Documentation/memory.txt: remove some very outdated recommendations
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
56/*
13808910 57 * Array of node states.
1da177e4 58 */
13808910
CL
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67 [N_CPU] = { { [0] = 1UL } },
68#endif /* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
6c231b7b 72unsigned long totalram_pages __read_mostly;
cb45b0e9 73unsigned long totalreserve_pages __read_mostly;
22b31eec 74unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
dcce284a 76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 77
d9c23400
MG
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
d98c7a09 82static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 83
1da177e4
LT
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
1da177e4 94 */
2f1b6248 95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 96#ifdef CONFIG_ZONE_DMA
2f1b6248 97 256,
4b51d669 98#endif
fb0e7942 99#ifdef CONFIG_ZONE_DMA32
2f1b6248 100 256,
fb0e7942 101#endif
e53ef38d 102#ifdef CONFIG_HIGHMEM
2a1e274a 103 32,
e53ef38d 104#endif
2a1e274a 105 32,
2f1b6248 106};
1da177e4
LT
107
108EXPORT_SYMBOL(totalram_pages);
1da177e4 109
15ad7cdc 110static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248 112 "DMA",
4b51d669 113#endif
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248 115 "DMA32",
fb0e7942 116#endif
2f1b6248 117 "Normal",
e53ef38d 118#ifdef CONFIG_HIGHMEM
2a1e274a 119 "HighMem",
e53ef38d 120#endif
2a1e274a 121 "Movable",
2f1b6248
CL
122};
123
1da177e4
LT
124int min_free_kbytes = 1024;
125
86356ab1
YG
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
a3142c8e 128static unsigned long __meminitdata dma_reserve;
1da177e4 129
c713216d
MG
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
183ff22b 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
98011f56
JB
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 155 static unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
b69a7288 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 166int nr_online_nodes __read_mostly = 1;
418508c1 167EXPORT_SYMBOL(nr_node_ids);
62bc62a8 168EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
169#endif
170
9ef9acb0
MG
171int page_group_by_mobility_disabled __read_mostly;
172
b2a0ac88
MG
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
49255c61
MG
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
b2a0ac88
MG
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181}
182
7f33d49a
RW
183bool oom_killer_disabled __read_mostly;
184
13e7444b 185#ifdef CONFIG_DEBUG_VM
c6a57e19 186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 187{
bdc8cb98
DH
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
c6a57e19 191
bdc8cb98
DH
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
c6a57e19
DH
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
14e07298 205 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 206 return 0;
1da177e4 207 if (zone != page_zone(page))
c6a57e19
DH
208 return 0;
209
210 return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217 if (page_outside_zone_boundaries(zone, page))
1da177e4 218 return 1;
c6a57e19
DH
219 if (!page_is_consistent(zone, page))
220 return 1;
221
1da177e4
LT
222 return 0;
223}
13e7444b
NP
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227 return 0;
228}
229#endif
230
224abf92 231static void bad_page(struct page *page)
1da177e4 232{
d936cf9b
HD
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
1e9e6365
HD
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
1e9e6365 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 258 current->comm, page_to_pfn(page));
1e9e6365 259 printk(KERN_ALERT
3dc14741
HD
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
3dc14741 263
1da177e4 264 dump_stack();
d936cf9b 265out:
8cc3b392
HD
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
9f158333 268 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
269}
270
1da177e4
LT
271/*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
41d78ba5
HD
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
1da177e4 284 */
d98c7a09
HD
285
286static void free_compound_page(struct page *page)
287{
d85f3385 288 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
289}
290
01ad1c08 291void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
292{
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305}
306
8cc3b392 307static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
308{
309 int i;
310 int nr_pages = 1 << order;
8cc3b392 311 int bad = 0;
1da177e4 312
8cc3b392
HD
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
224abf92 315 bad_page(page);
8cc3b392
HD
316 bad++;
317 }
1da177e4 318
6d777953 319 __ClearPageHead(page);
8cc3b392 320
18229df5
AW
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
1da177e4 323
e713a21d 324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
d85f3385 328 __ClearPageTail(p);
1da177e4 329 }
8cc3b392
HD
330
331 return bad;
1da177e4 332}
1da177e4 333
17cf4406
NP
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336 int i;
337
6626c5d5
AM
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
725d704e 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 413 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
ed0ae21d
MG
444 struct zone *zone, unsigned int order,
445 int migratetype)
1da177e4
LT
446{
447 unsigned long page_idx;
1da177e4 448
224abf92 449 if (unlikely(PageCompound(page)))
8cc3b392
HD
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
1da177e4 452
ed0ae21d
MG
453 VM_BUG_ON(migratetype == -1);
454
1da177e4
LT
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
f2260e6b 457 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 458 VM_BUG_ON(bad_range(zone, page));
1da177e4 459
1da177e4
LT
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
1da177e4
LT
462 struct page *buddy;
463
1da177e4 464 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 465 if (!page_is_buddy(page, buddy, order))
3c82d0ce 466 break;
13e7444b 467
3c82d0ce 468 /* Our buddy is free, merge with it and move up one order. */
1da177e4 469 list_del(&buddy->lru);
b2a0ac88 470 zone->free_area[order].nr_free--;
1da177e4 471 rmv_page_order(buddy);
13e7444b 472 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
b2a0ac88
MG
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
480 zone->free_area[order].nr_free++;
481}
482
092cead6
KM
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
092cead6
KM
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
a3af9c38 502 (atomic_read(&page->_count) != 0) |
8cc3b392 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 504 bad_page(page);
79f4b7bf 505 return 1;
8cc3b392 506 }
79f4b7bf
HD
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
1da177e4
LT
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
207f36ee 515 * count is the number of pages to free.
1da177e4
LT
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
48db57f8
NP
523static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
1da177e4 525{
c54ad30c 526 spin_lock(&zone->lock);
e815af95 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 528 zone->pages_scanned = 0;
f2260e6b
MG
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
531 while (count--) {
532 struct page *page;
533
725d704e 534 VM_BUG_ON(list_empty(list));
1da177e4 535 page = list_entry(list->prev, struct page, lru);
48db57f8 536 /* have to delete it as __free_one_page list manipulates */
1da177e4 537 list_del(&page->lru);
ed0ae21d 538 __free_one_page(page, zone, order, page_private(page));
1da177e4 539 }
c54ad30c 540 spin_unlock(&zone->lock);
1da177e4
LT
541}
542
ed0ae21d
MG
543static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
1da177e4 545{
006d22d9 546 spin_lock(&zone->lock);
e815af95 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 548 zone->pages_scanned = 0;
f2260e6b
MG
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 551 __free_one_page(page, zone, order, migratetype);
006d22d9 552 spin_unlock(&zone->lock);
48db57f8
NP
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557 unsigned long flags;
1da177e4 558 int i;
8cc3b392 559 int bad = 0;
c277331d 560 int wasMlocked = TestClearPageMlocked(page);
1da177e4 561
b1eeab67
VN
562 kmemcheck_free_shadow(page, order);
563
1da177e4 564 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
565 bad += free_pages_check(page + i);
566 if (bad)
689bcebf
HD
567 return;
568
3ac7fe5a 569 if (!PageHighMem(page)) {
9858db50 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
dafb1367 574 arch_free_page(page, order);
48db57f8 575 kernel_map_pages(page, 1 << order, 0);
dafb1367 576
c54ad30c 577 local_irq_save(flags);
c277331d 578 if (unlikely(wasMlocked))
da456f14 579 free_page_mlock(page);
f8891e5e 580 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
c54ad30c 583 local_irq_restore(flags);
1da177e4
LT
584}
585
a226f6c8
DH
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
af370fb8 589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
590{
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_page(page);
a226f6c8 596 } else {
a226f6c8
DH
597 int loop;
598
545b1ea9 599 prefetchw(page);
a226f6c8
DH
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
545b1ea9
NP
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
a226f6c8
DH
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
7835e98b 609 set_page_refcounted(page);
545b1ea9 610 __free_pages(page, order);
a226f6c8
DH
611 }
612}
613
1da177e4
LT
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
085cc7d5 629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
630 int low, int high, struct free_area *area,
631 int migratetype)
1da177e4
LT
632{
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
725d704e 639 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 640 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
1da177e4
LT
644}
645
1da177e4
LT
646/*
647 * This page is about to be returned from the page allocator
648 */
17cf4406 649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 650{
92be2e33
NP
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
a3af9c38 653 (atomic_read(&page->_count) != 0) |
8cc3b392 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 655 bad_page(page);
689bcebf 656 return 1;
8cc3b392 657 }
689bcebf 658
4c21e2f2 659 set_page_private(page, 0);
7835e98b 660 set_page_refcounted(page);
cc102509
NP
661
662 arch_alloc_page(page, order);
1da177e4 663 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
689bcebf 671 return 0;
1da177e4
LT
672}
673
56fd56b8
MG
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
728ec980
MG
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
680 int migratetype)
681{
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
56fd56b8
MG
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702}
703
704
b2a0ac88
MG
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
714};
715
c361be55
MG
716/*
717 * Move the free pages in a range to the free lists of the requested type.
d9c23400 718 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
719 * boundary. If alignment is required, use move_freepages_block()
720 */
b69a7288
AB
721static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
c361be55
MG
724{
725 struct page *page;
726 unsigned long order;
d100313f 727 int pages_moved = 0;
c361be55
MG
728
729#ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
ac0e5b7a 735 * grouping pages by mobility
c361be55
MG
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740 for (page = start_page; page <= end_page;) {
344c790e
AL
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
c361be55
MG
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
d100313f 759 pages_moved += 1 << order;
c361be55
MG
760 }
761
d100313f 762 return pages_moved;
c361be55
MG
763}
764
b69a7288
AB
765static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
c361be55
MG
767{
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
d9c23400 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 773 start_page = pfn_to_page(start_pfn);
d9c23400
MG
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784}
785
b2a0ac88 786/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
789{
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
794
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
800
56fd56b8
MG
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
e010487d 804
b2a0ac88
MG
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
808
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
812
813 /*
c361be55 814 * If breaking a large block of pages, move all free
46dafbca
MG
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
b2a0ac88 818 */
d9c23400 819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
820 start_migratetype == MIGRATE_RECLAIMABLE ||
821 page_group_by_mobility_disabled) {
46dafbca
MG
822 unsigned long pages;
823 pages = move_freepages_block(zone, page,
824 start_migratetype);
825
826 /* Claim the whole block if over half of it is free */
dd5d241e
MG
827 if (pages >= (1 << (pageblock_order-1)) ||
828 page_group_by_mobility_disabled)
46dafbca
MG
829 set_pageblock_migratetype(page,
830 start_migratetype);
831
b2a0ac88 832 migratetype = start_migratetype;
c361be55 833 }
b2a0ac88
MG
834
835 /* Remove the page from the freelists */
836 list_del(&page->lru);
837 rmv_page_order(page);
b2a0ac88 838
d9c23400 839 if (current_order == pageblock_order)
b2a0ac88
MG
840 set_pageblock_migratetype(page,
841 start_migratetype);
842
843 expand(zone, page, order, current_order, area, migratetype);
844 return page;
845 }
846 }
847
728ec980 848 return NULL;
b2a0ac88
MG
849}
850
56fd56b8 851/*
1da177e4
LT
852 * Do the hard work of removing an element from the buddy allocator.
853 * Call me with the zone->lock already held.
854 */
b2a0ac88
MG
855static struct page *__rmqueue(struct zone *zone, unsigned int order,
856 int migratetype)
1da177e4 857{
1da177e4
LT
858 struct page *page;
859
728ec980 860retry_reserve:
56fd56b8 861 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 862
728ec980 863 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 864 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 865
728ec980
MG
866 /*
867 * Use MIGRATE_RESERVE rather than fail an allocation. goto
868 * is used because __rmqueue_smallest is an inline function
869 * and we want just one call site
870 */
871 if (!page) {
872 migratetype = MIGRATE_RESERVE;
873 goto retry_reserve;
874 }
875 }
876
b2a0ac88 877 return page;
1da177e4
LT
878}
879
880/*
881 * Obtain a specified number of elements from the buddy allocator, all under
882 * a single hold of the lock, for efficiency. Add them to the supplied list.
883 * Returns the number of new pages which were placed at *list.
884 */
885static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 886 unsigned long count, struct list_head *list,
e084b2d9 887 int migratetype, int cold)
1da177e4 888{
1da177e4 889 int i;
1da177e4 890
c54ad30c 891 spin_lock(&zone->lock);
1da177e4 892 for (i = 0; i < count; ++i) {
b2a0ac88 893 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 894 if (unlikely(page == NULL))
1da177e4 895 break;
81eabcbe
MG
896
897 /*
898 * Split buddy pages returned by expand() are received here
899 * in physical page order. The page is added to the callers and
900 * list and the list head then moves forward. From the callers
901 * perspective, the linked list is ordered by page number in
902 * some conditions. This is useful for IO devices that can
903 * merge IO requests if the physical pages are ordered
904 * properly.
905 */
e084b2d9
MG
906 if (likely(cold == 0))
907 list_add(&page->lru, list);
908 else
909 list_add_tail(&page->lru, list);
535131e6 910 set_page_private(page, migratetype);
81eabcbe 911 list = &page->lru;
1da177e4 912 }
f2260e6b 913 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 914 spin_unlock(&zone->lock);
085cc7d5 915 return i;
1da177e4
LT
916}
917
4ae7c039 918#ifdef CONFIG_NUMA
8fce4d8e 919/*
4037d452
CL
920 * Called from the vmstat counter updater to drain pagesets of this
921 * currently executing processor on remote nodes after they have
922 * expired.
923 *
879336c3
CL
924 * Note that this function must be called with the thread pinned to
925 * a single processor.
8fce4d8e 926 */
4037d452 927void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 928{
4ae7c039 929 unsigned long flags;
4037d452 930 int to_drain;
4ae7c039 931
4037d452
CL
932 local_irq_save(flags);
933 if (pcp->count >= pcp->batch)
934 to_drain = pcp->batch;
935 else
936 to_drain = pcp->count;
937 free_pages_bulk(zone, to_drain, &pcp->list, 0);
938 pcp->count -= to_drain;
939 local_irq_restore(flags);
4ae7c039
CL
940}
941#endif
942
9f8f2172
CL
943/*
944 * Drain pages of the indicated processor.
945 *
946 * The processor must either be the current processor and the
947 * thread pinned to the current processor or a processor that
948 * is not online.
949 */
950static void drain_pages(unsigned int cpu)
1da177e4 951{
c54ad30c 952 unsigned long flags;
1da177e4 953 struct zone *zone;
1da177e4 954
ee99c71c 955 for_each_populated_zone(zone) {
1da177e4 956 struct per_cpu_pageset *pset;
3dfa5721 957 struct per_cpu_pages *pcp;
1da177e4 958
e7c8d5c9 959 pset = zone_pcp(zone, cpu);
3dfa5721
CL
960
961 pcp = &pset->pcp;
962 local_irq_save(flags);
963 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
964 pcp->count = 0;
965 local_irq_restore(flags);
1da177e4
LT
966 }
967}
1da177e4 968
9f8f2172
CL
969/*
970 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
971 */
972void drain_local_pages(void *arg)
973{
974 drain_pages(smp_processor_id());
975}
976
977/*
978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
979 */
980void drain_all_pages(void)
981{
15c8b6c1 982 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
983}
984
296699de 985#ifdef CONFIG_HIBERNATION
1da177e4
LT
986
987void mark_free_pages(struct zone *zone)
988{
f623f0db
RW
989 unsigned long pfn, max_zone_pfn;
990 unsigned long flags;
b2a0ac88 991 int order, t;
1da177e4
LT
992 struct list_head *curr;
993
994 if (!zone->spanned_pages)
995 return;
996
997 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
998
999 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1000 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1001 if (pfn_valid(pfn)) {
1002 struct page *page = pfn_to_page(pfn);
1003
7be98234
RW
1004 if (!swsusp_page_is_forbidden(page))
1005 swsusp_unset_page_free(page);
f623f0db 1006 }
1da177e4 1007
b2a0ac88
MG
1008 for_each_migratetype_order(order, t) {
1009 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1010 unsigned long i;
1da177e4 1011
f623f0db
RW
1012 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1013 for (i = 0; i < (1UL << order); i++)
7be98234 1014 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1015 }
b2a0ac88 1016 }
1da177e4
LT
1017 spin_unlock_irqrestore(&zone->lock, flags);
1018}
e2c55dc8 1019#endif /* CONFIG_PM */
1da177e4 1020
1da177e4
LT
1021/*
1022 * Free a 0-order page
1023 */
920c7a5d 1024static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1025{
1026 struct zone *zone = page_zone(page);
1027 struct per_cpu_pages *pcp;
1028 unsigned long flags;
c277331d 1029 int wasMlocked = TestClearPageMlocked(page);
1da177e4 1030
b1eeab67
VN
1031 kmemcheck_free_shadow(page, 0);
1032
1da177e4
LT
1033 if (PageAnon(page))
1034 page->mapping = NULL;
224abf92 1035 if (free_pages_check(page))
689bcebf
HD
1036 return;
1037
3ac7fe5a 1038 if (!PageHighMem(page)) {
9858db50 1039 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1040 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1041 }
dafb1367 1042 arch_free_page(page, 0);
689bcebf
HD
1043 kernel_map_pages(page, 1, 0);
1044
3dfa5721 1045 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1046 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1047 local_irq_save(flags);
c277331d 1048 if (unlikely(wasMlocked))
da456f14 1049 free_page_mlock(page);
f8891e5e 1050 __count_vm_event(PGFREE);
da456f14 1051
3dfa5721
CL
1052 if (cold)
1053 list_add_tail(&page->lru, &pcp->list);
1054 else
1055 list_add(&page->lru, &pcp->list);
1da177e4 1056 pcp->count++;
48db57f8
NP
1057 if (pcp->count >= pcp->high) {
1058 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1059 pcp->count -= pcp->batch;
1060 }
1da177e4
LT
1061 local_irq_restore(flags);
1062 put_cpu();
1063}
1064
920c7a5d 1065void free_hot_page(struct page *page)
1da177e4
LT
1066{
1067 free_hot_cold_page(page, 0);
1068}
1069
920c7a5d 1070void free_cold_page(struct page *page)
1da177e4
LT
1071{
1072 free_hot_cold_page(page, 1);
1073}
1074
8dfcc9ba
NP
1075/*
1076 * split_page takes a non-compound higher-order page, and splits it into
1077 * n (1<<order) sub-pages: page[0..n]
1078 * Each sub-page must be freed individually.
1079 *
1080 * Note: this is probably too low level an operation for use in drivers.
1081 * Please consult with lkml before using this in your driver.
1082 */
1083void split_page(struct page *page, unsigned int order)
1084{
1085 int i;
1086
725d704e
NP
1087 VM_BUG_ON(PageCompound(page));
1088 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1089
1090#ifdef CONFIG_KMEMCHECK
1091 /*
1092 * Split shadow pages too, because free(page[0]) would
1093 * otherwise free the whole shadow.
1094 */
1095 if (kmemcheck_page_is_tracked(page))
1096 split_page(virt_to_page(page[0].shadow), order);
1097#endif
1098
7835e98b
NP
1099 for (i = 1; i < (1 << order); i++)
1100 set_page_refcounted(page + i);
8dfcc9ba 1101}
8dfcc9ba 1102
1da177e4
LT
1103/*
1104 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1105 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1106 * or two.
1107 */
0a15c3e9
MG
1108static inline
1109struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1110 struct zone *zone, int order, gfp_t gfp_flags,
1111 int migratetype)
1da177e4
LT
1112{
1113 unsigned long flags;
689bcebf 1114 struct page *page;
1da177e4 1115 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1116 int cpu;
1da177e4 1117
689bcebf 1118again:
a74609fa 1119 cpu = get_cpu();
48db57f8 1120 if (likely(order == 0)) {
1da177e4
LT
1121 struct per_cpu_pages *pcp;
1122
3dfa5721 1123 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1124 local_irq_save(flags);
a74609fa 1125 if (!pcp->count) {
941c7105 1126 pcp->count = rmqueue_bulk(zone, 0,
e084b2d9
MG
1127 pcp->batch, &pcp->list,
1128 migratetype, cold);
a74609fa
NP
1129 if (unlikely(!pcp->count))
1130 goto failed;
1da177e4 1131 }
b92a6edd 1132
535131e6 1133 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1134 if (cold) {
1135 list_for_each_entry_reverse(page, &pcp->list, lru)
1136 if (page_private(page) == migratetype)
1137 break;
1138 } else {
1139 list_for_each_entry(page, &pcp->list, lru)
1140 if (page_private(page) == migratetype)
1141 break;
1142 }
535131e6 1143
b92a6edd
MG
1144 /* Allocate more to the pcp list if necessary */
1145 if (unlikely(&page->lru == &pcp->list)) {
6fb332fa
SL
1146 int get_one_page = 0;
1147
535131e6 1148 pcp->count += rmqueue_bulk(zone, 0,
e084b2d9
MG
1149 pcp->batch, &pcp->list,
1150 migratetype, cold);
6fb332fa
SL
1151 list_for_each_entry(page, &pcp->list, lru) {
1152 if (get_pageblock_migratetype(page) !=
1153 MIGRATE_ISOLATE) {
1154 get_one_page = 1;
1155 break;
1156 }
1157 }
1158 if (!get_one_page)
1159 goto failed;
535131e6 1160 }
b92a6edd
MG
1161
1162 list_del(&page->lru);
1163 pcp->count--;
7fb1d9fc 1164 } else {
dab48dab
AM
1165 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1166 /*
1167 * __GFP_NOFAIL is not to be used in new code.
1168 *
1169 * All __GFP_NOFAIL callers should be fixed so that they
1170 * properly detect and handle allocation failures.
1171 *
1172 * We most definitely don't want callers attempting to
4923abf9 1173 * allocate greater than order-1 page units with
dab48dab
AM
1174 * __GFP_NOFAIL.
1175 */
4923abf9 1176 WARN_ON_ONCE(order > 1);
dab48dab 1177 }
1da177e4 1178 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1179 page = __rmqueue(zone, order, migratetype);
f2260e6b 1180 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1181 spin_unlock(&zone->lock);
1182 if (!page)
1183 goto failed;
1da177e4
LT
1184 }
1185
f8891e5e 1186 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1187 zone_statistics(preferred_zone, zone);
a74609fa
NP
1188 local_irq_restore(flags);
1189 put_cpu();
1da177e4 1190
725d704e 1191 VM_BUG_ON(bad_range(zone, page));
17cf4406 1192 if (prep_new_page(page, order, gfp_flags))
a74609fa 1193 goto again;
1da177e4 1194 return page;
a74609fa
NP
1195
1196failed:
1197 local_irq_restore(flags);
1198 put_cpu();
1199 return NULL;
1da177e4
LT
1200}
1201
41858966
MG
1202/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1203#define ALLOC_WMARK_MIN WMARK_MIN
1204#define ALLOC_WMARK_LOW WMARK_LOW
1205#define ALLOC_WMARK_HIGH WMARK_HIGH
1206#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1207
1208/* Mask to get the watermark bits */
1209#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1210
3148890b
NP
1211#define ALLOC_HARDER 0x10 /* try to alloc harder */
1212#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1213#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1214
933e312e
AM
1215#ifdef CONFIG_FAIL_PAGE_ALLOC
1216
1217static struct fail_page_alloc_attr {
1218 struct fault_attr attr;
1219
1220 u32 ignore_gfp_highmem;
1221 u32 ignore_gfp_wait;
54114994 1222 u32 min_order;
933e312e
AM
1223
1224#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1225
1226 struct dentry *ignore_gfp_highmem_file;
1227 struct dentry *ignore_gfp_wait_file;
54114994 1228 struct dentry *min_order_file;
933e312e
AM
1229
1230#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1231
1232} fail_page_alloc = {
1233 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1234 .ignore_gfp_wait = 1,
1235 .ignore_gfp_highmem = 1,
54114994 1236 .min_order = 1,
933e312e
AM
1237};
1238
1239static int __init setup_fail_page_alloc(char *str)
1240{
1241 return setup_fault_attr(&fail_page_alloc.attr, str);
1242}
1243__setup("fail_page_alloc=", setup_fail_page_alloc);
1244
1245static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1246{
54114994
AM
1247 if (order < fail_page_alloc.min_order)
1248 return 0;
933e312e
AM
1249 if (gfp_mask & __GFP_NOFAIL)
1250 return 0;
1251 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1252 return 0;
1253 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1254 return 0;
1255
1256 return should_fail(&fail_page_alloc.attr, 1 << order);
1257}
1258
1259#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1260
1261static int __init fail_page_alloc_debugfs(void)
1262{
1263 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1264 struct dentry *dir;
1265 int err;
1266
1267 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1268 "fail_page_alloc");
1269 if (err)
1270 return err;
1271 dir = fail_page_alloc.attr.dentries.dir;
1272
1273 fail_page_alloc.ignore_gfp_wait_file =
1274 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1275 &fail_page_alloc.ignore_gfp_wait);
1276
1277 fail_page_alloc.ignore_gfp_highmem_file =
1278 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1279 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1280 fail_page_alloc.min_order_file =
1281 debugfs_create_u32("min-order", mode, dir,
1282 &fail_page_alloc.min_order);
933e312e
AM
1283
1284 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1285 !fail_page_alloc.ignore_gfp_highmem_file ||
1286 !fail_page_alloc.min_order_file) {
933e312e
AM
1287 err = -ENOMEM;
1288 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1289 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1290 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1291 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1292 }
1293
1294 return err;
1295}
1296
1297late_initcall(fail_page_alloc_debugfs);
1298
1299#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1300
1301#else /* CONFIG_FAIL_PAGE_ALLOC */
1302
1303static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1304{
1305 return 0;
1306}
1307
1308#endif /* CONFIG_FAIL_PAGE_ALLOC */
1309
1da177e4
LT
1310/*
1311 * Return 1 if free pages are above 'mark'. This takes into account the order
1312 * of the allocation.
1313 */
1314int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1315 int classzone_idx, int alloc_flags)
1da177e4
LT
1316{
1317 /* free_pages my go negative - that's OK */
d23ad423
CL
1318 long min = mark;
1319 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1320 int o;
1321
7fb1d9fc 1322 if (alloc_flags & ALLOC_HIGH)
1da177e4 1323 min -= min / 2;
7fb1d9fc 1324 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1325 min -= min / 4;
1326
1327 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1328 return 0;
1329 for (o = 0; o < order; o++) {
1330 /* At the next order, this order's pages become unavailable */
1331 free_pages -= z->free_area[o].nr_free << o;
1332
1333 /* Require fewer higher order pages to be free */
1334 min >>= 1;
1335
1336 if (free_pages <= min)
1337 return 0;
1338 }
1339 return 1;
1340}
1341
9276b1bc
PJ
1342#ifdef CONFIG_NUMA
1343/*
1344 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1345 * skip over zones that are not allowed by the cpuset, or that have
1346 * been recently (in last second) found to be nearly full. See further
1347 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1348 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1349 *
1350 * If the zonelist cache is present in the passed in zonelist, then
1351 * returns a pointer to the allowed node mask (either the current
37b07e41 1352 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1353 *
1354 * If the zonelist cache is not available for this zonelist, does
1355 * nothing and returns NULL.
1356 *
1357 * If the fullzones BITMAP in the zonelist cache is stale (more than
1358 * a second since last zap'd) then we zap it out (clear its bits.)
1359 *
1360 * We hold off even calling zlc_setup, until after we've checked the
1361 * first zone in the zonelist, on the theory that most allocations will
1362 * be satisfied from that first zone, so best to examine that zone as
1363 * quickly as we can.
1364 */
1365static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366{
1367 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1368 nodemask_t *allowednodes; /* zonelist_cache approximation */
1369
1370 zlc = zonelist->zlcache_ptr;
1371 if (!zlc)
1372 return NULL;
1373
f05111f5 1374 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1375 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1376 zlc->last_full_zap = jiffies;
1377 }
1378
1379 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1380 &cpuset_current_mems_allowed :
37b07e41 1381 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1382 return allowednodes;
1383}
1384
1385/*
1386 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1387 * if it is worth looking at further for free memory:
1388 * 1) Check that the zone isn't thought to be full (doesn't have its
1389 * bit set in the zonelist_cache fullzones BITMAP).
1390 * 2) Check that the zones node (obtained from the zonelist_cache
1391 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1392 * Return true (non-zero) if zone is worth looking at further, or
1393 * else return false (zero) if it is not.
1394 *
1395 * This check -ignores- the distinction between various watermarks,
1396 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1397 * found to be full for any variation of these watermarks, it will
1398 * be considered full for up to one second by all requests, unless
1399 * we are so low on memory on all allowed nodes that we are forced
1400 * into the second scan of the zonelist.
1401 *
1402 * In the second scan we ignore this zonelist cache and exactly
1403 * apply the watermarks to all zones, even it is slower to do so.
1404 * We are low on memory in the second scan, and should leave no stone
1405 * unturned looking for a free page.
1406 */
dd1a239f 1407static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1408 nodemask_t *allowednodes)
1409{
1410 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1411 int i; /* index of *z in zonelist zones */
1412 int n; /* node that zone *z is on */
1413
1414 zlc = zonelist->zlcache_ptr;
1415 if (!zlc)
1416 return 1;
1417
dd1a239f 1418 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1419 n = zlc->z_to_n[i];
1420
1421 /* This zone is worth trying if it is allowed but not full */
1422 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1423}
1424
1425/*
1426 * Given 'z' scanning a zonelist, set the corresponding bit in
1427 * zlc->fullzones, so that subsequent attempts to allocate a page
1428 * from that zone don't waste time re-examining it.
1429 */
dd1a239f 1430static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1431{
1432 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1433 int i; /* index of *z in zonelist zones */
1434
1435 zlc = zonelist->zlcache_ptr;
1436 if (!zlc)
1437 return;
1438
dd1a239f 1439 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1440
1441 set_bit(i, zlc->fullzones);
1442}
1443
1444#else /* CONFIG_NUMA */
1445
1446static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1447{
1448 return NULL;
1449}
1450
dd1a239f 1451static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1452 nodemask_t *allowednodes)
1453{
1454 return 1;
1455}
1456
dd1a239f 1457static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1458{
1459}
1460#endif /* CONFIG_NUMA */
1461
7fb1d9fc 1462/*
0798e519 1463 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1464 * a page.
1465 */
1466static struct page *
19770b32 1467get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1468 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1469 struct zone *preferred_zone, int migratetype)
753ee728 1470{
dd1a239f 1471 struct zoneref *z;
7fb1d9fc 1472 struct page *page = NULL;
54a6eb5c 1473 int classzone_idx;
5117f45d 1474 struct zone *zone;
9276b1bc
PJ
1475 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1476 int zlc_active = 0; /* set if using zonelist_cache */
1477 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1478
19770b32 1479 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1480zonelist_scan:
7fb1d9fc 1481 /*
9276b1bc 1482 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1483 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1484 */
19770b32
MG
1485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1486 high_zoneidx, nodemask) {
9276b1bc
PJ
1487 if (NUMA_BUILD && zlc_active &&
1488 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1489 continue;
7fb1d9fc 1490 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1491 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1492 goto try_next_zone;
7fb1d9fc 1493
41858966 1494 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1495 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1496 unsigned long mark;
fa5e084e
MG
1497 int ret;
1498
41858966 1499 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1500 if (zone_watermark_ok(zone, order, mark,
1501 classzone_idx, alloc_flags))
1502 goto try_this_zone;
1503
1504 if (zone_reclaim_mode == 0)
1505 goto this_zone_full;
1506
1507 ret = zone_reclaim(zone, gfp_mask, order);
1508 switch (ret) {
1509 case ZONE_RECLAIM_NOSCAN:
1510 /* did not scan */
1511 goto try_next_zone;
1512 case ZONE_RECLAIM_FULL:
1513 /* scanned but unreclaimable */
1514 goto this_zone_full;
1515 default:
1516 /* did we reclaim enough */
1517 if (!zone_watermark_ok(zone, order, mark,
1518 classzone_idx, alloc_flags))
9276b1bc 1519 goto this_zone_full;
0798e519 1520 }
7fb1d9fc
RS
1521 }
1522
fa5e084e 1523try_this_zone:
3dd28266
MG
1524 page = buffered_rmqueue(preferred_zone, zone, order,
1525 gfp_mask, migratetype);
0798e519 1526 if (page)
7fb1d9fc 1527 break;
9276b1bc
PJ
1528this_zone_full:
1529 if (NUMA_BUILD)
1530 zlc_mark_zone_full(zonelist, z);
1531try_next_zone:
62bc62a8 1532 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1533 /*
1534 * we do zlc_setup after the first zone is tried but only
1535 * if there are multiple nodes make it worthwhile
1536 */
9276b1bc
PJ
1537 allowednodes = zlc_setup(zonelist, alloc_flags);
1538 zlc_active = 1;
1539 did_zlc_setup = 1;
1540 }
54a6eb5c 1541 }
9276b1bc
PJ
1542
1543 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1544 /* Disable zlc cache for second zonelist scan */
1545 zlc_active = 0;
1546 goto zonelist_scan;
1547 }
7fb1d9fc 1548 return page;
753ee728
MH
1549}
1550
11e33f6a
MG
1551static inline int
1552should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1553 unsigned long pages_reclaimed)
1da177e4 1554{
11e33f6a
MG
1555 /* Do not loop if specifically requested */
1556 if (gfp_mask & __GFP_NORETRY)
1557 return 0;
1da177e4 1558
11e33f6a
MG
1559 /*
1560 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1561 * means __GFP_NOFAIL, but that may not be true in other
1562 * implementations.
1563 */
1564 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1565 return 1;
1566
1567 /*
1568 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1569 * specified, then we retry until we no longer reclaim any pages
1570 * (above), or we've reclaimed an order of pages at least as
1571 * large as the allocation's order. In both cases, if the
1572 * allocation still fails, we stop retrying.
1573 */
1574 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1575 return 1;
cf40bd16 1576
11e33f6a
MG
1577 /*
1578 * Don't let big-order allocations loop unless the caller
1579 * explicitly requests that.
1580 */
1581 if (gfp_mask & __GFP_NOFAIL)
1582 return 1;
1da177e4 1583
11e33f6a
MG
1584 return 0;
1585}
933e312e 1586
11e33f6a
MG
1587static inline struct page *
1588__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1589 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1590 nodemask_t *nodemask, struct zone *preferred_zone,
1591 int migratetype)
11e33f6a
MG
1592{
1593 struct page *page;
1594
1595 /* Acquire the OOM killer lock for the zones in zonelist */
1596 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1597 schedule_timeout_uninterruptible(1);
1da177e4
LT
1598 return NULL;
1599 }
6b1de916 1600
11e33f6a
MG
1601 /*
1602 * Go through the zonelist yet one more time, keep very high watermark
1603 * here, this is only to catch a parallel oom killing, we must fail if
1604 * we're still under heavy pressure.
1605 */
1606 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1607 order, zonelist, high_zoneidx,
5117f45d 1608 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1609 preferred_zone, migratetype);
7fb1d9fc 1610 if (page)
11e33f6a
MG
1611 goto out;
1612
1613 /* The OOM killer will not help higher order allocs */
82553a93 1614 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1615 goto out;
1616
1617 /* Exhausted what can be done so it's blamo time */
1618 out_of_memory(zonelist, gfp_mask, order);
1619
1620out:
1621 clear_zonelist_oom(zonelist, gfp_mask);
1622 return page;
1623}
1624
1625/* The really slow allocator path where we enter direct reclaim */
1626static inline struct page *
1627__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1628 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1629 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1630 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1631{
1632 struct page *page = NULL;
1633 struct reclaim_state reclaim_state;
1634 struct task_struct *p = current;
1635
1636 cond_resched();
1637
1638 /* We now go into synchronous reclaim */
1639 cpuset_memory_pressure_bump();
11e33f6a
MG
1640 p->flags |= PF_MEMALLOC;
1641 lockdep_set_current_reclaim_state(gfp_mask);
1642 reclaim_state.reclaimed_slab = 0;
1643 p->reclaim_state = &reclaim_state;
1644
1645 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1646
1647 p->reclaim_state = NULL;
1648 lockdep_clear_current_reclaim_state();
1649 p->flags &= ~PF_MEMALLOC;
1650
1651 cond_resched();
1652
1653 if (order != 0)
1654 drain_all_pages();
1655
1656 if (likely(*did_some_progress))
1657 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1658 zonelist, high_zoneidx,
3dd28266
MG
1659 alloc_flags, preferred_zone,
1660 migratetype);
11e33f6a
MG
1661 return page;
1662}
1663
1da177e4 1664/*
11e33f6a
MG
1665 * This is called in the allocator slow-path if the allocation request is of
1666 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1667 */
11e33f6a
MG
1668static inline struct page *
1669__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1670 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1671 nodemask_t *nodemask, struct zone *preferred_zone,
1672 int migratetype)
11e33f6a
MG
1673{
1674 struct page *page;
1675
1676 do {
1677 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1678 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1679 preferred_zone, migratetype);
11e33f6a
MG
1680
1681 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1682 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1683 } while (!page && (gfp_mask & __GFP_NOFAIL));
1684
1685 return page;
1686}
1687
1688static inline
1689void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1690 enum zone_type high_zoneidx)
1da177e4 1691{
dd1a239f
MG
1692 struct zoneref *z;
1693 struct zone *zone;
1da177e4 1694
11e33f6a
MG
1695 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1696 wakeup_kswapd(zone, order);
1697}
cf40bd16 1698
341ce06f
PZ
1699static inline int
1700gfp_to_alloc_flags(gfp_t gfp_mask)
1701{
1702 struct task_struct *p = current;
1703 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1704 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1705
a56f57ff
MG
1706 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1707 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1708
341ce06f
PZ
1709 /*
1710 * The caller may dip into page reserves a bit more if the caller
1711 * cannot run direct reclaim, or if the caller has realtime scheduling
1712 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1713 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1714 */
a56f57ff 1715 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1716
341ce06f
PZ
1717 if (!wait) {
1718 alloc_flags |= ALLOC_HARDER;
523b9458 1719 /*
341ce06f
PZ
1720 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1721 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1722 */
341ce06f
PZ
1723 alloc_flags &= ~ALLOC_CPUSET;
1724 } else if (unlikely(rt_task(p)))
1725 alloc_flags |= ALLOC_HARDER;
1726
1727 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1728 if (!in_interrupt() &&
1729 ((p->flags & PF_MEMALLOC) ||
1730 unlikely(test_thread_flag(TIF_MEMDIE))))
1731 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1732 }
6b1de916 1733
341ce06f
PZ
1734 return alloc_flags;
1735}
1736
11e33f6a
MG
1737static inline struct page *
1738__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1739 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1740 nodemask_t *nodemask, struct zone *preferred_zone,
1741 int migratetype)
11e33f6a
MG
1742{
1743 const gfp_t wait = gfp_mask & __GFP_WAIT;
1744 struct page *page = NULL;
1745 int alloc_flags;
1746 unsigned long pages_reclaimed = 0;
1747 unsigned long did_some_progress;
1748 struct task_struct *p = current;
1da177e4 1749
72807a74
MG
1750 /*
1751 * In the slowpath, we sanity check order to avoid ever trying to
1752 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1753 * be using allocators in order of preference for an area that is
1754 * too large.
1755 */
1fc28b70
MG
1756 if (order >= MAX_ORDER) {
1757 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1758 return NULL;
1fc28b70 1759 }
1da177e4 1760
952f3b51
CL
1761 /*
1762 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1763 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1764 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1765 * using a larger set of nodes after it has established that the
1766 * allowed per node queues are empty and that nodes are
1767 * over allocated.
1768 */
1769 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1770 goto nopage;
1771
11e33f6a 1772 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1773
9bf2229f 1774 /*
7fb1d9fc
RS
1775 * OK, we're below the kswapd watermark and have kicked background
1776 * reclaim. Now things get more complex, so set up alloc_flags according
1777 * to how we want to proceed.
9bf2229f 1778 */
341ce06f 1779 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1780
11e33f6a 1781restart:
341ce06f 1782 /* This is the last chance, in general, before the goto nopage. */
19770b32 1783 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1784 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1785 preferred_zone, migratetype);
7fb1d9fc
RS
1786 if (page)
1787 goto got_pg;
1da177e4 1788
b43a57bb 1789rebalance:
11e33f6a 1790 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1791 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1792 page = __alloc_pages_high_priority(gfp_mask, order,
1793 zonelist, high_zoneidx, nodemask,
1794 preferred_zone, migratetype);
1795 if (page)
1796 goto got_pg;
1da177e4
LT
1797 }
1798
1799 /* Atomic allocations - we can't balance anything */
1800 if (!wait)
1801 goto nopage;
1802
341ce06f
PZ
1803 /* Avoid recursion of direct reclaim */
1804 if (p->flags & PF_MEMALLOC)
1805 goto nopage;
1806
6583bb64
DR
1807 /* Avoid allocations with no watermarks from looping endlessly */
1808 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1809 goto nopage;
1810
11e33f6a
MG
1811 /* Try direct reclaim and then allocating */
1812 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1813 zonelist, high_zoneidx,
1814 nodemask,
5117f45d 1815 alloc_flags, preferred_zone,
3dd28266 1816 migratetype, &did_some_progress);
11e33f6a
MG
1817 if (page)
1818 goto got_pg;
1da177e4 1819
e33c3b5e 1820 /*
11e33f6a
MG
1821 * If we failed to make any progress reclaiming, then we are
1822 * running out of options and have to consider going OOM
e33c3b5e 1823 */
11e33f6a
MG
1824 if (!did_some_progress) {
1825 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1826 if (oom_killer_disabled)
1827 goto nopage;
11e33f6a
MG
1828 page = __alloc_pages_may_oom(gfp_mask, order,
1829 zonelist, high_zoneidx,
3dd28266
MG
1830 nodemask, preferred_zone,
1831 migratetype);
11e33f6a
MG
1832 if (page)
1833 goto got_pg;
1da177e4 1834
11e33f6a 1835 /*
82553a93
DR
1836 * The OOM killer does not trigger for high-order
1837 * ~__GFP_NOFAIL allocations so if no progress is being
1838 * made, there are no other options and retrying is
1839 * unlikely to help.
11e33f6a 1840 */
82553a93
DR
1841 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1842 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1843 goto nopage;
e2c55dc8 1844
ff0ceb9d
DR
1845 goto restart;
1846 }
1da177e4
LT
1847 }
1848
11e33f6a 1849 /* Check if we should retry the allocation */
a41f24ea 1850 pages_reclaimed += did_some_progress;
11e33f6a
MG
1851 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1852 /* Wait for some write requests to complete then retry */
8aa7e847 1853 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1854 goto rebalance;
1855 }
1856
1857nopage:
1858 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1859 printk(KERN_WARNING "%s: page allocation failure."
1860 " order:%d, mode:0x%x\n",
1861 p->comm, order, gfp_mask);
1862 dump_stack();
578c2fd6 1863 show_mem();
1da177e4 1864 }
b1eeab67 1865 return page;
1da177e4 1866got_pg:
b1eeab67
VN
1867 if (kmemcheck_enabled)
1868 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1869 return page;
11e33f6a 1870
1da177e4 1871}
11e33f6a
MG
1872
1873/*
1874 * This is the 'heart' of the zoned buddy allocator.
1875 */
1876struct page *
1877__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1878 struct zonelist *zonelist, nodemask_t *nodemask)
1879{
1880 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1881 struct zone *preferred_zone;
11e33f6a 1882 struct page *page;
3dd28266 1883 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1884
dcce284a
BH
1885 gfp_mask &= gfp_allowed_mask;
1886
11e33f6a
MG
1887 lockdep_trace_alloc(gfp_mask);
1888
1889 might_sleep_if(gfp_mask & __GFP_WAIT);
1890
1891 if (should_fail_alloc_page(gfp_mask, order))
1892 return NULL;
1893
1894 /*
1895 * Check the zones suitable for the gfp_mask contain at least one
1896 * valid zone. It's possible to have an empty zonelist as a result
1897 * of GFP_THISNODE and a memoryless node
1898 */
1899 if (unlikely(!zonelist->_zonerefs->zone))
1900 return NULL;
1901
5117f45d
MG
1902 /* The preferred zone is used for statistics later */
1903 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1904 if (!preferred_zone)
1905 return NULL;
1906
1907 /* First allocation attempt */
11e33f6a 1908 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1909 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1910 preferred_zone, migratetype);
11e33f6a
MG
1911 if (unlikely(!page))
1912 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1913 zonelist, high_zoneidx, nodemask,
3dd28266 1914 preferred_zone, migratetype);
11e33f6a
MG
1915
1916 return page;
1da177e4 1917}
d239171e 1918EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1919
1920/*
1921 * Common helper functions.
1922 */
920c7a5d 1923unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1924{
1925 struct page * page;
1926 page = alloc_pages(gfp_mask, order);
1927 if (!page)
1928 return 0;
1929 return (unsigned long) page_address(page);
1930}
1931
1932EXPORT_SYMBOL(__get_free_pages);
1933
920c7a5d 1934unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1935{
1936 struct page * page;
1937
1938 /*
1939 * get_zeroed_page() returns a 32-bit address, which cannot represent
1940 * a highmem page
1941 */
725d704e 1942 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1943
1944 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1945 if (page)
1946 return (unsigned long) page_address(page);
1947 return 0;
1948}
1949
1950EXPORT_SYMBOL(get_zeroed_page);
1951
1952void __pagevec_free(struct pagevec *pvec)
1953{
1954 int i = pagevec_count(pvec);
1955
1956 while (--i >= 0)
1957 free_hot_cold_page(pvec->pages[i], pvec->cold);
1958}
1959
920c7a5d 1960void __free_pages(struct page *page, unsigned int order)
1da177e4 1961{
b5810039 1962 if (put_page_testzero(page)) {
1da177e4
LT
1963 if (order == 0)
1964 free_hot_page(page);
1965 else
1966 __free_pages_ok(page, order);
1967 }
1968}
1969
1970EXPORT_SYMBOL(__free_pages);
1971
920c7a5d 1972void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1973{
1974 if (addr != 0) {
725d704e 1975 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1976 __free_pages(virt_to_page((void *)addr), order);
1977 }
1978}
1979
1980EXPORT_SYMBOL(free_pages);
1981
2be0ffe2
TT
1982/**
1983 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1984 * @size: the number of bytes to allocate
1985 * @gfp_mask: GFP flags for the allocation
1986 *
1987 * This function is similar to alloc_pages(), except that it allocates the
1988 * minimum number of pages to satisfy the request. alloc_pages() can only
1989 * allocate memory in power-of-two pages.
1990 *
1991 * This function is also limited by MAX_ORDER.
1992 *
1993 * Memory allocated by this function must be released by free_pages_exact().
1994 */
1995void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1996{
1997 unsigned int order = get_order(size);
1998 unsigned long addr;
1999
2000 addr = __get_free_pages(gfp_mask, order);
2001 if (addr) {
2002 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2003 unsigned long used = addr + PAGE_ALIGN(size);
2004
5bfd7560 2005 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2006 while (used < alloc_end) {
2007 free_page(used);
2008 used += PAGE_SIZE;
2009 }
2010 }
2011
2012 return (void *)addr;
2013}
2014EXPORT_SYMBOL(alloc_pages_exact);
2015
2016/**
2017 * free_pages_exact - release memory allocated via alloc_pages_exact()
2018 * @virt: the value returned by alloc_pages_exact.
2019 * @size: size of allocation, same value as passed to alloc_pages_exact().
2020 *
2021 * Release the memory allocated by a previous call to alloc_pages_exact.
2022 */
2023void free_pages_exact(void *virt, size_t size)
2024{
2025 unsigned long addr = (unsigned long)virt;
2026 unsigned long end = addr + PAGE_ALIGN(size);
2027
2028 while (addr < end) {
2029 free_page(addr);
2030 addr += PAGE_SIZE;
2031 }
2032}
2033EXPORT_SYMBOL(free_pages_exact);
2034
1da177e4
LT
2035static unsigned int nr_free_zone_pages(int offset)
2036{
dd1a239f 2037 struct zoneref *z;
54a6eb5c
MG
2038 struct zone *zone;
2039
e310fd43 2040 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2041 unsigned int sum = 0;
2042
0e88460d 2043 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2044
54a6eb5c 2045 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2046 unsigned long size = zone->present_pages;
41858966 2047 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2048 if (size > high)
2049 sum += size - high;
1da177e4
LT
2050 }
2051
2052 return sum;
2053}
2054
2055/*
2056 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2057 */
2058unsigned int nr_free_buffer_pages(void)
2059{
af4ca457 2060 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2061}
c2f1a551 2062EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2063
2064/*
2065 * Amount of free RAM allocatable within all zones
2066 */
2067unsigned int nr_free_pagecache_pages(void)
2068{
2a1e274a 2069 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2070}
08e0f6a9
CL
2071
2072static inline void show_node(struct zone *zone)
1da177e4 2073{
08e0f6a9 2074 if (NUMA_BUILD)
25ba77c1 2075 printk("Node %d ", zone_to_nid(zone));
1da177e4 2076}
1da177e4 2077
1da177e4
LT
2078void si_meminfo(struct sysinfo *val)
2079{
2080 val->totalram = totalram_pages;
2081 val->sharedram = 0;
d23ad423 2082 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2083 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2084 val->totalhigh = totalhigh_pages;
2085 val->freehigh = nr_free_highpages();
1da177e4
LT
2086 val->mem_unit = PAGE_SIZE;
2087}
2088
2089EXPORT_SYMBOL(si_meminfo);
2090
2091#ifdef CONFIG_NUMA
2092void si_meminfo_node(struct sysinfo *val, int nid)
2093{
2094 pg_data_t *pgdat = NODE_DATA(nid);
2095
2096 val->totalram = pgdat->node_present_pages;
d23ad423 2097 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2098#ifdef CONFIG_HIGHMEM
1da177e4 2099 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2100 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2101 NR_FREE_PAGES);
98d2b0eb
CL
2102#else
2103 val->totalhigh = 0;
2104 val->freehigh = 0;
2105#endif
1da177e4
LT
2106 val->mem_unit = PAGE_SIZE;
2107}
2108#endif
2109
2110#define K(x) ((x) << (PAGE_SHIFT-10))
2111
2112/*
2113 * Show free area list (used inside shift_scroll-lock stuff)
2114 * We also calculate the percentage fragmentation. We do this by counting the
2115 * memory on each free list with the exception of the first item on the list.
2116 */
2117void show_free_areas(void)
2118{
c7241913 2119 int cpu;
1da177e4
LT
2120 struct zone *zone;
2121
ee99c71c 2122 for_each_populated_zone(zone) {
c7241913
JS
2123 show_node(zone);
2124 printk("%s per-cpu:\n", zone->name);
1da177e4 2125
6b482c67 2126 for_each_online_cpu(cpu) {
1da177e4
LT
2127 struct per_cpu_pageset *pageset;
2128
e7c8d5c9 2129 pageset = zone_pcp(zone, cpu);
1da177e4 2130
3dfa5721
CL
2131 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2132 cpu, pageset->pcp.high,
2133 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2134 }
2135 }
2136
7b854121
LS
2137 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2138 " inactive_file:%lu"
7b854121 2139 " unevictable:%lu"
7b854121 2140 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033
KM
2141 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2142 " mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2143 global_page_state(NR_ACTIVE_ANON),
2144 global_page_state(NR_ACTIVE_FILE),
2145 global_page_state(NR_INACTIVE_ANON),
2146 global_page_state(NR_INACTIVE_FILE),
7b854121 2147 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2148 global_page_state(NR_FILE_DIRTY),
ce866b34 2149 global_page_state(NR_WRITEBACK),
fd39fc85 2150 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2151 global_page_state(NR_FREE_PAGES),
3701b033
KM
2152 global_page_state(NR_SLAB_RECLAIMABLE),
2153 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2154 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2155 global_page_state(NR_PAGETABLE),
2156 global_page_state(NR_BOUNCE));
1da177e4 2157
ee99c71c 2158 for_each_populated_zone(zone) {
1da177e4
LT
2159 int i;
2160
2161 show_node(zone);
2162 printk("%s"
2163 " free:%lukB"
2164 " min:%lukB"
2165 " low:%lukB"
2166 " high:%lukB"
4f98a2fe
RR
2167 " active_anon:%lukB"
2168 " inactive_anon:%lukB"
2169 " active_file:%lukB"
2170 " inactive_file:%lukB"
7b854121 2171 " unevictable:%lukB"
1da177e4
LT
2172 " present:%lukB"
2173 " pages_scanned:%lu"
2174 " all_unreclaimable? %s"
2175 "\n",
2176 zone->name,
d23ad423 2177 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2178 K(min_wmark_pages(zone)),
2179 K(low_wmark_pages(zone)),
2180 K(high_wmark_pages(zone)),
4f98a2fe
RR
2181 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2182 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2183 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2184 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2185 K(zone_page_state(zone, NR_UNEVICTABLE)),
1da177e4
LT
2186 K(zone->present_pages),
2187 zone->pages_scanned,
e815af95 2188 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2189 );
2190 printk("lowmem_reserve[]:");
2191 for (i = 0; i < MAX_NR_ZONES; i++)
2192 printk(" %lu", zone->lowmem_reserve[i]);
2193 printk("\n");
2194 }
2195
ee99c71c 2196 for_each_populated_zone(zone) {
8f9de51a 2197 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2198
2199 show_node(zone);
2200 printk("%s: ", zone->name);
1da177e4
LT
2201
2202 spin_lock_irqsave(&zone->lock, flags);
2203 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2204 nr[order] = zone->free_area[order].nr_free;
2205 total += nr[order] << order;
1da177e4
LT
2206 }
2207 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2208 for (order = 0; order < MAX_ORDER; order++)
2209 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2210 printk("= %lukB\n", K(total));
2211 }
2212
e6f3602d
LW
2213 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2214
1da177e4
LT
2215 show_swap_cache_info();
2216}
2217
19770b32
MG
2218static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2219{
2220 zoneref->zone = zone;
2221 zoneref->zone_idx = zone_idx(zone);
2222}
2223
1da177e4
LT
2224/*
2225 * Builds allocation fallback zone lists.
1a93205b
CL
2226 *
2227 * Add all populated zones of a node to the zonelist.
1da177e4 2228 */
f0c0b2b8
KH
2229static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2230 int nr_zones, enum zone_type zone_type)
1da177e4 2231{
1a93205b
CL
2232 struct zone *zone;
2233
98d2b0eb 2234 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2235 zone_type++;
02a68a5e
CL
2236
2237 do {
2f6726e5 2238 zone_type--;
070f8032 2239 zone = pgdat->node_zones + zone_type;
1a93205b 2240 if (populated_zone(zone)) {
dd1a239f
MG
2241 zoneref_set_zone(zone,
2242 &zonelist->_zonerefs[nr_zones++]);
070f8032 2243 check_highest_zone(zone_type);
1da177e4 2244 }
02a68a5e 2245
2f6726e5 2246 } while (zone_type);
070f8032 2247 return nr_zones;
1da177e4
LT
2248}
2249
f0c0b2b8
KH
2250
2251/*
2252 * zonelist_order:
2253 * 0 = automatic detection of better ordering.
2254 * 1 = order by ([node] distance, -zonetype)
2255 * 2 = order by (-zonetype, [node] distance)
2256 *
2257 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2258 * the same zonelist. So only NUMA can configure this param.
2259 */
2260#define ZONELIST_ORDER_DEFAULT 0
2261#define ZONELIST_ORDER_NODE 1
2262#define ZONELIST_ORDER_ZONE 2
2263
2264/* zonelist order in the kernel.
2265 * set_zonelist_order() will set this to NODE or ZONE.
2266 */
2267static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2268static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2269
2270
1da177e4 2271#ifdef CONFIG_NUMA
f0c0b2b8
KH
2272/* The value user specified ....changed by config */
2273static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2274/* string for sysctl */
2275#define NUMA_ZONELIST_ORDER_LEN 16
2276char numa_zonelist_order[16] = "default";
2277
2278/*
2279 * interface for configure zonelist ordering.
2280 * command line option "numa_zonelist_order"
2281 * = "[dD]efault - default, automatic configuration.
2282 * = "[nN]ode - order by node locality, then by zone within node
2283 * = "[zZ]one - order by zone, then by locality within zone
2284 */
2285
2286static int __parse_numa_zonelist_order(char *s)
2287{
2288 if (*s == 'd' || *s == 'D') {
2289 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2290 } else if (*s == 'n' || *s == 'N') {
2291 user_zonelist_order = ZONELIST_ORDER_NODE;
2292 } else if (*s == 'z' || *s == 'Z') {
2293 user_zonelist_order = ZONELIST_ORDER_ZONE;
2294 } else {
2295 printk(KERN_WARNING
2296 "Ignoring invalid numa_zonelist_order value: "
2297 "%s\n", s);
2298 return -EINVAL;
2299 }
2300 return 0;
2301}
2302
2303static __init int setup_numa_zonelist_order(char *s)
2304{
2305 if (s)
2306 return __parse_numa_zonelist_order(s);
2307 return 0;
2308}
2309early_param("numa_zonelist_order", setup_numa_zonelist_order);
2310
2311/*
2312 * sysctl handler for numa_zonelist_order
2313 */
2314int numa_zonelist_order_handler(ctl_table *table, int write,
2315 struct file *file, void __user *buffer, size_t *length,
2316 loff_t *ppos)
2317{
2318 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2319 int ret;
2320
2321 if (write)
2322 strncpy(saved_string, (char*)table->data,
2323 NUMA_ZONELIST_ORDER_LEN);
2324 ret = proc_dostring(table, write, file, buffer, length, ppos);
2325 if (ret)
2326 return ret;
2327 if (write) {
2328 int oldval = user_zonelist_order;
2329 if (__parse_numa_zonelist_order((char*)table->data)) {
2330 /*
2331 * bogus value. restore saved string
2332 */
2333 strncpy((char*)table->data, saved_string,
2334 NUMA_ZONELIST_ORDER_LEN);
2335 user_zonelist_order = oldval;
2336 } else if (oldval != user_zonelist_order)
2337 build_all_zonelists();
2338 }
2339 return 0;
2340}
2341
2342
62bc62a8 2343#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2344static int node_load[MAX_NUMNODES];
2345
1da177e4 2346/**
4dc3b16b 2347 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2348 * @node: node whose fallback list we're appending
2349 * @used_node_mask: nodemask_t of already used nodes
2350 *
2351 * We use a number of factors to determine which is the next node that should
2352 * appear on a given node's fallback list. The node should not have appeared
2353 * already in @node's fallback list, and it should be the next closest node
2354 * according to the distance array (which contains arbitrary distance values
2355 * from each node to each node in the system), and should also prefer nodes
2356 * with no CPUs, since presumably they'll have very little allocation pressure
2357 * on them otherwise.
2358 * It returns -1 if no node is found.
2359 */
f0c0b2b8 2360static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2361{
4cf808eb 2362 int n, val;
1da177e4
LT
2363 int min_val = INT_MAX;
2364 int best_node = -1;
a70f7302 2365 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2366
4cf808eb
LT
2367 /* Use the local node if we haven't already */
2368 if (!node_isset(node, *used_node_mask)) {
2369 node_set(node, *used_node_mask);
2370 return node;
2371 }
1da177e4 2372
37b07e41 2373 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2374
2375 /* Don't want a node to appear more than once */
2376 if (node_isset(n, *used_node_mask))
2377 continue;
2378
1da177e4
LT
2379 /* Use the distance array to find the distance */
2380 val = node_distance(node, n);
2381
4cf808eb
LT
2382 /* Penalize nodes under us ("prefer the next node") */
2383 val += (n < node);
2384
1da177e4 2385 /* Give preference to headless and unused nodes */
a70f7302
RR
2386 tmp = cpumask_of_node(n);
2387 if (!cpumask_empty(tmp))
1da177e4
LT
2388 val += PENALTY_FOR_NODE_WITH_CPUS;
2389
2390 /* Slight preference for less loaded node */
2391 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2392 val += node_load[n];
2393
2394 if (val < min_val) {
2395 min_val = val;
2396 best_node = n;
2397 }
2398 }
2399
2400 if (best_node >= 0)
2401 node_set(best_node, *used_node_mask);
2402
2403 return best_node;
2404}
2405
f0c0b2b8
KH
2406
2407/*
2408 * Build zonelists ordered by node and zones within node.
2409 * This results in maximum locality--normal zone overflows into local
2410 * DMA zone, if any--but risks exhausting DMA zone.
2411 */
2412static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2413{
f0c0b2b8 2414 int j;
1da177e4 2415 struct zonelist *zonelist;
f0c0b2b8 2416
54a6eb5c 2417 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2418 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2419 ;
2420 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2421 MAX_NR_ZONES - 1);
dd1a239f
MG
2422 zonelist->_zonerefs[j].zone = NULL;
2423 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2424}
2425
523b9458
CL
2426/*
2427 * Build gfp_thisnode zonelists
2428 */
2429static void build_thisnode_zonelists(pg_data_t *pgdat)
2430{
523b9458
CL
2431 int j;
2432 struct zonelist *zonelist;
2433
54a6eb5c
MG
2434 zonelist = &pgdat->node_zonelists[1];
2435 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2436 zonelist->_zonerefs[j].zone = NULL;
2437 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2438}
2439
f0c0b2b8
KH
2440/*
2441 * Build zonelists ordered by zone and nodes within zones.
2442 * This results in conserving DMA zone[s] until all Normal memory is
2443 * exhausted, but results in overflowing to remote node while memory
2444 * may still exist in local DMA zone.
2445 */
2446static int node_order[MAX_NUMNODES];
2447
2448static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2449{
f0c0b2b8
KH
2450 int pos, j, node;
2451 int zone_type; /* needs to be signed */
2452 struct zone *z;
2453 struct zonelist *zonelist;
2454
54a6eb5c
MG
2455 zonelist = &pgdat->node_zonelists[0];
2456 pos = 0;
2457 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2458 for (j = 0; j < nr_nodes; j++) {
2459 node = node_order[j];
2460 z = &NODE_DATA(node)->node_zones[zone_type];
2461 if (populated_zone(z)) {
dd1a239f
MG
2462 zoneref_set_zone(z,
2463 &zonelist->_zonerefs[pos++]);
54a6eb5c 2464 check_highest_zone(zone_type);
f0c0b2b8
KH
2465 }
2466 }
f0c0b2b8 2467 }
dd1a239f
MG
2468 zonelist->_zonerefs[pos].zone = NULL;
2469 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2470}
2471
2472static int default_zonelist_order(void)
2473{
2474 int nid, zone_type;
2475 unsigned long low_kmem_size,total_size;
2476 struct zone *z;
2477 int average_size;
2478 /*
2479 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2480 * If they are really small and used heavily, the system can fall
2481 * into OOM very easily.
2482 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2483 */
2484 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2485 low_kmem_size = 0;
2486 total_size = 0;
2487 for_each_online_node(nid) {
2488 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2489 z = &NODE_DATA(nid)->node_zones[zone_type];
2490 if (populated_zone(z)) {
2491 if (zone_type < ZONE_NORMAL)
2492 low_kmem_size += z->present_pages;
2493 total_size += z->present_pages;
2494 }
2495 }
2496 }
2497 if (!low_kmem_size || /* there are no DMA area. */
2498 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2499 return ZONELIST_ORDER_NODE;
2500 /*
2501 * look into each node's config.
2502 * If there is a node whose DMA/DMA32 memory is very big area on
2503 * local memory, NODE_ORDER may be suitable.
2504 */
37b07e41
LS
2505 average_size = total_size /
2506 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2507 for_each_online_node(nid) {
2508 low_kmem_size = 0;
2509 total_size = 0;
2510 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2511 z = &NODE_DATA(nid)->node_zones[zone_type];
2512 if (populated_zone(z)) {
2513 if (zone_type < ZONE_NORMAL)
2514 low_kmem_size += z->present_pages;
2515 total_size += z->present_pages;
2516 }
2517 }
2518 if (low_kmem_size &&
2519 total_size > average_size && /* ignore small node */
2520 low_kmem_size > total_size * 70/100)
2521 return ZONELIST_ORDER_NODE;
2522 }
2523 return ZONELIST_ORDER_ZONE;
2524}
2525
2526static void set_zonelist_order(void)
2527{
2528 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2529 current_zonelist_order = default_zonelist_order();
2530 else
2531 current_zonelist_order = user_zonelist_order;
2532}
2533
2534static void build_zonelists(pg_data_t *pgdat)
2535{
2536 int j, node, load;
2537 enum zone_type i;
1da177e4 2538 nodemask_t used_mask;
f0c0b2b8
KH
2539 int local_node, prev_node;
2540 struct zonelist *zonelist;
2541 int order = current_zonelist_order;
1da177e4
LT
2542
2543 /* initialize zonelists */
523b9458 2544 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2545 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2546 zonelist->_zonerefs[0].zone = NULL;
2547 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2548 }
2549
2550 /* NUMA-aware ordering of nodes */
2551 local_node = pgdat->node_id;
62bc62a8 2552 load = nr_online_nodes;
1da177e4
LT
2553 prev_node = local_node;
2554 nodes_clear(used_mask);
f0c0b2b8 2555
f0c0b2b8
KH
2556 memset(node_order, 0, sizeof(node_order));
2557 j = 0;
2558
1da177e4 2559 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2560 int distance = node_distance(local_node, node);
2561
2562 /*
2563 * If another node is sufficiently far away then it is better
2564 * to reclaim pages in a zone before going off node.
2565 */
2566 if (distance > RECLAIM_DISTANCE)
2567 zone_reclaim_mode = 1;
2568
1da177e4
LT
2569 /*
2570 * We don't want to pressure a particular node.
2571 * So adding penalty to the first node in same
2572 * distance group to make it round-robin.
2573 */
9eeff239 2574 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2575 node_load[node] = load;
2576
1da177e4
LT
2577 prev_node = node;
2578 load--;
f0c0b2b8
KH
2579 if (order == ZONELIST_ORDER_NODE)
2580 build_zonelists_in_node_order(pgdat, node);
2581 else
2582 node_order[j++] = node; /* remember order */
2583 }
1da177e4 2584
f0c0b2b8
KH
2585 if (order == ZONELIST_ORDER_ZONE) {
2586 /* calculate node order -- i.e., DMA last! */
2587 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2588 }
523b9458
CL
2589
2590 build_thisnode_zonelists(pgdat);
1da177e4
LT
2591}
2592
9276b1bc 2593/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2594static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2595{
54a6eb5c
MG
2596 struct zonelist *zonelist;
2597 struct zonelist_cache *zlc;
dd1a239f 2598 struct zoneref *z;
9276b1bc 2599
54a6eb5c
MG
2600 zonelist = &pgdat->node_zonelists[0];
2601 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2602 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2603 for (z = zonelist->_zonerefs; z->zone; z++)
2604 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2605}
2606
f0c0b2b8 2607
1da177e4
LT
2608#else /* CONFIG_NUMA */
2609
f0c0b2b8
KH
2610static void set_zonelist_order(void)
2611{
2612 current_zonelist_order = ZONELIST_ORDER_ZONE;
2613}
2614
2615static void build_zonelists(pg_data_t *pgdat)
1da177e4 2616{
19655d34 2617 int node, local_node;
54a6eb5c
MG
2618 enum zone_type j;
2619 struct zonelist *zonelist;
1da177e4
LT
2620
2621 local_node = pgdat->node_id;
1da177e4 2622
54a6eb5c
MG
2623 zonelist = &pgdat->node_zonelists[0];
2624 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2625
54a6eb5c
MG
2626 /*
2627 * Now we build the zonelist so that it contains the zones
2628 * of all the other nodes.
2629 * We don't want to pressure a particular node, so when
2630 * building the zones for node N, we make sure that the
2631 * zones coming right after the local ones are those from
2632 * node N+1 (modulo N)
2633 */
2634 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2635 if (!node_online(node))
2636 continue;
2637 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2638 MAX_NR_ZONES - 1);
1da177e4 2639 }
54a6eb5c
MG
2640 for (node = 0; node < local_node; node++) {
2641 if (!node_online(node))
2642 continue;
2643 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2644 MAX_NR_ZONES - 1);
2645 }
2646
dd1a239f
MG
2647 zonelist->_zonerefs[j].zone = NULL;
2648 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2649}
2650
9276b1bc 2651/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2652static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2653{
54a6eb5c 2654 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2655}
2656
1da177e4
LT
2657#endif /* CONFIG_NUMA */
2658
9b1a4d38 2659/* return values int ....just for stop_machine() */
f0c0b2b8 2660static int __build_all_zonelists(void *dummy)
1da177e4 2661{
6811378e 2662 int nid;
9276b1bc 2663
7f9cfb31
BL
2664#ifdef CONFIG_NUMA
2665 memset(node_load, 0, sizeof(node_load));
2666#endif
9276b1bc 2667 for_each_online_node(nid) {
7ea1530a
CL
2668 pg_data_t *pgdat = NODE_DATA(nid);
2669
2670 build_zonelists(pgdat);
2671 build_zonelist_cache(pgdat);
9276b1bc 2672 }
6811378e
YG
2673 return 0;
2674}
2675
f0c0b2b8 2676void build_all_zonelists(void)
6811378e 2677{
f0c0b2b8
KH
2678 set_zonelist_order();
2679
6811378e 2680 if (system_state == SYSTEM_BOOTING) {
423b41d7 2681 __build_all_zonelists(NULL);
68ad8df4 2682 mminit_verify_zonelist();
6811378e
YG
2683 cpuset_init_current_mems_allowed();
2684 } else {
183ff22b 2685 /* we have to stop all cpus to guarantee there is no user
6811378e 2686 of zonelist */
9b1a4d38 2687 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2688 /* cpuset refresh routine should be here */
2689 }
bd1e22b8 2690 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2691 /*
2692 * Disable grouping by mobility if the number of pages in the
2693 * system is too low to allow the mechanism to work. It would be
2694 * more accurate, but expensive to check per-zone. This check is
2695 * made on memory-hotadd so a system can start with mobility
2696 * disabled and enable it later
2697 */
d9c23400 2698 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2699 page_group_by_mobility_disabled = 1;
2700 else
2701 page_group_by_mobility_disabled = 0;
2702
2703 printk("Built %i zonelists in %s order, mobility grouping %s. "
2704 "Total pages: %ld\n",
62bc62a8 2705 nr_online_nodes,
f0c0b2b8 2706 zonelist_order_name[current_zonelist_order],
9ef9acb0 2707 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2708 vm_total_pages);
2709#ifdef CONFIG_NUMA
2710 printk("Policy zone: %s\n", zone_names[policy_zone]);
2711#endif
1da177e4
LT
2712}
2713
2714/*
2715 * Helper functions to size the waitqueue hash table.
2716 * Essentially these want to choose hash table sizes sufficiently
2717 * large so that collisions trying to wait on pages are rare.
2718 * But in fact, the number of active page waitqueues on typical
2719 * systems is ridiculously low, less than 200. So this is even
2720 * conservative, even though it seems large.
2721 *
2722 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2723 * waitqueues, i.e. the size of the waitq table given the number of pages.
2724 */
2725#define PAGES_PER_WAITQUEUE 256
2726
cca448fe 2727#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2728static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2729{
2730 unsigned long size = 1;
2731
2732 pages /= PAGES_PER_WAITQUEUE;
2733
2734 while (size < pages)
2735 size <<= 1;
2736
2737 /*
2738 * Once we have dozens or even hundreds of threads sleeping
2739 * on IO we've got bigger problems than wait queue collision.
2740 * Limit the size of the wait table to a reasonable size.
2741 */
2742 size = min(size, 4096UL);
2743
2744 return max(size, 4UL);
2745}
cca448fe
YG
2746#else
2747/*
2748 * A zone's size might be changed by hot-add, so it is not possible to determine
2749 * a suitable size for its wait_table. So we use the maximum size now.
2750 *
2751 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2752 *
2753 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2754 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2755 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2756 *
2757 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2758 * or more by the traditional way. (See above). It equals:
2759 *
2760 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2761 * ia64(16K page size) : = ( 8G + 4M)byte.
2762 * powerpc (64K page size) : = (32G +16M)byte.
2763 */
2764static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2765{
2766 return 4096UL;
2767}
2768#endif
1da177e4
LT
2769
2770/*
2771 * This is an integer logarithm so that shifts can be used later
2772 * to extract the more random high bits from the multiplicative
2773 * hash function before the remainder is taken.
2774 */
2775static inline unsigned long wait_table_bits(unsigned long size)
2776{
2777 return ffz(~size);
2778}
2779
2780#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2781
56fd56b8 2782/*
d9c23400 2783 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2784 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2785 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2786 * higher will lead to a bigger reserve which will get freed as contiguous
2787 * blocks as reclaim kicks in
2788 */
2789static void setup_zone_migrate_reserve(struct zone *zone)
2790{
2791 unsigned long start_pfn, pfn, end_pfn;
2792 struct page *page;
2793 unsigned long reserve, block_migratetype;
2794
2795 /* Get the start pfn, end pfn and the number of blocks to reserve */
2796 start_pfn = zone->zone_start_pfn;
2797 end_pfn = start_pfn + zone->spanned_pages;
41858966 2798 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2799 pageblock_order;
56fd56b8 2800
d9c23400 2801 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2802 if (!pfn_valid(pfn))
2803 continue;
2804 page = pfn_to_page(pfn);
2805
344c790e
AL
2806 /* Watch out for overlapping nodes */
2807 if (page_to_nid(page) != zone_to_nid(zone))
2808 continue;
2809
56fd56b8
MG
2810 /* Blocks with reserved pages will never free, skip them. */
2811 if (PageReserved(page))
2812 continue;
2813
2814 block_migratetype = get_pageblock_migratetype(page);
2815
2816 /* If this block is reserved, account for it */
2817 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2818 reserve--;
2819 continue;
2820 }
2821
2822 /* Suitable for reserving if this block is movable */
2823 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2824 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2825 move_freepages_block(zone, page, MIGRATE_RESERVE);
2826 reserve--;
2827 continue;
2828 }
2829
2830 /*
2831 * If the reserve is met and this is a previous reserved block,
2832 * take it back
2833 */
2834 if (block_migratetype == MIGRATE_RESERVE) {
2835 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2836 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2837 }
2838 }
2839}
ac0e5b7a 2840
1da177e4
LT
2841/*
2842 * Initially all pages are reserved - free ones are freed
2843 * up by free_all_bootmem() once the early boot process is
2844 * done. Non-atomic initialization, single-pass.
2845 */
c09b4240 2846void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2847 unsigned long start_pfn, enum memmap_context context)
1da177e4 2848{
1da177e4 2849 struct page *page;
29751f69
AW
2850 unsigned long end_pfn = start_pfn + size;
2851 unsigned long pfn;
86051ca5 2852 struct zone *z;
1da177e4 2853
22b31eec
HD
2854 if (highest_memmap_pfn < end_pfn - 1)
2855 highest_memmap_pfn = end_pfn - 1;
2856
86051ca5 2857 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2858 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2859 /*
2860 * There can be holes in boot-time mem_map[]s
2861 * handed to this function. They do not
2862 * exist on hotplugged memory.
2863 */
2864 if (context == MEMMAP_EARLY) {
2865 if (!early_pfn_valid(pfn))
2866 continue;
2867 if (!early_pfn_in_nid(pfn, nid))
2868 continue;
2869 }
d41dee36
AW
2870 page = pfn_to_page(pfn);
2871 set_page_links(page, zone, nid, pfn);
708614e6 2872 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2873 init_page_count(page);
1da177e4
LT
2874 reset_page_mapcount(page);
2875 SetPageReserved(page);
b2a0ac88
MG
2876 /*
2877 * Mark the block movable so that blocks are reserved for
2878 * movable at startup. This will force kernel allocations
2879 * to reserve their blocks rather than leaking throughout
2880 * the address space during boot when many long-lived
56fd56b8
MG
2881 * kernel allocations are made. Later some blocks near
2882 * the start are marked MIGRATE_RESERVE by
2883 * setup_zone_migrate_reserve()
86051ca5
KH
2884 *
2885 * bitmap is created for zone's valid pfn range. but memmap
2886 * can be created for invalid pages (for alignment)
2887 * check here not to call set_pageblock_migratetype() against
2888 * pfn out of zone.
b2a0ac88 2889 */
86051ca5
KH
2890 if ((z->zone_start_pfn <= pfn)
2891 && (pfn < z->zone_start_pfn + z->spanned_pages)
2892 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2893 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2894
1da177e4
LT
2895 INIT_LIST_HEAD(&page->lru);
2896#ifdef WANT_PAGE_VIRTUAL
2897 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2898 if (!is_highmem_idx(zone))
3212c6be 2899 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2900#endif
1da177e4
LT
2901 }
2902}
2903
1e548deb 2904static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2905{
b2a0ac88
MG
2906 int order, t;
2907 for_each_migratetype_order(order, t) {
2908 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2909 zone->free_area[order].nr_free = 0;
2910 }
2911}
2912
2913#ifndef __HAVE_ARCH_MEMMAP_INIT
2914#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2915 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2916#endif
2917
1d6f4e60 2918static int zone_batchsize(struct zone *zone)
e7c8d5c9 2919{
3a6be87f 2920#ifdef CONFIG_MMU
e7c8d5c9
CL
2921 int batch;
2922
2923 /*
2924 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2925 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2926 *
2927 * OK, so we don't know how big the cache is. So guess.
2928 */
2929 batch = zone->present_pages / 1024;
ba56e91c
SR
2930 if (batch * PAGE_SIZE > 512 * 1024)
2931 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2932 batch /= 4; /* We effectively *= 4 below */
2933 if (batch < 1)
2934 batch = 1;
2935
2936 /*
0ceaacc9
NP
2937 * Clamp the batch to a 2^n - 1 value. Having a power
2938 * of 2 value was found to be more likely to have
2939 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2940 *
0ceaacc9
NP
2941 * For example if 2 tasks are alternately allocating
2942 * batches of pages, one task can end up with a lot
2943 * of pages of one half of the possible page colors
2944 * and the other with pages of the other colors.
e7c8d5c9 2945 */
9155203a 2946 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2947
e7c8d5c9 2948 return batch;
3a6be87f
DH
2949
2950#else
2951 /* The deferral and batching of frees should be suppressed under NOMMU
2952 * conditions.
2953 *
2954 * The problem is that NOMMU needs to be able to allocate large chunks
2955 * of contiguous memory as there's no hardware page translation to
2956 * assemble apparent contiguous memory from discontiguous pages.
2957 *
2958 * Queueing large contiguous runs of pages for batching, however,
2959 * causes the pages to actually be freed in smaller chunks. As there
2960 * can be a significant delay between the individual batches being
2961 * recycled, this leads to the once large chunks of space being
2962 * fragmented and becoming unavailable for high-order allocations.
2963 */
2964 return 0;
2965#endif
e7c8d5c9
CL
2966}
2967
b69a7288 2968static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2969{
2970 struct per_cpu_pages *pcp;
2971
1c6fe946
MD
2972 memset(p, 0, sizeof(*p));
2973
3dfa5721 2974 pcp = &p->pcp;
2caaad41 2975 pcp->count = 0;
2caaad41
CL
2976 pcp->high = 6 * batch;
2977 pcp->batch = max(1UL, 1 * batch);
2978 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2979}
2980
8ad4b1fb
RS
2981/*
2982 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2983 * to the value high for the pageset p.
2984 */
2985
2986static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2987 unsigned long high)
2988{
2989 struct per_cpu_pages *pcp;
2990
3dfa5721 2991 pcp = &p->pcp;
8ad4b1fb
RS
2992 pcp->high = high;
2993 pcp->batch = max(1UL, high/4);
2994 if ((high/4) > (PAGE_SHIFT * 8))
2995 pcp->batch = PAGE_SHIFT * 8;
2996}
2997
2998
e7c8d5c9
CL
2999#ifdef CONFIG_NUMA
3000/*
2caaad41
CL
3001 * Boot pageset table. One per cpu which is going to be used for all
3002 * zones and all nodes. The parameters will be set in such a way
3003 * that an item put on a list will immediately be handed over to
3004 * the buddy list. This is safe since pageset manipulation is done
3005 * with interrupts disabled.
3006 *
3007 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
3008 *
3009 * The boot_pagesets must be kept even after bootup is complete for
3010 * unused processors and/or zones. They do play a role for bootstrapping
3011 * hotplugged processors.
3012 *
3013 * zoneinfo_show() and maybe other functions do
3014 * not check if the processor is online before following the pageset pointer.
3015 * Other parts of the kernel may not check if the zone is available.
2caaad41 3016 */
88a2a4ac 3017static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3018
3019/*
3020 * Dynamically allocate memory for the
e7c8d5c9
CL
3021 * per cpu pageset array in struct zone.
3022 */
6292d9aa 3023static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3024{
3025 struct zone *zone, *dzone;
37c0708d
CL
3026 int node = cpu_to_node(cpu);
3027
3028 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3029
ee99c71c 3030 for_each_populated_zone(zone) {
23316bc8 3031 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3032 GFP_KERNEL, node);
23316bc8 3033 if (!zone_pcp(zone, cpu))
e7c8d5c9 3034 goto bad;
e7c8d5c9 3035
23316bc8 3036 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3037
3038 if (percpu_pagelist_fraction)
3039 setup_pagelist_highmark(zone_pcp(zone, cpu),
3040 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3041 }
3042
3043 return 0;
3044bad:
3045 for_each_zone(dzone) {
64191688
AM
3046 if (!populated_zone(dzone))
3047 continue;
e7c8d5c9
CL
3048 if (dzone == zone)
3049 break;
23316bc8 3050 kfree(zone_pcp(dzone, cpu));
364df0eb 3051 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3052 }
3053 return -ENOMEM;
3054}
3055
3056static inline void free_zone_pagesets(int cpu)
3057{
e7c8d5c9
CL
3058 struct zone *zone;
3059
3060 for_each_zone(zone) {
3061 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3062
f3ef9ead
DR
3063 /* Free per_cpu_pageset if it is slab allocated */
3064 if (pset != &boot_pageset[cpu])
3065 kfree(pset);
364df0eb 3066 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3067 }
e7c8d5c9
CL
3068}
3069
9c7b216d 3070static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3071 unsigned long action,
3072 void *hcpu)
3073{
3074 int cpu = (long)hcpu;
3075 int ret = NOTIFY_OK;
3076
3077 switch (action) {
ce421c79 3078 case CPU_UP_PREPARE:
8bb78442 3079 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3080 if (process_zones(cpu))
3081 ret = NOTIFY_BAD;
3082 break;
3083 case CPU_UP_CANCELED:
8bb78442 3084 case CPU_UP_CANCELED_FROZEN:
ce421c79 3085 case CPU_DEAD:
8bb78442 3086 case CPU_DEAD_FROZEN:
ce421c79
AW
3087 free_zone_pagesets(cpu);
3088 break;
3089 default:
3090 break;
e7c8d5c9
CL
3091 }
3092 return ret;
3093}
3094
74b85f37 3095static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3096 { &pageset_cpuup_callback, NULL, 0 };
3097
78d9955b 3098void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3099{
3100 int err;
3101
3102 /* Initialize per_cpu_pageset for cpu 0.
3103 * A cpuup callback will do this for every cpu
3104 * as it comes online
3105 */
3106 err = process_zones(smp_processor_id());
3107 BUG_ON(err);
3108 register_cpu_notifier(&pageset_notifier);
3109}
3110
3111#endif
3112
577a32f6 3113static noinline __init_refok
cca448fe 3114int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3115{
3116 int i;
3117 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3118 size_t alloc_size;
ed8ece2e
DH
3119
3120 /*
3121 * The per-page waitqueue mechanism uses hashed waitqueues
3122 * per zone.
3123 */
02b694de
YG
3124 zone->wait_table_hash_nr_entries =
3125 wait_table_hash_nr_entries(zone_size_pages);
3126 zone->wait_table_bits =
3127 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3128 alloc_size = zone->wait_table_hash_nr_entries
3129 * sizeof(wait_queue_head_t);
3130
cd94b9db 3131 if (!slab_is_available()) {
cca448fe
YG
3132 zone->wait_table = (wait_queue_head_t *)
3133 alloc_bootmem_node(pgdat, alloc_size);
3134 } else {
3135 /*
3136 * This case means that a zone whose size was 0 gets new memory
3137 * via memory hot-add.
3138 * But it may be the case that a new node was hot-added. In
3139 * this case vmalloc() will not be able to use this new node's
3140 * memory - this wait_table must be initialized to use this new
3141 * node itself as well.
3142 * To use this new node's memory, further consideration will be
3143 * necessary.
3144 */
8691f3a7 3145 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3146 }
3147 if (!zone->wait_table)
3148 return -ENOMEM;
ed8ece2e 3149
02b694de 3150 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3151 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3152
3153 return 0;
ed8ece2e
DH
3154}
3155
112067f0
SL
3156static int __zone_pcp_update(void *data)
3157{
3158 struct zone *zone = data;
3159 int cpu;
3160 unsigned long batch = zone_batchsize(zone), flags;
3161
3162 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3163 struct per_cpu_pageset *pset;
3164 struct per_cpu_pages *pcp;
3165
3166 pset = zone_pcp(zone, cpu);
3167 pcp = &pset->pcp;
3168
3169 local_irq_save(flags);
3170 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3171 setup_pageset(pset, batch);
3172 local_irq_restore(flags);
3173 }
3174 return 0;
3175}
3176
3177void zone_pcp_update(struct zone *zone)
3178{
3179 stop_machine(__zone_pcp_update, zone, NULL);
3180}
3181
c09b4240 3182static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3183{
3184 int cpu;
3185 unsigned long batch = zone_batchsize(zone);
3186
3187 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3188#ifdef CONFIG_NUMA
3189 /* Early boot. Slab allocator not functional yet */
23316bc8 3190 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3191 setup_pageset(&boot_pageset[cpu],0);
3192#else
3193 setup_pageset(zone_pcp(zone,cpu), batch);
3194#endif
3195 }
f5335c0f
AB
3196 if (zone->present_pages)
3197 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3198 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3199}
3200
718127cc
YG
3201__meminit int init_currently_empty_zone(struct zone *zone,
3202 unsigned long zone_start_pfn,
a2f3aa02
DH
3203 unsigned long size,
3204 enum memmap_context context)
ed8ece2e
DH
3205{
3206 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3207 int ret;
3208 ret = zone_wait_table_init(zone, size);
3209 if (ret)
3210 return ret;
ed8ece2e
DH
3211 pgdat->nr_zones = zone_idx(zone) + 1;
3212
ed8ece2e
DH
3213 zone->zone_start_pfn = zone_start_pfn;
3214
708614e6
MG
3215 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3216 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3217 pgdat->node_id,
3218 (unsigned long)zone_idx(zone),
3219 zone_start_pfn, (zone_start_pfn + size));
3220
1e548deb 3221 zone_init_free_lists(zone);
718127cc
YG
3222
3223 return 0;
ed8ece2e
DH
3224}
3225
c713216d
MG
3226#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3227/*
3228 * Basic iterator support. Return the first range of PFNs for a node
3229 * Note: nid == MAX_NUMNODES returns first region regardless of node
3230 */
a3142c8e 3231static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3232{
3233 int i;
3234
3235 for (i = 0; i < nr_nodemap_entries; i++)
3236 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3237 return i;
3238
3239 return -1;
3240}
3241
3242/*
3243 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3244 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3245 */
a3142c8e 3246static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3247{
3248 for (index = index + 1; index < nr_nodemap_entries; index++)
3249 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3250 return index;
3251
3252 return -1;
3253}
3254
3255#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3256/*
3257 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3258 * Architectures may implement their own version but if add_active_range()
3259 * was used and there are no special requirements, this is a convenient
3260 * alternative
3261 */
f2dbcfa7 3262int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3263{
3264 int i;
3265
3266 for (i = 0; i < nr_nodemap_entries; i++) {
3267 unsigned long start_pfn = early_node_map[i].start_pfn;
3268 unsigned long end_pfn = early_node_map[i].end_pfn;
3269
3270 if (start_pfn <= pfn && pfn < end_pfn)
3271 return early_node_map[i].nid;
3272 }
cc2559bc
KH
3273 /* This is a memory hole */
3274 return -1;
c713216d
MG
3275}
3276#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3277
f2dbcfa7
KH
3278int __meminit early_pfn_to_nid(unsigned long pfn)
3279{
cc2559bc
KH
3280 int nid;
3281
3282 nid = __early_pfn_to_nid(pfn);
3283 if (nid >= 0)
3284 return nid;
3285 /* just returns 0 */
3286 return 0;
f2dbcfa7
KH
3287}
3288
cc2559bc
KH
3289#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3290bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3291{
3292 int nid;
3293
3294 nid = __early_pfn_to_nid(pfn);
3295 if (nid >= 0 && nid != node)
3296 return false;
3297 return true;
3298}
3299#endif
f2dbcfa7 3300
c713216d
MG
3301/* Basic iterator support to walk early_node_map[] */
3302#define for_each_active_range_index_in_nid(i, nid) \
3303 for (i = first_active_region_index_in_nid(nid); i != -1; \
3304 i = next_active_region_index_in_nid(i, nid))
3305
3306/**
3307 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3308 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3309 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3310 *
3311 * If an architecture guarantees that all ranges registered with
3312 * add_active_ranges() contain no holes and may be freed, this
3313 * this function may be used instead of calling free_bootmem() manually.
3314 */
3315void __init free_bootmem_with_active_regions(int nid,
3316 unsigned long max_low_pfn)
3317{
3318 int i;
3319
3320 for_each_active_range_index_in_nid(i, nid) {
3321 unsigned long size_pages = 0;
3322 unsigned long end_pfn = early_node_map[i].end_pfn;
3323
3324 if (early_node_map[i].start_pfn >= max_low_pfn)
3325 continue;
3326
3327 if (end_pfn > max_low_pfn)
3328 end_pfn = max_low_pfn;
3329
3330 size_pages = end_pfn - early_node_map[i].start_pfn;
3331 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3332 PFN_PHYS(early_node_map[i].start_pfn),
3333 size_pages << PAGE_SHIFT);
3334 }
3335}
3336
b5bc6c0e
YL
3337void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3338{
3339 int i;
d52d53b8 3340 int ret;
b5bc6c0e 3341
d52d53b8
YL
3342 for_each_active_range_index_in_nid(i, nid) {
3343 ret = work_fn(early_node_map[i].start_pfn,
3344 early_node_map[i].end_pfn, data);
3345 if (ret)
3346 break;
3347 }
b5bc6c0e 3348}
c713216d
MG
3349/**
3350 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3351 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3352 *
3353 * If an architecture guarantees that all ranges registered with
3354 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3355 * function may be used instead of calling memory_present() manually.
c713216d
MG
3356 */
3357void __init sparse_memory_present_with_active_regions(int nid)
3358{
3359 int i;
3360
3361 for_each_active_range_index_in_nid(i, nid)
3362 memory_present(early_node_map[i].nid,
3363 early_node_map[i].start_pfn,
3364 early_node_map[i].end_pfn);
3365}
3366
3367/**
3368 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3369 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3370 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3371 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3372 *
3373 * It returns the start and end page frame of a node based on information
3374 * provided by an arch calling add_active_range(). If called for a node
3375 * with no available memory, a warning is printed and the start and end
88ca3b94 3376 * PFNs will be 0.
c713216d 3377 */
a3142c8e 3378void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3379 unsigned long *start_pfn, unsigned long *end_pfn)
3380{
3381 int i;
3382 *start_pfn = -1UL;
3383 *end_pfn = 0;
3384
3385 for_each_active_range_index_in_nid(i, nid) {
3386 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3387 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3388 }
3389
633c0666 3390 if (*start_pfn == -1UL)
c713216d 3391 *start_pfn = 0;
c713216d
MG
3392}
3393
2a1e274a
MG
3394/*
3395 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3396 * assumption is made that zones within a node are ordered in monotonic
3397 * increasing memory addresses so that the "highest" populated zone is used
3398 */
b69a7288 3399static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3400{
3401 int zone_index;
3402 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3403 if (zone_index == ZONE_MOVABLE)
3404 continue;
3405
3406 if (arch_zone_highest_possible_pfn[zone_index] >
3407 arch_zone_lowest_possible_pfn[zone_index])
3408 break;
3409 }
3410
3411 VM_BUG_ON(zone_index == -1);
3412 movable_zone = zone_index;
3413}
3414
3415/*
3416 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3417 * because it is sized independant of architecture. Unlike the other zones,
3418 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3419 * in each node depending on the size of each node and how evenly kernelcore
3420 * is distributed. This helper function adjusts the zone ranges
3421 * provided by the architecture for a given node by using the end of the
3422 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3423 * zones within a node are in order of monotonic increases memory addresses
3424 */
b69a7288 3425static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3426 unsigned long zone_type,
3427 unsigned long node_start_pfn,
3428 unsigned long node_end_pfn,
3429 unsigned long *zone_start_pfn,
3430 unsigned long *zone_end_pfn)
3431{
3432 /* Only adjust if ZONE_MOVABLE is on this node */
3433 if (zone_movable_pfn[nid]) {
3434 /* Size ZONE_MOVABLE */
3435 if (zone_type == ZONE_MOVABLE) {
3436 *zone_start_pfn = zone_movable_pfn[nid];
3437 *zone_end_pfn = min(node_end_pfn,
3438 arch_zone_highest_possible_pfn[movable_zone]);
3439
3440 /* Adjust for ZONE_MOVABLE starting within this range */
3441 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3442 *zone_end_pfn > zone_movable_pfn[nid]) {
3443 *zone_end_pfn = zone_movable_pfn[nid];
3444
3445 /* Check if this whole range is within ZONE_MOVABLE */
3446 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3447 *zone_start_pfn = *zone_end_pfn;
3448 }
3449}
3450
c713216d
MG
3451/*
3452 * Return the number of pages a zone spans in a node, including holes
3453 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3454 */
6ea6e688 3455static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3456 unsigned long zone_type,
3457 unsigned long *ignored)
3458{
3459 unsigned long node_start_pfn, node_end_pfn;
3460 unsigned long zone_start_pfn, zone_end_pfn;
3461
3462 /* Get the start and end of the node and zone */
3463 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3464 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3465 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3466 adjust_zone_range_for_zone_movable(nid, zone_type,
3467 node_start_pfn, node_end_pfn,
3468 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3469
3470 /* Check that this node has pages within the zone's required range */
3471 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3472 return 0;
3473
3474 /* Move the zone boundaries inside the node if necessary */
3475 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3476 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3477
3478 /* Return the spanned pages */
3479 return zone_end_pfn - zone_start_pfn;
3480}
3481
3482/*
3483 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3484 * then all holes in the requested range will be accounted for.
c713216d 3485 */
b69a7288 3486static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3487 unsigned long range_start_pfn,
3488 unsigned long range_end_pfn)
3489{
3490 int i = 0;
3491 unsigned long prev_end_pfn = 0, hole_pages = 0;
3492 unsigned long start_pfn;
3493
3494 /* Find the end_pfn of the first active range of pfns in the node */
3495 i = first_active_region_index_in_nid(nid);
3496 if (i == -1)
3497 return 0;
3498
b5445f95
MG
3499 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3500
9c7cd687
MG
3501 /* Account for ranges before physical memory on this node */
3502 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3503 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3504
3505 /* Find all holes for the zone within the node */
3506 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3507
3508 /* No need to continue if prev_end_pfn is outside the zone */
3509 if (prev_end_pfn >= range_end_pfn)
3510 break;
3511
3512 /* Make sure the end of the zone is not within the hole */
3513 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3514 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3515
3516 /* Update the hole size cound and move on */
3517 if (start_pfn > range_start_pfn) {
3518 BUG_ON(prev_end_pfn > start_pfn);
3519 hole_pages += start_pfn - prev_end_pfn;
3520 }
3521 prev_end_pfn = early_node_map[i].end_pfn;
3522 }
3523
9c7cd687
MG
3524 /* Account for ranges past physical memory on this node */
3525 if (range_end_pfn > prev_end_pfn)
0c6cb974 3526 hole_pages += range_end_pfn -
9c7cd687
MG
3527 max(range_start_pfn, prev_end_pfn);
3528
c713216d
MG
3529 return hole_pages;
3530}
3531
3532/**
3533 * absent_pages_in_range - Return number of page frames in holes within a range
3534 * @start_pfn: The start PFN to start searching for holes
3535 * @end_pfn: The end PFN to stop searching for holes
3536 *
88ca3b94 3537 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3538 */
3539unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3540 unsigned long end_pfn)
3541{
3542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3543}
3544
3545/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3546static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3547 unsigned long zone_type,
3548 unsigned long *ignored)
3549{
9c7cd687
MG
3550 unsigned long node_start_pfn, node_end_pfn;
3551 unsigned long zone_start_pfn, zone_end_pfn;
3552
3553 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3554 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3555 node_start_pfn);
3556 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3557 node_end_pfn);
3558
2a1e274a
MG
3559 adjust_zone_range_for_zone_movable(nid, zone_type,
3560 node_start_pfn, node_end_pfn,
3561 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3562 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3563}
0e0b864e 3564
c713216d 3565#else
6ea6e688 3566static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3567 unsigned long zone_type,
3568 unsigned long *zones_size)
3569{
3570 return zones_size[zone_type];
3571}
3572
6ea6e688 3573static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3574 unsigned long zone_type,
3575 unsigned long *zholes_size)
3576{
3577 if (!zholes_size)
3578 return 0;
3579
3580 return zholes_size[zone_type];
3581}
0e0b864e 3582
c713216d
MG
3583#endif
3584
a3142c8e 3585static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3586 unsigned long *zones_size, unsigned long *zholes_size)
3587{
3588 unsigned long realtotalpages, totalpages = 0;
3589 enum zone_type i;
3590
3591 for (i = 0; i < MAX_NR_ZONES; i++)
3592 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3593 zones_size);
3594 pgdat->node_spanned_pages = totalpages;
3595
3596 realtotalpages = totalpages;
3597 for (i = 0; i < MAX_NR_ZONES; i++)
3598 realtotalpages -=
3599 zone_absent_pages_in_node(pgdat->node_id, i,
3600 zholes_size);
3601 pgdat->node_present_pages = realtotalpages;
3602 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3603 realtotalpages);
3604}
3605
835c134e
MG
3606#ifndef CONFIG_SPARSEMEM
3607/*
3608 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3609 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3610 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3611 * round what is now in bits to nearest long in bits, then return it in
3612 * bytes.
3613 */
3614static unsigned long __init usemap_size(unsigned long zonesize)
3615{
3616 unsigned long usemapsize;
3617
d9c23400
MG
3618 usemapsize = roundup(zonesize, pageblock_nr_pages);
3619 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3620 usemapsize *= NR_PAGEBLOCK_BITS;
3621 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3622
3623 return usemapsize / 8;
3624}
3625
3626static void __init setup_usemap(struct pglist_data *pgdat,
3627 struct zone *zone, unsigned long zonesize)
3628{
3629 unsigned long usemapsize = usemap_size(zonesize);
3630 zone->pageblock_flags = NULL;
58a01a45 3631 if (usemapsize)
835c134e 3632 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3633}
3634#else
3635static void inline setup_usemap(struct pglist_data *pgdat,
3636 struct zone *zone, unsigned long zonesize) {}
3637#endif /* CONFIG_SPARSEMEM */
3638
d9c23400 3639#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3640
3641/* Return a sensible default order for the pageblock size. */
3642static inline int pageblock_default_order(void)
3643{
3644 if (HPAGE_SHIFT > PAGE_SHIFT)
3645 return HUGETLB_PAGE_ORDER;
3646
3647 return MAX_ORDER-1;
3648}
3649
d9c23400
MG
3650/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3651static inline void __init set_pageblock_order(unsigned int order)
3652{
3653 /* Check that pageblock_nr_pages has not already been setup */
3654 if (pageblock_order)
3655 return;
3656
3657 /*
3658 * Assume the largest contiguous order of interest is a huge page.
3659 * This value may be variable depending on boot parameters on IA64
3660 */
3661 pageblock_order = order;
3662}
3663#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3664
ba72cb8c
MG
3665/*
3666 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3667 * and pageblock_default_order() are unused as pageblock_order is set
3668 * at compile-time. See include/linux/pageblock-flags.h for the values of
3669 * pageblock_order based on the kernel config
3670 */
3671static inline int pageblock_default_order(unsigned int order)
3672{
3673 return MAX_ORDER-1;
3674}
d9c23400
MG
3675#define set_pageblock_order(x) do {} while (0)
3676
3677#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3678
1da177e4
LT
3679/*
3680 * Set up the zone data structures:
3681 * - mark all pages reserved
3682 * - mark all memory queues empty
3683 * - clear the memory bitmaps
3684 */
b5a0e011 3685static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3686 unsigned long *zones_size, unsigned long *zholes_size)
3687{
2f1b6248 3688 enum zone_type j;
ed8ece2e 3689 int nid = pgdat->node_id;
1da177e4 3690 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3691 int ret;
1da177e4 3692
208d54e5 3693 pgdat_resize_init(pgdat);
1da177e4
LT
3694 pgdat->nr_zones = 0;
3695 init_waitqueue_head(&pgdat->kswapd_wait);
3696 pgdat->kswapd_max_order = 0;
52d4b9ac 3697 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3698
3699 for (j = 0; j < MAX_NR_ZONES; j++) {
3700 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3701 unsigned long size, realsize, memmap_pages;
b69408e8 3702 enum lru_list l;
1da177e4 3703
c713216d
MG
3704 size = zone_spanned_pages_in_node(nid, j, zones_size);
3705 realsize = size - zone_absent_pages_in_node(nid, j,
3706 zholes_size);
1da177e4 3707
0e0b864e
MG
3708 /*
3709 * Adjust realsize so that it accounts for how much memory
3710 * is used by this zone for memmap. This affects the watermark
3711 * and per-cpu initialisations
3712 */
f7232154
JW
3713 memmap_pages =
3714 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3715 if (realsize >= memmap_pages) {
3716 realsize -= memmap_pages;
5594c8c8
YL
3717 if (memmap_pages)
3718 printk(KERN_DEBUG
3719 " %s zone: %lu pages used for memmap\n",
3720 zone_names[j], memmap_pages);
0e0b864e
MG
3721 } else
3722 printk(KERN_WARNING
3723 " %s zone: %lu pages exceeds realsize %lu\n",
3724 zone_names[j], memmap_pages, realsize);
3725
6267276f
CL
3726 /* Account for reserved pages */
3727 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3728 realsize -= dma_reserve;
d903ef9f 3729 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3730 zone_names[0], dma_reserve);
0e0b864e
MG
3731 }
3732
98d2b0eb 3733 if (!is_highmem_idx(j))
1da177e4
LT
3734 nr_kernel_pages += realsize;
3735 nr_all_pages += realsize;
3736
3737 zone->spanned_pages = size;
3738 zone->present_pages = realsize;
9614634f 3739#ifdef CONFIG_NUMA
d5f541ed 3740 zone->node = nid;
8417bba4 3741 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3742 / 100;
0ff38490 3743 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3744#endif
1da177e4
LT
3745 zone->name = zone_names[j];
3746 spin_lock_init(&zone->lock);
3747 spin_lock_init(&zone->lru_lock);
bdc8cb98 3748 zone_seqlock_init(zone);
1da177e4 3749 zone->zone_pgdat = pgdat;
1da177e4 3750
3bb1a852 3751 zone->prev_priority = DEF_PRIORITY;
1da177e4 3752
ed8ece2e 3753 zone_pcp_init(zone);
b69408e8
CL
3754 for_each_lru(l) {
3755 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3756 zone->lru[l].nr_saved_scan = 0;
b69408e8 3757 }
6e901571
KM
3758 zone->reclaim_stat.recent_rotated[0] = 0;
3759 zone->reclaim_stat.recent_rotated[1] = 0;
3760 zone->reclaim_stat.recent_scanned[0] = 0;
3761 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3762 zap_zone_vm_stats(zone);
e815af95 3763 zone->flags = 0;
1da177e4
LT
3764 if (!size)
3765 continue;
3766
ba72cb8c 3767 set_pageblock_order(pageblock_default_order());
835c134e 3768 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3769 ret = init_currently_empty_zone(zone, zone_start_pfn,
3770 size, MEMMAP_EARLY);
718127cc 3771 BUG_ON(ret);
76cdd58e 3772 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3773 zone_start_pfn += size;
1da177e4
LT
3774 }
3775}
3776
577a32f6 3777static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3778{
1da177e4
LT
3779 /* Skip empty nodes */
3780 if (!pgdat->node_spanned_pages)
3781 return;
3782
d41dee36 3783#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3784 /* ia64 gets its own node_mem_map, before this, without bootmem */
3785 if (!pgdat->node_mem_map) {
e984bb43 3786 unsigned long size, start, end;
d41dee36
AW
3787 struct page *map;
3788
e984bb43
BP
3789 /*
3790 * The zone's endpoints aren't required to be MAX_ORDER
3791 * aligned but the node_mem_map endpoints must be in order
3792 * for the buddy allocator to function correctly.
3793 */
3794 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3795 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3796 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3797 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3798 map = alloc_remap(pgdat->node_id, size);
3799 if (!map)
3800 map = alloc_bootmem_node(pgdat, size);
e984bb43 3801 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3802 }
12d810c1 3803#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3804 /*
3805 * With no DISCONTIG, the global mem_map is just set as node 0's
3806 */
c713216d 3807 if (pgdat == NODE_DATA(0)) {
1da177e4 3808 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3809#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3810 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3811 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3812#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3813 }
1da177e4 3814#endif
d41dee36 3815#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3816}
3817
9109fb7b
JW
3818void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3819 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3820{
9109fb7b
JW
3821 pg_data_t *pgdat = NODE_DATA(nid);
3822
1da177e4
LT
3823 pgdat->node_id = nid;
3824 pgdat->node_start_pfn = node_start_pfn;
c713216d 3825 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3826
3827 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3828#ifdef CONFIG_FLAT_NODE_MEM_MAP
3829 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3830 nid, (unsigned long)pgdat,
3831 (unsigned long)pgdat->node_mem_map);
3832#endif
1da177e4
LT
3833
3834 free_area_init_core(pgdat, zones_size, zholes_size);
3835}
3836
c713216d 3837#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3838
3839#if MAX_NUMNODES > 1
3840/*
3841 * Figure out the number of possible node ids.
3842 */
3843static void __init setup_nr_node_ids(void)
3844{
3845 unsigned int node;
3846 unsigned int highest = 0;
3847
3848 for_each_node_mask(node, node_possible_map)
3849 highest = node;
3850 nr_node_ids = highest + 1;
3851}
3852#else
3853static inline void setup_nr_node_ids(void)
3854{
3855}
3856#endif
3857
c713216d
MG
3858/**
3859 * add_active_range - Register a range of PFNs backed by physical memory
3860 * @nid: The node ID the range resides on
3861 * @start_pfn: The start PFN of the available physical memory
3862 * @end_pfn: The end PFN of the available physical memory
3863 *
3864 * These ranges are stored in an early_node_map[] and later used by
3865 * free_area_init_nodes() to calculate zone sizes and holes. If the
3866 * range spans a memory hole, it is up to the architecture to ensure
3867 * the memory is not freed by the bootmem allocator. If possible
3868 * the range being registered will be merged with existing ranges.
3869 */
3870void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3871 unsigned long end_pfn)
3872{
3873 int i;
3874
6b74ab97
MG
3875 mminit_dprintk(MMINIT_TRACE, "memory_register",
3876 "Entering add_active_range(%d, %#lx, %#lx) "
3877 "%d entries of %d used\n",
3878 nid, start_pfn, end_pfn,
3879 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3880
2dbb51c4
MG
3881 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3882
c713216d
MG
3883 /* Merge with existing active regions if possible */
3884 for (i = 0; i < nr_nodemap_entries; i++) {
3885 if (early_node_map[i].nid != nid)
3886 continue;
3887
3888 /* Skip if an existing region covers this new one */
3889 if (start_pfn >= early_node_map[i].start_pfn &&
3890 end_pfn <= early_node_map[i].end_pfn)
3891 return;
3892
3893 /* Merge forward if suitable */
3894 if (start_pfn <= early_node_map[i].end_pfn &&
3895 end_pfn > early_node_map[i].end_pfn) {
3896 early_node_map[i].end_pfn = end_pfn;
3897 return;
3898 }
3899
3900 /* Merge backward if suitable */
3901 if (start_pfn < early_node_map[i].end_pfn &&
3902 end_pfn >= early_node_map[i].start_pfn) {
3903 early_node_map[i].start_pfn = start_pfn;
3904 return;
3905 }
3906 }
3907
3908 /* Check that early_node_map is large enough */
3909 if (i >= MAX_ACTIVE_REGIONS) {
3910 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3911 MAX_ACTIVE_REGIONS);
3912 return;
3913 }
3914
3915 early_node_map[i].nid = nid;
3916 early_node_map[i].start_pfn = start_pfn;
3917 early_node_map[i].end_pfn = end_pfn;
3918 nr_nodemap_entries = i + 1;
3919}
3920
3921/**
cc1050ba 3922 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3923 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3924 * @start_pfn: The new PFN of the range
3925 * @end_pfn: The new PFN of the range
c713216d
MG
3926 *
3927 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3928 * The map is kept near the end physical page range that has already been
3929 * registered. This function allows an arch to shrink an existing registered
3930 * range.
c713216d 3931 */
cc1050ba
YL
3932void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3933 unsigned long end_pfn)
c713216d 3934{
cc1a9d86
YL
3935 int i, j;
3936 int removed = 0;
c713216d 3937
cc1050ba
YL
3938 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3939 nid, start_pfn, end_pfn);
3940
c713216d 3941 /* Find the old active region end and shrink */
cc1a9d86 3942 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3943 if (early_node_map[i].start_pfn >= start_pfn &&
3944 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3945 /* clear it */
cc1050ba 3946 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3947 early_node_map[i].end_pfn = 0;
3948 removed = 1;
3949 continue;
3950 }
cc1050ba
YL
3951 if (early_node_map[i].start_pfn < start_pfn &&
3952 early_node_map[i].end_pfn > start_pfn) {
3953 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3954 early_node_map[i].end_pfn = start_pfn;
3955 if (temp_end_pfn > end_pfn)
3956 add_active_range(nid, end_pfn, temp_end_pfn);
3957 continue;
3958 }
3959 if (early_node_map[i].start_pfn >= start_pfn &&
3960 early_node_map[i].end_pfn > end_pfn &&
3961 early_node_map[i].start_pfn < end_pfn) {
3962 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3963 continue;
c713216d 3964 }
cc1a9d86
YL
3965 }
3966
3967 if (!removed)
3968 return;
3969
3970 /* remove the blank ones */
3971 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3972 if (early_node_map[i].nid != nid)
3973 continue;
3974 if (early_node_map[i].end_pfn)
3975 continue;
3976 /* we found it, get rid of it */
3977 for (j = i; j < nr_nodemap_entries - 1; j++)
3978 memcpy(&early_node_map[j], &early_node_map[j+1],
3979 sizeof(early_node_map[j]));
3980 j = nr_nodemap_entries - 1;
3981 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3982 nr_nodemap_entries--;
3983 }
c713216d
MG
3984}
3985
3986/**
3987 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3988 *
c713216d
MG
3989 * During discovery, it may be found that a table like SRAT is invalid
3990 * and an alternative discovery method must be used. This function removes
3991 * all currently registered regions.
3992 */
88ca3b94 3993void __init remove_all_active_ranges(void)
c713216d
MG
3994{
3995 memset(early_node_map, 0, sizeof(early_node_map));
3996 nr_nodemap_entries = 0;
3997}
3998
3999/* Compare two active node_active_regions */
4000static int __init cmp_node_active_region(const void *a, const void *b)
4001{
4002 struct node_active_region *arange = (struct node_active_region *)a;
4003 struct node_active_region *brange = (struct node_active_region *)b;
4004
4005 /* Done this way to avoid overflows */
4006 if (arange->start_pfn > brange->start_pfn)
4007 return 1;
4008 if (arange->start_pfn < brange->start_pfn)
4009 return -1;
4010
4011 return 0;
4012}
4013
4014/* sort the node_map by start_pfn */
4015static void __init sort_node_map(void)
4016{
4017 sort(early_node_map, (size_t)nr_nodemap_entries,
4018 sizeof(struct node_active_region),
4019 cmp_node_active_region, NULL);
4020}
4021
a6af2bc3 4022/* Find the lowest pfn for a node */
b69a7288 4023static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4024{
4025 int i;
a6af2bc3 4026 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4027
c713216d
MG
4028 /* Assuming a sorted map, the first range found has the starting pfn */
4029 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4030 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4031
a6af2bc3
MG
4032 if (min_pfn == ULONG_MAX) {
4033 printk(KERN_WARNING
2bc0d261 4034 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4035 return 0;
4036 }
4037
4038 return min_pfn;
c713216d
MG
4039}
4040
4041/**
4042 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4043 *
4044 * It returns the minimum PFN based on information provided via
88ca3b94 4045 * add_active_range().
c713216d
MG
4046 */
4047unsigned long __init find_min_pfn_with_active_regions(void)
4048{
4049 return find_min_pfn_for_node(MAX_NUMNODES);
4050}
4051
37b07e41
LS
4052/*
4053 * early_calculate_totalpages()
4054 * Sum pages in active regions for movable zone.
4055 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4056 */
484f51f8 4057static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4058{
4059 int i;
4060 unsigned long totalpages = 0;
4061
37b07e41
LS
4062 for (i = 0; i < nr_nodemap_entries; i++) {
4063 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4064 early_node_map[i].start_pfn;
37b07e41
LS
4065 totalpages += pages;
4066 if (pages)
4067 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4068 }
4069 return totalpages;
7e63efef
MG
4070}
4071
2a1e274a
MG
4072/*
4073 * Find the PFN the Movable zone begins in each node. Kernel memory
4074 * is spread evenly between nodes as long as the nodes have enough
4075 * memory. When they don't, some nodes will have more kernelcore than
4076 * others
4077 */
b69a7288 4078static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4079{
4080 int i, nid;
4081 unsigned long usable_startpfn;
4082 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4083 /* save the state before borrow the nodemask */
4084 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4085 unsigned long totalpages = early_calculate_totalpages();
4086 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4087
7e63efef
MG
4088 /*
4089 * If movablecore was specified, calculate what size of
4090 * kernelcore that corresponds so that memory usable for
4091 * any allocation type is evenly spread. If both kernelcore
4092 * and movablecore are specified, then the value of kernelcore
4093 * will be used for required_kernelcore if it's greater than
4094 * what movablecore would have allowed.
4095 */
4096 if (required_movablecore) {
7e63efef
MG
4097 unsigned long corepages;
4098
4099 /*
4100 * Round-up so that ZONE_MOVABLE is at least as large as what
4101 * was requested by the user
4102 */
4103 required_movablecore =
4104 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4105 corepages = totalpages - required_movablecore;
4106
4107 required_kernelcore = max(required_kernelcore, corepages);
4108 }
4109
2a1e274a
MG
4110 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4111 if (!required_kernelcore)
66918dcd 4112 goto out;
2a1e274a
MG
4113
4114 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4115 find_usable_zone_for_movable();
4116 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4117
4118restart:
4119 /* Spread kernelcore memory as evenly as possible throughout nodes */
4120 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4121 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4122 /*
4123 * Recalculate kernelcore_node if the division per node
4124 * now exceeds what is necessary to satisfy the requested
4125 * amount of memory for the kernel
4126 */
4127 if (required_kernelcore < kernelcore_node)
4128 kernelcore_node = required_kernelcore / usable_nodes;
4129
4130 /*
4131 * As the map is walked, we track how much memory is usable
4132 * by the kernel using kernelcore_remaining. When it is
4133 * 0, the rest of the node is usable by ZONE_MOVABLE
4134 */
4135 kernelcore_remaining = kernelcore_node;
4136
4137 /* Go through each range of PFNs within this node */
4138 for_each_active_range_index_in_nid(i, nid) {
4139 unsigned long start_pfn, end_pfn;
4140 unsigned long size_pages;
4141
4142 start_pfn = max(early_node_map[i].start_pfn,
4143 zone_movable_pfn[nid]);
4144 end_pfn = early_node_map[i].end_pfn;
4145 if (start_pfn >= end_pfn)
4146 continue;
4147
4148 /* Account for what is only usable for kernelcore */
4149 if (start_pfn < usable_startpfn) {
4150 unsigned long kernel_pages;
4151 kernel_pages = min(end_pfn, usable_startpfn)
4152 - start_pfn;
4153
4154 kernelcore_remaining -= min(kernel_pages,
4155 kernelcore_remaining);
4156 required_kernelcore -= min(kernel_pages,
4157 required_kernelcore);
4158
4159 /* Continue if range is now fully accounted */
4160 if (end_pfn <= usable_startpfn) {
4161
4162 /*
4163 * Push zone_movable_pfn to the end so
4164 * that if we have to rebalance
4165 * kernelcore across nodes, we will
4166 * not double account here
4167 */
4168 zone_movable_pfn[nid] = end_pfn;
4169 continue;
4170 }
4171 start_pfn = usable_startpfn;
4172 }
4173
4174 /*
4175 * The usable PFN range for ZONE_MOVABLE is from
4176 * start_pfn->end_pfn. Calculate size_pages as the
4177 * number of pages used as kernelcore
4178 */
4179 size_pages = end_pfn - start_pfn;
4180 if (size_pages > kernelcore_remaining)
4181 size_pages = kernelcore_remaining;
4182 zone_movable_pfn[nid] = start_pfn + size_pages;
4183
4184 /*
4185 * Some kernelcore has been met, update counts and
4186 * break if the kernelcore for this node has been
4187 * satisified
4188 */
4189 required_kernelcore -= min(required_kernelcore,
4190 size_pages);
4191 kernelcore_remaining -= size_pages;
4192 if (!kernelcore_remaining)
4193 break;
4194 }
4195 }
4196
4197 /*
4198 * If there is still required_kernelcore, we do another pass with one
4199 * less node in the count. This will push zone_movable_pfn[nid] further
4200 * along on the nodes that still have memory until kernelcore is
4201 * satisified
4202 */
4203 usable_nodes--;
4204 if (usable_nodes && required_kernelcore > usable_nodes)
4205 goto restart;
4206
4207 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4208 for (nid = 0; nid < MAX_NUMNODES; nid++)
4209 zone_movable_pfn[nid] =
4210 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4211
4212out:
4213 /* restore the node_state */
4214 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4215}
4216
37b07e41
LS
4217/* Any regular memory on that node ? */
4218static void check_for_regular_memory(pg_data_t *pgdat)
4219{
4220#ifdef CONFIG_HIGHMEM
4221 enum zone_type zone_type;
4222
4223 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4224 struct zone *zone = &pgdat->node_zones[zone_type];
4225 if (zone->present_pages)
4226 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4227 }
4228#endif
4229}
4230
c713216d
MG
4231/**
4232 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4233 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4234 *
4235 * This will call free_area_init_node() for each active node in the system.
4236 * Using the page ranges provided by add_active_range(), the size of each
4237 * zone in each node and their holes is calculated. If the maximum PFN
4238 * between two adjacent zones match, it is assumed that the zone is empty.
4239 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4240 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4241 * starts where the previous one ended. For example, ZONE_DMA32 starts
4242 * at arch_max_dma_pfn.
4243 */
4244void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4245{
4246 unsigned long nid;
db99100d 4247 int i;
c713216d 4248
a6af2bc3
MG
4249 /* Sort early_node_map as initialisation assumes it is sorted */
4250 sort_node_map();
4251
c713216d
MG
4252 /* Record where the zone boundaries are */
4253 memset(arch_zone_lowest_possible_pfn, 0,
4254 sizeof(arch_zone_lowest_possible_pfn));
4255 memset(arch_zone_highest_possible_pfn, 0,
4256 sizeof(arch_zone_highest_possible_pfn));
4257 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4258 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4259 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4260 if (i == ZONE_MOVABLE)
4261 continue;
c713216d
MG
4262 arch_zone_lowest_possible_pfn[i] =
4263 arch_zone_highest_possible_pfn[i-1];
4264 arch_zone_highest_possible_pfn[i] =
4265 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4266 }
2a1e274a
MG
4267 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4268 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4269
4270 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4271 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4272 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4273
c713216d
MG
4274 /* Print out the zone ranges */
4275 printk("Zone PFN ranges:\n");
2a1e274a
MG
4276 for (i = 0; i < MAX_NR_ZONES; i++) {
4277 if (i == ZONE_MOVABLE)
4278 continue;
5dab8ec1 4279 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4280 zone_names[i],
4281 arch_zone_lowest_possible_pfn[i],
4282 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4283 }
4284
4285 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4286 printk("Movable zone start PFN for each node\n");
4287 for (i = 0; i < MAX_NUMNODES; i++) {
4288 if (zone_movable_pfn[i])
4289 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4290 }
c713216d
MG
4291
4292 /* Print out the early_node_map[] */
4293 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4294 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4295 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4296 early_node_map[i].start_pfn,
4297 early_node_map[i].end_pfn);
4298
4299 /* Initialise every node */
708614e6 4300 mminit_verify_pageflags_layout();
8ef82866 4301 setup_nr_node_ids();
c713216d
MG
4302 for_each_online_node(nid) {
4303 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4304 free_area_init_node(nid, NULL,
c713216d 4305 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4306
4307 /* Any memory on that node */
4308 if (pgdat->node_present_pages)
4309 node_set_state(nid, N_HIGH_MEMORY);
4310 check_for_regular_memory(pgdat);
c713216d
MG
4311 }
4312}
2a1e274a 4313
7e63efef 4314static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4315{
4316 unsigned long long coremem;
4317 if (!p)
4318 return -EINVAL;
4319
4320 coremem = memparse(p, &p);
7e63efef 4321 *core = coremem >> PAGE_SHIFT;
2a1e274a 4322
7e63efef 4323 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4324 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4325
4326 return 0;
4327}
ed7ed365 4328
7e63efef
MG
4329/*
4330 * kernelcore=size sets the amount of memory for use for allocations that
4331 * cannot be reclaimed or migrated.
4332 */
4333static int __init cmdline_parse_kernelcore(char *p)
4334{
4335 return cmdline_parse_core(p, &required_kernelcore);
4336}
4337
4338/*
4339 * movablecore=size sets the amount of memory for use for allocations that
4340 * can be reclaimed or migrated.
4341 */
4342static int __init cmdline_parse_movablecore(char *p)
4343{
4344 return cmdline_parse_core(p, &required_movablecore);
4345}
4346
ed7ed365 4347early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4348early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4349
c713216d
MG
4350#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4351
0e0b864e 4352/**
88ca3b94
RD
4353 * set_dma_reserve - set the specified number of pages reserved in the first zone
4354 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4355 *
4356 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4357 * In the DMA zone, a significant percentage may be consumed by kernel image
4358 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4359 * function may optionally be used to account for unfreeable pages in the
4360 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4361 * smaller per-cpu batchsize.
0e0b864e
MG
4362 */
4363void __init set_dma_reserve(unsigned long new_dma_reserve)
4364{
4365 dma_reserve = new_dma_reserve;
4366}
4367
93b7504e 4368#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4369struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4370EXPORT_SYMBOL(contig_page_data);
93b7504e 4371#endif
1da177e4
LT
4372
4373void __init free_area_init(unsigned long *zones_size)
4374{
9109fb7b 4375 free_area_init_node(0, zones_size,
1da177e4
LT
4376 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4377}
1da177e4 4378
1da177e4
LT
4379static int page_alloc_cpu_notify(struct notifier_block *self,
4380 unsigned long action, void *hcpu)
4381{
4382 int cpu = (unsigned long)hcpu;
1da177e4 4383
8bb78442 4384 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4385 drain_pages(cpu);
4386
4387 /*
4388 * Spill the event counters of the dead processor
4389 * into the current processors event counters.
4390 * This artificially elevates the count of the current
4391 * processor.
4392 */
f8891e5e 4393 vm_events_fold_cpu(cpu);
9f8f2172
CL
4394
4395 /*
4396 * Zero the differential counters of the dead processor
4397 * so that the vm statistics are consistent.
4398 *
4399 * This is only okay since the processor is dead and cannot
4400 * race with what we are doing.
4401 */
2244b95a 4402 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4403 }
4404 return NOTIFY_OK;
4405}
1da177e4
LT
4406
4407void __init page_alloc_init(void)
4408{
4409 hotcpu_notifier(page_alloc_cpu_notify, 0);
4410}
4411
cb45b0e9
HA
4412/*
4413 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4414 * or min_free_kbytes changes.
4415 */
4416static void calculate_totalreserve_pages(void)
4417{
4418 struct pglist_data *pgdat;
4419 unsigned long reserve_pages = 0;
2f6726e5 4420 enum zone_type i, j;
cb45b0e9
HA
4421
4422 for_each_online_pgdat(pgdat) {
4423 for (i = 0; i < MAX_NR_ZONES; i++) {
4424 struct zone *zone = pgdat->node_zones + i;
4425 unsigned long max = 0;
4426
4427 /* Find valid and maximum lowmem_reserve in the zone */
4428 for (j = i; j < MAX_NR_ZONES; j++) {
4429 if (zone->lowmem_reserve[j] > max)
4430 max = zone->lowmem_reserve[j];
4431 }
4432
41858966
MG
4433 /* we treat the high watermark as reserved pages. */
4434 max += high_wmark_pages(zone);
cb45b0e9
HA
4435
4436 if (max > zone->present_pages)
4437 max = zone->present_pages;
4438 reserve_pages += max;
4439 }
4440 }
4441 totalreserve_pages = reserve_pages;
4442}
4443
1da177e4
LT
4444/*
4445 * setup_per_zone_lowmem_reserve - called whenever
4446 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4447 * has a correct pages reserved value, so an adequate number of
4448 * pages are left in the zone after a successful __alloc_pages().
4449 */
4450static void setup_per_zone_lowmem_reserve(void)
4451{
4452 struct pglist_data *pgdat;
2f6726e5 4453 enum zone_type j, idx;
1da177e4 4454
ec936fc5 4455 for_each_online_pgdat(pgdat) {
1da177e4
LT
4456 for (j = 0; j < MAX_NR_ZONES; j++) {
4457 struct zone *zone = pgdat->node_zones + j;
4458 unsigned long present_pages = zone->present_pages;
4459
4460 zone->lowmem_reserve[j] = 0;
4461
2f6726e5
CL
4462 idx = j;
4463 while (idx) {
1da177e4
LT
4464 struct zone *lower_zone;
4465
2f6726e5
CL
4466 idx--;
4467
1da177e4
LT
4468 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4469 sysctl_lowmem_reserve_ratio[idx] = 1;
4470
4471 lower_zone = pgdat->node_zones + idx;
4472 lower_zone->lowmem_reserve[j] = present_pages /
4473 sysctl_lowmem_reserve_ratio[idx];
4474 present_pages += lower_zone->present_pages;
4475 }
4476 }
4477 }
cb45b0e9
HA
4478
4479 /* update totalreserve_pages */
4480 calculate_totalreserve_pages();
1da177e4
LT
4481}
4482
88ca3b94 4483/**
bc75d33f 4484 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4485 * or when memory is hot-{added|removed}
88ca3b94 4486 *
bc75d33f
MK
4487 * Ensures that the watermark[min,low,high] values for each zone are set
4488 * correctly with respect to min_free_kbytes.
1da177e4 4489 */
bc75d33f 4490void setup_per_zone_wmarks(void)
1da177e4
LT
4491{
4492 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4493 unsigned long lowmem_pages = 0;
4494 struct zone *zone;
4495 unsigned long flags;
4496
4497 /* Calculate total number of !ZONE_HIGHMEM pages */
4498 for_each_zone(zone) {
4499 if (!is_highmem(zone))
4500 lowmem_pages += zone->present_pages;
4501 }
4502
4503 for_each_zone(zone) {
ac924c60
AM
4504 u64 tmp;
4505
1125b4e3 4506 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4507 tmp = (u64)pages_min * zone->present_pages;
4508 do_div(tmp, lowmem_pages);
1da177e4
LT
4509 if (is_highmem(zone)) {
4510 /*
669ed175
NP
4511 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4512 * need highmem pages, so cap pages_min to a small
4513 * value here.
4514 *
41858966 4515 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4516 * deltas controls asynch page reclaim, and so should
4517 * not be capped for highmem.
1da177e4
LT
4518 */
4519 int min_pages;
4520
4521 min_pages = zone->present_pages / 1024;
4522 if (min_pages < SWAP_CLUSTER_MAX)
4523 min_pages = SWAP_CLUSTER_MAX;
4524 if (min_pages > 128)
4525 min_pages = 128;
41858966 4526 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4527 } else {
669ed175
NP
4528 /*
4529 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4530 * proportionate to the zone's size.
4531 */
41858966 4532 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4533 }
4534
41858966
MG
4535 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4536 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4537 setup_zone_migrate_reserve(zone);
1125b4e3 4538 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4539 }
cb45b0e9
HA
4540
4541 /* update totalreserve_pages */
4542 calculate_totalreserve_pages();
1da177e4
LT
4543}
4544
55a4462a 4545/*
556adecb
RR
4546 * The inactive anon list should be small enough that the VM never has to
4547 * do too much work, but large enough that each inactive page has a chance
4548 * to be referenced again before it is swapped out.
4549 *
4550 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4551 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4552 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4553 * the anonymous pages are kept on the inactive list.
4554 *
4555 * total target max
4556 * memory ratio inactive anon
4557 * -------------------------------------
4558 * 10MB 1 5MB
4559 * 100MB 1 50MB
4560 * 1GB 3 250MB
4561 * 10GB 10 0.9GB
4562 * 100GB 31 3GB
4563 * 1TB 101 10GB
4564 * 10TB 320 32GB
4565 */
96cb4df5 4566void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4567{
96cb4df5 4568 unsigned int gb, ratio;
556adecb 4569
96cb4df5
MK
4570 /* Zone size in gigabytes */
4571 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4572 if (gb)
556adecb 4573 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4574 else
4575 ratio = 1;
556adecb 4576
96cb4df5
MK
4577 zone->inactive_ratio = ratio;
4578}
556adecb 4579
96cb4df5
MK
4580static void __init setup_per_zone_inactive_ratio(void)
4581{
4582 struct zone *zone;
4583
4584 for_each_zone(zone)
4585 calculate_zone_inactive_ratio(zone);
556adecb
RR
4586}
4587
1da177e4
LT
4588/*
4589 * Initialise min_free_kbytes.
4590 *
4591 * For small machines we want it small (128k min). For large machines
4592 * we want it large (64MB max). But it is not linear, because network
4593 * bandwidth does not increase linearly with machine size. We use
4594 *
4595 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4596 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4597 *
4598 * which yields
4599 *
4600 * 16MB: 512k
4601 * 32MB: 724k
4602 * 64MB: 1024k
4603 * 128MB: 1448k
4604 * 256MB: 2048k
4605 * 512MB: 2896k
4606 * 1024MB: 4096k
4607 * 2048MB: 5792k
4608 * 4096MB: 8192k
4609 * 8192MB: 11584k
4610 * 16384MB: 16384k
4611 */
bc75d33f 4612static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4613{
4614 unsigned long lowmem_kbytes;
4615
4616 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4617
4618 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4619 if (min_free_kbytes < 128)
4620 min_free_kbytes = 128;
4621 if (min_free_kbytes > 65536)
4622 min_free_kbytes = 65536;
bc75d33f 4623 setup_per_zone_wmarks();
1da177e4 4624 setup_per_zone_lowmem_reserve();
556adecb 4625 setup_per_zone_inactive_ratio();
1da177e4
LT
4626 return 0;
4627}
bc75d33f 4628module_init(init_per_zone_wmark_min)
1da177e4
LT
4629
4630/*
4631 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4632 * that we can call two helper functions whenever min_free_kbytes
4633 * changes.
4634 */
4635int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4636 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4637{
4638 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4639 if (write)
bc75d33f 4640 setup_per_zone_wmarks();
1da177e4
LT
4641 return 0;
4642}
4643
9614634f
CL
4644#ifdef CONFIG_NUMA
4645int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4646 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4647{
4648 struct zone *zone;
4649 int rc;
4650
4651 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4652 if (rc)
4653 return rc;
4654
4655 for_each_zone(zone)
8417bba4 4656 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4657 sysctl_min_unmapped_ratio) / 100;
4658 return 0;
4659}
0ff38490
CL
4660
4661int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4662 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4663{
4664 struct zone *zone;
4665 int rc;
4666
4667 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4668 if (rc)
4669 return rc;
4670
4671 for_each_zone(zone)
4672 zone->min_slab_pages = (zone->present_pages *
4673 sysctl_min_slab_ratio) / 100;
4674 return 0;
4675}
9614634f
CL
4676#endif
4677
1da177e4
LT
4678/*
4679 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4680 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4681 * whenever sysctl_lowmem_reserve_ratio changes.
4682 *
4683 * The reserve ratio obviously has absolutely no relation with the
41858966 4684 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4685 * if in function of the boot time zone sizes.
4686 */
4687int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4688 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4689{
4690 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4691 setup_per_zone_lowmem_reserve();
4692 return 0;
4693}
4694
8ad4b1fb
RS
4695/*
4696 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4697 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4698 * can have before it gets flushed back to buddy allocator.
4699 */
4700
4701int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4702 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4703{
4704 struct zone *zone;
4705 unsigned int cpu;
4706 int ret;
4707
4708 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4709 if (!write || (ret == -EINVAL))
4710 return ret;
364df0eb 4711 for_each_populated_zone(zone) {
8ad4b1fb
RS
4712 for_each_online_cpu(cpu) {
4713 unsigned long high;
4714 high = zone->present_pages / percpu_pagelist_fraction;
4715 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4716 }
4717 }
4718 return 0;
4719}
4720
f034b5d4 4721int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4722
4723#ifdef CONFIG_NUMA
4724static int __init set_hashdist(char *str)
4725{
4726 if (!str)
4727 return 0;
4728 hashdist = simple_strtoul(str, &str, 0);
4729 return 1;
4730}
4731__setup("hashdist=", set_hashdist);
4732#endif
4733
4734/*
4735 * allocate a large system hash table from bootmem
4736 * - it is assumed that the hash table must contain an exact power-of-2
4737 * quantity of entries
4738 * - limit is the number of hash buckets, not the total allocation size
4739 */
4740void *__init alloc_large_system_hash(const char *tablename,
4741 unsigned long bucketsize,
4742 unsigned long numentries,
4743 int scale,
4744 int flags,
4745 unsigned int *_hash_shift,
4746 unsigned int *_hash_mask,
4747 unsigned long limit)
4748{
4749 unsigned long long max = limit;
4750 unsigned long log2qty, size;
4751 void *table = NULL;
4752
4753 /* allow the kernel cmdline to have a say */
4754 if (!numentries) {
4755 /* round applicable memory size up to nearest megabyte */
04903664 4756 numentries = nr_kernel_pages;
1da177e4
LT
4757 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4758 numentries >>= 20 - PAGE_SHIFT;
4759 numentries <<= 20 - PAGE_SHIFT;
4760
4761 /* limit to 1 bucket per 2^scale bytes of low memory */
4762 if (scale > PAGE_SHIFT)
4763 numentries >>= (scale - PAGE_SHIFT);
4764 else
4765 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4766
4767 /* Make sure we've got at least a 0-order allocation.. */
4768 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4769 numentries = PAGE_SIZE / bucketsize;
1da177e4 4770 }
6e692ed3 4771 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4772
4773 /* limit allocation size to 1/16 total memory by default */
4774 if (max == 0) {
4775 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4776 do_div(max, bucketsize);
4777 }
4778
4779 if (numentries > max)
4780 numentries = max;
4781
f0d1b0b3 4782 log2qty = ilog2(numentries);
1da177e4
LT
4783
4784 do {
4785 size = bucketsize << log2qty;
4786 if (flags & HASH_EARLY)
74768ed8 4787 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4788 else if (hashdist)
4789 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4790 else {
1037b83b
ED
4791 /*
4792 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4793 * some pages at the end of hash table which
4794 * alloc_pages_exact() automatically does
1037b83b 4795 */
264ef8a9 4796 if (get_order(size) < MAX_ORDER) {
a1dd268c 4797 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4798 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4799 }
1da177e4
LT
4800 }
4801 } while (!table && size > PAGE_SIZE && --log2qty);
4802
4803 if (!table)
4804 panic("Failed to allocate %s hash table\n", tablename);
4805
b49ad484 4806 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4807 tablename,
4808 (1U << log2qty),
f0d1b0b3 4809 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4810 size);
4811
4812 if (_hash_shift)
4813 *_hash_shift = log2qty;
4814 if (_hash_mask)
4815 *_hash_mask = (1 << log2qty) - 1;
4816
4817 return table;
4818}
a117e66e 4819
835c134e
MG
4820/* Return a pointer to the bitmap storing bits affecting a block of pages */
4821static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4822 unsigned long pfn)
4823{
4824#ifdef CONFIG_SPARSEMEM
4825 return __pfn_to_section(pfn)->pageblock_flags;
4826#else
4827 return zone->pageblock_flags;
4828#endif /* CONFIG_SPARSEMEM */
4829}
4830
4831static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4832{
4833#ifdef CONFIG_SPARSEMEM
4834 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4835 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4836#else
4837 pfn = pfn - zone->zone_start_pfn;
d9c23400 4838 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4839#endif /* CONFIG_SPARSEMEM */
4840}
4841
4842/**
d9c23400 4843 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4844 * @page: The page within the block of interest
4845 * @start_bitidx: The first bit of interest to retrieve
4846 * @end_bitidx: The last bit of interest
4847 * returns pageblock_bits flags
4848 */
4849unsigned long get_pageblock_flags_group(struct page *page,
4850 int start_bitidx, int end_bitidx)
4851{
4852 struct zone *zone;
4853 unsigned long *bitmap;
4854 unsigned long pfn, bitidx;
4855 unsigned long flags = 0;
4856 unsigned long value = 1;
4857
4858 zone = page_zone(page);
4859 pfn = page_to_pfn(page);
4860 bitmap = get_pageblock_bitmap(zone, pfn);
4861 bitidx = pfn_to_bitidx(zone, pfn);
4862
4863 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4864 if (test_bit(bitidx + start_bitidx, bitmap))
4865 flags |= value;
6220ec78 4866
835c134e
MG
4867 return flags;
4868}
4869
4870/**
d9c23400 4871 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4872 * @page: The page within the block of interest
4873 * @start_bitidx: The first bit of interest
4874 * @end_bitidx: The last bit of interest
4875 * @flags: The flags to set
4876 */
4877void set_pageblock_flags_group(struct page *page, unsigned long flags,
4878 int start_bitidx, int end_bitidx)
4879{
4880 struct zone *zone;
4881 unsigned long *bitmap;
4882 unsigned long pfn, bitidx;
4883 unsigned long value = 1;
4884
4885 zone = page_zone(page);
4886 pfn = page_to_pfn(page);
4887 bitmap = get_pageblock_bitmap(zone, pfn);
4888 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4889 VM_BUG_ON(pfn < zone->zone_start_pfn);
4890 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4891
4892 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4893 if (flags & value)
4894 __set_bit(bitidx + start_bitidx, bitmap);
4895 else
4896 __clear_bit(bitidx + start_bitidx, bitmap);
4897}
a5d76b54
KH
4898
4899/*
4900 * This is designed as sub function...plz see page_isolation.c also.
4901 * set/clear page block's type to be ISOLATE.
4902 * page allocater never alloc memory from ISOLATE block.
4903 */
4904
4905int set_migratetype_isolate(struct page *page)
4906{
4907 struct zone *zone;
4908 unsigned long flags;
4909 int ret = -EBUSY;
8e7e40d9 4910 int zone_idx;
a5d76b54
KH
4911
4912 zone = page_zone(page);
8e7e40d9 4913 zone_idx = zone_idx(zone);
a5d76b54
KH
4914 spin_lock_irqsave(&zone->lock, flags);
4915 /*
4916 * In future, more migrate types will be able to be isolation target.
4917 */
8e7e40d9
SL
4918 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4919 zone_idx != ZONE_MOVABLE)
a5d76b54
KH
4920 goto out;
4921 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4922 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4923 ret = 0;
4924out:
4925 spin_unlock_irqrestore(&zone->lock, flags);
4926 if (!ret)
9f8f2172 4927 drain_all_pages();
a5d76b54
KH
4928 return ret;
4929}
4930
4931void unset_migratetype_isolate(struct page *page)
4932{
4933 struct zone *zone;
4934 unsigned long flags;
4935 zone = page_zone(page);
4936 spin_lock_irqsave(&zone->lock, flags);
4937 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4938 goto out;
4939 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4940 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4941out:
4942 spin_unlock_irqrestore(&zone->lock, flags);
4943}
0c0e6195
KH
4944
4945#ifdef CONFIG_MEMORY_HOTREMOVE
4946/*
4947 * All pages in the range must be isolated before calling this.
4948 */
4949void
4950__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4951{
4952 struct page *page;
4953 struct zone *zone;
4954 int order, i;
4955 unsigned long pfn;
4956 unsigned long flags;
4957 /* find the first valid pfn */
4958 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4959 if (pfn_valid(pfn))
4960 break;
4961 if (pfn == end_pfn)
4962 return;
4963 zone = page_zone(pfn_to_page(pfn));
4964 spin_lock_irqsave(&zone->lock, flags);
4965 pfn = start_pfn;
4966 while (pfn < end_pfn) {
4967 if (!pfn_valid(pfn)) {
4968 pfn++;
4969 continue;
4970 }
4971 page = pfn_to_page(pfn);
4972 BUG_ON(page_count(page));
4973 BUG_ON(!PageBuddy(page));
4974 order = page_order(page);
4975#ifdef CONFIG_DEBUG_VM
4976 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4977 pfn, 1 << order, end_pfn);
4978#endif
4979 list_del(&page->lru);
4980 rmv_page_order(page);
4981 zone->free_area[order].nr_free--;
4982 __mod_zone_page_state(zone, NR_FREE_PAGES,
4983 - (1UL << order));
4984 for (i = 0; i < (1 << order); i++)
4985 SetPageReserved((page+i));
4986 pfn += (1 << order);
4987 }
4988 spin_unlock_irqrestore(&zone->lock, flags);
4989}
4990#endif