded node */
2280 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2281 val += node_load[n];
2282
2283 if (val < min_val) {
2284 min_val = val;
2285 best_node = n;
2286 }
2287 }
2288
2289 if (best_node >= 0)
2290 node_set(best_node, *used_node_mask);
2291
2292 return best_node;
2293}
2294
f0c0b2b8
KH
2295
2296/*
2297 * Build zonelists ordered by node and zones within node.
2298 * This results in maximum locality--normal zone overflows into local
2299 * DMA zone, if any--but risks exhausting DMA zone.
2300 */
2301static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2302{
f0c0b2b8 2303 int j;
1da177e4 2304 struct zonelist *zonelist;
f0c0b2b8 2305
54a6eb5c 2306 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2307 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2308 ;
2309 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2310 MAX_NR_ZONES - 1);
dd1a239f
MG
2311 zonelist->_zonerefs[j].zone = NULL;
2312 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2313}
2314
523b9458
CL
2315/*
2316 * Build gfp_thisnode zonelists
2317 */
2318static void build_thisnode_zonelists(pg_data_t *pgdat)
2319{
523b9458
CL
2320 int j;
2321 struct zonelist *zonelist;
2322
54a6eb5c
MG
2323 zonelist = &pgdat->node_zonelists[1];
2324 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2325 zonelist->_zonerefs[j].zone = NULL;
2326 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2327}
2328
f0c0b2b8
KH
2329/*
2330 * Build zonelists ordered by zone and nodes within zones.
2331 * This results in conserving DMA zone[s] until all Normal memory is
2332 * exhausted, but results in overflowing to remote node while memory
2333 * may still exist in local DMA zone.
2334 */
2335static int node_order[MAX_NUMNODES];
2336
2337static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2338{
f0c0b2b8
KH
2339 int pos, j, node;
2340 int zone_type; /* needs to be signed */
2341 struct zone *z;
2342 struct zonelist *zonelist;
2343
54a6eb5c
MG
2344 zonelist = &pgdat->node_zonelists[0];
2345 pos = 0;
2346 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2347 for (j = 0; j < nr_nodes; j++) {
2348 node = node_order[j];
2349 z = &NODE_DATA(node)->node_zones[zone_type];
2350 if (populated_zone(z)) {
dd1a239f
MG
2351 zoneref_set_zone(z,
2352 &zonelist->_zonerefs[pos++]);
54a6eb5c 2353 check_highest_zone(zone_type);
f0c0b2b8
KH
2354 }
2355 }
f0c0b2b8 2356 }
dd1a239f
MG
2357 zonelist->_zonerefs[pos].zone = NULL;
2358 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2359}
2360
2361static int default_zonelist_order(void)
2362{
2363 int nid, zone_type;
2364 unsigned long low_kmem_size,total_size;
2365 struct zone *z;
2366 int average_size;
2367 /*
2368 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2369 * If they are really small and used heavily, the system can fall
2370 * into OOM very easily.
2371 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2372 */
2373 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2374 low_kmem_size = 0;
2375 total_size = 0;
2376 for_each_online_node(nid) {
2377 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2378 z = &NODE_DATA(nid)->node_zones[zone_type];
2379 if (populated_zone(z)) {
2380 if (zone_type < ZONE_NORMAL)
2381 low_kmem_size += z->present_pages;
2382 total_size += z->present_pages;
2383 }
2384 }
2385 }
2386 if (!low_kmem_size || /* there are no DMA area. */
2387 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2388 return ZONELIST_ORDER_NODE;
2389 /*
2390 * look into each node's config.
2391 * If there is a node whose DMA/DMA32 memory is very big area on
2392 * local memory, NODE_ORDER may be suitable.
2393 */
37b07e41
LS
2394 average_size = total_size /
2395 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2396 for_each_online_node(nid) {
2397 low_kmem_size = 0;
2398 total_size = 0;
2399 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2400 z = &NODE_DATA(nid)->node_zones[zone_type];
2401 if (populated_zone(z)) {
2402 if (zone_type < ZONE_NORMAL)
2403 low_kmem_size += z->present_pages;
2404 total_size += z->present_pages;
2405 }
2406 }
2407 if (low_kmem_size &&
2408 total_size > average_size && /* ignore small node */
2409 low_kmem_size > total_size * 70/100)
2410 return ZONELIST_ORDER_NODE;
2411 }
2412 return ZONELIST_ORDER_ZONE;
2413}
2414
2415static void set_zonelist_order(void)
2416{
2417 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2418 current_zonelist_order = default_zonelist_order();
2419 else
2420 current_zonelist_order = user_zonelist_order;
2421}
2422
2423static void build_zonelists(pg_data_t *pgdat)
2424{
2425 int j, node, load;
2426 enum zone_type i;
1da177e4 2427 nodemask_t used_mask;
f0c0b2b8
KH
2428 int local_node, prev_node;
2429 struct zonelist *zonelist;
2430 int order = current_zonelist_order;
1da177e4
LT
2431
2432 /* initialize zonelists */
523b9458 2433 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2434 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2435 zonelist->_zonerefs[0].zone = NULL;
2436 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2437 }
2438
2439 /* NUMA-aware ordering of nodes */
2440 local_node = pgdat->node_id;
2441 load = num_online_nodes();
2442 prev_node = local_node;
2443 nodes_clear(used_mask);
f0c0b2b8
KH
2444
2445 memset(node_load, 0, sizeof(node_load));
2446 memset(node_order, 0, sizeof(node_order));
2447 j = 0;
2448
1da177e4 2449 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2450 int distance = node_distance(local_node, node);
2451
2452 /*
2453 * If another node is sufficiently far away then it is better
2454 * to reclaim pages in a zone before going off node.
2455 */
2456 if (distance > RECLAIM_DISTANCE)
2457 zone_reclaim_mode = 1;
2458
1da177e4
LT
2459 /*
2460 * We don't want to pressure a particular node.
2461 * So adding penalty to the first node in same
2462 * distance group to make it round-robin.
2463 */
9eeff239 2464 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2465 node_load[node] = load;
2466
1da177e4
LT
2467 prev_node = node;
2468 load--;
f0c0b2b8
KH
2469 if (order == ZONELIST_ORDER_NODE)
2470 build_zonelists_in_node_order(pgdat, node);
2471 else
2472 node_order[j++] = node; /* remember order */
2473 }
1da177e4 2474
f0c0b2b8
KH
2475 if (order == ZONELIST_ORDER_ZONE) {
2476 /* calculate node order -- i.e., DMA last! */
2477 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2478 }
523b9458
CL
2479
2480 build_thisnode_zonelists(pgdat);
1da177e4
LT
2481}
2482
9276b1bc 2483/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2484static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2485{
54a6eb5c
MG
2486 struct zonelist *zonelist;
2487 struct zonelist_cache *zlc;
dd1a239f 2488 struct zoneref *z;
9276b1bc 2489
54a6eb5c
MG
2490 zonelist = &pgdat->node_zonelists[0];
2491 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2492 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2493 for (z = zonelist->_zonerefs; z->zone; z++)
2494 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2495}
2496
f0c0b2b8 2497
1da177e4
LT
2498#else /* CONFIG_NUMA */
2499
f0c0b2b8
KH
2500static void set_zonelist_order(void)
2501{
2502 current_zonelist_order = ZONELIST_ORDER_ZONE;
2503}
2504
2505static void build_zonelists(pg_data_t *pgdat)
1da177e4 2506{
19655d34 2507 int node, local_node;
54a6eb5c
MG
2508 enum zone_type j;
2509 struct zonelist *zonelist;
1da177e4
LT
2510
2511 local_node = pgdat->node_id;
1da177e4 2512
54a6eb5c
MG
2513 zonelist = &pgdat->node_zonelists[0];
2514 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2515
54a6eb5c
MG
2516 /*
2517 * Now we build the zonelist so that it contains the zones
2518 * of all the other nodes.
2519 * We don't want to pressure a particular node, so when
2520 * building the zones for node N, we make sure that the
2521 * zones coming right after the local ones are those from
2522 * node N+1 (modulo N)
2523 */
2524 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2525 if (!node_online(node))
2526 continue;
2527 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2528 MAX_NR_ZONES - 1);
1da177e4 2529 }
54a6eb5c
MG
2530 for (node = 0; node < local_node; node++) {
2531 if (!node_online(node))
2532 continue;
2533 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2534 MAX_NR_ZONES - 1);
2535 }
2536
dd1a239f
MG
2537 zonelist->_zonerefs[j].zone = NULL;
2538 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2539}
2540
9276b1bc 2541/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2542static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2543{
54a6eb5c 2544 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2545}
2546
1da177e4
LT
2547#endif /* CONFIG_NUMA */
2548
9b1a4d38 2549/* return values int ....just for stop_machine() */
f0c0b2b8 2550static int __build_all_zonelists(void *dummy)
1da177e4 2551{
6811378e 2552 int nid;
9276b1bc
PJ
2553
2554 for_each_online_node(nid) {
7ea1530a
CL
2555 pg_data_t *pgdat = NODE_DATA(nid);
2556
2557 build_zonelists(pgdat);
2558 build_zonelist_cache(pgdat);
9276b1bc 2559 }
6811378e
YG
2560 return 0;
2561}
2562
f0c0b2b8 2563void build_all_zonelists(void)
6811378e 2564{
f0c0b2b8
KH
2565 set_zonelist_order();
2566
6811378e 2567 if (system_state == SYSTEM_BOOTING) {
423b41d7 2568 __build_all_zonelists(NULL);
68ad8df4 2569 mminit_verify_zonelist();
6811378e
YG
2570 cpuset_init_current_mems_allowed();
2571 } else {
183ff22b 2572 /* we have to stop all cpus to guarantee there is no user
6811378e 2573 of zonelist */
9b1a4d38 2574 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2575 /* cpuset refresh routine should be here */
2576 }
bd1e22b8 2577 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2578 /*
2579 * Disable grouping by mobility if the number of pages in the
2580 * system is too low to allow the mechanism to work. It would be
2581 * more accurate, but expensive to check per-zone. This check is
2582 * made on memory-hotadd so a system can start with mobility
2583 * disabled and enable it later
2584 */
d9c23400 2585 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2586 page_group_by_mobility_disabled = 1;
2587 else
2588 page_group_by_mobility_disabled = 0;
2589
2590 printk("Built %i zonelists in %s order, mobility grouping %s. "
2591 "Total pages: %ld\n",
f0c0b2b8
KH
2592 num_online_nodes(),
2593 zonelist_order_name[current_zonelist_order],
9ef9acb0 2594 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2595 vm_total_pages);
2596#ifdef CONFIG_NUMA
2597 printk("Policy zone: %s\n", zone_names[policy_zone]);
2598#endif
1da177e4
LT
2599}
2600
2601/*
2602 * Helper functions to size the waitqueue hash table.
2603 * Essentially these want to choose hash table sizes sufficiently
2604 * large so that collisions trying to wait on pages are rare.
2605 * But in fact, the number of active page waitqueues on typical
2606 * systems is ridiculously low, less than 200. So this is even
2607 * conservative, even though it seems large.
2608 *
2609 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2610 * waitqueues, i.e. the size of the waitq table given the number of pages.
2611 */
2612#define PAGES_PER_WAITQUEUE 256
2613
cca448fe 2614#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2615static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2616{
2617 unsigned long size = 1;
2618
2619 pages /= PAGES_PER_WAITQUEUE;
2620
2621 while (size < pages)
2622 size <<= 1;
2623
2624 /*
2625 * Once we have dozens or even hundreds of threads sleeping
2626 * on IO we've got bigger problems than wait queue collision.
2627 * Limit the size of the wait table to a reasonable size.
2628 */
2629 size = min(size, 4096UL);
2630
2631 return max(size, 4UL);
2632}
cca448fe
YG
2633#else
2634/*
2635 * A zone's size might be changed by hot-add, so it is not possible to determine
2636 * a suitable size for its wait_table. So we use the maximum size now.
2637 *
2638 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2639 *
2640 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2641 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2642 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2643 *
2644 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2645 * or more by the traditional way. (See above). It equals:
2646 *
2647 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2648 * ia64(16K page size) : = ( 8G + 4M)byte.
2649 * powerpc (64K page size) : = (32G +16M)byte.
2650 */
2651static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2652{
2653 return 4096UL;
2654}
2655#endif
1da177e4
LT
2656
2657/*
2658 * This is an integer logarithm so that shifts can be used later
2659 * to extract the more random high bits from the multiplicative
2660 * hash function before the remainder is taken.
2661 */
2662static inline unsigned long wait_table_bits(unsigned long size)
2663{
2664 return ffz(~size);
2665}
2666
2667#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2668
56fd56b8 2669/*
d9c23400 2670 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2671 * of blocks reserved is based on zone->pages_min. The memory within the
2672 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2673 * higher will lead to a bigger reserve which will get freed as contiguous
2674 * blocks as reclaim kicks in
2675 */
2676static void setup_zone_migrate_reserve(struct zone *zone)
2677{
2678 unsigned long start_pfn, pfn, end_pfn;
2679 struct page *page;
2680 unsigned long reserve, block_migratetype;
2681
2682 /* Get the start pfn, end pfn and the number of blocks to reserve */
2683 start_pfn = zone->zone_start_pfn;
2684 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2685 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2686 pageblock_order;
56fd56b8 2687
d9c23400 2688 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2689 if (!pfn_valid(pfn))
2690 continue;
2691 page = pfn_to_page(pfn);
2692
344c790e
AL
2693 /* Watch out for overlapping nodes */
2694 if (page_to_nid(page) != zone_to_nid(zone))
2695 continue;
2696
56fd56b8
MG
2697 /* Blocks with reserved pages will never free, skip them. */
2698 if (PageReserved(page))
2699 continue;
2700
2701 block_migratetype = get_pageblock_migratetype(page);
2702
2703 /* If this block is reserved, account for it */
2704 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2705 reserve--;
2706 continue;
2707 }
2708
2709 /* Suitable for reserving if this block is movable */
2710 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2711 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2712 move_freepages_block(zone, page, MIGRATE_RESERVE);
2713 reserve--;
2714 continue;
2715 }
2716
2717 /*
2718 * If the reserve is met and this is a previous reserved block,
2719 * take it back
2720 */
2721 if (block_migratetype == MIGRATE_RESERVE) {
2722 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2723 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2724 }
2725 }
2726}
ac0e5b7a 2727
1da177e4
LT
2728/*
2729 * Initially all pages are reserved - free ones are freed
2730 * up by free_all_bootmem() once the early boot process is
2731 * done. Non-atomic initialization, single-pass.
2732 */
c09b4240 2733void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2734 unsigned long start_pfn, enum memmap_context context)
1da177e4 2735{
1da177e4 2736 struct page *page;
29751f69
AW
2737 unsigned long end_pfn = start_pfn + size;
2738 unsigned long pfn;
86051ca5 2739 struct zone *z;
1da177e4 2740
22b31eec
HD
2741 if (highest_memmap_pfn < end_pfn - 1)
2742 highest_memmap_pfn = end_pfn - 1;
2743
86051ca5 2744 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2745 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2746 /*
2747 * There can be holes in boot-time mem_map[]s
2748 * handed to this function. They do not
2749 * exist on hotplugged memory.
2750 */
2751 if (context == MEMMAP_EARLY) {
2752 if (!early_pfn_valid(pfn))
2753 continue;
2754 if (!early_pfn_in_nid(pfn, nid))
2755 continue;
2756 }
d41dee36
AW
2757 page = pfn_to_page(pfn);
2758 set_page_links(page, zone, nid, pfn);
708614e6 2759 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2760 init_page_count(page);
1da177e4
LT
2761 reset_page_mapcount(page);
2762 SetPageReserved(page);
b2a0ac88
MG
2763 /*
2764 * Mark the block movable so that blocks are reserved for
2765 * movable at startup. This will force kernel allocations
2766 * to reserve their blocks rather than leaking throughout
2767 * the address space during boot when many long-lived
56fd56b8
MG
2768 * kernel allocations are made. Later some blocks near
2769 * the start are marked MIGRATE_RESERVE by
2770 * setup_zone_migrate_reserve()
86051ca5
KH
2771 *
2772 * bitmap is created for zone's valid pfn range. but memmap
2773 * can be created for invalid pages (for alignment)
2774 * check here not to call set_pageblock_migratetype() against
2775 * pfn out of zone.
b2a0ac88 2776 */
86051ca5
KH
2777 if ((z->zone_start_pfn <= pfn)
2778 && (pfn < z->zone_start_pfn + z->spanned_pages)
2779 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2780 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2781
1da177e4
LT
2782 INIT_LIST_HEAD(&page->lru);
2783#ifdef WANT_PAGE_VIRTUAL
2784 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2785 if (!is_highmem_idx(zone))
3212c6be 2786 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2787#endif
1da177e4
LT
2788 }
2789}
2790
1e548deb 2791static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2792{
b2a0ac88
MG
2793 int order, t;
2794 for_each_migratetype_order(order, t) {
2795 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2796 zone->free_area[order].nr_free = 0;
2797 }
2798}
2799
2800#ifndef __HAVE_ARCH_MEMMAP_INIT
2801#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2802 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2803#endif
2804
1d6f4e60 2805static int zone_batchsize(struct zone *zone)
e7c8d5c9 2806{
3a6be87f 2807#ifdef CONFIG_MMU
e7c8d5c9
CL
2808 int batch;
2809
2810 /*
2811 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2812 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2813 *
2814 * OK, so we don't know how big the cache is. So guess.
2815 */
2816 batch = zone->present_pages / 1024;
ba56e91c
SR
2817 if (batch * PAGE_SIZE > 512 * 1024)
2818 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2819 batch /= 4; /* We effectively *= 4 below */
2820 if (batch < 1)
2821 batch = 1;
2822
2823 /*
0ceaacc9
NP
2824 * Clamp the batch to a 2^n - 1 value. Having a power
2825 * of 2 value was found to be more likely to have
2826 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2827 *
0ceaacc9
NP
2828 * For example if 2 tasks are alternately allocating
2829 * batches of pages, one task can end up with a lot
2830 * of pages of one half of the possible page colors
2831 * and the other with pages of the other colors.
e7c8d5c9 2832 */
9155203a 2833 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2834
e7c8d5c9 2835 return batch;
3a6be87f
DH
2836
2837#else
2838 /* The deferral and batching of frees should be suppressed under NOMMU
2839 * conditions.
2840 *
2841 * The problem is that NOMMU needs to be able to allocate large chunks
2842 * of contiguous memory as there's no hardware page translation to
2843 * assemble apparent contiguous memory from discontiguous pages.
2844 *
2845 * Queueing large contiguous runs of pages for batching, however,
2846 * causes the pages to actually be freed in smaller chunks. As there
2847 * can be a significant delay between the individual batches being
2848 * recycled, this leads to the once large chunks of space being
2849 * fragmented and becoming unavailable for high-order allocations.
2850 */
2851 return 0;
2852#endif
e7c8d5c9
CL
2853}
2854
b69a7288 2855static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2856{
2857 struct per_cpu_pages *pcp;
2858
1c6fe946
MD
2859 memset(p, 0, sizeof(*p));
2860
3dfa5721 2861 pcp = &p->pcp;
2caaad41 2862 pcp->count = 0;
2caaad41
CL
2863 pcp->high = 6 * batch;
2864 pcp->batch = max(1UL, 1 * batch);
2865 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2866}
2867
8ad4b1fb
RS
2868/*
2869 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2870 * to the value high for the pageset p.
2871 */
2872
2873static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2874 unsigned long high)
2875{
2876 struct per_cpu_pages *pcp;
2877
3dfa5721 2878 pcp = &p->pcp;
8ad4b1fb
RS
2879 pcp->high = high;
2880 pcp->batch = max(1UL, high/4);
2881 if ((high/4) > (PAGE_SHIFT * 8))
2882 pcp->batch = PAGE_SHIFT * 8;
2883}
2884
2885
e7c8d5c9
CL
2886#ifdef CONFIG_NUMA
2887/*
2caaad41
CL
2888 * Boot pageset table. One per cpu which is going to be used for all
2889 * zones and all nodes. The parameters will be set in such a way
2890 * that an item put on a list will immediately be handed over to
2891 * the buddy list. This is safe since pageset manipulation is done
2892 * with interrupts disabled.
2893 *
2894 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2895 *
2896 * The boot_pagesets must be kept even after bootup is complete for
2897 * unused processors and/or zones. They do play a role for bootstrapping
2898 * hotplugged processors.
2899 *
2900 * zoneinfo_show() and maybe other functions do
2901 * not check if the processor is online before following the pageset pointer.
2902 * Other parts of the kernel may not check if the zone is available.
2caaad41 2903 */
88a2a4ac 2904static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2905
2906/*
2907 * Dynamically allocate memory for the
e7c8d5c9
CL
2908 * per cpu pageset array in struct zone.
2909 */
6292d9aa 2910static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2911{
2912 struct zone *zone, *dzone;
37c0708d
CL
2913 int node = cpu_to_node(cpu);
2914
2915 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2916
ee99c71c 2917 for_each_populated_zone(zone) {
23316bc8 2918 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2919 GFP_KERNEL, node);
23316bc8 2920 if (!zone_pcp(zone, cpu))
e7c8d5c9 2921 goto bad;
e7c8d5c9 2922
23316bc8 2923 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2924
2925 if (percpu_pagelist_fraction)
2926 setup_pagelist_highmark(zone_pcp(zone, cpu),
2927 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2928 }
2929
2930 return 0;
2931bad:
2932 for_each_zone(dzone) {
64191688
AM
2933 if (!populated_zone(dzone))
2934 continue;
e7c8d5c9
CL
2935 if (dzone == zone)
2936 break;
23316bc8
NP
2937 kfree(zone_pcp(dzone, cpu));
2938 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2939 }
2940 return -ENOMEM;
2941}
2942
2943static inline void free_zone_pagesets(int cpu)
2944{
e7c8d5c9
CL
2945 struct zone *zone;
2946
2947 for_each_zone(zone) {
2948 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2949
f3ef9ead
DR
2950 /* Free per_cpu_pageset if it is slab allocated */
2951 if (pset != &boot_pageset[cpu])
2952 kfree(pset);
e7c8d5c9 2953 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2954 }
e7c8d5c9
CL
2955}
2956
9c7b216d 2957static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2958 unsigned long action,
2959 void *hcpu)
2960{
2961 int cpu = (long)hcpu;
2962 int ret = NOTIFY_OK;
2963
2964 switch (action) {
ce421c79 2965 case CPU_UP_PREPARE:
8bb78442 2966 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2967 if (process_zones(cpu))
2968 ret = NOTIFY_BAD;
2969 break;
2970 case CPU_UP_CANCELED:
8bb78442 2971 case CPU_UP_CANCELED_FROZEN:
ce421c79 2972 case CPU_DEAD:
8bb78442 2973 case CPU_DEAD_FROZEN:
ce421c79
AW
2974 free_zone_pagesets(cpu);
2975 break;
2976 default:
2977 break;
e7c8d5c9
CL
2978 }
2979 return ret;
2980}
2981
74b85f37 2982static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2983 { &pageset_cpuup_callback, NULL, 0 };
2984
78d9955b 2985void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2986{
2987 int err;
2988
2989 /* Initialize per_cpu_pageset for cpu 0.
2990 * A cpuup callback will do this for every cpu
2991 * as it comes online
2992 */
2993 err = process_zones(smp_processor_id());
2994 BUG_ON(err);
2995 register_cpu_notifier(&pageset_notifier);
2996}
2997
2998#endif
2999
577a32f6 3000static noinline __init_refok
cca448fe 3001int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3002{
3003 int i;
3004 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3005 size_t alloc_size;
ed8ece2e
DH
3006
3007 /*
3008 * The per-page waitqueue mechanism uses hashed waitqueues
3009 * per zone.
3010 */
02b694de
YG
3011 zone->wait_table_hash_nr_entries =
3012 wait_table_hash_nr_entries(zone_size_pages);
3013 zone->wait_table_bits =
3014 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3015 alloc_size = zone->wait_table_hash_nr_entries
3016 * sizeof(wait_queue_head_t);
3017
cd94b9db 3018 if (!slab_is_available()) {
cca448fe
YG
3019 zone->wait_table = (wait_queue_head_t *)
3020 alloc_bootmem_node(pgdat, alloc_size);
3021 } else {
3022 /*
3023 * This case means that a zone whose size was 0 gets new memory
3024 * via memory hot-add.
3025 * But it may be the case that a new node was hot-added. In
3026 * this case vmalloc() will not be able to use this new node's
3027 * memory - this wait_table must be initialized to use this new
3028 * node itself as well.
3029 * To use this new node's memory, further consideration will be
3030 * necessary.
3031 */
8691f3a7 3032 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3033 }
3034 if (!zone->wait_table)
3035 return -ENOMEM;
ed8ece2e 3036
02b694de 3037 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3038 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3039
3040 return 0;
ed8ece2e
DH
3041}
3042
c09b4240 3043static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3044{
3045 int cpu;
3046 unsigned long batch = zone_batchsize(zone);
3047
3048 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3049#ifdef CONFIG_NUMA
3050 /* Early boot. Slab allocator not functional yet */
23316bc8 3051 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3052 setup_pageset(&boot_pageset[cpu],0);
3053#else
3054 setup_pageset(zone_pcp(zone,cpu), batch);
3055#endif
3056 }
f5335c0f
AB
3057 if (zone->present_pages)
3058 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3059 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3060}
3061
718127cc
YG
3062__meminit int init_currently_empty_zone(struct zone *zone,
3063 unsigned long zone_start_pfn,
a2f3aa02
DH
3064 unsigned long size,
3065 enum memmap_context context)
ed8ece2e
DH
3066{
3067 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3068 int ret;
3069 ret = zone_wait_table_init(zone, size);
3070 if (ret)
3071 return ret;
ed8ece2e
DH
3072 pgdat->nr_zones = zone_idx(zone) + 1;
3073
ed8ece2e
DH
3074 zone->zone_start_pfn = zone_start_pfn;
3075
708614e6
MG
3076 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3077 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3078 pgdat->node_id,
3079 (unsigned long)zone_idx(zone),
3080 zone_start_pfn, (zone_start_pfn + size));
3081
1e548deb 3082 zone_init_free_lists(zone);
718127cc
YG
3083
3084 return 0;
ed8ece2e
DH
3085}
3086
c713216d
MG
3087#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3088/*
3089 * Basic iterator support. Return the first range of PFNs for a node
3090 * Note: nid == MAX_NUMNODES returns first region regardless of node
3091 */
a3142c8e 3092static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3093{
3094 int i;
3095
3096 for (i = 0; i < nr_nodemap_entries; i++)
3097 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3098 return i;
3099
3100 return -1;
3101}
3102
3103/*
3104 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3105 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3106 */
a3142c8e 3107static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3108{
3109 for (index = index + 1; index < nr_nodemap_entries; index++)
3110 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3111 return index;
3112
3113 return -1;
3114}
3115
3116#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3117/*
3118 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3119 * Architectures may implement their own version but if add_active_range()
3120 * was used and there are no special requirements, this is a convenient
3121 * alternative
3122 */
f2dbcfa7 3123int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3124{
3125 int i;
3126
3127 for (i = 0; i < nr_nodemap_entries; i++) {
3128 unsigned long start_pfn = early_node_map[i].start_pfn;
3129 unsigned long end_pfn = early_node_map[i].end_pfn;
3130
3131 if (start_pfn <= pfn && pfn < end_pfn)
3132 return early_node_map[i].nid;
3133 }
cc2559bc
KH
3134 /* This is a memory hole */
3135 return -1;
c713216d
MG
3136}
3137#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3138
f2dbcfa7
KH
3139int __meminit early_pfn_to_nid(unsigned long pfn)
3140{
cc2559bc
KH
3141 int nid;
3142
3143 nid = __early_pfn_to_nid(pfn);
3144 if (nid >= 0)
3145 return nid;
3146 /* just returns 0 */
3147 return 0;
f2dbcfa7
KH
3148}
3149
cc2559bc
KH
3150#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3151bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3152{
3153 int nid;
3154
3155 nid = __early_pfn_to_nid(pfn);
3156 if (nid >= 0 && nid != node)
3157 return false;
3158 return true;
3159}
3160#endif
f2dbcfa7 3161
c713216d
MG
3162/* Basic iterator support to walk early_node_map[] */
3163#define for_each_active_range_index_in_nid(i, nid) \
3164 for (i = first_active_region_index_in_nid(nid); i != -1; \
3165 i = next_active_region_index_in_nid(i, nid))
3166
3167/**
3168 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3169 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3170 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3171 *
3172 * If an architecture guarantees that all ranges registered with
3173 * add_active_ranges() contain no holes and may be freed, this
3174 * this function may be used instead of calling free_bootmem() manually.
3175 */
3176void __init free_bootmem_with_active_regions(int nid,
3177 unsigned long max_low_pfn)
3178{
3179 int i;
3180
3181 for_each_active_range_index_in_nid(i, nid) {
3182 unsigned long size_pages = 0;
3183 unsigned long end_pfn = early_node_map[i].end_pfn;
3184
3185 if (early_node_map[i].start_pfn >= max_low_pfn)
3186 continue;
3187
3188 if (end_pfn > max_low_pfn)
3189 end_pfn = max_low_pfn;
3190
3191 size_pages = end_pfn - early_node_map[i].start_pfn;
3192 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3193 PFN_PHYS(early_node_map[i].start_pfn),
3194 size_pages << PAGE_SHIFT);
3195 }
3196}
3197
b5bc6c0e
YL
3198void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3199{
3200 int i;
d52d53b8 3201 int ret;
b5bc6c0e 3202
d52d53b8
YL
3203 for_each_active_range_index_in_nid(i, nid) {
3204 ret = work_fn(early_node_map[i].start_pfn,
3205 early_node_map[i].end_pfn, data);
3206 if (ret)
3207 break;
3208 }
b5bc6c0e 3209}
c713216d
MG
3210/**
3211 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3212 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3213 *
3214 * If an architecture guarantees that all ranges registered with
3215 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3216 * function may be used instead of calling memory_present() manually.
c713216d
MG
3217 */
3218void __init sparse_memory_present_with_active_regions(int nid)
3219{
3220 int i;
3221
3222 for_each_active_range_index_in_nid(i, nid)
3223 memory_present(early_node_map[i].nid,
3224 early_node_map[i].start_pfn,
3225 early_node_map[i].end_pfn);
3226}
3227
3228/**
3229 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3230 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3231 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3232 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3233 *
3234 * It returns the start and end page frame of a node based on information
3235 * provided by an arch calling add_active_range(). If called for a node
3236 * with no available memory, a warning is printed and the start and end
88ca3b94 3237 * PFNs will be 0.
c713216d 3238 */
a3142c8e 3239void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3240 unsigned long *start_pfn, unsigned long *end_pfn)
3241{
3242 int i;
3243 *start_pfn = -1UL;
3244 *end_pfn = 0;
3245
3246 for_each_active_range_index_in_nid(i, nid) {
3247 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3248 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3249 }
3250
633c0666 3251 if (*start_pfn == -1UL)
c713216d 3252 *start_pfn = 0;
c713216d
MG
3253}
3254
2a1e274a
MG
3255/*
3256 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3257 * assumption is made that zones within a node are ordered in monotonic
3258 * increasing memory addresses so that the "highest" populated zone is used
3259 */
b69a7288 3260static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3261{
3262 int zone_index;
3263 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3264 if (zone_index == ZONE_MOVABLE)
3265 continue;
3266
3267 if (arch_zone_highest_possible_pfn[zone_index] >
3268 arch_zone_lowest_possible_pfn[zone_index])
3269 break;
3270 }
3271
3272 VM_BUG_ON(zone_index == -1);
3273 movable_zone = zone_index;
3274}
3275
3276/*
3277 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3278 * because it is sized independant of architecture. Unlike the other zones,
3279 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3280 * in each node depending on the size of each node and how evenly kernelcore
3281 * is distributed. This helper function adjusts the zone ranges
3282 * provided by the architecture for a given node by using the end of the
3283 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3284 * zones within a node are in order of monotonic increases memory addresses
3285 */
b69a7288 3286static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3287 unsigned long zone_type,
3288 unsigned long node_start_pfn,
3289 unsigned long node_end_pfn,
3290 unsigned long *zone_start_pfn,
3291 unsigned long *zone_end_pfn)
3292{
3293 /* Only adjust if ZONE_MOVABLE is on this node */
3294 if (zone_movable_pfn[nid]) {
3295 /* Size ZONE_MOVABLE */
3296 if (zone_type == ZONE_MOVABLE) {
3297 *zone_start_pfn = zone_movable_pfn[nid];
3298 *zone_end_pfn = min(node_end_pfn,
3299 arch_zone_highest_possible_pfn[movable_zone]);
3300
3301 /* Adjust for ZONE_MOVABLE starting within this range */
3302 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3303 *zone_end_pfn > zone_movable_pfn[nid]) {
3304 *zone_end_pfn = zone_movable_pfn[nid];
3305
3306 /* Check if this whole range is within ZONE_MOVABLE */
3307 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3308 *zone_start_pfn = *zone_end_pfn;
3309 }
3310}
3311
c713216d
MG
3312/*
3313 * Return the number of pages a zone spans in a node, including holes
3314 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3315 */
6ea6e688 3316static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3317 unsigned long zone_type,
3318 unsigned long *ignored)
3319{
3320 unsigned long node_start_pfn, node_end_pfn;
3321 unsigned long zone_start_pfn, zone_end_pfn;
3322
3323 /* Get the start and end of the node and zone */
3324 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3325 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3326 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3327 adjust_zone_range_for_zone_movable(nid, zone_type,
3328 node_start_pfn, node_end_pfn,
3329 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3330
3331 /* Check that this node has pages within the zone's required range */
3332 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3333 return 0;
3334
3335 /* Move the zone boundaries inside the node if necessary */
3336 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3337 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3338
3339 /* Return the spanned pages */
3340 return zone_end_pfn - zone_start_pfn;
3341}
3342
3343/*
3344 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3345 * then all holes in the requested range will be accounted for.
c713216d 3346 */
b69a7288 3347static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3348 unsigned long range_start_pfn,
3349 unsigned long range_end_pfn)
3350{
3351 int i = 0;
3352 unsigned long prev_end_pfn = 0, hole_pages = 0;
3353 unsigned long start_pfn;
3354
3355 /* Find the end_pfn of the first active range of pfns in the node */
3356 i = first_active_region_index_in_nid(nid);
3357 if (i == -1)
3358 return 0;
3359
b5445f95
MG
3360 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3361
9c7cd687
MG
3362 /* Account for ranges before physical memory on this node */
3363 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3364 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3365
3366 /* Find all holes for the zone within the node */
3367 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3368
3369 /* No need to continue if prev_end_pfn is outside the zone */
3370 if (prev_end_pfn >= range_end_pfn)
3371 break;
3372
3373 /* Make sure the end of the zone is not within the hole */
3374 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3375 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3376
3377 /* Update the hole size cound and move on */
3378 if (start_pfn > range_start_pfn) {
3379 BUG_ON(prev_end_pfn > start_pfn);
3380 hole_pages += start_pfn - prev_end_pfn;
3381 }
3382 prev_end_pfn = early_node_map[i].end_pfn;
3383 }
3384
9c7cd687
MG
3385 /* Account for ranges past physical memory on this node */
3386 if (range_end_pfn > prev_end_pfn)
0c6cb974 3387 hole_pages += range_end_pfn -
9c7cd687
MG
3388 max(range_start_pfn, prev_end_pfn);
3389
c713216d
MG
3390 return hole_pages;
3391}
3392
3393/**
3394 * absent_pages_in_range - Return number of page frames in holes within a range
3395 * @start_pfn: The start PFN to start searching for holes
3396 * @end_pfn: The end PFN to stop searching for holes
3397 *
88ca3b94 3398 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3399 */
3400unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3401 unsigned long end_pfn)
3402{
3403 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3404}
3405
3406/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3407static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3408 unsigned long zone_type,
3409 unsigned long *ignored)
3410{
9c7cd687
MG
3411 unsigned long node_start_pfn, node_end_pfn;
3412 unsigned long zone_start_pfn, zone_end_pfn;
3413
3414 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3415 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3416 node_start_pfn);
3417 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3418 node_end_pfn);
3419
2a1e274a
MG
3420 adjust_zone_range_for_zone_movable(nid, zone_type,
3421 node_start_pfn, node_end_pfn,
3422 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3423 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3424}
0e0b864e 3425
c713216d 3426#else
6ea6e688 3427static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3428 unsigned long zone_type,
3429 unsigned long *zones_size)
3430{
3431 return zones_size[zone_type];
3432}
3433
6ea6e688 3434static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3435 unsigned long zone_type,
3436 unsigned long *zholes_size)
3437{
3438 if (!zholes_size)
3439 return 0;
3440
3441 return zholes_size[zone_type];
3442}
0e0b864e 3443
c713216d
MG
3444#endif
3445
a3142c8e 3446static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3447 unsigned long *zones_size, unsigned long *zholes_size)
3448{
3449 unsigned long realtotalpages, totalpages = 0;
3450 enum zone_type i;
3451
3452 for (i = 0; i < MAX_NR_ZONES; i++)
3453 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3454 zones_size);
3455 pgdat->node_spanned_pages = totalpages;
3456
3457 realtotalpages = totalpages;
3458 for (i = 0; i < MAX_NR_ZONES; i++)
3459 realtotalpages -=
3460 zone_absent_pages_in_node(pgdat->node_id, i,
3461 zholes_size);
3462 pgdat->node_present_pages = realtotalpages;
3463 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3464 realtotalpages);
3465}
3466
835c134e
MG
3467#ifndef CONFIG_SPARSEMEM
3468/*
3469 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3470 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3471 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3472 * round what is now in bits to nearest long in bits, then return it in
3473 * bytes.
3474 */
3475static unsigned long __init usemap_size(unsigned long zonesize)
3476{
3477 unsigned long usemapsize;
3478
d9c23400
MG
3479 usemapsize = roundup(zonesize, pageblock_nr_pages);
3480 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3481 usemapsize *= NR_PAGEBLOCK_BITS;
3482 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3483
3484 return usemapsize / 8;
3485}
3486
3487static void __init setup_usemap(struct pglist_data *pgdat,
3488 struct zone *zone, unsigned long zonesize)
3489{
3490 unsigned long usemapsize = usemap_size(zonesize);
3491 zone->pageblock_flags = NULL;
58a01a45 3492 if (usemapsize)
835c134e 3493 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3494}
3495#else
3496static void inline setup_usemap(struct pglist_data *pgdat,
3497 struct zone *zone, unsigned long zonesize) {}
3498#endif /* CONFIG_SPARSEMEM */
3499
d9c23400 3500#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3501
3502/* Return a sensible default order for the pageblock size. */
3503static inline int pageblock_default_order(void)
3504{
3505 if (HPAGE_SHIFT > PAGE_SHIFT)
3506 return HUGETLB_PAGE_ORDER;
3507
3508 return MAX_ORDER-1;
3509}
3510
d9c23400
MG
3511/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3512static inline void __init set_pageblock_order(unsigned int order)
3513{
3514 /* Check that pageblock_nr_pages has not already been setup */
3515 if (pageblock_order)
3516 return;
3517
3518 /*
3519 * Assume the largest contiguous order of interest is a huge page.
3520 * This value may be variable depending on boot parameters on IA64
3521 */
3522 pageblock_order = order;
3523}
3524#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3525
ba72cb8c
MG
3526/*
3527 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3528 * and pageblock_default_order() are unused as pageblock_order is set
3529 * at compile-time. See include/linux/pageblock-flags.h for the values of
3530 * pageblock_order based on the kernel config
3531 */
3532static inline int pageblock_default_order(unsigned int order)
3533{
3534 return MAX_ORDER-1;
3535}
d9c23400
MG
3536#define set_pageblock_order(x) do {} while (0)
3537
3538#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3539
1da177e4
LT
3540/*
3541 * Set up the zone data structures:
3542 * - mark all pages reserved
3543 * - mark all memory queues empty
3544 * - clear the memory bitmaps
3545 */
b5a0e011 3546static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3547 unsigned long *zones_size, unsigned long *zholes_size)
3548{
2f1b6248 3549 enum zone_type j;
ed8ece2e 3550 int nid = pgdat->node_id;
1da177e4 3551 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3552 int ret;
1da177e4 3553
208d54e5 3554 pgdat_resize_init(pgdat);
1da177e4
LT
3555 pgdat->nr_zones = 0;
3556 init_waitqueue_head(&pgdat->kswapd_wait);
3557 pgdat->kswapd_max_order = 0;
52d4b9ac 3558 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3559
3560 for (j = 0; j < MAX_NR_ZONES; j++) {
3561 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3562 unsigned long size, realsize, memmap_pages;
b69408e8 3563 enum lru_list l;
1da177e4 3564
c713216d
MG
3565 size = zone_spanned_pages_in_node(nid, j, zones_size);
3566 realsize = size - zone_absent_pages_in_node(nid, j,
3567 zholes_size);
1da177e4 3568
0e0b864e
MG
3569 /*
3570 * Adjust realsize so that it accounts for how much memory
3571 * is used by this zone for memmap. This affects the watermark
3572 * and per-cpu initialisations
3573 */
f7232154
JW
3574 memmap_pages =
3575 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3576 if (realsize >= memmap_pages) {
3577 realsize -= memmap_pages;
5594c8c8
YL
3578 if (memmap_pages)
3579 printk(KERN_DEBUG
3580 " %s zone: %lu pages used for memmap\n",
3581 zone_names[j], memmap_pages);
0e0b864e
MG
3582 } else
3583 printk(KERN_WARNING
3584 " %s zone: %lu pages exceeds realsize %lu\n",
3585 zone_names[j], memmap_pages, realsize);
3586
6267276f
CL
3587 /* Account for reserved pages */
3588 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3589 realsize -= dma_reserve;
d903ef9f 3590 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3591 zone_names[0], dma_reserve);
0e0b864e
MG
3592 }
3593
98d2b0eb 3594 if (!is_highmem_idx(j))
1da177e4
LT
3595 nr_kernel_pages += realsize;
3596 nr_all_pages += realsize;
3597
3598 zone->spanned_pages = size;
3599 zone->present_pages = realsize;
9614634f 3600#ifdef CONFIG_NUMA
d5f541ed 3601 zone->node = nid;
8417bba4 3602 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3603 / 100;
0ff38490 3604 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3605#endif
1da177e4
LT
3606 zone->name = zone_names[j];
3607 spin_lock_init(&zone->lock);
3608 spin_lock_init(&zone->lru_lock);
bdc8cb98 3609 zone_seqlock_init(zone);
1da177e4 3610 zone->zone_pgdat = pgdat;
1da177e4 3611
3bb1a852 3612 zone->prev_priority = DEF_PRIORITY;
1da177e4 3613
ed8ece2e 3614 zone_pcp_init(zone);
b69408e8
CL
3615 for_each_lru(l) {
3616 INIT_LIST_HEAD(&zone->lru[l].list);
3617 zone->lru[l].nr_scan = 0;
3618 }
6e901571
KM
3619 zone->reclaim_stat.recent_rotated[0] = 0;
3620 zone->reclaim_stat.recent_rotated[1] = 0;
3621 zone->reclaim_stat.recent_scanned[0] = 0;
3622 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3623 zap_zone_vm_stats(zone);
e815af95 3624 zone->flags = 0;
1da177e4
LT
3625 if (!size)
3626 continue;
3627
ba72cb8c 3628 set_pageblock_order(pageblock_default_order());
835c134e 3629 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3630 ret = init_currently_empty_zone(zone, zone_start_pfn,
3631 size, MEMMAP_EARLY);
718127cc 3632 BUG_ON(ret);
76cdd58e 3633 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3634 zone_start_pfn += size;
1da177e4
LT
3635 }
3636}
3637
577a32f6 3638static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3639{
1da177e4
LT
3640 /* Skip empty nodes */
3641 if (!pgdat->node_spanned_pages)
3642 return;
3643
d41dee36 3644#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3645 /* ia64 gets its own node_mem_map, before this, without bootmem */
3646 if (!pgdat->node_mem_map) {
e984bb43 3647 unsigned long size, start, end;
d41dee36
AW
3648 struct page *map;
3649
e984bb43
BP
3650 /*
3651 * The zone's endpoints aren't required to be MAX_ORDER
3652 * aligned but the node_mem_map endpoints must be in order
3653 * for the buddy allocator to function correctly.
3654 */
3655 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3656 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3657 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3658 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3659 map = alloc_remap(pgdat->node_id, size);
3660 if (!map)
3661 map = alloc_bootmem_node(pgdat, size);
e984bb43 3662 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3663 }
12d810c1 3664#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3665 /*
3666 * With no DISCONTIG, the global mem_map is just set as node 0's
3667 */
c713216d 3668 if (pgdat == NODE_DATA(0)) {
1da177e4 3669 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3670#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3671 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3672 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3673#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3674 }
1da177e4 3675#endif
d41dee36 3676#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3677}
3678
9109fb7b
JW
3679void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3680 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3681{
9109fb7b
JW
3682 pg_data_t *pgdat = NODE_DATA(nid);
3683
1da177e4
LT
3684 pgdat->node_id = nid;
3685 pgdat->node_start_pfn = node_start_pfn;
c713216d 3686 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3687
3688 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3689#ifdef CONFIG_FLAT_NODE_MEM_MAP
3690 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3691 nid, (unsigned long)pgdat,
3692 (unsigned long)pgdat->node_mem_map);
3693#endif
1da177e4
LT
3694
3695 free_area_init_core(pgdat, zones_size, zholes_size);
3696}
3697
c713216d 3698#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3699
3700#if MAX_NUMNODES > 1
3701/*
3702 * Figure out the number of possible node ids.
3703 */
3704static void __init setup_nr_node_ids(void)
3705{
3706 unsigned int node;
3707 unsigned int highest = 0;
3708
3709 for_each_node_mask(node, node_possible_map)
3710 highest = node;
3711 nr_node_ids = highest + 1;
3712}
3713#else
3714static inline void setup_nr_node_ids(void)
3715{
3716}
3717#endif
3718
c713216d
MG
3719/**
3720 * add_active_range - Register a range of PFNs backed by physical memory
3721 * @nid: The node ID the range resides on
3722 * @start_pfn: The start PFN of the available physical memory
3723 * @end_pfn: The end PFN of the available physical memory
3724 *
3725 * These ranges are stored in an early_node_map[] and later used by
3726 * free_area_init_nodes() to calculate zone sizes and holes. If the
3727 * range spans a memory hole, it is up to the architecture to ensure
3728 * the memory is not freed by the bootmem allocator. If possible
3729 * the range being registered will be merged with existing ranges.
3730 */
3731void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3732 unsigned long end_pfn)
3733{
3734 int i;
3735
6b74ab97
MG
3736 mminit_dprintk(MMINIT_TRACE, "memory_register",
3737 "Entering add_active_range(%d, %#lx, %#lx) "
3738 "%d entries of %d used\n",
3739 nid, start_pfn, end_pfn,
3740 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3741
2dbb51c4
MG
3742 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3743
c713216d
MG
3744 /* Merge with existing active regions if possible */
3745 for (i = 0; i < nr_nodemap_entries; i++) {
3746 if (early_node_map[i].nid != nid)
3747 continue;
3748
3749 /* Skip if an existing region covers this new one */
3750 if (start_pfn >= early_node_map[i].start_pfn &&
3751 end_pfn <= early_node_map[i].end_pfn)
3752 return;
3753
3754 /* Merge forward if suitable */
3755 if (start_pfn <= early_node_map[i].end_pfn &&
3756 end_pfn > early_node_map[i].end_pfn) {
3757 early_node_map[i].end_pfn = end_pfn;
3758 return;
3759 }
3760
3761 /* Merge backward if suitable */
3762 if (start_pfn < early_node_map[i].end_pfn &&
3763 end_pfn >= early_node_map[i].start_pfn) {
3764 early_node_map[i].start_pfn = start_pfn;
3765 return;
3766 }
3767 }
3768
3769 /* Check that early_node_map is large enough */
3770 if (i >= MAX_ACTIVE_REGIONS) {
3771 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3772 MAX_ACTIVE_REGIONS);
3773 return;
3774 }
3775
3776 early_node_map[i].nid = nid;
3777 early_node_map[i].start_pfn = start_pfn;
3778 early_node_map[i].end_pfn = end_pfn;
3779 nr_nodemap_entries = i + 1;
3780}
3781
3782/**
cc1050ba 3783 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3784 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3785 * @start_pfn: The new PFN of the range
3786 * @end_pfn: The new PFN of the range
c713216d
MG
3787 *
3788 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3789 * The map is kept near the end physical page range that has already been
3790 * registered. This function allows an arch to shrink an existing registered
3791 * range.
c713216d 3792 */
cc1050ba
YL
3793void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3794 unsigned long end_pfn)
c713216d 3795{
cc1a9d86
YL
3796 int i, j;
3797 int removed = 0;
c713216d 3798
cc1050ba
YL
3799 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3800 nid, start_pfn, end_pfn);
3801
c713216d 3802 /* Find the old active region end and shrink */
cc1a9d86 3803 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3804 if (early_node_map[i].start_pfn >= start_pfn &&
3805 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3806 /* clear it */
cc1050ba 3807 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3808 early_node_map[i].end_pfn = 0;
3809 removed = 1;
3810 continue;
3811 }
cc1050ba
YL
3812 if (early_node_map[i].start_pfn < start_pfn &&
3813 early_node_map[i].end_pfn > start_pfn) {
3814 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3815 early_node_map[i].end_pfn = start_pfn;
3816 if (temp_end_pfn > end_pfn)
3817 add_active_range(nid, end_pfn, temp_end_pfn);
3818 continue;
3819 }
3820 if (early_node_map[i].start_pfn >= start_pfn &&
3821 early_node_map[i].end_pfn > end_pfn &&
3822 early_node_map[i].start_pfn < end_pfn) {
3823 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3824 continue;
c713216d 3825 }
cc1a9d86
YL
3826 }
3827
3828 if (!removed)
3829 return;
3830
3831 /* remove the blank ones */
3832 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3833 if (early_node_map[i].nid != nid)
3834 continue;
3835 if (early_node_map[i].end_pfn)
3836 continue;
3837 /* we found it, get rid of it */
3838 for (j = i; j < nr_nodemap_entries - 1; j++)
3839 memcpy(&early_node_map[j], &early_node_map[j+1],
3840 sizeof(early_node_map[j]));
3841 j = nr_nodemap_entries - 1;
3842 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3843 nr_nodemap_entries--;
3844 }
c713216d
MG
3845}
3846
3847/**
3848 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3849 *
c713216d
MG
3850 * During discovery, it may be found that a table like SRAT is invalid
3851 * and an alternative discovery method must be used. This function removes
3852 * all currently registered regions.
3853 */
88ca3b94 3854void __init remove_all_active_ranges(void)
c713216d
MG
3855{
3856 memset(early_node_map, 0, sizeof(early_node_map));
3857 nr_nodemap_entries = 0;
3858}
3859
3860/* Compare two active node_active_regions */
3861static int __init cmp_node_active_region(const void *a, const void *b)
3862{
3863 struct node_active_region *arange = (struct node_active_region *)a;
3864 struct node_active_region *brange = (struct node_active_region *)b;
3865
3866 /* Done this way to avoid overflows */
3867 if (arange->start_pfn > brange->start_pfn)
3868 return 1;
3869 if (arange->start_pfn < brange->start_pfn)
3870 return -1;
3871
3872 return 0;
3873}
3874
3875/* sort the node_map by start_pfn */
3876static void __init sort_node_map(void)
3877{
3878 sort(early_node_map, (size_t)nr_nodemap_entries,
3879 sizeof(struct node_active_region),
3880 cmp_node_active_region, NULL);
3881}
3882
a6af2bc3 3883/* Find the lowest pfn for a node */
b69a7288 3884static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3885{
3886 int i;
a6af2bc3 3887 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3888
c713216d
MG
3889 /* Assuming a sorted map, the first range found has the starting pfn */
3890 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3891 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3892
a6af2bc3
MG
3893 if (min_pfn == ULONG_MAX) {
3894 printk(KERN_WARNING
2bc0d261 3895 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3896 return 0;
3897 }
3898
3899 return min_pfn;
c713216d
MG
3900}
3901
3902/**
3903 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3904 *
3905 * It returns the minimum PFN based on information provided via
88ca3b94 3906 * add_active_range().
c713216d
MG
3907 */
3908unsigned long __init find_min_pfn_with_active_regions(void)
3909{
3910 return find_min_pfn_for_node(MAX_NUMNODES);
3911}
3912
37b07e41
LS
3913/*
3914 * early_calculate_totalpages()
3915 * Sum pages in active regions for movable zone.
3916 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3917 */
484f51f8 3918static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3919{
3920 int i;
3921 unsigned long totalpages = 0;
3922
37b07e41
LS
3923 for (i = 0; i < nr_nodemap_entries; i++) {
3924 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3925 early_node_map[i].start_pfn;
37b07e41
LS
3926 totalpages += pages;
3927 if (pages)
3928 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3929 }
3930 return totalpages;
7e63efef
MG
3931}
3932
2a1e274a
MG
3933/*
3934 * Find the PFN the Movable zone begins in each node. Kernel memory
3935 * is spread evenly between nodes as long as the nodes have enough
3936 * memory. When they don't, some nodes will have more kernelcore than
3937 * others
3938 */
b69a7288 3939static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3940{
3941 int i, nid;
3942 unsigned long usable_startpfn;
3943 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3944 unsigned long totalpages = early_calculate_totalpages();
3945 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3946
7e63efef
MG
3947 /*
3948 * If movablecore was specified, calculate what size of
3949 * kernelcore that corresponds so that memory usable for
3950 * any allocation type is evenly spread. If both kernelcore
3951 * and movablecore are specified, then the value of kernelcore
3952 * will be used for required_kernelcore if it's greater than
3953 * what movablecore would have allowed.
3954 */
3955 if (required_movablecore) {
7e63efef
MG
3956 unsigned long corepages;
3957
3958 /*
3959 * Round-up so that ZONE_MOVABLE is at least as large as what
3960 * was requested by the user
3961 */
3962 required_movablecore =
3963 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3964 corepages = totalpages - required_movablecore;
3965
3966 required_kernelcore = max(required_kernelcore, corepages);
3967 }
3968
2a1e274a
MG
3969 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3970 if (!required_kernelcore)
3971 return;
3972
3973 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3974 find_usable_zone_for_movable();
3975 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3976
3977restart:
3978 /* Spread kernelcore memory as evenly as possible throughout nodes */
3979 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3980 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3981 /*
3982 * Recalculate kernelcore_node if the division per node
3983 * now exceeds what is necessary to satisfy the requested
3984 * amount of memory for the kernel
3985 */
3986 if (required_kernelcore < kernelcore_node)
3987 kernelcore_node = required_kernelcore / usable_nodes;
3988
3989 /*
3990 * As the map is walked, we track how much memory is usable
3991 * by the kernel using kernelcore_remaining. When it is
3992 * 0, the rest of the node is usable by ZONE_MOVABLE
3993 */
3994 kernelcore_remaining = kernelcore_node;
3995
3996 /* Go through each range of PFNs within this node */
3997 for_each_active_range_index_in_nid(i, nid) {
3998 unsigned long start_pfn, end_pfn;
3999 unsigned long size_pages;
4000
4001 start_pfn = max(early_node_map[i].start_pfn,
4002 zone_movable_pfn[nid]);
4003 end_pfn = early_node_map[i].end_pfn;
4004 if (start_pfn >= end_pfn)
4005 continue;
4006
4007 /* Account for what is only usable for kernelcore */
4008 if (start_pfn < usable_startpfn) {
4009 unsigned long kernel_pages;
4010 kernel_pages = min(end_pfn, usable_startpfn)
4011 - start_pfn;
4012
4013 kernelcore_remaining -= min(kernel_pages,
4014 kernelcore_remaining);
4015 required_kernelcore -= min(kernel_pages,
4016 required_kernelcore);
4017
4018 /* Continue if range is now fully accounted */
4019 if (end_pfn <= usable_startpfn) {
4020
4021 /*
4022 * Push zone_movable_pfn to the end so
4023 * that if we have to rebalance
4024 * kernelcore across nodes, we will
4025 * not double account here
4026 */
4027 zone_movable_pfn[nid] = end_pfn;
4028 continue;
4029 }
4030 start_pfn = usable_startpfn;
4031 }
4032
4033 /*
4034 * The usable PFN range for ZONE_MOVABLE is from
4035 * start_pfn->end_pfn. Calculate size_pages as the
4036 * number of pages used as kernelcore
4037 */
4038 size_pages = end_pfn - start_pfn;
4039 if (size_pages > kernelcore_remaining)
4040 size_pages = kernelcore_remaining;
4041 zone_movable_pfn[nid] = start_pfn + size_pages;
4042
4043 /*
4044 * Some kernelcore has been met, update counts and
4045 * break if the kernelcore for this node has been
4046 * satisified
4047 */
4048 required_kernelcore -= min(required_kernelcore,
4049 size_pages);
4050 kernelcore_remaining -= size_pages;
4051 if (!kernelcore_remaining)
4052 break;
4053 }
4054 }
4055
4056 /*
4057 * If there is still required_kernelcore, we do another pass with one
4058 * less node in the count. This will push zone_movable_pfn[nid] further
4059 * along on the nodes that still have memory until kernelcore is
4060 * satisified
4061 */
4062 usable_nodes--;
4063 if (usable_nodes && required_kernelcore > usable_nodes)
4064 goto restart;
4065
4066 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4067 for (nid = 0; nid < MAX_NUMNODES; nid++)
4068 zone_movable_pfn[nid] =
4069 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4070}
4071
37b07e41
LS
4072/* Any regular memory on that node ? */
4073static void check_for_regular_memory(pg_data_t *pgdat)
4074{
4075#ifdef CONFIG_HIGHMEM
4076 enum zone_type zone_type;
4077
4078 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4079 struct zone *zone = &pgdat->node_zones[zone_type];
4080 if (zone->present_pages)
4081 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4082 }
4083#endif
4084}
4085
c713216d
MG
4086/**
4087 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4088 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4089 *
4090 * This will call free_area_init_node() for each active node in the system.
4091 * Using the page ranges provided by add_active_range(), the size of each
4092 * zone in each node and their holes is calculated. If the maximum PFN
4093 * between two adjacent zones match, it is assumed that the zone is empty.
4094 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4095 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4096 * starts where the previous one ended. For example, ZONE_DMA32 starts
4097 * at arch_max_dma_pfn.
4098 */
4099void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4100{
4101 unsigned long nid;
db99100d 4102 int i;
c713216d 4103
a6af2bc3
MG
4104 /* Sort early_node_map as initialisation assumes it is sorted */
4105 sort_node_map();
4106
c713216d
MG
4107 /* Record where the zone boundaries are */
4108 memset(arch_zone_lowest_possible_pfn, 0,
4109 sizeof(arch_zone_lowest_possible_pfn));
4110 memset(arch_zone_highest_possible_pfn, 0,
4111 sizeof(arch_zone_highest_possible_pfn));
4112 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4113 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4114 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4115 if (i == ZONE_MOVABLE)
4116 continue;
c713216d
MG
4117 arch_zone_lowest_possible_pfn[i] =
4118 arch_zone_highest_possible_pfn[i-1];
4119 arch_zone_highest_possible_pfn[i] =
4120 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4121 }
2a1e274a
MG
4122 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4123 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4124
4125 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4126 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4127 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4128
c713216d
MG
4129 /* Print out the zone ranges */
4130 printk("Zone PFN ranges:\n");
2a1e274a
MG
4131 for (i = 0; i < MAX_NR_ZONES; i++) {
4132 if (i == ZONE_MOVABLE)
4133 continue;
5dab8ec1 4134 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4135 zone_names[i],
4136 arch_zone_lowest_possible_pfn[i],
4137 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4138 }
4139
4140 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4141 printk("Movable zone start PFN for each node\n");
4142 for (i = 0; i < MAX_NUMNODES; i++) {
4143 if (zone_movable_pfn[i])
4144 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4145 }
c713216d
MG
4146
4147 /* Print out the early_node_map[] */
4148 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4149 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4150 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4151 early_node_map[i].start_pfn,
4152 early_node_map[i].end_pfn);
4153
4154 /* Initialise every node */
708614e6 4155 mminit_verify_pageflags_layout();
8ef82866 4156 setup_nr_node_ids();
c713216d
MG
4157 for_each_online_node(nid) {
4158 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4159 free_area_init_node(nid, NULL,
c713216d 4160 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4161
4162 /* Any memory on that node */
4163 if (pgdat->node_present_pages)
4164 node_set_state(nid, N_HIGH_MEMORY);
4165 check_for_regular_memory(pgdat);
c713216d
MG
4166 }
4167}
2a1e274a 4168
7e63efef 4169static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4170{
4171 unsigned long long coremem;
4172 if (!p)
4173 return -EINVAL;
4174
4175 coremem = memparse(p, &p);
7e63efef 4176 *core = coremem >> PAGE_SHIFT;
2a1e274a 4177
7e63efef 4178 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4179 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4180
4181 return 0;
4182}
ed7ed365 4183
7e63efef
MG
4184/*
4185 * kernelcore=size sets the amount of memory for use for allocations that
4186 * cannot be reclaimed or migrated.
4187 */
4188static int __init cmdline_parse_kernelcore(char *p)
4189{
4190 return cmdline_parse_core(p, &required_kernelcore);
4191}
4192
4193/*
4194 * movablecore=size sets the amount of memory for use for allocations that
4195 * can be reclaimed or migrated.
4196 */
4197static int __init cmdline_parse_movablecore(char *p)
4198{
4199 return cmdline_parse_core(p, &required_movablecore);
4200}
4201
ed7ed365 4202early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4203early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4204
c713216d
MG
4205#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4206
0e0b864e 4207/**
88ca3b94
RD
4208 * set_dma_reserve - set the specified number of pages reserved in the first zone
4209 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4210 *
4211 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4212 * In the DMA zone, a significant percentage may be consumed by kernel image
4213 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4214 * function may optionally be used to account for unfreeable pages in the
4215 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4216 * smaller per-cpu batchsize.
0e0b864e
MG
4217 */
4218void __init set_dma_reserve(unsigned long new_dma_reserve)
4219{
4220 dma_reserve = new_dma_reserve;
4221}
4222
93b7504e 4223#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4224struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4225EXPORT_SYMBOL(contig_page_data);
93b7504e 4226#endif
1da177e4
LT
4227
4228void __init free_area_init(unsigned long *zones_size)
4229{
9109fb7b 4230 free_area_init_node(0, zones_size,
1da177e4
LT
4231 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4232}
1da177e4 4233
1da177e4
LT
4234static int page_alloc_cpu_notify(struct notifier_block *self,
4235 unsigned long action, void *hcpu)
4236{
4237 int cpu = (unsigned long)hcpu;
1da177e4 4238
8bb78442 4239 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4240 drain_pages(cpu);
4241
4242 /*
4243 * Spill the event counters of the dead processor
4244 * into the current processors event counters.
4245 * This artificially elevates the count of the current
4246 * processor.
4247 */
f8891e5e 4248 vm_events_fold_cpu(cpu);
9f8f2172
CL
4249
4250 /*
4251 * Zero the differential counters of the dead processor
4252 * so that the vm statistics are consistent.
4253 *
4254 * This is only okay since the processor is dead and cannot
4255 * race with what we are doing.
4256 */
2244b95a 4257 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4258 }
4259 return NOTIFY_OK;
4260}
1da177e4
LT
4261
4262void __init page_alloc_init(void)
4263{
4264 hotcpu_notifier(page_alloc_cpu_notify, 0);
4265}
4266
cb45b0e9
HA
4267/*
4268 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4269 * or min_free_kbytes changes.
4270 */
4271static void calculate_totalreserve_pages(void)
4272{
4273 struct pglist_data *pgdat;
4274 unsigned long reserve_pages = 0;
2f6726e5 4275 enum zone_type i, j;
cb45b0e9
HA
4276
4277 for_each_online_pgdat(pgdat) {
4278 for (i = 0; i < MAX_NR_ZONES; i++) {
4279 struct zone *zone = pgdat->node_zones + i;
4280 unsigned long max = 0;
4281
4282 /* Find valid and maximum lowmem_reserve in the zone */
4283 for (j = i; j < MAX_NR_ZONES; j++) {
4284 if (zone->lowmem_reserve[j] > max)
4285 max = zone->lowmem_reserve[j];
4286 }
4287
4288 /* we treat pages_high as reserved pages. */
4289 max += zone->pages_high;
4290
4291 if (max > zone->present_pages)
4292 max = zone->present_pages;
4293 reserve_pages += max;
4294 }
4295 }
4296 totalreserve_pages = reserve_pages;
4297}
4298
1da177e4
LT
4299/*
4300 * setup_per_zone_lowmem_reserve - called whenever
4301 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4302 * has a correct pages reserved value, so an adequate number of
4303 * pages are left in the zone after a successful __alloc_pages().
4304 */
4305static void setup_per_zone_lowmem_reserve(void)
4306{
4307 struct pglist_data *pgdat;
2f6726e5 4308 enum zone_type j, idx;
1da177e4 4309
ec936fc5 4310 for_each_online_pgdat(pgdat) {
1da177e4
LT
4311 for (j = 0; j < MAX_NR_ZONES; j++) {
4312 struct zone *zone = pgdat->node_zones + j;
4313 unsigned long present_pages = zone->present_pages;
4314
4315 zone->lowmem_reserve[j] = 0;
4316
2f6726e5
CL
4317 idx = j;
4318 while (idx) {
1da177e4
LT
4319 struct zone *lower_zone;
4320
2f6726e5
CL
4321 idx--;
4322
1da177e4
LT
4323 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4324 sysctl_lowmem_reserve_ratio[idx] = 1;
4325
4326 lower_zone = pgdat->node_zones + idx;
4327 lower_zone->lowmem_reserve[j] = present_pages /
4328 sysctl_lowmem_reserve_ratio[idx];
4329 present_pages += lower_zone->present_pages;
4330 }
4331 }
4332 }
cb45b0e9
HA
4333
4334 /* update totalreserve_pages */
4335 calculate_totalreserve_pages();
1da177e4
LT
4336}
4337
88ca3b94
RD
4338/**
4339 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4340 *
4341 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4342 * with respect to min_free_kbytes.
1da177e4 4343 */
3947be19 4344void setup_per_zone_pages_min(void)
1da177e4
LT
4345{
4346 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4347 unsigned long lowmem_pages = 0;
4348 struct zone *zone;
4349 unsigned long flags;
4350
4351 /* Calculate total number of !ZONE_HIGHMEM pages */
4352 for_each_zone(zone) {
4353 if (!is_highmem(zone))
4354 lowmem_pages += zone->present_pages;
4355 }
4356
4357 for_each_zone(zone) {
ac924c60
AM
4358 u64 tmp;
4359
1125b4e3 4360 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4361 tmp = (u64)pages_min * zone->present_pages;
4362 do_div(tmp, lowmem_pages);
1da177e4
LT
4363 if (is_highmem(zone)) {
4364 /*
669ed175
NP
4365 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4366 * need highmem pages, so cap pages_min to a small
4367 * value here.
4368 *
4369 * The (pages_high-pages_low) and (pages_low-pages_min)
4370 * deltas controls asynch page reclaim, and so should
4371 * not be capped for highmem.
1da177e4
LT
4372 */
4373 int min_pages;
4374
4375 min_pages = zone->present_pages / 1024;
4376 if (min_pages < SWAP_CLUSTER_MAX)
4377 min_pages = SWAP_CLUSTER_MAX;
4378 if (min_pages > 128)
4379 min_pages = 128;
4380 zone->pages_min = min_pages;
4381 } else {
669ed175
NP
4382 /*
4383 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4384 * proportionate to the zone's size.
4385 */
669ed175 4386 zone->pages_min = tmp;
1da177e4
LT
4387 }
4388
ac924c60
AM
4389 zone->pages_low = zone->pages_min + (tmp >> 2);
4390 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4391 setup_zone_migrate_reserve(zone);
1125b4e3 4392 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4393 }
cb45b0e9
HA
4394
4395 /* update totalreserve_pages */
4396 calculate_totalreserve_pages();
1da177e4
LT
4397}
4398
556adecb
RR
4399/**
4400 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4401 *
4402 * The inactive anon list should be small enough that the VM never has to
4403 * do too much work, but large enough that each inactive page has a chance
4404 * to be referenced again before it is swapped out.
4405 *
4406 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4407 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4408 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4409 * the anonymous pages are kept on the inactive list.
4410 *
4411 * total target max
4412 * memory ratio inactive anon
4413 * -------------------------------------
4414 * 10MB 1 5MB
4415 * 100MB 1 50MB
4416 * 1GB 3 250MB
4417 * 10GB 10 0.9GB
4418 * 100GB 31 3GB
4419 * 1TB 101 10GB
4420 * 10TB 320 32GB
4421 */
efab8186 4422static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4423{
4424 struct zone *zone;
4425
4426 for_each_zone(zone) {
4427 unsigned int gb, ratio;
4428
4429 /* Zone size in gigabytes */
4430 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4431 ratio = int_sqrt(10 * gb);
4432 if (!ratio)
4433 ratio = 1;
4434
4435 zone->inactive_ratio = ratio;
4436 }
4437}
4438
1da177e4
LT
4439/*
4440 * Initialise min_free_kbytes.
4441 *
4442 * For small machines we want it small (128k min). For large machines
4443 * we want it large (64MB max). But it is not linear, because network
4444 * bandwidth does not increase linearly with machine size. We use
4445 *
4446 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4447 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4448 *
4449 * which yields
4450 *
4451 * 16MB: 512k
4452 * 32MB: 724k
4453 * 64MB: 1024k
4454 * 128MB: 1448k
4455 * 256MB: 2048k
4456 * 512MB: 2896k
4457 * 1024MB: 4096k
4458 * 2048MB: 5792k
4459 * 4096MB: 8192k
4460 * 8192MB: 11584k
4461 * 16384MB: 16384k
4462 */
4463static int __init init_per_zone_pages_min(void)
4464{
4465 unsigned long lowmem_kbytes;
4466
4467 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4468
4469 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4470 if (min_free_kbytes < 128)
4471 min_free_kbytes = 128;
4472 if (min_free_kbytes > 65536)
4473 min_free_kbytes = 65536;
4474 setup_per_zone_pages_min();
4475 setup_per_zone_lowmem_reserve();
556adecb 4476 setup_per_zone_inactive_ratio();
1da177e4
LT
4477 return 0;
4478}
4479module_init(init_per_zone_pages_min)
4480
4481/*
4482 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4483 * that we can call two helper functions whenever min_free_kbytes
4484 * changes.
4485 */
4486int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4487 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4488{
4489 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4490 if (write)
4491 setup_per_zone_pages_min();
1da177e4
LT
4492 return 0;
4493}
4494
9614634f
CL
4495#ifdef CONFIG_NUMA
4496int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4497 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4498{
4499 struct zone *zone;
4500 int rc;
4501
4502 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4503 if (rc)
4504 return rc;
4505
4506 for_each_zone(zone)
8417bba4 4507 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4508 sysctl_min_unmapped_ratio) / 100;
4509 return 0;
4510}
0ff38490
CL
4511
4512int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4513 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4514{
4515 struct zone *zone;
4516 int rc;
4517
4518 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4519 if (rc)
4520 return rc;
4521
4522 for_each_zone(zone)
4523 zone->min_slab_pages = (zone->present_pages *
4524 sysctl_min_slab_ratio) / 100;
4525 return 0;
4526}
9614634f
CL
4527#endif
4528
1da177e4
LT
4529/*
4530 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4531 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4532 * whenever sysctl_lowmem_reserve_ratio changes.
4533 *
4534 * The reserve ratio obviously has absolutely no relation with the
4535 * pages_min watermarks. The lowmem reserve ratio can only make sense
4536 * if in function of the boot time zone sizes.
4537 */
4538int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4539 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4540{
4541 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4542 setup_per_zone_lowmem_reserve();
4543 return 0;
4544}
4545
8ad4b1fb
RS
4546/*
4547 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4548 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4549 * can have before it gets flushed back to buddy allocator.
4550 */
4551
4552int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4553 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4554{
4555 struct zone *zone;
4556 unsigned int cpu;
4557 int ret;
4558
4559 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4560 if (!write || (ret == -EINVAL))
4561 return ret;
4562 for_each_zone(zone) {
4563 for_each_online_cpu(cpu) {
4564 unsigned long high;
4565 high = zone->present_pages / percpu_pagelist_fraction;
4566 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4567 }
4568 }
4569 return 0;
4570}
4571
f034b5d4 4572int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4573
4574#ifdef CONFIG_NUMA
4575static int __init set_hashdist(char *str)
4576{
4577 if (!str)
4578 return 0;
4579 hashdist = simple_strtoul(str, &str, 0);
4580 return 1;
4581}
4582__setup("hashdist=", set_hashdist);
4583#endif
4584
4585/*
4586 * allocate a large system hash table from bootmem
4587 * - it is assumed that the hash table must contain an exact power-of-2
4588 * quantity of entries
4589 * - limit is the number of hash buckets, not the total allocation size
4590 */
4591void *__init alloc_large_system_hash(const char *tablename,
4592 unsigned long bucketsize,
4593 unsigned long numentries,
4594 int scale,
4595 int flags,
4596 unsigned int *_hash_shift,
4597 unsigned int *_hash_mask,
4598 unsigned long limit)
4599{
4600 unsigned long long max = limit;
4601 unsigned long log2qty, size;
4602 void *table = NULL;
4603
4604 /* allow the kernel cmdline to have a say */
4605 if (!numentries) {
4606 /* round applicable memory size up to nearest megabyte */
04903664 4607 numentries = nr_kernel_pages;
1da177e4
LT
4608 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4609 numentries >>= 20 - PAGE_SHIFT;
4610 numentries <<= 20 - PAGE_SHIFT;
4611
4612 /* limit to 1 bucket per 2^scale bytes of low memory */
4613 if (scale > PAGE_SHIFT)
4614 numentries >>= (scale - PAGE_SHIFT);
4615 else
4616 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4617
4618 /* Make sure we've got at least a 0-order allocation.. */
4619 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4620 numentries = PAGE_SIZE / bucketsize;
1da177e4 4621 }
6e692ed3 4622 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4623
4624 /* limit allocation size to 1/16 total memory by default */
4625 if (max == 0) {
4626 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4627 do_div(max, bucketsize);
4628 }
4629
4630 if (numentries > max)
4631 numentries = max;
4632
f0d1b0b3 4633 log2qty = ilog2(numentries);
1da177e4
LT
4634
4635 do {
4636 size = bucketsize << log2qty;
4637 if (flags & HASH_EARLY)
74768ed8 4638 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4639 else if (hashdist)
4640 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4641 else {
2309f9e6 4642 unsigned long order = get_order(size);
6c0db466
HD
4643
4644 if (order < MAX_ORDER)
4645 table = (void *)__get_free_pages(GFP_ATOMIC,
4646 order);
1037b83b
ED
4647 /*
4648 * If bucketsize is not a power-of-two, we may free
4649 * some pages at the end of hash table.
4650 */
4651 if (table) {
4652 unsigned long alloc_end = (unsigned long)table +
4653 (PAGE_SIZE << order);
4654 unsigned long used = (unsigned long)table +
4655 PAGE_ALIGN(size);
4656 split_page(virt_to_page(table), order);
4657 while (used < alloc_end) {
4658 free_page(used);
4659 used += PAGE_SIZE;
4660 }
4661 }
1da177e4
LT
4662 }
4663 } while (!table && size > PAGE_SIZE && --log2qty);
4664
4665 if (!table)
4666 panic("Failed to allocate %s hash table\n", tablename);
4667
b49ad484 4668 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4669 tablename,
4670 (1U << log2qty),
f0d1b0b3 4671 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4672 size);
4673
4674 if (_hash_shift)
4675 *_hash_shift = log2qty;
4676 if (_hash_mask)
4677 *_hash_mask = (1 << log2qty) - 1;
4678
dbb1f81c
CM
4679 /*
4680 * If hashdist is set, the table allocation is done with __vmalloc()
4681 * which invokes the kmemleak_alloc() callback. This function may also
4682 * be called before the slab and kmemleak are initialised when
4683 * kmemleak simply buffers the request to be executed later
4684 * (GFP_ATOMIC flag ignored in this case).
4685 */
4686 if (!hashdist)
4687 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4688
1da177e4
LT
4689 return table;
4690}
a117e66e 4691
835c134e
MG
4692/* Return a pointer to the bitmap storing bits affecting a block of pages */
4693static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4694 unsigned long pfn)
4695{
4696#ifdef CONFIG_SPARSEMEM
4697 return __pfn_to_section(pfn)->pageblock_flags;
4698#else
4699 return zone->pageblock_flags;
4700#endif /* CONFIG_SPARSEMEM */
4701}
4702
4703static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4704{
4705#ifdef CONFIG_SPARSEMEM
4706 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4707 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4708#else
4709 pfn = pfn - zone->zone_start_pfn;
d9c23400 4710 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4711#endif /* CONFIG_SPARSEMEM */
4712}
4713
4714/**
d9c23400 4715 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4716 * @page: The page within the block of interest
4717 * @start_bitidx: The first bit of interest to retrieve
4718 * @end_bitidx: The last bit of interest
4719 * returns pageblock_bits flags
4720 */
4721unsigned long get_pageblock_flags_group(struct page *page,
4722 int start_bitidx, int end_bitidx)
4723{
4724 struct zone *zone;
4725 unsigned long *bitmap;
4726 unsigned long pfn, bitidx;
4727 unsigned long flags = 0;
4728 unsigned long value = 1;
4729
4730 zone = page_zone(page);
4731 pfn = page_to_pfn(page);
4732 bitmap = get_pageblock_bitmap(zone, pfn);
4733 bitidx = pfn_to_bitidx(zone, pfn);
4734
4735 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4736 if (test_bit(bitidx + start_bitidx, bitmap))
4737 flags |= value;
6220ec78 4738
835c134e
MG
4739 return flags;
4740}
4741
4742/**
d9c23400 4743 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4744 * @page: The page within the block of interest
4745 * @start_bitidx: The first bit of interest
4746 * @end_bitidx: The last bit of interest
4747 * @flags: The flags to set
4748 */
4749void set_pageblock_flags_group(struct page *page, unsigned long flags,
4750 int start_bitidx, int end_bitidx)
4751{
4752 struct zone *zone;
4753 unsigned long *bitmap;
4754 unsigned long pfn, bitidx;
4755 unsigned long value = 1;
4756
4757 zone = page_zone(page);
4758 pfn = page_to_pfn(page);
4759 bitmap = get_pageblock_bitmap(zone, pfn);
4760 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4761 VM_BUG_ON(pfn < zone->zone_start_pfn);
4762 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4763
4764 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4765 if (flags & value)
4766 __set_bit(bitidx + start_bitidx, bitmap);
4767 else
4768 __clear_bit(bitidx + start_bitidx, bitmap);
4769}
a5d76b54
KH
4770
4771/*
4772 * This is designed as sub function...plz see page_isolation.c also.
4773 * set/clear page block's type to be ISOLATE.
4774 * page allocater never alloc memory from ISOLATE block.
4775 */
4776
4777int set_migratetype_isolate(struct page *page)
4778{
4779 struct zone *zone;
4780 unsigned long flags;
4781 int ret = -EBUSY;
4782
4783 zone = page_zone(page);
4784 spin_lock_irqsave(&zone->lock, flags);
4785 /*
4786 * In future, more migrate types will be able to be isolation target.
4787 */
4788 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4789 goto out;
4790 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4791 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4792 ret = 0;
4793out:
4794 spin_unlock_irqrestore(&zone->lock, flags);
4795 if (!ret)
9f8f2172 4796 drain_all_pages();
a5d76b54
KH
4797 return ret;
4798}
4799
4800void unset_migratetype_isolate(struct page *page)
4801{
4802 struct zone *zone;
4803 unsigned long flags;
4804 zone = page_zone(page);
4805 spin_lock_irqsave(&zone->lock, flags);
4806 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4807 goto out;
4808 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4809 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4810out:
4811 spin_unlock_irqrestore(&zone->lock, flags);
4812}
0c0e6195
KH
4813
4814#ifdef CONFIG_MEMORY_HOTREMOVE
4815/*
4816 * All pages in the range must be isolated before calling this.
4817 */
4818void
4819__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4820{
4821 struct page *page;
4822 struct zone *zone;
4823 int order, i;
4824 unsigned long pfn;
4825 unsigned long flags;
4826 /* find the first valid pfn */
4827 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4828 if (pfn_valid(pfn))
4829 break;
4830 if (pfn == end_pfn)
4831 return;
4832 zone = page_zone(pfn_to_page(pfn));
4833 spin_lock_irqsave(&zone->lock, flags);
4834 pfn = start_pfn;
4835 while (pfn < end_pfn) {
4836 if (!pfn_valid(pfn)) {
4837 pfn++;
4838 continue;
4839 }
4840 page = pfn_to_page(pfn);
4841 BUG_ON(page_count(page));
4842 BUG_ON(!PageBuddy(page));
4843 order = page_order(page);
4844#ifdef CONFIG_DEBUG_VM
4845 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4846 pfn, 1 << order, end_pfn);
4847#endif
4848 list_del(&page->lru);
4849 rmv_page_order(page);
4850 zone->free_area[order].nr_free--;
4851 __mod_zone_page_state(zone, NR_FREE_PAGES,
4852 - (1UL << order));
4853 for (i = 0; i < (1 << order); i++)
4854 SetPageReserved((page+i));
4855 pfn += (1 << order);
4856 }
4857 spin_unlock_irqrestore(&zone->lock, flags);
4858}
4859#endif