[PATCH] fix x86_64-mm-spinlock-cleanup
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
ac924c60 42#include <asm/div64.h>
1da177e4
LT
43#include "internal.h"
44
45/*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
c3d8c141 49nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 50EXPORT_SYMBOL(node_online_map);
c3d8c141 51nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 52EXPORT_SYMBOL(node_possible_map);
6c231b7b 53unsigned long totalram_pages __read_mostly;
cb45b0e9 54unsigned long totalreserve_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
2f1b6248
CL
71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
fb0e7942 73#ifdef CONFIG_ZONE_DMA32
2f1b6248 74 256,
fb0e7942 75#endif
e53ef38d 76#ifdef CONFIG_HIGHMEM
2f1b6248 77 32
e53ef38d 78#endif
2f1b6248 79};
1da177e4
LT
80
81EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
82
83/*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
c3d8c141 87struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
88EXPORT_SYMBOL(zone_table);
89
2f1b6248
CL
90static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
fb0e7942 92#ifdef CONFIG_ZONE_DMA32
2f1b6248 93 "DMA32",
fb0e7942 94#endif
2f1b6248 95 "Normal",
e53ef38d 96#ifdef CONFIG_HIGHMEM
2f1b6248 97 "HighMem"
e53ef38d 98#endif
2f1b6248
CL
99};
100
1da177e4
LT
101int min_free_kbytes = 1024;
102
86356ab1
YG
103unsigned long __meminitdata nr_kernel_pages;
104unsigned long __meminitdata nr_all_pages;
1da177e4 105
13e7444b 106#ifdef CONFIG_DEBUG_VM
c6a57e19 107static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 108{
bdc8cb98
DH
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
c6a57e19 112
bdc8cb98
DH
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
120
121 return ret;
c6a57e19
DH
122}
123
124static int page_is_consistent(struct zone *zone, struct page *page)
125{
1da177e4
LT
126#ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 128 return 0;
1da177e4
LT
129#endif
130 if (zone != page_zone(page))
c6a57e19
DH
131 return 0;
132
133 return 1;
134}
135/*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138static int bad_range(struct zone *zone, struct page *page)
139{
140 if (page_outside_zone_boundaries(zone, page))
1da177e4 141 return 1;
c6a57e19
DH
142 if (!page_is_consistent(zone, page))
143 return 1;
144
1da177e4
LT
145 return 0;
146}
13e7444b
NP
147#else
148static inline int bad_range(struct zone *zone, struct page *page)
149{
150 return 0;
151}
152#endif
153
224abf92 154static void bad_page(struct page *page)
1da177e4 155{
224abf92 156 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
224abf92
NP
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
1da177e4 163 dump_stack();
334795ec
HD
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
1da177e4 166 1 << PG_locked |
1da177e4
LT
167 1 << PG_active |
168 1 << PG_dirty |
334795ec
HD
169 1 << PG_reclaim |
170 1 << PG_slab |
1da177e4 171 1 << PG_swapcache |
676165a8
NP
172 1 << PG_writeback |
173 1 << PG_buddy );
1da177e4
LT
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
9f158333 177 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
178}
179
1da177e4
LT
180/*
181 * Higher-order pages are called "compound pages". They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
41d78ba5
HD
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
1da177e4 193 */
d98c7a09
HD
194
195static void free_compound_page(struct page *page)
196{
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
198}
199
1da177e4
LT
200static void prep_compound_page(struct page *page, unsigned long order)
201{
202 int i;
203 int nr_pages = 1 << order;
204
d98c7a09 205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 206 page[1].lru.prev = (void *)order;
1da177e4
LT
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
5e9dace8 210 __SetPageCompound(p);
4c21e2f2 211 set_page_private(p, (unsigned long)page);
1da177e4
LT
212 }
213}
214
215static void destroy_compound_page(struct page *page, unsigned long order)
216{
217 int i;
218 int nr_pages = 1 << order;
219
41d78ba5 220 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 221 bad_page(page);
1da177e4
LT
222
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
225
224abf92
NP
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
5e9dace8 229 __ClearPageCompound(p);
1da177e4
LT
230 }
231}
1da177e4 232
17cf4406
NP
233static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234{
235 int i;
236
725d704e 237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
238 /*
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
241 */
725d704e 242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
245}
246
1da177e4
LT
247/*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
6aa3001b
AM
252static inline unsigned long page_order(struct page *page)
253{
4c21e2f2 254 return page_private(page);
1da177e4
LT
255}
256
6aa3001b
AM
257static inline void set_page_order(struct page *page, int order)
258{
4c21e2f2 259 set_page_private(page, order);
676165a8 260 __SetPageBuddy(page);
1da177e4
LT
261}
262
263static inline void rmv_page_order(struct page *page)
264{
676165a8 265 __ClearPageBuddy(page);
4c21e2f2 266 set_page_private(page, 0);
1da177e4
LT
267}
268
269/*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
283 *
d6e05edc 284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
285 */
286static inline struct page *
287__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288{
289 unsigned long buddy_idx = page_idx ^ (1 << order);
290
291 return page + (buddy_idx - page_idx);
292}
293
294static inline unsigned long
295__find_combined_index(unsigned long page_idx, unsigned int order)
296{
297 return (page_idx & ~(1 << order));
298}
299
300/*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
13e7444b 303 * (a) the buddy is not in a hole &&
676165a8 304 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
676165a8
NP
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 310 *
676165a8 311 * For recording page's order, we use page_private(page).
1da177e4 312 */
cb2b95e1
AW
313static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
1da177e4 315{
13e7444b 316#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 317 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
318 return 0;
319#endif
320
cb2b95e1
AW
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
323
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
6aa3001b 326 return 1;
676165a8 327 }
6aa3001b 328 return 0;
1da177e4
LT
329}
330
331/*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
676165a8 344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 345 * order is recorded in page_private(page) field.
1da177e4
LT
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
48db57f8 355static inline void __free_one_page(struct page *page,
1da177e4
LT
356 struct zone *zone, unsigned int order)
357{
358 unsigned long page_idx;
359 int order_size = 1 << order;
360
224abf92 361 if (unlikely(PageCompound(page)))
1da177e4
LT
362 destroy_compound_page(page, order);
363
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
725d704e
NP
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
1da177e4
LT
368
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
374
1da177e4 375 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 376 if (!page_is_buddy(page, buddy, order))
1da177e4 377 break; /* Move the buddy up one level. */
13e7444b 378
1da177e4
LT
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
13e7444b 383 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
387 }
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
391}
392
224abf92 393static inline int free_pages_check(struct page *page)
1da177e4 394{
92be2e33
NP
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
1da177e4
LT
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
b5810039 406 1 << PG_writeback |
676165a8
NP
407 1 << PG_reserved |
408 1 << PG_buddy ))))
224abf92 409 bad_page(page);
1da177e4 410 if (PageDirty(page))
242e5468 411 __ClearPageDirty(page);
689bcebf
HD
412 /*
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
416 */
417 return PageReserved(page);
1da177e4
LT
418}
419
420/*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
207f36ee 423 * count is the number of pages to free.
1da177e4
LT
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
48db57f8
NP
431static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
1da177e4 433{
c54ad30c 434 spin_lock(&zone->lock);
1da177e4
LT
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
48db57f8
NP
437 while (count--) {
438 struct page *page;
439
725d704e 440 VM_BUG_ON(list_empty(list));
1da177e4 441 page = list_entry(list->prev, struct page, lru);
48db57f8 442 /* have to delete it as __free_one_page list manipulates */
1da177e4 443 list_del(&page->lru);
48db57f8 444 __free_one_page(page, zone, order);
1da177e4 445 }
c54ad30c 446 spin_unlock(&zone->lock);
1da177e4
LT
447}
448
48db57f8 449static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 450{
006d22d9
CL
451 spin_lock(&zone->lock);
452 zone->all_unreclaimable = 0;
453 zone->pages_scanned = 0;
454 __free_one_page(page, zone ,order);
455 spin_unlock(&zone->lock);
48db57f8
NP
456}
457
458static void __free_pages_ok(struct page *page, unsigned int order)
459{
460 unsigned long flags;
1da177e4 461 int i;
689bcebf 462 int reserved = 0;
1da177e4
LT
463
464 arch_free_page(page, order);
de5097c2 465 if (!PageHighMem(page))
f9b8404c
IM
466 debug_check_no_locks_freed(page_address(page),
467 PAGE_SIZE<<order);
1da177e4 468
1da177e4 469 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 470 reserved += free_pages_check(page + i);
689bcebf
HD
471 if (reserved)
472 return;
473
48db57f8 474 kernel_map_pages(page, 1 << order, 0);
c54ad30c 475 local_irq_save(flags);
f8891e5e 476 __count_vm_events(PGFREE, 1 << order);
48db57f8 477 free_one_page(page_zone(page), page, order);
c54ad30c 478 local_irq_restore(flags);
1da177e4
LT
479}
480
a226f6c8
DH
481/*
482 * permit the bootmem allocator to evade page validation on high-order frees
483 */
484void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
485{
486 if (order == 0) {
487 __ClearPageReserved(page);
488 set_page_count(page, 0);
7835e98b 489 set_page_refcounted(page);
545b1ea9 490 __free_page(page);
a226f6c8 491 } else {
a226f6c8
DH
492 int loop;
493
545b1ea9 494 prefetchw(page);
a226f6c8
DH
495 for (loop = 0; loop < BITS_PER_LONG; loop++) {
496 struct page *p = &page[loop];
497
545b1ea9
NP
498 if (loop + 1 < BITS_PER_LONG)
499 prefetchw(p + 1);
a226f6c8
DH
500 __ClearPageReserved(p);
501 set_page_count(p, 0);
502 }
503
7835e98b 504 set_page_refcounted(page);
545b1ea9 505 __free_pages(page, order);
a226f6c8
DH
506 }
507}
508
1da177e4
LT
509
510/*
511 * The order of subdivision here is critical for the IO subsystem.
512 * Please do not alter this order without good reasons and regression
513 * testing. Specifically, as large blocks of memory are subdivided,
514 * the order in which smaller blocks are delivered depends on the order
515 * they're subdivided in this function. This is the primary factor
516 * influencing the order in which pages are delivered to the IO
517 * subsystem according to empirical testing, and this is also justified
518 * by considering the behavior of a buddy system containing a single
519 * large block of memory acted on by a series of small allocations.
520 * This behavior is a critical factor in sglist merging's success.
521 *
522 * -- wli
523 */
085cc7d5 524static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
525 int low, int high, struct free_area *area)
526{
527 unsigned long size = 1 << high;
528
529 while (high > low) {
530 area--;
531 high--;
532 size >>= 1;
725d704e 533 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
534 list_add(&page[size].lru, &area->free_list);
535 area->nr_free++;
536 set_page_order(&page[size], high);
537 }
1da177e4
LT
538}
539
1da177e4
LT
540/*
541 * This page is about to be returned from the page allocator
542 */
17cf4406 543static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 544{
92be2e33
NP
545 if (unlikely(page_mapcount(page) |
546 (page->mapping != NULL) |
547 (page_count(page) != 0) |
334795ec
HD
548 (page->flags & (
549 1 << PG_lru |
1da177e4
LT
550 1 << PG_private |
551 1 << PG_locked |
1da177e4
LT
552 1 << PG_active |
553 1 << PG_dirty |
554 1 << PG_reclaim |
334795ec 555 1 << PG_slab |
1da177e4 556 1 << PG_swapcache |
b5810039 557 1 << PG_writeback |
676165a8
NP
558 1 << PG_reserved |
559 1 << PG_buddy ))))
224abf92 560 bad_page(page);
1da177e4 561
689bcebf
HD
562 /*
563 * For now, we report if PG_reserved was found set, but do not
564 * clear it, and do not allocate the page: as a safety net.
565 */
566 if (PageReserved(page))
567 return 1;
568
1da177e4
LT
569 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
570 1 << PG_referenced | 1 << PG_arch_1 |
571 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 572 set_page_private(page, 0);
7835e98b 573 set_page_refcounted(page);
1da177e4 574 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
575
576 if (gfp_flags & __GFP_ZERO)
577 prep_zero_page(page, order, gfp_flags);
578
579 if (order && (gfp_flags & __GFP_COMP))
580 prep_compound_page(page, order);
581
689bcebf 582 return 0;
1da177e4
LT
583}
584
585/*
586 * Do the hard work of removing an element from the buddy allocator.
587 * Call me with the zone->lock already held.
588 */
589static struct page *__rmqueue(struct zone *zone, unsigned int order)
590{
591 struct free_area * area;
592 unsigned int current_order;
593 struct page *page;
594
595 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
596 area = zone->free_area + current_order;
597 if (list_empty(&area->free_list))
598 continue;
599
600 page = list_entry(area->free_list.next, struct page, lru);
601 list_del(&page->lru);
602 rmv_page_order(page);
603 area->nr_free--;
604 zone->free_pages -= 1UL << order;
085cc7d5
NP
605 expand(zone, page, order, current_order, area);
606 return page;
1da177e4
LT
607 }
608
609 return NULL;
610}
611
612/*
613 * Obtain a specified number of elements from the buddy allocator, all under
614 * a single hold of the lock, for efficiency. Add them to the supplied list.
615 * Returns the number of new pages which were placed at *list.
616 */
617static int rmqueue_bulk(struct zone *zone, unsigned int order,
618 unsigned long count, struct list_head *list)
619{
1da177e4 620 int i;
1da177e4 621
c54ad30c 622 spin_lock(&zone->lock);
1da177e4 623 for (i = 0; i < count; ++i) {
085cc7d5
NP
624 struct page *page = __rmqueue(zone, order);
625 if (unlikely(page == NULL))
1da177e4 626 break;
1da177e4
LT
627 list_add_tail(&page->lru, list);
628 }
c54ad30c 629 spin_unlock(&zone->lock);
085cc7d5 630 return i;
1da177e4
LT
631}
632
4ae7c039 633#ifdef CONFIG_NUMA
8fce4d8e
CL
634/*
635 * Called from the slab reaper to drain pagesets on a particular node that
39bbcb8f 636 * belongs to the currently executing processor.
879336c3
CL
637 * Note that this function must be called with the thread pinned to
638 * a single processor.
8fce4d8e
CL
639 */
640void drain_node_pages(int nodeid)
4ae7c039 641{
2f6726e5
CL
642 int i;
643 enum zone_type z;
4ae7c039
CL
644 unsigned long flags;
645
8fce4d8e
CL
646 for (z = 0; z < MAX_NR_ZONES; z++) {
647 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
648 struct per_cpu_pageset *pset;
649
39bbcb8f
CL
650 if (!populated_zone(zone))
651 continue;
652
23316bc8 653 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
654 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
655 struct per_cpu_pages *pcp;
656
657 pcp = &pset->pcp[i];
879336c3
CL
658 if (pcp->count) {
659 local_irq_save(flags);
660 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
661 pcp->count = 0;
662 local_irq_restore(flags);
663 }
4ae7c039
CL
664 }
665 }
4ae7c039
CL
666}
667#endif
668
1da177e4
LT
669#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
670static void __drain_pages(unsigned int cpu)
671{
c54ad30c 672 unsigned long flags;
1da177e4
LT
673 struct zone *zone;
674 int i;
675
676 for_each_zone(zone) {
677 struct per_cpu_pageset *pset;
678
e7c8d5c9 679 pset = zone_pcp(zone, cpu);
1da177e4
LT
680 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
681 struct per_cpu_pages *pcp;
682
683 pcp = &pset->pcp[i];
c54ad30c 684 local_irq_save(flags);
48db57f8
NP
685 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
686 pcp->count = 0;
c54ad30c 687 local_irq_restore(flags);
1da177e4
LT
688 }
689 }
690}
691#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
692
693#ifdef CONFIG_PM
694
695void mark_free_pages(struct zone *zone)
696{
f623f0db
RW
697 unsigned long pfn, max_zone_pfn;
698 unsigned long flags;
1da177e4
LT
699 int order;
700 struct list_head *curr;
701
702 if (!zone->spanned_pages)
703 return;
704
705 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
706
707 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
708 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
709 if (pfn_valid(pfn)) {
710 struct page *page = pfn_to_page(pfn);
711
712 if (!PageNosave(page))
713 ClearPageNosaveFree(page);
714 }
1da177e4
LT
715
716 for (order = MAX_ORDER - 1; order >= 0; --order)
717 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 718 unsigned long i;
1da177e4 719
f623f0db
RW
720 pfn = page_to_pfn(list_entry(curr, struct page, lru));
721 for (i = 0; i < (1UL << order); i++)
722 SetPageNosaveFree(pfn_to_page(pfn + i));
723 }
1da177e4 724
1da177e4
LT
725 spin_unlock_irqrestore(&zone->lock, flags);
726}
727
728/*
729 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
730 */
731void drain_local_pages(void)
732{
733 unsigned long flags;
734
735 local_irq_save(flags);
736 __drain_pages(smp_processor_id());
737 local_irq_restore(flags);
738}
739#endif /* CONFIG_PM */
740
1da177e4
LT
741/*
742 * Free a 0-order page
743 */
1da177e4
LT
744static void fastcall free_hot_cold_page(struct page *page, int cold)
745{
746 struct zone *zone = page_zone(page);
747 struct per_cpu_pages *pcp;
748 unsigned long flags;
749
750 arch_free_page(page, 0);
751
1da177e4
LT
752 if (PageAnon(page))
753 page->mapping = NULL;
224abf92 754 if (free_pages_check(page))
689bcebf
HD
755 return;
756
689bcebf
HD
757 kernel_map_pages(page, 1, 0);
758
e7c8d5c9 759 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 760 local_irq_save(flags);
f8891e5e 761 __count_vm_event(PGFREE);
1da177e4
LT
762 list_add(&page->lru, &pcp->list);
763 pcp->count++;
48db57f8
NP
764 if (pcp->count >= pcp->high) {
765 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
766 pcp->count -= pcp->batch;
767 }
1da177e4
LT
768 local_irq_restore(flags);
769 put_cpu();
770}
771
772void fastcall free_hot_page(struct page *page)
773{
774 free_hot_cold_page(page, 0);
775}
776
777void fastcall free_cold_page(struct page *page)
778{
779 free_hot_cold_page(page, 1);
780}
781
8dfcc9ba
NP
782/*
783 * split_page takes a non-compound higher-order page, and splits it into
784 * n (1<<order) sub-pages: page[0..n]
785 * Each sub-page must be freed individually.
786 *
787 * Note: this is probably too low level an operation for use in drivers.
788 * Please consult with lkml before using this in your driver.
789 */
790void split_page(struct page *page, unsigned int order)
791{
792 int i;
793
725d704e
NP
794 VM_BUG_ON(PageCompound(page));
795 VM_BUG_ON(!page_count(page));
7835e98b
NP
796 for (i = 1; i < (1 << order); i++)
797 set_page_refcounted(page + i);
8dfcc9ba 798}
8dfcc9ba 799
1da177e4
LT
800/*
801 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
802 * we cheat by calling it from here, in the order > 0 path. Saves a branch
803 * or two.
804 */
a74609fa
NP
805static struct page *buffered_rmqueue(struct zonelist *zonelist,
806 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
807{
808 unsigned long flags;
689bcebf 809 struct page *page;
1da177e4 810 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 811 int cpu;
1da177e4 812
689bcebf 813again:
a74609fa 814 cpu = get_cpu();
48db57f8 815 if (likely(order == 0)) {
1da177e4
LT
816 struct per_cpu_pages *pcp;
817
a74609fa 818 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 819 local_irq_save(flags);
a74609fa 820 if (!pcp->count) {
1da177e4
LT
821 pcp->count += rmqueue_bulk(zone, 0,
822 pcp->batch, &pcp->list);
a74609fa
NP
823 if (unlikely(!pcp->count))
824 goto failed;
1da177e4 825 }
a74609fa
NP
826 page = list_entry(pcp->list.next, struct page, lru);
827 list_del(&page->lru);
828 pcp->count--;
7fb1d9fc 829 } else {
1da177e4
LT
830 spin_lock_irqsave(&zone->lock, flags);
831 page = __rmqueue(zone, order);
a74609fa
NP
832 spin_unlock(&zone->lock);
833 if (!page)
834 goto failed;
1da177e4
LT
835 }
836
f8891e5e 837 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 838 zone_statistics(zonelist, zone);
a74609fa
NP
839 local_irq_restore(flags);
840 put_cpu();
1da177e4 841
725d704e 842 VM_BUG_ON(bad_range(zone, page));
17cf4406 843 if (prep_new_page(page, order, gfp_flags))
a74609fa 844 goto again;
1da177e4 845 return page;
a74609fa
NP
846
847failed:
848 local_irq_restore(flags);
849 put_cpu();
850 return NULL;
1da177e4
LT
851}
852
7fb1d9fc 853#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
854#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
855#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
856#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
857#define ALLOC_HARDER 0x10 /* try to alloc harder */
858#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
859#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 860
1da177e4
LT
861/*
862 * Return 1 if free pages are above 'mark'. This takes into account the order
863 * of the allocation.
864 */
865int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 866 int classzone_idx, int alloc_flags)
1da177e4
LT
867{
868 /* free_pages my go negative - that's OK */
869 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
870 int o;
871
7fb1d9fc 872 if (alloc_flags & ALLOC_HIGH)
1da177e4 873 min -= min / 2;
7fb1d9fc 874 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
875 min -= min / 4;
876
877 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
878 return 0;
879 for (o = 0; o < order; o++) {
880 /* At the next order, this order's pages become unavailable */
881 free_pages -= z->free_area[o].nr_free << o;
882
883 /* Require fewer higher order pages to be free */
884 min >>= 1;
885
886 if (free_pages <= min)
887 return 0;
888 }
889 return 1;
890}
891
7fb1d9fc
RS
892/*
893 * get_page_from_freeliest goes through the zonelist trying to allocate
894 * a page.
895 */
896static struct page *
897get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
898 struct zonelist *zonelist, int alloc_flags)
753ee728 899{
7fb1d9fc
RS
900 struct zone **z = zonelist->zones;
901 struct page *page = NULL;
902 int classzone_idx = zone_idx(*z);
1192d526 903 struct zone *zone;
7fb1d9fc
RS
904
905 /*
906 * Go through the zonelist once, looking for a zone with enough free.
907 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
908 */
909 do {
1192d526 910 zone = *z;
9b819d20 911 if (unlikely((gfp_mask & __GFP_THISNODE) &&
1192d526 912 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 913 break;
7fb1d9fc 914 if ((alloc_flags & ALLOC_CPUSET) &&
1192d526 915 !cpuset_zone_allowed(zone, gfp_mask))
7fb1d9fc
RS
916 continue;
917
918 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
919 unsigned long mark;
920 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 921 mark = zone->pages_min;
3148890b 922 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 923 mark = zone->pages_low;
3148890b 924 else
1192d526
CL
925 mark = zone->pages_high;
926 if (!zone_watermark_ok(zone , order, mark,
7fb1d9fc 927 classzone_idx, alloc_flags))
9eeff239 928 if (!zone_reclaim_mode ||
1192d526 929 !zone_reclaim(zone, gfp_mask, order))
9eeff239 930 continue;
7fb1d9fc
RS
931 }
932
1192d526 933 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
7fb1d9fc 934 if (page) {
7fb1d9fc
RS
935 break;
936 }
937 } while (*(++z) != NULL);
938 return page;
753ee728
MH
939}
940
1da177e4
LT
941/*
942 * This is the 'heart' of the zoned buddy allocator.
943 */
944struct page * fastcall
dd0fc66f 945__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
946 struct zonelist *zonelist)
947{
260b2367 948 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 949 struct zone **z;
1da177e4
LT
950 struct page *page;
951 struct reclaim_state reclaim_state;
952 struct task_struct *p = current;
1da177e4 953 int do_retry;
7fb1d9fc 954 int alloc_flags;
1da177e4
LT
955 int did_some_progress;
956
957 might_sleep_if(wait);
958
6b1de916 959restart:
7fb1d9fc 960 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 961
7fb1d9fc 962 if (unlikely(*z == NULL)) {
1da177e4
LT
963 /* Should this ever happen?? */
964 return NULL;
965 }
6b1de916 966
7fb1d9fc 967 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 968 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
969 if (page)
970 goto got_pg;
1da177e4 971
6b1de916 972 do {
43b0bc00 973 wakeup_kswapd(*z, order);
6b1de916 974 } while (*(++z));
1da177e4 975
9bf2229f 976 /*
7fb1d9fc
RS
977 * OK, we're below the kswapd watermark and have kicked background
978 * reclaim. Now things get more complex, so set up alloc_flags according
979 * to how we want to proceed.
980 *
981 * The caller may dip into page reserves a bit more if the caller
982 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
983 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
984 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 985 */
3148890b 986 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
987 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
988 alloc_flags |= ALLOC_HARDER;
989 if (gfp_mask & __GFP_HIGH)
990 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
991 if (wait)
992 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
993
994 /*
995 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 996 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
997 *
998 * This is the last chance, in general, before the goto nopage.
999 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1000 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1001 */
7fb1d9fc
RS
1002 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1003 if (page)
1004 goto got_pg;
1da177e4
LT
1005
1006 /* This allocation should allow future memory freeing. */
b84a35be
NP
1007
1008 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1009 && !in_interrupt()) {
1010 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1011nofail_alloc:
b84a35be 1012 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1013 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1014 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1015 if (page)
1016 goto got_pg;
885036d3
KK
1017 if (gfp_mask & __GFP_NOFAIL) {
1018 blk_congestion_wait(WRITE, HZ/50);
1019 goto nofail_alloc;
1020 }
1da177e4
LT
1021 }
1022 goto nopage;
1023 }
1024
1025 /* Atomic allocations - we can't balance anything */
1026 if (!wait)
1027 goto nopage;
1028
1029rebalance:
1030 cond_resched();
1031
1032 /* We now go into synchronous reclaim */
3e0d98b9 1033 cpuset_memory_pressure_bump();
1da177e4
LT
1034 p->flags |= PF_MEMALLOC;
1035 reclaim_state.reclaimed_slab = 0;
1036 p->reclaim_state = &reclaim_state;
1037
7fb1d9fc 1038 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1039
1040 p->reclaim_state = NULL;
1041 p->flags &= ~PF_MEMALLOC;
1042
1043 cond_resched();
1044
1045 if (likely(did_some_progress)) {
7fb1d9fc
RS
1046 page = get_page_from_freelist(gfp_mask, order,
1047 zonelist, alloc_flags);
1048 if (page)
1049 goto got_pg;
1da177e4
LT
1050 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1051 /*
1052 * Go through the zonelist yet one more time, keep
1053 * very high watermark here, this is only to catch
1054 * a parallel oom killing, we must fail if we're still
1055 * under heavy pressure.
1056 */
7fb1d9fc 1057 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1058 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1059 if (page)
1060 goto got_pg;
1da177e4 1061
9b0f8b04 1062 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1063 goto restart;
1064 }
1065
1066 /*
1067 * Don't let big-order allocations loop unless the caller explicitly
1068 * requests that. Wait for some write requests to complete then retry.
1069 *
1070 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1071 * <= 3, but that may not be true in other implementations.
1072 */
1073 do_retry = 0;
1074 if (!(gfp_mask & __GFP_NORETRY)) {
1075 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1076 do_retry = 1;
1077 if (gfp_mask & __GFP_NOFAIL)
1078 do_retry = 1;
1079 }
1080 if (do_retry) {
1081 blk_congestion_wait(WRITE, HZ/50);
1082 goto rebalance;
1083 }
1084
1085nopage:
1086 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1087 printk(KERN_WARNING "%s: page allocation failure."
1088 " order:%d, mode:0x%x\n",
1089 p->comm, order, gfp_mask);
1090 dump_stack();
578c2fd6 1091 show_mem();
1da177e4 1092 }
1da177e4 1093got_pg:
1da177e4
LT
1094 return page;
1095}
1096
1097EXPORT_SYMBOL(__alloc_pages);
1098
1099/*
1100 * Common helper functions.
1101 */
dd0fc66f 1102fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1103{
1104 struct page * page;
1105 page = alloc_pages(gfp_mask, order);
1106 if (!page)
1107 return 0;
1108 return (unsigned long) page_address(page);
1109}
1110
1111EXPORT_SYMBOL(__get_free_pages);
1112
dd0fc66f 1113fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1114{
1115 struct page * page;
1116
1117 /*
1118 * get_zeroed_page() returns a 32-bit address, which cannot represent
1119 * a highmem page
1120 */
725d704e 1121 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1122
1123 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1124 if (page)
1125 return (unsigned long) page_address(page);
1126 return 0;
1127}
1128
1129EXPORT_SYMBOL(get_zeroed_page);
1130
1131void __pagevec_free(struct pagevec *pvec)
1132{
1133 int i = pagevec_count(pvec);
1134
1135 while (--i >= 0)
1136 free_hot_cold_page(pvec->pages[i], pvec->cold);
1137}
1138
1139fastcall void __free_pages(struct page *page, unsigned int order)
1140{
b5810039 1141 if (put_page_testzero(page)) {
1da177e4
LT
1142 if (order == 0)
1143 free_hot_page(page);
1144 else
1145 __free_pages_ok(page, order);
1146 }
1147}
1148
1149EXPORT_SYMBOL(__free_pages);
1150
1151fastcall void free_pages(unsigned long addr, unsigned int order)
1152{
1153 if (addr != 0) {
725d704e 1154 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1155 __free_pages(virt_to_page((void *)addr), order);
1156 }
1157}
1158
1159EXPORT_SYMBOL(free_pages);
1160
1161/*
1162 * Total amount of free (allocatable) RAM:
1163 */
1164unsigned int nr_free_pages(void)
1165{
1166 unsigned int sum = 0;
1167 struct zone *zone;
1168
1169 for_each_zone(zone)
1170 sum += zone->free_pages;
1171
1172 return sum;
1173}
1174
1175EXPORT_SYMBOL(nr_free_pages);
1176
1177#ifdef CONFIG_NUMA
1178unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1179{
2f6726e5
CL
1180 unsigned int sum = 0;
1181 enum zone_type i;
1da177e4
LT
1182
1183 for (i = 0; i < MAX_NR_ZONES; i++)
1184 sum += pgdat->node_zones[i].free_pages;
1185
1186 return sum;
1187}
1188#endif
1189
1190static unsigned int nr_free_zone_pages(int offset)
1191{
e310fd43
MB
1192 /* Just pick one node, since fallback list is circular */
1193 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1194 unsigned int sum = 0;
1195
e310fd43
MB
1196 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1197 struct zone **zonep = zonelist->zones;
1198 struct zone *zone;
1da177e4 1199
e310fd43
MB
1200 for (zone = *zonep++; zone; zone = *zonep++) {
1201 unsigned long size = zone->present_pages;
1202 unsigned long high = zone->pages_high;
1203 if (size > high)
1204 sum += size - high;
1da177e4
LT
1205 }
1206
1207 return sum;
1208}
1209
1210/*
1211 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1212 */
1213unsigned int nr_free_buffer_pages(void)
1214{
af4ca457 1215 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1216}
1217
1218/*
1219 * Amount of free RAM allocatable within all zones
1220 */
1221unsigned int nr_free_pagecache_pages(void)
1222{
af4ca457 1223 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4 1224}
1da177e4
LT
1225#ifdef CONFIG_NUMA
1226static void show_node(struct zone *zone)
1227{
89fa3024 1228 printk("Node %ld ", zone_to_nid(zone));
1da177e4
LT
1229}
1230#else
1231#define show_node(zone) do { } while (0)
1232#endif
1233
1da177e4
LT
1234void si_meminfo(struct sysinfo *val)
1235{
1236 val->totalram = totalram_pages;
1237 val->sharedram = 0;
1238 val->freeram = nr_free_pages();
1239 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1240 val->totalhigh = totalhigh_pages;
1241 val->freehigh = nr_free_highpages();
1da177e4
LT
1242 val->mem_unit = PAGE_SIZE;
1243}
1244
1245EXPORT_SYMBOL(si_meminfo);
1246
1247#ifdef CONFIG_NUMA
1248void si_meminfo_node(struct sysinfo *val, int nid)
1249{
1250 pg_data_t *pgdat = NODE_DATA(nid);
1251
1252 val->totalram = pgdat->node_present_pages;
1253 val->freeram = nr_free_pages_pgdat(pgdat);
98d2b0eb 1254#ifdef CONFIG_HIGHMEM
1da177e4
LT
1255 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1256 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
98d2b0eb
CL
1257#else
1258 val->totalhigh = 0;
1259 val->freehigh = 0;
1260#endif
1da177e4
LT
1261 val->mem_unit = PAGE_SIZE;
1262}
1263#endif
1264
1265#define K(x) ((x) << (PAGE_SHIFT-10))
1266
1267/*
1268 * Show free area list (used inside shift_scroll-lock stuff)
1269 * We also calculate the percentage fragmentation. We do this by counting the
1270 * memory on each free list with the exception of the first item on the list.
1271 */
1272void show_free_areas(void)
1273{
1da177e4
LT
1274 int cpu, temperature;
1275 unsigned long active;
1276 unsigned long inactive;
1277 unsigned long free;
1278 struct zone *zone;
1279
1280 for_each_zone(zone) {
1281 show_node(zone);
1282 printk("%s per-cpu:", zone->name);
1283
f3fe6512 1284 if (!populated_zone(zone)) {
1da177e4
LT
1285 printk(" empty\n");
1286 continue;
1287 } else
1288 printk("\n");
1289
6b482c67 1290 for_each_online_cpu(cpu) {
1da177e4
LT
1291 struct per_cpu_pageset *pageset;
1292
e7c8d5c9 1293 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1294
1295 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1296 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1297 cpu,
1298 temperature ? "cold" : "hot",
1da177e4 1299 pageset->pcp[temperature].high,
4ae7c039
CL
1300 pageset->pcp[temperature].batch,
1301 pageset->pcp[temperature].count);
1da177e4
LT
1302 }
1303 }
1304
1da177e4
LT
1305 get_zone_counts(&active, &inactive, &free);
1306
1da177e4
LT
1307 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1308 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1309 active,
1310 inactive,
b1e7a8fd 1311 global_page_state(NR_FILE_DIRTY),
ce866b34 1312 global_page_state(NR_WRITEBACK),
fd39fc85 1313 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1314 nr_free_pages(),
972d1a7b
CL
1315 global_page_state(NR_SLAB_RECLAIMABLE) +
1316 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1317 global_page_state(NR_FILE_MAPPED),
df849a15 1318 global_page_state(NR_PAGETABLE));
1da177e4
LT
1319
1320 for_each_zone(zone) {
1321 int i;
1322
1323 show_node(zone);
1324 printk("%s"
1325 " free:%lukB"
1326 " min:%lukB"
1327 " low:%lukB"
1328 " high:%lukB"
1329 " active:%lukB"
1330 " inactive:%lukB"
1331 " present:%lukB"
1332 " pages_scanned:%lu"
1333 " all_unreclaimable? %s"
1334 "\n",
1335 zone->name,
1336 K(zone->free_pages),
1337 K(zone->pages_min),
1338 K(zone->pages_low),
1339 K(zone->pages_high),
1340 K(zone->nr_active),
1341 K(zone->nr_inactive),
1342 K(zone->present_pages),
1343 zone->pages_scanned,
1344 (zone->all_unreclaimable ? "yes" : "no")
1345 );
1346 printk("lowmem_reserve[]:");
1347 for (i = 0; i < MAX_NR_ZONES; i++)
1348 printk(" %lu", zone->lowmem_reserve[i]);
1349 printk("\n");
1350 }
1351
1352 for_each_zone(zone) {
8f9de51a 1353 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1354
1355 show_node(zone);
1356 printk("%s: ", zone->name);
f3fe6512 1357 if (!populated_zone(zone)) {
1da177e4
LT
1358 printk("empty\n");
1359 continue;
1360 }
1361
1362 spin_lock_irqsave(&zone->lock, flags);
1363 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1364 nr[order] = zone->free_area[order].nr_free;
1365 total += nr[order] << order;
1da177e4
LT
1366 }
1367 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1368 for (order = 0; order < MAX_ORDER; order++)
1369 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1370 printk("= %lukB\n", K(total));
1371 }
1372
1373 show_swap_cache_info();
1374}
1375
1376/*
1377 * Builds allocation fallback zone lists.
1a93205b
CL
1378 *
1379 * Add all populated zones of a node to the zonelist.
1da177e4 1380 */
86356ab1 1381static int __meminit build_zonelists_node(pg_data_t *pgdat,
2f6726e5 1382 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1da177e4 1383{
1a93205b
CL
1384 struct zone *zone;
1385
98d2b0eb 1386 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1387 zone_type++;
02a68a5e
CL
1388
1389 do {
2f6726e5 1390 zone_type--;
070f8032 1391 zone = pgdat->node_zones + zone_type;
1a93205b 1392 if (populated_zone(zone)) {
070f8032
CL
1393 zonelist->zones[nr_zones++] = zone;
1394 check_highest_zone(zone_type);
1da177e4 1395 }
02a68a5e 1396
2f6726e5 1397 } while (zone_type);
070f8032 1398 return nr_zones;
1da177e4
LT
1399}
1400
1401#ifdef CONFIG_NUMA
1402#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1403static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1404/**
4dc3b16b 1405 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1406 * @node: node whose fallback list we're appending
1407 * @used_node_mask: nodemask_t of already used nodes
1408 *
1409 * We use a number of factors to determine which is the next node that should
1410 * appear on a given node's fallback list. The node should not have appeared
1411 * already in @node's fallback list, and it should be the next closest node
1412 * according to the distance array (which contains arbitrary distance values
1413 * from each node to each node in the system), and should also prefer nodes
1414 * with no CPUs, since presumably they'll have very little allocation pressure
1415 * on them otherwise.
1416 * It returns -1 if no node is found.
1417 */
86356ab1 1418static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1419{
4cf808eb 1420 int n, val;
1da177e4
LT
1421 int min_val = INT_MAX;
1422 int best_node = -1;
1423
4cf808eb
LT
1424 /* Use the local node if we haven't already */
1425 if (!node_isset(node, *used_node_mask)) {
1426 node_set(node, *used_node_mask);
1427 return node;
1428 }
1da177e4 1429
4cf808eb
LT
1430 for_each_online_node(n) {
1431 cpumask_t tmp;
1da177e4
LT
1432
1433 /* Don't want a node to appear more than once */
1434 if (node_isset(n, *used_node_mask))
1435 continue;
1436
1da177e4
LT
1437 /* Use the distance array to find the distance */
1438 val = node_distance(node, n);
1439
4cf808eb
LT
1440 /* Penalize nodes under us ("prefer the next node") */
1441 val += (n < node);
1442
1da177e4
LT
1443 /* Give preference to headless and unused nodes */
1444 tmp = node_to_cpumask(n);
1445 if (!cpus_empty(tmp))
1446 val += PENALTY_FOR_NODE_WITH_CPUS;
1447
1448 /* Slight preference for less loaded node */
1449 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1450 val += node_load[n];
1451
1452 if (val < min_val) {
1453 min_val = val;
1454 best_node = n;
1455 }
1456 }
1457
1458 if (best_node >= 0)
1459 node_set(best_node, *used_node_mask);
1460
1461 return best_node;
1462}
1463
86356ab1 1464static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1465{
19655d34
CL
1466 int j, node, local_node;
1467 enum zone_type i;
1da177e4
LT
1468 int prev_node, load;
1469 struct zonelist *zonelist;
1470 nodemask_t used_mask;
1471
1472 /* initialize zonelists */
19655d34 1473 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1474 zonelist = pgdat->node_zonelists + i;
1475 zonelist->zones[0] = NULL;
1476 }
1477
1478 /* NUMA-aware ordering of nodes */
1479 local_node = pgdat->node_id;
1480 load = num_online_nodes();
1481 prev_node = local_node;
1482 nodes_clear(used_mask);
1483 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1484 int distance = node_distance(local_node, node);
1485
1486 /*
1487 * If another node is sufficiently far away then it is better
1488 * to reclaim pages in a zone before going off node.
1489 */
1490 if (distance > RECLAIM_DISTANCE)
1491 zone_reclaim_mode = 1;
1492
1da177e4
LT
1493 /*
1494 * We don't want to pressure a particular node.
1495 * So adding penalty to the first node in same
1496 * distance group to make it round-robin.
1497 */
9eeff239
CL
1498
1499 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1500 node_load[node] += load;
1501 prev_node = node;
1502 load--;
19655d34 1503 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1504 zonelist = pgdat->node_zonelists + i;
1505 for (j = 0; zonelist->zones[j] != NULL; j++);
1506
19655d34 1507 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1508 zonelist->zones[j] = NULL;
1509 }
1510 }
1511}
1512
1513#else /* CONFIG_NUMA */
1514
86356ab1 1515static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4 1516{
19655d34
CL
1517 int node, local_node;
1518 enum zone_type i,j;
1da177e4
LT
1519
1520 local_node = pgdat->node_id;
19655d34 1521 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1522 struct zonelist *zonelist;
1523
1524 zonelist = pgdat->node_zonelists + i;
1525
19655d34 1526 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
1527 /*
1528 * Now we build the zonelist so that it contains the zones
1529 * of all the other nodes.
1530 * We don't want to pressure a particular node, so when
1531 * building the zones for node N, we make sure that the
1532 * zones coming right after the local ones are those from
1533 * node N+1 (modulo N)
1534 */
1535 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1536 if (!node_online(node))
1537 continue;
19655d34 1538 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1539 }
1540 for (node = 0; node < local_node; node++) {
1541 if (!node_online(node))
1542 continue;
19655d34 1543 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
1544 }
1545
1546 zonelist->zones[j] = NULL;
1547 }
1548}
1549
1550#endif /* CONFIG_NUMA */
1551
6811378e
YG
1552/* return values int ....just for stop_machine_run() */
1553static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1554{
6811378e
YG
1555 int nid;
1556 for_each_online_node(nid)
1557 build_zonelists(NODE_DATA(nid));
1558 return 0;
1559}
1560
1561void __meminit build_all_zonelists(void)
1562{
1563 if (system_state == SYSTEM_BOOTING) {
1564 __build_all_zonelists(0);
1565 cpuset_init_current_mems_allowed();
1566 } else {
1567 /* we have to stop all cpus to guaranntee there is no user
1568 of zonelist */
1569 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1570 /* cpuset refresh routine should be here */
1571 }
bd1e22b8
AM
1572 vm_total_pages = nr_free_pagecache_pages();
1573 printk("Built %i zonelists. Total pages: %ld\n",
1574 num_online_nodes(), vm_total_pages);
1da177e4
LT
1575}
1576
1577/*
1578 * Helper functions to size the waitqueue hash table.
1579 * Essentially these want to choose hash table sizes sufficiently
1580 * large so that collisions trying to wait on pages are rare.
1581 * But in fact, the number of active page waitqueues on typical
1582 * systems is ridiculously low, less than 200. So this is even
1583 * conservative, even though it seems large.
1584 *
1585 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1586 * waitqueues, i.e. the size of the waitq table given the number of pages.
1587 */
1588#define PAGES_PER_WAITQUEUE 256
1589
cca448fe 1590#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1591static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1592{
1593 unsigned long size = 1;
1594
1595 pages /= PAGES_PER_WAITQUEUE;
1596
1597 while (size < pages)
1598 size <<= 1;
1599
1600 /*
1601 * Once we have dozens or even hundreds of threads sleeping
1602 * on IO we've got bigger problems than wait queue collision.
1603 * Limit the size of the wait table to a reasonable size.
1604 */
1605 size = min(size, 4096UL);
1606
1607 return max(size, 4UL);
1608}
cca448fe
YG
1609#else
1610/*
1611 * A zone's size might be changed by hot-add, so it is not possible to determine
1612 * a suitable size for its wait_table. So we use the maximum size now.
1613 *
1614 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1615 *
1616 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1617 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1618 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1619 *
1620 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1621 * or more by the traditional way. (See above). It equals:
1622 *
1623 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1624 * ia64(16K page size) : = ( 8G + 4M)byte.
1625 * powerpc (64K page size) : = (32G +16M)byte.
1626 */
1627static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1628{
1629 return 4096UL;
1630}
1631#endif
1da177e4
LT
1632
1633/*
1634 * This is an integer logarithm so that shifts can be used later
1635 * to extract the more random high bits from the multiplicative
1636 * hash function before the remainder is taken.
1637 */
1638static inline unsigned long wait_table_bits(unsigned long size)
1639{
1640 return ffz(~size);
1641}
1642
1643#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1644
1645static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1646 unsigned long *zones_size, unsigned long *zholes_size)
1647{
1648 unsigned long realtotalpages, totalpages = 0;
2f6726e5 1649 enum zone_type i;
1da177e4
LT
1650
1651 for (i = 0; i < MAX_NR_ZONES; i++)
1652 totalpages += zones_size[i];
1653 pgdat->node_spanned_pages = totalpages;
1654
1655 realtotalpages = totalpages;
1656 if (zholes_size)
1657 for (i = 0; i < MAX_NR_ZONES; i++)
1658 realtotalpages -= zholes_size[i];
1659 pgdat->node_present_pages = realtotalpages;
1660 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1661}
1662
1663
1664/*
1665 * Initially all pages are reserved - free ones are freed
1666 * up by free_all_bootmem() once the early boot process is
1667 * done. Non-atomic initialization, single-pass.
1668 */
c09b4240 1669void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1670 unsigned long start_pfn)
1671{
1da177e4 1672 struct page *page;
29751f69
AW
1673 unsigned long end_pfn = start_pfn + size;
1674 unsigned long pfn;
1da177e4 1675
cbe8dd4a 1676 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1677 if (!early_pfn_valid(pfn))
1678 continue;
1679 page = pfn_to_page(pfn);
1680 set_page_links(page, zone, nid, pfn);
7835e98b 1681 init_page_count(page);
1da177e4
LT
1682 reset_page_mapcount(page);
1683 SetPageReserved(page);
1684 INIT_LIST_HEAD(&page->lru);
1685#ifdef WANT_PAGE_VIRTUAL
1686 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1687 if (!is_highmem_idx(zone))
3212c6be 1688 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1689#endif
1da177e4
LT
1690 }
1691}
1692
1693void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1694 unsigned long size)
1695{
1696 int order;
1697 for (order = 0; order < MAX_ORDER ; order++) {
1698 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1699 zone->free_area[order].nr_free = 0;
1700 }
1701}
1702
d41dee36 1703#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
2f1b6248
CL
1704void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1705 unsigned long pfn, unsigned long size)
d41dee36
AW
1706{
1707 unsigned long snum = pfn_to_section_nr(pfn);
1708 unsigned long end = pfn_to_section_nr(pfn + size);
1709
1710 if (FLAGS_HAS_NODE)
1711 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1712 else
1713 for (; snum <= end; snum++)
1714 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1715}
1716
1da177e4
LT
1717#ifndef __HAVE_ARCH_MEMMAP_INIT
1718#define memmap_init(size, nid, zone, start_pfn) \
1719 memmap_init_zone((size), (nid), (zone), (start_pfn))
1720#endif
1721
6292d9aa 1722static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1723{
1724 int batch;
1725
1726 /*
1727 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1728 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1729 *
1730 * OK, so we don't know how big the cache is. So guess.
1731 */
1732 batch = zone->present_pages / 1024;
ba56e91c
SR
1733 if (batch * PAGE_SIZE > 512 * 1024)
1734 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1735 batch /= 4; /* We effectively *= 4 below */
1736 if (batch < 1)
1737 batch = 1;
1738
1739 /*
0ceaacc9
NP
1740 * Clamp the batch to a 2^n - 1 value. Having a power
1741 * of 2 value was found to be more likely to have
1742 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1743 *
0ceaacc9
NP
1744 * For example if 2 tasks are alternately allocating
1745 * batches of pages, one task can end up with a lot
1746 * of pages of one half of the possible page colors
1747 * and the other with pages of the other colors.
e7c8d5c9 1748 */
0ceaacc9 1749 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1750
e7c8d5c9
CL
1751 return batch;
1752}
1753
2caaad41
CL
1754inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1755{
1756 struct per_cpu_pages *pcp;
1757
1c6fe946
MD
1758 memset(p, 0, sizeof(*p));
1759
2caaad41
CL
1760 pcp = &p->pcp[0]; /* hot */
1761 pcp->count = 0;
2caaad41
CL
1762 pcp->high = 6 * batch;
1763 pcp->batch = max(1UL, 1 * batch);
1764 INIT_LIST_HEAD(&pcp->list);
1765
1766 pcp = &p->pcp[1]; /* cold*/
1767 pcp->count = 0;
2caaad41 1768 pcp->high = 2 * batch;
e46a5e28 1769 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1770 INIT_LIST_HEAD(&pcp->list);
1771}
1772
8ad4b1fb
RS
1773/*
1774 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1775 * to the value high for the pageset p.
1776 */
1777
1778static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1779 unsigned long high)
1780{
1781 struct per_cpu_pages *pcp;
1782
1783 pcp = &p->pcp[0]; /* hot list */
1784 pcp->high = high;
1785 pcp->batch = max(1UL, high/4);
1786 if ((high/4) > (PAGE_SHIFT * 8))
1787 pcp->batch = PAGE_SHIFT * 8;
1788}
1789
1790
e7c8d5c9
CL
1791#ifdef CONFIG_NUMA
1792/*
2caaad41
CL
1793 * Boot pageset table. One per cpu which is going to be used for all
1794 * zones and all nodes. The parameters will be set in such a way
1795 * that an item put on a list will immediately be handed over to
1796 * the buddy list. This is safe since pageset manipulation is done
1797 * with interrupts disabled.
1798 *
1799 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1800 *
1801 * The boot_pagesets must be kept even after bootup is complete for
1802 * unused processors and/or zones. They do play a role for bootstrapping
1803 * hotplugged processors.
1804 *
1805 * zoneinfo_show() and maybe other functions do
1806 * not check if the processor is online before following the pageset pointer.
1807 * Other parts of the kernel may not check if the zone is available.
2caaad41 1808 */
88a2a4ac 1809static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1810
1811/*
1812 * Dynamically allocate memory for the
e7c8d5c9
CL
1813 * per cpu pageset array in struct zone.
1814 */
6292d9aa 1815static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1816{
1817 struct zone *zone, *dzone;
e7c8d5c9
CL
1818
1819 for_each_zone(zone) {
e7c8d5c9 1820
23316bc8 1821 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1822 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1823 if (!zone_pcp(zone, cpu))
e7c8d5c9 1824 goto bad;
e7c8d5c9 1825
23316bc8 1826 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1827
1828 if (percpu_pagelist_fraction)
1829 setup_pagelist_highmark(zone_pcp(zone, cpu),
1830 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1831 }
1832
1833 return 0;
1834bad:
1835 for_each_zone(dzone) {
1836 if (dzone == zone)
1837 break;
23316bc8
NP
1838 kfree(zone_pcp(dzone, cpu));
1839 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1840 }
1841 return -ENOMEM;
1842}
1843
1844static inline void free_zone_pagesets(int cpu)
1845{
e7c8d5c9
CL
1846 struct zone *zone;
1847
1848 for_each_zone(zone) {
1849 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1850
f3ef9ead
DR
1851 /* Free per_cpu_pageset if it is slab allocated */
1852 if (pset != &boot_pageset[cpu])
1853 kfree(pset);
e7c8d5c9 1854 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 1855 }
e7c8d5c9
CL
1856}
1857
9c7b216d 1858static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1859 unsigned long action,
1860 void *hcpu)
1861{
1862 int cpu = (long)hcpu;
1863 int ret = NOTIFY_OK;
1864
1865 switch (action) {
1866 case CPU_UP_PREPARE:
1867 if (process_zones(cpu))
1868 ret = NOTIFY_BAD;
1869 break;
b0d41693 1870 case CPU_UP_CANCELED:
e7c8d5c9
CL
1871 case CPU_DEAD:
1872 free_zone_pagesets(cpu);
1873 break;
e7c8d5c9
CL
1874 default:
1875 break;
1876 }
1877 return ret;
1878}
1879
74b85f37 1880static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1881 { &pageset_cpuup_callback, NULL, 0 };
1882
78d9955b 1883void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1884{
1885 int err;
1886
1887 /* Initialize per_cpu_pageset for cpu 0.
1888 * A cpuup callback will do this for every cpu
1889 * as it comes online
1890 */
1891 err = process_zones(smp_processor_id());
1892 BUG_ON(err);
1893 register_cpu_notifier(&pageset_notifier);
1894}
1895
1896#endif
1897
c09b4240 1898static __meminit
cca448fe 1899int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1900{
1901 int i;
1902 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1903 size_t alloc_size;
ed8ece2e
DH
1904
1905 /*
1906 * The per-page waitqueue mechanism uses hashed waitqueues
1907 * per zone.
1908 */
02b694de
YG
1909 zone->wait_table_hash_nr_entries =
1910 wait_table_hash_nr_entries(zone_size_pages);
1911 zone->wait_table_bits =
1912 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1913 alloc_size = zone->wait_table_hash_nr_entries
1914 * sizeof(wait_queue_head_t);
1915
1916 if (system_state == SYSTEM_BOOTING) {
1917 zone->wait_table = (wait_queue_head_t *)
1918 alloc_bootmem_node(pgdat, alloc_size);
1919 } else {
1920 /*
1921 * This case means that a zone whose size was 0 gets new memory
1922 * via memory hot-add.
1923 * But it may be the case that a new node was hot-added. In
1924 * this case vmalloc() will not be able to use this new node's
1925 * memory - this wait_table must be initialized to use this new
1926 * node itself as well.
1927 * To use this new node's memory, further consideration will be
1928 * necessary.
1929 */
1930 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1931 }
1932 if (!zone->wait_table)
1933 return -ENOMEM;
ed8ece2e 1934
02b694de 1935 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1936 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1937
1938 return 0;
ed8ece2e
DH
1939}
1940
c09b4240 1941static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1942{
1943 int cpu;
1944 unsigned long batch = zone_batchsize(zone);
1945
1946 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1947#ifdef CONFIG_NUMA
1948 /* Early boot. Slab allocator not functional yet */
23316bc8 1949 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1950 setup_pageset(&boot_pageset[cpu],0);
1951#else
1952 setup_pageset(zone_pcp(zone,cpu), batch);
1953#endif
1954 }
f5335c0f
AB
1955 if (zone->present_pages)
1956 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1957 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1958}
1959
718127cc
YG
1960__meminit int init_currently_empty_zone(struct zone *zone,
1961 unsigned long zone_start_pfn,
1962 unsigned long size)
ed8ece2e
DH
1963{
1964 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1965 int ret;
1966 ret = zone_wait_table_init(zone, size);
1967 if (ret)
1968 return ret;
ed8ece2e
DH
1969 pgdat->nr_zones = zone_idx(zone) + 1;
1970
ed8ece2e
DH
1971 zone->zone_start_pfn = zone_start_pfn;
1972
1973 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1974
1975 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1976
1977 return 0;
ed8ece2e
DH
1978}
1979
1da177e4
LT
1980/*
1981 * Set up the zone data structures:
1982 * - mark all pages reserved
1983 * - mark all memory queues empty
1984 * - clear the memory bitmaps
1985 */
86356ab1 1986static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1987 unsigned long *zones_size, unsigned long *zholes_size)
1988{
2f1b6248 1989 enum zone_type j;
ed8ece2e 1990 int nid = pgdat->node_id;
1da177e4 1991 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1992 int ret;
1da177e4 1993
208d54e5 1994 pgdat_resize_init(pgdat);
1da177e4
LT
1995 pgdat->nr_zones = 0;
1996 init_waitqueue_head(&pgdat->kswapd_wait);
1997 pgdat->kswapd_max_order = 0;
1998
1999 for (j = 0; j < MAX_NR_ZONES; j++) {
2000 struct zone *zone = pgdat->node_zones + j;
2001 unsigned long size, realsize;
1da177e4 2002
1da177e4
LT
2003 realsize = size = zones_size[j];
2004 if (zholes_size)
2005 realsize -= zholes_size[j];
2006
98d2b0eb 2007 if (!is_highmem_idx(j))
1da177e4
LT
2008 nr_kernel_pages += realsize;
2009 nr_all_pages += realsize;
2010
2011 zone->spanned_pages = size;
2012 zone->present_pages = realsize;
9614634f 2013#ifdef CONFIG_NUMA
8417bba4 2014 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2015 / 100;
0ff38490 2016 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2017#endif
1da177e4
LT
2018 zone->name = zone_names[j];
2019 spin_lock_init(&zone->lock);
2020 spin_lock_init(&zone->lru_lock);
bdc8cb98 2021 zone_seqlock_init(zone);
1da177e4
LT
2022 zone->zone_pgdat = pgdat;
2023 zone->free_pages = 0;
2024
2025 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2026
ed8ece2e 2027 zone_pcp_init(zone);
1da177e4
LT
2028 INIT_LIST_HEAD(&zone->active_list);
2029 INIT_LIST_HEAD(&zone->inactive_list);
2030 zone->nr_scan_active = 0;
2031 zone->nr_scan_inactive = 0;
2032 zone->nr_active = 0;
2033 zone->nr_inactive = 0;
2244b95a 2034 zap_zone_vm_stats(zone);
53e9a615 2035 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2036 if (!size)
2037 continue;
2038
d41dee36 2039 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2040 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2041 BUG_ON(ret);
1da177e4 2042 zone_start_pfn += size;
1da177e4
LT
2043 }
2044}
2045
2046static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2047{
1da177e4
LT
2048 /* Skip empty nodes */
2049 if (!pgdat->node_spanned_pages)
2050 return;
2051
d41dee36 2052#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2053 /* ia64 gets its own node_mem_map, before this, without bootmem */
2054 if (!pgdat->node_mem_map) {
e984bb43 2055 unsigned long size, start, end;
d41dee36
AW
2056 struct page *map;
2057
e984bb43
BP
2058 /*
2059 * The zone's endpoints aren't required to be MAX_ORDER
2060 * aligned but the node_mem_map endpoints must be in order
2061 * for the buddy allocator to function correctly.
2062 */
2063 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2064 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2065 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2066 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2067 map = alloc_remap(pgdat->node_id, size);
2068 if (!map)
2069 map = alloc_bootmem_node(pgdat, size);
e984bb43 2070 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2071 }
d41dee36 2072#ifdef CONFIG_FLATMEM
1da177e4
LT
2073 /*
2074 * With no DISCONTIG, the global mem_map is just set as node 0's
2075 */
2076 if (pgdat == NODE_DATA(0))
2077 mem_map = NODE_DATA(0)->node_mem_map;
2078#endif
d41dee36 2079#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2080}
2081
86356ab1 2082void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2083 unsigned long *zones_size, unsigned long node_start_pfn,
2084 unsigned long *zholes_size)
2085{
2086 pgdat->node_id = nid;
2087 pgdat->node_start_pfn = node_start_pfn;
2088 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2089
2090 alloc_node_mem_map(pgdat);
2091
2092 free_area_init_core(pgdat, zones_size, zholes_size);
2093}
2094
93b7504e 2095#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2096static bootmem_data_t contig_bootmem_data;
2097struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2098
2099EXPORT_SYMBOL(contig_page_data);
93b7504e 2100#endif
1da177e4
LT
2101
2102void __init free_area_init(unsigned long *zones_size)
2103{
93b7504e 2104 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2105 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2106}
1da177e4 2107
1da177e4
LT
2108#ifdef CONFIG_HOTPLUG_CPU
2109static int page_alloc_cpu_notify(struct notifier_block *self,
2110 unsigned long action, void *hcpu)
2111{
2112 int cpu = (unsigned long)hcpu;
1da177e4
LT
2113
2114 if (action == CPU_DEAD) {
1da177e4
LT
2115 local_irq_disable();
2116 __drain_pages(cpu);
f8891e5e 2117 vm_events_fold_cpu(cpu);
1da177e4 2118 local_irq_enable();
2244b95a 2119 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2120 }
2121 return NOTIFY_OK;
2122}
2123#endif /* CONFIG_HOTPLUG_CPU */
2124
2125void __init page_alloc_init(void)
2126{
2127 hotcpu_notifier(page_alloc_cpu_notify, 0);
2128}
2129
cb45b0e9
HA
2130/*
2131 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2132 * or min_free_kbytes changes.
2133 */
2134static void calculate_totalreserve_pages(void)
2135{
2136 struct pglist_data *pgdat;
2137 unsigned long reserve_pages = 0;
2f6726e5 2138 enum zone_type i, j;
cb45b0e9
HA
2139
2140 for_each_online_pgdat(pgdat) {
2141 for (i = 0; i < MAX_NR_ZONES; i++) {
2142 struct zone *zone = pgdat->node_zones + i;
2143 unsigned long max = 0;
2144
2145 /* Find valid and maximum lowmem_reserve in the zone */
2146 for (j = i; j < MAX_NR_ZONES; j++) {
2147 if (zone->lowmem_reserve[j] > max)
2148 max = zone->lowmem_reserve[j];
2149 }
2150
2151 /* we treat pages_high as reserved pages. */
2152 max += zone->pages_high;
2153
2154 if (max > zone->present_pages)
2155 max = zone->present_pages;
2156 reserve_pages += max;
2157 }
2158 }
2159 totalreserve_pages = reserve_pages;
2160}
2161
1da177e4
LT
2162/*
2163 * setup_per_zone_lowmem_reserve - called whenever
2164 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2165 * has a correct pages reserved value, so an adequate number of
2166 * pages are left in the zone after a successful __alloc_pages().
2167 */
2168static void setup_per_zone_lowmem_reserve(void)
2169{
2170 struct pglist_data *pgdat;
2f6726e5 2171 enum zone_type j, idx;
1da177e4 2172
ec936fc5 2173 for_each_online_pgdat(pgdat) {
1da177e4
LT
2174 for (j = 0; j < MAX_NR_ZONES; j++) {
2175 struct zone *zone = pgdat->node_zones + j;
2176 unsigned long present_pages = zone->present_pages;
2177
2178 zone->lowmem_reserve[j] = 0;
2179
2f6726e5
CL
2180 idx = j;
2181 while (idx) {
1da177e4
LT
2182 struct zone *lower_zone;
2183
2f6726e5
CL
2184 idx--;
2185
1da177e4
LT
2186 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2187 sysctl_lowmem_reserve_ratio[idx] = 1;
2188
2189 lower_zone = pgdat->node_zones + idx;
2190 lower_zone->lowmem_reserve[j] = present_pages /
2191 sysctl_lowmem_reserve_ratio[idx];
2192 present_pages += lower_zone->present_pages;
2193 }
2194 }
2195 }
cb45b0e9
HA
2196
2197 /* update totalreserve_pages */
2198 calculate_totalreserve_pages();
1da177e4
LT
2199}
2200
2201/*
2202 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2203 * that the pages_{min,low,high} values for each zone are set correctly
2204 * with respect to min_free_kbytes.
2205 */
3947be19 2206void setup_per_zone_pages_min(void)
1da177e4
LT
2207{
2208 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2209 unsigned long lowmem_pages = 0;
2210 struct zone *zone;
2211 unsigned long flags;
2212
2213 /* Calculate total number of !ZONE_HIGHMEM pages */
2214 for_each_zone(zone) {
2215 if (!is_highmem(zone))
2216 lowmem_pages += zone->present_pages;
2217 }
2218
2219 for_each_zone(zone) {
ac924c60
AM
2220 u64 tmp;
2221
1da177e4 2222 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2223 tmp = (u64)pages_min * zone->present_pages;
2224 do_div(tmp, lowmem_pages);
1da177e4
LT
2225 if (is_highmem(zone)) {
2226 /*
669ed175
NP
2227 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2228 * need highmem pages, so cap pages_min to a small
2229 * value here.
2230 *
2231 * The (pages_high-pages_low) and (pages_low-pages_min)
2232 * deltas controls asynch page reclaim, and so should
2233 * not be capped for highmem.
1da177e4
LT
2234 */
2235 int min_pages;
2236
2237 min_pages = zone->present_pages / 1024;
2238 if (min_pages < SWAP_CLUSTER_MAX)
2239 min_pages = SWAP_CLUSTER_MAX;
2240 if (min_pages > 128)
2241 min_pages = 128;
2242 zone->pages_min = min_pages;
2243 } else {
669ed175
NP
2244 /*
2245 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2246 * proportionate to the zone's size.
2247 */
669ed175 2248 zone->pages_min = tmp;
1da177e4
LT
2249 }
2250
ac924c60
AM
2251 zone->pages_low = zone->pages_min + (tmp >> 2);
2252 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2253 spin_unlock_irqrestore(&zone->lru_lock, flags);
2254 }
cb45b0e9
HA
2255
2256 /* update totalreserve_pages */
2257 calculate_totalreserve_pages();
1da177e4
LT
2258}
2259
2260/*
2261 * Initialise min_free_kbytes.
2262 *
2263 * For small machines we want it small (128k min). For large machines
2264 * we want it large (64MB max). But it is not linear, because network
2265 * bandwidth does not increase linearly with machine size. We use
2266 *
2267 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2268 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2269 *
2270 * which yields
2271 *
2272 * 16MB: 512k
2273 * 32MB: 724k
2274 * 64MB: 1024k
2275 * 128MB: 1448k
2276 * 256MB: 2048k
2277 * 512MB: 2896k
2278 * 1024MB: 4096k
2279 * 2048MB: 5792k
2280 * 4096MB: 8192k
2281 * 8192MB: 11584k
2282 * 16384MB: 16384k
2283 */
2284static int __init init_per_zone_pages_min(void)
2285{
2286 unsigned long lowmem_kbytes;
2287
2288 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2289
2290 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2291 if (min_free_kbytes < 128)
2292 min_free_kbytes = 128;
2293 if (min_free_kbytes > 65536)
2294 min_free_kbytes = 65536;
2295 setup_per_zone_pages_min();
2296 setup_per_zone_lowmem_reserve();
2297 return 0;
2298}
2299module_init(init_per_zone_pages_min)
2300
2301/*
2302 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2303 * that we can call two helper functions whenever min_free_kbytes
2304 * changes.
2305 */
2306int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2307 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2308{
2309 proc_dointvec(table, write, file, buffer, length, ppos);
2310 setup_per_zone_pages_min();
2311 return 0;
2312}
2313
9614634f
CL
2314#ifdef CONFIG_NUMA
2315int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2316 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2317{
2318 struct zone *zone;
2319 int rc;
2320
2321 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2322 if (rc)
2323 return rc;
2324
2325 for_each_zone(zone)
8417bba4 2326 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
2327 sysctl_min_unmapped_ratio) / 100;
2328 return 0;
2329}
0ff38490
CL
2330
2331int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
2332 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2333{
2334 struct zone *zone;
2335 int rc;
2336
2337 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2338 if (rc)
2339 return rc;
2340
2341 for_each_zone(zone)
2342 zone->min_slab_pages = (zone->present_pages *
2343 sysctl_min_slab_ratio) / 100;
2344 return 0;
2345}
9614634f
CL
2346#endif
2347
1da177e4
LT
2348/*
2349 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2350 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2351 * whenever sysctl_lowmem_reserve_ratio changes.
2352 *
2353 * The reserve ratio obviously has absolutely no relation with the
2354 * pages_min watermarks. The lowmem reserve ratio can only make sense
2355 * if in function of the boot time zone sizes.
2356 */
2357int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2358 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2359{
2360 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2361 setup_per_zone_lowmem_reserve();
2362 return 0;
2363}
2364
8ad4b1fb
RS
2365/*
2366 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2367 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2368 * can have before it gets flushed back to buddy allocator.
2369 */
2370
2371int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2372 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2373{
2374 struct zone *zone;
2375 unsigned int cpu;
2376 int ret;
2377
2378 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2379 if (!write || (ret == -EINVAL))
2380 return ret;
2381 for_each_zone(zone) {
2382 for_each_online_cpu(cpu) {
2383 unsigned long high;
2384 high = zone->present_pages / percpu_pagelist_fraction;
2385 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2386 }
2387 }
2388 return 0;
2389}
2390
f034b5d4 2391int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
2392
2393#ifdef CONFIG_NUMA
2394static int __init set_hashdist(char *str)
2395{
2396 if (!str)
2397 return 0;
2398 hashdist = simple_strtoul(str, &str, 0);
2399 return 1;
2400}
2401__setup("hashdist=", set_hashdist);
2402#endif
2403
2404/*
2405 * allocate a large system hash table from bootmem
2406 * - it is assumed that the hash table must contain an exact power-of-2
2407 * quantity of entries
2408 * - limit is the number of hash buckets, not the total allocation size
2409 */
2410void *__init alloc_large_system_hash(const char *tablename,
2411 unsigned long bucketsize,
2412 unsigned long numentries,
2413 int scale,
2414 int flags,
2415 unsigned int *_hash_shift,
2416 unsigned int *_hash_mask,
2417 unsigned long limit)
2418{
2419 unsigned long long max = limit;
2420 unsigned long log2qty, size;
2421 void *table = NULL;
2422
2423 /* allow the kernel cmdline to have a say */
2424 if (!numentries) {
2425 /* round applicable memory size up to nearest megabyte */
2426 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2427 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2428 numentries >>= 20 - PAGE_SHIFT;
2429 numentries <<= 20 - PAGE_SHIFT;
2430
2431 /* limit to 1 bucket per 2^scale bytes of low memory */
2432 if (scale > PAGE_SHIFT)
2433 numentries >>= (scale - PAGE_SHIFT);
2434 else
2435 numentries <<= (PAGE_SHIFT - scale);
2436 }
6e692ed3 2437 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2438
2439 /* limit allocation size to 1/16 total memory by default */
2440 if (max == 0) {
2441 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2442 do_div(max, bucketsize);
2443 }
2444
2445 if (numentries > max)
2446 numentries = max;
2447
2448 log2qty = long_log2(numentries);
2449
2450 do {
2451 size = bucketsize << log2qty;
2452 if (flags & HASH_EARLY)
2453 table = alloc_bootmem(size);
2454 else if (hashdist)
2455 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2456 else {
2457 unsigned long order;
2458 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2459 ;
2460 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2461 }
2462 } while (!table && size > PAGE_SIZE && --log2qty);
2463
2464 if (!table)
2465 panic("Failed to allocate %s hash table\n", tablename);
2466
2467 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2468 tablename,
2469 (1U << log2qty),
2470 long_log2(size) - PAGE_SHIFT,
2471 size);
2472
2473 if (_hash_shift)
2474 *_hash_shift = log2qty;
2475 if (_hash_mask)
2476 *_hash_mask = (1 << log2qty) - 1;
2477
2478 return table;
2479}
a117e66e
KH
2480
2481#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2482struct page *pfn_to_page(unsigned long pfn)
2483{
67de6482 2484 return __pfn_to_page(pfn);
a117e66e
KH
2485}
2486unsigned long page_to_pfn(struct page *page)
2487{
67de6482 2488 return __page_to_pfn(page);
a117e66e 2489}
a117e66e
KH
2490EXPORT_SYMBOL(pfn_to_page);
2491EXPORT_SYMBOL(page_to_pfn);
2492#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */