mm, page_alloc: reduce cost of fair zone allocation policy retry
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
3777999d 834 bool isolated_pageblocks;
5f8dcc21 835
c54ad30c 836 spin_lock(&zone->lock);
3777999d 837 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 841
72853e29 842 while (to_free) {
48db57f8 843 struct page *page;
5f8dcc21
MG
844 struct list_head *list;
845
846 /*
a6f9edd6
MG
847 * Remove pages from lists in a round-robin fashion. A
848 * batch_free count is maintained that is incremented when an
849 * empty list is encountered. This is so more pages are freed
850 * off fuller lists instead of spinning excessively around empty
851 * lists
5f8dcc21
MG
852 */
853 do {
a6f9edd6 854 batch_free++;
5f8dcc21
MG
855 if (++migratetype == MIGRATE_PCPTYPES)
856 migratetype = 0;
857 list = &pcp->lists[migratetype];
858 } while (list_empty(list));
48db57f8 859
1d16871d
NK
860 /* This is the only non-empty list. Free them all. */
861 if (batch_free == MIGRATE_PCPTYPES)
862 batch_free = to_free;
863
a6f9edd6 864 do {
770c8aaa
BZ
865 int mt; /* migratetype of the to-be-freed page */
866
a16601c5 867 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
868 /* must delete as __free_one_page list manipulates */
869 list_del(&page->lru);
aa016d14 870
bb14c2c7 871 mt = get_pcppage_migratetype(page);
aa016d14
VB
872 /* MIGRATE_ISOLATE page should not go to pcplists */
873 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
874 /* Pageblock could have been isolated meanwhile */
3777999d 875 if (unlikely(isolated_pageblocks))
51bb1a40 876 mt = get_pageblock_migratetype(page);
51bb1a40 877
dc4b0caf 878 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 879 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 880 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 881 }
c54ad30c 882 spin_unlock(&zone->lock);
1da177e4
LT
883}
884
dc4b0caf
MG
885static void free_one_page(struct zone *zone,
886 struct page *page, unsigned long pfn,
7aeb09f9 887 unsigned int order,
ed0ae21d 888 int migratetype)
1da177e4 889{
0d5d823a 890 unsigned long nr_scanned;
006d22d9 891 spin_lock(&zone->lock);
0d5d823a
MG
892 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
893 if (nr_scanned)
894 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 895
ad53f92e
JK
896 if (unlikely(has_isolate_pageblock(zone) ||
897 is_migrate_isolate(migratetype))) {
898 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 899 }
dc4b0caf 900 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 901 spin_unlock(&zone->lock);
48db57f8
NP
902}
903
81422f29
KS
904static int free_tail_pages_check(struct page *head_page, struct page *page)
905{
1d798ca3
KS
906 int ret = 1;
907
908 /*
909 * We rely page->lru.next never has bit 0 set, unless the page
910 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
911 */
912 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
913
914 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
915 ret = 0;
916 goto out;
917 }
9a982250
KS
918 switch (page - head_page) {
919 case 1:
920 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
921 if (unlikely(compound_mapcount(page))) {
922 bad_page(page, "nonzero compound_mapcount", 0);
923 goto out;
924 }
9a982250
KS
925 break;
926 case 2:
927 /*
928 * the second tail page: ->mapping is
929 * page_deferred_list().next -- ignore value.
930 */
931 break;
932 default:
933 if (page->mapping != TAIL_MAPPING) {
934 bad_page(page, "corrupted mapping in tail page", 0);
935 goto out;
936 }
937 break;
1c290f64 938 }
81422f29
KS
939 if (unlikely(!PageTail(page))) {
940 bad_page(page, "PageTail not set", 0);
1d798ca3 941 goto out;
81422f29 942 }
1d798ca3
KS
943 if (unlikely(compound_head(page) != head_page)) {
944 bad_page(page, "compound_head not consistent", 0);
945 goto out;
81422f29 946 }
1d798ca3
KS
947 ret = 0;
948out:
1c290f64 949 page->mapping = NULL;
1d798ca3
KS
950 clear_compound_head(page);
951 return ret;
81422f29
KS
952}
953
1e8ce83c
RH
954static void __meminit __init_single_page(struct page *page, unsigned long pfn,
955 unsigned long zone, int nid)
956{
1e8ce83c 957 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
958 init_page_count(page);
959 page_mapcount_reset(page);
960 page_cpupid_reset_last(page);
1e8ce83c 961
1e8ce83c
RH
962 INIT_LIST_HEAD(&page->lru);
963#ifdef WANT_PAGE_VIRTUAL
964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
965 if (!is_highmem_idx(zone))
966 set_page_address(page, __va(pfn << PAGE_SHIFT));
967#endif
968}
969
970static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
971 int nid)
972{
973 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
974}
975
7e18adb4
MG
976#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
977static void init_reserved_page(unsigned long pfn)
978{
979 pg_data_t *pgdat;
980 int nid, zid;
981
982 if (!early_page_uninitialised(pfn))
983 return;
984
985 nid = early_pfn_to_nid(pfn);
986 pgdat = NODE_DATA(nid);
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
989 struct zone *zone = &pgdat->node_zones[zid];
990
991 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
992 break;
993 }
994 __init_single_pfn(pfn, zid, nid);
995}
996#else
997static inline void init_reserved_page(unsigned long pfn)
998{
999}
1000#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001
92923ca3
NZ
1002/*
1003 * Initialised pages do not have PageReserved set. This function is
1004 * called for each range allocated by the bootmem allocator and
1005 * marks the pages PageReserved. The remaining valid pages are later
1006 * sent to the buddy page allocator.
1007 */
7e18adb4 1008void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1009{
1010 unsigned long start_pfn = PFN_DOWN(start);
1011 unsigned long end_pfn = PFN_UP(end);
1012
7e18adb4
MG
1013 for (; start_pfn < end_pfn; start_pfn++) {
1014 if (pfn_valid(start_pfn)) {
1015 struct page *page = pfn_to_page(start_pfn);
1016
1017 init_reserved_page(start_pfn);
1d798ca3
KS
1018
1019 /* Avoid false-positive PageTail() */
1020 INIT_LIST_HEAD(&page->lru);
1021
7e18adb4
MG
1022 SetPageReserved(page);
1023 }
1024 }
92923ca3
NZ
1025}
1026
ec95f53a 1027static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1028{
d61f8590 1029 int bad = 0;
1da177e4 1030
ab1f306f 1031 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1032
b413d48a 1033 trace_mm_page_free(page, order);
b1eeab67 1034 kmemcheck_free_shadow(page, order);
b8c73fc2 1035 kasan_free_pages(page, order);
b1eeab67 1036
d61f8590
MG
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 for (i = 1; i < (1 << order); i++) {
1048 if (compound)
1049 bad += free_tail_pages_check(page, page + i);
1050 bad += free_pages_check(page + i);
1051 }
1052 }
17514574 1053 if (PageAnonHead(page))
8dd60a3a 1054 page->mapping = NULL;
81422f29 1055 bad += free_pages_check(page);
8cc3b392 1056 if (bad)
ec95f53a 1057 return false;
689bcebf 1058
48c96a36
JK
1059 reset_page_owner(page, order);
1060
3ac7fe5a 1061 if (!PageHighMem(page)) {
b8af2941
PK
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
3ac7fe5a
TG
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1066 }
dafb1367 1067 arch_free_page(page, order);
8823b1db 1068 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1069 kernel_map_pages(page, 1 << order, 0);
dafb1367 1070
ec95f53a
KM
1071 return true;
1072}
1073
1074static void __free_pages_ok(struct page *page, unsigned int order)
1075{
1076 unsigned long flags;
95e34412 1077 int migratetype;
dc4b0caf 1078 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1079
1080 if (!free_pages_prepare(page, order))
1081 return;
1082
cfc47a28 1083 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1084 local_irq_save(flags);
f8891e5e 1085 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1086 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1087 local_irq_restore(flags);
1da177e4
LT
1088}
1089
949698a3 1090static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1091{
c3993076 1092 unsigned int nr_pages = 1 << order;
e2d0bd2b 1093 struct page *p = page;
c3993076 1094 unsigned int loop;
a226f6c8 1095
e2d0bd2b
YL
1096 prefetchw(p);
1097 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1098 prefetchw(p + 1);
c3993076
JW
1099 __ClearPageReserved(p);
1100 set_page_count(p, 0);
a226f6c8 1101 }
e2d0bd2b
YL
1102 __ClearPageReserved(p);
1103 set_page_count(p, 0);
c3993076 1104
e2d0bd2b 1105 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1106 set_page_refcounted(page);
1107 __free_pages(page, order);
a226f6c8
DH
1108}
1109
75a592a4
MG
1110#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1111 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1112
75a592a4
MG
1113static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1114
1115int __meminit early_pfn_to_nid(unsigned long pfn)
1116{
7ace9917 1117 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1118 int nid;
1119
7ace9917 1120 spin_lock(&early_pfn_lock);
75a592a4 1121 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1122 if (nid < 0)
1123 nid = 0;
1124 spin_unlock(&early_pfn_lock);
1125
1126 return nid;
75a592a4
MG
1127}
1128#endif
1129
1130#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1131static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1133{
1134 int nid;
1135
1136 nid = __early_pfn_to_nid(pfn, state);
1137 if (nid >= 0 && nid != node)
1138 return false;
1139 return true;
1140}
1141
1142/* Only safe to use early in boot when initialisation is single-threaded */
1143static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1144{
1145 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1146}
1147
1148#else
1149
1150static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1151{
1152 return true;
1153}
1154static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1155 struct mminit_pfnnid_cache *state)
1156{
1157 return true;
1158}
1159#endif
1160
1161
0e1cc95b 1162void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1163 unsigned int order)
1164{
1165 if (early_page_uninitialised(pfn))
1166 return;
949698a3 1167 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1168}
1169
7cf91a98
JK
1170/*
1171 * Check that the whole (or subset of) a pageblock given by the interval of
1172 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1173 * with the migration of free compaction scanner. The scanners then need to
1174 * use only pfn_valid_within() check for arches that allow holes within
1175 * pageblocks.
1176 *
1177 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1178 *
1179 * It's possible on some configurations to have a setup like node0 node1 node0
1180 * i.e. it's possible that all pages within a zones range of pages do not
1181 * belong to a single zone. We assume that a border between node0 and node1
1182 * can occur within a single pageblock, but not a node0 node1 node0
1183 * interleaving within a single pageblock. It is therefore sufficient to check
1184 * the first and last page of a pageblock and avoid checking each individual
1185 * page in a pageblock.
1186 */
1187struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1188 unsigned long end_pfn, struct zone *zone)
1189{
1190 struct page *start_page;
1191 struct page *end_page;
1192
1193 /* end_pfn is one past the range we are checking */
1194 end_pfn--;
1195
1196 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1197 return NULL;
1198
1199 start_page = pfn_to_page(start_pfn);
1200
1201 if (page_zone(start_page) != zone)
1202 return NULL;
1203
1204 end_page = pfn_to_page(end_pfn);
1205
1206 /* This gives a shorter code than deriving page_zone(end_page) */
1207 if (page_zone_id(start_page) != page_zone_id(end_page))
1208 return NULL;
1209
1210 return start_page;
1211}
1212
1213void set_zone_contiguous(struct zone *zone)
1214{
1215 unsigned long block_start_pfn = zone->zone_start_pfn;
1216 unsigned long block_end_pfn;
1217
1218 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1219 for (; block_start_pfn < zone_end_pfn(zone);
1220 block_start_pfn = block_end_pfn,
1221 block_end_pfn += pageblock_nr_pages) {
1222
1223 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1224
1225 if (!__pageblock_pfn_to_page(block_start_pfn,
1226 block_end_pfn, zone))
1227 return;
1228 }
1229
1230 /* We confirm that there is no hole */
1231 zone->contiguous = true;
1232}
1233
1234void clear_zone_contiguous(struct zone *zone)
1235{
1236 zone->contiguous = false;
1237}
1238
7e18adb4 1239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1240static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1241 unsigned long pfn, int nr_pages)
1242{
1243 int i;
1244
1245 if (!page)
1246 return;
1247
1248 /* Free a large naturally-aligned chunk if possible */
1249 if (nr_pages == MAX_ORDER_NR_PAGES &&
1250 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1251 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1252 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1253 return;
1254 }
1255
949698a3
LZ
1256 for (i = 0; i < nr_pages; i++, page++)
1257 __free_pages_boot_core(page, 0);
a4de83dd
MG
1258}
1259
d3cd131d
NS
1260/* Completion tracking for deferred_init_memmap() threads */
1261static atomic_t pgdat_init_n_undone __initdata;
1262static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1263
1264static inline void __init pgdat_init_report_one_done(void)
1265{
1266 if (atomic_dec_and_test(&pgdat_init_n_undone))
1267 complete(&pgdat_init_all_done_comp);
1268}
0e1cc95b 1269
7e18adb4 1270/* Initialise remaining memory on a node */
0e1cc95b 1271static int __init deferred_init_memmap(void *data)
7e18adb4 1272{
0e1cc95b
MG
1273 pg_data_t *pgdat = data;
1274 int nid = pgdat->node_id;
7e18adb4
MG
1275 struct mminit_pfnnid_cache nid_init_state = { };
1276 unsigned long start = jiffies;
1277 unsigned long nr_pages = 0;
1278 unsigned long walk_start, walk_end;
1279 int i, zid;
1280 struct zone *zone;
7e18adb4 1281 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1283
0e1cc95b 1284 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1285 pgdat_init_report_one_done();
0e1cc95b
MG
1286 return 0;
1287 }
1288
1289 /* Bind memory initialisation thread to a local node if possible */
1290 if (!cpumask_empty(cpumask))
1291 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1292
1293 /* Sanity check boundaries */
1294 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1295 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1296 pgdat->first_deferred_pfn = ULONG_MAX;
1297
1298 /* Only the highest zone is deferred so find it */
1299 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1300 zone = pgdat->node_zones + zid;
1301 if (first_init_pfn < zone_end_pfn(zone))
1302 break;
1303 }
1304
1305 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1306 unsigned long pfn, end_pfn;
54608c3f 1307 struct page *page = NULL;
a4de83dd
MG
1308 struct page *free_base_page = NULL;
1309 unsigned long free_base_pfn = 0;
1310 int nr_to_free = 0;
7e18adb4
MG
1311
1312 end_pfn = min(walk_end, zone_end_pfn(zone));
1313 pfn = first_init_pfn;
1314 if (pfn < walk_start)
1315 pfn = walk_start;
1316 if (pfn < zone->zone_start_pfn)
1317 pfn = zone->zone_start_pfn;
1318
1319 for (; pfn < end_pfn; pfn++) {
54608c3f 1320 if (!pfn_valid_within(pfn))
a4de83dd 1321 goto free_range;
7e18adb4 1322
54608c3f
MG
1323 /*
1324 * Ensure pfn_valid is checked every
1325 * MAX_ORDER_NR_PAGES for memory holes
1326 */
1327 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1328 if (!pfn_valid(pfn)) {
1329 page = NULL;
a4de83dd 1330 goto free_range;
54608c3f
MG
1331 }
1332 }
1333
1334 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1335 page = NULL;
a4de83dd 1336 goto free_range;
54608c3f
MG
1337 }
1338
1339 /* Minimise pfn page lookups and scheduler checks */
1340 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1341 page++;
1342 } else {
a4de83dd
MG
1343 nr_pages += nr_to_free;
1344 deferred_free_range(free_base_page,
1345 free_base_pfn, nr_to_free);
1346 free_base_page = NULL;
1347 free_base_pfn = nr_to_free = 0;
1348
54608c3f
MG
1349 page = pfn_to_page(pfn);
1350 cond_resched();
1351 }
7e18adb4
MG
1352
1353 if (page->flags) {
1354 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1355 goto free_range;
7e18adb4
MG
1356 }
1357
1358 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1359 if (!free_base_page) {
1360 free_base_page = page;
1361 free_base_pfn = pfn;
1362 nr_to_free = 0;
1363 }
1364 nr_to_free++;
1365
1366 /* Where possible, batch up pages for a single free */
1367 continue;
1368free_range:
1369 /* Free the current block of pages to allocator */
1370 nr_pages += nr_to_free;
1371 deferred_free_range(free_base_page, free_base_pfn,
1372 nr_to_free);
1373 free_base_page = NULL;
1374 free_base_pfn = nr_to_free = 0;
7e18adb4 1375 }
a4de83dd 1376
7e18adb4
MG
1377 first_init_pfn = max(end_pfn, first_init_pfn);
1378 }
1379
1380 /* Sanity check that the next zone really is unpopulated */
1381 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1382
0e1cc95b 1383 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1384 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1385
1386 pgdat_init_report_one_done();
0e1cc95b
MG
1387 return 0;
1388}
7cf91a98 1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1390
1391void __init page_alloc_init_late(void)
1392{
7cf91a98
JK
1393 struct zone *zone;
1394
1395#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1396 int nid;
1397
d3cd131d
NS
1398 /* There will be num_node_state(N_MEMORY) threads */
1399 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1400 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1401 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1402 }
1403
1404 /* Block until all are initialised */
d3cd131d 1405 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1406
1407 /* Reinit limits that are based on free pages after the kernel is up */
1408 files_maxfiles_init();
7cf91a98
JK
1409#endif
1410
1411 for_each_populated_zone(zone)
1412 set_zone_contiguous(zone);
7e18adb4 1413}
7e18adb4 1414
47118af0 1415#ifdef CONFIG_CMA
9cf510a5 1416/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1417void __init init_cma_reserved_pageblock(struct page *page)
1418{
1419 unsigned i = pageblock_nr_pages;
1420 struct page *p = page;
1421
1422 do {
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 } while (++p, --i);
1426
47118af0 1427 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1428
1429 if (pageblock_order >= MAX_ORDER) {
1430 i = pageblock_nr_pages;
1431 p = page;
1432 do {
1433 set_page_refcounted(p);
1434 __free_pages(p, MAX_ORDER - 1);
1435 p += MAX_ORDER_NR_PAGES;
1436 } while (i -= MAX_ORDER_NR_PAGES);
1437 } else {
1438 set_page_refcounted(page);
1439 __free_pages(page, pageblock_order);
1440 }
1441
3dcc0571 1442 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1443}
1444#endif
1da177e4
LT
1445
1446/*
1447 * The order of subdivision here is critical for the IO subsystem.
1448 * Please do not alter this order without good reasons and regression
1449 * testing. Specifically, as large blocks of memory are subdivided,
1450 * the order in which smaller blocks are delivered depends on the order
1451 * they're subdivided in this function. This is the primary factor
1452 * influencing the order in which pages are delivered to the IO
1453 * subsystem according to empirical testing, and this is also justified
1454 * by considering the behavior of a buddy system containing a single
1455 * large block of memory acted on by a series of small allocations.
1456 * This behavior is a critical factor in sglist merging's success.
1457 *
6d49e352 1458 * -- nyc
1da177e4 1459 */
085cc7d5 1460static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1461 int low, int high, struct free_area *area,
1462 int migratetype)
1da177e4
LT
1463{
1464 unsigned long size = 1 << high;
1465
1466 while (high > low) {
1467 area--;
1468 high--;
1469 size >>= 1;
309381fe 1470 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1471
2847cf95 1472 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1473 debug_guardpage_enabled() &&
2847cf95 1474 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1475 /*
1476 * Mark as guard pages (or page), that will allow to
1477 * merge back to allocator when buddy will be freed.
1478 * Corresponding page table entries will not be touched,
1479 * pages will stay not present in virtual address space
1480 */
2847cf95 1481 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1482 continue;
1483 }
b2a0ac88 1484 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1485 area->nr_free++;
1486 set_page_order(&page[size], high);
1487 }
1da177e4
LT
1488}
1489
1da177e4
LT
1490/*
1491 * This page is about to be returned from the page allocator
1492 */
2a7684a2 1493static inline int check_new_page(struct page *page)
1da177e4 1494{
d230dec1 1495 const char *bad_reason = NULL;
f0b791a3
DH
1496 unsigned long bad_flags = 0;
1497
53f9263b 1498 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1499 bad_reason = "nonzero mapcount";
1500 if (unlikely(page->mapping != NULL))
1501 bad_reason = "non-NULL mapping";
fe896d18 1502 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1503 bad_reason = "nonzero _count";
f4c18e6f
NH
1504 if (unlikely(page->flags & __PG_HWPOISON)) {
1505 bad_reason = "HWPoisoned (hardware-corrupted)";
1506 bad_flags = __PG_HWPOISON;
1507 }
f0b791a3
DH
1508 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1509 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1510 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1511 }
9edad6ea
JW
1512#ifdef CONFIG_MEMCG
1513 if (unlikely(page->mem_cgroup))
1514 bad_reason = "page still charged to cgroup";
1515#endif
f0b791a3
DH
1516 if (unlikely(bad_reason)) {
1517 bad_page(page, bad_reason, bad_flags);
689bcebf 1518 return 1;
8cc3b392 1519 }
2a7684a2
WF
1520 return 0;
1521}
1522
1414c7f4
LA
1523static inline bool free_pages_prezeroed(bool poisoned)
1524{
1525 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1526 page_poisoning_enabled() && poisoned;
1527}
1528
75379191 1529static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1530 unsigned int alloc_flags)
2a7684a2
WF
1531{
1532 int i;
1414c7f4 1533 bool poisoned = true;
2a7684a2
WF
1534
1535 for (i = 0; i < (1 << order); i++) {
1536 struct page *p = page + i;
1537 if (unlikely(check_new_page(p)))
1538 return 1;
1414c7f4
LA
1539 if (poisoned)
1540 poisoned &= page_is_poisoned(p);
2a7684a2 1541 }
689bcebf 1542
4c21e2f2 1543 set_page_private(page, 0);
7835e98b 1544 set_page_refcounted(page);
cc102509
NP
1545
1546 arch_alloc_page(page, order);
1da177e4 1547 kernel_map_pages(page, 1 << order, 1);
8823b1db 1548 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1549 kasan_alloc_pages(page, order);
17cf4406 1550
1414c7f4 1551 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1552 for (i = 0; i < (1 << order); i++)
1553 clear_highpage(page + i);
17cf4406
NP
1554
1555 if (order && (gfp_flags & __GFP_COMP))
1556 prep_compound_page(page, order);
1557
48c96a36
JK
1558 set_page_owner(page, order, gfp_flags);
1559
75379191 1560 /*
2f064f34 1561 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1562 * allocate the page. The expectation is that the caller is taking
1563 * steps that will free more memory. The caller should avoid the page
1564 * being used for !PFMEMALLOC purposes.
1565 */
2f064f34
MH
1566 if (alloc_flags & ALLOC_NO_WATERMARKS)
1567 set_page_pfmemalloc(page);
1568 else
1569 clear_page_pfmemalloc(page);
75379191 1570
689bcebf 1571 return 0;
1da177e4
LT
1572}
1573
56fd56b8
MG
1574/*
1575 * Go through the free lists for the given migratetype and remove
1576 * the smallest available page from the freelists
1577 */
728ec980
MG
1578static inline
1579struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1580 int migratetype)
1581{
1582 unsigned int current_order;
b8af2941 1583 struct free_area *area;
56fd56b8
MG
1584 struct page *page;
1585
1586 /* Find a page of the appropriate size in the preferred list */
1587 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1588 area = &(zone->free_area[current_order]);
a16601c5 1589 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1590 struct page, lru);
a16601c5
GT
1591 if (!page)
1592 continue;
56fd56b8
MG
1593 list_del(&page->lru);
1594 rmv_page_order(page);
1595 area->nr_free--;
56fd56b8 1596 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1597 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1598 return page;
1599 }
1600
1601 return NULL;
1602}
1603
1604
b2a0ac88
MG
1605/*
1606 * This array describes the order lists are fallen back to when
1607 * the free lists for the desirable migrate type are depleted
1608 */
47118af0 1609static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1610 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1611 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1612 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1613#ifdef CONFIG_CMA
974a786e 1614 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1615#endif
194159fb 1616#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1617 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1618#endif
b2a0ac88
MG
1619};
1620
dc67647b
JK
1621#ifdef CONFIG_CMA
1622static struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624{
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626}
1627#else
1628static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630#endif
1631
c361be55
MG
1632/*
1633 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1634 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
435b405c 1637int move_freepages(struct zone *zone,
b69a7288
AB
1638 struct page *start_page, struct page *end_page,
1639 int migratetype)
c361be55
MG
1640{
1641 struct page *page;
d00181b9 1642 unsigned int order;
d100313f 1643 int pages_moved = 0;
c361be55
MG
1644
1645#ifndef CONFIG_HOLES_IN_ZONE
1646 /*
1647 * page_zone is not safe to call in this context when
1648 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1649 * anyway as we check zone boundaries in move_freepages_block().
1650 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1651 * grouping pages by mobility
c361be55 1652 */
97ee4ba7 1653 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1654#endif
1655
1656 for (page = start_page; page <= end_page;) {
344c790e 1657 /* Make sure we are not inadvertently changing nodes */
309381fe 1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1659
c361be55
MG
1660 if (!pfn_valid_within(page_to_pfn(page))) {
1661 page++;
1662 continue;
1663 }
1664
1665 if (!PageBuddy(page)) {
1666 page++;
1667 continue;
1668 }
1669
1670 order = page_order(page);
84be48d8
KS
1671 list_move(&page->lru,
1672 &zone->free_area[order].free_list[migratetype]);
c361be55 1673 page += 1 << order;
d100313f 1674 pages_moved += 1 << order;
c361be55
MG
1675 }
1676
d100313f 1677 return pages_moved;
c361be55
MG
1678}
1679
ee6f509c 1680int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1681 int migratetype)
c361be55
MG
1682{
1683 unsigned long start_pfn, end_pfn;
1684 struct page *start_page, *end_page;
1685
1686 start_pfn = page_to_pfn(page);
d9c23400 1687 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1688 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1689 end_page = start_page + pageblock_nr_pages - 1;
1690 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1691
1692 /* Do not cross zone boundaries */
108bcc96 1693 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1694 start_page = page;
108bcc96 1695 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1696 return 0;
1697
1698 return move_freepages(zone, start_page, end_page, migratetype);
1699}
1700
2f66a68f
MG
1701static void change_pageblock_range(struct page *pageblock_page,
1702 int start_order, int migratetype)
1703{
1704 int nr_pageblocks = 1 << (start_order - pageblock_order);
1705
1706 while (nr_pageblocks--) {
1707 set_pageblock_migratetype(pageblock_page, migratetype);
1708 pageblock_page += pageblock_nr_pages;
1709 }
1710}
1711
fef903ef 1712/*
9c0415eb
VB
1713 * When we are falling back to another migratetype during allocation, try to
1714 * steal extra free pages from the same pageblocks to satisfy further
1715 * allocations, instead of polluting multiple pageblocks.
1716 *
1717 * If we are stealing a relatively large buddy page, it is likely there will
1718 * be more free pages in the pageblock, so try to steal them all. For
1719 * reclaimable and unmovable allocations, we steal regardless of page size,
1720 * as fragmentation caused by those allocations polluting movable pageblocks
1721 * is worse than movable allocations stealing from unmovable and reclaimable
1722 * pageblocks.
fef903ef 1723 */
4eb7dce6
JK
1724static bool can_steal_fallback(unsigned int order, int start_mt)
1725{
1726 /*
1727 * Leaving this order check is intended, although there is
1728 * relaxed order check in next check. The reason is that
1729 * we can actually steal whole pageblock if this condition met,
1730 * but, below check doesn't guarantee it and that is just heuristic
1731 * so could be changed anytime.
1732 */
1733 if (order >= pageblock_order)
1734 return true;
1735
1736 if (order >= pageblock_order / 2 ||
1737 start_mt == MIGRATE_RECLAIMABLE ||
1738 start_mt == MIGRATE_UNMOVABLE ||
1739 page_group_by_mobility_disabled)
1740 return true;
1741
1742 return false;
1743}
1744
1745/*
1746 * This function implements actual steal behaviour. If order is large enough,
1747 * we can steal whole pageblock. If not, we first move freepages in this
1748 * pageblock and check whether half of pages are moved or not. If half of
1749 * pages are moved, we can change migratetype of pageblock and permanently
1750 * use it's pages as requested migratetype in the future.
1751 */
1752static void steal_suitable_fallback(struct zone *zone, struct page *page,
1753 int start_type)
fef903ef 1754{
d00181b9 1755 unsigned int current_order = page_order(page);
4eb7dce6 1756 int pages;
fef903ef 1757
fef903ef
SB
1758 /* Take ownership for orders >= pageblock_order */
1759 if (current_order >= pageblock_order) {
1760 change_pageblock_range(page, current_order, start_type);
3a1086fb 1761 return;
fef903ef
SB
1762 }
1763
4eb7dce6 1764 pages = move_freepages_block(zone, page, start_type);
fef903ef 1765
4eb7dce6
JK
1766 /* Claim the whole block if over half of it is free */
1767 if (pages >= (1 << (pageblock_order-1)) ||
1768 page_group_by_mobility_disabled)
1769 set_pageblock_migratetype(page, start_type);
1770}
1771
2149cdae
JK
1772/*
1773 * Check whether there is a suitable fallback freepage with requested order.
1774 * If only_stealable is true, this function returns fallback_mt only if
1775 * we can steal other freepages all together. This would help to reduce
1776 * fragmentation due to mixed migratetype pages in one pageblock.
1777 */
1778int find_suitable_fallback(struct free_area *area, unsigned int order,
1779 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1780{
1781 int i;
1782 int fallback_mt;
1783
1784 if (area->nr_free == 0)
1785 return -1;
1786
1787 *can_steal = false;
1788 for (i = 0;; i++) {
1789 fallback_mt = fallbacks[migratetype][i];
974a786e 1790 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1791 break;
1792
1793 if (list_empty(&area->free_list[fallback_mt]))
1794 continue;
fef903ef 1795
4eb7dce6
JK
1796 if (can_steal_fallback(order, migratetype))
1797 *can_steal = true;
1798
2149cdae
JK
1799 if (!only_stealable)
1800 return fallback_mt;
1801
1802 if (*can_steal)
1803 return fallback_mt;
fef903ef 1804 }
4eb7dce6
JK
1805
1806 return -1;
fef903ef
SB
1807}
1808
0aaa29a5
MG
1809/*
1810 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1811 * there are no empty page blocks that contain a page with a suitable order
1812 */
1813static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1814 unsigned int alloc_order)
1815{
1816 int mt;
1817 unsigned long max_managed, flags;
1818
1819 /*
1820 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1821 * Check is race-prone but harmless.
1822 */
1823 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1824 if (zone->nr_reserved_highatomic >= max_managed)
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 /* Recheck the nr_reserved_highatomic limit under the lock */
1830 if (zone->nr_reserved_highatomic >= max_managed)
1831 goto out_unlock;
1832
1833 /* Yoink! */
1834 mt = get_pageblock_migratetype(page);
1835 if (mt != MIGRATE_HIGHATOMIC &&
1836 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1837 zone->nr_reserved_highatomic += pageblock_nr_pages;
1838 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1839 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1840 }
1841
1842out_unlock:
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844}
1845
1846/*
1847 * Used when an allocation is about to fail under memory pressure. This
1848 * potentially hurts the reliability of high-order allocations when under
1849 * intense memory pressure but failed atomic allocations should be easier
1850 * to recover from than an OOM.
1851 */
1852static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1853{
1854 struct zonelist *zonelist = ac->zonelist;
1855 unsigned long flags;
1856 struct zoneref *z;
1857 struct zone *zone;
1858 struct page *page;
1859 int order;
1860
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1862 ac->nodemask) {
1863 /* Preserve at least one pageblock */
1864 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1865 continue;
1866
1867 spin_lock_irqsave(&zone->lock, flags);
1868 for (order = 0; order < MAX_ORDER; order++) {
1869 struct free_area *area = &(zone->free_area[order]);
1870
a16601c5
GT
1871 page = list_first_entry_or_null(
1872 &area->free_list[MIGRATE_HIGHATOMIC],
1873 struct page, lru);
1874 if (!page)
0aaa29a5
MG
1875 continue;
1876
0aaa29a5
MG
1877 /*
1878 * It should never happen but changes to locking could
1879 * inadvertently allow a per-cpu drain to add pages
1880 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1881 * and watch for underflows.
1882 */
1883 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1884 zone->nr_reserved_highatomic);
1885
1886 /*
1887 * Convert to ac->migratetype and avoid the normal
1888 * pageblock stealing heuristics. Minimally, the caller
1889 * is doing the work and needs the pages. More
1890 * importantly, if the block was always converted to
1891 * MIGRATE_UNMOVABLE or another type then the number
1892 * of pageblocks that cannot be completely freed
1893 * may increase.
1894 */
1895 set_pageblock_migratetype(page, ac->migratetype);
1896 move_freepages_block(zone, page, ac->migratetype);
1897 spin_unlock_irqrestore(&zone->lock, flags);
1898 return;
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 }
1902}
1903
b2a0ac88 1904/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1905static inline struct page *
7aeb09f9 1906__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1907{
b8af2941 1908 struct free_area *area;
7aeb09f9 1909 unsigned int current_order;
b2a0ac88 1910 struct page *page;
4eb7dce6
JK
1911 int fallback_mt;
1912 bool can_steal;
b2a0ac88
MG
1913
1914 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1915 for (current_order = MAX_ORDER-1;
1916 current_order >= order && current_order <= MAX_ORDER-1;
1917 --current_order) {
4eb7dce6
JK
1918 area = &(zone->free_area[current_order]);
1919 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1920 start_migratetype, false, &can_steal);
4eb7dce6
JK
1921 if (fallback_mt == -1)
1922 continue;
b2a0ac88 1923
a16601c5 1924 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1925 struct page, lru);
1926 if (can_steal)
1927 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1928
4eb7dce6
JK
1929 /* Remove the page from the freelists */
1930 area->nr_free--;
1931 list_del(&page->lru);
1932 rmv_page_order(page);
3a1086fb 1933
4eb7dce6
JK
1934 expand(zone, page, order, current_order, area,
1935 start_migratetype);
1936 /*
bb14c2c7 1937 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1938 * migratetype depending on the decisions in
bb14c2c7
VB
1939 * find_suitable_fallback(). This is OK as long as it does not
1940 * differ for MIGRATE_CMA pageblocks. Those can be used as
1941 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1942 */
bb14c2c7 1943 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1944
4eb7dce6
JK
1945 trace_mm_page_alloc_extfrag(page, order, current_order,
1946 start_migratetype, fallback_mt);
e0fff1bd 1947
4eb7dce6 1948 return page;
b2a0ac88
MG
1949 }
1950
728ec980 1951 return NULL;
b2a0ac88
MG
1952}
1953
56fd56b8 1954/*
1da177e4
LT
1955 * Do the hard work of removing an element from the buddy allocator.
1956 * Call me with the zone->lock already held.
1957 */
b2a0ac88 1958static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1959 int migratetype)
1da177e4 1960{
1da177e4
LT
1961 struct page *page;
1962
56fd56b8 1963 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1964 if (unlikely(!page)) {
dc67647b
JK
1965 if (migratetype == MIGRATE_MOVABLE)
1966 page = __rmqueue_cma_fallback(zone, order);
1967
1968 if (!page)
1969 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1970 }
1971
0d3d062a 1972 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1973 return page;
1da177e4
LT
1974}
1975
5f63b720 1976/*
1da177e4
LT
1977 * Obtain a specified number of elements from the buddy allocator, all under
1978 * a single hold of the lock, for efficiency. Add them to the supplied list.
1979 * Returns the number of new pages which were placed at *list.
1980 */
5f63b720 1981static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1982 unsigned long count, struct list_head *list,
b745bc85 1983 int migratetype, bool cold)
1da177e4 1984{
5bcc9f86 1985 int i;
5f63b720 1986
c54ad30c 1987 spin_lock(&zone->lock);
1da177e4 1988 for (i = 0; i < count; ++i) {
6ac0206b 1989 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1990 if (unlikely(page == NULL))
1da177e4 1991 break;
81eabcbe
MG
1992
1993 /*
1994 * Split buddy pages returned by expand() are received here
1995 * in physical page order. The page is added to the callers and
1996 * list and the list head then moves forward. From the callers
1997 * perspective, the linked list is ordered by page number in
1998 * some conditions. This is useful for IO devices that can
1999 * merge IO requests if the physical pages are ordered
2000 * properly.
2001 */
b745bc85 2002 if (likely(!cold))
e084b2d9
MG
2003 list_add(&page->lru, list);
2004 else
2005 list_add_tail(&page->lru, list);
81eabcbe 2006 list = &page->lru;
bb14c2c7 2007 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2008 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2009 -(1 << order));
1da177e4 2010 }
f2260e6b 2011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2012 spin_unlock(&zone->lock);
085cc7d5 2013 return i;
1da177e4
LT
2014}
2015
4ae7c039 2016#ifdef CONFIG_NUMA
8fce4d8e 2017/*
4037d452
CL
2018 * Called from the vmstat counter updater to drain pagesets of this
2019 * currently executing processor on remote nodes after they have
2020 * expired.
2021 *
879336c3
CL
2022 * Note that this function must be called with the thread pinned to
2023 * a single processor.
8fce4d8e 2024 */
4037d452 2025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2026{
4ae7c039 2027 unsigned long flags;
7be12fc9 2028 int to_drain, batch;
4ae7c039 2029
4037d452 2030 local_irq_save(flags);
4db0c3c2 2031 batch = READ_ONCE(pcp->batch);
7be12fc9 2032 to_drain = min(pcp->count, batch);
2a13515c
KM
2033 if (to_drain > 0) {
2034 free_pcppages_bulk(zone, to_drain, pcp);
2035 pcp->count -= to_drain;
2036 }
4037d452 2037 local_irq_restore(flags);
4ae7c039
CL
2038}
2039#endif
2040
9f8f2172 2041/*
93481ff0 2042 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2043 *
2044 * The processor must either be the current processor and the
2045 * thread pinned to the current processor or a processor that
2046 * is not online.
2047 */
93481ff0 2048static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2049{
c54ad30c 2050 unsigned long flags;
93481ff0
VB
2051 struct per_cpu_pageset *pset;
2052 struct per_cpu_pages *pcp;
1da177e4 2053
93481ff0
VB
2054 local_irq_save(flags);
2055 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2056
93481ff0
VB
2057 pcp = &pset->pcp;
2058 if (pcp->count) {
2059 free_pcppages_bulk(zone, pcp->count, pcp);
2060 pcp->count = 0;
2061 }
2062 local_irq_restore(flags);
2063}
3dfa5721 2064
93481ff0
VB
2065/*
2066 * Drain pcplists of all zones on the indicated processor.
2067 *
2068 * The processor must either be the current processor and the
2069 * thread pinned to the current processor or a processor that
2070 * is not online.
2071 */
2072static void drain_pages(unsigned int cpu)
2073{
2074 struct zone *zone;
2075
2076 for_each_populated_zone(zone) {
2077 drain_pages_zone(cpu, zone);
1da177e4
LT
2078 }
2079}
1da177e4 2080
9f8f2172
CL
2081/*
2082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2083 *
2084 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2085 * the single zone's pages.
9f8f2172 2086 */
93481ff0 2087void drain_local_pages(struct zone *zone)
9f8f2172 2088{
93481ff0
VB
2089 int cpu = smp_processor_id();
2090
2091 if (zone)
2092 drain_pages_zone(cpu, zone);
2093 else
2094 drain_pages(cpu);
9f8f2172
CL
2095}
2096
2097/*
74046494
GBY
2098 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2099 *
93481ff0
VB
2100 * When zone parameter is non-NULL, spill just the single zone's pages.
2101 *
74046494
GBY
2102 * Note that this code is protected against sending an IPI to an offline
2103 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2104 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2105 * nothing keeps CPUs from showing up after we populated the cpumask and
2106 * before the call to on_each_cpu_mask().
9f8f2172 2107 */
93481ff0 2108void drain_all_pages(struct zone *zone)
9f8f2172 2109{
74046494 2110 int cpu;
74046494
GBY
2111
2112 /*
2113 * Allocate in the BSS so we wont require allocation in
2114 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2115 */
2116 static cpumask_t cpus_with_pcps;
2117
2118 /*
2119 * We don't care about racing with CPU hotplug event
2120 * as offline notification will cause the notified
2121 * cpu to drain that CPU pcps and on_each_cpu_mask
2122 * disables preemption as part of its processing
2123 */
2124 for_each_online_cpu(cpu) {
93481ff0
VB
2125 struct per_cpu_pageset *pcp;
2126 struct zone *z;
74046494 2127 bool has_pcps = false;
93481ff0
VB
2128
2129 if (zone) {
74046494 2130 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2131 if (pcp->pcp.count)
74046494 2132 has_pcps = true;
93481ff0
VB
2133 } else {
2134 for_each_populated_zone(z) {
2135 pcp = per_cpu_ptr(z->pageset, cpu);
2136 if (pcp->pcp.count) {
2137 has_pcps = true;
2138 break;
2139 }
74046494
GBY
2140 }
2141 }
93481ff0 2142
74046494
GBY
2143 if (has_pcps)
2144 cpumask_set_cpu(cpu, &cpus_with_pcps);
2145 else
2146 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2147 }
93481ff0
VB
2148 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2149 zone, 1);
9f8f2172
CL
2150}
2151
296699de 2152#ifdef CONFIG_HIBERNATION
1da177e4
LT
2153
2154void mark_free_pages(struct zone *zone)
2155{
f623f0db
RW
2156 unsigned long pfn, max_zone_pfn;
2157 unsigned long flags;
7aeb09f9 2158 unsigned int order, t;
86760a2c 2159 struct page *page;
1da177e4 2160
8080fc03 2161 if (zone_is_empty(zone))
1da177e4
LT
2162 return;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2165
108bcc96 2166 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2168 if (pfn_valid(pfn)) {
86760a2c 2169 page = pfn_to_page(pfn);
ba6b0979
JK
2170
2171 if (page_zone(page) != zone)
2172 continue;
2173
7be98234
RW
2174 if (!swsusp_page_is_forbidden(page))
2175 swsusp_unset_page_free(page);
f623f0db 2176 }
1da177e4 2177
b2a0ac88 2178 for_each_migratetype_order(order, t) {
86760a2c
GT
2179 list_for_each_entry(page,
2180 &zone->free_area[order].free_list[t], lru) {
f623f0db 2181 unsigned long i;
1da177e4 2182
86760a2c 2183 pfn = page_to_pfn(page);
f623f0db 2184 for (i = 0; i < (1UL << order); i++)
7be98234 2185 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2186 }
b2a0ac88 2187 }
1da177e4
LT
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189}
e2c55dc8 2190#endif /* CONFIG_PM */
1da177e4 2191
1da177e4
LT
2192/*
2193 * Free a 0-order page
b745bc85 2194 * cold == true ? free a cold page : free a hot page
1da177e4 2195 */
b745bc85 2196void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2197{
2198 struct zone *zone = page_zone(page);
2199 struct per_cpu_pages *pcp;
2200 unsigned long flags;
dc4b0caf 2201 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2202 int migratetype;
1da177e4 2203
ec95f53a 2204 if (!free_pages_prepare(page, 0))
689bcebf
HD
2205 return;
2206
dc4b0caf 2207 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2208 set_pcppage_migratetype(page, migratetype);
1da177e4 2209 local_irq_save(flags);
f8891e5e 2210 __count_vm_event(PGFREE);
da456f14 2211
5f8dcc21
MG
2212 /*
2213 * We only track unmovable, reclaimable and movable on pcp lists.
2214 * Free ISOLATE pages back to the allocator because they are being
2215 * offlined but treat RESERVE as movable pages so we can get those
2216 * areas back if necessary. Otherwise, we may have to free
2217 * excessively into the page allocator
2218 */
2219 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2220 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2221 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2222 goto out;
2223 }
2224 migratetype = MIGRATE_MOVABLE;
2225 }
2226
99dcc3e5 2227 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2228 if (!cold)
5f8dcc21 2229 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2230 else
2231 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2232 pcp->count++;
48db57f8 2233 if (pcp->count >= pcp->high) {
4db0c3c2 2234 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2235 free_pcppages_bulk(zone, batch, pcp);
2236 pcp->count -= batch;
48db57f8 2237 }
5f8dcc21
MG
2238
2239out:
1da177e4 2240 local_irq_restore(flags);
1da177e4
LT
2241}
2242
cc59850e
KK
2243/*
2244 * Free a list of 0-order pages
2245 */
b745bc85 2246void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2247{
2248 struct page *page, *next;
2249
2250 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2251 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2252 free_hot_cold_page(page, cold);
2253 }
2254}
2255
8dfcc9ba
NP
2256/*
2257 * split_page takes a non-compound higher-order page, and splits it into
2258 * n (1<<order) sub-pages: page[0..n]
2259 * Each sub-page must be freed individually.
2260 *
2261 * Note: this is probably too low level an operation for use in drivers.
2262 * Please consult with lkml before using this in your driver.
2263 */
2264void split_page(struct page *page, unsigned int order)
2265{
2266 int i;
e2cfc911 2267 gfp_t gfp_mask;
8dfcc9ba 2268
309381fe
SL
2269 VM_BUG_ON_PAGE(PageCompound(page), page);
2270 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2271
2272#ifdef CONFIG_KMEMCHECK
2273 /*
2274 * Split shadow pages too, because free(page[0]) would
2275 * otherwise free the whole shadow.
2276 */
2277 if (kmemcheck_page_is_tracked(page))
2278 split_page(virt_to_page(page[0].shadow), order);
2279#endif
2280
e2cfc911
JK
2281 gfp_mask = get_page_owner_gfp(page);
2282 set_page_owner(page, 0, gfp_mask);
48c96a36 2283 for (i = 1; i < (1 << order); i++) {
7835e98b 2284 set_page_refcounted(page + i);
e2cfc911 2285 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2286 }
8dfcc9ba 2287}
5853ff23 2288EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2289
3c605096 2290int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2291{
748446bb
MG
2292 unsigned long watermark;
2293 struct zone *zone;
2139cbe6 2294 int mt;
748446bb
MG
2295
2296 BUG_ON(!PageBuddy(page));
2297
2298 zone = page_zone(page);
2e30abd1 2299 mt = get_pageblock_migratetype(page);
748446bb 2300
194159fb 2301 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2302 /* Obey watermarks as if the page was being allocated */
2303 watermark = low_wmark_pages(zone) + (1 << order);
2304 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2305 return 0;
2306
8fb74b9f 2307 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2308 }
748446bb
MG
2309
2310 /* Remove page from free list */
2311 list_del(&page->lru);
2312 zone->free_area[order].nr_free--;
2313 rmv_page_order(page);
2139cbe6 2314
e2cfc911 2315 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2316
8fb74b9f 2317 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2318 if (order >= pageblock_order - 1) {
2319 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2320 for (; page < endpage; page += pageblock_nr_pages) {
2321 int mt = get_pageblock_migratetype(page);
194159fb 2322 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2323 set_pageblock_migratetype(page,
2324 MIGRATE_MOVABLE);
2325 }
748446bb
MG
2326 }
2327
f3a14ced 2328
8fb74b9f 2329 return 1UL << order;
1fb3f8ca
MG
2330}
2331
2332/*
2333 * Similar to split_page except the page is already free. As this is only
2334 * being used for migration, the migratetype of the block also changes.
2335 * As this is called with interrupts disabled, the caller is responsible
2336 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2337 * are enabled.
2338 *
2339 * Note: this is probably too low level an operation for use in drivers.
2340 * Please consult with lkml before using this in your driver.
2341 */
2342int split_free_page(struct page *page)
2343{
2344 unsigned int order;
2345 int nr_pages;
2346
1fb3f8ca
MG
2347 order = page_order(page);
2348
8fb74b9f 2349 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2350 if (!nr_pages)
2351 return 0;
2352
2353 /* Split into individual pages */
2354 set_page_refcounted(page);
2355 split_page(page, order);
2356 return nr_pages;
748446bb
MG
2357}
2358
060e7417
MG
2359/*
2360 * Update NUMA hit/miss statistics
2361 *
2362 * Must be called with interrupts disabled.
2363 *
2364 * When __GFP_OTHER_NODE is set assume the node of the preferred
2365 * zone is the local node. This is useful for daemons who allocate
2366 * memory on behalf of other processes.
2367 */
2368static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2369 gfp_t flags)
2370{
2371#ifdef CONFIG_NUMA
2372 int local_nid = numa_node_id();
2373 enum zone_stat_item local_stat = NUMA_LOCAL;
2374
2375 if (unlikely(flags & __GFP_OTHER_NODE)) {
2376 local_stat = NUMA_OTHER;
2377 local_nid = preferred_zone->node;
2378 }
2379
2380 if (z->node == local_nid) {
2381 __inc_zone_state(z, NUMA_HIT);
2382 __inc_zone_state(z, local_stat);
2383 } else {
2384 __inc_zone_state(z, NUMA_MISS);
2385 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2386 }
2387#endif
2388}
2389
1da177e4 2390/*
75379191 2391 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2392 */
0a15c3e9
MG
2393static inline
2394struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2395 struct zone *zone, unsigned int order,
c603844b
MG
2396 gfp_t gfp_flags, unsigned int alloc_flags,
2397 int migratetype)
1da177e4
LT
2398{
2399 unsigned long flags;
689bcebf 2400 struct page *page;
b745bc85 2401 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2402
48db57f8 2403 if (likely(order == 0)) {
1da177e4 2404 struct per_cpu_pages *pcp;
5f8dcc21 2405 struct list_head *list;
1da177e4 2406
1da177e4 2407 local_irq_save(flags);
99dcc3e5
CL
2408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2409 list = &pcp->lists[migratetype];
5f8dcc21 2410 if (list_empty(list)) {
535131e6 2411 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2412 pcp->batch, list,
e084b2d9 2413 migratetype, cold);
5f8dcc21 2414 if (unlikely(list_empty(list)))
6fb332fa 2415 goto failed;
535131e6 2416 }
b92a6edd 2417
5f8dcc21 2418 if (cold)
a16601c5 2419 page = list_last_entry(list, struct page, lru);
5f8dcc21 2420 else
a16601c5 2421 page = list_first_entry(list, struct page, lru);
5f8dcc21 2422
754078eb 2423 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2424 list_del(&page->lru);
2425 pcp->count--;
7fb1d9fc 2426 } else {
0f352e53
MH
2427 /*
2428 * We most definitely don't want callers attempting to
2429 * allocate greater than order-1 page units with __GFP_NOFAIL.
2430 */
2431 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2432 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2433
2434 page = NULL;
2435 if (alloc_flags & ALLOC_HARDER) {
2436 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2437 if (page)
2438 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 }
2440 if (!page)
6ac0206b 2441 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2442 spin_unlock(&zone->lock);
2443 if (!page)
2444 goto failed;
754078eb 2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2446 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2447 get_pcppage_migratetype(page));
1da177e4
LT
2448 }
2449
abe5f972 2450 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2451 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2452 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2453
f8891e5e 2454 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2455 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2456 local_irq_restore(flags);
1da177e4 2457
309381fe 2458 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2459 return page;
a74609fa
NP
2460
2461failed:
2462 local_irq_restore(flags);
a74609fa 2463 return NULL;
1da177e4
LT
2464}
2465
933e312e
AM
2466#ifdef CONFIG_FAIL_PAGE_ALLOC
2467
b2588c4b 2468static struct {
933e312e
AM
2469 struct fault_attr attr;
2470
621a5f7a 2471 bool ignore_gfp_highmem;
71baba4b 2472 bool ignore_gfp_reclaim;
54114994 2473 u32 min_order;
933e312e
AM
2474} fail_page_alloc = {
2475 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2476 .ignore_gfp_reclaim = true,
621a5f7a 2477 .ignore_gfp_highmem = true,
54114994 2478 .min_order = 1,
933e312e
AM
2479};
2480
2481static int __init setup_fail_page_alloc(char *str)
2482{
2483 return setup_fault_attr(&fail_page_alloc.attr, str);
2484}
2485__setup("fail_page_alloc=", setup_fail_page_alloc);
2486
deaf386e 2487static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2488{
54114994 2489 if (order < fail_page_alloc.min_order)
deaf386e 2490 return false;
933e312e 2491 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2492 return false;
933e312e 2493 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2494 return false;
71baba4b
MG
2495 if (fail_page_alloc.ignore_gfp_reclaim &&
2496 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2497 return false;
933e312e
AM
2498
2499 return should_fail(&fail_page_alloc.attr, 1 << order);
2500}
2501
2502#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2503
2504static int __init fail_page_alloc_debugfs(void)
2505{
f4ae40a6 2506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2507 struct dentry *dir;
933e312e 2508
dd48c085
AM
2509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2510 &fail_page_alloc.attr);
2511 if (IS_ERR(dir))
2512 return PTR_ERR(dir);
933e312e 2513
b2588c4b 2514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2515 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2516 goto fail;
2517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2518 &fail_page_alloc.ignore_gfp_highmem))
2519 goto fail;
2520 if (!debugfs_create_u32("min-order", mode, dir,
2521 &fail_page_alloc.min_order))
2522 goto fail;
2523
2524 return 0;
2525fail:
dd48c085 2526 debugfs_remove_recursive(dir);
933e312e 2527
b2588c4b 2528 return -ENOMEM;
933e312e
AM
2529}
2530
2531late_initcall(fail_page_alloc_debugfs);
2532
2533#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2534
2535#else /* CONFIG_FAIL_PAGE_ALLOC */
2536
deaf386e 2537static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2538{
deaf386e 2539 return false;
933e312e
AM
2540}
2541
2542#endif /* CONFIG_FAIL_PAGE_ALLOC */
2543
1da177e4 2544/*
97a16fc8
MG
2545 * Return true if free base pages are above 'mark'. For high-order checks it
2546 * will return true of the order-0 watermark is reached and there is at least
2547 * one free page of a suitable size. Checking now avoids taking the zone lock
2548 * to check in the allocation paths if no pages are free.
1da177e4 2549 */
7aeb09f9 2550static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2551 unsigned long mark, int classzone_idx,
2552 unsigned int alloc_flags,
7aeb09f9 2553 long free_pages)
1da177e4 2554{
d23ad423 2555 long min = mark;
1da177e4 2556 int o;
c603844b 2557 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2558
0aaa29a5 2559 /* free_pages may go negative - that's OK */
df0a6daa 2560 free_pages -= (1 << order) - 1;
0aaa29a5 2561
7fb1d9fc 2562 if (alloc_flags & ALLOC_HIGH)
1da177e4 2563 min -= min / 2;
0aaa29a5
MG
2564
2565 /*
2566 * If the caller does not have rights to ALLOC_HARDER then subtract
2567 * the high-atomic reserves. This will over-estimate the size of the
2568 * atomic reserve but it avoids a search.
2569 */
97a16fc8 2570 if (likely(!alloc_harder))
0aaa29a5
MG
2571 free_pages -= z->nr_reserved_highatomic;
2572 else
1da177e4 2573 min -= min / 4;
e2b19197 2574
d95ea5d1
BZ
2575#ifdef CONFIG_CMA
2576 /* If allocation can't use CMA areas don't use free CMA pages */
2577 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2578 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2579#endif
026b0814 2580
97a16fc8
MG
2581 /*
2582 * Check watermarks for an order-0 allocation request. If these
2583 * are not met, then a high-order request also cannot go ahead
2584 * even if a suitable page happened to be free.
2585 */
2586 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2587 return false;
1da177e4 2588
97a16fc8
MG
2589 /* If this is an order-0 request then the watermark is fine */
2590 if (!order)
2591 return true;
2592
2593 /* For a high-order request, check at least one suitable page is free */
2594 for (o = order; o < MAX_ORDER; o++) {
2595 struct free_area *area = &z->free_area[o];
2596 int mt;
2597
2598 if (!area->nr_free)
2599 continue;
2600
2601 if (alloc_harder)
2602 return true;
1da177e4 2603
97a16fc8
MG
2604 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2605 if (!list_empty(&area->free_list[mt]))
2606 return true;
2607 }
2608
2609#ifdef CONFIG_CMA
2610 if ((alloc_flags & ALLOC_CMA) &&
2611 !list_empty(&area->free_list[MIGRATE_CMA])) {
2612 return true;
2613 }
2614#endif
1da177e4 2615 }
97a16fc8 2616 return false;
88f5acf8
MG
2617}
2618
7aeb09f9 2619bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2620 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2621{
2622 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2623 zone_page_state(z, NR_FREE_PAGES));
2624}
2625
7aeb09f9 2626bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2627 unsigned long mark, int classzone_idx)
88f5acf8
MG
2628{
2629 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2630
2631 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2632 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2633
e2b19197 2634 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2635 free_pages);
1da177e4
LT
2636}
2637
9276b1bc 2638#ifdef CONFIG_NUMA
81c0a2bb
JW
2639static bool zone_local(struct zone *local_zone, struct zone *zone)
2640{
fff4068c 2641 return local_zone->node == zone->node;
81c0a2bb
JW
2642}
2643
957f822a
DR
2644static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2645{
5f7a75ac
MG
2646 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2647 RECLAIM_DISTANCE;
957f822a 2648}
9276b1bc 2649#else /* CONFIG_NUMA */
81c0a2bb
JW
2650static bool zone_local(struct zone *local_zone, struct zone *zone)
2651{
2652 return true;
2653}
2654
957f822a
DR
2655static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2656{
2657 return true;
2658}
9276b1bc
PJ
2659#endif /* CONFIG_NUMA */
2660
4ffeaf35
MG
2661static void reset_alloc_batches(struct zone *preferred_zone)
2662{
2663 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2664
2665 do {
2666 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2667 high_wmark_pages(zone) - low_wmark_pages(zone) -
2668 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2669 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2670 } while (zone++ != preferred_zone);
2671}
2672
7fb1d9fc 2673/*
0798e519 2674 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2675 * a page.
2676 */
2677static struct page *
a9263751
VB
2678get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2679 const struct alloc_context *ac)
753ee728 2680{
dd1a239f 2681 struct zoneref *z;
5117f45d 2682 struct zone *zone;
30534755
MG
2683 bool fair_skipped = false;
2684 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2685
9276b1bc 2686zonelist_scan:
7fb1d9fc 2687 /*
9276b1bc 2688 * Scan zonelist, looking for a zone with enough free.
344736f2 2689 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2690 */
4dfa6cd8 2691 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2692 ac->nodemask) {
be06af00 2693 struct page *page;
e085dbc5
JW
2694 unsigned long mark;
2695
664eedde
MG
2696 if (cpusets_enabled() &&
2697 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2698 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2699 continue;
81c0a2bb
JW
2700 /*
2701 * Distribute pages in proportion to the individual
2702 * zone size to ensure fair page aging. The zone a
2703 * page was allocated in should have no effect on the
2704 * time the page has in memory before being reclaimed.
81c0a2bb 2705 */
30534755 2706 if (apply_fair) {
57054651 2707 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2708 fair_skipped = true;
3a025760 2709 continue;
4ffeaf35 2710 }
30534755
MG
2711 if (!zone_local(ac->preferred_zone, zone)) {
2712 if (fair_skipped)
2713 goto reset_fair;
2714 apply_fair = false;
2715 }
81c0a2bb 2716 }
a756cf59
JW
2717 /*
2718 * When allocating a page cache page for writing, we
2719 * want to get it from a zone that is within its dirty
2720 * limit, such that no single zone holds more than its
2721 * proportional share of globally allowed dirty pages.
2722 * The dirty limits take into account the zone's
2723 * lowmem reserves and high watermark so that kswapd
2724 * should be able to balance it without having to
2725 * write pages from its LRU list.
2726 *
2727 * This may look like it could increase pressure on
2728 * lower zones by failing allocations in higher zones
2729 * before they are full. But the pages that do spill
2730 * over are limited as the lower zones are protected
2731 * by this very same mechanism. It should not become
2732 * a practical burden to them.
2733 *
2734 * XXX: For now, allow allocations to potentially
2735 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2736 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2737 * which is important when on a NUMA setup the allowed
2738 * zones are together not big enough to reach the
2739 * global limit. The proper fix for these situations
2740 * will require awareness of zones in the
2741 * dirty-throttling and the flusher threads.
2742 */
c9ab0c4f 2743 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2744 continue;
7fb1d9fc 2745
e085dbc5
JW
2746 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2747 if (!zone_watermark_ok(zone, order, mark,
a9263751 2748 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2749 int ret;
2750
5dab2911
MG
2751 /* Checked here to keep the fast path fast */
2752 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2753 if (alloc_flags & ALLOC_NO_WATERMARKS)
2754 goto try_this_zone;
2755
957f822a 2756 if (zone_reclaim_mode == 0 ||
a9263751 2757 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2758 continue;
2759
fa5e084e
MG
2760 ret = zone_reclaim(zone, gfp_mask, order);
2761 switch (ret) {
2762 case ZONE_RECLAIM_NOSCAN:
2763 /* did not scan */
cd38b115 2764 continue;
fa5e084e
MG
2765 case ZONE_RECLAIM_FULL:
2766 /* scanned but unreclaimable */
cd38b115 2767 continue;
fa5e084e
MG
2768 default:
2769 /* did we reclaim enough */
fed2719e 2770 if (zone_watermark_ok(zone, order, mark,
a9263751 2771 ac->classzone_idx, alloc_flags))
fed2719e
MG
2772 goto try_this_zone;
2773
fed2719e 2774 continue;
0798e519 2775 }
7fb1d9fc
RS
2776 }
2777
fa5e084e 2778try_this_zone:
a9263751 2779 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2780 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2781 if (page) {
2782 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2783 goto try_this_zone;
0aaa29a5
MG
2784
2785 /*
2786 * If this is a high-order atomic allocation then check
2787 * if the pageblock should be reserved for the future
2788 */
2789 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2790 reserve_highatomic_pageblock(page, zone, order);
2791
75379191
VB
2792 return page;
2793 }
54a6eb5c 2794 }
9276b1bc 2795
4ffeaf35
MG
2796 /*
2797 * The first pass makes sure allocations are spread fairly within the
2798 * local node. However, the local node might have free pages left
2799 * after the fairness batches are exhausted, and remote zones haven't
2800 * even been considered yet. Try once more without fairness, and
2801 * include remote zones now, before entering the slowpath and waking
2802 * kswapd: prefer spilling to a remote zone over swapping locally.
2803 */
30534755
MG
2804 if (fair_skipped) {
2805reset_fair:
2806 apply_fair = false;
2807 fair_skipped = false;
2808 reset_alloc_batches(ac->preferred_zone);
4ffeaf35 2809 goto zonelist_scan;
30534755 2810 }
4ffeaf35
MG
2811
2812 return NULL;
753ee728
MH
2813}
2814
29423e77
DR
2815/*
2816 * Large machines with many possible nodes should not always dump per-node
2817 * meminfo in irq context.
2818 */
2819static inline bool should_suppress_show_mem(void)
2820{
2821 bool ret = false;
2822
2823#if NODES_SHIFT > 8
2824 ret = in_interrupt();
2825#endif
2826 return ret;
2827}
2828
a238ab5b
DH
2829static DEFINE_RATELIMIT_STATE(nopage_rs,
2830 DEFAULT_RATELIMIT_INTERVAL,
2831 DEFAULT_RATELIMIT_BURST);
2832
d00181b9 2833void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2834{
a238ab5b
DH
2835 unsigned int filter = SHOW_MEM_FILTER_NODES;
2836
c0a32fc5
SG
2837 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2838 debug_guardpage_minorder() > 0)
a238ab5b
DH
2839 return;
2840
2841 /*
2842 * This documents exceptions given to allocations in certain
2843 * contexts that are allowed to allocate outside current's set
2844 * of allowed nodes.
2845 */
2846 if (!(gfp_mask & __GFP_NOMEMALLOC))
2847 if (test_thread_flag(TIF_MEMDIE) ||
2848 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2849 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2850 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2851 filter &= ~SHOW_MEM_FILTER_NODES;
2852
2853 if (fmt) {
3ee9a4f0
JP
2854 struct va_format vaf;
2855 va_list args;
2856
a238ab5b 2857 va_start(args, fmt);
3ee9a4f0
JP
2858
2859 vaf.fmt = fmt;
2860 vaf.va = &args;
2861
2862 pr_warn("%pV", &vaf);
2863
a238ab5b
DH
2864 va_end(args);
2865 }
2866
c5c990e8
VB
2867 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2868 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2869 dump_stack();
2870 if (!should_suppress_show_mem())
2871 show_mem(filter);
2872}
2873
11e33f6a
MG
2874static inline struct page *
2875__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2876 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2877{
6e0fc46d
DR
2878 struct oom_control oc = {
2879 .zonelist = ac->zonelist,
2880 .nodemask = ac->nodemask,
2881 .gfp_mask = gfp_mask,
2882 .order = order,
6e0fc46d 2883 };
11e33f6a
MG
2884 struct page *page;
2885
9879de73
JW
2886 *did_some_progress = 0;
2887
9879de73 2888 /*
dc56401f
JW
2889 * Acquire the oom lock. If that fails, somebody else is
2890 * making progress for us.
9879de73 2891 */
dc56401f 2892 if (!mutex_trylock(&oom_lock)) {
9879de73 2893 *did_some_progress = 1;
11e33f6a 2894 schedule_timeout_uninterruptible(1);
1da177e4
LT
2895 return NULL;
2896 }
6b1de916 2897
11e33f6a
MG
2898 /*
2899 * Go through the zonelist yet one more time, keep very high watermark
2900 * here, this is only to catch a parallel oom killing, we must fail if
2901 * we're still under heavy pressure.
2902 */
a9263751
VB
2903 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2904 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2905 if (page)
11e33f6a
MG
2906 goto out;
2907
4365a567 2908 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2909 /* Coredumps can quickly deplete all memory reserves */
2910 if (current->flags & PF_DUMPCORE)
2911 goto out;
4365a567
KH
2912 /* The OOM killer will not help higher order allocs */
2913 if (order > PAGE_ALLOC_COSTLY_ORDER)
2914 goto out;
03668b3c 2915 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2916 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2917 goto out;
9083905a
JW
2918 if (pm_suspended_storage())
2919 goto out;
3da88fb3
MH
2920 /*
2921 * XXX: GFP_NOFS allocations should rather fail than rely on
2922 * other request to make a forward progress.
2923 * We are in an unfortunate situation where out_of_memory cannot
2924 * do much for this context but let's try it to at least get
2925 * access to memory reserved if the current task is killed (see
2926 * out_of_memory). Once filesystems are ready to handle allocation
2927 * failures more gracefully we should just bail out here.
2928 */
2929
4167e9b2 2930 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2931 if (gfp_mask & __GFP_THISNODE)
2932 goto out;
2933 }
11e33f6a 2934 /* Exhausted what can be done so it's blamo time */
5020e285 2935 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2936 *did_some_progress = 1;
5020e285
MH
2937
2938 if (gfp_mask & __GFP_NOFAIL) {
2939 page = get_page_from_freelist(gfp_mask, order,
2940 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2941 /*
2942 * fallback to ignore cpuset restriction if our nodes
2943 * are depleted
2944 */
2945 if (!page)
2946 page = get_page_from_freelist(gfp_mask, order,
2947 ALLOC_NO_WATERMARKS, ac);
2948 }
2949 }
11e33f6a 2950out:
dc56401f 2951 mutex_unlock(&oom_lock);
11e33f6a
MG
2952 return page;
2953}
2954
56de7263
MG
2955#ifdef CONFIG_COMPACTION
2956/* Try memory compaction for high-order allocations before reclaim */
2957static struct page *
2958__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 2959 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
2960 enum migrate_mode mode, int *contended_compaction,
2961 bool *deferred_compaction)
56de7263 2962{
53853e2d 2963 unsigned long compact_result;
98dd3b48 2964 struct page *page;
53853e2d
VB
2965
2966 if (!order)
66199712 2967 return NULL;
66199712 2968
c06b1fca 2969 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2970 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2971 mode, contended_compaction);
c06b1fca 2972 current->flags &= ~PF_MEMALLOC;
56de7263 2973
98dd3b48
VB
2974 switch (compact_result) {
2975 case COMPACT_DEFERRED:
53853e2d 2976 *deferred_compaction = true;
98dd3b48
VB
2977 /* fall-through */
2978 case COMPACT_SKIPPED:
2979 return NULL;
2980 default:
2981 break;
2982 }
53853e2d 2983
98dd3b48
VB
2984 /*
2985 * At least in one zone compaction wasn't deferred or skipped, so let's
2986 * count a compaction stall
2987 */
2988 count_vm_event(COMPACTSTALL);
8fb74b9f 2989
a9263751
VB
2990 page = get_page_from_freelist(gfp_mask, order,
2991 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2992
98dd3b48
VB
2993 if (page) {
2994 struct zone *zone = page_zone(page);
53853e2d 2995
98dd3b48
VB
2996 zone->compact_blockskip_flush = false;
2997 compaction_defer_reset(zone, order, true);
2998 count_vm_event(COMPACTSUCCESS);
2999 return page;
3000 }
56de7263 3001
98dd3b48
VB
3002 /*
3003 * It's bad if compaction run occurs and fails. The most likely reason
3004 * is that pages exist, but not enough to satisfy watermarks.
3005 */
3006 count_vm_event(COMPACTFAIL);
66199712 3007
98dd3b48 3008 cond_resched();
56de7263
MG
3009
3010 return NULL;
3011}
3012#else
3013static inline struct page *
3014__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3015 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3016 enum migrate_mode mode, int *contended_compaction,
3017 bool *deferred_compaction)
56de7263
MG
3018{
3019 return NULL;
3020}
3021#endif /* CONFIG_COMPACTION */
3022
bba90710
MS
3023/* Perform direct synchronous page reclaim */
3024static int
a9263751
VB
3025__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3026 const struct alloc_context *ac)
11e33f6a 3027{
11e33f6a 3028 struct reclaim_state reclaim_state;
bba90710 3029 int progress;
11e33f6a
MG
3030
3031 cond_resched();
3032
3033 /* We now go into synchronous reclaim */
3034 cpuset_memory_pressure_bump();
c06b1fca 3035 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3036 lockdep_set_current_reclaim_state(gfp_mask);
3037 reclaim_state.reclaimed_slab = 0;
c06b1fca 3038 current->reclaim_state = &reclaim_state;
11e33f6a 3039
a9263751
VB
3040 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3041 ac->nodemask);
11e33f6a 3042
c06b1fca 3043 current->reclaim_state = NULL;
11e33f6a 3044 lockdep_clear_current_reclaim_state();
c06b1fca 3045 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3046
3047 cond_resched();
3048
bba90710
MS
3049 return progress;
3050}
3051
3052/* The really slow allocator path where we enter direct reclaim */
3053static inline struct page *
3054__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3055 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3056 unsigned long *did_some_progress)
bba90710
MS
3057{
3058 struct page *page = NULL;
3059 bool drained = false;
3060
a9263751 3061 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3062 if (unlikely(!(*did_some_progress)))
3063 return NULL;
11e33f6a 3064
9ee493ce 3065retry:
a9263751
VB
3066 page = get_page_from_freelist(gfp_mask, order,
3067 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3068
3069 /*
3070 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3071 * pages are pinned on the per-cpu lists or in high alloc reserves.
3072 * Shrink them them and try again
9ee493ce
MG
3073 */
3074 if (!page && !drained) {
0aaa29a5 3075 unreserve_highatomic_pageblock(ac);
93481ff0 3076 drain_all_pages(NULL);
9ee493ce
MG
3077 drained = true;
3078 goto retry;
3079 }
3080
11e33f6a
MG
3081 return page;
3082}
3083
a9263751 3084static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3085{
3086 struct zoneref *z;
3087 struct zone *zone;
3088
a9263751
VB
3089 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3090 ac->high_zoneidx, ac->nodemask)
3091 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3092}
3093
c603844b 3094static inline unsigned int
341ce06f
PZ
3095gfp_to_alloc_flags(gfp_t gfp_mask)
3096{
c603844b 3097 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3098
a56f57ff 3099 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3100 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3101
341ce06f
PZ
3102 /*
3103 * The caller may dip into page reserves a bit more if the caller
3104 * cannot run direct reclaim, or if the caller has realtime scheduling
3105 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3106 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3107 */
e6223a3b 3108 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3109
d0164adc 3110 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3111 /*
b104a35d
DR
3112 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3113 * if it can't schedule.
5c3240d9 3114 */
b104a35d 3115 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3116 alloc_flags |= ALLOC_HARDER;
523b9458 3117 /*
b104a35d 3118 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3119 * comment for __cpuset_node_allowed().
523b9458 3120 */
341ce06f 3121 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3122 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3123 alloc_flags |= ALLOC_HARDER;
3124
b37f1dd0
MG
3125 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3126 if (gfp_mask & __GFP_MEMALLOC)
3127 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3128 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3129 alloc_flags |= ALLOC_NO_WATERMARKS;
3130 else if (!in_interrupt() &&
3131 ((current->flags & PF_MEMALLOC) ||
3132 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3133 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3134 }
d95ea5d1 3135#ifdef CONFIG_CMA
43e7a34d 3136 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3137 alloc_flags |= ALLOC_CMA;
3138#endif
341ce06f
PZ
3139 return alloc_flags;
3140}
3141
072bb0aa
MG
3142bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3143{
b37f1dd0 3144 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3145}
3146
d0164adc
MG
3147static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3148{
3149 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3150}
3151
11e33f6a
MG
3152static inline struct page *
3153__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3154 struct alloc_context *ac)
11e33f6a 3155{
d0164adc 3156 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3157 struct page *page = NULL;
c603844b 3158 unsigned int alloc_flags;
11e33f6a
MG
3159 unsigned long pages_reclaimed = 0;
3160 unsigned long did_some_progress;
e0b9daeb 3161 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3162 bool deferred_compaction = false;
1f9efdef 3163 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3164
72807a74
MG
3165 /*
3166 * In the slowpath, we sanity check order to avoid ever trying to
3167 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3168 * be using allocators in order of preference for an area that is
3169 * too large.
3170 */
1fc28b70
MG
3171 if (order >= MAX_ORDER) {
3172 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3173 return NULL;
1fc28b70 3174 }
1da177e4 3175
d0164adc
MG
3176 /*
3177 * We also sanity check to catch abuse of atomic reserves being used by
3178 * callers that are not in atomic context.
3179 */
3180 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3181 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3182 gfp_mask &= ~__GFP_ATOMIC;
3183
9879de73 3184retry:
d0164adc 3185 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3186 wake_all_kswapds(order, ac);
1da177e4 3187
9bf2229f 3188 /*
7fb1d9fc
RS
3189 * OK, we're below the kswapd watermark and have kicked background
3190 * reclaim. Now things get more complex, so set up alloc_flags according
3191 * to how we want to proceed.
9bf2229f 3192 */
341ce06f 3193 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3194
341ce06f 3195 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3196 page = get_page_from_freelist(gfp_mask, order,
3197 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3198 if (page)
3199 goto got_pg;
1da177e4 3200
11e33f6a 3201 /* Allocate without watermarks if the context allows */
341ce06f 3202 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3203 /*
3204 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3205 * the allocation is high priority and these type of
3206 * allocations are system rather than user orientated
3207 */
a9263751 3208 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3209 page = get_page_from_freelist(gfp_mask, order,
3210 ALLOC_NO_WATERMARKS, ac);
3211 if (page)
3212 goto got_pg;
1da177e4
LT
3213 }
3214
d0164adc
MG
3215 /* Caller is not willing to reclaim, we can't balance anything */
3216 if (!can_direct_reclaim) {
aed0a0e3 3217 /*
33d53103
MH
3218 * All existing users of the __GFP_NOFAIL are blockable, so warn
3219 * of any new users that actually allow this type of allocation
3220 * to fail.
aed0a0e3
DR
3221 */
3222 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3223 goto nopage;
aed0a0e3 3224 }
1da177e4 3225
341ce06f 3226 /* Avoid recursion of direct reclaim */
33d53103
MH
3227 if (current->flags & PF_MEMALLOC) {
3228 /*
3229 * __GFP_NOFAIL request from this context is rather bizarre
3230 * because we cannot reclaim anything and only can loop waiting
3231 * for somebody to do a work for us.
3232 */
3233 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3234 cond_resched();
3235 goto retry;
3236 }
341ce06f 3237 goto nopage;
33d53103 3238 }
341ce06f 3239
6583bb64
DR
3240 /* Avoid allocations with no watermarks from looping endlessly */
3241 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3242 goto nopage;
3243
77f1fe6b
MG
3244 /*
3245 * Try direct compaction. The first pass is asynchronous. Subsequent
3246 * attempts after direct reclaim are synchronous
3247 */
a9263751
VB
3248 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3249 migration_mode,
3250 &contended_compaction,
53853e2d 3251 &deferred_compaction);
56de7263
MG
3252 if (page)
3253 goto got_pg;
75f30861 3254
1f9efdef 3255 /* Checks for THP-specific high-order allocations */
d0164adc 3256 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3257 /*
3258 * If compaction is deferred for high-order allocations, it is
3259 * because sync compaction recently failed. If this is the case
3260 * and the caller requested a THP allocation, we do not want
3261 * to heavily disrupt the system, so we fail the allocation
3262 * instead of entering direct reclaim.
3263 */
3264 if (deferred_compaction)
3265 goto nopage;
3266
3267 /*
3268 * In all zones where compaction was attempted (and not
3269 * deferred or skipped), lock contention has been detected.
3270 * For THP allocation we do not want to disrupt the others
3271 * so we fallback to base pages instead.
3272 */
3273 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3274 goto nopage;
3275
3276 /*
3277 * If compaction was aborted due to need_resched(), we do not
3278 * want to further increase allocation latency, unless it is
3279 * khugepaged trying to collapse.
3280 */
3281 if (contended_compaction == COMPACT_CONTENDED_SCHED
3282 && !(current->flags & PF_KTHREAD))
3283 goto nopage;
3284 }
66199712 3285
8fe78048
DR
3286 /*
3287 * It can become very expensive to allocate transparent hugepages at
3288 * fault, so use asynchronous memory compaction for THP unless it is
3289 * khugepaged trying to collapse.
3290 */
d0164adc 3291 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3292 migration_mode = MIGRATE_SYNC_LIGHT;
3293
11e33f6a 3294 /* Try direct reclaim and then allocating */
a9263751
VB
3295 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3296 &did_some_progress);
11e33f6a
MG
3297 if (page)
3298 goto got_pg;
1da177e4 3299
9083905a
JW
3300 /* Do not loop if specifically requested */
3301 if (gfp_mask & __GFP_NORETRY)
3302 goto noretry;
3303
3304 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3305 pages_reclaimed += did_some_progress;
9083905a
JW
3306 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3307 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3308 /* Wait for some write requests to complete then retry */
a9263751 3309 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3310 goto retry;
1da177e4
LT
3311 }
3312
9083905a
JW
3313 /* Reclaim has failed us, start killing things */
3314 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3315 if (page)
3316 goto got_pg;
3317
3318 /* Retry as long as the OOM killer is making progress */
3319 if (did_some_progress)
3320 goto retry;
3321
3322noretry:
3323 /*
3324 * High-order allocations do not necessarily loop after
3325 * direct reclaim and reclaim/compaction depends on compaction
3326 * being called after reclaim so call directly if necessary
3327 */
3328 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3329 ac, migration_mode,
3330 &contended_compaction,
3331 &deferred_compaction);
3332 if (page)
3333 goto got_pg;
1da177e4 3334nopage:
a238ab5b 3335 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3336got_pg:
072bb0aa 3337 return page;
1da177e4 3338}
11e33f6a
MG
3339
3340/*
3341 * This is the 'heart' of the zoned buddy allocator.
3342 */
3343struct page *
3344__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3345 struct zonelist *zonelist, nodemask_t *nodemask)
3346{
d8846374 3347 struct zoneref *preferred_zoneref;
5bb1b169 3348 struct page *page;
cc9a6c87 3349 unsigned int cpuset_mems_cookie;
c603844b 3350 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3351 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3352 struct alloc_context ac = {
3353 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3354 .zonelist = zonelist,
a9263751
VB
3355 .nodemask = nodemask,
3356 .migratetype = gfpflags_to_migratetype(gfp_mask),
3357 };
11e33f6a 3358
682a3385 3359 if (cpusets_enabled()) {
83d4ca81 3360 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3361 alloc_flags |= ALLOC_CPUSET;
3362 if (!ac.nodemask)
3363 ac.nodemask = &cpuset_current_mems_allowed;
3364 }
3365
dcce284a
BH
3366 gfp_mask &= gfp_allowed_mask;
3367
11e33f6a
MG
3368 lockdep_trace_alloc(gfp_mask);
3369
d0164adc 3370 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3371
3372 if (should_fail_alloc_page(gfp_mask, order))
3373 return NULL;
3374
3375 /*
3376 * Check the zones suitable for the gfp_mask contain at least one
3377 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3378 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3379 */
3380 if (unlikely(!zonelist->_zonerefs->zone))
3381 return NULL;
3382
a9263751 3383 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3384 alloc_flags |= ALLOC_CMA;
3385
cc9a6c87 3386retry_cpuset:
d26914d1 3387 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3388
c9ab0c4f
MG
3389 /* Dirty zone balancing only done in the fast path */
3390 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3391
5117f45d 3392 /* The preferred zone is used for statistics later */
a9263751 3393 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
682a3385 3394 ac.nodemask, &ac.preferred_zone);
5bb1b169
MG
3395 if (!ac.preferred_zone) {
3396 page = NULL;
4fcb0971 3397 goto no_zone;
5bb1b169
MG
3398 }
3399
a9263751 3400 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3401
3402 /* First allocation attempt */
a9263751 3403 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3404 if (likely(page))
3405 goto out;
11e33f6a 3406
4fcb0971
MG
3407 /*
3408 * Runtime PM, block IO and its error handling path can deadlock
3409 * because I/O on the device might not complete.
3410 */
3411 alloc_mask = memalloc_noio_flags(gfp_mask);
3412 ac.spread_dirty_pages = false;
23f086f9 3413
4fcb0971 3414 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3415
4fcb0971 3416no_zone:
cc9a6c87
MG
3417 /*
3418 * When updating a task's mems_allowed, it is possible to race with
3419 * parallel threads in such a way that an allocation can fail while
3420 * the mask is being updated. If a page allocation is about to fail,
3421 * check if the cpuset changed during allocation and if so, retry.
3422 */
83d4ca81
MG
3423 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3424 alloc_mask = gfp_mask;
cc9a6c87 3425 goto retry_cpuset;
83d4ca81 3426 }
cc9a6c87 3427
4fcb0971
MG
3428out:
3429 if (kmemcheck_enabled && page)
3430 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3431
3432 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3433
11e33f6a 3434 return page;
1da177e4 3435}
d239171e 3436EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3437
3438/*
3439 * Common helper functions.
3440 */
920c7a5d 3441unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3442{
945a1113
AM
3443 struct page *page;
3444
3445 /*
3446 * __get_free_pages() returns a 32-bit address, which cannot represent
3447 * a highmem page
3448 */
3449 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3450
1da177e4
LT
3451 page = alloc_pages(gfp_mask, order);
3452 if (!page)
3453 return 0;
3454 return (unsigned long) page_address(page);
3455}
1da177e4
LT
3456EXPORT_SYMBOL(__get_free_pages);
3457
920c7a5d 3458unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3459{
945a1113 3460 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3461}
1da177e4
LT
3462EXPORT_SYMBOL(get_zeroed_page);
3463
920c7a5d 3464void __free_pages(struct page *page, unsigned int order)
1da177e4 3465{
b5810039 3466 if (put_page_testzero(page)) {
1da177e4 3467 if (order == 0)
b745bc85 3468 free_hot_cold_page(page, false);
1da177e4
LT
3469 else
3470 __free_pages_ok(page, order);
3471 }
3472}
3473
3474EXPORT_SYMBOL(__free_pages);
3475
920c7a5d 3476void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3477{
3478 if (addr != 0) {
725d704e 3479 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3480 __free_pages(virt_to_page((void *)addr), order);
3481 }
3482}
3483
3484EXPORT_SYMBOL(free_pages);
3485
b63ae8ca
AD
3486/*
3487 * Page Fragment:
3488 * An arbitrary-length arbitrary-offset area of memory which resides
3489 * within a 0 or higher order page. Multiple fragments within that page
3490 * are individually refcounted, in the page's reference counter.
3491 *
3492 * The page_frag functions below provide a simple allocation framework for
3493 * page fragments. This is used by the network stack and network device
3494 * drivers to provide a backing region of memory for use as either an
3495 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3496 */
3497static struct page *__page_frag_refill(struct page_frag_cache *nc,
3498 gfp_t gfp_mask)
3499{
3500 struct page *page = NULL;
3501 gfp_t gfp = gfp_mask;
3502
3503#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3504 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3505 __GFP_NOMEMALLOC;
3506 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3507 PAGE_FRAG_CACHE_MAX_ORDER);
3508 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3509#endif
3510 if (unlikely(!page))
3511 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3512
3513 nc->va = page ? page_address(page) : NULL;
3514
3515 return page;
3516}
3517
3518void *__alloc_page_frag(struct page_frag_cache *nc,
3519 unsigned int fragsz, gfp_t gfp_mask)
3520{
3521 unsigned int size = PAGE_SIZE;
3522 struct page *page;
3523 int offset;
3524
3525 if (unlikely(!nc->va)) {
3526refill:
3527 page = __page_frag_refill(nc, gfp_mask);
3528 if (!page)
3529 return NULL;
3530
3531#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3532 /* if size can vary use size else just use PAGE_SIZE */
3533 size = nc->size;
3534#endif
3535 /* Even if we own the page, we do not use atomic_set().
3536 * This would break get_page_unless_zero() users.
3537 */
fe896d18 3538 page_ref_add(page, size - 1);
b63ae8ca
AD
3539
3540 /* reset page count bias and offset to start of new frag */
2f064f34 3541 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3542 nc->pagecnt_bias = size;
3543 nc->offset = size;
3544 }
3545
3546 offset = nc->offset - fragsz;
3547 if (unlikely(offset < 0)) {
3548 page = virt_to_page(nc->va);
3549
fe896d18 3550 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3551 goto refill;
3552
3553#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3554 /* if size can vary use size else just use PAGE_SIZE */
3555 size = nc->size;
3556#endif
3557 /* OK, page count is 0, we can safely set it */
fe896d18 3558 set_page_count(page, size);
b63ae8ca
AD
3559
3560 /* reset page count bias and offset to start of new frag */
3561 nc->pagecnt_bias = size;
3562 offset = size - fragsz;
3563 }
3564
3565 nc->pagecnt_bias--;
3566 nc->offset = offset;
3567
3568 return nc->va + offset;
3569}
3570EXPORT_SYMBOL(__alloc_page_frag);
3571
3572/*
3573 * Frees a page fragment allocated out of either a compound or order 0 page.
3574 */
3575void __free_page_frag(void *addr)
3576{
3577 struct page *page = virt_to_head_page(addr);
3578
3579 if (unlikely(put_page_testzero(page)))
3580 __free_pages_ok(page, compound_order(page));
3581}
3582EXPORT_SYMBOL(__free_page_frag);
3583
6a1a0d3b 3584/*
52383431 3585 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3586 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3587 * equivalent to alloc_pages.
6a1a0d3b 3588 *
52383431
VD
3589 * It should be used when the caller would like to use kmalloc, but since the
3590 * allocation is large, it has to fall back to the page allocator.
3591 */
3592struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3593{
3594 struct page *page;
52383431 3595
52383431 3596 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3597 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3598 __free_pages(page, order);
3599 page = NULL;
3600 }
52383431
VD
3601 return page;
3602}
3603
3604struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3605{
3606 struct page *page;
52383431 3607
52383431 3608 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3609 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3610 __free_pages(page, order);
3611 page = NULL;
3612 }
52383431
VD
3613 return page;
3614}
3615
3616/*
3617 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3618 * alloc_kmem_pages.
6a1a0d3b 3619 */
52383431 3620void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3621{
d05e83a6 3622 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3623 __free_pages(page, order);
3624}
3625
52383431 3626void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3627{
3628 if (addr != 0) {
3629 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3630 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3631 }
3632}
3633
d00181b9
KS
3634static void *make_alloc_exact(unsigned long addr, unsigned int order,
3635 size_t size)
ee85c2e1
AK
3636{
3637 if (addr) {
3638 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3639 unsigned long used = addr + PAGE_ALIGN(size);
3640
3641 split_page(virt_to_page((void *)addr), order);
3642 while (used < alloc_end) {
3643 free_page(used);
3644 used += PAGE_SIZE;
3645 }
3646 }
3647 return (void *)addr;
3648}
3649
2be0ffe2
TT
3650/**
3651 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3652 * @size: the number of bytes to allocate
3653 * @gfp_mask: GFP flags for the allocation
3654 *
3655 * This function is similar to alloc_pages(), except that it allocates the
3656 * minimum number of pages to satisfy the request. alloc_pages() can only
3657 * allocate memory in power-of-two pages.
3658 *
3659 * This function is also limited by MAX_ORDER.
3660 *
3661 * Memory allocated by this function must be released by free_pages_exact().
3662 */
3663void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3664{
3665 unsigned int order = get_order(size);
3666 unsigned long addr;
3667
3668 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3669 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3670}
3671EXPORT_SYMBOL(alloc_pages_exact);
3672
ee85c2e1
AK
3673/**
3674 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3675 * pages on a node.
b5e6ab58 3676 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3677 * @size: the number of bytes to allocate
3678 * @gfp_mask: GFP flags for the allocation
3679 *
3680 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3681 * back.
ee85c2e1 3682 */
e1931811 3683void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3684{
d00181b9 3685 unsigned int order = get_order(size);
ee85c2e1
AK
3686 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3687 if (!p)
3688 return NULL;
3689 return make_alloc_exact((unsigned long)page_address(p), order, size);
3690}
ee85c2e1 3691
2be0ffe2
TT
3692/**
3693 * free_pages_exact - release memory allocated via alloc_pages_exact()
3694 * @virt: the value returned by alloc_pages_exact.
3695 * @size: size of allocation, same value as passed to alloc_pages_exact().
3696 *
3697 * Release the memory allocated by a previous call to alloc_pages_exact.
3698 */
3699void free_pages_exact(void *virt, size_t size)
3700{
3701 unsigned long addr = (unsigned long)virt;
3702 unsigned long end = addr + PAGE_ALIGN(size);
3703
3704 while (addr < end) {
3705 free_page(addr);
3706 addr += PAGE_SIZE;
3707 }
3708}
3709EXPORT_SYMBOL(free_pages_exact);
3710
e0fb5815
ZY
3711/**
3712 * nr_free_zone_pages - count number of pages beyond high watermark
3713 * @offset: The zone index of the highest zone
3714 *
3715 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3716 * high watermark within all zones at or below a given zone index. For each
3717 * zone, the number of pages is calculated as:
834405c3 3718 * managed_pages - high_pages
e0fb5815 3719 */
ebec3862 3720static unsigned long nr_free_zone_pages(int offset)
1da177e4 3721{
dd1a239f 3722 struct zoneref *z;
54a6eb5c
MG
3723 struct zone *zone;
3724
e310fd43 3725 /* Just pick one node, since fallback list is circular */
ebec3862 3726 unsigned long sum = 0;
1da177e4 3727
0e88460d 3728 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3729
54a6eb5c 3730 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3731 unsigned long size = zone->managed_pages;
41858966 3732 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3733 if (size > high)
3734 sum += size - high;
1da177e4
LT
3735 }
3736
3737 return sum;
3738}
3739
e0fb5815
ZY
3740/**
3741 * nr_free_buffer_pages - count number of pages beyond high watermark
3742 *
3743 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3744 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3745 */
ebec3862 3746unsigned long nr_free_buffer_pages(void)
1da177e4 3747{
af4ca457 3748 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3749}
c2f1a551 3750EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3751
e0fb5815
ZY
3752/**
3753 * nr_free_pagecache_pages - count number of pages beyond high watermark
3754 *
3755 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3756 * high watermark within all zones.
1da177e4 3757 */
ebec3862 3758unsigned long nr_free_pagecache_pages(void)
1da177e4 3759{
2a1e274a 3760 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3761}
08e0f6a9
CL
3762
3763static inline void show_node(struct zone *zone)
1da177e4 3764{
e5adfffc 3765 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3766 printk("Node %d ", zone_to_nid(zone));
1da177e4 3767}
1da177e4 3768
d02bd27b
IR
3769long si_mem_available(void)
3770{
3771 long available;
3772 unsigned long pagecache;
3773 unsigned long wmark_low = 0;
3774 unsigned long pages[NR_LRU_LISTS];
3775 struct zone *zone;
3776 int lru;
3777
3778 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3779 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3780
3781 for_each_zone(zone)
3782 wmark_low += zone->watermark[WMARK_LOW];
3783
3784 /*
3785 * Estimate the amount of memory available for userspace allocations,
3786 * without causing swapping.
3787 */
3788 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3789
3790 /*
3791 * Not all the page cache can be freed, otherwise the system will
3792 * start swapping. Assume at least half of the page cache, or the
3793 * low watermark worth of cache, needs to stay.
3794 */
3795 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3796 pagecache -= min(pagecache / 2, wmark_low);
3797 available += pagecache;
3798
3799 /*
3800 * Part of the reclaimable slab consists of items that are in use,
3801 * and cannot be freed. Cap this estimate at the low watermark.
3802 */
3803 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3804 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3805
3806 if (available < 0)
3807 available = 0;
3808 return available;
3809}
3810EXPORT_SYMBOL_GPL(si_mem_available);
3811
1da177e4
LT
3812void si_meminfo(struct sysinfo *val)
3813{
3814 val->totalram = totalram_pages;
cc7452b6 3815 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3816 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3817 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3818 val->totalhigh = totalhigh_pages;
3819 val->freehigh = nr_free_highpages();
1da177e4
LT
3820 val->mem_unit = PAGE_SIZE;
3821}
3822
3823EXPORT_SYMBOL(si_meminfo);
3824
3825#ifdef CONFIG_NUMA
3826void si_meminfo_node(struct sysinfo *val, int nid)
3827{
cdd91a77
JL
3828 int zone_type; /* needs to be signed */
3829 unsigned long managed_pages = 0;
fc2bd799
JK
3830 unsigned long managed_highpages = 0;
3831 unsigned long free_highpages = 0;
1da177e4
LT
3832 pg_data_t *pgdat = NODE_DATA(nid);
3833
cdd91a77
JL
3834 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3835 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3836 val->totalram = managed_pages;
cc7452b6 3837 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3838 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3839#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3840 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3841 struct zone *zone = &pgdat->node_zones[zone_type];
3842
3843 if (is_highmem(zone)) {
3844 managed_highpages += zone->managed_pages;
3845 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3846 }
3847 }
3848 val->totalhigh = managed_highpages;
3849 val->freehigh = free_highpages;
98d2b0eb 3850#else
fc2bd799
JK
3851 val->totalhigh = managed_highpages;
3852 val->freehigh = free_highpages;
98d2b0eb 3853#endif
1da177e4
LT
3854 val->mem_unit = PAGE_SIZE;
3855}
3856#endif
3857
ddd588b5 3858/*
7bf02ea2
DR
3859 * Determine whether the node should be displayed or not, depending on whether
3860 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3861 */
7bf02ea2 3862bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3863{
3864 bool ret = false;
cc9a6c87 3865 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3866
3867 if (!(flags & SHOW_MEM_FILTER_NODES))
3868 goto out;
3869
cc9a6c87 3870 do {
d26914d1 3871 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3872 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3873 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3874out:
3875 return ret;
3876}
3877
1da177e4
LT
3878#define K(x) ((x) << (PAGE_SHIFT-10))
3879
377e4f16
RV
3880static void show_migration_types(unsigned char type)
3881{
3882 static const char types[MIGRATE_TYPES] = {
3883 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3884 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3885 [MIGRATE_RECLAIMABLE] = 'E',
3886 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3887#ifdef CONFIG_CMA
3888 [MIGRATE_CMA] = 'C',
3889#endif
194159fb 3890#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3891 [MIGRATE_ISOLATE] = 'I',
194159fb 3892#endif
377e4f16
RV
3893 };
3894 char tmp[MIGRATE_TYPES + 1];
3895 char *p = tmp;
3896 int i;
3897
3898 for (i = 0; i < MIGRATE_TYPES; i++) {
3899 if (type & (1 << i))
3900 *p++ = types[i];
3901 }
3902
3903 *p = '\0';
3904 printk("(%s) ", tmp);
3905}
3906
1da177e4
LT
3907/*
3908 * Show free area list (used inside shift_scroll-lock stuff)
3909 * We also calculate the percentage fragmentation. We do this by counting the
3910 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3911 *
3912 * Bits in @filter:
3913 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3914 * cpuset.
1da177e4 3915 */
7bf02ea2 3916void show_free_areas(unsigned int filter)
1da177e4 3917{
d1bfcdb8 3918 unsigned long free_pcp = 0;
c7241913 3919 int cpu;
1da177e4
LT
3920 struct zone *zone;
3921
ee99c71c 3922 for_each_populated_zone(zone) {
7bf02ea2 3923 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3924 continue;
d1bfcdb8 3925
761b0677
KK
3926 for_each_online_cpu(cpu)
3927 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3928 }
3929
a731286d
KM
3930 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3931 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3932 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3933 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3934 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3935 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3936 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3937 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3938 global_page_state(NR_ISOLATED_ANON),
3939 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3940 global_page_state(NR_INACTIVE_FILE),
a731286d 3941 global_page_state(NR_ISOLATED_FILE),
7b854121 3942 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3943 global_page_state(NR_FILE_DIRTY),
ce866b34 3944 global_page_state(NR_WRITEBACK),
fd39fc85 3945 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3946 global_page_state(NR_SLAB_RECLAIMABLE),
3947 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3948 global_page_state(NR_FILE_MAPPED),
4b02108a 3949 global_page_state(NR_SHMEM),
a25700a5 3950 global_page_state(NR_PAGETABLE),
d1ce749a 3951 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3952 global_page_state(NR_FREE_PAGES),
3953 free_pcp,
d1ce749a 3954 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3955
ee99c71c 3956 for_each_populated_zone(zone) {
1da177e4
LT
3957 int i;
3958
7bf02ea2 3959 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3960 continue;
d1bfcdb8
KK
3961
3962 free_pcp = 0;
3963 for_each_online_cpu(cpu)
3964 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3965
1da177e4
LT
3966 show_node(zone);
3967 printk("%s"
3968 " free:%lukB"
3969 " min:%lukB"
3970 " low:%lukB"
3971 " high:%lukB"
4f98a2fe
RR
3972 " active_anon:%lukB"
3973 " inactive_anon:%lukB"
3974 " active_file:%lukB"
3975 " inactive_file:%lukB"
7b854121 3976 " unevictable:%lukB"
a731286d
KM
3977 " isolated(anon):%lukB"
3978 " isolated(file):%lukB"
1da177e4 3979 " present:%lukB"
9feedc9d 3980 " managed:%lukB"
4a0aa73f
KM
3981 " mlocked:%lukB"
3982 " dirty:%lukB"
3983 " writeback:%lukB"
3984 " mapped:%lukB"
4b02108a 3985 " shmem:%lukB"
4a0aa73f
KM
3986 " slab_reclaimable:%lukB"
3987 " slab_unreclaimable:%lukB"
c6a7f572 3988 " kernel_stack:%lukB"
4a0aa73f
KM
3989 " pagetables:%lukB"
3990 " unstable:%lukB"
3991 " bounce:%lukB"
d1bfcdb8
KK
3992 " free_pcp:%lukB"
3993 " local_pcp:%ukB"
d1ce749a 3994 " free_cma:%lukB"
4a0aa73f 3995 " writeback_tmp:%lukB"
1da177e4
LT
3996 " pages_scanned:%lu"
3997 " all_unreclaimable? %s"
3998 "\n",
3999 zone->name,
88f5acf8 4000 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4001 K(min_wmark_pages(zone)),
4002 K(low_wmark_pages(zone)),
4003 K(high_wmark_pages(zone)),
4f98a2fe
RR
4004 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4005 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4006 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4007 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4008 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4009 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4010 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4011 K(zone->present_pages),
9feedc9d 4012 K(zone->managed_pages),
4a0aa73f
KM
4013 K(zone_page_state(zone, NR_MLOCK)),
4014 K(zone_page_state(zone, NR_FILE_DIRTY)),
4015 K(zone_page_state(zone, NR_WRITEBACK)),
4016 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4017 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4018 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4019 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4020 zone_page_state(zone, NR_KERNEL_STACK) *
4021 THREAD_SIZE / 1024,
4a0aa73f
KM
4022 K(zone_page_state(zone, NR_PAGETABLE)),
4023 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4024 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4025 K(free_pcp),
4026 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4028 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4029 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4030 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4031 );
4032 printk("lowmem_reserve[]:");
4033 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4034 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4035 printk("\n");
4036 }
4037
ee99c71c 4038 for_each_populated_zone(zone) {
d00181b9
KS
4039 unsigned int order;
4040 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4041 unsigned char types[MAX_ORDER];
1da177e4 4042
7bf02ea2 4043 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4044 continue;
1da177e4
LT
4045 show_node(zone);
4046 printk("%s: ", zone->name);
1da177e4
LT
4047
4048 spin_lock_irqsave(&zone->lock, flags);
4049 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4050 struct free_area *area = &zone->free_area[order];
4051 int type;
4052
4053 nr[order] = area->nr_free;
8f9de51a 4054 total += nr[order] << order;
377e4f16
RV
4055
4056 types[order] = 0;
4057 for (type = 0; type < MIGRATE_TYPES; type++) {
4058 if (!list_empty(&area->free_list[type]))
4059 types[order] |= 1 << type;
4060 }
1da177e4
LT
4061 }
4062 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4063 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4064 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4065 if (nr[order])
4066 show_migration_types(types[order]);
4067 }
1da177e4
LT
4068 printk("= %lukB\n", K(total));
4069 }
4070
949f7ec5
DR
4071 hugetlb_show_meminfo();
4072
e6f3602d
LW
4073 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4074
1da177e4
LT
4075 show_swap_cache_info();
4076}
4077
19770b32
MG
4078static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4079{
4080 zoneref->zone = zone;
4081 zoneref->zone_idx = zone_idx(zone);
4082}
4083
1da177e4
LT
4084/*
4085 * Builds allocation fallback zone lists.
1a93205b
CL
4086 *
4087 * Add all populated zones of a node to the zonelist.
1da177e4 4088 */
f0c0b2b8 4089static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4090 int nr_zones)
1da177e4 4091{
1a93205b 4092 struct zone *zone;
bc732f1d 4093 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4094
4095 do {
2f6726e5 4096 zone_type--;
070f8032 4097 zone = pgdat->node_zones + zone_type;
1a93205b 4098 if (populated_zone(zone)) {
dd1a239f
MG
4099 zoneref_set_zone(zone,
4100 &zonelist->_zonerefs[nr_zones++]);
070f8032 4101 check_highest_zone(zone_type);
1da177e4 4102 }
2f6726e5 4103 } while (zone_type);
bc732f1d 4104
070f8032 4105 return nr_zones;
1da177e4
LT
4106}
4107
f0c0b2b8
KH
4108
4109/*
4110 * zonelist_order:
4111 * 0 = automatic detection of better ordering.
4112 * 1 = order by ([node] distance, -zonetype)
4113 * 2 = order by (-zonetype, [node] distance)
4114 *
4115 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4116 * the same zonelist. So only NUMA can configure this param.
4117 */
4118#define ZONELIST_ORDER_DEFAULT 0
4119#define ZONELIST_ORDER_NODE 1
4120#define ZONELIST_ORDER_ZONE 2
4121
4122/* zonelist order in the kernel.
4123 * set_zonelist_order() will set this to NODE or ZONE.
4124 */
4125static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4126static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4127
4128
1da177e4 4129#ifdef CONFIG_NUMA
f0c0b2b8
KH
4130/* The value user specified ....changed by config */
4131static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4132/* string for sysctl */
4133#define NUMA_ZONELIST_ORDER_LEN 16
4134char numa_zonelist_order[16] = "default";
4135
4136/*
4137 * interface for configure zonelist ordering.
4138 * command line option "numa_zonelist_order"
4139 * = "[dD]efault - default, automatic configuration.
4140 * = "[nN]ode - order by node locality, then by zone within node
4141 * = "[zZ]one - order by zone, then by locality within zone
4142 */
4143
4144static int __parse_numa_zonelist_order(char *s)
4145{
4146 if (*s == 'd' || *s == 'D') {
4147 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4148 } else if (*s == 'n' || *s == 'N') {
4149 user_zonelist_order = ZONELIST_ORDER_NODE;
4150 } else if (*s == 'z' || *s == 'Z') {
4151 user_zonelist_order = ZONELIST_ORDER_ZONE;
4152 } else {
1170532b 4153 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4154 return -EINVAL;
4155 }
4156 return 0;
4157}
4158
4159static __init int setup_numa_zonelist_order(char *s)
4160{
ecb256f8
VL
4161 int ret;
4162
4163 if (!s)
4164 return 0;
4165
4166 ret = __parse_numa_zonelist_order(s);
4167 if (ret == 0)
4168 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4169
4170 return ret;
f0c0b2b8
KH
4171}
4172early_param("numa_zonelist_order", setup_numa_zonelist_order);
4173
4174/*
4175 * sysctl handler for numa_zonelist_order
4176 */
cccad5b9 4177int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4178 void __user *buffer, size_t *length,
f0c0b2b8
KH
4179 loff_t *ppos)
4180{
4181 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4182 int ret;
443c6f14 4183 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4184
443c6f14 4185 mutex_lock(&zl_order_mutex);
dacbde09
CG
4186 if (write) {
4187 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4188 ret = -EINVAL;
4189 goto out;
4190 }
4191 strcpy(saved_string, (char *)table->data);
4192 }
8d65af78 4193 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4194 if (ret)
443c6f14 4195 goto out;
f0c0b2b8
KH
4196 if (write) {
4197 int oldval = user_zonelist_order;
dacbde09
CG
4198
4199 ret = __parse_numa_zonelist_order((char *)table->data);
4200 if (ret) {
f0c0b2b8
KH
4201 /*
4202 * bogus value. restore saved string
4203 */
dacbde09 4204 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4205 NUMA_ZONELIST_ORDER_LEN);
4206 user_zonelist_order = oldval;
4eaf3f64
HL
4207 } else if (oldval != user_zonelist_order) {
4208 mutex_lock(&zonelists_mutex);
9adb62a5 4209 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4210 mutex_unlock(&zonelists_mutex);
4211 }
f0c0b2b8 4212 }
443c6f14
AK
4213out:
4214 mutex_unlock(&zl_order_mutex);
4215 return ret;
f0c0b2b8
KH
4216}
4217
4218
62bc62a8 4219#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4220static int node_load[MAX_NUMNODES];
4221
1da177e4 4222/**
4dc3b16b 4223 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4224 * @node: node whose fallback list we're appending
4225 * @used_node_mask: nodemask_t of already used nodes
4226 *
4227 * We use a number of factors to determine which is the next node that should
4228 * appear on a given node's fallback list. The node should not have appeared
4229 * already in @node's fallback list, and it should be the next closest node
4230 * according to the distance array (which contains arbitrary distance values
4231 * from each node to each node in the system), and should also prefer nodes
4232 * with no CPUs, since presumably they'll have very little allocation pressure
4233 * on them otherwise.
4234 * It returns -1 if no node is found.
4235 */
f0c0b2b8 4236static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4237{
4cf808eb 4238 int n, val;
1da177e4 4239 int min_val = INT_MAX;
00ef2d2f 4240 int best_node = NUMA_NO_NODE;
a70f7302 4241 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4242
4cf808eb
LT
4243 /* Use the local node if we haven't already */
4244 if (!node_isset(node, *used_node_mask)) {
4245 node_set(node, *used_node_mask);
4246 return node;
4247 }
1da177e4 4248
4b0ef1fe 4249 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4250
4251 /* Don't want a node to appear more than once */
4252 if (node_isset(n, *used_node_mask))
4253 continue;
4254
1da177e4
LT
4255 /* Use the distance array to find the distance */
4256 val = node_distance(node, n);
4257
4cf808eb
LT
4258 /* Penalize nodes under us ("prefer the next node") */
4259 val += (n < node);
4260
1da177e4 4261 /* Give preference to headless and unused nodes */
a70f7302
RR
4262 tmp = cpumask_of_node(n);
4263 if (!cpumask_empty(tmp))
1da177e4
LT
4264 val += PENALTY_FOR_NODE_WITH_CPUS;
4265
4266 /* Slight preference for less loaded node */
4267 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4268 val += node_load[n];
4269
4270 if (val < min_val) {
4271 min_val = val;
4272 best_node = n;
4273 }
4274 }
4275
4276 if (best_node >= 0)
4277 node_set(best_node, *used_node_mask);
4278
4279 return best_node;
4280}
4281
f0c0b2b8
KH
4282
4283/*
4284 * Build zonelists ordered by node and zones within node.
4285 * This results in maximum locality--normal zone overflows into local
4286 * DMA zone, if any--but risks exhausting DMA zone.
4287 */
4288static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4289{
f0c0b2b8 4290 int j;
1da177e4 4291 struct zonelist *zonelist;
f0c0b2b8 4292
54a6eb5c 4293 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4294 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4295 ;
bc732f1d 4296 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4297 zonelist->_zonerefs[j].zone = NULL;
4298 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4299}
4300
523b9458
CL
4301/*
4302 * Build gfp_thisnode zonelists
4303 */
4304static void build_thisnode_zonelists(pg_data_t *pgdat)
4305{
523b9458
CL
4306 int j;
4307 struct zonelist *zonelist;
4308
54a6eb5c 4309 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4310 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4311 zonelist->_zonerefs[j].zone = NULL;
4312 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4313}
4314
f0c0b2b8
KH
4315/*
4316 * Build zonelists ordered by zone and nodes within zones.
4317 * This results in conserving DMA zone[s] until all Normal memory is
4318 * exhausted, but results in overflowing to remote node while memory
4319 * may still exist in local DMA zone.
4320 */
4321static int node_order[MAX_NUMNODES];
4322
4323static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4324{
f0c0b2b8
KH
4325 int pos, j, node;
4326 int zone_type; /* needs to be signed */
4327 struct zone *z;
4328 struct zonelist *zonelist;
4329
54a6eb5c
MG
4330 zonelist = &pgdat->node_zonelists[0];
4331 pos = 0;
4332 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4333 for (j = 0; j < nr_nodes; j++) {
4334 node = node_order[j];
4335 z = &NODE_DATA(node)->node_zones[zone_type];
4336 if (populated_zone(z)) {
dd1a239f
MG
4337 zoneref_set_zone(z,
4338 &zonelist->_zonerefs[pos++]);
54a6eb5c 4339 check_highest_zone(zone_type);
f0c0b2b8
KH
4340 }
4341 }
f0c0b2b8 4342 }
dd1a239f
MG
4343 zonelist->_zonerefs[pos].zone = NULL;
4344 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4345}
4346
3193913c
MG
4347#if defined(CONFIG_64BIT)
4348/*
4349 * Devices that require DMA32/DMA are relatively rare and do not justify a
4350 * penalty to every machine in case the specialised case applies. Default
4351 * to Node-ordering on 64-bit NUMA machines
4352 */
4353static int default_zonelist_order(void)
4354{
4355 return ZONELIST_ORDER_NODE;
4356}
4357#else
4358/*
4359 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4360 * by the kernel. If processes running on node 0 deplete the low memory zone
4361 * then reclaim will occur more frequency increasing stalls and potentially
4362 * be easier to OOM if a large percentage of the zone is under writeback or
4363 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4364 * Hence, default to zone ordering on 32-bit.
4365 */
f0c0b2b8
KH
4366static int default_zonelist_order(void)
4367{
f0c0b2b8
KH
4368 return ZONELIST_ORDER_ZONE;
4369}
3193913c 4370#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4371
4372static void set_zonelist_order(void)
4373{
4374 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4375 current_zonelist_order = default_zonelist_order();
4376 else
4377 current_zonelist_order = user_zonelist_order;
4378}
4379
4380static void build_zonelists(pg_data_t *pgdat)
4381{
c00eb15a 4382 int i, node, load;
1da177e4 4383 nodemask_t used_mask;
f0c0b2b8
KH
4384 int local_node, prev_node;
4385 struct zonelist *zonelist;
d00181b9 4386 unsigned int order = current_zonelist_order;
1da177e4
LT
4387
4388 /* initialize zonelists */
523b9458 4389 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4390 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4391 zonelist->_zonerefs[0].zone = NULL;
4392 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4393 }
4394
4395 /* NUMA-aware ordering of nodes */
4396 local_node = pgdat->node_id;
62bc62a8 4397 load = nr_online_nodes;
1da177e4
LT
4398 prev_node = local_node;
4399 nodes_clear(used_mask);
f0c0b2b8 4400
f0c0b2b8 4401 memset(node_order, 0, sizeof(node_order));
c00eb15a 4402 i = 0;
f0c0b2b8 4403
1da177e4
LT
4404 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4405 /*
4406 * We don't want to pressure a particular node.
4407 * So adding penalty to the first node in same
4408 * distance group to make it round-robin.
4409 */
957f822a
DR
4410 if (node_distance(local_node, node) !=
4411 node_distance(local_node, prev_node))
f0c0b2b8
KH
4412 node_load[node] = load;
4413
1da177e4
LT
4414 prev_node = node;
4415 load--;
f0c0b2b8
KH
4416 if (order == ZONELIST_ORDER_NODE)
4417 build_zonelists_in_node_order(pgdat, node);
4418 else
c00eb15a 4419 node_order[i++] = node; /* remember order */
f0c0b2b8 4420 }
1da177e4 4421
f0c0b2b8
KH
4422 if (order == ZONELIST_ORDER_ZONE) {
4423 /* calculate node order -- i.e., DMA last! */
c00eb15a 4424 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4425 }
523b9458
CL
4426
4427 build_thisnode_zonelists(pgdat);
1da177e4
LT
4428}
4429
7aac7898
LS
4430#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4431/*
4432 * Return node id of node used for "local" allocations.
4433 * I.e., first node id of first zone in arg node's generic zonelist.
4434 * Used for initializing percpu 'numa_mem', which is used primarily
4435 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4436 */
4437int local_memory_node(int node)
4438{
4439 struct zone *zone;
4440
4441 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4442 gfp_zone(GFP_KERNEL),
4443 NULL,
4444 &zone);
4445 return zone->node;
4446}
4447#endif
f0c0b2b8 4448
1da177e4
LT
4449#else /* CONFIG_NUMA */
4450
f0c0b2b8
KH
4451static void set_zonelist_order(void)
4452{
4453 current_zonelist_order = ZONELIST_ORDER_ZONE;
4454}
4455
4456static void build_zonelists(pg_data_t *pgdat)
1da177e4 4457{
19655d34 4458 int node, local_node;
54a6eb5c
MG
4459 enum zone_type j;
4460 struct zonelist *zonelist;
1da177e4
LT
4461
4462 local_node = pgdat->node_id;
1da177e4 4463
54a6eb5c 4464 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4465 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4466
54a6eb5c
MG
4467 /*
4468 * Now we build the zonelist so that it contains the zones
4469 * of all the other nodes.
4470 * We don't want to pressure a particular node, so when
4471 * building the zones for node N, we make sure that the
4472 * zones coming right after the local ones are those from
4473 * node N+1 (modulo N)
4474 */
4475 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4476 if (!node_online(node))
4477 continue;
bc732f1d 4478 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4479 }
54a6eb5c
MG
4480 for (node = 0; node < local_node; node++) {
4481 if (!node_online(node))
4482 continue;
bc732f1d 4483 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4484 }
4485
dd1a239f
MG
4486 zonelist->_zonerefs[j].zone = NULL;
4487 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4488}
4489
4490#endif /* CONFIG_NUMA */
4491
99dcc3e5
CL
4492/*
4493 * Boot pageset table. One per cpu which is going to be used for all
4494 * zones and all nodes. The parameters will be set in such a way
4495 * that an item put on a list will immediately be handed over to
4496 * the buddy list. This is safe since pageset manipulation is done
4497 * with interrupts disabled.
4498 *
4499 * The boot_pagesets must be kept even after bootup is complete for
4500 * unused processors and/or zones. They do play a role for bootstrapping
4501 * hotplugged processors.
4502 *
4503 * zoneinfo_show() and maybe other functions do
4504 * not check if the processor is online before following the pageset pointer.
4505 * Other parts of the kernel may not check if the zone is available.
4506 */
4507static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4508static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4509static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4510
4eaf3f64
HL
4511/*
4512 * Global mutex to protect against size modification of zonelists
4513 * as well as to serialize pageset setup for the new populated zone.
4514 */
4515DEFINE_MUTEX(zonelists_mutex);
4516
9b1a4d38 4517/* return values int ....just for stop_machine() */
4ed7e022 4518static int __build_all_zonelists(void *data)
1da177e4 4519{
6811378e 4520 int nid;
99dcc3e5 4521 int cpu;
9adb62a5 4522 pg_data_t *self = data;
9276b1bc 4523
7f9cfb31
BL
4524#ifdef CONFIG_NUMA
4525 memset(node_load, 0, sizeof(node_load));
4526#endif
9adb62a5
JL
4527
4528 if (self && !node_online(self->node_id)) {
4529 build_zonelists(self);
9adb62a5
JL
4530 }
4531
9276b1bc 4532 for_each_online_node(nid) {
7ea1530a
CL
4533 pg_data_t *pgdat = NODE_DATA(nid);
4534
4535 build_zonelists(pgdat);
9276b1bc 4536 }
99dcc3e5
CL
4537
4538 /*
4539 * Initialize the boot_pagesets that are going to be used
4540 * for bootstrapping processors. The real pagesets for
4541 * each zone will be allocated later when the per cpu
4542 * allocator is available.
4543 *
4544 * boot_pagesets are used also for bootstrapping offline
4545 * cpus if the system is already booted because the pagesets
4546 * are needed to initialize allocators on a specific cpu too.
4547 * F.e. the percpu allocator needs the page allocator which
4548 * needs the percpu allocator in order to allocate its pagesets
4549 * (a chicken-egg dilemma).
4550 */
7aac7898 4551 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4552 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4553
7aac7898
LS
4554#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4555 /*
4556 * We now know the "local memory node" for each node--
4557 * i.e., the node of the first zone in the generic zonelist.
4558 * Set up numa_mem percpu variable for on-line cpus. During
4559 * boot, only the boot cpu should be on-line; we'll init the
4560 * secondary cpus' numa_mem as they come on-line. During
4561 * node/memory hotplug, we'll fixup all on-line cpus.
4562 */
4563 if (cpu_online(cpu))
4564 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4565#endif
4566 }
4567
6811378e
YG
4568 return 0;
4569}
4570
061f67bc
RV
4571static noinline void __init
4572build_all_zonelists_init(void)
4573{
4574 __build_all_zonelists(NULL);
4575 mminit_verify_zonelist();
4576 cpuset_init_current_mems_allowed();
4577}
4578
4eaf3f64
HL
4579/*
4580 * Called with zonelists_mutex held always
4581 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4582 *
4583 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4584 * [we're only called with non-NULL zone through __meminit paths] and
4585 * (2) call of __init annotated helper build_all_zonelists_init
4586 * [protected by SYSTEM_BOOTING].
4eaf3f64 4587 */
9adb62a5 4588void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4589{
f0c0b2b8
KH
4590 set_zonelist_order();
4591
6811378e 4592 if (system_state == SYSTEM_BOOTING) {
061f67bc 4593 build_all_zonelists_init();
6811378e 4594 } else {
e9959f0f 4595#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4596 if (zone)
4597 setup_zone_pageset(zone);
e9959f0f 4598#endif
dd1895e2
CS
4599 /* we have to stop all cpus to guarantee there is no user
4600 of zonelist */
9adb62a5 4601 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4602 /* cpuset refresh routine should be here */
4603 }
bd1e22b8 4604 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4605 /*
4606 * Disable grouping by mobility if the number of pages in the
4607 * system is too low to allow the mechanism to work. It would be
4608 * more accurate, but expensive to check per-zone. This check is
4609 * made on memory-hotadd so a system can start with mobility
4610 * disabled and enable it later
4611 */
d9c23400 4612 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4613 page_group_by_mobility_disabled = 1;
4614 else
4615 page_group_by_mobility_disabled = 0;
4616
756a025f
JP
4617 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4618 nr_online_nodes,
4619 zonelist_order_name[current_zonelist_order],
4620 page_group_by_mobility_disabled ? "off" : "on",
4621 vm_total_pages);
f0c0b2b8 4622#ifdef CONFIG_NUMA
f88dfff5 4623 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4624#endif
1da177e4
LT
4625}
4626
4627/*
4628 * Helper functions to size the waitqueue hash table.
4629 * Essentially these want to choose hash table sizes sufficiently
4630 * large so that collisions trying to wait on pages are rare.
4631 * But in fact, the number of active page waitqueues on typical
4632 * systems is ridiculously low, less than 200. So this is even
4633 * conservative, even though it seems large.
4634 *
4635 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4636 * waitqueues, i.e. the size of the waitq table given the number of pages.
4637 */
4638#define PAGES_PER_WAITQUEUE 256
4639
cca448fe 4640#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4641static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4642{
4643 unsigned long size = 1;
4644
4645 pages /= PAGES_PER_WAITQUEUE;
4646
4647 while (size < pages)
4648 size <<= 1;
4649
4650 /*
4651 * Once we have dozens or even hundreds of threads sleeping
4652 * on IO we've got bigger problems than wait queue collision.
4653 * Limit the size of the wait table to a reasonable size.
4654 */
4655 size = min(size, 4096UL);
4656
4657 return max(size, 4UL);
4658}
cca448fe
YG
4659#else
4660/*
4661 * A zone's size might be changed by hot-add, so it is not possible to determine
4662 * a suitable size for its wait_table. So we use the maximum size now.
4663 *
4664 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4665 *
4666 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4667 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4668 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4669 *
4670 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4671 * or more by the traditional way. (See above). It equals:
4672 *
4673 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4674 * ia64(16K page size) : = ( 8G + 4M)byte.
4675 * powerpc (64K page size) : = (32G +16M)byte.
4676 */
4677static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4678{
4679 return 4096UL;
4680}
4681#endif
1da177e4
LT
4682
4683/*
4684 * This is an integer logarithm so that shifts can be used later
4685 * to extract the more random high bits from the multiplicative
4686 * hash function before the remainder is taken.
4687 */
4688static inline unsigned long wait_table_bits(unsigned long size)
4689{
4690 return ffz(~size);
4691}
4692
1da177e4
LT
4693/*
4694 * Initially all pages are reserved - free ones are freed
4695 * up by free_all_bootmem() once the early boot process is
4696 * done. Non-atomic initialization, single-pass.
4697 */
c09b4240 4698void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4699 unsigned long start_pfn, enum memmap_context context)
1da177e4 4700{
4b94ffdc 4701 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4702 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4703 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4704 unsigned long pfn;
3a80a7fa 4705 unsigned long nr_initialised = 0;
342332e6
TI
4706#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4707 struct memblock_region *r = NULL, *tmp;
4708#endif
1da177e4 4709
22b31eec
HD
4710 if (highest_memmap_pfn < end_pfn - 1)
4711 highest_memmap_pfn = end_pfn - 1;
4712
4b94ffdc
DW
4713 /*
4714 * Honor reservation requested by the driver for this ZONE_DEVICE
4715 * memory
4716 */
4717 if (altmap && start_pfn == altmap->base_pfn)
4718 start_pfn += altmap->reserve;
4719
cbe8dd4a 4720 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4721 /*
b72d0ffb
AM
4722 * There can be holes in boot-time mem_map[]s handed to this
4723 * function. They do not exist on hotplugged memory.
a2f3aa02 4724 */
b72d0ffb
AM
4725 if (context != MEMMAP_EARLY)
4726 goto not_early;
4727
4728 if (!early_pfn_valid(pfn))
4729 continue;
4730 if (!early_pfn_in_nid(pfn, nid))
4731 continue;
4732 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4733 break;
342332e6
TI
4734
4735#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4736 /*
4737 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4738 * from zone_movable_pfn[nid] to end of each node should be
4739 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4740 */
4741 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4742 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4743 continue;
342332e6 4744
b72d0ffb
AM
4745 /*
4746 * Check given memblock attribute by firmware which can affect
4747 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4748 * mirrored, it's an overlapped memmap init. skip it.
4749 */
4750 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4751 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4752 for_each_memblock(memory, tmp)
4753 if (pfn < memblock_region_memory_end_pfn(tmp))
4754 break;
4755 r = tmp;
4756 }
4757 if (pfn >= memblock_region_memory_base_pfn(r) &&
4758 memblock_is_mirror(r)) {
4759 /* already initialized as NORMAL */
4760 pfn = memblock_region_memory_end_pfn(r);
4761 continue;
342332e6 4762 }
a2f3aa02 4763 }
b72d0ffb 4764#endif
ac5d2539 4765
b72d0ffb 4766not_early:
ac5d2539
MG
4767 /*
4768 * Mark the block movable so that blocks are reserved for
4769 * movable at startup. This will force kernel allocations
4770 * to reserve their blocks rather than leaking throughout
4771 * the address space during boot when many long-lived
974a786e 4772 * kernel allocations are made.
ac5d2539
MG
4773 *
4774 * bitmap is created for zone's valid pfn range. but memmap
4775 * can be created for invalid pages (for alignment)
4776 * check here not to call set_pageblock_migratetype() against
4777 * pfn out of zone.
4778 */
4779 if (!(pfn & (pageblock_nr_pages - 1))) {
4780 struct page *page = pfn_to_page(pfn);
4781
4782 __init_single_page(page, pfn, zone, nid);
4783 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4784 } else {
4785 __init_single_pfn(pfn, zone, nid);
4786 }
1da177e4
LT
4787 }
4788}
4789
1e548deb 4790static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4791{
7aeb09f9 4792 unsigned int order, t;
b2a0ac88
MG
4793 for_each_migratetype_order(order, t) {
4794 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4795 zone->free_area[order].nr_free = 0;
4796 }
4797}
4798
4799#ifndef __HAVE_ARCH_MEMMAP_INIT
4800#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4801 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4802#endif
4803
7cd2b0a3 4804static int zone_batchsize(struct zone *zone)
e7c8d5c9 4805{
3a6be87f 4806#ifdef CONFIG_MMU
e7c8d5c9
CL
4807 int batch;
4808
4809 /*
4810 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4811 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4812 *
4813 * OK, so we don't know how big the cache is. So guess.
4814 */
b40da049 4815 batch = zone->managed_pages / 1024;
ba56e91c
SR
4816 if (batch * PAGE_SIZE > 512 * 1024)
4817 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4818 batch /= 4; /* We effectively *= 4 below */
4819 if (batch < 1)
4820 batch = 1;
4821
4822 /*
0ceaacc9
NP
4823 * Clamp the batch to a 2^n - 1 value. Having a power
4824 * of 2 value was found to be more likely to have
4825 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4826 *
0ceaacc9
NP
4827 * For example if 2 tasks are alternately allocating
4828 * batches of pages, one task can end up with a lot
4829 * of pages of one half of the possible page colors
4830 * and the other with pages of the other colors.
e7c8d5c9 4831 */
9155203a 4832 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4833
e7c8d5c9 4834 return batch;
3a6be87f
DH
4835
4836#else
4837 /* The deferral and batching of frees should be suppressed under NOMMU
4838 * conditions.
4839 *
4840 * The problem is that NOMMU needs to be able to allocate large chunks
4841 * of contiguous memory as there's no hardware page translation to
4842 * assemble apparent contiguous memory from discontiguous pages.
4843 *
4844 * Queueing large contiguous runs of pages for batching, however,
4845 * causes the pages to actually be freed in smaller chunks. As there
4846 * can be a significant delay between the individual batches being
4847 * recycled, this leads to the once large chunks of space being
4848 * fragmented and becoming unavailable for high-order allocations.
4849 */
4850 return 0;
4851#endif
e7c8d5c9
CL
4852}
4853
8d7a8fa9
CS
4854/*
4855 * pcp->high and pcp->batch values are related and dependent on one another:
4856 * ->batch must never be higher then ->high.
4857 * The following function updates them in a safe manner without read side
4858 * locking.
4859 *
4860 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4861 * those fields changing asynchronously (acording the the above rule).
4862 *
4863 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4864 * outside of boot time (or some other assurance that no concurrent updaters
4865 * exist).
4866 */
4867static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4868 unsigned long batch)
4869{
4870 /* start with a fail safe value for batch */
4871 pcp->batch = 1;
4872 smp_wmb();
4873
4874 /* Update high, then batch, in order */
4875 pcp->high = high;
4876 smp_wmb();
4877
4878 pcp->batch = batch;
4879}
4880
3664033c 4881/* a companion to pageset_set_high() */
4008bab7
CS
4882static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4883{
8d7a8fa9 4884 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4885}
4886
88c90dbc 4887static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4888{
4889 struct per_cpu_pages *pcp;
5f8dcc21 4890 int migratetype;
2caaad41 4891
1c6fe946
MD
4892 memset(p, 0, sizeof(*p));
4893
3dfa5721 4894 pcp = &p->pcp;
2caaad41 4895 pcp->count = 0;
5f8dcc21
MG
4896 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4897 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4898}
4899
88c90dbc
CS
4900static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4901{
4902 pageset_init(p);
4903 pageset_set_batch(p, batch);
4904}
4905
8ad4b1fb 4906/*
3664033c 4907 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4908 * to the value high for the pageset p.
4909 */
3664033c 4910static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4911 unsigned long high)
4912{
8d7a8fa9
CS
4913 unsigned long batch = max(1UL, high / 4);
4914 if ((high / 4) > (PAGE_SHIFT * 8))
4915 batch = PAGE_SHIFT * 8;
8ad4b1fb 4916
8d7a8fa9 4917 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4918}
4919
7cd2b0a3
DR
4920static void pageset_set_high_and_batch(struct zone *zone,
4921 struct per_cpu_pageset *pcp)
56cef2b8 4922{
56cef2b8 4923 if (percpu_pagelist_fraction)
3664033c 4924 pageset_set_high(pcp,
56cef2b8
CS
4925 (zone->managed_pages /
4926 percpu_pagelist_fraction));
4927 else
4928 pageset_set_batch(pcp, zone_batchsize(zone));
4929}
4930
169f6c19
CS
4931static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4932{
4933 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4934
4935 pageset_init(pcp);
4936 pageset_set_high_and_batch(zone, pcp);
4937}
4938
4ed7e022 4939static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4940{
4941 int cpu;
319774e2 4942 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4943 for_each_possible_cpu(cpu)
4944 zone_pageset_init(zone, cpu);
319774e2
WF
4945}
4946
2caaad41 4947/*
99dcc3e5
CL
4948 * Allocate per cpu pagesets and initialize them.
4949 * Before this call only boot pagesets were available.
e7c8d5c9 4950 */
99dcc3e5 4951void __init setup_per_cpu_pageset(void)
e7c8d5c9 4952{
99dcc3e5 4953 struct zone *zone;
e7c8d5c9 4954
319774e2
WF
4955 for_each_populated_zone(zone)
4956 setup_zone_pageset(zone);
e7c8d5c9
CL
4957}
4958
577a32f6 4959static noinline __init_refok
cca448fe 4960int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4961{
4962 int i;
cca448fe 4963 size_t alloc_size;
ed8ece2e
DH
4964
4965 /*
4966 * The per-page waitqueue mechanism uses hashed waitqueues
4967 * per zone.
4968 */
02b694de
YG
4969 zone->wait_table_hash_nr_entries =
4970 wait_table_hash_nr_entries(zone_size_pages);
4971 zone->wait_table_bits =
4972 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4973 alloc_size = zone->wait_table_hash_nr_entries
4974 * sizeof(wait_queue_head_t);
4975
cd94b9db 4976 if (!slab_is_available()) {
cca448fe 4977 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4978 memblock_virt_alloc_node_nopanic(
4979 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4980 } else {
4981 /*
4982 * This case means that a zone whose size was 0 gets new memory
4983 * via memory hot-add.
4984 * But it may be the case that a new node was hot-added. In
4985 * this case vmalloc() will not be able to use this new node's
4986 * memory - this wait_table must be initialized to use this new
4987 * node itself as well.
4988 * To use this new node's memory, further consideration will be
4989 * necessary.
4990 */
8691f3a7 4991 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4992 }
4993 if (!zone->wait_table)
4994 return -ENOMEM;
ed8ece2e 4995
b8af2941 4996 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4997 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4998
4999 return 0;
ed8ece2e
DH
5000}
5001
c09b4240 5002static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5003{
99dcc3e5
CL
5004 /*
5005 * per cpu subsystem is not up at this point. The following code
5006 * relies on the ability of the linker to provide the
5007 * offset of a (static) per cpu variable into the per cpu area.
5008 */
5009 zone->pageset = &boot_pageset;
ed8ece2e 5010
b38a8725 5011 if (populated_zone(zone))
99dcc3e5
CL
5012 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5013 zone->name, zone->present_pages,
5014 zone_batchsize(zone));
ed8ece2e
DH
5015}
5016
4ed7e022 5017int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5018 unsigned long zone_start_pfn,
b171e409 5019 unsigned long size)
ed8ece2e
DH
5020{
5021 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5022 int ret;
5023 ret = zone_wait_table_init(zone, size);
5024 if (ret)
5025 return ret;
ed8ece2e
DH
5026 pgdat->nr_zones = zone_idx(zone) + 1;
5027
ed8ece2e
DH
5028 zone->zone_start_pfn = zone_start_pfn;
5029
708614e6
MG
5030 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5031 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5032 pgdat->node_id,
5033 (unsigned long)zone_idx(zone),
5034 zone_start_pfn, (zone_start_pfn + size));
5035
1e548deb 5036 zone_init_free_lists(zone);
718127cc
YG
5037
5038 return 0;
ed8ece2e
DH
5039}
5040
0ee332c1 5041#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5042#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5043
c713216d
MG
5044/*
5045 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5046 */
8a942fde
MG
5047int __meminit __early_pfn_to_nid(unsigned long pfn,
5048 struct mminit_pfnnid_cache *state)
c713216d 5049{
c13291a5 5050 unsigned long start_pfn, end_pfn;
e76b63f8 5051 int nid;
7c243c71 5052
8a942fde
MG
5053 if (state->last_start <= pfn && pfn < state->last_end)
5054 return state->last_nid;
c713216d 5055
e76b63f8
YL
5056 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5057 if (nid != -1) {
8a942fde
MG
5058 state->last_start = start_pfn;
5059 state->last_end = end_pfn;
5060 state->last_nid = nid;
e76b63f8
YL
5061 }
5062
5063 return nid;
c713216d
MG
5064}
5065#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5066
c713216d 5067/**
6782832e 5068 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5069 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5070 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5071 *
7d018176
ZZ
5072 * If an architecture guarantees that all ranges registered contain no holes
5073 * and may be freed, this this function may be used instead of calling
5074 * memblock_free_early_nid() manually.
c713216d 5075 */
c13291a5 5076void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5077{
c13291a5
TH
5078 unsigned long start_pfn, end_pfn;
5079 int i, this_nid;
edbe7d23 5080
c13291a5
TH
5081 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5082 start_pfn = min(start_pfn, max_low_pfn);
5083 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5084
c13291a5 5085 if (start_pfn < end_pfn)
6782832e
SS
5086 memblock_free_early_nid(PFN_PHYS(start_pfn),
5087 (end_pfn - start_pfn) << PAGE_SHIFT,
5088 this_nid);
edbe7d23 5089 }
edbe7d23 5090}
edbe7d23 5091
c713216d
MG
5092/**
5093 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5094 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5095 *
7d018176
ZZ
5096 * If an architecture guarantees that all ranges registered contain no holes and may
5097 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5098 */
5099void __init sparse_memory_present_with_active_regions(int nid)
5100{
c13291a5
TH
5101 unsigned long start_pfn, end_pfn;
5102 int i, this_nid;
c713216d 5103
c13291a5
TH
5104 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5105 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5106}
5107
5108/**
5109 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5110 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5111 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5112 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5113 *
5114 * It returns the start and end page frame of a node based on information
7d018176 5115 * provided by memblock_set_node(). If called for a node
c713216d 5116 * with no available memory, a warning is printed and the start and end
88ca3b94 5117 * PFNs will be 0.
c713216d 5118 */
a3142c8e 5119void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5120 unsigned long *start_pfn, unsigned long *end_pfn)
5121{
c13291a5 5122 unsigned long this_start_pfn, this_end_pfn;
c713216d 5123 int i;
c13291a5 5124
c713216d
MG
5125 *start_pfn = -1UL;
5126 *end_pfn = 0;
5127
c13291a5
TH
5128 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5129 *start_pfn = min(*start_pfn, this_start_pfn);
5130 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5131 }
5132
633c0666 5133 if (*start_pfn == -1UL)
c713216d 5134 *start_pfn = 0;
c713216d
MG
5135}
5136
2a1e274a
MG
5137/*
5138 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5139 * assumption is made that zones within a node are ordered in monotonic
5140 * increasing memory addresses so that the "highest" populated zone is used
5141 */
b69a7288 5142static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5143{
5144 int zone_index;
5145 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5146 if (zone_index == ZONE_MOVABLE)
5147 continue;
5148
5149 if (arch_zone_highest_possible_pfn[zone_index] >
5150 arch_zone_lowest_possible_pfn[zone_index])
5151 break;
5152 }
5153
5154 VM_BUG_ON(zone_index == -1);
5155 movable_zone = zone_index;
5156}
5157
5158/*
5159 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5160 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5161 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5162 * in each node depending on the size of each node and how evenly kernelcore
5163 * is distributed. This helper function adjusts the zone ranges
5164 * provided by the architecture for a given node by using the end of the
5165 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5166 * zones within a node are in order of monotonic increases memory addresses
5167 */
b69a7288 5168static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5169 unsigned long zone_type,
5170 unsigned long node_start_pfn,
5171 unsigned long node_end_pfn,
5172 unsigned long *zone_start_pfn,
5173 unsigned long *zone_end_pfn)
5174{
5175 /* Only adjust if ZONE_MOVABLE is on this node */
5176 if (zone_movable_pfn[nid]) {
5177 /* Size ZONE_MOVABLE */
5178 if (zone_type == ZONE_MOVABLE) {
5179 *zone_start_pfn = zone_movable_pfn[nid];
5180 *zone_end_pfn = min(node_end_pfn,
5181 arch_zone_highest_possible_pfn[movable_zone]);
5182
2a1e274a
MG
5183 /* Check if this whole range is within ZONE_MOVABLE */
5184 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5185 *zone_start_pfn = *zone_end_pfn;
5186 }
5187}
5188
c713216d
MG
5189/*
5190 * Return the number of pages a zone spans in a node, including holes
5191 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5192 */
6ea6e688 5193static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5194 unsigned long zone_type,
7960aedd
ZY
5195 unsigned long node_start_pfn,
5196 unsigned long node_end_pfn,
d91749c1
TI
5197 unsigned long *zone_start_pfn,
5198 unsigned long *zone_end_pfn,
c713216d
MG
5199 unsigned long *ignored)
5200{
b5685e92 5201 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5202 if (!node_start_pfn && !node_end_pfn)
5203 return 0;
5204
7960aedd 5205 /* Get the start and end of the zone */
d91749c1
TI
5206 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5207 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5208 adjust_zone_range_for_zone_movable(nid, zone_type,
5209 node_start_pfn, node_end_pfn,
d91749c1 5210 zone_start_pfn, zone_end_pfn);
c713216d
MG
5211
5212 /* Check that this node has pages within the zone's required range */
d91749c1 5213 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5214 return 0;
5215
5216 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5217 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5218 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5219
5220 /* Return the spanned pages */
d91749c1 5221 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5222}
5223
5224/*
5225 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5226 * then all holes in the requested range will be accounted for.
c713216d 5227 */
32996250 5228unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5229 unsigned long range_start_pfn,
5230 unsigned long range_end_pfn)
5231{
96e907d1
TH
5232 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5233 unsigned long start_pfn, end_pfn;
5234 int i;
c713216d 5235
96e907d1
TH
5236 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5237 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5238 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5239 nr_absent -= end_pfn - start_pfn;
c713216d 5240 }
96e907d1 5241 return nr_absent;
c713216d
MG
5242}
5243
5244/**
5245 * absent_pages_in_range - Return number of page frames in holes within a range
5246 * @start_pfn: The start PFN to start searching for holes
5247 * @end_pfn: The end PFN to stop searching for holes
5248 *
88ca3b94 5249 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5250 */
5251unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5252 unsigned long end_pfn)
5253{
5254 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5255}
5256
5257/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5258static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5259 unsigned long zone_type,
7960aedd
ZY
5260 unsigned long node_start_pfn,
5261 unsigned long node_end_pfn,
c713216d
MG
5262 unsigned long *ignored)
5263{
96e907d1
TH
5264 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5265 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5266 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5267 unsigned long nr_absent;
9c7cd687 5268
b5685e92 5269 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5270 if (!node_start_pfn && !node_end_pfn)
5271 return 0;
5272
96e907d1
TH
5273 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5274 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5275
2a1e274a
MG
5276 adjust_zone_range_for_zone_movable(nid, zone_type,
5277 node_start_pfn, node_end_pfn,
5278 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5279 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5280
5281 /*
5282 * ZONE_MOVABLE handling.
5283 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5284 * and vice versa.
5285 */
5286 if (zone_movable_pfn[nid]) {
5287 if (mirrored_kernelcore) {
5288 unsigned long start_pfn, end_pfn;
5289 struct memblock_region *r;
5290
5291 for_each_memblock(memory, r) {
5292 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5293 zone_start_pfn, zone_end_pfn);
5294 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5295 zone_start_pfn, zone_end_pfn);
5296
5297 if (zone_type == ZONE_MOVABLE &&
5298 memblock_is_mirror(r))
5299 nr_absent += end_pfn - start_pfn;
5300
5301 if (zone_type == ZONE_NORMAL &&
5302 !memblock_is_mirror(r))
5303 nr_absent += end_pfn - start_pfn;
5304 }
5305 } else {
5306 if (zone_type == ZONE_NORMAL)
5307 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5308 }
5309 }
5310
5311 return nr_absent;
c713216d 5312}
0e0b864e 5313
0ee332c1 5314#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5315static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5316 unsigned long zone_type,
7960aedd
ZY
5317 unsigned long node_start_pfn,
5318 unsigned long node_end_pfn,
d91749c1
TI
5319 unsigned long *zone_start_pfn,
5320 unsigned long *zone_end_pfn,
c713216d
MG
5321 unsigned long *zones_size)
5322{
d91749c1
TI
5323 unsigned int zone;
5324
5325 *zone_start_pfn = node_start_pfn;
5326 for (zone = 0; zone < zone_type; zone++)
5327 *zone_start_pfn += zones_size[zone];
5328
5329 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5330
c713216d
MG
5331 return zones_size[zone_type];
5332}
5333
6ea6e688 5334static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5335 unsigned long zone_type,
7960aedd
ZY
5336 unsigned long node_start_pfn,
5337 unsigned long node_end_pfn,
c713216d
MG
5338 unsigned long *zholes_size)
5339{
5340 if (!zholes_size)
5341 return 0;
5342
5343 return zholes_size[zone_type];
5344}
20e6926d 5345
0ee332c1 5346#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5347
a3142c8e 5348static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5349 unsigned long node_start_pfn,
5350 unsigned long node_end_pfn,
5351 unsigned long *zones_size,
5352 unsigned long *zholes_size)
c713216d 5353{
febd5949 5354 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5355 enum zone_type i;
5356
febd5949
GZ
5357 for (i = 0; i < MAX_NR_ZONES; i++) {
5358 struct zone *zone = pgdat->node_zones + i;
d91749c1 5359 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5360 unsigned long size, real_size;
c713216d 5361
febd5949
GZ
5362 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5363 node_start_pfn,
5364 node_end_pfn,
d91749c1
TI
5365 &zone_start_pfn,
5366 &zone_end_pfn,
febd5949
GZ
5367 zones_size);
5368 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5369 node_start_pfn, node_end_pfn,
5370 zholes_size);
d91749c1
TI
5371 if (size)
5372 zone->zone_start_pfn = zone_start_pfn;
5373 else
5374 zone->zone_start_pfn = 0;
febd5949
GZ
5375 zone->spanned_pages = size;
5376 zone->present_pages = real_size;
5377
5378 totalpages += size;
5379 realtotalpages += real_size;
5380 }
5381
5382 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5383 pgdat->node_present_pages = realtotalpages;
5384 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5385 realtotalpages);
5386}
5387
835c134e
MG
5388#ifndef CONFIG_SPARSEMEM
5389/*
5390 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5391 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5392 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5393 * round what is now in bits to nearest long in bits, then return it in
5394 * bytes.
5395 */
7c45512d 5396static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5397{
5398 unsigned long usemapsize;
5399
7c45512d 5400 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5401 usemapsize = roundup(zonesize, pageblock_nr_pages);
5402 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5403 usemapsize *= NR_PAGEBLOCK_BITS;
5404 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5405
5406 return usemapsize / 8;
5407}
5408
5409static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5410 struct zone *zone,
5411 unsigned long zone_start_pfn,
5412 unsigned long zonesize)
835c134e 5413{
7c45512d 5414 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5415 zone->pageblock_flags = NULL;
58a01a45 5416 if (usemapsize)
6782832e
SS
5417 zone->pageblock_flags =
5418 memblock_virt_alloc_node_nopanic(usemapsize,
5419 pgdat->node_id);
835c134e
MG
5420}
5421#else
7c45512d
LT
5422static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5423 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5424#endif /* CONFIG_SPARSEMEM */
5425
d9c23400 5426#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5427
d9c23400 5428/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5429void __paginginit set_pageblock_order(void)
d9c23400 5430{
955c1cd7
AM
5431 unsigned int order;
5432
d9c23400
MG
5433 /* Check that pageblock_nr_pages has not already been setup */
5434 if (pageblock_order)
5435 return;
5436
955c1cd7
AM
5437 if (HPAGE_SHIFT > PAGE_SHIFT)
5438 order = HUGETLB_PAGE_ORDER;
5439 else
5440 order = MAX_ORDER - 1;
5441
d9c23400
MG
5442 /*
5443 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5444 * This value may be variable depending on boot parameters on IA64 and
5445 * powerpc.
d9c23400
MG
5446 */
5447 pageblock_order = order;
5448}
5449#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5450
ba72cb8c
MG
5451/*
5452 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5453 * is unused as pageblock_order is set at compile-time. See
5454 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5455 * the kernel config
ba72cb8c 5456 */
15ca220e 5457void __paginginit set_pageblock_order(void)
ba72cb8c 5458{
ba72cb8c 5459}
d9c23400
MG
5460
5461#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5462
01cefaef
JL
5463static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5464 unsigned long present_pages)
5465{
5466 unsigned long pages = spanned_pages;
5467
5468 /*
5469 * Provide a more accurate estimation if there are holes within
5470 * the zone and SPARSEMEM is in use. If there are holes within the
5471 * zone, each populated memory region may cost us one or two extra
5472 * memmap pages due to alignment because memmap pages for each
5473 * populated regions may not naturally algined on page boundary.
5474 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5475 */
5476 if (spanned_pages > present_pages + (present_pages >> 4) &&
5477 IS_ENABLED(CONFIG_SPARSEMEM))
5478 pages = present_pages;
5479
5480 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5481}
5482
1da177e4
LT
5483/*
5484 * Set up the zone data structures:
5485 * - mark all pages reserved
5486 * - mark all memory queues empty
5487 * - clear the memory bitmaps
6527af5d
MK
5488 *
5489 * NOTE: pgdat should get zeroed by caller.
1da177e4 5490 */
7f3eb55b 5491static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5492{
2f1b6248 5493 enum zone_type j;
ed8ece2e 5494 int nid = pgdat->node_id;
718127cc 5495 int ret;
1da177e4 5496
208d54e5 5497 pgdat_resize_init(pgdat);
8177a420
AA
5498#ifdef CONFIG_NUMA_BALANCING
5499 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5500 pgdat->numabalancing_migrate_nr_pages = 0;
5501 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5502#endif
5503#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5504 spin_lock_init(&pgdat->split_queue_lock);
5505 INIT_LIST_HEAD(&pgdat->split_queue);
5506 pgdat->split_queue_len = 0;
8177a420 5507#endif
1da177e4 5508 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5509 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5510#ifdef CONFIG_COMPACTION
5511 init_waitqueue_head(&pgdat->kcompactd_wait);
5512#endif
eefa864b 5513 pgdat_page_ext_init(pgdat);
5f63b720 5514
1da177e4
LT
5515 for (j = 0; j < MAX_NR_ZONES; j++) {
5516 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5517 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5518 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5519
febd5949
GZ
5520 size = zone->spanned_pages;
5521 realsize = freesize = zone->present_pages;
1da177e4 5522
0e0b864e 5523 /*
9feedc9d 5524 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5525 * is used by this zone for memmap. This affects the watermark
5526 * and per-cpu initialisations
5527 */
01cefaef 5528 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5529 if (!is_highmem_idx(j)) {
5530 if (freesize >= memmap_pages) {
5531 freesize -= memmap_pages;
5532 if (memmap_pages)
5533 printk(KERN_DEBUG
5534 " %s zone: %lu pages used for memmap\n",
5535 zone_names[j], memmap_pages);
5536 } else
1170532b 5537 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5538 zone_names[j], memmap_pages, freesize);
5539 }
0e0b864e 5540
6267276f 5541 /* Account for reserved pages */
9feedc9d
JL
5542 if (j == 0 && freesize > dma_reserve) {
5543 freesize -= dma_reserve;
d903ef9f 5544 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5545 zone_names[0], dma_reserve);
0e0b864e
MG
5546 }
5547
98d2b0eb 5548 if (!is_highmem_idx(j))
9feedc9d 5549 nr_kernel_pages += freesize;
01cefaef
JL
5550 /* Charge for highmem memmap if there are enough kernel pages */
5551 else if (nr_kernel_pages > memmap_pages * 2)
5552 nr_kernel_pages -= memmap_pages;
9feedc9d 5553 nr_all_pages += freesize;
1da177e4 5554
9feedc9d
JL
5555 /*
5556 * Set an approximate value for lowmem here, it will be adjusted
5557 * when the bootmem allocator frees pages into the buddy system.
5558 * And all highmem pages will be managed by the buddy system.
5559 */
5560 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5561#ifdef CONFIG_NUMA
d5f541ed 5562 zone->node = nid;
9feedc9d 5563 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5564 / 100;
9feedc9d 5565 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5566#endif
1da177e4
LT
5567 zone->name = zone_names[j];
5568 spin_lock_init(&zone->lock);
5569 spin_lock_init(&zone->lru_lock);
bdc8cb98 5570 zone_seqlock_init(zone);
1da177e4 5571 zone->zone_pgdat = pgdat;
ed8ece2e 5572 zone_pcp_init(zone);
81c0a2bb
JW
5573
5574 /* For bootup, initialized properly in watermark setup */
5575 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5576
bea8c150 5577 lruvec_init(&zone->lruvec);
1da177e4
LT
5578 if (!size)
5579 continue;
5580
955c1cd7 5581 set_pageblock_order();
7c45512d 5582 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5583 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5584 BUG_ON(ret);
76cdd58e 5585 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5586 }
5587}
5588
577a32f6 5589static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5590{
b0aeba74 5591 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5592 unsigned long __maybe_unused offset = 0;
5593
1da177e4
LT
5594 /* Skip empty nodes */
5595 if (!pgdat->node_spanned_pages)
5596 return;
5597
d41dee36 5598#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5599 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5600 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5601 /* ia64 gets its own node_mem_map, before this, without bootmem */
5602 if (!pgdat->node_mem_map) {
b0aeba74 5603 unsigned long size, end;
d41dee36
AW
5604 struct page *map;
5605
e984bb43
BP
5606 /*
5607 * The zone's endpoints aren't required to be MAX_ORDER
5608 * aligned but the node_mem_map endpoints must be in order
5609 * for the buddy allocator to function correctly.
5610 */
108bcc96 5611 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5612 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5613 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5614 map = alloc_remap(pgdat->node_id, size);
5615 if (!map)
6782832e
SS
5616 map = memblock_virt_alloc_node_nopanic(size,
5617 pgdat->node_id);
a1c34a3b 5618 pgdat->node_mem_map = map + offset;
1da177e4 5619 }
12d810c1 5620#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5621 /*
5622 * With no DISCONTIG, the global mem_map is just set as node 0's
5623 */
c713216d 5624 if (pgdat == NODE_DATA(0)) {
1da177e4 5625 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5626#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5627 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5628 mem_map -= offset;
0ee332c1 5629#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5630 }
1da177e4 5631#endif
d41dee36 5632#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5633}
5634
9109fb7b
JW
5635void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5636 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5637{
9109fb7b 5638 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5639 unsigned long start_pfn = 0;
5640 unsigned long end_pfn = 0;
9109fb7b 5641
88fdf75d 5642 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5643 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5644
3a80a7fa 5645 reset_deferred_meminit(pgdat);
1da177e4
LT
5646 pgdat->node_id = nid;
5647 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5648#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5649 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5650 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5651 (u64)start_pfn << PAGE_SHIFT,
5652 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5653#else
5654 start_pfn = node_start_pfn;
7960aedd
ZY
5655#endif
5656 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5657 zones_size, zholes_size);
1da177e4
LT
5658
5659 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5660#ifdef CONFIG_FLAT_NODE_MEM_MAP
5661 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5662 nid, (unsigned long)pgdat,
5663 (unsigned long)pgdat->node_mem_map);
5664#endif
1da177e4 5665
7f3eb55b 5666 free_area_init_core(pgdat);
1da177e4
LT
5667}
5668
0ee332c1 5669#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5670
5671#if MAX_NUMNODES > 1
5672/*
5673 * Figure out the number of possible node ids.
5674 */
f9872caf 5675void __init setup_nr_node_ids(void)
418508c1 5676{
904a9553 5677 unsigned int highest;
418508c1 5678
904a9553 5679 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5680 nr_node_ids = highest + 1;
5681}
418508c1
MS
5682#endif
5683
1e01979c
TH
5684/**
5685 * node_map_pfn_alignment - determine the maximum internode alignment
5686 *
5687 * This function should be called after node map is populated and sorted.
5688 * It calculates the maximum power of two alignment which can distinguish
5689 * all the nodes.
5690 *
5691 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5692 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5693 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5694 * shifted, 1GiB is enough and this function will indicate so.
5695 *
5696 * This is used to test whether pfn -> nid mapping of the chosen memory
5697 * model has fine enough granularity to avoid incorrect mapping for the
5698 * populated node map.
5699 *
5700 * Returns the determined alignment in pfn's. 0 if there is no alignment
5701 * requirement (single node).
5702 */
5703unsigned long __init node_map_pfn_alignment(void)
5704{
5705 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5706 unsigned long start, end, mask;
1e01979c 5707 int last_nid = -1;
c13291a5 5708 int i, nid;
1e01979c 5709
c13291a5 5710 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5711 if (!start || last_nid < 0 || last_nid == nid) {
5712 last_nid = nid;
5713 last_end = end;
5714 continue;
5715 }
5716
5717 /*
5718 * Start with a mask granular enough to pin-point to the
5719 * start pfn and tick off bits one-by-one until it becomes
5720 * too coarse to separate the current node from the last.
5721 */
5722 mask = ~((1 << __ffs(start)) - 1);
5723 while (mask && last_end <= (start & (mask << 1)))
5724 mask <<= 1;
5725
5726 /* accumulate all internode masks */
5727 accl_mask |= mask;
5728 }
5729
5730 /* convert mask to number of pages */
5731 return ~accl_mask + 1;
5732}
5733
a6af2bc3 5734/* Find the lowest pfn for a node */
b69a7288 5735static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5736{
a6af2bc3 5737 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5738 unsigned long start_pfn;
5739 int i;
1abbfb41 5740
c13291a5
TH
5741 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5742 min_pfn = min(min_pfn, start_pfn);
c713216d 5743
a6af2bc3 5744 if (min_pfn == ULONG_MAX) {
1170532b 5745 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5746 return 0;
5747 }
5748
5749 return min_pfn;
c713216d
MG
5750}
5751
5752/**
5753 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5754 *
5755 * It returns the minimum PFN based on information provided via
7d018176 5756 * memblock_set_node().
c713216d
MG
5757 */
5758unsigned long __init find_min_pfn_with_active_regions(void)
5759{
5760 return find_min_pfn_for_node(MAX_NUMNODES);
5761}
5762
37b07e41
LS
5763/*
5764 * early_calculate_totalpages()
5765 * Sum pages in active regions for movable zone.
4b0ef1fe 5766 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5767 */
484f51f8 5768static unsigned long __init early_calculate_totalpages(void)
7e63efef 5769{
7e63efef 5770 unsigned long totalpages = 0;
c13291a5
TH
5771 unsigned long start_pfn, end_pfn;
5772 int i, nid;
5773
5774 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5775 unsigned long pages = end_pfn - start_pfn;
7e63efef 5776
37b07e41
LS
5777 totalpages += pages;
5778 if (pages)
4b0ef1fe 5779 node_set_state(nid, N_MEMORY);
37b07e41 5780 }
b8af2941 5781 return totalpages;
7e63efef
MG
5782}
5783
2a1e274a
MG
5784/*
5785 * Find the PFN the Movable zone begins in each node. Kernel memory
5786 * is spread evenly between nodes as long as the nodes have enough
5787 * memory. When they don't, some nodes will have more kernelcore than
5788 * others
5789 */
b224ef85 5790static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5791{
5792 int i, nid;
5793 unsigned long usable_startpfn;
5794 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5795 /* save the state before borrow the nodemask */
4b0ef1fe 5796 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5797 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5798 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5799 struct memblock_region *r;
b2f3eebe
TC
5800
5801 /* Need to find movable_zone earlier when movable_node is specified. */
5802 find_usable_zone_for_movable();
5803
5804 /*
5805 * If movable_node is specified, ignore kernelcore and movablecore
5806 * options.
5807 */
5808 if (movable_node_is_enabled()) {
136199f0
EM
5809 for_each_memblock(memory, r) {
5810 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5811 continue;
5812
136199f0 5813 nid = r->nid;
b2f3eebe 5814
136199f0 5815 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5816 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5817 min(usable_startpfn, zone_movable_pfn[nid]) :
5818 usable_startpfn;
5819 }
5820
5821 goto out2;
5822 }
2a1e274a 5823
342332e6
TI
5824 /*
5825 * If kernelcore=mirror is specified, ignore movablecore option
5826 */
5827 if (mirrored_kernelcore) {
5828 bool mem_below_4gb_not_mirrored = false;
5829
5830 for_each_memblock(memory, r) {
5831 if (memblock_is_mirror(r))
5832 continue;
5833
5834 nid = r->nid;
5835
5836 usable_startpfn = memblock_region_memory_base_pfn(r);
5837
5838 if (usable_startpfn < 0x100000) {
5839 mem_below_4gb_not_mirrored = true;
5840 continue;
5841 }
5842
5843 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5844 min(usable_startpfn, zone_movable_pfn[nid]) :
5845 usable_startpfn;
5846 }
5847
5848 if (mem_below_4gb_not_mirrored)
5849 pr_warn("This configuration results in unmirrored kernel memory.");
5850
5851 goto out2;
5852 }
5853
7e63efef 5854 /*
b2f3eebe 5855 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5856 * kernelcore that corresponds so that memory usable for
5857 * any allocation type is evenly spread. If both kernelcore
5858 * and movablecore are specified, then the value of kernelcore
5859 * will be used for required_kernelcore if it's greater than
5860 * what movablecore would have allowed.
5861 */
5862 if (required_movablecore) {
7e63efef
MG
5863 unsigned long corepages;
5864
5865 /*
5866 * Round-up so that ZONE_MOVABLE is at least as large as what
5867 * was requested by the user
5868 */
5869 required_movablecore =
5870 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5871 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5872 corepages = totalpages - required_movablecore;
5873
5874 required_kernelcore = max(required_kernelcore, corepages);
5875 }
5876
bde304bd
XQ
5877 /*
5878 * If kernelcore was not specified or kernelcore size is larger
5879 * than totalpages, there is no ZONE_MOVABLE.
5880 */
5881 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5882 goto out;
2a1e274a
MG
5883
5884 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5885 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5886
5887restart:
5888 /* Spread kernelcore memory as evenly as possible throughout nodes */
5889 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5890 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5891 unsigned long start_pfn, end_pfn;
5892
2a1e274a
MG
5893 /*
5894 * Recalculate kernelcore_node if the division per node
5895 * now exceeds what is necessary to satisfy the requested
5896 * amount of memory for the kernel
5897 */
5898 if (required_kernelcore < kernelcore_node)
5899 kernelcore_node = required_kernelcore / usable_nodes;
5900
5901 /*
5902 * As the map is walked, we track how much memory is usable
5903 * by the kernel using kernelcore_remaining. When it is
5904 * 0, the rest of the node is usable by ZONE_MOVABLE
5905 */
5906 kernelcore_remaining = kernelcore_node;
5907
5908 /* Go through each range of PFNs within this node */
c13291a5 5909 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5910 unsigned long size_pages;
5911
c13291a5 5912 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5913 if (start_pfn >= end_pfn)
5914 continue;
5915
5916 /* Account for what is only usable for kernelcore */
5917 if (start_pfn < usable_startpfn) {
5918 unsigned long kernel_pages;
5919 kernel_pages = min(end_pfn, usable_startpfn)
5920 - start_pfn;
5921
5922 kernelcore_remaining -= min(kernel_pages,
5923 kernelcore_remaining);
5924 required_kernelcore -= min(kernel_pages,
5925 required_kernelcore);
5926
5927 /* Continue if range is now fully accounted */
5928 if (end_pfn <= usable_startpfn) {
5929
5930 /*
5931 * Push zone_movable_pfn to the end so
5932 * that if we have to rebalance
5933 * kernelcore across nodes, we will
5934 * not double account here
5935 */
5936 zone_movable_pfn[nid] = end_pfn;
5937 continue;
5938 }
5939 start_pfn = usable_startpfn;
5940 }
5941
5942 /*
5943 * The usable PFN range for ZONE_MOVABLE is from
5944 * start_pfn->end_pfn. Calculate size_pages as the
5945 * number of pages used as kernelcore
5946 */
5947 size_pages = end_pfn - start_pfn;
5948 if (size_pages > kernelcore_remaining)
5949 size_pages = kernelcore_remaining;
5950 zone_movable_pfn[nid] = start_pfn + size_pages;
5951
5952 /*
5953 * Some kernelcore has been met, update counts and
5954 * break if the kernelcore for this node has been
b8af2941 5955 * satisfied
2a1e274a
MG
5956 */
5957 required_kernelcore -= min(required_kernelcore,
5958 size_pages);
5959 kernelcore_remaining -= size_pages;
5960 if (!kernelcore_remaining)
5961 break;
5962 }
5963 }
5964
5965 /*
5966 * If there is still required_kernelcore, we do another pass with one
5967 * less node in the count. This will push zone_movable_pfn[nid] further
5968 * along on the nodes that still have memory until kernelcore is
b8af2941 5969 * satisfied
2a1e274a
MG
5970 */
5971 usable_nodes--;
5972 if (usable_nodes && required_kernelcore > usable_nodes)
5973 goto restart;
5974
b2f3eebe 5975out2:
2a1e274a
MG
5976 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5977 for (nid = 0; nid < MAX_NUMNODES; nid++)
5978 zone_movable_pfn[nid] =
5979 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5980
20e6926d 5981out:
66918dcd 5982 /* restore the node_state */
4b0ef1fe 5983 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5984}
5985
4b0ef1fe
LJ
5986/* Any regular or high memory on that node ? */
5987static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5988{
37b07e41
LS
5989 enum zone_type zone_type;
5990
4b0ef1fe
LJ
5991 if (N_MEMORY == N_NORMAL_MEMORY)
5992 return;
5993
5994 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5995 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5996 if (populated_zone(zone)) {
4b0ef1fe
LJ
5997 node_set_state(nid, N_HIGH_MEMORY);
5998 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5999 zone_type <= ZONE_NORMAL)
6000 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6001 break;
6002 }
37b07e41 6003 }
37b07e41
LS
6004}
6005
c713216d
MG
6006/**
6007 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6008 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6009 *
6010 * This will call free_area_init_node() for each active node in the system.
7d018176 6011 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6012 * zone in each node and their holes is calculated. If the maximum PFN
6013 * between two adjacent zones match, it is assumed that the zone is empty.
6014 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6015 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6016 * starts where the previous one ended. For example, ZONE_DMA32 starts
6017 * at arch_max_dma_pfn.
6018 */
6019void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6020{
c13291a5
TH
6021 unsigned long start_pfn, end_pfn;
6022 int i, nid;
a6af2bc3 6023
c713216d
MG
6024 /* Record where the zone boundaries are */
6025 memset(arch_zone_lowest_possible_pfn, 0,
6026 sizeof(arch_zone_lowest_possible_pfn));
6027 memset(arch_zone_highest_possible_pfn, 0,
6028 sizeof(arch_zone_highest_possible_pfn));
6029 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6030 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6031 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6032 if (i == ZONE_MOVABLE)
6033 continue;
c713216d
MG
6034 arch_zone_lowest_possible_pfn[i] =
6035 arch_zone_highest_possible_pfn[i-1];
6036 arch_zone_highest_possible_pfn[i] =
6037 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6038 }
2a1e274a
MG
6039 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6040 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6041
6042 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6043 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6044 find_zone_movable_pfns_for_nodes();
c713216d 6045
c713216d 6046 /* Print out the zone ranges */
f88dfff5 6047 pr_info("Zone ranges:\n");
2a1e274a
MG
6048 for (i = 0; i < MAX_NR_ZONES; i++) {
6049 if (i == ZONE_MOVABLE)
6050 continue;
f88dfff5 6051 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6052 if (arch_zone_lowest_possible_pfn[i] ==
6053 arch_zone_highest_possible_pfn[i])
f88dfff5 6054 pr_cont("empty\n");
72f0ba02 6055 else
8d29e18a
JG
6056 pr_cont("[mem %#018Lx-%#018Lx]\n",
6057 (u64)arch_zone_lowest_possible_pfn[i]
6058 << PAGE_SHIFT,
6059 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6060 << PAGE_SHIFT) - 1);
2a1e274a
MG
6061 }
6062
6063 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6064 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6065 for (i = 0; i < MAX_NUMNODES; i++) {
6066 if (zone_movable_pfn[i])
8d29e18a
JG
6067 pr_info(" Node %d: %#018Lx\n", i,
6068 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6069 }
c713216d 6070
f2d52fe5 6071 /* Print out the early node map */
f88dfff5 6072 pr_info("Early memory node ranges\n");
c13291a5 6073 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6074 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6075 (u64)start_pfn << PAGE_SHIFT,
6076 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6077
6078 /* Initialise every node */
708614e6 6079 mminit_verify_pageflags_layout();
8ef82866 6080 setup_nr_node_ids();
c713216d
MG
6081 for_each_online_node(nid) {
6082 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6083 free_area_init_node(nid, NULL,
c713216d 6084 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6085
6086 /* Any memory on that node */
6087 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6088 node_set_state(nid, N_MEMORY);
6089 check_for_memory(pgdat, nid);
c713216d
MG
6090 }
6091}
2a1e274a 6092
7e63efef 6093static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6094{
6095 unsigned long long coremem;
6096 if (!p)
6097 return -EINVAL;
6098
6099 coremem = memparse(p, &p);
7e63efef 6100 *core = coremem >> PAGE_SHIFT;
2a1e274a 6101
7e63efef 6102 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6103 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6104
6105 return 0;
6106}
ed7ed365 6107
7e63efef
MG
6108/*
6109 * kernelcore=size sets the amount of memory for use for allocations that
6110 * cannot be reclaimed or migrated.
6111 */
6112static int __init cmdline_parse_kernelcore(char *p)
6113{
342332e6
TI
6114 /* parse kernelcore=mirror */
6115 if (parse_option_str(p, "mirror")) {
6116 mirrored_kernelcore = true;
6117 return 0;
6118 }
6119
7e63efef
MG
6120 return cmdline_parse_core(p, &required_kernelcore);
6121}
6122
6123/*
6124 * movablecore=size sets the amount of memory for use for allocations that
6125 * can be reclaimed or migrated.
6126 */
6127static int __init cmdline_parse_movablecore(char *p)
6128{
6129 return cmdline_parse_core(p, &required_movablecore);
6130}
6131
ed7ed365 6132early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6133early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6134
0ee332c1 6135#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6136
c3d5f5f0
JL
6137void adjust_managed_page_count(struct page *page, long count)
6138{
6139 spin_lock(&managed_page_count_lock);
6140 page_zone(page)->managed_pages += count;
6141 totalram_pages += count;
3dcc0571
JL
6142#ifdef CONFIG_HIGHMEM
6143 if (PageHighMem(page))
6144 totalhigh_pages += count;
6145#endif
c3d5f5f0
JL
6146 spin_unlock(&managed_page_count_lock);
6147}
3dcc0571 6148EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6149
11199692 6150unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6151{
11199692
JL
6152 void *pos;
6153 unsigned long pages = 0;
69afade7 6154
11199692
JL
6155 start = (void *)PAGE_ALIGN((unsigned long)start);
6156 end = (void *)((unsigned long)end & PAGE_MASK);
6157 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6158 if ((unsigned int)poison <= 0xFF)
11199692
JL
6159 memset(pos, poison, PAGE_SIZE);
6160 free_reserved_page(virt_to_page(pos));
69afade7
JL
6161 }
6162
6163 if (pages && s)
11199692 6164 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6165 s, pages << (PAGE_SHIFT - 10), start, end);
6166
6167 return pages;
6168}
11199692 6169EXPORT_SYMBOL(free_reserved_area);
69afade7 6170
cfa11e08
JL
6171#ifdef CONFIG_HIGHMEM
6172void free_highmem_page(struct page *page)
6173{
6174 __free_reserved_page(page);
6175 totalram_pages++;
7b4b2a0d 6176 page_zone(page)->managed_pages++;
cfa11e08
JL
6177 totalhigh_pages++;
6178}
6179#endif
6180
7ee3d4e8
JL
6181
6182void __init mem_init_print_info(const char *str)
6183{
6184 unsigned long physpages, codesize, datasize, rosize, bss_size;
6185 unsigned long init_code_size, init_data_size;
6186
6187 physpages = get_num_physpages();
6188 codesize = _etext - _stext;
6189 datasize = _edata - _sdata;
6190 rosize = __end_rodata - __start_rodata;
6191 bss_size = __bss_stop - __bss_start;
6192 init_data_size = __init_end - __init_begin;
6193 init_code_size = _einittext - _sinittext;
6194
6195 /*
6196 * Detect special cases and adjust section sizes accordingly:
6197 * 1) .init.* may be embedded into .data sections
6198 * 2) .init.text.* may be out of [__init_begin, __init_end],
6199 * please refer to arch/tile/kernel/vmlinux.lds.S.
6200 * 3) .rodata.* may be embedded into .text or .data sections.
6201 */
6202#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6203 do { \
6204 if (start <= pos && pos < end && size > adj) \
6205 size -= adj; \
6206 } while (0)
7ee3d4e8
JL
6207
6208 adj_init_size(__init_begin, __init_end, init_data_size,
6209 _sinittext, init_code_size);
6210 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6211 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6212 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6213 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6214
6215#undef adj_init_size
6216
756a025f 6217 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6218#ifdef CONFIG_HIGHMEM
756a025f 6219 ", %luK highmem"
7ee3d4e8 6220#endif
756a025f
JP
6221 "%s%s)\n",
6222 nr_free_pages() << (PAGE_SHIFT - 10),
6223 physpages << (PAGE_SHIFT - 10),
6224 codesize >> 10, datasize >> 10, rosize >> 10,
6225 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6226 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6227 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6228#ifdef CONFIG_HIGHMEM
756a025f 6229 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6230#endif
756a025f 6231 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6232}
6233
0e0b864e 6234/**
88ca3b94
RD
6235 * set_dma_reserve - set the specified number of pages reserved in the first zone
6236 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6237 *
013110a7 6238 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6239 * In the DMA zone, a significant percentage may be consumed by kernel image
6240 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6241 * function may optionally be used to account for unfreeable pages in the
6242 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6243 * smaller per-cpu batchsize.
0e0b864e
MG
6244 */
6245void __init set_dma_reserve(unsigned long new_dma_reserve)
6246{
6247 dma_reserve = new_dma_reserve;
6248}
6249
1da177e4
LT
6250void __init free_area_init(unsigned long *zones_size)
6251{
9109fb7b 6252 free_area_init_node(0, zones_size,
1da177e4
LT
6253 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6254}
1da177e4 6255
1da177e4
LT
6256static int page_alloc_cpu_notify(struct notifier_block *self,
6257 unsigned long action, void *hcpu)
6258{
6259 int cpu = (unsigned long)hcpu;
1da177e4 6260
8bb78442 6261 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6262 lru_add_drain_cpu(cpu);
9f8f2172
CL
6263 drain_pages(cpu);
6264
6265 /*
6266 * Spill the event counters of the dead processor
6267 * into the current processors event counters.
6268 * This artificially elevates the count of the current
6269 * processor.
6270 */
f8891e5e 6271 vm_events_fold_cpu(cpu);
9f8f2172
CL
6272
6273 /*
6274 * Zero the differential counters of the dead processor
6275 * so that the vm statistics are consistent.
6276 *
6277 * This is only okay since the processor is dead and cannot
6278 * race with what we are doing.
6279 */
2bb921e5 6280 cpu_vm_stats_fold(cpu);
1da177e4
LT
6281 }
6282 return NOTIFY_OK;
6283}
1da177e4
LT
6284
6285void __init page_alloc_init(void)
6286{
6287 hotcpu_notifier(page_alloc_cpu_notify, 0);
6288}
6289
cb45b0e9 6290/*
34b10060 6291 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6292 * or min_free_kbytes changes.
6293 */
6294static void calculate_totalreserve_pages(void)
6295{
6296 struct pglist_data *pgdat;
6297 unsigned long reserve_pages = 0;
2f6726e5 6298 enum zone_type i, j;
cb45b0e9
HA
6299
6300 for_each_online_pgdat(pgdat) {
6301 for (i = 0; i < MAX_NR_ZONES; i++) {
6302 struct zone *zone = pgdat->node_zones + i;
3484b2de 6303 long max = 0;
cb45b0e9
HA
6304
6305 /* Find valid and maximum lowmem_reserve in the zone */
6306 for (j = i; j < MAX_NR_ZONES; j++) {
6307 if (zone->lowmem_reserve[j] > max)
6308 max = zone->lowmem_reserve[j];
6309 }
6310
41858966
MG
6311 /* we treat the high watermark as reserved pages. */
6312 max += high_wmark_pages(zone);
cb45b0e9 6313
b40da049
JL
6314 if (max > zone->managed_pages)
6315 max = zone->managed_pages;
a8d01437
JW
6316
6317 zone->totalreserve_pages = max;
6318
cb45b0e9
HA
6319 reserve_pages += max;
6320 }
6321 }
6322 totalreserve_pages = reserve_pages;
6323}
6324
1da177e4
LT
6325/*
6326 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6327 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6328 * has a correct pages reserved value, so an adequate number of
6329 * pages are left in the zone after a successful __alloc_pages().
6330 */
6331static void setup_per_zone_lowmem_reserve(void)
6332{
6333 struct pglist_data *pgdat;
2f6726e5 6334 enum zone_type j, idx;
1da177e4 6335
ec936fc5 6336 for_each_online_pgdat(pgdat) {
1da177e4
LT
6337 for (j = 0; j < MAX_NR_ZONES; j++) {
6338 struct zone *zone = pgdat->node_zones + j;
b40da049 6339 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6340
6341 zone->lowmem_reserve[j] = 0;
6342
2f6726e5
CL
6343 idx = j;
6344 while (idx) {
1da177e4
LT
6345 struct zone *lower_zone;
6346
2f6726e5
CL
6347 idx--;
6348
1da177e4
LT
6349 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6350 sysctl_lowmem_reserve_ratio[idx] = 1;
6351
6352 lower_zone = pgdat->node_zones + idx;
b40da049 6353 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6354 sysctl_lowmem_reserve_ratio[idx];
b40da049 6355 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6356 }
6357 }
6358 }
cb45b0e9
HA
6359
6360 /* update totalreserve_pages */
6361 calculate_totalreserve_pages();
1da177e4
LT
6362}
6363
cfd3da1e 6364static void __setup_per_zone_wmarks(void)
1da177e4
LT
6365{
6366 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6367 unsigned long lowmem_pages = 0;
6368 struct zone *zone;
6369 unsigned long flags;
6370
6371 /* Calculate total number of !ZONE_HIGHMEM pages */
6372 for_each_zone(zone) {
6373 if (!is_highmem(zone))
b40da049 6374 lowmem_pages += zone->managed_pages;
1da177e4
LT
6375 }
6376
6377 for_each_zone(zone) {
ac924c60
AM
6378 u64 tmp;
6379
1125b4e3 6380 spin_lock_irqsave(&zone->lock, flags);
b40da049 6381 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6382 do_div(tmp, lowmem_pages);
1da177e4
LT
6383 if (is_highmem(zone)) {
6384 /*
669ed175
NP
6385 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6386 * need highmem pages, so cap pages_min to a small
6387 * value here.
6388 *
41858966 6389 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6390 * deltas control asynch page reclaim, and so should
669ed175 6391 * not be capped for highmem.
1da177e4 6392 */
90ae8d67 6393 unsigned long min_pages;
1da177e4 6394
b40da049 6395 min_pages = zone->managed_pages / 1024;
90ae8d67 6396 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6397 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6398 } else {
669ed175
NP
6399 /*
6400 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6401 * proportionate to the zone's size.
6402 */
41858966 6403 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6404 }
6405
795ae7a0
JW
6406 /*
6407 * Set the kswapd watermarks distance according to the
6408 * scale factor in proportion to available memory, but
6409 * ensure a minimum size on small systems.
6410 */
6411 tmp = max_t(u64, tmp >> 2,
6412 mult_frac(zone->managed_pages,
6413 watermark_scale_factor, 10000));
6414
6415 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6416 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6417
81c0a2bb 6418 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6419 high_wmark_pages(zone) - low_wmark_pages(zone) -
6420 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6421
1125b4e3 6422 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6423 }
cb45b0e9
HA
6424
6425 /* update totalreserve_pages */
6426 calculate_totalreserve_pages();
1da177e4
LT
6427}
6428
cfd3da1e
MG
6429/**
6430 * setup_per_zone_wmarks - called when min_free_kbytes changes
6431 * or when memory is hot-{added|removed}
6432 *
6433 * Ensures that the watermark[min,low,high] values for each zone are set
6434 * correctly with respect to min_free_kbytes.
6435 */
6436void setup_per_zone_wmarks(void)
6437{
6438 mutex_lock(&zonelists_mutex);
6439 __setup_per_zone_wmarks();
6440 mutex_unlock(&zonelists_mutex);
6441}
6442
55a4462a 6443/*
556adecb
RR
6444 * The inactive anon list should be small enough that the VM never has to
6445 * do too much work, but large enough that each inactive page has a chance
6446 * to be referenced again before it is swapped out.
6447 *
6448 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6449 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6450 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6451 * the anonymous pages are kept on the inactive list.
6452 *
6453 * total target max
6454 * memory ratio inactive anon
6455 * -------------------------------------
6456 * 10MB 1 5MB
6457 * 100MB 1 50MB
6458 * 1GB 3 250MB
6459 * 10GB 10 0.9GB
6460 * 100GB 31 3GB
6461 * 1TB 101 10GB
6462 * 10TB 320 32GB
6463 */
1b79acc9 6464static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6465{
96cb4df5 6466 unsigned int gb, ratio;
556adecb 6467
96cb4df5 6468 /* Zone size in gigabytes */
b40da049 6469 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6470 if (gb)
556adecb 6471 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6472 else
6473 ratio = 1;
556adecb 6474
96cb4df5
MK
6475 zone->inactive_ratio = ratio;
6476}
556adecb 6477
839a4fcc 6478static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6479{
6480 struct zone *zone;
6481
6482 for_each_zone(zone)
6483 calculate_zone_inactive_ratio(zone);
556adecb
RR
6484}
6485
1da177e4
LT
6486/*
6487 * Initialise min_free_kbytes.
6488 *
6489 * For small machines we want it small (128k min). For large machines
6490 * we want it large (64MB max). But it is not linear, because network
6491 * bandwidth does not increase linearly with machine size. We use
6492 *
b8af2941 6493 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6494 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6495 *
6496 * which yields
6497 *
6498 * 16MB: 512k
6499 * 32MB: 724k
6500 * 64MB: 1024k
6501 * 128MB: 1448k
6502 * 256MB: 2048k
6503 * 512MB: 2896k
6504 * 1024MB: 4096k
6505 * 2048MB: 5792k
6506 * 4096MB: 8192k
6507 * 8192MB: 11584k
6508 * 16384MB: 16384k
6509 */
1b79acc9 6510int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6511{
6512 unsigned long lowmem_kbytes;
5f12733e 6513 int new_min_free_kbytes;
1da177e4
LT
6514
6515 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6516 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6517
6518 if (new_min_free_kbytes > user_min_free_kbytes) {
6519 min_free_kbytes = new_min_free_kbytes;
6520 if (min_free_kbytes < 128)
6521 min_free_kbytes = 128;
6522 if (min_free_kbytes > 65536)
6523 min_free_kbytes = 65536;
6524 } else {
6525 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6526 new_min_free_kbytes, user_min_free_kbytes);
6527 }
bc75d33f 6528 setup_per_zone_wmarks();
a6cccdc3 6529 refresh_zone_stat_thresholds();
1da177e4 6530 setup_per_zone_lowmem_reserve();
556adecb 6531 setup_per_zone_inactive_ratio();
1da177e4
LT
6532 return 0;
6533}
bc22af74 6534core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6535
6536/*
b8af2941 6537 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6538 * that we can call two helper functions whenever min_free_kbytes
6539 * changes.
6540 */
cccad5b9 6541int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6542 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6543{
da8c757b
HP
6544 int rc;
6545
6546 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6547 if (rc)
6548 return rc;
6549
5f12733e
MH
6550 if (write) {
6551 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6552 setup_per_zone_wmarks();
5f12733e 6553 }
1da177e4
LT
6554 return 0;
6555}
6556
795ae7a0
JW
6557int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6558 void __user *buffer, size_t *length, loff_t *ppos)
6559{
6560 int rc;
6561
6562 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6563 if (rc)
6564 return rc;
6565
6566 if (write)
6567 setup_per_zone_wmarks();
6568
6569 return 0;
6570}
6571
9614634f 6572#ifdef CONFIG_NUMA
cccad5b9 6573int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6574 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6575{
6576 struct zone *zone;
6577 int rc;
6578
8d65af78 6579 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6580 if (rc)
6581 return rc;
6582
6583 for_each_zone(zone)
b40da049 6584 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6585 sysctl_min_unmapped_ratio) / 100;
6586 return 0;
6587}
0ff38490 6588
cccad5b9 6589int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6590 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6591{
6592 struct zone *zone;
6593 int rc;
6594
8d65af78 6595 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6596 if (rc)
6597 return rc;
6598
6599 for_each_zone(zone)
b40da049 6600 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6601 sysctl_min_slab_ratio) / 100;
6602 return 0;
6603}
9614634f
CL
6604#endif
6605
1da177e4
LT
6606/*
6607 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6608 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6609 * whenever sysctl_lowmem_reserve_ratio changes.
6610 *
6611 * The reserve ratio obviously has absolutely no relation with the
41858966 6612 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6613 * if in function of the boot time zone sizes.
6614 */
cccad5b9 6615int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6616 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6617{
8d65af78 6618 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6619 setup_per_zone_lowmem_reserve();
6620 return 0;
6621}
6622
8ad4b1fb
RS
6623/*
6624 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6625 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6626 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6627 */
cccad5b9 6628int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6629 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6630{
6631 struct zone *zone;
7cd2b0a3 6632 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6633 int ret;
6634
7cd2b0a3
DR
6635 mutex_lock(&pcp_batch_high_lock);
6636 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6637
8d65af78 6638 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6639 if (!write || ret < 0)
6640 goto out;
6641
6642 /* Sanity checking to avoid pcp imbalance */
6643 if (percpu_pagelist_fraction &&
6644 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6645 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6646 ret = -EINVAL;
6647 goto out;
6648 }
6649
6650 /* No change? */
6651 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6652 goto out;
c8e251fa 6653
364df0eb 6654 for_each_populated_zone(zone) {
7cd2b0a3
DR
6655 unsigned int cpu;
6656
22a7f12b 6657 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6658 pageset_set_high_and_batch(zone,
6659 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6660 }
7cd2b0a3 6661out:
c8e251fa 6662 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6663 return ret;
8ad4b1fb
RS
6664}
6665
a9919c79 6666#ifdef CONFIG_NUMA
f034b5d4 6667int hashdist = HASHDIST_DEFAULT;
1da177e4 6668
1da177e4
LT
6669static int __init set_hashdist(char *str)
6670{
6671 if (!str)
6672 return 0;
6673 hashdist = simple_strtoul(str, &str, 0);
6674 return 1;
6675}
6676__setup("hashdist=", set_hashdist);
6677#endif
6678
6679/*
6680 * allocate a large system hash table from bootmem
6681 * - it is assumed that the hash table must contain an exact power-of-2
6682 * quantity of entries
6683 * - limit is the number of hash buckets, not the total allocation size
6684 */
6685void *__init alloc_large_system_hash(const char *tablename,
6686 unsigned long bucketsize,
6687 unsigned long numentries,
6688 int scale,
6689 int flags,
6690 unsigned int *_hash_shift,
6691 unsigned int *_hash_mask,
31fe62b9
TB
6692 unsigned long low_limit,
6693 unsigned long high_limit)
1da177e4 6694{
31fe62b9 6695 unsigned long long max = high_limit;
1da177e4
LT
6696 unsigned long log2qty, size;
6697 void *table = NULL;
6698
6699 /* allow the kernel cmdline to have a say */
6700 if (!numentries) {
6701 /* round applicable memory size up to nearest megabyte */
04903664 6702 numentries = nr_kernel_pages;
a7e83318
JZ
6703
6704 /* It isn't necessary when PAGE_SIZE >= 1MB */
6705 if (PAGE_SHIFT < 20)
6706 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6707
6708 /* limit to 1 bucket per 2^scale bytes of low memory */
6709 if (scale > PAGE_SHIFT)
6710 numentries >>= (scale - PAGE_SHIFT);
6711 else
6712 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6713
6714 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6715 if (unlikely(flags & HASH_SMALL)) {
6716 /* Makes no sense without HASH_EARLY */
6717 WARN_ON(!(flags & HASH_EARLY));
6718 if (!(numentries >> *_hash_shift)) {
6719 numentries = 1UL << *_hash_shift;
6720 BUG_ON(!numentries);
6721 }
6722 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6723 numentries = PAGE_SIZE / bucketsize;
1da177e4 6724 }
6e692ed3 6725 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6726
6727 /* limit allocation size to 1/16 total memory by default */
6728 if (max == 0) {
6729 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6730 do_div(max, bucketsize);
6731 }
074b8517 6732 max = min(max, 0x80000000ULL);
1da177e4 6733
31fe62b9
TB
6734 if (numentries < low_limit)
6735 numentries = low_limit;
1da177e4
LT
6736 if (numentries > max)
6737 numentries = max;
6738
f0d1b0b3 6739 log2qty = ilog2(numentries);
1da177e4
LT
6740
6741 do {
6742 size = bucketsize << log2qty;
6743 if (flags & HASH_EARLY)
6782832e 6744 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6745 else if (hashdist)
6746 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6747 else {
1037b83b
ED
6748 /*
6749 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6750 * some pages at the end of hash table which
6751 * alloc_pages_exact() automatically does
1037b83b 6752 */
264ef8a9 6753 if (get_order(size) < MAX_ORDER) {
a1dd268c 6754 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6755 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6756 }
1da177e4
LT
6757 }
6758 } while (!table && size > PAGE_SIZE && --log2qty);
6759
6760 if (!table)
6761 panic("Failed to allocate %s hash table\n", tablename);
6762
1170532b
JP
6763 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6764 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6765
6766 if (_hash_shift)
6767 *_hash_shift = log2qty;
6768 if (_hash_mask)
6769 *_hash_mask = (1 << log2qty) - 1;
6770
6771 return table;
6772}
a117e66e 6773
835c134e 6774/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6775static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6776 unsigned long pfn)
6777{
6778#ifdef CONFIG_SPARSEMEM
6779 return __pfn_to_section(pfn)->pageblock_flags;
6780#else
f75fb889 6781 return page_zone(page)->pageblock_flags;
835c134e
MG
6782#endif /* CONFIG_SPARSEMEM */
6783}
6784
f75fb889 6785static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6786{
6787#ifdef CONFIG_SPARSEMEM
6788 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6789 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6790#else
f75fb889 6791 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6792 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6793#endif /* CONFIG_SPARSEMEM */
6794}
6795
6796/**
1aab4d77 6797 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6798 * @page: The page within the block of interest
1aab4d77
RD
6799 * @pfn: The target page frame number
6800 * @end_bitidx: The last bit of interest to retrieve
6801 * @mask: mask of bits that the caller is interested in
6802 *
6803 * Return: pageblock_bits flags
835c134e 6804 */
dc4b0caf 6805unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6806 unsigned long end_bitidx,
6807 unsigned long mask)
835c134e 6808{
835c134e 6809 unsigned long *bitmap;
dc4b0caf 6810 unsigned long bitidx, word_bitidx;
e58469ba 6811 unsigned long word;
835c134e 6812
f75fb889
MG
6813 bitmap = get_pageblock_bitmap(page, pfn);
6814 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6815 word_bitidx = bitidx / BITS_PER_LONG;
6816 bitidx &= (BITS_PER_LONG-1);
835c134e 6817
e58469ba
MG
6818 word = bitmap[word_bitidx];
6819 bitidx += end_bitidx;
6820 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6821}
6822
6823/**
dc4b0caf 6824 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6825 * @page: The page within the block of interest
835c134e 6826 * @flags: The flags to set
1aab4d77
RD
6827 * @pfn: The target page frame number
6828 * @end_bitidx: The last bit of interest
6829 * @mask: mask of bits that the caller is interested in
835c134e 6830 */
dc4b0caf
MG
6831void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6832 unsigned long pfn,
e58469ba
MG
6833 unsigned long end_bitidx,
6834 unsigned long mask)
835c134e 6835{
835c134e 6836 unsigned long *bitmap;
dc4b0caf 6837 unsigned long bitidx, word_bitidx;
e58469ba
MG
6838 unsigned long old_word, word;
6839
6840 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6841
f75fb889
MG
6842 bitmap = get_pageblock_bitmap(page, pfn);
6843 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6844 word_bitidx = bitidx / BITS_PER_LONG;
6845 bitidx &= (BITS_PER_LONG-1);
6846
f75fb889 6847 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6848
e58469ba
MG
6849 bitidx += end_bitidx;
6850 mask <<= (BITS_PER_LONG - bitidx - 1);
6851 flags <<= (BITS_PER_LONG - bitidx - 1);
6852
4db0c3c2 6853 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6854 for (;;) {
6855 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6856 if (word == old_word)
6857 break;
6858 word = old_word;
6859 }
835c134e 6860}
a5d76b54
KH
6861
6862/*
80934513
MK
6863 * This function checks whether pageblock includes unmovable pages or not.
6864 * If @count is not zero, it is okay to include less @count unmovable pages
6865 *
b8af2941 6866 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6867 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6868 * expect this function should be exact.
a5d76b54 6869 */
b023f468
WC
6870bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6871 bool skip_hwpoisoned_pages)
49ac8255
KH
6872{
6873 unsigned long pfn, iter, found;
47118af0
MN
6874 int mt;
6875
49ac8255
KH
6876 /*
6877 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6878 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6879 */
6880 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6881 return false;
47118af0
MN
6882 mt = get_pageblock_migratetype(page);
6883 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6884 return false;
49ac8255
KH
6885
6886 pfn = page_to_pfn(page);
6887 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6888 unsigned long check = pfn + iter;
6889
29723fcc 6890 if (!pfn_valid_within(check))
49ac8255 6891 continue;
29723fcc 6892
49ac8255 6893 page = pfn_to_page(check);
c8721bbb
NH
6894
6895 /*
6896 * Hugepages are not in LRU lists, but they're movable.
6897 * We need not scan over tail pages bacause we don't
6898 * handle each tail page individually in migration.
6899 */
6900 if (PageHuge(page)) {
6901 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6902 continue;
6903 }
6904
97d255c8
MK
6905 /*
6906 * We can't use page_count without pin a page
6907 * because another CPU can free compound page.
6908 * This check already skips compound tails of THP
0139aa7b 6909 * because their page->_refcount is zero at all time.
97d255c8 6910 */
fe896d18 6911 if (!page_ref_count(page)) {
49ac8255
KH
6912 if (PageBuddy(page))
6913 iter += (1 << page_order(page)) - 1;
6914 continue;
6915 }
97d255c8 6916
b023f468
WC
6917 /*
6918 * The HWPoisoned page may be not in buddy system, and
6919 * page_count() is not 0.
6920 */
6921 if (skip_hwpoisoned_pages && PageHWPoison(page))
6922 continue;
6923
49ac8255
KH
6924 if (!PageLRU(page))
6925 found++;
6926 /*
6b4f7799
JW
6927 * If there are RECLAIMABLE pages, we need to check
6928 * it. But now, memory offline itself doesn't call
6929 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6930 */
6931 /*
6932 * If the page is not RAM, page_count()should be 0.
6933 * we don't need more check. This is an _used_ not-movable page.
6934 *
6935 * The problematic thing here is PG_reserved pages. PG_reserved
6936 * is set to both of a memory hole page and a _used_ kernel
6937 * page at boot.
6938 */
6939 if (found > count)
80934513 6940 return true;
49ac8255 6941 }
80934513 6942 return false;
49ac8255
KH
6943}
6944
6945bool is_pageblock_removable_nolock(struct page *page)
6946{
656a0706
MH
6947 struct zone *zone;
6948 unsigned long pfn;
687875fb
MH
6949
6950 /*
6951 * We have to be careful here because we are iterating over memory
6952 * sections which are not zone aware so we might end up outside of
6953 * the zone but still within the section.
656a0706
MH
6954 * We have to take care about the node as well. If the node is offline
6955 * its NODE_DATA will be NULL - see page_zone.
687875fb 6956 */
656a0706
MH
6957 if (!node_online(page_to_nid(page)))
6958 return false;
6959
6960 zone = page_zone(page);
6961 pfn = page_to_pfn(page);
108bcc96 6962 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6963 return false;
6964
b023f468 6965 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6966}
0c0e6195 6967
080fe206 6968#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6969
6970static unsigned long pfn_max_align_down(unsigned long pfn)
6971{
6972 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6973 pageblock_nr_pages) - 1);
6974}
6975
6976static unsigned long pfn_max_align_up(unsigned long pfn)
6977{
6978 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6979 pageblock_nr_pages));
6980}
6981
041d3a8c 6982/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6983static int __alloc_contig_migrate_range(struct compact_control *cc,
6984 unsigned long start, unsigned long end)
041d3a8c
MN
6985{
6986 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6987 unsigned long nr_reclaimed;
041d3a8c
MN
6988 unsigned long pfn = start;
6989 unsigned int tries = 0;
6990 int ret = 0;
6991
be49a6e1 6992 migrate_prep();
041d3a8c 6993
bb13ffeb 6994 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6995 if (fatal_signal_pending(current)) {
6996 ret = -EINTR;
6997 break;
6998 }
6999
bb13ffeb
MG
7000 if (list_empty(&cc->migratepages)) {
7001 cc->nr_migratepages = 0;
edc2ca61 7002 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7003 if (!pfn) {
7004 ret = -EINTR;
7005 break;
7006 }
7007 tries = 0;
7008 } else if (++tries == 5) {
7009 ret = ret < 0 ? ret : -EBUSY;
7010 break;
7011 }
7012
beb51eaa
MK
7013 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7014 &cc->migratepages);
7015 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7016
9c620e2b 7017 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7018 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7019 }
2a6f5124
SP
7020 if (ret < 0) {
7021 putback_movable_pages(&cc->migratepages);
7022 return ret;
7023 }
7024 return 0;
041d3a8c
MN
7025}
7026
7027/**
7028 * alloc_contig_range() -- tries to allocate given range of pages
7029 * @start: start PFN to allocate
7030 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7031 * @migratetype: migratetype of the underlaying pageblocks (either
7032 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7033 * in range must have the same migratetype and it must
7034 * be either of the two.
041d3a8c
MN
7035 *
7036 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7037 * aligned, however it's the caller's responsibility to guarantee that
7038 * we are the only thread that changes migrate type of pageblocks the
7039 * pages fall in.
7040 *
7041 * The PFN range must belong to a single zone.
7042 *
7043 * Returns zero on success or negative error code. On success all
7044 * pages which PFN is in [start, end) are allocated for the caller and
7045 * need to be freed with free_contig_range().
7046 */
0815f3d8
MN
7047int alloc_contig_range(unsigned long start, unsigned long end,
7048 unsigned migratetype)
041d3a8c 7049{
041d3a8c 7050 unsigned long outer_start, outer_end;
d00181b9
KS
7051 unsigned int order;
7052 int ret = 0;
041d3a8c 7053
bb13ffeb
MG
7054 struct compact_control cc = {
7055 .nr_migratepages = 0,
7056 .order = -1,
7057 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7058 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7059 .ignore_skip_hint = true,
7060 };
7061 INIT_LIST_HEAD(&cc.migratepages);
7062
041d3a8c
MN
7063 /*
7064 * What we do here is we mark all pageblocks in range as
7065 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7066 * have different sizes, and due to the way page allocator
7067 * work, we align the range to biggest of the two pages so
7068 * that page allocator won't try to merge buddies from
7069 * different pageblocks and change MIGRATE_ISOLATE to some
7070 * other migration type.
7071 *
7072 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7073 * migrate the pages from an unaligned range (ie. pages that
7074 * we are interested in). This will put all the pages in
7075 * range back to page allocator as MIGRATE_ISOLATE.
7076 *
7077 * When this is done, we take the pages in range from page
7078 * allocator removing them from the buddy system. This way
7079 * page allocator will never consider using them.
7080 *
7081 * This lets us mark the pageblocks back as
7082 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7083 * aligned range but not in the unaligned, original range are
7084 * put back to page allocator so that buddy can use them.
7085 */
7086
7087 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7088 pfn_max_align_up(end), migratetype,
7089 false);
041d3a8c 7090 if (ret)
86a595f9 7091 return ret;
041d3a8c 7092
8ef5849f
JK
7093 /*
7094 * In case of -EBUSY, we'd like to know which page causes problem.
7095 * So, just fall through. We will check it in test_pages_isolated().
7096 */
bb13ffeb 7097 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7098 if (ret && ret != -EBUSY)
041d3a8c
MN
7099 goto done;
7100
7101 /*
7102 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7103 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7104 * more, all pages in [start, end) are free in page allocator.
7105 * What we are going to do is to allocate all pages from
7106 * [start, end) (that is remove them from page allocator).
7107 *
7108 * The only problem is that pages at the beginning and at the
7109 * end of interesting range may be not aligned with pages that
7110 * page allocator holds, ie. they can be part of higher order
7111 * pages. Because of this, we reserve the bigger range and
7112 * once this is done free the pages we are not interested in.
7113 *
7114 * We don't have to hold zone->lock here because the pages are
7115 * isolated thus they won't get removed from buddy.
7116 */
7117
7118 lru_add_drain_all();
510f5507 7119 drain_all_pages(cc.zone);
041d3a8c
MN
7120
7121 order = 0;
7122 outer_start = start;
7123 while (!PageBuddy(pfn_to_page(outer_start))) {
7124 if (++order >= MAX_ORDER) {
8ef5849f
JK
7125 outer_start = start;
7126 break;
041d3a8c
MN
7127 }
7128 outer_start &= ~0UL << order;
7129 }
7130
8ef5849f
JK
7131 if (outer_start != start) {
7132 order = page_order(pfn_to_page(outer_start));
7133
7134 /*
7135 * outer_start page could be small order buddy page and
7136 * it doesn't include start page. Adjust outer_start
7137 * in this case to report failed page properly
7138 * on tracepoint in test_pages_isolated()
7139 */
7140 if (outer_start + (1UL << order) <= start)
7141 outer_start = start;
7142 }
7143
041d3a8c 7144 /* Make sure the range is really isolated. */
b023f468 7145 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7146 pr_info("%s: [%lx, %lx) PFNs busy\n",
7147 __func__, outer_start, end);
041d3a8c
MN
7148 ret = -EBUSY;
7149 goto done;
7150 }
7151
49f223a9 7152 /* Grab isolated pages from freelists. */
bb13ffeb 7153 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7154 if (!outer_end) {
7155 ret = -EBUSY;
7156 goto done;
7157 }
7158
7159 /* Free head and tail (if any) */
7160 if (start != outer_start)
7161 free_contig_range(outer_start, start - outer_start);
7162 if (end != outer_end)
7163 free_contig_range(end, outer_end - end);
7164
7165done:
7166 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7167 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7168 return ret;
7169}
7170
7171void free_contig_range(unsigned long pfn, unsigned nr_pages)
7172{
bcc2b02f
MS
7173 unsigned int count = 0;
7174
7175 for (; nr_pages--; pfn++) {
7176 struct page *page = pfn_to_page(pfn);
7177
7178 count += page_count(page) != 1;
7179 __free_page(page);
7180 }
7181 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7182}
7183#endif
7184
4ed7e022 7185#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7186/*
7187 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7188 * page high values need to be recalulated.
7189 */
4ed7e022
JL
7190void __meminit zone_pcp_update(struct zone *zone)
7191{
0a647f38 7192 unsigned cpu;
c8e251fa 7193 mutex_lock(&pcp_batch_high_lock);
0a647f38 7194 for_each_possible_cpu(cpu)
169f6c19
CS
7195 pageset_set_high_and_batch(zone,
7196 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7197 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7198}
7199#endif
7200
340175b7
JL
7201void zone_pcp_reset(struct zone *zone)
7202{
7203 unsigned long flags;
5a883813
MK
7204 int cpu;
7205 struct per_cpu_pageset *pset;
340175b7
JL
7206
7207 /* avoid races with drain_pages() */
7208 local_irq_save(flags);
7209 if (zone->pageset != &boot_pageset) {
5a883813
MK
7210 for_each_online_cpu(cpu) {
7211 pset = per_cpu_ptr(zone->pageset, cpu);
7212 drain_zonestat(zone, pset);
7213 }
340175b7
JL
7214 free_percpu(zone->pageset);
7215 zone->pageset = &boot_pageset;
7216 }
7217 local_irq_restore(flags);
7218}
7219
6dcd73d7 7220#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7221/*
b9eb6319
JK
7222 * All pages in the range must be in a single zone and isolated
7223 * before calling this.
0c0e6195
KH
7224 */
7225void
7226__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7227{
7228 struct page *page;
7229 struct zone *zone;
7aeb09f9 7230 unsigned int order, i;
0c0e6195
KH
7231 unsigned long pfn;
7232 unsigned long flags;
7233 /* find the first valid pfn */
7234 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7235 if (pfn_valid(pfn))
7236 break;
7237 if (pfn == end_pfn)
7238 return;
7239 zone = page_zone(pfn_to_page(pfn));
7240 spin_lock_irqsave(&zone->lock, flags);
7241 pfn = start_pfn;
7242 while (pfn < end_pfn) {
7243 if (!pfn_valid(pfn)) {
7244 pfn++;
7245 continue;
7246 }
7247 page = pfn_to_page(pfn);
b023f468
WC
7248 /*
7249 * The HWPoisoned page may be not in buddy system, and
7250 * page_count() is not 0.
7251 */
7252 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7253 pfn++;
7254 SetPageReserved(page);
7255 continue;
7256 }
7257
0c0e6195
KH
7258 BUG_ON(page_count(page));
7259 BUG_ON(!PageBuddy(page));
7260 order = page_order(page);
7261#ifdef CONFIG_DEBUG_VM
1170532b
JP
7262 pr_info("remove from free list %lx %d %lx\n",
7263 pfn, 1 << order, end_pfn);
0c0e6195
KH
7264#endif
7265 list_del(&page->lru);
7266 rmv_page_order(page);
7267 zone->free_area[order].nr_free--;
0c0e6195
KH
7268 for (i = 0; i < (1 << order); i++)
7269 SetPageReserved((page+i));
7270 pfn += (1 << order);
7271 }
7272 spin_unlock_irqrestore(&zone->lock, flags);
7273}
7274#endif
8d22ba1b 7275
8d22ba1b
WF
7276bool is_free_buddy_page(struct page *page)
7277{
7278 struct zone *zone = page_zone(page);
7279 unsigned long pfn = page_to_pfn(page);
7280 unsigned long flags;
7aeb09f9 7281 unsigned int order;
8d22ba1b
WF
7282
7283 spin_lock_irqsave(&zone->lock, flags);
7284 for (order = 0; order < MAX_ORDER; order++) {
7285 struct page *page_head = page - (pfn & ((1 << order) - 1));
7286
7287 if (PageBuddy(page_head) && page_order(page_head) >= order)
7288 break;
7289 }
7290 spin_unlock_irqrestore(&zone->lock, flags);
7291
7292 return order < MAX_ORDER;
7293}