page allocator: calculate the alloc_flags for allocation only once
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
49255c61
MG
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
b2a0ac88
MG
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177}
178
13e7444b 179#ifdef CONFIG_DEBUG_VM
c6a57e19 180static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 181{
bdc8cb98
DH
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
c6a57e19 185
bdc8cb98
DH
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
c6a57e19
DH
195}
196
197static int page_is_consistent(struct zone *zone, struct page *page)
198{
14e07298 199 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 200 return 0;
1da177e4 201 if (zone != page_zone(page))
c6a57e19
DH
202 return 0;
203
204 return 1;
205}
206/*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209static int bad_range(struct zone *zone, struct page *page)
210{
211 if (page_outside_zone_boundaries(zone, page))
1da177e4 212 return 1;
c6a57e19
DH
213 if (!page_is_consistent(zone, page))
214 return 1;
215
1da177e4
LT
216 return 0;
217}
13e7444b
NP
218#else
219static inline int bad_range(struct zone *zone, struct page *page)
220{
221 return 0;
222}
223#endif
224
224abf92 225static void bad_page(struct page *page)
1da177e4 226{
d936cf9b
HD
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
1e9e6365
HD
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
1e9e6365 251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 252 current->comm, page_to_pfn(page));
1e9e6365 253 printk(KERN_ALERT
3dc14741
HD
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
3dc14741 257
1da177e4 258 dump_stack();
d936cf9b 259out:
8cc3b392
HD
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
9f158333 262 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
41d78ba5
HD
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
1da177e4 278 */
d98c7a09
HD
279
280static void free_compound_page(struct page *page)
281{
d85f3385 282 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
283}
284
01ad1c08 285void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
286{
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
303{
304 int i;
305 int nr_pages = 1 << order;
6babc32c 306 struct page *p = page + 1;
1da177e4 307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
18229df5 311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 312 __SetPageTail(p);
d85f3385 313 p->first_page = page;
1da177e4
LT
314 }
315}
18229df5 316#endif
1da177e4 317
8cc3b392 318static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
319{
320 int i;
321 int nr_pages = 1 << order;
8cc3b392 322 int bad = 0;
1da177e4 323
8cc3b392
HD
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
224abf92 326 bad_page(page);
8cc3b392
HD
327 bad++;
328 }
1da177e4 329
6d777953 330 __ClearPageHead(page);
8cc3b392 331
18229df5
AW
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
1da177e4 334
e713a21d 335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 336 bad_page(page);
8cc3b392
HD
337 bad++;
338 }
d85f3385 339 __ClearPageTail(p);
1da177e4 340 }
8cc3b392
HD
341
342 return bad;
1da177e4 343}
1da177e4 344
17cf4406
NP
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347 int i;
348
6626c5d5
AM
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
725d704e 353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356}
357
6aa3001b
AM
358static inline void set_page_order(struct page *page, int order)
359{
4c21e2f2 360 set_page_private(page, order);
676165a8 361 __SetPageBuddy(page);
1da177e4
LT
362}
363
364static inline void rmv_page_order(struct page *page)
365{
676165a8 366 __ClearPageBuddy(page);
4c21e2f2 367 set_page_private(page, 0);
1da177e4
LT
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
d6e05edc 385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398 return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
13e7444b 404 * (a) the buddy is not in a hole &&
676165a8 405 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
676165a8
NP
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 411 *
676165a8 412 * For recording page's order, we use page_private(page).
1da177e4 413 */
cb2b95e1
AW
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
1da177e4 416{
14e07298 417 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 418 return 0;
13e7444b 419
cb2b95e1
AW
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
6aa3001b 425 return 1;
676165a8 426 }
6aa3001b 427 return 0;
1da177e4
LT
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
676165a8 443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 444 * order is recorded in page_private(page) field.
1da177e4
LT
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
48db57f8 454static inline void __free_one_page(struct page *page,
1da177e4
LT
455 struct zone *zone, unsigned int order)
456{
457 unsigned long page_idx;
458 int order_size = 1 << order;
b2a0ac88 459 int migratetype = get_pageblock_migratetype(page);
1da177e4 460
224abf92 461 if (unlikely(PageCompound(page)))
8cc3b392
HD
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
1da177e4
LT
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
725d704e
NP
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
1da177e4 469
d23ad423 470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
1da177e4
LT
473 struct page *buddy;
474
1da177e4 475 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 476 if (!page_is_buddy(page, buddy, order))
3c82d0ce 477 break;
13e7444b 478
3c82d0ce 479 /* Our buddy is free, merge with it and move up one order. */
1da177e4 480 list_del(&buddy->lru);
b2a0ac88 481 zone->free_area[order].nr_free--;
1da177e4 482 rmv_page_order(buddy);
13e7444b 483 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
b2a0ac88
MG
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
491 zone->free_area[order].nr_free++;
492}
493
224abf92 494static inline int free_pages_check(struct page *page)
1da177e4 495{
985737cf 496 free_page_mlock(page);
92be2e33
NP
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
8cc3b392 500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 501 bad_page(page);
79f4b7bf 502 return 1;
8cc3b392 503 }
79f4b7bf
HD
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
1da177e4
LT
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
207f36ee 512 * count is the number of pages to free.
1da177e4
LT
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
48db57f8
NP
520static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
1da177e4 522{
c54ad30c 523 spin_lock(&zone->lock);
e815af95 524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 525 zone->pages_scanned = 0;
48db57f8
NP
526 while (count--) {
527 struct page *page;
528
725d704e 529 VM_BUG_ON(list_empty(list));
1da177e4 530 page = list_entry(list->prev, struct page, lru);
48db57f8 531 /* have to delete it as __free_one_page list manipulates */
1da177e4 532 list_del(&page->lru);
48db57f8 533 __free_one_page(page, zone, order);
1da177e4 534 }
c54ad30c 535 spin_unlock(&zone->lock);
1da177e4
LT
536}
537
48db57f8 538static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 539{
006d22d9 540 spin_lock(&zone->lock);
e815af95 541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 542 zone->pages_scanned = 0;
0798e519 543 __free_one_page(page, zone, order);
006d22d9 544 spin_unlock(&zone->lock);
48db57f8
NP
545}
546
547static void __free_pages_ok(struct page *page, unsigned int order)
548{
549 unsigned long flags;
1da177e4 550 int i;
8cc3b392 551 int bad = 0;
1da177e4 552
1da177e4 553 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
554 bad += free_pages_check(page + i);
555 if (bad)
689bcebf
HD
556 return;
557
3ac7fe5a 558 if (!PageHighMem(page)) {
9858db50 559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
dafb1367 563 arch_free_page(page, order);
48db57f8 564 kernel_map_pages(page, 1 << order, 0);
dafb1367 565
c54ad30c 566 local_irq_save(flags);
f8891e5e 567 __count_vm_events(PGFREE, 1 << order);
48db57f8 568 free_one_page(page_zone(page), page, order);
c54ad30c 569 local_irq_restore(flags);
1da177e4
LT
570}
571
a226f6c8
DH
572/*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
af370fb8 575void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
576{
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
7835e98b 580 set_page_refcounted(page);
545b1ea9 581 __free_page(page);
a226f6c8 582 } else {
a226f6c8
DH
583 int loop;
584
545b1ea9 585 prefetchw(page);
a226f6c8
DH
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
545b1ea9
NP
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
a226f6c8
DH
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
7835e98b 595 set_page_refcounted(page);
545b1ea9 596 __free_pages(page, order);
a226f6c8
DH
597 }
598}
599
1da177e4
LT
600
601/*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
085cc7d5 615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
616 int low, int high, struct free_area *area,
617 int migratetype)
1da177e4
LT
618{
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
725d704e 625 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 626 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
1da177e4
LT
630}
631
1da177e4
LT
632/*
633 * This page is about to be returned from the page allocator
634 */
17cf4406 635static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 636{
92be2e33
NP
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
8cc3b392 640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 641 bad_page(page);
689bcebf 642 return 1;
8cc3b392 643 }
689bcebf 644
4c21e2f2 645 set_page_private(page, 0);
7835e98b 646 set_page_refcounted(page);
cc102509
NP
647
648 arch_alloc_page(page, order);
1da177e4 649 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
689bcebf 657 return 0;
1da177e4
LT
658}
659
56fd56b8
MG
660/*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
664static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 int migratetype)
666{
667 unsigned int current_order;
668 struct free_area * area;
669 struct page *page;
670
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 area = &(zone->free_area[current_order]);
674 if (list_empty(&area->free_list[migratetype]))
675 continue;
676
677 page = list_entry(area->free_list[migratetype].next,
678 struct page, lru);
679 list_del(&page->lru);
680 rmv_page_order(page);
681 area->nr_free--;
682 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 expand(zone, page, order, current_order, area, migratetype);
684 return page;
685 }
686
687 return NULL;
688}
689
690
b2a0ac88
MG
691/*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
700};
701
c361be55
MG
702/*
703 * Move the free pages in a range to the free lists of the requested type.
d9c23400 704 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
705 * boundary. If alignment is required, use move_freepages_block()
706 */
b69a7288
AB
707static int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
c361be55
MG
710{
711 struct page *page;
712 unsigned long order;
d100313f 713 int pages_moved = 0;
c361be55
MG
714
715#ifndef CONFIG_HOLES_IN_ZONE
716 /*
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
ac0e5b7a 721 * grouping pages by mobility
c361be55
MG
722 */
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724#endif
725
726 for (page = start_page; page <= end_page;) {
344c790e
AL
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729
c361be55
MG
730 if (!pfn_valid_within(page_to_pfn(page))) {
731 page++;
732 continue;
733 }
734
735 if (!PageBuddy(page)) {
736 page++;
737 continue;
738 }
739
740 order = page_order(page);
741 list_del(&page->lru);
742 list_add(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 page += 1 << order;
d100313f 745 pages_moved += 1 << order;
c361be55
MG
746 }
747
d100313f 748 return pages_moved;
c361be55
MG
749}
750
b69a7288
AB
751static int move_freepages_block(struct zone *zone, struct page *page,
752 int migratetype)
c361be55
MG
753{
754 unsigned long start_pfn, end_pfn;
755 struct page *start_page, *end_page;
756
757 start_pfn = page_to_pfn(page);
d9c23400 758 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 759 start_page = pfn_to_page(start_pfn);
d9c23400
MG
760 end_page = start_page + pageblock_nr_pages - 1;
761 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
762
763 /* Do not cross zone boundaries */
764 if (start_pfn < zone->zone_start_pfn)
765 start_page = page;
766 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 return 0;
768
769 return move_freepages(zone, start_page, end_page, migratetype);
770}
771
b2a0ac88
MG
772/* Remove an element from the buddy allocator from the fallback list */
773static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 int start_migratetype)
775{
776 struct free_area * area;
777 int current_order;
778 struct page *page;
779 int migratetype, i;
780
781 /* Find the largest possible block of pages in the other list */
782 for (current_order = MAX_ORDER-1; current_order >= order;
783 --current_order) {
784 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 migratetype = fallbacks[start_migratetype][i];
786
56fd56b8
MG
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype == MIGRATE_RESERVE)
789 continue;
e010487d 790
b2a0ac88
MG
791 area = &(zone->free_area[current_order]);
792 if (list_empty(&area->free_list[migratetype]))
793 continue;
794
795 page = list_entry(area->free_list[migratetype].next,
796 struct page, lru);
797 area->nr_free--;
798
799 /*
c361be55 800 * If breaking a large block of pages, move all free
46dafbca
MG
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
b2a0ac88 804 */
d9c23400 805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
806 start_migratetype == MIGRATE_RECLAIMABLE) {
807 unsigned long pages;
808 pages = move_freepages_block(zone, page,
809 start_migratetype);
810
811 /* Claim the whole block if over half of it is free */
d9c23400 812 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
813 set_pageblock_migratetype(page,
814 start_migratetype);
815
b2a0ac88 816 migratetype = start_migratetype;
c361be55 817 }
b2a0ac88
MG
818
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
823 -(1UL << order));
824
d9c23400 825 if (current_order == pageblock_order)
b2a0ac88
MG
826 set_pageblock_migratetype(page,
827 start_migratetype);
828
829 expand(zone, page, order, current_order, area, migratetype);
830 return page;
831 }
832 }
833
56fd56b8
MG
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
836}
837
56fd56b8 838/*
1da177e4
LT
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
b2a0ac88
MG
842static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
1da177e4 844{
1da177e4
LT
845 struct page *page;
846
56fd56b8 847 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 848
56fd56b8
MG
849 if (unlikely(!page))
850 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
851
852 return page;
1da177e4
LT
853}
854
855/*
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
859 */
860static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
861 unsigned long count, struct list_head *list,
862 int migratetype)
1da177e4 863{
1da177e4 864 int i;
1da177e4 865
c54ad30c 866 spin_lock(&zone->lock);
1da177e4 867 for (i = 0; i < count; ++i) {
b2a0ac88 868 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 869 if (unlikely(page == NULL))
1da177e4 870 break;
81eabcbe
MG
871
872 /*
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
879 * properly.
880 */
535131e6
MG
881 list_add(&page->lru, list);
882 set_page_private(page, migratetype);
81eabcbe 883 list = &page->lru;
1da177e4 884 }
c54ad30c 885 spin_unlock(&zone->lock);
085cc7d5 886 return i;
1da177e4
LT
887}
888
4ae7c039 889#ifdef CONFIG_NUMA
8fce4d8e 890/*
4037d452
CL
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
894 *
879336c3
CL
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
8fce4d8e 897 */
4037d452 898void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 899{
4ae7c039 900 unsigned long flags;
4037d452 901 int to_drain;
4ae7c039 902
4037d452
CL
903 local_irq_save(flags);
904 if (pcp->count >= pcp->batch)
905 to_drain = pcp->batch;
906 else
907 to_drain = pcp->count;
908 free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 pcp->count -= to_drain;
910 local_irq_restore(flags);
4ae7c039
CL
911}
912#endif
913
9f8f2172
CL
914/*
915 * Drain pages of the indicated processor.
916 *
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
920 */
921static void drain_pages(unsigned int cpu)
1da177e4 922{
c54ad30c 923 unsigned long flags;
1da177e4 924 struct zone *zone;
1da177e4 925
ee99c71c 926 for_each_populated_zone(zone) {
1da177e4 927 struct per_cpu_pageset *pset;
3dfa5721 928 struct per_cpu_pages *pcp;
1da177e4 929
e7c8d5c9 930 pset = zone_pcp(zone, cpu);
3dfa5721
CL
931
932 pcp = &pset->pcp;
933 local_irq_save(flags);
934 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
935 pcp->count = 0;
936 local_irq_restore(flags);
1da177e4
LT
937 }
938}
1da177e4 939
9f8f2172
CL
940/*
941 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
942 */
943void drain_local_pages(void *arg)
944{
945 drain_pages(smp_processor_id());
946}
947
948/*
949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
950 */
951void drain_all_pages(void)
952{
15c8b6c1 953 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
954}
955
296699de 956#ifdef CONFIG_HIBERNATION
1da177e4
LT
957
958void mark_free_pages(struct zone *zone)
959{
f623f0db
RW
960 unsigned long pfn, max_zone_pfn;
961 unsigned long flags;
b2a0ac88 962 int order, t;
1da177e4
LT
963 struct list_head *curr;
964
965 if (!zone->spanned_pages)
966 return;
967
968 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
969
970 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
971 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
972 if (pfn_valid(pfn)) {
973 struct page *page = pfn_to_page(pfn);
974
7be98234
RW
975 if (!swsusp_page_is_forbidden(page))
976 swsusp_unset_page_free(page);
f623f0db 977 }
1da177e4 978
b2a0ac88
MG
979 for_each_migratetype_order(order, t) {
980 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 981 unsigned long i;
1da177e4 982
f623f0db
RW
983 pfn = page_to_pfn(list_entry(curr, struct page, lru));
984 for (i = 0; i < (1UL << order); i++)
7be98234 985 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 986 }
b2a0ac88 987 }
1da177e4
LT
988 spin_unlock_irqrestore(&zone->lock, flags);
989}
e2c55dc8 990#endif /* CONFIG_PM */
1da177e4 991
1da177e4
LT
992/*
993 * Free a 0-order page
994 */
920c7a5d 995static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
996{
997 struct zone *zone = page_zone(page);
998 struct per_cpu_pages *pcp;
999 unsigned long flags;
1000
1da177e4
LT
1001 if (PageAnon(page))
1002 page->mapping = NULL;
224abf92 1003 if (free_pages_check(page))
689bcebf
HD
1004 return;
1005
3ac7fe5a 1006 if (!PageHighMem(page)) {
9858db50 1007 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1008 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1009 }
dafb1367 1010 arch_free_page(page, 0);
689bcebf
HD
1011 kernel_map_pages(page, 1, 0);
1012
3dfa5721 1013 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1014 local_irq_save(flags);
f8891e5e 1015 __count_vm_event(PGFREE);
3dfa5721
CL
1016 if (cold)
1017 list_add_tail(&page->lru, &pcp->list);
1018 else
1019 list_add(&page->lru, &pcp->list);
535131e6 1020 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1021 pcp->count++;
48db57f8
NP
1022 if (pcp->count >= pcp->high) {
1023 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1024 pcp->count -= pcp->batch;
1025 }
1da177e4
LT
1026 local_irq_restore(flags);
1027 put_cpu();
1028}
1029
920c7a5d 1030void free_hot_page(struct page *page)
1da177e4
LT
1031{
1032 free_hot_cold_page(page, 0);
1033}
1034
920c7a5d 1035void free_cold_page(struct page *page)
1da177e4
LT
1036{
1037 free_hot_cold_page(page, 1);
1038}
1039
8dfcc9ba
NP
1040/*
1041 * split_page takes a non-compound higher-order page, and splits it into
1042 * n (1<<order) sub-pages: page[0..n]
1043 * Each sub-page must be freed individually.
1044 *
1045 * Note: this is probably too low level an operation for use in drivers.
1046 * Please consult with lkml before using this in your driver.
1047 */
1048void split_page(struct page *page, unsigned int order)
1049{
1050 int i;
1051
725d704e
NP
1052 VM_BUG_ON(PageCompound(page));
1053 VM_BUG_ON(!page_count(page));
7835e98b
NP
1054 for (i = 1; i < (1 << order); i++)
1055 set_page_refcounted(page + i);
8dfcc9ba 1056}
8dfcc9ba 1057
1da177e4
LT
1058/*
1059 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1060 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 * or two.
1062 */
18ea7e71 1063static struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1064 struct zone *zone, int order, gfp_t gfp_flags,
1065 int migratetype)
1da177e4
LT
1066{
1067 unsigned long flags;
689bcebf 1068 struct page *page;
1da177e4 1069 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1070 int cpu;
1da177e4 1071
689bcebf 1072again:
a74609fa 1073 cpu = get_cpu();
48db57f8 1074 if (likely(order == 0)) {
1da177e4
LT
1075 struct per_cpu_pages *pcp;
1076
3dfa5721 1077 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1078 local_irq_save(flags);
a74609fa 1079 if (!pcp->count) {
941c7105 1080 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1081 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1082 if (unlikely(!pcp->count))
1083 goto failed;
1da177e4 1084 }
b92a6edd 1085
535131e6 1086 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1087 if (cold) {
1088 list_for_each_entry_reverse(page, &pcp->list, lru)
1089 if (page_private(page) == migratetype)
1090 break;
1091 } else {
1092 list_for_each_entry(page, &pcp->list, lru)
1093 if (page_private(page) == migratetype)
1094 break;
1095 }
535131e6 1096
b92a6edd
MG
1097 /* Allocate more to the pcp list if necessary */
1098 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1099 pcp->count += rmqueue_bulk(zone, 0,
1100 pcp->batch, &pcp->list, migratetype);
1101 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1102 }
b92a6edd
MG
1103
1104 list_del(&page->lru);
1105 pcp->count--;
7fb1d9fc 1106 } else {
1da177e4 1107 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1108 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1109 spin_unlock(&zone->lock);
1110 if (!page)
1111 goto failed;
1da177e4
LT
1112 }
1113
f8891e5e 1114 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1115 zone_statistics(preferred_zone, zone);
a74609fa
NP
1116 local_irq_restore(flags);
1117 put_cpu();
1da177e4 1118
725d704e 1119 VM_BUG_ON(bad_range(zone, page));
17cf4406 1120 if (prep_new_page(page, order, gfp_flags))
a74609fa 1121 goto again;
1da177e4 1122 return page;
a74609fa
NP
1123
1124failed:
1125 local_irq_restore(flags);
1126 put_cpu();
1127 return NULL;
1da177e4
LT
1128}
1129
7fb1d9fc 1130#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1131#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1132#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1133#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1134#define ALLOC_HARDER 0x10 /* try to alloc harder */
1135#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1136#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1137
933e312e
AM
1138#ifdef CONFIG_FAIL_PAGE_ALLOC
1139
1140static struct fail_page_alloc_attr {
1141 struct fault_attr attr;
1142
1143 u32 ignore_gfp_highmem;
1144 u32 ignore_gfp_wait;
54114994 1145 u32 min_order;
933e312e
AM
1146
1147#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1148
1149 struct dentry *ignore_gfp_highmem_file;
1150 struct dentry *ignore_gfp_wait_file;
54114994 1151 struct dentry *min_order_file;
933e312e
AM
1152
1153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1154
1155} fail_page_alloc = {
1156 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1157 .ignore_gfp_wait = 1,
1158 .ignore_gfp_highmem = 1,
54114994 1159 .min_order = 1,
933e312e
AM
1160};
1161
1162static int __init setup_fail_page_alloc(char *str)
1163{
1164 return setup_fault_attr(&fail_page_alloc.attr, str);
1165}
1166__setup("fail_page_alloc=", setup_fail_page_alloc);
1167
1168static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1169{
54114994
AM
1170 if (order < fail_page_alloc.min_order)
1171 return 0;
933e312e
AM
1172 if (gfp_mask & __GFP_NOFAIL)
1173 return 0;
1174 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1177 return 0;
1178
1179 return should_fail(&fail_page_alloc.attr, 1 << order);
1180}
1181
1182#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1183
1184static int __init fail_page_alloc_debugfs(void)
1185{
1186 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1187 struct dentry *dir;
1188 int err;
1189
1190 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1191 "fail_page_alloc");
1192 if (err)
1193 return err;
1194 dir = fail_page_alloc.attr.dentries.dir;
1195
1196 fail_page_alloc.ignore_gfp_wait_file =
1197 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1198 &fail_page_alloc.ignore_gfp_wait);
1199
1200 fail_page_alloc.ignore_gfp_highmem_file =
1201 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1202 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1203 fail_page_alloc.min_order_file =
1204 debugfs_create_u32("min-order", mode, dir,
1205 &fail_page_alloc.min_order);
933e312e
AM
1206
1207 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1208 !fail_page_alloc.ignore_gfp_highmem_file ||
1209 !fail_page_alloc.min_order_file) {
933e312e
AM
1210 err = -ENOMEM;
1211 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1212 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1213 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1214 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1215 }
1216
1217 return err;
1218}
1219
1220late_initcall(fail_page_alloc_debugfs);
1221
1222#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1223
1224#else /* CONFIG_FAIL_PAGE_ALLOC */
1225
1226static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1227{
1228 return 0;
1229}
1230
1231#endif /* CONFIG_FAIL_PAGE_ALLOC */
1232
1da177e4
LT
1233/*
1234 * Return 1 if free pages are above 'mark'. This takes into account the order
1235 * of the allocation.
1236 */
1237int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1238 int classzone_idx, int alloc_flags)
1da177e4
LT
1239{
1240 /* free_pages my go negative - that's OK */
d23ad423
CL
1241 long min = mark;
1242 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1243 int o;
1244
7fb1d9fc 1245 if (alloc_flags & ALLOC_HIGH)
1da177e4 1246 min -= min / 2;
7fb1d9fc 1247 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1248 min -= min / 4;
1249
1250 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1251 return 0;
1252 for (o = 0; o < order; o++) {
1253 /* At the next order, this order's pages become unavailable */
1254 free_pages -= z->free_area[o].nr_free << o;
1255
1256 /* Require fewer higher order pages to be free */
1257 min >>= 1;
1258
1259 if (free_pages <= min)
1260 return 0;
1261 }
1262 return 1;
1263}
1264
9276b1bc
PJ
1265#ifdef CONFIG_NUMA
1266/*
1267 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1268 * skip over zones that are not allowed by the cpuset, or that have
1269 * been recently (in last second) found to be nearly full. See further
1270 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1271 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1272 *
1273 * If the zonelist cache is present in the passed in zonelist, then
1274 * returns a pointer to the allowed node mask (either the current
37b07e41 1275 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1276 *
1277 * If the zonelist cache is not available for this zonelist, does
1278 * nothing and returns NULL.
1279 *
1280 * If the fullzones BITMAP in the zonelist cache is stale (more than
1281 * a second since last zap'd) then we zap it out (clear its bits.)
1282 *
1283 * We hold off even calling zlc_setup, until after we've checked the
1284 * first zone in the zonelist, on the theory that most allocations will
1285 * be satisfied from that first zone, so best to examine that zone as
1286 * quickly as we can.
1287 */
1288static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1289{
1290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1291 nodemask_t *allowednodes; /* zonelist_cache approximation */
1292
1293 zlc = zonelist->zlcache_ptr;
1294 if (!zlc)
1295 return NULL;
1296
f05111f5 1297 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1298 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1299 zlc->last_full_zap = jiffies;
1300 }
1301
1302 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1303 &cpuset_current_mems_allowed :
37b07e41 1304 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1305 return allowednodes;
1306}
1307
1308/*
1309 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1310 * if it is worth looking at further for free memory:
1311 * 1) Check that the zone isn't thought to be full (doesn't have its
1312 * bit set in the zonelist_cache fullzones BITMAP).
1313 * 2) Check that the zones node (obtained from the zonelist_cache
1314 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1315 * Return true (non-zero) if zone is worth looking at further, or
1316 * else return false (zero) if it is not.
1317 *
1318 * This check -ignores- the distinction between various watermarks,
1319 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1320 * found to be full for any variation of these watermarks, it will
1321 * be considered full for up to one second by all requests, unless
1322 * we are so low on memory on all allowed nodes that we are forced
1323 * into the second scan of the zonelist.
1324 *
1325 * In the second scan we ignore this zonelist cache and exactly
1326 * apply the watermarks to all zones, even it is slower to do so.
1327 * We are low on memory in the second scan, and should leave no stone
1328 * unturned looking for a free page.
1329 */
dd1a239f 1330static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1331 nodemask_t *allowednodes)
1332{
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335 int n; /* node that zone *z is on */
1336
1337 zlc = zonelist->zlcache_ptr;
1338 if (!zlc)
1339 return 1;
1340
dd1a239f 1341 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1342 n = zlc->z_to_n[i];
1343
1344 /* This zone is worth trying if it is allowed but not full */
1345 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1346}
1347
1348/*
1349 * Given 'z' scanning a zonelist, set the corresponding bit in
1350 * zlc->fullzones, so that subsequent attempts to allocate a page
1351 * from that zone don't waste time re-examining it.
1352 */
dd1a239f 1353static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1354{
1355 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1356 int i; /* index of *z in zonelist zones */
1357
1358 zlc = zonelist->zlcache_ptr;
1359 if (!zlc)
1360 return;
1361
dd1a239f 1362 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1363
1364 set_bit(i, zlc->fullzones);
1365}
1366
1367#else /* CONFIG_NUMA */
1368
1369static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1370{
1371 return NULL;
1372}
1373
dd1a239f 1374static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1375 nodemask_t *allowednodes)
1376{
1377 return 1;
1378}
1379
dd1a239f 1380static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1381{
1382}
1383#endif /* CONFIG_NUMA */
1384
7fb1d9fc 1385/*
0798e519 1386 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1387 * a page.
1388 */
1389static struct page *
19770b32 1390get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1391 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1392 struct zone *preferred_zone, int migratetype)
753ee728 1393{
dd1a239f 1394 struct zoneref *z;
7fb1d9fc 1395 struct page *page = NULL;
54a6eb5c 1396 int classzone_idx;
5117f45d 1397 struct zone *zone;
9276b1bc
PJ
1398 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1399 int zlc_active = 0; /* set if using zonelist_cache */
1400 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1401
b3c466ce
MG
1402 if (WARN_ON_ONCE(order >= MAX_ORDER))
1403 return NULL;
1404
5117f45d 1405 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1406zonelist_scan:
7fb1d9fc 1407 /*
9276b1bc 1408 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1409 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1410 */
19770b32
MG
1411 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1412 high_zoneidx, nodemask) {
9276b1bc
PJ
1413 if (NUMA_BUILD && zlc_active &&
1414 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1415 continue;
7fb1d9fc 1416 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1417 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1418 goto try_next_zone;
7fb1d9fc
RS
1419
1420 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1421 unsigned long mark;
1422 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1423 mark = zone->pages_min;
3148890b 1424 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1425 mark = zone->pages_low;
3148890b 1426 else
1192d526 1427 mark = zone->pages_high;
0798e519
PJ
1428 if (!zone_watermark_ok(zone, order, mark,
1429 classzone_idx, alloc_flags)) {
9eeff239 1430 if (!zone_reclaim_mode ||
1192d526 1431 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1432 goto this_zone_full;
0798e519 1433 }
7fb1d9fc
RS
1434 }
1435
3dd28266
MG
1436 page = buffered_rmqueue(preferred_zone, zone, order,
1437 gfp_mask, migratetype);
0798e519 1438 if (page)
7fb1d9fc 1439 break;
9276b1bc
PJ
1440this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1449 }
54a6eb5c 1450 }
9276b1bc
PJ
1451
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1456 }
7fb1d9fc 1457 return page;
753ee728
MH
1458}
1459
11e33f6a
MG
1460static inline int
1461should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1462 unsigned long pages_reclaimed)
1da177e4 1463{
11e33f6a
MG
1464 /* Do not loop if specifically requested */
1465 if (gfp_mask & __GFP_NORETRY)
1466 return 0;
1da177e4 1467
11e33f6a
MG
1468 /*
1469 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1470 * means __GFP_NOFAIL, but that may not be true in other
1471 * implementations.
1472 */
1473 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1474 return 1;
1475
1476 /*
1477 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1478 * specified, then we retry until we no longer reclaim any pages
1479 * (above), or we've reclaimed an order of pages at least as
1480 * large as the allocation's order. In both cases, if the
1481 * allocation still fails, we stop retrying.
1482 */
1483 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1484 return 1;
cf40bd16 1485
11e33f6a
MG
1486 /*
1487 * Don't let big-order allocations loop unless the caller
1488 * explicitly requests that.
1489 */
1490 if (gfp_mask & __GFP_NOFAIL)
1491 return 1;
1da177e4 1492
11e33f6a
MG
1493 return 0;
1494}
933e312e 1495
11e33f6a
MG
1496static inline struct page *
1497__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1498 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1499 nodemask_t *nodemask, struct zone *preferred_zone,
1500 int migratetype)
11e33f6a
MG
1501{
1502 struct page *page;
1503
1504 /* Acquire the OOM killer lock for the zones in zonelist */
1505 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1506 schedule_timeout_uninterruptible(1);
1da177e4
LT
1507 return NULL;
1508 }
6b1de916 1509
11e33f6a
MG
1510 /*
1511 * Go through the zonelist yet one more time, keep very high watermark
1512 * here, this is only to catch a parallel oom killing, we must fail if
1513 * we're still under heavy pressure.
1514 */
1515 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1516 order, zonelist, high_zoneidx,
5117f45d 1517 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1518 preferred_zone, migratetype);
7fb1d9fc 1519 if (page)
11e33f6a
MG
1520 goto out;
1521
1522 /* The OOM killer will not help higher order allocs */
1523 if (order > PAGE_ALLOC_COSTLY_ORDER)
1524 goto out;
1525
1526 /* Exhausted what can be done so it's blamo time */
1527 out_of_memory(zonelist, gfp_mask, order);
1528
1529out:
1530 clear_zonelist_oom(zonelist, gfp_mask);
1531 return page;
1532}
1533
1534/* The really slow allocator path where we enter direct reclaim */
1535static inline struct page *
1536__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1537 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1538 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1539 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1540{
1541 struct page *page = NULL;
1542 struct reclaim_state reclaim_state;
1543 struct task_struct *p = current;
1544
1545 cond_resched();
1546
1547 /* We now go into synchronous reclaim */
1548 cpuset_memory_pressure_bump();
1549
1550 /*
1551 * The task's cpuset might have expanded its set of allowable nodes
1552 */
1553 p->flags |= PF_MEMALLOC;
1554 lockdep_set_current_reclaim_state(gfp_mask);
1555 reclaim_state.reclaimed_slab = 0;
1556 p->reclaim_state = &reclaim_state;
1557
1558 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1559
1560 p->reclaim_state = NULL;
1561 lockdep_clear_current_reclaim_state();
1562 p->flags &= ~PF_MEMALLOC;
1563
1564 cond_resched();
1565
1566 if (order != 0)
1567 drain_all_pages();
1568
1569 if (likely(*did_some_progress))
1570 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1571 zonelist, high_zoneidx,
3dd28266
MG
1572 alloc_flags, preferred_zone,
1573 migratetype);
11e33f6a
MG
1574 return page;
1575}
1576
11e33f6a
MG
1577/*
1578 * This is called in the allocator slow-path if the allocation request is of
1579 * sufficient urgency to ignore watermarks and take other desperate measures
1580 */
1581static inline struct page *
1582__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1583 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1584 nodemask_t *nodemask, struct zone *preferred_zone,
1585 int migratetype)
11e33f6a
MG
1586{
1587 struct page *page;
1588
1589 do {
1590 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1591 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1592 preferred_zone, migratetype);
11e33f6a
MG
1593
1594 if (!page && gfp_mask & __GFP_NOFAIL)
1595 congestion_wait(WRITE, HZ/50);
1596 } while (!page && (gfp_mask & __GFP_NOFAIL));
1597
1598 return page;
1599}
1600
1601static inline
1602void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1603 enum zone_type high_zoneidx)
1604{
1605 struct zoneref *z;
1606 struct zone *zone;
1607
1608 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1609 wakeup_kswapd(zone, order);
1610}
1611
341ce06f
PZ
1612static inline int
1613gfp_to_alloc_flags(gfp_t gfp_mask)
1614{
1615 struct task_struct *p = current;
1616 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1617 const gfp_t wait = gfp_mask & __GFP_WAIT;
1618
1619 /*
1620 * The caller may dip into page reserves a bit more if the caller
1621 * cannot run direct reclaim, or if the caller has realtime scheduling
1622 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1623 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1624 */
1625 if (gfp_mask & __GFP_HIGH)
1626 alloc_flags |= ALLOC_HIGH;
1627
1628 if (!wait) {
1629 alloc_flags |= ALLOC_HARDER;
1630 /*
1631 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1632 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1633 */
1634 alloc_flags &= ~ALLOC_CPUSET;
1635 } else if (unlikely(rt_task(p)))
1636 alloc_flags |= ALLOC_HARDER;
1637
1638 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1639 if (!in_interrupt() &&
1640 ((p->flags & PF_MEMALLOC) ||
1641 unlikely(test_thread_flag(TIF_MEMDIE))))
1642 alloc_flags |= ALLOC_NO_WATERMARKS;
1643 }
1644
1645 return alloc_flags;
1646}
1647
11e33f6a
MG
1648static inline struct page *
1649__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1650 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1651 nodemask_t *nodemask, struct zone *preferred_zone,
1652 int migratetype)
11e33f6a
MG
1653{
1654 const gfp_t wait = gfp_mask & __GFP_WAIT;
1655 struct page *page = NULL;
1656 int alloc_flags;
1657 unsigned long pages_reclaimed = 0;
1658 unsigned long did_some_progress;
1659 struct task_struct *p = current;
1da177e4 1660
952f3b51
CL
1661 /*
1662 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1663 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1664 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1665 * using a larger set of nodes after it has established that the
1666 * allowed per node queues are empty and that nodes are
1667 * over allocated.
1668 */
1669 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1670 goto nopage;
1671
11e33f6a 1672 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1673
9bf2229f 1674 /*
7fb1d9fc
RS
1675 * OK, we're below the kswapd watermark and have kicked background
1676 * reclaim. Now things get more complex, so set up alloc_flags according
1677 * to how we want to proceed.
9bf2229f 1678 */
341ce06f 1679 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1680
11e33f6a 1681restart:
341ce06f 1682 /* This is the last chance, in general, before the goto nopage. */
19770b32 1683 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1684 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1685 preferred_zone, migratetype);
7fb1d9fc
RS
1686 if (page)
1687 goto got_pg;
1da177e4 1688
b43a57bb 1689rebalance:
11e33f6a 1690 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1691 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1692 page = __alloc_pages_high_priority(gfp_mask, order,
1693 zonelist, high_zoneidx, nodemask,
1694 preferred_zone, migratetype);
1695 if (page)
1696 goto got_pg;
1da177e4
LT
1697 }
1698
1699 /* Atomic allocations - we can't balance anything */
1700 if (!wait)
1701 goto nopage;
1702
341ce06f
PZ
1703 /* Avoid recursion of direct reclaim */
1704 if (p->flags & PF_MEMALLOC)
1705 goto nopage;
1706
11e33f6a
MG
1707 /* Try direct reclaim and then allocating */
1708 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1709 zonelist, high_zoneidx,
1710 nodemask,
5117f45d 1711 alloc_flags, preferred_zone,
3dd28266 1712 migratetype, &did_some_progress);
11e33f6a
MG
1713 if (page)
1714 goto got_pg;
1da177e4 1715
11e33f6a
MG
1716 /*
1717 * If we failed to make any progress reclaiming, then we are
1718 * running out of options and have to consider going OOM
1719 */
1720 if (!did_some_progress) {
1721 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1722 page = __alloc_pages_may_oom(gfp_mask, order,
1723 zonelist, high_zoneidx,
3dd28266
MG
1724 nodemask, preferred_zone,
1725 migratetype);
11e33f6a
MG
1726 if (page)
1727 goto got_pg;
1da177e4 1728
11e33f6a
MG
1729 /*
1730 * The OOM killer does not trigger for high-order allocations
1731 * but if no progress is being made, there are no other
1732 * options and retrying is unlikely to help
1733 */
1734 if (order > PAGE_ALLOC_COSTLY_ORDER)
1735 goto nopage;
e2c55dc8 1736
ff0ceb9d
DR
1737 goto restart;
1738 }
1da177e4
LT
1739 }
1740
11e33f6a 1741 /* Check if we should retry the allocation */
a41f24ea 1742 pages_reclaimed += did_some_progress;
11e33f6a
MG
1743 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1744 /* Wait for some write requests to complete then retry */
3fcfab16 1745 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1746 goto rebalance;
1747 }
1748
1749nopage:
1750 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1751 printk(KERN_WARNING "%s: page allocation failure."
1752 " order:%d, mode:0x%x\n",
1753 p->comm, order, gfp_mask);
1754 dump_stack();
578c2fd6 1755 show_mem();
1da177e4 1756 }
1da177e4 1757got_pg:
1da177e4 1758 return page;
11e33f6a
MG
1759
1760}
1761
1762/*
1763 * This is the 'heart' of the zoned buddy allocator.
1764 */
1765struct page *
1766__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1767 struct zonelist *zonelist, nodemask_t *nodemask)
1768{
1769 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1770 struct zone *preferred_zone;
11e33f6a 1771 struct page *page;
3dd28266 1772 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1773
1774 lockdep_trace_alloc(gfp_mask);
1775
1776 might_sleep_if(gfp_mask & __GFP_WAIT);
1777
1778 if (should_fail_alloc_page(gfp_mask, order))
1779 return NULL;
1780
1781 /*
1782 * Check the zones suitable for the gfp_mask contain at least one
1783 * valid zone. It's possible to have an empty zonelist as a result
1784 * of GFP_THISNODE and a memoryless node
1785 */
1786 if (unlikely(!zonelist->_zonerefs->zone))
1787 return NULL;
1788
5117f45d
MG
1789 /* The preferred zone is used for statistics later */
1790 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1791 if (!preferred_zone)
1792 return NULL;
1793
1794 /* First allocation attempt */
11e33f6a 1795 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1796 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1797 preferred_zone, migratetype);
11e33f6a
MG
1798 if (unlikely(!page))
1799 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1800 zonelist, high_zoneidx, nodemask,
3dd28266 1801 preferred_zone, migratetype);
11e33f6a
MG
1802
1803 return page;
1da177e4 1804}
d239171e 1805EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1806
1807/*
1808 * Common helper functions.
1809 */
920c7a5d 1810unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1811{
1812 struct page * page;
1813 page = alloc_pages(gfp_mask, order);
1814 if (!page)
1815 return 0;
1816 return (unsigned long) page_address(page);
1817}
1818
1819EXPORT_SYMBOL(__get_free_pages);
1820
920c7a5d 1821unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1822{
1823 struct page * page;
1824
1825 /*
1826 * get_zeroed_page() returns a 32-bit address, which cannot represent
1827 * a highmem page
1828 */
725d704e 1829 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1830
1831 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1832 if (page)
1833 return (unsigned long) page_address(page);
1834 return 0;
1835}
1836
1837EXPORT_SYMBOL(get_zeroed_page);
1838
1839void __pagevec_free(struct pagevec *pvec)
1840{
1841 int i = pagevec_count(pvec);
1842
1843 while (--i >= 0)
1844 free_hot_cold_page(pvec->pages[i], pvec->cold);
1845}
1846
920c7a5d 1847void __free_pages(struct page *page, unsigned int order)
1da177e4 1848{
b5810039 1849 if (put_page_testzero(page)) {
1da177e4
LT
1850 if (order == 0)
1851 free_hot_page(page);
1852 else
1853 __free_pages_ok(page, order);
1854 }
1855}
1856
1857EXPORT_SYMBOL(__free_pages);
1858
920c7a5d 1859void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1860{
1861 if (addr != 0) {
725d704e 1862 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1863 __free_pages(virt_to_page((void *)addr), order);
1864 }
1865}
1866
1867EXPORT_SYMBOL(free_pages);
1868
2be0ffe2
TT
1869/**
1870 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1871 * @size: the number of bytes to allocate
1872 * @gfp_mask: GFP flags for the allocation
1873 *
1874 * This function is similar to alloc_pages(), except that it allocates the
1875 * minimum number of pages to satisfy the request. alloc_pages() can only
1876 * allocate memory in power-of-two pages.
1877 *
1878 * This function is also limited by MAX_ORDER.
1879 *
1880 * Memory allocated by this function must be released by free_pages_exact().
1881 */
1882void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1883{
1884 unsigned int order = get_order(size);
1885 unsigned long addr;
1886
1887 addr = __get_free_pages(gfp_mask, order);
1888 if (addr) {
1889 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1890 unsigned long used = addr + PAGE_ALIGN(size);
1891
1892 split_page(virt_to_page(addr), order);
1893 while (used < alloc_end) {
1894 free_page(used);
1895 used += PAGE_SIZE;
1896 }
1897 }
1898
1899 return (void *)addr;
1900}
1901EXPORT_SYMBOL(alloc_pages_exact);
1902
1903/**
1904 * free_pages_exact - release memory allocated via alloc_pages_exact()
1905 * @virt: the value returned by alloc_pages_exact.
1906 * @size: size of allocation, same value as passed to alloc_pages_exact().
1907 *
1908 * Release the memory allocated by a previous call to alloc_pages_exact.
1909 */
1910void free_pages_exact(void *virt, size_t size)
1911{
1912 unsigned long addr = (unsigned long)virt;
1913 unsigned long end = addr + PAGE_ALIGN(size);
1914
1915 while (addr < end) {
1916 free_page(addr);
1917 addr += PAGE_SIZE;
1918 }
1919}
1920EXPORT_SYMBOL(free_pages_exact);
1921
1da177e4
LT
1922static unsigned int nr_free_zone_pages(int offset)
1923{
dd1a239f 1924 struct zoneref *z;
54a6eb5c
MG
1925 struct zone *zone;
1926
e310fd43 1927 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1928 unsigned int sum = 0;
1929
0e88460d 1930 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1931
54a6eb5c 1932 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1933 unsigned long size = zone->present_pages;
1934 unsigned long high = zone->pages_high;
1935 if (size > high)
1936 sum += size - high;
1da177e4
LT
1937 }
1938
1939 return sum;
1940}
1941
1942/*
1943 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1944 */
1945unsigned int nr_free_buffer_pages(void)
1946{
af4ca457 1947 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1948}
c2f1a551 1949EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1950
1951/*
1952 * Amount of free RAM allocatable within all zones
1953 */
1954unsigned int nr_free_pagecache_pages(void)
1955{
2a1e274a 1956 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1957}
08e0f6a9
CL
1958
1959static inline void show_node(struct zone *zone)
1da177e4 1960{
08e0f6a9 1961 if (NUMA_BUILD)
25ba77c1 1962 printk("Node %d ", zone_to_nid(zone));
1da177e4 1963}
1da177e4 1964
1da177e4
LT
1965void si_meminfo(struct sysinfo *val)
1966{
1967 val->totalram = totalram_pages;
1968 val->sharedram = 0;
d23ad423 1969 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1970 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1971 val->totalhigh = totalhigh_pages;
1972 val->freehigh = nr_free_highpages();
1da177e4
LT
1973 val->mem_unit = PAGE_SIZE;
1974}
1975
1976EXPORT_SYMBOL(si_meminfo);
1977
1978#ifdef CONFIG_NUMA
1979void si_meminfo_node(struct sysinfo *val, int nid)
1980{
1981 pg_data_t *pgdat = NODE_DATA(nid);
1982
1983 val->totalram = pgdat->node_present_pages;
d23ad423 1984 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1985#ifdef CONFIG_HIGHMEM
1da177e4 1986 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1987 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1988 NR_FREE_PAGES);
98d2b0eb
CL
1989#else
1990 val->totalhigh = 0;
1991 val->freehigh = 0;
1992#endif
1da177e4
LT
1993 val->mem_unit = PAGE_SIZE;
1994}
1995#endif
1996
1997#define K(x) ((x) << (PAGE_SHIFT-10))
1998
1999/*
2000 * Show free area list (used inside shift_scroll-lock stuff)
2001 * We also calculate the percentage fragmentation. We do this by counting the
2002 * memory on each free list with the exception of the first item on the list.
2003 */
2004void show_free_areas(void)
2005{
c7241913 2006 int cpu;
1da177e4
LT
2007 struct zone *zone;
2008
ee99c71c 2009 for_each_populated_zone(zone) {
c7241913
JS
2010 show_node(zone);
2011 printk("%s per-cpu:\n", zone->name);
1da177e4 2012
6b482c67 2013 for_each_online_cpu(cpu) {
1da177e4
LT
2014 struct per_cpu_pageset *pageset;
2015
e7c8d5c9 2016 pageset = zone_pcp(zone, cpu);
1da177e4 2017
3dfa5721
CL
2018 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2019 cpu, pageset->pcp.high,
2020 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2021 }
2022 }
2023
7b854121
LS
2024 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2025 " inactive_file:%lu"
2026//TODO: check/adjust line lengths
2027#ifdef CONFIG_UNEVICTABLE_LRU
2028 " unevictable:%lu"
2029#endif
2030 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2031 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2032 global_page_state(NR_ACTIVE_ANON),
2033 global_page_state(NR_ACTIVE_FILE),
2034 global_page_state(NR_INACTIVE_ANON),
2035 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2036#ifdef CONFIG_UNEVICTABLE_LRU
2037 global_page_state(NR_UNEVICTABLE),
2038#endif
b1e7a8fd 2039 global_page_state(NR_FILE_DIRTY),
ce866b34 2040 global_page_state(NR_WRITEBACK),
fd39fc85 2041 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2042 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2043 global_page_state(NR_SLAB_RECLAIMABLE) +
2044 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2045 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2046 global_page_state(NR_PAGETABLE),
2047 global_page_state(NR_BOUNCE));
1da177e4 2048
ee99c71c 2049 for_each_populated_zone(zone) {
1da177e4
LT
2050 int i;
2051
2052 show_node(zone);
2053 printk("%s"
2054 " free:%lukB"
2055 " min:%lukB"
2056 " low:%lukB"
2057 " high:%lukB"
4f98a2fe
RR
2058 " active_anon:%lukB"
2059 " inactive_anon:%lukB"
2060 " active_file:%lukB"
2061 " inactive_file:%lukB"
7b854121
LS
2062#ifdef CONFIG_UNEVICTABLE_LRU
2063 " unevictable:%lukB"
2064#endif
1da177e4
LT
2065 " present:%lukB"
2066 " pages_scanned:%lu"
2067 " all_unreclaimable? %s"
2068 "\n",
2069 zone->name,
d23ad423 2070 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
2071 K(zone->pages_min),
2072 K(zone->pages_low),
2073 K(zone->pages_high),
4f98a2fe
RR
2074 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2075 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2076 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2077 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2078#ifdef CONFIG_UNEVICTABLE_LRU
2079 K(zone_page_state(zone, NR_UNEVICTABLE)),
2080#endif
1da177e4
LT
2081 K(zone->present_pages),
2082 zone->pages_scanned,
e815af95 2083 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2084 );
2085 printk("lowmem_reserve[]:");
2086 for (i = 0; i < MAX_NR_ZONES; i++)
2087 printk(" %lu", zone->lowmem_reserve[i]);
2088 printk("\n");
2089 }
2090
ee99c71c 2091 for_each_populated_zone(zone) {
8f9de51a 2092 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2093
2094 show_node(zone);
2095 printk("%s: ", zone->name);
1da177e4
LT
2096
2097 spin_lock_irqsave(&zone->lock, flags);
2098 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2099 nr[order] = zone->free_area[order].nr_free;
2100 total += nr[order] << order;
1da177e4
LT
2101 }
2102 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2103 for (order = 0; order < MAX_ORDER; order++)
2104 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2105 printk("= %lukB\n", K(total));
2106 }
2107
e6f3602d
LW
2108 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2109
1da177e4
LT
2110 show_swap_cache_info();
2111}
2112
19770b32
MG
2113static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2114{
2115 zoneref->zone = zone;
2116 zoneref->zone_idx = zone_idx(zone);
2117}
2118
1da177e4
LT
2119/*
2120 * Builds allocation fallback zone lists.
1a93205b
CL
2121 *
2122 * Add all populated zones of a node to the zonelist.
1da177e4 2123 */
f0c0b2b8
KH
2124static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2125 int nr_zones, enum zone_type zone_type)
1da177e4 2126{
1a93205b
CL
2127 struct zone *zone;
2128
98d2b0eb 2129 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2130 zone_type++;
02a68a5e
CL
2131
2132 do {
2f6726e5 2133 zone_type--;
070f8032 2134 zone = pgdat->node_zones + zone_type;
1a93205b 2135 if (populated_zone(zone)) {
dd1a239f
MG
2136 zoneref_set_zone(zone,
2137 &zonelist->_zonerefs[nr_zones++]);
070f8032 2138 check_highest_zone(zone_type);
1da177e4 2139 }
02a68a5e 2140
2f6726e5 2141 } while (zone_type);
070f8032 2142 return nr_zones;
1da177e4
LT
2143}
2144
f0c0b2b8
KH
2145
2146/*
2147 * zonelist_order:
2148 * 0 = automatic detection of better ordering.
2149 * 1 = order by ([node] distance, -zonetype)
2150 * 2 = order by (-zonetype, [node] distance)
2151 *
2152 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2153 * the same zonelist. So only NUMA can configure this param.
2154 */
2155#define ZONELIST_ORDER_DEFAULT 0
2156#define ZONELIST_ORDER_NODE 1
2157#define ZONELIST_ORDER_ZONE 2
2158
2159/* zonelist order in the kernel.
2160 * set_zonelist_order() will set this to NODE or ZONE.
2161 */
2162static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2163static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2164
2165
1da177e4 2166#ifdef CONFIG_NUMA
f0c0b2b8
KH
2167/* The value user specified ....changed by config */
2168static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2169/* string for sysctl */
2170#define NUMA_ZONELIST_ORDER_LEN 16
2171char numa_zonelist_order[16] = "default";
2172
2173/*
2174 * interface for configure zonelist ordering.
2175 * command line option "numa_zonelist_order"
2176 * = "[dD]efault - default, automatic configuration.
2177 * = "[nN]ode - order by node locality, then by zone within node
2178 * = "[zZ]one - order by zone, then by locality within zone
2179 */
2180
2181static int __parse_numa_zonelist_order(char *s)
2182{
2183 if (*s == 'd' || *s == 'D') {
2184 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2185 } else if (*s == 'n' || *s == 'N') {
2186 user_zonelist_order = ZONELIST_ORDER_NODE;
2187 } else if (*s == 'z' || *s == 'Z') {
2188 user_zonelist_order = ZONELIST_ORDER_ZONE;
2189 } else {
2190 printk(KERN_WARNING
2191 "Ignoring invalid numa_zonelist_order value: "
2192 "%s\n", s);
2193 return -EINVAL;
2194 }
2195 return 0;
2196}
2197
2198static __init int setup_numa_zonelist_order(char *s)
2199{
2200 if (s)
2201 return __parse_numa_zonelist_order(s);
2202 return 0;
2203}
2204early_param("numa_zonelist_order", setup_numa_zonelist_order);
2205
2206/*
2207 * sysctl handler for numa_zonelist_order
2208 */
2209int numa_zonelist_order_handler(ctl_table *table, int write,
2210 struct file *file, void __user *buffer, size_t *length,
2211 loff_t *ppos)
2212{
2213 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2214 int ret;
2215
2216 if (write)
2217 strncpy(saved_string, (char*)table->data,
2218 NUMA_ZONELIST_ORDER_LEN);
2219 ret = proc_dostring(table, write, file, buffer, length, ppos);
2220 if (ret)
2221 return ret;
2222 if (write) {
2223 int oldval = user_zonelist_order;
2224 if (__parse_numa_zonelist_order((char*)table->data)) {
2225 /*
2226 * bogus value. restore saved string
2227 */
2228 strncpy((char*)table->data, saved_string,
2229 NUMA_ZONELIST_ORDER_LEN);
2230 user_zonelist_order = oldval;
2231 } else if (oldval != user_zonelist_order)
2232 build_all_zonelists();
2233 }
2234 return 0;
2235}
2236
2237
1da177e4 2238#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2239static int node_load[MAX_NUMNODES];
2240
1da177e4 2241/**
4dc3b16b 2242 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2243 * @node: node whose fallback list we're appending
2244 * @used_node_mask: nodemask_t of already used nodes
2245 *
2246 * We use a number of factors to determine which is the next node that should
2247 * appear on a given node's fallback list. The node should not have appeared
2248 * already in @node's fallback list, and it should be the next closest node
2249 * according to the distance array (which contains arbitrary distance values
2250 * from each node to each node in the system), and should also prefer nodes
2251 * with no CPUs, since presumably they'll have very little allocation pressure
2252 * on them otherwise.
2253 * It returns -1 if no node is found.
2254 */
f0c0b2b8 2255static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2256{
4cf808eb 2257 int n, val;
1da177e4
LT
2258 int min_val = INT_MAX;
2259 int best_node = -1;
a70f7302 2260 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2261
4cf808eb
LT
2262 /* Use the local node if we haven't already */
2263 if (!node_isset(node, *used_node_mask)) {
2264 node_set(node, *used_node_mask);
2265 return node;
2266 }
1da177e4 2267
37b07e41 2268 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2269
2270 /* Don't want a node to appear more than once */
2271 if (node_isset(n, *used_node_mask))
2272 continue;
2273
1da177e4
LT
2274 /* Use the distance array to find the distance */
2275 val = node_distance(node, n);
2276
4cf808eb
LT
2277 /* Penalize nodes under us ("prefer the next node") */
2278 val += (n < node);
2279
1da177e4 2280 /* Give preference to headless and unused nodes */
a70f7302
RR
2281 tmp = cpumask_of_node(n);
2282 if (!cpumask_empty(tmp))
1da177e4
LT
2283 val += PENALTY_FOR_NODE_WITH_CPUS;
2284
2285 /* Slight preference for less loaded node */
2286 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2287 val += node_load[n];
2288
2289 if (val < min_val) {
2290 min_val = val;
2291 best_node = n;
2292 }
2293 }
2294
2295 if (best_node >= 0)
2296 node_set(best_node, *used_node_mask);
2297
2298 return best_node;
2299}
2300
f0c0b2b8
KH
2301
2302/*
2303 * Build zonelists ordered by node and zones within node.
2304 * This results in maximum locality--normal zone overflows into local
2305 * DMA zone, if any--but risks exhausting DMA zone.
2306 */
2307static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2308{
f0c0b2b8 2309 int j;
1da177e4 2310 struct zonelist *zonelist;
f0c0b2b8 2311
54a6eb5c 2312 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2313 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2314 ;
2315 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2316 MAX_NR_ZONES - 1);
dd1a239f
MG
2317 zonelist->_zonerefs[j].zone = NULL;
2318 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2319}
2320
523b9458
CL
2321/*
2322 * Build gfp_thisnode zonelists
2323 */
2324static void build_thisnode_zonelists(pg_data_t *pgdat)
2325{
523b9458
CL
2326 int j;
2327 struct zonelist *zonelist;
2328
54a6eb5c
MG
2329 zonelist = &pgdat->node_zonelists[1];
2330 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2331 zonelist->_zonerefs[j].zone = NULL;
2332 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2333}
2334
f0c0b2b8
KH
2335/*
2336 * Build zonelists ordered by zone and nodes within zones.
2337 * This results in conserving DMA zone[s] until all Normal memory is
2338 * exhausted, but results in overflowing to remote node while memory
2339 * may still exist in local DMA zone.
2340 */
2341static int node_order[MAX_NUMNODES];
2342
2343static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2344{
f0c0b2b8
KH
2345 int pos, j, node;
2346 int zone_type; /* needs to be signed */
2347 struct zone *z;
2348 struct zonelist *zonelist;
2349
54a6eb5c
MG
2350 zonelist = &pgdat->node_zonelists[0];
2351 pos = 0;
2352 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2353 for (j = 0; j < nr_nodes; j++) {
2354 node = node_order[j];
2355 z = &NODE_DATA(node)->node_zones[zone_type];
2356 if (populated_zone(z)) {
dd1a239f
MG
2357 zoneref_set_zone(z,
2358 &zonelist->_zonerefs[pos++]);
54a6eb5c 2359 check_highest_zone(zone_type);
f0c0b2b8
KH
2360 }
2361 }
f0c0b2b8 2362 }
dd1a239f
MG
2363 zonelist->_zonerefs[pos].zone = NULL;
2364 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2365}
2366
2367static int default_zonelist_order(void)
2368{
2369 int nid, zone_type;
2370 unsigned long low_kmem_size,total_size;
2371 struct zone *z;
2372 int average_size;
2373 /*
2374 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2375 * If they are really small and used heavily, the system can fall
2376 * into OOM very easily.
2377 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2378 */
2379 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2380 low_kmem_size = 0;
2381 total_size = 0;
2382 for_each_online_node(nid) {
2383 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2384 z = &NODE_DATA(nid)->node_zones[zone_type];
2385 if (populated_zone(z)) {
2386 if (zone_type < ZONE_NORMAL)
2387 low_kmem_size += z->present_pages;
2388 total_size += z->present_pages;
2389 }
2390 }
2391 }
2392 if (!low_kmem_size || /* there are no DMA area. */
2393 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2394 return ZONELIST_ORDER_NODE;
2395 /*
2396 * look into each node's config.
2397 * If there is a node whose DMA/DMA32 memory is very big area on
2398 * local memory, NODE_ORDER may be suitable.
2399 */
37b07e41
LS
2400 average_size = total_size /
2401 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2402 for_each_online_node(nid) {
2403 low_kmem_size = 0;
2404 total_size = 0;
2405 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2406 z = &NODE_DATA(nid)->node_zones[zone_type];
2407 if (populated_zone(z)) {
2408 if (zone_type < ZONE_NORMAL)
2409 low_kmem_size += z->present_pages;
2410 total_size += z->present_pages;
2411 }
2412 }
2413 if (low_kmem_size &&
2414 total_size > average_size && /* ignore small node */
2415 low_kmem_size > total_size * 70/100)
2416 return ZONELIST_ORDER_NODE;
2417 }
2418 return ZONELIST_ORDER_ZONE;
2419}
2420
2421static void set_zonelist_order(void)
2422{
2423 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2424 current_zonelist_order = default_zonelist_order();
2425 else
2426 current_zonelist_order = user_zonelist_order;
2427}
2428
2429static void build_zonelists(pg_data_t *pgdat)
2430{
2431 int j, node, load;
2432 enum zone_type i;
1da177e4 2433 nodemask_t used_mask;
f0c0b2b8
KH
2434 int local_node, prev_node;
2435 struct zonelist *zonelist;
2436 int order = current_zonelist_order;
1da177e4
LT
2437
2438 /* initialize zonelists */
523b9458 2439 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2440 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2441 zonelist->_zonerefs[0].zone = NULL;
2442 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2443 }
2444
2445 /* NUMA-aware ordering of nodes */
2446 local_node = pgdat->node_id;
2447 load = num_online_nodes();
2448 prev_node = local_node;
2449 nodes_clear(used_mask);
f0c0b2b8
KH
2450
2451 memset(node_load, 0, sizeof(node_load));
2452 memset(node_order, 0, sizeof(node_order));
2453 j = 0;
2454
1da177e4 2455 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2456 int distance = node_distance(local_node, node);
2457
2458 /*
2459 * If another node is sufficiently far away then it is better
2460 * to reclaim pages in a zone before going off node.
2461 */
2462 if (distance > RECLAIM_DISTANCE)
2463 zone_reclaim_mode = 1;
2464
1da177e4
LT
2465 /*
2466 * We don't want to pressure a particular node.
2467 * So adding penalty to the first node in same
2468 * distance group to make it round-robin.
2469 */
9eeff239 2470 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2471 node_load[node] = load;
2472
1da177e4
LT
2473 prev_node = node;
2474 load--;
f0c0b2b8
KH
2475 if (order == ZONELIST_ORDER_NODE)
2476 build_zonelists_in_node_order(pgdat, node);
2477 else
2478 node_order[j++] = node; /* remember order */
2479 }
1da177e4 2480
f0c0b2b8
KH
2481 if (order == ZONELIST_ORDER_ZONE) {
2482 /* calculate node order -- i.e., DMA last! */
2483 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2484 }
523b9458
CL
2485
2486 build_thisnode_zonelists(pgdat);
1da177e4
LT
2487}
2488
9276b1bc 2489/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2490static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2491{
54a6eb5c
MG
2492 struct zonelist *zonelist;
2493 struct zonelist_cache *zlc;
dd1a239f 2494 struct zoneref *z;
9276b1bc 2495
54a6eb5c
MG
2496 zonelist = &pgdat->node_zonelists[0];
2497 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2498 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2499 for (z = zonelist->_zonerefs; z->zone; z++)
2500 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2501}
2502
f0c0b2b8 2503
1da177e4
LT
2504#else /* CONFIG_NUMA */
2505
f0c0b2b8
KH
2506static void set_zonelist_order(void)
2507{
2508 current_zonelist_order = ZONELIST_ORDER_ZONE;
2509}
2510
2511static void build_zonelists(pg_data_t *pgdat)
1da177e4 2512{
19655d34 2513 int node, local_node;
54a6eb5c
MG
2514 enum zone_type j;
2515 struct zonelist *zonelist;
1da177e4
LT
2516
2517 local_node = pgdat->node_id;
1da177e4 2518
54a6eb5c
MG
2519 zonelist = &pgdat->node_zonelists[0];
2520 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2521
54a6eb5c
MG
2522 /*
2523 * Now we build the zonelist so that it contains the zones
2524 * of all the other nodes.
2525 * We don't want to pressure a particular node, so when
2526 * building the zones for node N, we make sure that the
2527 * zones coming right after the local ones are those from
2528 * node N+1 (modulo N)
2529 */
2530 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2531 if (!node_online(node))
2532 continue;
2533 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2534 MAX_NR_ZONES - 1);
1da177e4 2535 }
54a6eb5c
MG
2536 for (node = 0; node < local_node; node++) {
2537 if (!node_online(node))
2538 continue;
2539 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2540 MAX_NR_ZONES - 1);
2541 }
2542
dd1a239f
MG
2543 zonelist->_zonerefs[j].zone = NULL;
2544 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2545}
2546
9276b1bc 2547/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2548static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2549{
54a6eb5c 2550 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2551}
2552
1da177e4
LT
2553#endif /* CONFIG_NUMA */
2554
9b1a4d38 2555/* return values int ....just for stop_machine() */
f0c0b2b8 2556static int __build_all_zonelists(void *dummy)
1da177e4 2557{
6811378e 2558 int nid;
9276b1bc
PJ
2559
2560 for_each_online_node(nid) {
7ea1530a
CL
2561 pg_data_t *pgdat = NODE_DATA(nid);
2562
2563 build_zonelists(pgdat);
2564 build_zonelist_cache(pgdat);
9276b1bc 2565 }
6811378e
YG
2566 return 0;
2567}
2568
f0c0b2b8 2569void build_all_zonelists(void)
6811378e 2570{
f0c0b2b8
KH
2571 set_zonelist_order();
2572
6811378e 2573 if (system_state == SYSTEM_BOOTING) {
423b41d7 2574 __build_all_zonelists(NULL);
68ad8df4 2575 mminit_verify_zonelist();
6811378e
YG
2576 cpuset_init_current_mems_allowed();
2577 } else {
183ff22b 2578 /* we have to stop all cpus to guarantee there is no user
6811378e 2579 of zonelist */
9b1a4d38 2580 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2581 /* cpuset refresh routine should be here */
2582 }
bd1e22b8 2583 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2584 /*
2585 * Disable grouping by mobility if the number of pages in the
2586 * system is too low to allow the mechanism to work. It would be
2587 * more accurate, but expensive to check per-zone. This check is
2588 * made on memory-hotadd so a system can start with mobility
2589 * disabled and enable it later
2590 */
d9c23400 2591 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2592 page_group_by_mobility_disabled = 1;
2593 else
2594 page_group_by_mobility_disabled = 0;
2595
2596 printk("Built %i zonelists in %s order, mobility grouping %s. "
2597 "Total pages: %ld\n",
f0c0b2b8
KH
2598 num_online_nodes(),
2599 zonelist_order_name[current_zonelist_order],
9ef9acb0 2600 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2601 vm_total_pages);
2602#ifdef CONFIG_NUMA
2603 printk("Policy zone: %s\n", zone_names[policy_zone]);
2604#endif
1da177e4
LT
2605}
2606
2607/*
2608 * Helper functions to size the waitqueue hash table.
2609 * Essentially these want to choose hash table sizes sufficiently
2610 * large so that collisions trying to wait on pages are rare.
2611 * But in fact, the number of active page waitqueues on typical
2612 * systems is ridiculously low, less than 200. So this is even
2613 * conservative, even though it seems large.
2614 *
2615 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2616 * waitqueues, i.e. the size of the waitq table given the number of pages.
2617 */
2618#define PAGES_PER_WAITQUEUE 256
2619
cca448fe 2620#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2621static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2622{
2623 unsigned long size = 1;
2624
2625 pages /= PAGES_PER_WAITQUEUE;
2626
2627 while (size < pages)
2628 size <<= 1;
2629
2630 /*
2631 * Once we have dozens or even hundreds of threads sleeping
2632 * on IO we've got bigger problems than wait queue collision.
2633 * Limit the size of the wait table to a reasonable size.
2634 */
2635 size = min(size, 4096UL);
2636
2637 return max(size, 4UL);
2638}
cca448fe
YG
2639#else
2640/*
2641 * A zone's size might be changed by hot-add, so it is not possible to determine
2642 * a suitable size for its wait_table. So we use the maximum size now.
2643 *
2644 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2645 *
2646 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2647 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2648 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2649 *
2650 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2651 * or more by the traditional way. (See above). It equals:
2652 *
2653 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2654 * ia64(16K page size) : = ( 8G + 4M)byte.
2655 * powerpc (64K page size) : = (32G +16M)byte.
2656 */
2657static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2658{
2659 return 4096UL;
2660}
2661#endif
1da177e4
LT
2662
2663/*
2664 * This is an integer logarithm so that shifts can be used later
2665 * to extract the more random high bits from the multiplicative
2666 * hash function before the remainder is taken.
2667 */
2668static inline unsigned long wait_table_bits(unsigned long size)
2669{
2670 return ffz(~size);
2671}
2672
2673#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2674
56fd56b8 2675/*
d9c23400 2676 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2677 * of blocks reserved is based on zone->pages_min. The memory within the
2678 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2679 * higher will lead to a bigger reserve which will get freed as contiguous
2680 * blocks as reclaim kicks in
2681 */
2682static void setup_zone_migrate_reserve(struct zone *zone)
2683{
2684 unsigned long start_pfn, pfn, end_pfn;
2685 struct page *page;
2686 unsigned long reserve, block_migratetype;
2687
2688 /* Get the start pfn, end pfn and the number of blocks to reserve */
2689 start_pfn = zone->zone_start_pfn;
2690 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2691 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2692 pageblock_order;
56fd56b8 2693
d9c23400 2694 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2695 if (!pfn_valid(pfn))
2696 continue;
2697 page = pfn_to_page(pfn);
2698
344c790e
AL
2699 /* Watch out for overlapping nodes */
2700 if (page_to_nid(page) != zone_to_nid(zone))
2701 continue;
2702
56fd56b8
MG
2703 /* Blocks with reserved pages will never free, skip them. */
2704 if (PageReserved(page))
2705 continue;
2706
2707 block_migratetype = get_pageblock_migratetype(page);
2708
2709 /* If this block is reserved, account for it */
2710 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2711 reserve--;
2712 continue;
2713 }
2714
2715 /* Suitable for reserving if this block is movable */
2716 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2717 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2718 move_freepages_block(zone, page, MIGRATE_RESERVE);
2719 reserve--;
2720 continue;
2721 }
2722
2723 /*
2724 * If the reserve is met and this is a previous reserved block,
2725 * take it back
2726 */
2727 if (block_migratetype == MIGRATE_RESERVE) {
2728 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2729 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2730 }
2731 }
2732}
ac0e5b7a 2733
1da177e4
LT
2734/*
2735 * Initially all pages are reserved - free ones are freed
2736 * up by free_all_bootmem() once the early boot process is
2737 * done. Non-atomic initialization, single-pass.
2738 */
c09b4240 2739void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2740 unsigned long start_pfn, enum memmap_context context)
1da177e4 2741{
1da177e4 2742 struct page *page;
29751f69
AW
2743 unsigned long end_pfn = start_pfn + size;
2744 unsigned long pfn;
86051ca5 2745 struct zone *z;
1da177e4 2746
22b31eec
HD
2747 if (highest_memmap_pfn < end_pfn - 1)
2748 highest_memmap_pfn = end_pfn - 1;
2749
86051ca5 2750 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2751 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2752 /*
2753 * There can be holes in boot-time mem_map[]s
2754 * handed to this function. They do not
2755 * exist on hotplugged memory.
2756 */
2757 if (context == MEMMAP_EARLY) {
2758 if (!early_pfn_valid(pfn))
2759 continue;
2760 if (!early_pfn_in_nid(pfn, nid))
2761 continue;
2762 }
d41dee36
AW
2763 page = pfn_to_page(pfn);
2764 set_page_links(page, zone, nid, pfn);
708614e6 2765 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2766 init_page_count(page);
1da177e4
LT
2767 reset_page_mapcount(page);
2768 SetPageReserved(page);
b2a0ac88
MG
2769 /*
2770 * Mark the block movable so that blocks are reserved for
2771 * movable at startup. This will force kernel allocations
2772 * to reserve their blocks rather than leaking throughout
2773 * the address space during boot when many long-lived
56fd56b8
MG
2774 * kernel allocations are made. Later some blocks near
2775 * the start are marked MIGRATE_RESERVE by
2776 * setup_zone_migrate_reserve()
86051ca5
KH
2777 *
2778 * bitmap is created for zone's valid pfn range. but memmap
2779 * can be created for invalid pages (for alignment)
2780 * check here not to call set_pageblock_migratetype() against
2781 * pfn out of zone.
b2a0ac88 2782 */
86051ca5
KH
2783 if ((z->zone_start_pfn <= pfn)
2784 && (pfn < z->zone_start_pfn + z->spanned_pages)
2785 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2786 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2787
1da177e4
LT
2788 INIT_LIST_HEAD(&page->lru);
2789#ifdef WANT_PAGE_VIRTUAL
2790 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2791 if (!is_highmem_idx(zone))
3212c6be 2792 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2793#endif
1da177e4
LT
2794 }
2795}
2796
1e548deb 2797static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2798{
b2a0ac88
MG
2799 int order, t;
2800 for_each_migratetype_order(order, t) {
2801 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2802 zone->free_area[order].nr_free = 0;
2803 }
2804}
2805
2806#ifndef __HAVE_ARCH_MEMMAP_INIT
2807#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2808 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2809#endif
2810
1d6f4e60 2811static int zone_batchsize(struct zone *zone)
e7c8d5c9 2812{
3a6be87f 2813#ifdef CONFIG_MMU
e7c8d5c9
CL
2814 int batch;
2815
2816 /*
2817 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2818 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2819 *
2820 * OK, so we don't know how big the cache is. So guess.
2821 */
2822 batch = zone->present_pages / 1024;
ba56e91c
SR
2823 if (batch * PAGE_SIZE > 512 * 1024)
2824 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2825 batch /= 4; /* We effectively *= 4 below */
2826 if (batch < 1)
2827 batch = 1;
2828
2829 /*
0ceaacc9
NP
2830 * Clamp the batch to a 2^n - 1 value. Having a power
2831 * of 2 value was found to be more likely to have
2832 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2833 *
0ceaacc9
NP
2834 * For example if 2 tasks are alternately allocating
2835 * batches of pages, one task can end up with a lot
2836 * of pages of one half of the possible page colors
2837 * and the other with pages of the other colors.
e7c8d5c9 2838 */
9155203a 2839 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2840
e7c8d5c9 2841 return batch;
3a6be87f
DH
2842
2843#else
2844 /* The deferral and batching of frees should be suppressed under NOMMU
2845 * conditions.
2846 *
2847 * The problem is that NOMMU needs to be able to allocate large chunks
2848 * of contiguous memory as there's no hardware page translation to
2849 * assemble apparent contiguous memory from discontiguous pages.
2850 *
2851 * Queueing large contiguous runs of pages for batching, however,
2852 * causes the pages to actually be freed in smaller chunks. As there
2853 * can be a significant delay between the individual batches being
2854 * recycled, this leads to the once large chunks of space being
2855 * fragmented and becoming unavailable for high-order allocations.
2856 */
2857 return 0;
2858#endif
e7c8d5c9
CL
2859}
2860
b69a7288 2861static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2862{
2863 struct per_cpu_pages *pcp;
2864
1c6fe946
MD
2865 memset(p, 0, sizeof(*p));
2866
3dfa5721 2867 pcp = &p->pcp;
2caaad41 2868 pcp->count = 0;
2caaad41
CL
2869 pcp->high = 6 * batch;
2870 pcp->batch = max(1UL, 1 * batch);
2871 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2872}
2873
8ad4b1fb
RS
2874/*
2875 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2876 * to the value high for the pageset p.
2877 */
2878
2879static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2880 unsigned long high)
2881{
2882 struct per_cpu_pages *pcp;
2883
3dfa5721 2884 pcp = &p->pcp;
8ad4b1fb
RS
2885 pcp->high = high;
2886 pcp->batch = max(1UL, high/4);
2887 if ((high/4) > (PAGE_SHIFT * 8))
2888 pcp->batch = PAGE_SHIFT * 8;
2889}
2890
2891
e7c8d5c9
CL
2892#ifdef CONFIG_NUMA
2893/*
2caaad41
CL
2894 * Boot pageset table. One per cpu which is going to be used for all
2895 * zones and all nodes. The parameters will be set in such a way
2896 * that an item put on a list will immediately be handed over to
2897 * the buddy list. This is safe since pageset manipulation is done
2898 * with interrupts disabled.
2899 *
2900 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2901 *
2902 * The boot_pagesets must be kept even after bootup is complete for
2903 * unused processors and/or zones. They do play a role for bootstrapping
2904 * hotplugged processors.
2905 *
2906 * zoneinfo_show() and maybe other functions do
2907 * not check if the processor is online before following the pageset pointer.
2908 * Other parts of the kernel may not check if the zone is available.
2caaad41 2909 */
88a2a4ac 2910static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2911
2912/*
2913 * Dynamically allocate memory for the
e7c8d5c9
CL
2914 * per cpu pageset array in struct zone.
2915 */
6292d9aa 2916static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2917{
2918 struct zone *zone, *dzone;
37c0708d
CL
2919 int node = cpu_to_node(cpu);
2920
2921 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2922
ee99c71c 2923 for_each_populated_zone(zone) {
23316bc8 2924 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2925 GFP_KERNEL, node);
23316bc8 2926 if (!zone_pcp(zone, cpu))
e7c8d5c9 2927 goto bad;
e7c8d5c9 2928
23316bc8 2929 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2930
2931 if (percpu_pagelist_fraction)
2932 setup_pagelist_highmark(zone_pcp(zone, cpu),
2933 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2934 }
2935
2936 return 0;
2937bad:
2938 for_each_zone(dzone) {
64191688
AM
2939 if (!populated_zone(dzone))
2940 continue;
e7c8d5c9
CL
2941 if (dzone == zone)
2942 break;
23316bc8
NP
2943 kfree(zone_pcp(dzone, cpu));
2944 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2945 }
2946 return -ENOMEM;
2947}
2948
2949static inline void free_zone_pagesets(int cpu)
2950{
e7c8d5c9
CL
2951 struct zone *zone;
2952
2953 for_each_zone(zone) {
2954 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2955
f3ef9ead
DR
2956 /* Free per_cpu_pageset if it is slab allocated */
2957 if (pset != &boot_pageset[cpu])
2958 kfree(pset);
e7c8d5c9 2959 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2960 }
e7c8d5c9
CL
2961}
2962
9c7b216d 2963static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2964 unsigned long action,
2965 void *hcpu)
2966{
2967 int cpu = (long)hcpu;
2968 int ret = NOTIFY_OK;
2969
2970 switch (action) {
ce421c79 2971 case CPU_UP_PREPARE:
8bb78442 2972 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2973 if (process_zones(cpu))
2974 ret = NOTIFY_BAD;
2975 break;
2976 case CPU_UP_CANCELED:
8bb78442 2977 case CPU_UP_CANCELED_FROZEN:
ce421c79 2978 case CPU_DEAD:
8bb78442 2979 case CPU_DEAD_FROZEN:
ce421c79
AW
2980 free_zone_pagesets(cpu);
2981 break;
2982 default:
2983 break;
e7c8d5c9
CL
2984 }
2985 return ret;
2986}
2987
74b85f37 2988static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2989 { &pageset_cpuup_callback, NULL, 0 };
2990
78d9955b 2991void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2992{
2993 int err;
2994
2995 /* Initialize per_cpu_pageset for cpu 0.
2996 * A cpuup callback will do this for every cpu
2997 * as it comes online
2998 */
2999 err = process_zones(smp_processor_id());
3000 BUG_ON(err);
3001 register_cpu_notifier(&pageset_notifier);
3002}
3003
3004#endif
3005
577a32f6 3006static noinline __init_refok
cca448fe 3007int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3008{
3009 int i;
3010 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3011 size_t alloc_size;
ed8ece2e
DH
3012
3013 /*
3014 * The per-page waitqueue mechanism uses hashed waitqueues
3015 * per zone.
3016 */
02b694de
YG
3017 zone->wait_table_hash_nr_entries =
3018 wait_table_hash_nr_entries(zone_size_pages);
3019 zone->wait_table_bits =
3020 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3021 alloc_size = zone->wait_table_hash_nr_entries
3022 * sizeof(wait_queue_head_t);
3023
cd94b9db 3024 if (!slab_is_available()) {
cca448fe
YG
3025 zone->wait_table = (wait_queue_head_t *)
3026 alloc_bootmem_node(pgdat, alloc_size);
3027 } else {
3028 /*
3029 * This case means that a zone whose size was 0 gets new memory
3030 * via memory hot-add.
3031 * But it may be the case that a new node was hot-added. In
3032 * this case vmalloc() will not be able to use this new node's
3033 * memory - this wait_table must be initialized to use this new
3034 * node itself as well.
3035 * To use this new node's memory, further consideration will be
3036 * necessary.
3037 */
8691f3a7 3038 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3039 }
3040 if (!zone->wait_table)
3041 return -ENOMEM;
ed8ece2e 3042
02b694de 3043 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3044 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3045
3046 return 0;
ed8ece2e
DH
3047}
3048
c09b4240 3049static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3050{
3051 int cpu;
3052 unsigned long batch = zone_batchsize(zone);
3053
3054 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3055#ifdef CONFIG_NUMA
3056 /* Early boot. Slab allocator not functional yet */
23316bc8 3057 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3058 setup_pageset(&boot_pageset[cpu],0);
3059#else
3060 setup_pageset(zone_pcp(zone,cpu), batch);
3061#endif
3062 }
f5335c0f
AB
3063 if (zone->present_pages)
3064 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3065 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3066}
3067
718127cc
YG
3068__meminit int init_currently_empty_zone(struct zone *zone,
3069 unsigned long zone_start_pfn,
a2f3aa02
DH
3070 unsigned long size,
3071 enum memmap_context context)
ed8ece2e
DH
3072{
3073 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3074 int ret;
3075 ret = zone_wait_table_init(zone, size);
3076 if (ret)
3077 return ret;
ed8ece2e
DH
3078 pgdat->nr_zones = zone_idx(zone) + 1;
3079
ed8ece2e
DH
3080 zone->zone_start_pfn = zone_start_pfn;
3081
708614e6
MG
3082 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3083 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3084 pgdat->node_id,
3085 (unsigned long)zone_idx(zone),
3086 zone_start_pfn, (zone_start_pfn + size));
3087
1e548deb 3088 zone_init_free_lists(zone);
718127cc
YG
3089
3090 return 0;
ed8ece2e
DH
3091}
3092
c713216d
MG
3093#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3094/*
3095 * Basic iterator support. Return the first range of PFNs for a node
3096 * Note: nid == MAX_NUMNODES returns first region regardless of node
3097 */
a3142c8e 3098static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3099{
3100 int i;
3101
3102 for (i = 0; i < nr_nodemap_entries; i++)
3103 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3104 return i;
3105
3106 return -1;
3107}
3108
3109/*
3110 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3111 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3112 */
a3142c8e 3113static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3114{
3115 for (index = index + 1; index < nr_nodemap_entries; index++)
3116 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3117 return index;
3118
3119 return -1;
3120}
3121
3122#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3123/*
3124 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3125 * Architectures may implement their own version but if add_active_range()
3126 * was used and there are no special requirements, this is a convenient
3127 * alternative
3128 */
f2dbcfa7 3129int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3130{
3131 int i;
3132
3133 for (i = 0; i < nr_nodemap_entries; i++) {
3134 unsigned long start_pfn = early_node_map[i].start_pfn;
3135 unsigned long end_pfn = early_node_map[i].end_pfn;
3136
3137 if (start_pfn <= pfn && pfn < end_pfn)
3138 return early_node_map[i].nid;
3139 }
cc2559bc
KH
3140 /* This is a memory hole */
3141 return -1;
c713216d
MG
3142}
3143#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3144
f2dbcfa7
KH
3145int __meminit early_pfn_to_nid(unsigned long pfn)
3146{
cc2559bc
KH
3147 int nid;
3148
3149 nid = __early_pfn_to_nid(pfn);
3150 if (nid >= 0)
3151 return nid;
3152 /* just returns 0 */
3153 return 0;
f2dbcfa7
KH
3154}
3155
cc2559bc
KH
3156#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3157bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3158{
3159 int nid;
3160
3161 nid = __early_pfn_to_nid(pfn);
3162 if (nid >= 0 && nid != node)
3163 return false;
3164 return true;
3165}
3166#endif
f2dbcfa7 3167
c713216d
MG
3168/* Basic iterator support to walk early_node_map[] */
3169#define for_each_active_range_index_in_nid(i, nid) \
3170 for (i = first_active_region_index_in_nid(nid); i != -1; \
3171 i = next_active_region_index_in_nid(i, nid))
3172
3173/**
3174 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3175 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3176 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3177 *
3178 * If an architecture guarantees that all ranges registered with
3179 * add_active_ranges() contain no holes and may be freed, this
3180 * this function may be used instead of calling free_bootmem() manually.
3181 */
3182void __init free_bootmem_with_active_regions(int nid,
3183 unsigned long max_low_pfn)
3184{
3185 int i;
3186
3187 for_each_active_range_index_in_nid(i, nid) {
3188 unsigned long size_pages = 0;
3189 unsigned long end_pfn = early_node_map[i].end_pfn;
3190
3191 if (early_node_map[i].start_pfn >= max_low_pfn)
3192 continue;
3193
3194 if (end_pfn > max_low_pfn)
3195 end_pfn = max_low_pfn;
3196
3197 size_pages = end_pfn - early_node_map[i].start_pfn;
3198 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3199 PFN_PHYS(early_node_map[i].start_pfn),
3200 size_pages << PAGE_SHIFT);
3201 }
3202}
3203
b5bc6c0e
YL
3204void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3205{
3206 int i;
d52d53b8 3207 int ret;
b5bc6c0e 3208
d52d53b8
YL
3209 for_each_active_range_index_in_nid(i, nid) {
3210 ret = work_fn(early_node_map[i].start_pfn,
3211 early_node_map[i].end_pfn, data);
3212 if (ret)
3213 break;
3214 }
b5bc6c0e 3215}
c713216d
MG
3216/**
3217 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3218 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3219 *
3220 * If an architecture guarantees that all ranges registered with
3221 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3222 * function may be used instead of calling memory_present() manually.
c713216d
MG
3223 */
3224void __init sparse_memory_present_with_active_regions(int nid)
3225{
3226 int i;
3227
3228 for_each_active_range_index_in_nid(i, nid)
3229 memory_present(early_node_map[i].nid,
3230 early_node_map[i].start_pfn,
3231 early_node_map[i].end_pfn);
3232}
3233
3234/**
3235 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3236 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3237 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3238 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3239 *
3240 * It returns the start and end page frame of a node based on information
3241 * provided by an arch calling add_active_range(). If called for a node
3242 * with no available memory, a warning is printed and the start and end
88ca3b94 3243 * PFNs will be 0.
c713216d 3244 */
a3142c8e 3245void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3246 unsigned long *start_pfn, unsigned long *end_pfn)
3247{
3248 int i;
3249 *start_pfn = -1UL;
3250 *end_pfn = 0;
3251
3252 for_each_active_range_index_in_nid(i, nid) {
3253 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3254 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3255 }
3256
633c0666 3257 if (*start_pfn == -1UL)
c713216d 3258 *start_pfn = 0;
c713216d
MG
3259}
3260
2a1e274a
MG
3261/*
3262 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3263 * assumption is made that zones within a node are ordered in monotonic
3264 * increasing memory addresses so that the "highest" populated zone is used
3265 */
b69a7288 3266static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3267{
3268 int zone_index;
3269 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3270 if (zone_index == ZONE_MOVABLE)
3271 continue;
3272
3273 if (arch_zone_highest_possible_pfn[zone_index] >
3274 arch_zone_lowest_possible_pfn[zone_index])
3275 break;
3276 }
3277
3278 VM_BUG_ON(zone_index == -1);
3279 movable_zone = zone_index;
3280}
3281
3282/*
3283 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3284 * because it is sized independant of architecture. Unlike the other zones,
3285 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3286 * in each node depending on the size of each node and how evenly kernelcore
3287 * is distributed. This helper function adjusts the zone ranges
3288 * provided by the architecture for a given node by using the end of the
3289 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3290 * zones within a node are in order of monotonic increases memory addresses
3291 */
b69a7288 3292static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3293 unsigned long zone_type,
3294 unsigned long node_start_pfn,
3295 unsigned long node_end_pfn,
3296 unsigned long *zone_start_pfn,
3297 unsigned long *zone_end_pfn)
3298{
3299 /* Only adjust if ZONE_MOVABLE is on this node */
3300 if (zone_movable_pfn[nid]) {
3301 /* Size ZONE_MOVABLE */
3302 if (zone_type == ZONE_MOVABLE) {
3303 *zone_start_pfn = zone_movable_pfn[nid];
3304 *zone_end_pfn = min(node_end_pfn,
3305 arch_zone_highest_possible_pfn[movable_zone]);
3306
3307 /* Adjust for ZONE_MOVABLE starting within this range */
3308 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3309 *zone_end_pfn > zone_movable_pfn[nid]) {
3310 *zone_end_pfn = zone_movable_pfn[nid];
3311
3312 /* Check if this whole range is within ZONE_MOVABLE */
3313 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3314 *zone_start_pfn = *zone_end_pfn;
3315 }
3316}
3317
c713216d
MG
3318/*
3319 * Return the number of pages a zone spans in a node, including holes
3320 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3321 */
6ea6e688 3322static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3323 unsigned long zone_type,
3324 unsigned long *ignored)
3325{
3326 unsigned long node_start_pfn, node_end_pfn;
3327 unsigned long zone_start_pfn, zone_end_pfn;
3328
3329 /* Get the start and end of the node and zone */
3330 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3331 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3332 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3333 adjust_zone_range_for_zone_movable(nid, zone_type,
3334 node_start_pfn, node_end_pfn,
3335 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3336
3337 /* Check that this node has pages within the zone's required range */
3338 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3339 return 0;
3340
3341 /* Move the zone boundaries inside the node if necessary */
3342 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3343 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3344
3345 /* Return the spanned pages */
3346 return zone_end_pfn - zone_start_pfn;
3347}
3348
3349/*
3350 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3351 * then all holes in the requested range will be accounted for.
c713216d 3352 */
b69a7288 3353static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3354 unsigned long range_start_pfn,
3355 unsigned long range_end_pfn)
3356{
3357 int i = 0;
3358 unsigned long prev_end_pfn = 0, hole_pages = 0;
3359 unsigned long start_pfn;
3360
3361 /* Find the end_pfn of the first active range of pfns in the node */
3362 i = first_active_region_index_in_nid(nid);
3363 if (i == -1)
3364 return 0;
3365
b5445f95
MG
3366 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3367
9c7cd687
MG
3368 /* Account for ranges before physical memory on this node */
3369 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3370 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3371
3372 /* Find all holes for the zone within the node */
3373 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3374
3375 /* No need to continue if prev_end_pfn is outside the zone */
3376 if (prev_end_pfn >= range_end_pfn)
3377 break;
3378
3379 /* Make sure the end of the zone is not within the hole */
3380 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3381 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3382
3383 /* Update the hole size cound and move on */
3384 if (start_pfn > range_start_pfn) {
3385 BUG_ON(prev_end_pfn > start_pfn);
3386 hole_pages += start_pfn - prev_end_pfn;
3387 }
3388 prev_end_pfn = early_node_map[i].end_pfn;
3389 }
3390
9c7cd687
MG
3391 /* Account for ranges past physical memory on this node */
3392 if (range_end_pfn > prev_end_pfn)
0c6cb974 3393 hole_pages += range_end_pfn -
9c7cd687
MG
3394 max(range_start_pfn, prev_end_pfn);
3395
c713216d
MG
3396 return hole_pages;
3397}
3398
3399/**
3400 * absent_pages_in_range - Return number of page frames in holes within a range
3401 * @start_pfn: The start PFN to start searching for holes
3402 * @end_pfn: The end PFN to stop searching for holes
3403 *
88ca3b94 3404 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3405 */
3406unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3407 unsigned long end_pfn)
3408{
3409 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3410}
3411
3412/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3413static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3414 unsigned long zone_type,
3415 unsigned long *ignored)
3416{
9c7cd687
MG
3417 unsigned long node_start_pfn, node_end_pfn;
3418 unsigned long zone_start_pfn, zone_end_pfn;
3419
3420 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3421 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3422 node_start_pfn);
3423 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3424 node_end_pfn);
3425
2a1e274a
MG
3426 adjust_zone_range_for_zone_movable(nid, zone_type,
3427 node_start_pfn, node_end_pfn,
3428 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3429 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3430}
0e0b864e 3431
c713216d 3432#else
6ea6e688 3433static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3434 unsigned long zone_type,
3435 unsigned long *zones_size)
3436{
3437 return zones_size[zone_type];
3438}
3439
6ea6e688 3440static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3441 unsigned long zone_type,
3442 unsigned long *zholes_size)
3443{
3444 if (!zholes_size)
3445 return 0;
3446
3447 return zholes_size[zone_type];
3448}
0e0b864e 3449
c713216d
MG
3450#endif
3451
a3142c8e 3452static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3453 unsigned long *zones_size, unsigned long *zholes_size)
3454{
3455 unsigned long realtotalpages, totalpages = 0;
3456 enum zone_type i;
3457
3458 for (i = 0; i < MAX_NR_ZONES; i++)
3459 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3460 zones_size);
3461 pgdat->node_spanned_pages = totalpages;
3462
3463 realtotalpages = totalpages;
3464 for (i = 0; i < MAX_NR_ZONES; i++)
3465 realtotalpages -=
3466 zone_absent_pages_in_node(pgdat->node_id, i,
3467 zholes_size);
3468 pgdat->node_present_pages = realtotalpages;
3469 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3470 realtotalpages);
3471}
3472
835c134e
MG
3473#ifndef CONFIG_SPARSEMEM
3474/*
3475 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3476 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3477 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3478 * round what is now in bits to nearest long in bits, then return it in
3479 * bytes.
3480 */
3481static unsigned long __init usemap_size(unsigned long zonesize)
3482{
3483 unsigned long usemapsize;
3484
d9c23400
MG
3485 usemapsize = roundup(zonesize, pageblock_nr_pages);
3486 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3487 usemapsize *= NR_PAGEBLOCK_BITS;
3488 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3489
3490 return usemapsize / 8;
3491}
3492
3493static void __init setup_usemap(struct pglist_data *pgdat,
3494 struct zone *zone, unsigned long zonesize)
3495{
3496 unsigned long usemapsize = usemap_size(zonesize);
3497 zone->pageblock_flags = NULL;
58a01a45 3498 if (usemapsize)
835c134e 3499 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3500}
3501#else
3502static void inline setup_usemap(struct pglist_data *pgdat,
3503 struct zone *zone, unsigned long zonesize) {}
3504#endif /* CONFIG_SPARSEMEM */
3505
d9c23400 3506#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3507
3508/* Return a sensible default order for the pageblock size. */
3509static inline int pageblock_default_order(void)
3510{
3511 if (HPAGE_SHIFT > PAGE_SHIFT)
3512 return HUGETLB_PAGE_ORDER;
3513
3514 return MAX_ORDER-1;
3515}
3516
d9c23400
MG
3517/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3518static inline void __init set_pageblock_order(unsigned int order)
3519{
3520 /* Check that pageblock_nr_pages has not already been setup */
3521 if (pageblock_order)
3522 return;
3523
3524 /*
3525 * Assume the largest contiguous order of interest is a huge page.
3526 * This value may be variable depending on boot parameters on IA64
3527 */
3528 pageblock_order = order;
3529}
3530#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3531
ba72cb8c
MG
3532/*
3533 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3534 * and pageblock_default_order() are unused as pageblock_order is set
3535 * at compile-time. See include/linux/pageblock-flags.h for the values of
3536 * pageblock_order based on the kernel config
3537 */
3538static inline int pageblock_default_order(unsigned int order)
3539{
3540 return MAX_ORDER-1;
3541}
d9c23400
MG
3542#define set_pageblock_order(x) do {} while (0)
3543
3544#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3545
1da177e4
LT
3546/*
3547 * Set up the zone data structures:
3548 * - mark all pages reserved
3549 * - mark all memory queues empty
3550 * - clear the memory bitmaps
3551 */
b5a0e011 3552static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3553 unsigned long *zones_size, unsigned long *zholes_size)
3554{
2f1b6248 3555 enum zone_type j;
ed8ece2e 3556 int nid = pgdat->node_id;
1da177e4 3557 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3558 int ret;
1da177e4 3559
208d54e5 3560 pgdat_resize_init(pgdat);
1da177e4
LT
3561 pgdat->nr_zones = 0;
3562 init_waitqueue_head(&pgdat->kswapd_wait);
3563 pgdat->kswapd_max_order = 0;
52d4b9ac 3564 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3565
3566 for (j = 0; j < MAX_NR_ZONES; j++) {
3567 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3568 unsigned long size, realsize, memmap_pages;
b69408e8 3569 enum lru_list l;
1da177e4 3570
c713216d
MG
3571 size = zone_spanned_pages_in_node(nid, j, zones_size);
3572 realsize = size - zone_absent_pages_in_node(nid, j,
3573 zholes_size);
1da177e4 3574
0e0b864e
MG
3575 /*
3576 * Adjust realsize so that it accounts for how much memory
3577 * is used by this zone for memmap. This affects the watermark
3578 * and per-cpu initialisations
3579 */
f7232154
JW
3580 memmap_pages =
3581 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3582 if (realsize >= memmap_pages) {
3583 realsize -= memmap_pages;
5594c8c8
YL
3584 if (memmap_pages)
3585 printk(KERN_DEBUG
3586 " %s zone: %lu pages used for memmap\n",
3587 zone_names[j], memmap_pages);
0e0b864e
MG
3588 } else
3589 printk(KERN_WARNING
3590 " %s zone: %lu pages exceeds realsize %lu\n",
3591 zone_names[j], memmap_pages, realsize);
3592
6267276f
CL
3593 /* Account for reserved pages */
3594 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3595 realsize -= dma_reserve;
d903ef9f 3596 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3597 zone_names[0], dma_reserve);
0e0b864e
MG
3598 }
3599
98d2b0eb 3600 if (!is_highmem_idx(j))
1da177e4
LT
3601 nr_kernel_pages += realsize;
3602 nr_all_pages += realsize;
3603
3604 zone->spanned_pages = size;
3605 zone->present_pages = realsize;
9614634f 3606#ifdef CONFIG_NUMA
d5f541ed 3607 zone->node = nid;
8417bba4 3608 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3609 / 100;
0ff38490 3610 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3611#endif
1da177e4
LT
3612 zone->name = zone_names[j];
3613 spin_lock_init(&zone->lock);
3614 spin_lock_init(&zone->lru_lock);
bdc8cb98 3615 zone_seqlock_init(zone);
1da177e4 3616 zone->zone_pgdat = pgdat;
1da177e4 3617
3bb1a852 3618 zone->prev_priority = DEF_PRIORITY;
1da177e4 3619
ed8ece2e 3620 zone_pcp_init(zone);
b69408e8
CL
3621 for_each_lru(l) {
3622 INIT_LIST_HEAD(&zone->lru[l].list);
3623 zone->lru[l].nr_scan = 0;
3624 }
6e901571
KM
3625 zone->reclaim_stat.recent_rotated[0] = 0;
3626 zone->reclaim_stat.recent_rotated[1] = 0;
3627 zone->reclaim_stat.recent_scanned[0] = 0;
3628 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3629 zap_zone_vm_stats(zone);
e815af95 3630 zone->flags = 0;
1da177e4
LT
3631 if (!size)
3632 continue;
3633
ba72cb8c 3634 set_pageblock_order(pageblock_default_order());
835c134e 3635 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3636 ret = init_currently_empty_zone(zone, zone_start_pfn,
3637 size, MEMMAP_EARLY);
718127cc 3638 BUG_ON(ret);
76cdd58e 3639 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3640 zone_start_pfn += size;
1da177e4
LT
3641 }
3642}
3643
577a32f6 3644static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3645{
1da177e4
LT
3646 /* Skip empty nodes */
3647 if (!pgdat->node_spanned_pages)
3648 return;
3649
d41dee36 3650#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3651 /* ia64 gets its own node_mem_map, before this, without bootmem */
3652 if (!pgdat->node_mem_map) {
e984bb43 3653 unsigned long size, start, end;
d41dee36
AW
3654 struct page *map;
3655
e984bb43
BP
3656 /*
3657 * The zone's endpoints aren't required to be MAX_ORDER
3658 * aligned but the node_mem_map endpoints must be in order
3659 * for the buddy allocator to function correctly.
3660 */
3661 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3662 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3663 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3664 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3665 map = alloc_remap(pgdat->node_id, size);
3666 if (!map)
3667 map = alloc_bootmem_node(pgdat, size);
e984bb43 3668 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3669 }
12d810c1 3670#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3671 /*
3672 * With no DISCONTIG, the global mem_map is just set as node 0's
3673 */
c713216d 3674 if (pgdat == NODE_DATA(0)) {
1da177e4 3675 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3676#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3677 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3678 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3679#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3680 }
1da177e4 3681#endif
d41dee36 3682#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3683}
3684
9109fb7b
JW
3685void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3686 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3687{
9109fb7b
JW
3688 pg_data_t *pgdat = NODE_DATA(nid);
3689
1da177e4
LT
3690 pgdat->node_id = nid;
3691 pgdat->node_start_pfn = node_start_pfn;
c713216d 3692 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3693
3694 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3695#ifdef CONFIG_FLAT_NODE_MEM_MAP
3696 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3697 nid, (unsigned long)pgdat,
3698 (unsigned long)pgdat->node_mem_map);
3699#endif
1da177e4
LT
3700
3701 free_area_init_core(pgdat, zones_size, zholes_size);
3702}
3703
c713216d 3704#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3705
3706#if MAX_NUMNODES > 1
3707/*
3708 * Figure out the number of possible node ids.
3709 */
3710static void __init setup_nr_node_ids(void)
3711{
3712 unsigned int node;
3713 unsigned int highest = 0;
3714
3715 for_each_node_mask(node, node_possible_map)
3716 highest = node;
3717 nr_node_ids = highest + 1;
3718}
3719#else
3720static inline void setup_nr_node_ids(void)
3721{
3722}
3723#endif
3724
c713216d
MG
3725/**
3726 * add_active_range - Register a range of PFNs backed by physical memory
3727 * @nid: The node ID the range resides on
3728 * @start_pfn: The start PFN of the available physical memory
3729 * @end_pfn: The end PFN of the available physical memory
3730 *
3731 * These ranges are stored in an early_node_map[] and later used by
3732 * free_area_init_nodes() to calculate zone sizes and holes. If the
3733 * range spans a memory hole, it is up to the architecture to ensure
3734 * the memory is not freed by the bootmem allocator. If possible
3735 * the range being registered will be merged with existing ranges.
3736 */
3737void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3738 unsigned long end_pfn)
3739{
3740 int i;
3741
6b74ab97
MG
3742 mminit_dprintk(MMINIT_TRACE, "memory_register",
3743 "Entering add_active_range(%d, %#lx, %#lx) "
3744 "%d entries of %d used\n",
3745 nid, start_pfn, end_pfn,
3746 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3747
2dbb51c4
MG
3748 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3749
c713216d
MG
3750 /* Merge with existing active regions if possible */
3751 for (i = 0; i < nr_nodemap_entries; i++) {
3752 if (early_node_map[i].nid != nid)
3753 continue;
3754
3755 /* Skip if an existing region covers this new one */
3756 if (start_pfn >= early_node_map[i].start_pfn &&
3757 end_pfn <= early_node_map[i].end_pfn)
3758 return;
3759
3760 /* Merge forward if suitable */
3761 if (start_pfn <= early_node_map[i].end_pfn &&
3762 end_pfn > early_node_map[i].end_pfn) {
3763 early_node_map[i].end_pfn = end_pfn;
3764 return;
3765 }
3766
3767 /* Merge backward if suitable */
3768 if (start_pfn < early_node_map[i].end_pfn &&
3769 end_pfn >= early_node_map[i].start_pfn) {
3770 early_node_map[i].start_pfn = start_pfn;
3771 return;
3772 }
3773 }
3774
3775 /* Check that early_node_map is large enough */
3776 if (i >= MAX_ACTIVE_REGIONS) {
3777 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3778 MAX_ACTIVE_REGIONS);
3779 return;
3780 }
3781
3782 early_node_map[i].nid = nid;
3783 early_node_map[i].start_pfn = start_pfn;
3784 early_node_map[i].end_pfn = end_pfn;
3785 nr_nodemap_entries = i + 1;
3786}
3787
3788/**
cc1050ba 3789 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3790 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3791 * @start_pfn: The new PFN of the range
3792 * @end_pfn: The new PFN of the range
c713216d
MG
3793 *
3794 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3795 * The map is kept near the end physical page range that has already been
3796 * registered. This function allows an arch to shrink an existing registered
3797 * range.
c713216d 3798 */
cc1050ba
YL
3799void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3800 unsigned long end_pfn)
c713216d 3801{
cc1a9d86
YL
3802 int i, j;
3803 int removed = 0;
c713216d 3804
cc1050ba
YL
3805 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3806 nid, start_pfn, end_pfn);
3807
c713216d 3808 /* Find the old active region end and shrink */
cc1a9d86 3809 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3810 if (early_node_map[i].start_pfn >= start_pfn &&
3811 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3812 /* clear it */
cc1050ba 3813 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3814 early_node_map[i].end_pfn = 0;
3815 removed = 1;
3816 continue;
3817 }
cc1050ba
YL
3818 if (early_node_map[i].start_pfn < start_pfn &&
3819 early_node_map[i].end_pfn > start_pfn) {
3820 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3821 early_node_map[i].end_pfn = start_pfn;
3822 if (temp_end_pfn > end_pfn)
3823 add_active_range(nid, end_pfn, temp_end_pfn);
3824 continue;
3825 }
3826 if (early_node_map[i].start_pfn >= start_pfn &&
3827 early_node_map[i].end_pfn > end_pfn &&
3828 early_node_map[i].start_pfn < end_pfn) {
3829 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3830 continue;
c713216d 3831 }
cc1a9d86
YL
3832 }
3833
3834 if (!removed)
3835 return;
3836
3837 /* remove the blank ones */
3838 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3839 if (early_node_map[i].nid != nid)
3840 continue;
3841 if (early_node_map[i].end_pfn)
3842 continue;
3843 /* we found it, get rid of it */
3844 for (j = i; j < nr_nodemap_entries - 1; j++)
3845 memcpy(&early_node_map[j], &early_node_map[j+1],
3846 sizeof(early_node_map[j]));
3847 j = nr_nodemap_entries - 1;
3848 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3849 nr_nodemap_entries--;
3850 }
c713216d
MG
3851}
3852
3853/**
3854 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3855 *
c713216d
MG
3856 * During discovery, it may be found that a table like SRAT is invalid
3857 * and an alternative discovery method must be used. This function removes
3858 * all currently registered regions.
3859 */
88ca3b94 3860void __init remove_all_active_ranges(void)
c713216d
MG
3861{
3862 memset(early_node_map, 0, sizeof(early_node_map));
3863 nr_nodemap_entries = 0;
3864}
3865
3866/* Compare two active node_active_regions */
3867static int __init cmp_node_active_region(const void *a, const void *b)
3868{
3869 struct node_active_region *arange = (struct node_active_region *)a;
3870 struct node_active_region *brange = (struct node_active_region *)b;
3871
3872 /* Done this way to avoid overflows */
3873 if (arange->start_pfn > brange->start_pfn)
3874 return 1;
3875 if (arange->start_pfn < brange->start_pfn)
3876 return -1;
3877
3878 return 0;
3879}
3880
3881/* sort the node_map by start_pfn */
3882static void __init sort_node_map(void)
3883{
3884 sort(early_node_map, (size_t)nr_nodemap_entries,
3885 sizeof(struct node_active_region),
3886 cmp_node_active_region, NULL);
3887}
3888
a6af2bc3 3889/* Find the lowest pfn for a node */
b69a7288 3890static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3891{
3892 int i;
a6af2bc3 3893 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3894
c713216d
MG
3895 /* Assuming a sorted map, the first range found has the starting pfn */
3896 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3897 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3898
a6af2bc3
MG
3899 if (min_pfn == ULONG_MAX) {
3900 printk(KERN_WARNING
2bc0d261 3901 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3902 return 0;
3903 }
3904
3905 return min_pfn;
c713216d
MG
3906}
3907
3908/**
3909 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3910 *
3911 * It returns the minimum PFN based on information provided via
88ca3b94 3912 * add_active_range().
c713216d
MG
3913 */
3914unsigned long __init find_min_pfn_with_active_regions(void)
3915{
3916 return find_min_pfn_for_node(MAX_NUMNODES);
3917}
3918
37b07e41
LS
3919/*
3920 * early_calculate_totalpages()
3921 * Sum pages in active regions for movable zone.
3922 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3923 */
484f51f8 3924static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3925{
3926 int i;
3927 unsigned long totalpages = 0;
3928
37b07e41
LS
3929 for (i = 0; i < nr_nodemap_entries; i++) {
3930 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3931 early_node_map[i].start_pfn;
37b07e41
LS
3932 totalpages += pages;
3933 if (pages)
3934 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3935 }
3936 return totalpages;
7e63efef
MG
3937}
3938
2a1e274a
MG
3939/*
3940 * Find the PFN the Movable zone begins in each node. Kernel memory
3941 * is spread evenly between nodes as long as the nodes have enough
3942 * memory. When they don't, some nodes will have more kernelcore than
3943 * others
3944 */
b69a7288 3945static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3946{
3947 int i, nid;
3948 unsigned long usable_startpfn;
3949 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3950 unsigned long totalpages = early_calculate_totalpages();
3951 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3952
7e63efef
MG
3953 /*
3954 * If movablecore was specified, calculate what size of
3955 * kernelcore that corresponds so that memory usable for
3956 * any allocation type is evenly spread. If both kernelcore
3957 * and movablecore are specified, then the value of kernelcore
3958 * will be used for required_kernelcore if it's greater than
3959 * what movablecore would have allowed.
3960 */
3961 if (required_movablecore) {
7e63efef
MG
3962 unsigned long corepages;
3963
3964 /*
3965 * Round-up so that ZONE_MOVABLE is at least as large as what
3966 * was requested by the user
3967 */
3968 required_movablecore =
3969 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3970 corepages = totalpages - required_movablecore;
3971
3972 required_kernelcore = max(required_kernelcore, corepages);
3973 }
3974
2a1e274a
MG
3975 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3976 if (!required_kernelcore)
3977 return;
3978
3979 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3980 find_usable_zone_for_movable();
3981 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3982
3983restart:
3984 /* Spread kernelcore memory as evenly as possible throughout nodes */
3985 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3986 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3987 /*
3988 * Recalculate kernelcore_node if the division per node
3989 * now exceeds what is necessary to satisfy the requested
3990 * amount of memory for the kernel
3991 */
3992 if (required_kernelcore < kernelcore_node)
3993 kernelcore_node = required_kernelcore / usable_nodes;
3994
3995 /*
3996 * As the map is walked, we track how much memory is usable
3997 * by the kernel using kernelcore_remaining. When it is
3998 * 0, the rest of the node is usable by ZONE_MOVABLE
3999 */
4000 kernelcore_remaining = kernelcore_node;
4001
4002 /* Go through each range of PFNs within this node */
4003 for_each_active_range_index_in_nid(i, nid) {
4004 unsigned long start_pfn, end_pfn;
4005 unsigned long size_pages;
4006
4007 start_pfn = max(early_node_map[i].start_pfn,
4008 zone_movable_pfn[nid]);
4009 end_pfn = early_node_map[i].end_pfn;
4010 if (start_pfn >= end_pfn)
4011 continue;
4012
4013 /* Account for what is only usable for kernelcore */
4014 if (start_pfn < usable_startpfn) {
4015 unsigned long kernel_pages;
4016 kernel_pages = min(end_pfn, usable_startpfn)
4017 - start_pfn;
4018
4019 kernelcore_remaining -= min(kernel_pages,
4020 kernelcore_remaining);
4021 required_kernelcore -= min(kernel_pages,
4022 required_kernelcore);
4023
4024 /* Continue if range is now fully accounted */
4025 if (end_pfn <= usable_startpfn) {
4026
4027 /*
4028 * Push zone_movable_pfn to the end so
4029 * that if we have to rebalance
4030 * kernelcore across nodes, we will
4031 * not double account here
4032 */
4033 zone_movable_pfn[nid] = end_pfn;
4034 continue;
4035 }
4036 start_pfn = usable_startpfn;
4037 }
4038
4039 /*
4040 * The usable PFN range for ZONE_MOVABLE is from
4041 * start_pfn->end_pfn. Calculate size_pages as the
4042 * number of pages used as kernelcore
4043 */
4044 size_pages = end_pfn - start_pfn;
4045 if (size_pages > kernelcore_remaining)
4046 size_pages = kernelcore_remaining;
4047 zone_movable_pfn[nid] = start_pfn + size_pages;
4048
4049 /*
4050 * Some kernelcore has been met, update counts and
4051 * break if the kernelcore for this node has been
4052 * satisified
4053 */
4054 required_kernelcore -= min(required_kernelcore,
4055 size_pages);
4056 kernelcore_remaining -= size_pages;
4057 if (!kernelcore_remaining)
4058 break;
4059 }
4060 }
4061
4062 /*
4063 * If there is still required_kernelcore, we do another pass with one
4064 * less node in the count. This will push zone_movable_pfn[nid] further
4065 * along on the nodes that still have memory until kernelcore is
4066 * satisified
4067 */
4068 usable_nodes--;
4069 if (usable_nodes && required_kernelcore > usable_nodes)
4070 goto restart;
4071
4072 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4073 for (nid = 0; nid < MAX_NUMNODES; nid++)
4074 zone_movable_pfn[nid] =
4075 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4076}
4077
37b07e41
LS
4078/* Any regular memory on that node ? */
4079static void check_for_regular_memory(pg_data_t *pgdat)
4080{
4081#ifdef CONFIG_HIGHMEM
4082 enum zone_type zone_type;
4083
4084 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4085 struct zone *zone = &pgdat->node_zones[zone_type];
4086 if (zone->present_pages)
4087 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4088 }
4089#endif
4090}
4091
c713216d
MG
4092/**
4093 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4094 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4095 *
4096 * This will call free_area_init_node() for each active node in the system.
4097 * Using the page ranges provided by add_active_range(), the size of each
4098 * zone in each node and their holes is calculated. If the maximum PFN
4099 * between two adjacent zones match, it is assumed that the zone is empty.
4100 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4101 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4102 * starts where the previous one ended. For example, ZONE_DMA32 starts
4103 * at arch_max_dma_pfn.
4104 */
4105void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4106{
4107 unsigned long nid;
db99100d 4108 int i;
c713216d 4109
a6af2bc3
MG
4110 /* Sort early_node_map as initialisation assumes it is sorted */
4111 sort_node_map();
4112
c713216d
MG
4113 /* Record where the zone boundaries are */
4114 memset(arch_zone_lowest_possible_pfn, 0,
4115 sizeof(arch_zone_lowest_possible_pfn));
4116 memset(arch_zone_highest_possible_pfn, 0,
4117 sizeof(arch_zone_highest_possible_pfn));
4118 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4119 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4120 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4121 if (i == ZONE_MOVABLE)
4122 continue;
c713216d
MG
4123 arch_zone_lowest_possible_pfn[i] =
4124 arch_zone_highest_possible_pfn[i-1];
4125 arch_zone_highest_possible_pfn[i] =
4126 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4127 }
2a1e274a
MG
4128 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4129 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4130
4131 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4132 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4133 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4134
c713216d
MG
4135 /* Print out the zone ranges */
4136 printk("Zone PFN ranges:\n");
2a1e274a
MG
4137 for (i = 0; i < MAX_NR_ZONES; i++) {
4138 if (i == ZONE_MOVABLE)
4139 continue;
5dab8ec1 4140 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4141 zone_names[i],
4142 arch_zone_lowest_possible_pfn[i],
4143 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4144 }
4145
4146 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4147 printk("Movable zone start PFN for each node\n");
4148 for (i = 0; i < MAX_NUMNODES; i++) {
4149 if (zone_movable_pfn[i])
4150 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4151 }
c713216d
MG
4152
4153 /* Print out the early_node_map[] */
4154 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4155 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4156 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4157 early_node_map[i].start_pfn,
4158 early_node_map[i].end_pfn);
4159
4160 /* Initialise every node */
708614e6 4161 mminit_verify_pageflags_layout();
8ef82866 4162 setup_nr_node_ids();
c713216d
MG
4163 for_each_online_node(nid) {
4164 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4165 free_area_init_node(nid, NULL,
c713216d 4166 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4167
4168 /* Any memory on that node */
4169 if (pgdat->node_present_pages)
4170 node_set_state(nid, N_HIGH_MEMORY);
4171 check_for_regular_memory(pgdat);
c713216d
MG
4172 }
4173}
2a1e274a 4174
7e63efef 4175static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4176{
4177 unsigned long long coremem;
4178 if (!p)
4179 return -EINVAL;
4180
4181 coremem = memparse(p, &p);
7e63efef 4182 *core = coremem >> PAGE_SHIFT;
2a1e274a 4183
7e63efef 4184 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4185 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4186
4187 return 0;
4188}
ed7ed365 4189
7e63efef
MG
4190/*
4191 * kernelcore=size sets the amount of memory for use for allocations that
4192 * cannot be reclaimed or migrated.
4193 */
4194static int __init cmdline_parse_kernelcore(char *p)
4195{
4196 return cmdline_parse_core(p, &required_kernelcore);
4197}
4198
4199/*
4200 * movablecore=size sets the amount of memory for use for allocations that
4201 * can be reclaimed or migrated.
4202 */
4203static int __init cmdline_parse_movablecore(char *p)
4204{
4205 return cmdline_parse_core(p, &required_movablecore);
4206}
4207
ed7ed365 4208early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4209early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4210
c713216d
MG
4211#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4212
0e0b864e 4213/**
88ca3b94
RD
4214 * set_dma_reserve - set the specified number of pages reserved in the first zone
4215 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4216 *
4217 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4218 * In the DMA zone, a significant percentage may be consumed by kernel image
4219 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4220 * function may optionally be used to account for unfreeable pages in the
4221 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4222 * smaller per-cpu batchsize.
0e0b864e
MG
4223 */
4224void __init set_dma_reserve(unsigned long new_dma_reserve)
4225{
4226 dma_reserve = new_dma_reserve;
4227}
4228
93b7504e 4229#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4230struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4231EXPORT_SYMBOL(contig_page_data);
93b7504e 4232#endif
1da177e4
LT
4233
4234void __init free_area_init(unsigned long *zones_size)
4235{
9109fb7b 4236 free_area_init_node(0, zones_size,
1da177e4
LT
4237 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4238}
1da177e4 4239
1da177e4
LT
4240static int page_alloc_cpu_notify(struct notifier_block *self,
4241 unsigned long action, void *hcpu)
4242{
4243 int cpu = (unsigned long)hcpu;
1da177e4 4244
8bb78442 4245 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4246 drain_pages(cpu);
4247
4248 /*
4249 * Spill the event counters of the dead processor
4250 * into the current processors event counters.
4251 * This artificially elevates the count of the current
4252 * processor.
4253 */
f8891e5e 4254 vm_events_fold_cpu(cpu);
9f8f2172
CL
4255
4256 /*
4257 * Zero the differential counters of the dead processor
4258 * so that the vm statistics are consistent.
4259 *
4260 * This is only okay since the processor is dead and cannot
4261 * race with what we are doing.
4262 */
2244b95a 4263 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4264 }
4265 return NOTIFY_OK;
4266}
1da177e4
LT
4267
4268void __init page_alloc_init(void)
4269{
4270 hotcpu_notifier(page_alloc_cpu_notify, 0);
4271}
4272
cb45b0e9
HA
4273/*
4274 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4275 * or min_free_kbytes changes.
4276 */
4277static void calculate_totalreserve_pages(void)
4278{
4279 struct pglist_data *pgdat;
4280 unsigned long reserve_pages = 0;
2f6726e5 4281 enum zone_type i, j;
cb45b0e9
HA
4282
4283 for_each_online_pgdat(pgdat) {
4284 for (i = 0; i < MAX_NR_ZONES; i++) {
4285 struct zone *zone = pgdat->node_zones + i;
4286 unsigned long max = 0;
4287
4288 /* Find valid and maximum lowmem_reserve in the zone */
4289 for (j = i; j < MAX_NR_ZONES; j++) {
4290 if (zone->lowmem_reserve[j] > max)
4291 max = zone->lowmem_reserve[j];
4292 }
4293
4294 /* we treat pages_high as reserved pages. */
4295 max += zone->pages_high;
4296
4297 if (max > zone->present_pages)
4298 max = zone->present_pages;
4299 reserve_pages += max;
4300 }
4301 }
4302 totalreserve_pages = reserve_pages;
4303}
4304
1da177e4
LT
4305/*
4306 * setup_per_zone_lowmem_reserve - called whenever
4307 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4308 * has a correct pages reserved value, so an adequate number of
4309 * pages are left in the zone after a successful __alloc_pages().
4310 */
4311static void setup_per_zone_lowmem_reserve(void)
4312{
4313 struct pglist_data *pgdat;
2f6726e5 4314 enum zone_type j, idx;
1da177e4 4315
ec936fc5 4316 for_each_online_pgdat(pgdat) {
1da177e4
LT
4317 for (j = 0; j < MAX_NR_ZONES; j++) {
4318 struct zone *zone = pgdat->node_zones + j;
4319 unsigned long present_pages = zone->present_pages;
4320
4321 zone->lowmem_reserve[j] = 0;
4322
2f6726e5
CL
4323 idx = j;
4324 while (idx) {
1da177e4
LT
4325 struct zone *lower_zone;
4326
2f6726e5
CL
4327 idx--;
4328
1da177e4
LT
4329 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4330 sysctl_lowmem_reserve_ratio[idx] = 1;
4331
4332 lower_zone = pgdat->node_zones + idx;
4333 lower_zone->lowmem_reserve[j] = present_pages /
4334 sysctl_lowmem_reserve_ratio[idx];
4335 present_pages += lower_zone->present_pages;
4336 }
4337 }
4338 }
cb45b0e9
HA
4339
4340 /* update totalreserve_pages */
4341 calculate_totalreserve_pages();
1da177e4
LT
4342}
4343
88ca3b94
RD
4344/**
4345 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4346 *
4347 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4348 * with respect to min_free_kbytes.
1da177e4 4349 */
3947be19 4350void setup_per_zone_pages_min(void)
1da177e4
LT
4351{
4352 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4353 unsigned long lowmem_pages = 0;
4354 struct zone *zone;
4355 unsigned long flags;
4356
4357 /* Calculate total number of !ZONE_HIGHMEM pages */
4358 for_each_zone(zone) {
4359 if (!is_highmem(zone))
4360 lowmem_pages += zone->present_pages;
4361 }
4362
4363 for_each_zone(zone) {
ac924c60
AM
4364 u64 tmp;
4365
1125b4e3 4366 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4367 tmp = (u64)pages_min * zone->present_pages;
4368 do_div(tmp, lowmem_pages);
1da177e4
LT
4369 if (is_highmem(zone)) {
4370 /*
669ed175
NP
4371 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4372 * need highmem pages, so cap pages_min to a small
4373 * value here.
4374 *
4375 * The (pages_high-pages_low) and (pages_low-pages_min)
4376 * deltas controls asynch page reclaim, and so should
4377 * not be capped for highmem.
1da177e4
LT
4378 */
4379 int min_pages;
4380
4381 min_pages = zone->present_pages / 1024;
4382 if (min_pages < SWAP_CLUSTER_MAX)
4383 min_pages = SWAP_CLUSTER_MAX;
4384 if (min_pages > 128)
4385 min_pages = 128;
4386 zone->pages_min = min_pages;
4387 } else {
669ed175
NP
4388 /*
4389 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4390 * proportionate to the zone's size.
4391 */
669ed175 4392 zone->pages_min = tmp;
1da177e4
LT
4393 }
4394
ac924c60
AM
4395 zone->pages_low = zone->pages_min + (tmp >> 2);
4396 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4397 setup_zone_migrate_reserve(zone);
1125b4e3 4398 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4399 }
cb45b0e9
HA
4400
4401 /* update totalreserve_pages */
4402 calculate_totalreserve_pages();
1da177e4
LT
4403}
4404
556adecb
RR
4405/**
4406 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4407 *
4408 * The inactive anon list should be small enough that the VM never has to
4409 * do too much work, but large enough that each inactive page has a chance
4410 * to be referenced again before it is swapped out.
4411 *
4412 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4413 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4414 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4415 * the anonymous pages are kept on the inactive list.
4416 *
4417 * total target max
4418 * memory ratio inactive anon
4419 * -------------------------------------
4420 * 10MB 1 5MB
4421 * 100MB 1 50MB
4422 * 1GB 3 250MB
4423 * 10GB 10 0.9GB
4424 * 100GB 31 3GB
4425 * 1TB 101 10GB
4426 * 10TB 320 32GB
4427 */
efab8186 4428static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4429{
4430 struct zone *zone;
4431
4432 for_each_zone(zone) {
4433 unsigned int gb, ratio;
4434
4435 /* Zone size in gigabytes */
4436 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4437 ratio = int_sqrt(10 * gb);
4438 if (!ratio)
4439 ratio = 1;
4440
4441 zone->inactive_ratio = ratio;
4442 }
4443}
4444
1da177e4
LT
4445/*
4446 * Initialise min_free_kbytes.
4447 *
4448 * For small machines we want it small (128k min). For large machines
4449 * we want it large (64MB max). But it is not linear, because network
4450 * bandwidth does not increase linearly with machine size. We use
4451 *
4452 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4453 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4454 *
4455 * which yields
4456 *
4457 * 16MB: 512k
4458 * 32MB: 724k
4459 * 64MB: 1024k
4460 * 128MB: 1448k
4461 * 256MB: 2048k
4462 * 512MB: 2896k
4463 * 1024MB: 4096k
4464 * 2048MB: 5792k
4465 * 4096MB: 8192k
4466 * 8192MB: 11584k
4467 * 16384MB: 16384k
4468 */
4469static int __init init_per_zone_pages_min(void)
4470{
4471 unsigned long lowmem_kbytes;
4472
4473 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4474
4475 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4476 if (min_free_kbytes < 128)
4477 min_free_kbytes = 128;
4478 if (min_free_kbytes > 65536)
4479 min_free_kbytes = 65536;
4480 setup_per_zone_pages_min();
4481 setup_per_zone_lowmem_reserve();
556adecb 4482 setup_per_zone_inactive_ratio();
1da177e4
LT
4483 return 0;
4484}
4485module_init(init_per_zone_pages_min)
4486
4487/*
4488 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4489 * that we can call two helper functions whenever min_free_kbytes
4490 * changes.
4491 */
4492int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4493 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4494{
4495 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4496 if (write)
4497 setup_per_zone_pages_min();
1da177e4
LT
4498 return 0;
4499}
4500
9614634f
CL
4501#ifdef CONFIG_NUMA
4502int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4503 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4504{
4505 struct zone *zone;
4506 int rc;
4507
4508 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4509 if (rc)
4510 return rc;
4511
4512 for_each_zone(zone)
8417bba4 4513 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4514 sysctl_min_unmapped_ratio) / 100;
4515 return 0;
4516}
0ff38490
CL
4517
4518int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4519 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4520{
4521 struct zone *zone;
4522 int rc;
4523
4524 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4525 if (rc)
4526 return rc;
4527
4528 for_each_zone(zone)
4529 zone->min_slab_pages = (zone->present_pages *
4530 sysctl_min_slab_ratio) / 100;
4531 return 0;
4532}
9614634f
CL
4533#endif
4534
1da177e4
LT
4535/*
4536 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4537 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4538 * whenever sysctl_lowmem_reserve_ratio changes.
4539 *
4540 * The reserve ratio obviously has absolutely no relation with the
4541 * pages_min watermarks. The lowmem reserve ratio can only make sense
4542 * if in function of the boot time zone sizes.
4543 */
4544int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4545 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4546{
4547 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4548 setup_per_zone_lowmem_reserve();
4549 return 0;
4550}
4551
8ad4b1fb
RS
4552/*
4553 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4554 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4555 * can have before it gets flushed back to buddy allocator.
4556 */
4557
4558int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4559 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4560{
4561 struct zone *zone;
4562 unsigned int cpu;
4563 int ret;
4564
4565 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4566 if (!write || (ret == -EINVAL))
4567 return ret;
4568 for_each_zone(zone) {
4569 for_each_online_cpu(cpu) {
4570 unsigned long high;
4571 high = zone->present_pages / percpu_pagelist_fraction;
4572 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4573 }
4574 }
4575 return 0;
4576}
4577
f034b5d4 4578int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4579
4580#ifdef CONFIG_NUMA
4581static int __init set_hashdist(char *str)
4582{
4583 if (!str)
4584 return 0;
4585 hashdist = simple_strtoul(str, &str, 0);
4586 return 1;
4587}
4588__setup("hashdist=", set_hashdist);
4589#endif
4590
4591/*
4592 * allocate a large system hash table from bootmem
4593 * - it is assumed that the hash table must contain an exact power-of-2
4594 * quantity of entries
4595 * - limit is the number of hash buckets, not the total allocation size
4596 */
4597void *__init alloc_large_system_hash(const char *tablename,
4598 unsigned long bucketsize,
4599 unsigned long numentries,
4600 int scale,
4601 int flags,
4602 unsigned int *_hash_shift,
4603 unsigned int *_hash_mask,
4604 unsigned long limit)
4605{
4606 unsigned long long max = limit;
4607 unsigned long log2qty, size;
4608 void *table = NULL;
4609
4610 /* allow the kernel cmdline to have a say */
4611 if (!numentries) {
4612 /* round applicable memory size up to nearest megabyte */
04903664 4613 numentries = nr_kernel_pages;
1da177e4
LT
4614 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4615 numentries >>= 20 - PAGE_SHIFT;
4616 numentries <<= 20 - PAGE_SHIFT;
4617
4618 /* limit to 1 bucket per 2^scale bytes of low memory */
4619 if (scale > PAGE_SHIFT)
4620 numentries >>= (scale - PAGE_SHIFT);
4621 else
4622 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4623
4624 /* Make sure we've got at least a 0-order allocation.. */
4625 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4626 numentries = PAGE_SIZE / bucketsize;
1da177e4 4627 }
6e692ed3 4628 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4629
4630 /* limit allocation size to 1/16 total memory by default */
4631 if (max == 0) {
4632 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4633 do_div(max, bucketsize);
4634 }
4635
4636 if (numentries > max)
4637 numentries = max;
4638
f0d1b0b3 4639 log2qty = ilog2(numentries);
1da177e4
LT
4640
4641 do {
4642 size = bucketsize << log2qty;
4643 if (flags & HASH_EARLY)
74768ed8 4644 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4645 else if (hashdist)
4646 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4647 else {
2309f9e6 4648 unsigned long order = get_order(size);
6c0db466
HD
4649
4650 if (order < MAX_ORDER)
4651 table = (void *)__get_free_pages(GFP_ATOMIC,
4652 order);
1037b83b
ED
4653 /*
4654 * If bucketsize is not a power-of-two, we may free
4655 * some pages at the end of hash table.
4656 */
4657 if (table) {
4658 unsigned long alloc_end = (unsigned long)table +
4659 (PAGE_SIZE << order);
4660 unsigned long used = (unsigned long)table +
4661 PAGE_ALIGN(size);
4662 split_page(virt_to_page(table), order);
4663 while (used < alloc_end) {
4664 free_page(used);
4665 used += PAGE_SIZE;
4666 }
4667 }
1da177e4
LT
4668 }
4669 } while (!table && size > PAGE_SIZE && --log2qty);
4670
4671 if (!table)
4672 panic("Failed to allocate %s hash table\n", tablename);
4673
b49ad484 4674 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4675 tablename,
4676 (1U << log2qty),
f0d1b0b3 4677 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4678 size);
4679
4680 if (_hash_shift)
4681 *_hash_shift = log2qty;
4682 if (_hash_mask)
4683 *_hash_mask = (1 << log2qty) - 1;
4684
dbb1f81c
CM
4685 /*
4686 * If hashdist is set, the table allocation is done with __vmalloc()
4687 * which invokes the kmemleak_alloc() callback. This function may also
4688 * be called before the slab and kmemleak are initialised when
4689 * kmemleak simply buffers the request to be executed later
4690 * (GFP_ATOMIC flag ignored in this case).
4691 */
4692 if (!hashdist)
4693 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4694
1da177e4
LT
4695 return table;
4696}
a117e66e 4697
835c134e
MG
4698/* Return a pointer to the bitmap storing bits affecting a block of pages */
4699static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4700 unsigned long pfn)
4701{
4702#ifdef CONFIG_SPARSEMEM
4703 return __pfn_to_section(pfn)->pageblock_flags;
4704#else
4705 return zone->pageblock_flags;
4706#endif /* CONFIG_SPARSEMEM */
4707}
4708
4709static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4710{
4711#ifdef CONFIG_SPARSEMEM
4712 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4713 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4714#else
4715 pfn = pfn - zone->zone_start_pfn;
d9c23400 4716 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4717#endif /* CONFIG_SPARSEMEM */
4718}
4719
4720/**
d9c23400 4721 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4722 * @page: The page within the block of interest
4723 * @start_bitidx: The first bit of interest to retrieve
4724 * @end_bitidx: The last bit of interest
4725 * returns pageblock_bits flags
4726 */
4727unsigned long get_pageblock_flags_group(struct page *page,
4728 int start_bitidx, int end_bitidx)
4729{
4730 struct zone *zone;
4731 unsigned long *bitmap;
4732 unsigned long pfn, bitidx;
4733 unsigned long flags = 0;
4734 unsigned long value = 1;
4735
4736 zone = page_zone(page);
4737 pfn = page_to_pfn(page);
4738 bitmap = get_pageblock_bitmap(zone, pfn);
4739 bitidx = pfn_to_bitidx(zone, pfn);
4740
4741 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4742 if (test_bit(bitidx + start_bitidx, bitmap))
4743 flags |= value;
6220ec78 4744
835c134e
MG
4745 return flags;
4746}
4747
4748/**
d9c23400 4749 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4750 * @page: The page within the block of interest
4751 * @start_bitidx: The first bit of interest
4752 * @end_bitidx: The last bit of interest
4753 * @flags: The flags to set
4754 */
4755void set_pageblock_flags_group(struct page *page, unsigned long flags,
4756 int start_bitidx, int end_bitidx)
4757{
4758 struct zone *zone;
4759 unsigned long *bitmap;
4760 unsigned long pfn, bitidx;
4761 unsigned long value = 1;
4762
4763 zone = page_zone(page);
4764 pfn = page_to_pfn(page);
4765 bitmap = get_pageblock_bitmap(zone, pfn);
4766 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4767 VM_BUG_ON(pfn < zone->zone_start_pfn);
4768 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4769
4770 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4771 if (flags & value)
4772 __set_bit(bitidx + start_bitidx, bitmap);
4773 else
4774 __clear_bit(bitidx + start_bitidx, bitmap);
4775}
a5d76b54
KH
4776
4777/*
4778 * This is designed as sub function...plz see page_isolation.c also.
4779 * set/clear page block's type to be ISOLATE.
4780 * page allocater never alloc memory from ISOLATE block.
4781 */
4782
4783int set_migratetype_isolate(struct page *page)
4784{
4785 struct zone *zone;
4786 unsigned long flags;
4787 int ret = -EBUSY;
4788
4789 zone = page_zone(page);
4790 spin_lock_irqsave(&zone->lock, flags);
4791 /*
4792 * In future, more migrate types will be able to be isolation target.
4793 */
4794 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4795 goto out;
4796 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4797 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4798 ret = 0;
4799out:
4800 spin_unlock_irqrestore(&zone->lock, flags);
4801 if (!ret)
9f8f2172 4802 drain_all_pages();
a5d76b54
KH
4803 return ret;
4804}
4805
4806void unset_migratetype_isolate(struct page *page)
4807{
4808 struct zone *zone;
4809 unsigned long flags;
4810 zone = page_zone(page);
4811 spin_lock_irqsave(&zone->lock, flags);
4812 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4813 goto out;
4814 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4815 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4816out:
4817 spin_unlock_irqrestore(&zone->lock, flags);
4818}
0c0e6195
KH
4819
4820#ifdef CONFIG_MEMORY_HOTREMOVE
4821/*
4822 * All pages in the range must be isolated before calling this.
4823 */
4824void
4825__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4826{
4827 struct page *page;
4828 struct zone *zone;
4829 int order, i;
4830 unsigned long pfn;
4831 unsigned long flags;
4832 /* find the first valid pfn */
4833 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4834 if (pfn_valid(pfn))
4835 break;
4836 if (pfn == end_pfn)
4837 return;
4838 zone = page_zone(pfn_to_page(pfn));
4839 spin_lock_irqsave(&zone->lock, flags);
4840 pfn = start_pfn;
4841 while (pfn < end_pfn) {
4842 if (!pfn_valid(pfn)) {
4843 pfn++;
4844 continue;
4845 }
4846 page = pfn_to_page(pfn);
4847 BUG_ON(page_count(page));
4848 BUG_ON(!PageBuddy(page));
4849 order = page_order(page);
4850#ifdef CONFIG_DEBUG_VM
4851 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4852 pfn, 1 << order, end_pfn);
4853#endif
4854 list_del(&page->lru);
4855 rmv_page_order(page);
4856 zone->free_area[order].nr_free--;
4857 __mod_zone_page_state(zone, NR_FREE_PAGES,
4858 - (1UL << order));
4859 for (i = 0; i < (1 << order); i++)
4860 SetPageReserved((page+i));
4861 pfn += (1 << order);
4862 }
4863 spin_unlock_irqrestore(&zone->lock, flags);
4864}
4865#endif